Science.gov

Sample records for 7t multichannel phase

  1. QUANTITATIVE 7T PHASE IMAGING IN PREMOTOR HUNTINGTON DISEASE

    PubMed Central

    Apple, Alexandra C.; Possin, Katherine L.; Satris, Gabriela; Johnson, Erica; Lupo, Janine M.; Jakary, Angela; Wong, Katherine; Kelley, Douglas A. C.; Kang, Gail A.; Sha, Sharon J.; Kramer, Joel H.; Geschwind, Michael; Nelson, Sarah J.; Hess, Christopher P.

    2014-01-01

    Background and Purpose In vivo MRI and postmortem neuropathological studies have demonstrated elevated iron concentration and atrophy within the striatum of patients with Huntington disease (HD), implicating neuronal loss and iron accumulation in the pathogenesis of this neurodegenerative disorder. We used 7T MRI to determine whether quantitative phase, a putative marker of these endpoints, is altered in subjects with premotor HD. Materials and Methods Local field shift (LFS), calculated from 7T MR phase images, was quantified in 13 subjects with premotor HD and 13 age- and gender-matched controls. All participants underwent 3T and 7T MRI, including volumetric 3T T1 and 7T gradient-recalled echo sequences. LFS maps were created from 7T phase data and registered to caudate ROIs automatically parcellated from the 3T T1 images. HD-specific neurocognitive assessment was also performed and compared to LFS. Results Subjects with premotor HD had smaller caudate nuclear volume and higher LFS than controls. A significant correlation between these measurements was not detected, and prediction accuracy for disease state improved with inclusion of both variables. A positive correlation between LFS and genetic disease burden was also found, and there was a trend towards significant correlations between LFS and neurocognitive tests of working memory and executive function. Conclusion Subjects with premotor HD exhibit differences in 7T MRI phase within the caudate nuclei that correlate with genetic disease burden and trend with neurocognitive assessments. Ultra-high field MRI of quantitative phase may be a useful marker for monitoring neurodegeneration in premanifest HD. PMID:24742810

  2. Multichannel Phase and Power Detector

    NASA Technical Reports Server (NTRS)

    Li, Samuel; Lux, James; McMaster, Robert; Boas, Amy

    2006-01-01

    An electronic signal-processing system determines the phases of input signals arriving in multiple channels, relative to the phase of a reference signal with which the input signals are known to be coherent in both phase and frequency. The system also gives an estimate of the power levels of the input signals. A prototype of the system has four input channels that handle signals at a frequency of 9.5 MHz, but the basic principles of design and operation are extensible to other signal frequencies and greater numbers of channels. The prototype system consists mostly of three parts: An analog-to-digital-converter (ADC) board, which coherently digitizes the input signals in synchronism with the reference signal and performs some simple processing; A digital signal processor (DSP) in the form of a field-programmable gate array (FPGA) board, which performs most of the phase- and power-measurement computations on the digital samples generated by the ADC board; and A carrier board, which allows a personal computer to retrieve the phase and power data. The DSP contains four independent phase-only tracking loops, each of which tracks the phase of one of the preprocessed input signals relative to that of the reference signal (see figure). The phase values computed by these loops are averaged over intervals, the length of which is chosen to obtain output from the DSP at a desired rate. In addition, a simple sum of squares is computed for each channel as an estimate of the power of the signal in that channel. The relative phases and the power level estimates computed by the DSP could be used for diverse purposes in different settings. For example, if the input signals come from different elements of a phased-array antenna, the phases could be used as indications of the direction of arrival of a received signal and/or as feedback for electronic or mechanical beam steering. The power levels could be used as feedback for automatic gain control in preprocessing of incoming signals

  3. High-resolution MRI of uveal melanoma using a microcoil phased array at 7 T.

    PubMed

    Beenakker, J W M; van Rijn, G A; Luyten, G P M; Webb, A G

    2013-12-01

    High-field MRI is a promising technique for the characterisation of ocular tumours, both in vivo and after enucleation. For in vivo imaging at 7 T, a dedicated three-element microcoil array was constructed as a high-sensitivity receive-only device. Using a dedicated blink/fixation protocol, high-resolution in vivo images could be acquired within 3 min in volunteers and patients with no requirement for post-acquisition image registration. Quantitative measures of axial length, aqueous depth and lens thickness in a healthy volunteer were found to agree well with standard ocular biometric techniques. In a patient with uveal melanoma, in vivo MRI gave excellent tumour/aqueous body contrast. Ex vivo imaging of the enucleated eye showed significant heterogeneity within the tumour.

  4. A Parallel Computational Model for Multichannel Phase Unwrapping Problem

    NASA Astrophysics Data System (ADS)

    Imperatore, Pasquale; Pepe, Antonio; Lanari, Riccardo

    2015-05-01

    In this paper, a parallel model for the solution of the computationally intensive multichannel phase unwrapping (MCh-PhU) problem is proposed. Firstly, the Extended Minimum Cost Flow (EMCF) algorithm for solving MCh-PhU problem is revised within the rigorous mathematical framework of the discrete calculus ; thus permitting to capture its topological structure in terms of meaningful discrete differential operators. Secondly, emphasis is placed on those methodological and practical aspects, which lead to a parallel reformulation of the EMCF algorithm. Thus, a novel dual-level parallel computational model, in which the parallelism is hierarchically implemented at two different (i.e., process and thread) levels, is presented. The validity of our approach has been demonstrated through a series of experiments that have revealed a significant speedup. Therefore, the attained high-performance prototype is suitable for the solution of large-scale phase unwrapping problems in reasonable time frames, with a significant impact on the systematic exploitation of the existing, and rapidly growing, large archives of SAR data.

  5. Image reconstruction from phased-array data based on multichannel blind deconvolution.

    PubMed

    She, Huajun; Chen, Rong-Rong; Liang, Dong; Chang, Yuchou; Ying, Leslie

    2015-11-01

    In this paper we consider image reconstruction from fully sampled multichannel phased array MRI data without knowledge of the coil sensitivities. To overcome the non-uniformity of the conventional sum-of-square reconstruction, a new framework based on multichannel blind deconvolution (MBD) is developed for joint estimation of the image function and the sensitivity functions in image domain. The proposed approach addresses the non-uniqueness of the MBD problem by exploiting the smoothness of both functions in the image domain through regularization. Results using simulation, phantom and in vivo experiments demonstrate that the reconstructions by the proposed algorithm are more uniform than those by the existing methods.

  6. Numerical investigation of multichannel laser beam phase locking in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Volkov, V. A.; Volkov, M. V.; Garanin, S. G.; Starikov, F. A.

    2015-12-01

    The efficiency of coherent multichannel beam combining under focusing through a turbulent medium on a target in the cases of phase conjugation and target irradiation in the feedback loop is investigated numerically in various approximations. The conditions of efficient focusing of multichannel radiation on the target are found. It is shown that the coherent beam combining with target irradiation in the feedback loop, which does not require a reference beam and wavefront measurements, is as good as the phase conjugation approach in the efficiency of focusing. It is found that the main effect of focusing is provided by properly chosen phase shifts in the channels, whereas taking into account local wavefront tip tilts weakly affects the result.

  7. Improved image reconstruction of low-resolution multichannel phase contrast angiography

    PubMed Central

    P. Krishnan, Akshara; Joy, Ajin; Paul, Joseph Suresh

    2016-01-01

    Abstract. In low-resolution phase contrast magnetic resonance angiography, the maximum intensity projected channel images will be blurred with consequent loss of vascular details. The channel images are enhanced using a stabilized deblurring filter, applied to each channel prior to combining the individual channel images. The stabilized deblurring is obtained by the addition of a nonlocal regularization term to the reverse heat equation, referred to as nonlocally stabilized reverse diffusion filter. Unlike reverse diffusion filter, which is highly unstable and blows up noise, nonlocal stabilization enhances intensity projected parallel images uniformly. Application to multichannel vessel enhancement is illustrated using both volunteer data and simulated multichannel angiograms. Robustness of the filter applied to volunteer datasets is shown using statistically validated improvement in flow quantification. Improved performance in terms of preserving vascular structures and phased array reconstruction in both simulated and real data is demonstrated using structureness measure and contrast ratio. PMID:26835501

  8. B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil.

    PubMed

    Van de Moortele, Pierre-François; Akgun, Can; Adriany, Gregor; Moeller, Steen; Ritter, Johannes; Collins, Christopher M; Smith, Michael B; Vaughan, J Thomas; Uğurbil, Kāmil

    2005-12-01

    RF behavior in the human head becomes complex at ultrahigh magnetic fields. A bright center and a weak periphery are observed in images obtained with volume coils, while surface coils provide strong signal in the periphery. Intensity patterns reported with volume coils are often loosely referred to as "dielectric resonances," while modeling studies ascribe them to superposition of traveling waves greatly dampened in lossy brain tissues, raising questions regarding the usage of this term. Here we address this question experimentally, taking full advantage of a transceiver coil array that was used in volume transmit mode, multiple receiver mode, or single transmit surface coil mode. We demonstrate with an appropriately conductive sphere phantom that destructive interferences are responsible for a weak B(1) in the periphery, without a significant standing wave pattern. The relative spatial phase of receive and transmit B(1) proved remarkably similar for the different coil elements, although with opposite rotational direction. Additional simulation data closely matched our phantom results. In the human brain the phase patterns were more complex but still exhibited similarities between coil elements. Our results suggest that measuring spatial B(1) phase could help, within an MR session, to perform RF shimming in order to obtain more homogeneous B(1) in user-defined areas of the brain.

  9. Local B1+ Shimming for Prostate Imaging with Transceiver Arrays at 7T Based on Subject-Dependent Transmit Phase Measurements

    PubMed Central

    Metzger, Gregory J.; Snyder, Carl; Akgun, Can; Vaughan, Tommy; Ugurbil, Kamil; Van de Moortele, Pierre-Francois

    2014-01-01

    High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B1 (B1+) shimming to minimize B1+ losses resulting from destructive interferences. B1+ shimming was performed by altering the input phase of individual RF channels based on relative B1+ phase maps rapidly obtained in vivo for each channel of an eight-element stripline coil. The relative transmit phases needed to maximize B1+ coherence within a limited region around the prostate greatly differed from those dictated by coil geometry and were highly subject-dependent. A set of transmit phases determined by B1+ shimming provided a gain in transmit efficiency of 4.2 ± 2.7 in the prostate when compared to the standard transmit phases determined by coil geometry. This increased efficiency resulted in large reductions in required RF power for a given flip angle in the prostate which, when accounted for in modeling studies, resulted in significant reductions of local specific absorption rates. Additionally, B1+ shimming decreased B1+ nonuniformity within the prostate from (24 ± 9%) to (5 ± 4%). This study demonstrates the tremendous impact of fast local B1+ phase shimming on ultrahigh magnetic field body imaging. PMID:18228604

  10. Design of non-selective refocusing pulses with phase-free rotation axis by gradient ascent pulse engineering algorithm in parallel transmission at 7T.

    PubMed

    Massire, Aurélien; Cloos, Martijn A; Vignaud, Alexandre; Le Bihan, Denis; Amadon, Alexis; Boulant, Nicolas

    2013-05-01

    At ultra-high magnetic field (≥ 7T), B1 and ΔB0 non-uniformities cause undesired inhomogeneities in image signal and contrast. Tailored radiofrequency pulses exploiting parallel transmission have been shown to mitigate these phenomena. However, the design of large flip angle excitations, a prerequisite for many clinical applications, remains challenging due the non-linearity of the Bloch equation. In this work, we explore the potential of gradient ascent pulse engineering to design non-selective spin-echo refocusing pulses that simultaneously mitigate severe B1 and ΔB0 non-uniformities. The originality of the method lays in the optimization of the rotation matrices themselves as opposed to magnetization states. Consequently, the commonly used linear class of large tip angle approximation can be eliminated from the optimization procedure. This approach, combined with optimal control, provides additional degrees of freedom by relaxing the phase constraint on the rotation axis, and allows the derivative of the performance criterion to be found analytically. The method was experimentally validated on an 8-channel transmit array at 7T, using a water phantom with B1 and ΔB0 inhomogeneities similar to those encountered in the human brain. For the first time in MRI, the rotation matrix itself on every voxel was measured by using Quantum Process Tomography. The results are complemented with a series of spin-echo measurements comparing the proposed method against commonly used alternatives. Both experiments confirm very good performance, while simultaneously maintaining a low energy deposition and pulse duration compared to well-known adiabatic solutions.

  11. Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography

    SciTech Connect

    Nissilae, Ilkka; Noponen, Tommi; Kotilahti, Kalle; Katila, Toivo; Lipiaeinen, Lauri; Tarvainen, Tanja; Schweiger, Martin; Arridge, Simon

    2005-04-01

    In this article, we describe the multichannel implementation of an intensity modulated optical tomography system developed at Helsinki University of Technology. The system has two time-multiplexed wavelengths, 16 time-multiplexed source fibers and 16 parallel detection channels. The gain of the photomultiplier tubes (PMTs) is individually adjusted during the measurement sequence to increase the dynamic range of the system by 10{sup 4}. The PMT used has a high quantum efficiency in the near infrared (8% at 800 nm), a fast settling time, and low hysteresis. The gain of the PMT is set so that the dc anode current is below 80 nA, which allows the measurement of phase independently of the intensity. The system allows measurements of amplitude at detected intensities down to 1 fW, which is sufficient for transmittance measurements of the female breast, the forearm, and the brain of early pre-term infants. The mean repeatability of phase and the logarithm of amplitude (ln A) at 100 MHz were found to be 0.08 deg. and 0.004, respectively, in a measurement of a 7 cm phantom with an imaging time of 5 s per source and source optical power of 8 mW. We describe a three-step method of calibrating the phase and amplitude measurements so that the absolute absorption and scatter in tissue may be measured. A phantom with two small cylindrical targets and a second phantom with three rods are measured and reconstructions made from the calibrated data are shown and compared with reconstructions from simulated data.

  12. Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation

    PubMed Central

    Xu, Tianhua; Liga, Gabriele; Lavery, Domaniç; Thomsen, Benn C.; Savory, Seb J.; Killey, Robert I.; Bayvel, Polina

    2015-01-01

    Superchannel transmission spaced at the symbol rate, known as Nyquist spacing, has been demonstrated for effectively maximizing the optical communication channel capacity and spectral efficiency. However, the achievable capacity and reach of transmission systems using advanced modulation formats are affected by fibre nonlinearities and equalization enhanced phase noise (EEPN). Fibre nonlinearities can be effectively compensated using digital back-propagation (DBP). However EEPN which arises from the interaction between laser phase noise and dispersion cannot be efficiently mitigated, and can significantly degrade the performance of transmission systems. Here we report the first investigation of the origin and the impact of EEPN in Nyquist-spaced superchannel system, employing electronic dispersion compensation (EDC) and multi-channel DBP (MC-DBP). Analysis was carried out in a Nyquist-spaced 9-channel 32-Gbaud DP-64QAM transmission system. Results confirm that EEPN significantly degrades the performance of all sub-channels of the superchannel system and that the distortions are more severe for the outer sub-channels, both using EDC and MC-DBP. It is also found that the origin of EEPN depends on the relative position between the carrier phase recovery module and the EDC (or MC-DBP) module. Considering EEPN, diverse coding techniques and modulation formats have to be applied for optimizing different sub-channels in superchannel systems. PMID:26365422

  13. Surface wave phase-velocity tomography based on multichannel cross-correlation

    NASA Astrophysics Data System (ADS)

    Jin, Ge; Gaherty, James B.

    2015-06-01

    We have developed a new method to retrieve seismic surface wave phase velocity using dense seismic arrays. The method measures phase variations between nearby stations based on waveform cross-correlation. The coherence in waveforms between adjacent stations results in highly precise relative phase estimates. Frequency-dependent phase variations are then inverted for spatial variations in apparent phase velocity via the Eikonal equation. Frequency-dependent surface wave amplitudes measured on individual stations are used to correct the apparent phase velocity to account for multipathing via the Helmholtz equation. By using coherence and other data selection criteria, we construct an automated system that retrieves structural phase-velocity maps directly from raw seismic waveforms for individual earthquakes without human intervention. The system is applied to broad-band seismic data from over 800 events recorded on EarthScope's USArray from 2006 to 2014, systematically building up Rayleigh-wave phase-velocity maps between the periods of 20 and 100 s for the entire continental United States. At the highest frequencies, the resulting maps are highly correlated with phase-velocity maps derived from ambient noise tomography. At all frequencies, we observe a significant contrast in Rayleigh-wave phase velocity between the tectonically active western US and the stable eastern US, with the phase velocity variations in the western US being 1-2 times greater. The Love wave phase-velocity maps are also calculated. We find that overtone contamination may produce systemic bias for the Love-wave phase-velocity measurements.

  14. Estimation of human circadian phase via a multi-channel ambulatory monitoring system and a multiple regression model.

    PubMed

    Kolodyazhniy, Vitaliy; Späti, Jakub; Frey, Sylvia; Götz, Thomas; Wirz-Justice, Anna; Kräuchi, Kurt; Cajochen, Christian; Wilhelm, Frank H

    2011-02-01

    Reliable detection of circadian phase in humans using noninvasive ambulatory measurements in real-life conditions is challenging and still an unsolved problem. The masking effects of everyday behavior and environmental input such as physical activity and light on the measured variables need to be considered critically. Here, we aimed at developing techniques for estimating circadian phase with the lowest subject burden possible, that is, without the need of constant routine (CR) laboratory conditions or without measuring the standard circadian markers, (rectal) core body temperature (CBT), and melatonin levels. In this validation study, subjects (N = 16) wore multi-channel ambulatory monitoring devices and went about their daily routine for 1 week. The devices measured a large number of physiological, behavioral, and environmental variables, including CBT, skin temperatures, cardiovascular and respiratory function, movement/posture, ambient temperature, and the spectral composition and intensity of light received at eye level. Sleep diaries were logged electronically. After the ambulatory phase, subjects underwent a 32-h CR procedure in the laboratory for measuring unmasked circadian phase based on the "midpoint" of the salivary melatonin profile. To overcome the complex masking effects of confounding variables during ambulatory measurements, multiple regression techniques were applied in combination with the cross-validation approach to subject-independent prediction of circadian phase. The most accurate estimate of circadian phase was achieved using skin temperatures, irradiance for ambient light in the blue spectral band, and motion acceleration as predictors with lags of up to 24 h. Multiple regression showed statistically significant improvement of variance of prediction error over the traditional approaches to determining circadian phase based on single predictors (motion acceleration or sleep log), although CBT was intentionally not included as the predictor

  15. Investigation of multichannel phased array performance for fetal MR imaging on 1.5T clinical MR system.

    PubMed

    Li, Ye; Pang, Yong; Vigneron, Daniel; Glenn, Orit; Xu, Duan; Zhang, Xiaoliang

    2011-01-01

    Fetal MRI on 1.5T clinical scanner has been increasingly becoming a powerful imaging tool for studying fetal brain abnormalities in vivo. Due to limited availability of dedicated fetal phased arrays, commercial torso or cardiac phased arrays are routinely used for fetal scans, which are unable to provide optimized SNR and parallel imaging performance with a small number coil elements, and insufficient coverage and filling factor. This poses a demand for the investigation and development of dedicated and efficient radiofrequency (RF) hardware to improve fetal imaging. In this work, an investigational approach to simulate the performance of multichannel flexible phased arrays is proposed to find a better solution to fetal MR imaging. A 32 channel fetal array is presented to increase coil sensitivity, coverage and parallel imaging performance. The electromagnetic field distribution of each element of the fetal array is numerically simulated by using finite-difference time-domain (FDTD) method. The array performance, including B(1) coverage, parallel reconstructed images and artifact power, is then theoretically calculated and compared with the torso array. Study results show that the proposed array is capable of increasing B(1) field strength as well as sensitivity homogeneity in the entire area of uterus. This would ensure high quality imaging regardless of the location of the fetus in the uterus. In addition, the paralleling imaging performance of the proposed fetal array is validated by using artifact power comparison with torso array. These results demonstrate the feasibility of the 32 channel flexible array for fetal MR imaging at 1.5T.

  16. MULTICHANNEL ANALYZER

    DOEpatents

    Kelley, G.G.

    1959-11-10

    A multichannel pulse analyzer having several window amplifiers, each amplifier serving one group of channels, with a single fast pulse-lengthener and a single novel interrogation circuit serving all channels is described. A pulse followed too closely timewise by another pulse is disregarded by the interrogation circuit to prevent errors due to pulse pileup. The window amplifiers are connected to the pulse lengthener output, rather than the linear amplifier output, so need not have the fast response characteristic formerly required.

  17. A modified Variable-Phase algorithm for multichannel scattering with long-range potentials

    NASA Astrophysics Data System (ADS)

    Martinazzo, R.; Bodo, E.; Gianturco, F. A.

    2003-03-01

    A new Variable-Phase (VP) algorithm for solving the close coupled equations of inelastic scattering in atom-molecule collisions driven by a strong long range potential is presented. The proposed method allows for a rigorous, gradual reduction of the number of closed channels during the outward propagation of the solution of the VP equations. In this way it allows a considerable saving of CPU time when dealing with strong, long-range potentials. A further saving of computational time is achieved by the use of a zero order effective potential in the reference problem which avoids the calculation of the computationally expensive Bessel functions. The K matrix version of the VP equations are solved with a standard Runge-Kutta integrator with adaptive step size. The low-energy, rotational excitation process in the LiH-H + system is used to test the resulting algorithm and we show that the present method once applied to long-range interactions, can be orders of magnitude faster than the widely used, adaptive-step size LogDerivative/Airy propagator while keeping the same level of accuracy.

  18. Loop laser cavities with self-pumped phase-conjugate mirrors in low-gain active media for phase-locked multichannel laser systems

    SciTech Connect

    Basiev, Tasoltan T; Gavrilov, A V; Ershkov, M N; Smetanin, Sergei N; Fedin, Aleksandr V; Bel'kov, K A; Boreysho, A S; Lebedev, V F

    2011-03-31

    It is proved that lasers with different loop cavities with self-pumped phase-conjugate mirrors in low-gain active media can operate under injection of external laser radiation and can be used for the development of diode-pumped phase-locked multichannel neodymium laser systems operating both on the fundamental laser transition with the wavelength {lambda} = 1.06 {mu}m and on the transition with {lambda} = 1.34 {mu}m. The phase-conjugate oscillation thresholds in the case of injection of an external signal are determined for a multiloop cavity configuration and an increased number of active elements in the cavity. It is shown that phase-conjugate oscillation can occur even if the single-pass gain of the active element is as low as only {approx}2. Under high-power side diode pumping of a multiloop Nd:YAG laser, single-mode output radiation was achieved at {lambda} = 1.064 {mu}m with a pulse energy up to 0.75 J, a pulse repetition rate up to 25 Hz, an average power up to 18.3 W, and an efficiency up to 20%. In a multiloop Nd:YAG laser with three active elements in the cavity, single-mode radiation at {lambda} = 1.34 {mu}m was obtained with a pulse energy up to 0.96 J, a pulse repetition rate up to 10 Hz, and an average power up to 8.5 W. (control of laser radiation parameters)

  19. Binary phase shift keying on orthogonal carriers for multi-channel CO2 absorption measurements in the presence of thin clouds.

    PubMed

    Campbell, Joel F; Lin, Bing; Nehrir, Amin R; Harrison, F Wallace; Obland, Michael D

    2014-10-20

    A new modulation technique for Continuous Wave (CW) Lidar is presented based on Binary Phase Shift Keying (BPSK) using orthogonal carriers closely spaced in frequency, modulated by Maximum Length (ML) sequences, which have a theoretical autocorrelation function with no sidelobes. This makes it possible to conduct multi-channel atmospheric differential absorption measurements in the presence of thin clouds without the need for further processing to remove errors caused by sidelobe interference while sharing the same modulation bandwidth. Flight tests were performed and data were collected using both BPSK and linear swept frequency modulation. This research shows there is minimal or no sidelobe interference in the presence of thin clouds for BPSK compared to linear swept frequency with significant sidelobe levels. Comparisons between of CO(2) optical depth Signal to Noise (SNR) between the BPSK and linear swept frequency cases indicate a 21% drop in SNR for BPSK experimentally using the instrument under consideration.

  20. Dynamic B0 shimming at 7 T.

    PubMed

    Sengupta, Saikat; Welch, E Brian; Zhao, Yansong; Foxall, David; Starewicz, Piotr; Anderson, Adam W; Gore, John C; Avison, Malcolm J

    2011-05-01

    Dynamic slice-wise shimming improves B0 field homogeneity by updating shim coil currents for every slice in a multislice acquisition, producing better field homogeneity over a volume than can be obtained by a single static global shim. The first aim of this work was to evaluate the performance of slice-wise field-map-based second-order dynamic shimming in a human high-field 7 T clinical scanner vis-à-vis image based second order static global shimming. Another goal was to characterize eddy currents induced by second and third order shim switching. A final aim was to compare global and dynamic shimming through shim orders to elucidate the relative benefits of going to higher orders and to dynamic shim updating from a static shimming regime. An external hardware module was used to store and dynamically update slice-optimized shim values during multislice data acquisition. High-bandwidth multislice gradient echo scans with B0 field mapping and low-bandwidth single-shot echo planar scans were performed on phantoms and humans using second-order dynamic and static global shims. For the measurement of second and third order shim induced eddy currents, step response temporal phase changes of individual shims were measured and fit to shim harmonics spatially and to multiexponential decay functions temporally. Finally, an order-wise field-map-based comparison was performed with first, second and third order global static shimming, first and second order dynamic shimming, as well as combined second or third order global and first order dynamic shim. Dynamic shimming considerably improved B0 homogeneity compared to static global shimming both in phantoms and in human subjects, reducing image distortion and signal dropout. The unshielded second and third order shims generated strong B0 and self and cross-term eddy fields, with multiple time constants ranging from milliseconds to seconds. Field homogeneity improved with increasing order of shim, with dynamic shimming performing

  1. Multi-port-driven birdcage coil for multiple-mouse MR imaging at 7 T.

    PubMed

    Heo, Phil; Seo, Jeung-Hoon; Han, Sang-Doc; Ryu, Yeunchul; Byun, Jong-Deok; Kim, Kyoung-Nam; Lee, Jung Hee

    2016-11-01

    In ultra-high field (UHF) imaging environments, it has been demonstrated that multiple-mouse magnetic resonance imaging (MM-MRI) is dependent on key factors such as the radiofrequency (RF) coil hardware, imaging protocol, and experimental setup for obtaining high-resolution MR images. A key aspect is the RF coil, and a number of MM-MRI studies have investigated the application of single-channel RF transmit (Tx)/receive (Rx) coils or multi-channel phased array (PA) coil configurations under a single gradient coil set. However, despite applying a variety of RF coils, Tx (|B1(+) |)-field inhomogeneity still remains a major problem due to the relative shortening of the effective RF wavelength in the UHF environment. To address this issue, we propose a relatively smaller size of individual Tx-only coils in a multiple birdcage (MBC) coil for MM-MRI to image up to three mice. We use electromagnetic (EM) simulations in the finite-difference time-domain (FDTD) environment to obtain the |B1 |-field distribution. Our results clearly show that the single birdcage (SBC) high-pass filter (HPF) configuration, which is referred to as the SBCHPF , under the absence of an RF shield exhibits a high |B1 |-field intensity in comparison with other coil configurations such as the low-pass filter (LPF) and band-pass filter (BPF) configurations. In a 7-T MRI experiment, the signal-to-noise ratio (SNR) map of the SBCHPF configuration shows the highest coil performance compared to other coil configurations. The MBCHPF coil, which is comprised of a triple-SBCHPF configuration combined with additional decoupling techniques, is developed for simultaneous image acquisition of three mice. SCANNING 38:747-756, 2016. © 2016 Wiley Periodicals, Inc.

  2. Microstrip Butler matrix design and realization for 7 T MRI.

    PubMed

    Yazdanbakhsh, Pedram; Solbach, Klaus

    2011-07-01

    This article presents the design and realization of 8 × 8 and 16 × 16 Butler matrices for 7 T MRI systems. With the focus on low insertion loss and high amplitude/phase accuracy, the microstrip line integration technology (microwave-integrated circuit) was chosen for the realization. Laminate material of high permittivity (ε(r) = 11) and large thickness (h = 3.2 mm) is shown to allow the best trade-off of circuit board size versus insertion loss, saving circuit area by extensive folding of branch-line coupler topology and meandering phase shifter and connecting strip lines and reducing mutual coupling of neighboring strip lines by shield structures between strip lines. With this approach, 8 × 8 Butler matrices were produced in single boards of 310 mm × 530 mm, whereas the 16 × 16 Butler matrices combined two submatrices of 8 × 8 with two smaller boards. Insertion loss was found at 0.73 and 1.1 dB for an 8 × 8 matrix and 16 × 16 matrix, respectively. Measured amplitude and phase errors are shown to represent highly pure mode excitation with unwanted modes suppressed by 40 and 35 dB, respectively. Both types of matrices were implemented with a 7 T MRI system and 8- and 16-element coil arrays for RF mode shimming experiments and operated successfully with 8 kW of RF power.

  3. Highly time-resolved evaluation technique of instantaneous amplitude and phase difference using analytic signals for multi-channel diagnostics

    SciTech Connect

    Ohshima, S. Kobayashi, S.; Yamamoto, S.; Nagasaki, K.; Mizuuchi, T.; Kado, S.; Okada, H.; Minami, T.; Shi, N.; Konoshima, S.; Sano, F.; Lee, H. Y.; Zang, L.; Kenmochi, N.; Kasajima, K.; Ohtani, Y.; Nagae, Y.

    2014-11-15

    A fluctuation analysis technique using analytic signals is proposed. Analytic signals are suitable to characterize a single mode with time-dependent amplitude and frequency, such as an MHD mode observed in fusion plasmas since the technique can evaluate amplitude and frequency at a specific moment without limitations of temporal and frequency resolutions, which is problematic in Fourier-based analyses. Moreover, a concept of instantaneous phase difference is newly introduced, and error of the evaluated phase difference and its error reduction techniques using conditional/ensemble averaging are discussed. These techniques are applied to experimental data of the beam emission spectroscopic measurement in the Heliotron J device, which demonstrates that the technique can describe nonlinear evolution of MHD instabilities. This technique is widely applicable to other diagnostics having necessity to evaluate phase difference.

  4. Complex B1 mapping and electrical properties imaging of the human brain using a 16-channel transceiver coil at 7T.

    PubMed

    Zhang, Xiaotong; Van de Moortele, Pierre-Francois; Schmitter, Sebastian; He, Bin

    2013-05-01

    The electric properties of biological tissue provide important diagnostic information within radio and microwave frequencies, and also play an important role in specific absorption rate calculation which is a major safety concern at ultrahigh field. The recently proposed electrical properties tomography (EPT) technique aims to reconstruct electric properties in biological tissues based on B1 measurement. However, for individual coil element in multichannel transceiver coil which is increasingly utilized at ultrahigh field, current B1-mapping techniques could not provide adequate information (magnitude and absolute phase) of complex transmit and receive B1 which are essential for electrical properties tomography, electric field, and quantitative specific absorption rate assessment. In this study, using a 16-channel transceiver coil at 7T, based on hybrid B1-mapping techniques within the human brain, a complex B1-mapping method has been developed, and in vivo electric properties imaging of the human brain has been demonstrated by applying a logarithm-based inverse algorithm. Computer simulation studies as well as phantom and human experiments have been conducted at 7T. The average bias and standard deviation for reconstructed conductivity in vivo were 28% and 67%, and 10% and 43% for relative permittivity, respectively. The present results suggest the feasibility and reliability of proposed complex B1-mapping technique and electric properties reconstruction method.

  5. Complex B1 Mapping and Electrical Properties Imaging of the Human Brain using a 16-channel Transceiver Coil at 7T

    PubMed Central

    Zhang, Xiaotong; Van de Moortele, Pierre-Francois; Schmitter, Sebastian; He, Bin

    2012-01-01

    The electric properties (EPs) of biological tissue provide important diagnostic information within radio and microwave frequencies, and also play an important role in specific absorption rate (SAR) calculation which is a major safety concern at ultrahigh field (UHF). The recently proposed electrical properties tomography (EPT) technique aims to reconstruct EPs in biological tissues based on B1 measurement. However, for individual coil element in multi-channel transceiver coil which is increasingly utilized at UHF, current B1-mapping techniques could not provide adequate information (magnitude and absolute phase) of complex transmit and receive B1 which are essential for EPT, electric field, and quantitative SAR assessment. In this study, using a 16-channel transceiver coil at 7T, based on hybrid B1-mapping techniques within the human brain, a complex B1-mapping method has been developed, and in-vivo EPs imaging of the human brain has been demonstrated by applying a logarithm-based inverse algorithm. Computer simulation studies as well as phantom and human experiments have been conducted at 7T. The average bias and standard deviation for reconstructed conductivity in vivo were 28% and 67%, and 10% and 43% for relative permittivity, respectively. The present results suggest the feasibility and reliability of proposed complex B1-mapping technique and EPs reconstruction method. PMID:22692921

  6. Multichannel analysis of surface waves

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.

    1999-01-01

    The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of

  7. Evaluation of non-selective refocusing pulses for 7 T MRI

    NASA Astrophysics Data System (ADS)

    Moore, Jay; Jankiewicz, Marcin; Anderson, Adam W.; Gore, John C.

    2012-01-01

    There is a continuing need for improved RF pulses that achieve proper refocusing in the context of ultra-high field (⩾7 T) human MRI. Simple block or sinc pulses are highly susceptible to RF field inhomogeneities, and adiabatic pulses are generally considered too SAR intensive for practical use at 7 T. The performance of the array of pulses falling between these extremes, however, has not been systematically evaluated. The aim of this work was to compare the performances of 21 non-selective refocusing pulses spanning a range of durations and SAR levels. The evaluation was based upon simulations and both phantom and in vivo human brain experiments conducted at 7 T. Tested refocusing designs included block, composite block, BIR-4, hyperbolic secant, and numerically optimized composite waveforms. These pulses were divided into three SAR classes and two duration categories, and, based on signal gain in a 3-D spin echo sequence, practical recommendations on usage are made within each category. All evaluated pulses were found to produce greater volume-averaged signals relative to a 180° block pulse. Although signal gains often come with the price of increased SAR or duration, some pulses were found to result in significant signal enhancement while also adhering to practical constraints. This work demonstrates the signal gains and losses realizable with single-channel refocusing pulse designs and should assist in the selection of suitable refocusing pulses for practical 3-D spin-echo imaging at 7 T. It further establishes a reference against which future pulses and multi-channel designs can be compared.

  8. Evaluation of non-selective refocusing pulses for 7 T MRI.

    PubMed

    Moore, Jay; Jankiewicz, Marcin; Anderson, Adam W; Gore, John C

    2012-01-01

    There is a continuing need for improved RF pulses that achieve proper refocusing in the context of ultra-high field (≥ 7 T) human MRI. Simple block or sinc pulses are highly susceptible to RF field inhomogeneities, and adiabatic pulses are generally considered too SAR intensive for practical use at 7 T. The performance of the array of pulses falling between these extremes, however, has not been systematically evaluated. The aim of this work was to compare the performances of 21 non-selective refocusing pulses spanning a range of durations and SAR levels. The evaluation was based upon simulations and both phantom and in vivo human brain experiments conducted at 7 T. Tested refocusing designs included block, composite block, BIR-4, hyperbolic secant, and numerically optimized composite waveforms. These pulses were divided into three SAR classes and two duration categories, and, based on signal gain in a 3-D spin echo sequence, practical recommendations on usage are made within each category. All evaluated pulses were found to produce greater volume-averaged signals relative to a 180° block pulse. Although signal gains often come with the price of increased SAR or duration, some pulses were found to result in significant signal enhancement while also adhering to practical constraints. This work demonstrates the signal gains and losses realizable with single-channel refocusing pulse designs and should assist in the selection of suitable refocusing pulses for practical 3-D spin-echo imaging at 7 T. It further establishes a reference against which future pulses and multi-channel designs can be compared.

  9. List mode multichannel analyzer

    DOEpatents

    Archer, Daniel E.; Luke, S. John; Mauger, G. Joseph; Riot, Vincent J.; Knapp, David A.

    2007-08-07

    A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (<1 millisecond) when used in histogramming mode, or in list mode as a list mode MCA.

  10. Frequency Mapping of Rat Spinal Cord at 7T

    NASA Astrophysics Data System (ADS)

    Chen, Evan; Rauscher, Alexander; Kozlowski, Piotr; Yung, Andrew

    2012-10-01

    The spinal cord is an integral part of the nervous system responsible for sensory, motor, and reflex control crucial to all bodily function. Due to its non-invasive nature, MRI is well matched for characterizing and imaging of spinal cord, and is used extensively for clinical applications. Recent developments in magnetic resonance imaging (MRI) at high field (7T) using phase represents a new approach of characterizing spinal cord myelin. Theory suggests that microstructure differences in myelinated white matter (WM) and non-myelinated gray matter (GM) affect MR phase, measurable frequency shifts. Data from pilot experiments using a multi-gradient echo (MGE) sequence to image rat spinal cords placed parallel to main magnetic field B0 has shown frequency shifts between not only between WM and GM, but also between specific WM tracts of the dorsal column, including the fasciculus gracilis, fasciculus cuneatus, and corticospinal tract. Using MGE, frequency maps at multiple echo times (TE) between 4ms and 22ms show a non-linear relationship between WM frequency, contrary to what was previously expected. These results demonstrate the effectiveness of MGE in revealing new information about spinal cord tissue microstructure, and lays important groundwork for in-vivo and human studies.

  11. 26 CFR 1.25-7T - Public notice (Temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME TAXES Changes in Rates During A Taxable Year § 1.25-7T Public notice (Temporary). (a) In general. At least 90 days prior to the issuance of any mortgage credit certificate under a qualified mortgage...

  12. Inhibition of light tunneling for multichannel excitations in longitudinally modulated waveguide arrays

    SciTech Connect

    Lobanov, Valery E.; Vysloukh, Victor A.; Kartashov, Yaroslav V.

    2010-02-15

    We consider the evolution of multichannel excitations in longitudinally modulated waveguide arrays where the refractive index either oscillates out-of-phase in all neighboring waveguides or when it is modulated in phase in several central waveguides surrounded by out-of-phase oscillating neighbors. Both types of modulations allow resonant inhibition of light tunneling, but only the modulation of the latter type conserves the internal structure of multichannel excitations. We show that parameter regions where light tunneling inhibition is possible depend on the symmetry and structure of multichannel excitations. Antisymmetric multichannel excitations are more robust than their symmetric counterparts and experience nonlinearity-induced delocalization at higher amplitudes.

  13. Multichannel Human Body Communication

    NASA Astrophysics Data System (ADS)

    Przystup, Piotr; Bujnowski, Adam; Wtorek, Jerzy

    2016-01-01

    Human Body Communication is an attractive alternative for traditional wireless communication (Bluetooth, ZigBee) in case of Body Sensor Networks. Low power, high data rates and data security makes it ideal solution for medical applications. In this paper, signal attenuation for different frequencies, using FR4 electrodes, has been investigated. Performance of single and multichannel transmission with frequency modulation of analog signal has been tested. Experiment results show that HBC is a feasible solution for transmitting data between BSN nodes.

  14. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, Larry W.; Anderson, Gordon A.

    1994-01-01

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynscronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board.

  15. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, L.W.; Anderson, G.A.

    1994-08-23

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynchronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board. 9 figs.

  16. Key clinical benefits of neuroimaging at 7T.

    PubMed

    Trattnig, Siegfried; Springer, Elisabeth; Bogner, Wolfgang; Hangel, Gilbert; Strasser, Bernhard; Dymerska, Barbara; Cardoso, Pedro Lima; Robinson, Simon Daniel

    2016-11-13

    The growing interest in ultra-high field MRI, with more than 35.000 MR examinations already performed at 7T, is related to improved clinical results with regard to morphological as well as functional and metabolic capabilities. Since the signal-to-noise ratio increases with the field strength of the MR scanner, the most evident application at 7T is to gain higher spatial resolution in the brain compared to 3T. Of specific clinical interest for neuro applications is the cerebral cortex at 7T, for the detection of changes in cortical structure, like the visualization of cortical microinfarcts and cortical plaques in Multiple Sclerosis. In imaging of the hippocampus, even subfields of the internal hippocampal anatomy and pathology may be visualized with excellent spatial resolution. Using Susceptibility Weighted Imaging, the plaque-vessel relationship and iron accumulations in Multiple Sclerosis can be visualized, which may provide a prognostic factor of disease. Vascular imaging is a highly promising field for 7T which is dealt with in a separate dedicated article in this special issue. The static and dynamic blood oxygenation level-dependent contrast also increases with the field strength, which significantly improves the accuracy of pre-surgical evaluation of vital brain areas before tumor removal. Improvement in acquisition and hardware technology have also resulted in an increasing number of MR spectroscopic imaging studies in patients at 7T. More recent parallel imaging and short-TR acquisition approaches have overcome the limitations of scan time and spatial resolution, thereby allowing imaging matrix sizes of up to 128×128. The benefits of these acquisition approaches for investigation of brain tumors and Multiple Sclerosis have been shown recently. Together, these possibilities demonstrate the feasibility and advantages of conducting routine diagnostic imaging and clinical research at 7T.

  17. Feasibility of imaging superficial palmar arch using micro-ultrasound, 7T and 3T magnetic resonance imaging

    PubMed Central

    Pruzan, Alison N; Kaufman, Audrey E; Calcagno, Claudia; Zhou, Yu; Fayad, Zahi A; Mani, Venkatesh

    2017-01-01

    AIM To demonstrate feasibility of vessel wall imaging of the superficial palmar arch using high frequency micro-ultrasound, 7T and 3T magnetic resonance imaging (MRI). METHODS Four subjects (ages 22-50 years) were scanned on a micro-ultrasound system with a 45-MHz transducer (Vevo 2100, VisualSonics). Subjects’ hands were then imaged on a 3T clinical MR scanner (Siemens Biograph MMR) using an 8-channel special purpose phased array carotid coil. Lastly, subjects’ hands were imaged on a 7T clinical MR scanner (Siemens Magnetom 7T Whole Body Scanner) using a custom built 8-channel transmit receive carotid coil. All three imaging modalities were subjectively analyzed for image quality and visualization of the vessel wall. RESULTS Results of this very preliminary study indicated that vessel wall imaging of the superficial palmar arch was feasible with a whole body 7T and 3T MRI in comparison with micro-ultrasound. Subjective analysis of image quality (1-5 scale, 1: poorest, 5: best) from B mode, ultrasound, 3T SPACE MRI and 7T SPACE MRI indicated that the image quality obtained at 7T was superior to both 3T MRI and micro-ultrasound. The 3D SPACE sequence at both 7T and 3T MRI with isotropic voxels allowed for multi-planar reformatting of images and allowed for less operator dependent results as compared to high frequency micro-ultrasound imaging. Although quantitative analysis revealed that there was no significant difference between the three methods, the 7T Tesla trended to have better visibility of the vessel and its wall. CONCLUSION Imaging of smaller arteries at the 7T is feasible for evaluating atherosclerosis burden and may be of clinical relevance in multiple diseases. PMID:28298968

  18. Software Configurable Multichannel Transceiver

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Cornelius, Harold; Hickling, Ron; Brooks, Walter

    2009-01-01

    Emerging test instrumentation and test scenarios increasingly require network communication to manage complexity. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. A fundamental requirement for a software-definable radio system is independence from carrier frequencies, one of the radio components that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate the viability of a promising chipset that performs conversion of radio frequency (RF) signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit the size of a commodity disk drive, programmable for any frequency band between 1 MHz and 6 GHz.

  19. Multichannel optical sensing device

    DOEpatents

    Selkowitz, S.E.

    1985-08-16

    A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  20. Multichannel optical sensing device

    DOEpatents

    Selkowitz, Stephen E.

    1990-01-01

    A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  1. 26 CFR 1.904-7T - Transition rules (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Transition rules (temporary). 1.904-7T Section 1... in each separate category of post-1986 undistributed earnings (as defined in § 1.902-1(a)(9)) that were accumulated, and post-1986 foreign income taxes (as defined in § 1.902-1(a)(8)) paid, accrued,...

  2. Multichannel electrochemical microbial detection unit

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Young, R. N.; Boykin, E. H.

    1978-01-01

    The paper describes the design and capabilities of a compact multichannel electrochemical unit devised to detect and automatically indicate detection time length of bacteria. By connecting this unit to a strip-chart recorder, a permanent record is obtained of the end points and growth curves for each of eight channels. The experimental setup utilizing the multichannel unit consists of a test tube (25 by 150 mm) containing a combination redox electrode plus 18 ml of lauryl tryptose broth and positioned in a 35-C water bath. Leads from the electrodes are connected to the multichannel unit, which in turn is connected to a strip-chart recorder. After addition of 2.0 ml of inoculum to the test tubes, depression of the push-button starter activates the electronics, timer, and indicator light for each channel. The multichannel unit is employed to test tenfold dilutions of various members of the Enterobacteriaceae group, and a typical dose-response curve is presented.

  3. HAI: A novel airborne multi-channel hygrometer for fast multi-phase H2O quantification: Performance of the HAI instrument during the first flights on the German HALO aircraft

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Ebert, V.; Kraemer, M.; Afchine, A.

    2014-12-01

    Common gas phase H2O measurements on fast airborne platforms e.g. using backward facing or "Rosemount"-inlets can lead to a high risk of ice and droplets contamination. In addition, currently no single hygrometer exists that allows a simultaneous, high-speed measurement of all phases (gas, liquid, ice) with the same detection principle. In the rare occasions multi-phase measurements are realized, gas-and condensed-phase observations rely on different methods, instruments and calibration strategies so that precision and accuracy levels are quite difficult to quantify. This is effectively avoided by the novel TDLAS instrument, HAI, Hygrometer for Atmospheric Investigation, which allows a simultaneous, high speed, multi-phase detection without any sensor calibration in a unique "2+2" channel concept. Hai combines two independent wavelength channels, at 1.4 µm and at 2.6 µm, for a wide dynamic range from 1 to 30 000 ppmv, with a simultaneous closed path (extractive) and open path detection. Thus, "Total", i.e. gas-phase plus condensed-phase water is measured by sampling via a forward facing inlet into "closed-path" extractive cells. A selective, sampling-free, high speed gas phase detection is realized via a dual-wavelength "open-path" cell placed outside of the aircraft fuselage. All channels can be sampled with 120 Hz (measurement cycle time Dt=1.6 ms) allowing an unprecedented spatial resolution of 30 cm at 900 km/h. The evaluation of the individual multi-channel raw-data is done post flight, without any channel interdependencies, in calibration-free mode, thus allowing fast, accurate and precise multi-phase water detection in flight. The performance could be shown in more than 200 net flights hours in three scientific flight campaigns (TACTS, ESMVal, ML-CIRRUS) on the new German HALO aircraft. In addition the level of the accuracy of the calibration free evaluation was evaluated at the German national primary water vapor standard.

  4. Digital restoration of multichannel images

    NASA Technical Reports Server (NTRS)

    Galatsanos, Nikolas P.; Chin, Roland T.

    1989-01-01

    The Wiener solution of a multichannel restoration scheme is presented. Using matrix diagonalization and block-Toeplitz to block-circulant approximation, the inversion of the multichannel, linear space-invariant imaging system becomes feasible by utilizing a fast iterative matrix inversion procedure. The restoration uses both the within-channel (spatial) and between-channel (spectral) correlation; hence, the restored result is a better estimate than that produced by independent channel restoration. Simulations are also presented.

  5. Determining Electrical Properties Based on B1 Fields Measured in an MR Scanner Using a Multi-channel Transmit/Receive Coil: a General Approach

    PubMed Central

    Liu, Jiaen; Zhang, Xiaotong; Van de Moortele, Pierre-Francois; Schmitter, Sebastian

    2013-01-01

    Electrical Property Tomography (EPT) is a recently developed noninvasive technology to image the electrical conductivity and permittivity of biological tissues at Larmor frequency in Magnetic Resonance (MR) scanners. The absolute phase of the complex radio-frequency (RF) magnetic field (B1) is necessary for electrical property calculation. However, due to the lack of practical methods to directly measure the absolute B1 phases, current EPT techniques have been achieved with B1 phase estimation based on certain assumptions on object anatomy, coil structure and/or electromagnetic wave behavior associated with the main magnetic field, limiting EPT from a larger variety of applications. In this study, using a multi-channel transmit/receive coil, the framework of a new general approach for EPT has been introduced, which is independent on the assumptions utilized in previous studies. Using a human head model with realistic geometry, a series of computer simulations at 7T were conducted to evaluate the proposed method under different noise levels. Results showed that the proposed method can be used to reconstruct the conductivity and permittivity images with noticeable accuracy and stability. The feasibility of this approach was further evaluated in a phantom experiment at 7T. PMID:23743673

  6. Multichannel demultiplexer-demodulator

    NASA Technical Reports Server (NTRS)

    Courtois, Hector; Sherry, Mike; Cangiane, Peter; Caso, Greg

    1993-01-01

    One of the critical satellite technologies in a meshed VSAT (very small aperture terminal) satellite communication networks utilizing FDMA (frequency division multiple access) uplinks is a multichannel demultiplexer/demodulator (MCDD). TRW Electronic Systems Group developed a proof-of-concept (POC) MCDD using advanced digital technologies. This POC model demonstrates the capability of demultiplexing and demodulating multiple low to medium data rate FDMA uplinks with potential for expansion to demultiplexing and demodulating hundreds to thousands of narrowband uplinks. The TRW approach uses baseband sampling followed by successive wideband and narrowband channelizers with each channelizer feeding into a multirate, time-shared demodulator. A full-scale MCDD would consist of an 8 bit A/D sampling at 92.16 MHz, four wideband channelizers capable of demultiplexing eight wideband channels, thirty-two narrowband channelizers capable of demultiplexing one wideband signal into 32 narrowband channels, and thirty-two multirate demodulators. The POC model consists of an 8 bit A/D sampling at 23.04 MHz, one wideband channelizer, 16 narrowband channelizers, and three multirate demodulators. The implementation loss of the wideband and narrowband channels is 0.3dB and 0.75dB at 10(exp -7) E(sub b)/N(sub o) respectively.

  7. Multichannel demultiplexer-demodulator

    NASA Astrophysics Data System (ADS)

    Courtois, Hector; Sherry, Mike; Cangiane, Peter; Caso, Greg

    1993-11-01

    One of the critical satellite technologies in a meshed VSAT (very small aperture terminal) satellite communication networks utilizing FDMA (frequency division multiple access) uplinks is a multichannel demultiplexer/demodulator (MCDD). TRW Electronic Systems Group developed a proof-of-concept (POC) MCDD using advanced digital technologies. This POC model demonstrates the capability of demultiplexing and demodulating multiple low to medium data rate FDMA uplinks with potential for expansion to demultiplexing and demodulating hundreds to thousands of narrowband uplinks. The TRW approach uses baseband sampling followed by successive wideband and narrowband channelizers with each channelizer feeding into a multirate, time-shared demodulator. A full-scale MCDD would consist of an 8 bit A/D sampling at 92.16 MHz, four wideband channelizers capable of demultiplexing eight wideband channels, thirty-two narrowband channelizers capable of demultiplexing one wideband signal into 32 narrowband channels, and thirty-two multirate demodulators. The POC model consists of an 8 bit A/D sampling at 23.04 MHz, one wideband channelizer, 16 narrowband channelizers, and three multirate demodulators. The implementation loss of the wideband and narrowband channels is 0.3dB and 0.75dB at 10(exp -7) E(sub b)/N(sub o) respectively.

  8. Sampled sinusoidal stimulation profile and multichannel fuzzy logic classification for monitor-based phase-coded SSVEP brain-computer interfacing

    NASA Astrophysics Data System (ADS)

    Manyakov, Nikolay V.; Chumerin, Nikolay; Robben, Arne; Combaz, Adrien; van Vliet, Marijn; Van Hulle, Marc M.

    2013-06-01

    Objective. The performance and usability of brain-computer interfaces (BCIs) can be improved by new paradigms, stimulation methods, decoding strategies, sensor technology etc. In this study we introduce new stimulation and decoding methods for electroencephalogram (EEG)-based BCIs that have targets flickering at the same frequency but with different phases. Approach. The phase information is estimated from the EEG data, and used for target command decoding. All visual stimulation is done on a conventional (60-Hz) LCD screen. Instead of the ‘on/off’ visual stimulation, commonly used in phase-coded BCI, we propose one based on a sampled sinusoidal intensity profile. In order to fully exploit the circular nature of the evoked phase response, we introduce a filter feature selection procedure based on circular statistics and propose a fuzzy logic classifier designed to cope with circular information from multiple channels jointly. Main results. We show that the proposed visual stimulation enables us not only to encode more commands under the same conditions, but also to obtain EEG responses with a more stable phase. We also demonstrate that the proposed decoding approach outperforms existing ones, especially for the short time windows used. Significance. The work presented here shows how to overcome some of the limitations of screen-based visual stimulation. The superiority of the proposed decoding approach demonstrates the importance of preserving the circularity of the data during the decoding stage.

  9. Parallel multichannel optical correlator for frequency subband decomposition

    NASA Astrophysics Data System (ADS)

    Barbe, J.; Campos, Juan; Iemmi, Claudio C.; Nicolas, Josep

    2001-08-01

    Many applications require a complex processing, using for it a bank of filters. Different architectures have been proposed of optical processors to perform a parallel filtering. We prose a new multichannel architecture based in the translation Fourier Transform properties. These properties allowed us to design multichannels phase filters. The architecture does not need the introduction of any additional modification in the optical processor. We developed an application for texture classification in real time. We obtain excellent results in the texture classification process, 99 percent of images have been correctly classified.

  10. 7T transmit/receive arrays using ICE decoupling for human head MR imaging.

    PubMed

    Yan, Xinqiang; Zhang, Xiaoliang; Feng, Baotong; Ma, ChuangXin; Wei, Long; Xue, Rong

    2014-09-01

    In designing large-sized volume type phased array coils for human head imaging at ultrahigh fields, e.g., 7T, minimizing electromagnetic coupling among array elements is technically challenging. A new decoupling method based on induced current compensation or elimination (ICE) for a microstrip line planar array has recently been proposed. In this study, an eight-channel transmit/receive volume array with ICE-decoupled loop elements was built and investigated to demonstrate its feasibility and robustness for human head imaging at 7T. Isolation between adjacent loop elements was better than - 25 dB with a human head load. The worst-case of the isolation between all of the elements was about - 17.5 dB. All of the MRI experiments were performed on a 7T whole-body human MR scanner. Images of the phantom and human head were acquired and g-factor maps were measured and calculated to evaluate the performance of the coil array. Compared with the conventional capacitively decoupled array, the ICE-decoupled array demonstrated improved parallel imaging ability and had a higher SNR. The experimental results indicate that the transceiver array design with ICE decoupling technique might be a promising solution to designing high performance transmit/receive coil arrays for human head imaging at ultrahigh fields.

  11. 7T human spine imaging arrays with adjustable inductive decoupling.

    PubMed

    Wu, Bing; Wang, Chunsheng; Krug, Roland; Kelley, Douglas A; Xu, Duan; Pang, Yong; Banerjee, Suchandrima; Vigneron, Daniel B; Nelson, Sarah J; Majumdar, Sharmila; Zhang, Xiaoliang

    2010-02-01

    Ultrahigh-field human spine RF transceiver coil arrays face daunting technical challenges in achieving large imaging coverage with sufficient B(1) penetration and sensitivity, and in attaining robust decoupling among coil elements. In this paper, human spine coil arrays for ultrahigh field were built and studied. Transceiver arrays with loop-shaped microstrip transmission line were designed, fabricated, and tested for 7-tesla (7T) MRI. With the proposed adjustable inductive decoupling technique, the isolation between adjacent coil elements is easily addressed. Preliminary results of human spine images acquired using the transceiver arrays demonstrate the feasibility of the design for ultrahigh-field MR applications and its robust performance for parallel imaging.

  12. Modular multichannel surface plasmon spectrometer

    NASA Astrophysics Data System (ADS)

    Neuert, G.; Kufer, S.; Benoit, M.; Gaub, H. E.

    2005-05-01

    We have developed a modular multichannel surface plasmon resonance (SPR) spectrometer on the basis of a commercially available hybrid sensor chip. Due to its modularity this inexpensive and easy to use setup can readily be adapted to different experimental environments. High temperature stability is achieved through efficient thermal coupling of individual SPR units. With standard systems the performance of the multichannel instrument was evaluated. The absorption kinetics of a cysteamine monolayer, as well as the concentration dependence of the specific receptor-ligand interaction between biotin and streptavidin was measured.

  13. Multichannel error correction code decoder

    NASA Technical Reports Server (NTRS)

    Wagner, Paul K.; Ivancic, William D.

    1993-01-01

    A brief overview of a processing satellite for a mesh very-small-aperture (VSAT) communications network is provided. The multichannel error correction code (ECC) decoder system, the uplink signal generation and link simulation equipment, and the time-shared decoder are described. The testing is discussed. Applications of the time-shared decoder are recommended.

  14. Classification of mouth movements using 7 T fMRI

    NASA Astrophysics Data System (ADS)

    Bleichner, M. G.; Jansma, J. M.; Salari, E.; Freudenburg, Z. V.; Raemaekers, M.; Ramsey, N. F.

    2015-12-01

    Objective. A brain-computer interface (BCI) is an interface that uses signals from the brain to control a computer. BCIs will likely become important tools for severely paralyzed patients to restore interaction with the environment. The sensorimotor cortex is a promising target brain region for a BCI due to the detailed topography and minimal functional interference with other important brain processes. Previous studies have shown that attempted movements in paralyzed people generate neural activity that strongly resembles actual movements. Hence decodability for BCI applications can be studied in able-bodied volunteers with actual movements. Approach. In this study we tested whether mouth movements provide adequate signals in the sensorimotor cortex for a BCI. The study was executed using fMRI at 7 T to ensure relevance for BCI with cortical electrodes, as 7 T measurements have been shown to correlate well with electrocortical measurements. Twelve healthy volunteers executed four mouth movements (lip protrusion, tongue movement, teeth clenching, and the production of a larynx activating sound) while in the scanner. Subjects performed a training and a test run. Single trials were classified based on the Pearson correlation values between the activation patterns per trial type in the training run and single trials in the test run in a ‘winner-takes-all’ design. Main results. Single trial mouth movements could be classified with 90% accuracy. The classification was based on an area with a volume of about 0.5 cc, located on the sensorimotor cortex. If voxels were limited to the surface, which is accessible for electrode grids, classification accuracy was still very high (82%). Voxels located on the precentral cortex performed better (87%) than the postcentral cortex (72%). Significance. The high reliability of decoding mouth movements suggests that attempted mouth movements are a promising candidate for BCI in paralyzed people.

  15. Multichannel homodyne receiver

    DOEpatents

    Landt, Jeremy A.

    1982-01-01

    A homodyne radar transmitter/receiver device which produces a single combined output which contains modulated backscatter information for all phase conditions of both modulated and unmodulated backscatter signals. The device utilizes taps along coaxial transmission lines, strip transmission line, and waveguides which are spaced by 1/8 wavelength or 1/6 wavelength, etc. This greatly reduces costs by eliminating separate transmission and reception antennas and an expensive arrangement of power splitters and mixers utilized in the prior art.

  16. Multichannel homodyne receiver

    DOEpatents

    Landt, J.A.

    1981-01-19

    A homodyne radar transmitter/receiver device which produces a single combined output which contains modulated backscatter information for all phase conditions of both modulated and unmodulated backscatter signals is described. The device utilizes taps along coaxial transmission lines, strip transmission line, and waveguides which are spaced by 1/8 wavelength or 1/6 wavelength, etc. This greatly reduces costs by eliminating separate transmission and reception antennas and an expensive arrangement of power splitters and mixers utilized in the prior art.

  17. Multichannel Error Correction Code Decoder

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Lewis Research Center's Digital Systems Technology Branch has an ongoing program in modulation, coding, onboard processing, and switching. Recently, NASA completed a project to incorporate a time-shared decoder into the very-small-aperture terminal (VSAT) onboard-processing mesh architecture. The primary goal was to demonstrate a time-shared decoder for a regenerative satellite that uses asynchronous, frequency-division multiple access (FDMA) uplink channels, thereby identifying hardware and power requirements and fault-tolerant issues that would have to be addressed in a operational system. A secondary goal was to integrate and test, in a system environment, two NASA-sponsored, proof-of-concept hardware deliverables: the Harris Corp. high-speed Bose Chaudhuri-Hocquenghem (BCH) codec and the TRW multichannel demultiplexer/demodulator (MCDD). A beneficial byproduct of this project was the development of flexible, multichannel-uplink signal-generation equipment.

  18. 26 CFR 1.892-7T - Relationship to other Internal Revenue Code sections (temporary regulations).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 9 2012-04-01 2012-04-01 false Relationship to other Internal Revenue Code sections (temporary regulations). 1.892-7T Section 1.892-7T Internal Revenue INTERNAL REVENUE SERVICE... Provisions § 1.892-7T Relationship to other Internal Revenue Code sections (temporary regulations)....

  19. 26 CFR 1.892-7T - Relationship to other Internal Revenue Code sections (temporary regulations).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 9 2013-04-01 2013-04-01 false Relationship to other Internal Revenue Code sections (temporary regulations). 1.892-7T Section 1.892-7T Internal Revenue INTERNAL REVENUE SERVICE... Provisions § 1.892-7T Relationship to other Internal Revenue Code sections (temporary regulations)....

  20. 26 CFR 1.892-7T - Relationship to other Internal Revenue Code sections (temporary regulations).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Relationship to other Internal Revenue Code sections (temporary regulations). 1.892-7T Section 1.892-7T Internal Revenue INTERNAL REVENUE SERVICE...-7T Relationship to other Internal Revenue Code sections (temporary regulations). (a) Section 893....

  1. Capacitively decoupled tunable loop microstrip (TLM) array at 7 T.

    PubMed

    Wu, Bing; Zhang, Xiaoliang; Qu, Peng; Shen, Gary X

    2007-04-01

    Microstrip transmission-line loop arrays have been recently proposed for parallel imaging at ultrahigh fields due to their advantages in element decoupling and to their increased coil quality factor. In the microstrip loop array design, interconnecting capacitors become necessary to further improve the decoupling between the adjacent elements when nonoverlapped loops are placed densely. However, at ultrahigh fields, the capacitance required for sufficient decoupling is very small. Hence, the isolations between the elements are usually not optimized and the array is extremely sensitive to the load. In this study, a theoretical model is developed to analyze the capacitive decoupling circuit. Then, a novel tunable loop microstrip (TLM) array that can accommodate capacitive decoupling more easily at ultrahigh fields is proposed. As an example, a four-element TLM array is constructed at 7 T. In this array, the decoupling capacitance is increased to a more reasonable value. Isolation between the adjacent elements is better than -37 dB with the load. The performance of this TLM array is also demonstrated by MRI experiments.

  2. Web-based multi-channel analyzer

    DOEpatents

    Gritzo, Russ E.

    2003-12-23

    The present invention provides an improved multi-channel analyzer designed to conveniently gather, process, and distribute spectrographic pulse data. The multi-channel analyzer may operate on a computer system having memory, a processor, and the capability to connect to a network and to receive digitized spectrographic pulses. The multi-channel analyzer may have a software module integrated with a general-purpose operating system that may receive digitized spectrographic pulses for at least 10,000 pulses per second. The multi-channel analyzer may further have a user-level software module that may receive user-specified controls dictating the operation of the multi-channel analyzer, making the multi-channel analyzer customizable by the end-user. The user-level software may further categorize and conveniently distribute spectrographic pulse data employing non-proprietary, standard communication protocols and formats.

  3. PDX multichannel interferometer

    SciTech Connect

    Bitzer, R.; Ernst, W.; Cutsogeorge, G.

    1980-10-01

    A 10 channel, 140 GHz homodyne interferometer is described for use on PDX. One feature of this interferometer is the separation of the signal source and electronics from the power splitters, delay line, and receiving systems. The latter is situated near the upper and lower vacuum ports between the toroidal field magnets. A second feature is the signal stabilization of the EIO source by means of an AFC system. The complete interferometer is described including block diagrams, circuit diagrams, test data, and magnetic field test conducted on the preamplifiers, microwave diodes, isolators, etc., to determine the extent of magnetic shielding required. The description of the tracking filters and digital phase display circuit is referenced to accompanying reports.

  4. Out-and-in spiral spectroscopic imaging in rat brain at 7 T.

    PubMed

    Hiba, Bassem; Faure, Bérengère; Lamalle, Laurent; Décorps, Michel; Ziegler, Anne

    2003-12-01

    With standard spectroscopic imaging, high spatial resolution is achieved at the price of a large number of phase-encoding steps, leading to long acquisition times. Fast spatial encoding methods reduce the minimum total acquisition time. In this article, a k-space scanning scheme using a continuous series of growing and shrinking, or "out-and-in," spiral trajectories is implemented and the feasibility of spiral spectroscopic imaging for animal models at high B(0) field is demonstrated. This method was applied to rat brain at 7 T. With a voxel size of about 8.7 microl (as calculated from the point-spread function), a 30 x 30 matrix, and a spectral bandwidth of 11 kHz, the minimum scan time was 9 min 20 sec for a signal-to-noise ratio of 7.1 measured on the N-acetylaspartate peak.

  5. Material identification with multichannel radiographs

    NASA Astrophysics Data System (ADS)

    Collins, Noelle; Jimenez, Edward S.; Thompson, Kyle R.

    2017-02-01

    This work aims to validate previous exploratory work done to characterize materials by matching their attenuation profiles using a multichannel radiograph given an initial energy spectrum. The experiment was performed in order to evaluate the effects of noise on the resulting attenuation profiles, which was ignored in simulation. Spectrum measurements have also been collected from various materials of interest. Additionally, a MATLAB optimization algorithm has been applied to these candidate spectrum measurements in order to extract an estimate of the attenuation profile. Being able to characterize materials through this nondestructive method has an extensive range of applications for a wide variety of fields, including quality assessment, industry, and national security.

  6. A Student-Made Inexpensive Multichannel Pipet

    ERIC Educational Resources Information Center

    Dragojlovic, Veljko

    2009-01-01

    An inexpensive multichannel pipet designed to deliver small volumes of liquid simultaneously to wells in a multiwell plate can be prepared by students in a single laboratory period. The multichannel pipet is made of disposable plastic 1 mL syringes and drilled plastic plates, which are used to make plunger and barrel assemblies. Application of the…

  7. Multichannel Compression, Temporal Cues, and Audibility.

    ERIC Educational Resources Information Center

    Souza, Pamela E.; Turner, Christopher W.

    1998-01-01

    The effect of the reduction of the temporal envelope produced by multichannel compression on recognition was examined in 16 listeners with hearing loss, with particular focus on audibility of the speech signal. Multichannel compression improved speech recognition when superior audibility was provided by a two-channel compression system over linear…

  8. Multichannel Analyzer Built from a Microcomputer.

    ERIC Educational Resources Information Center

    Spencer, C. D.; Mueller, P.

    1979-01-01

    Describes a multichannel analyzer built using eight-bit S-100 bus microcomputer hardware. The output modes are an oscilloscope display, print data, and send data to another computer. Discusses the system's hardware, software, costs, and advantages relative to commercial multichannels. (Author/GA)

  9. Least squares restoration of multichannel images

    NASA Technical Reports Server (NTRS)

    Galatsanos, Nikolas P.; Katsaggelos, Aggelos K.; Chin, Roland T.; Hillery, Allen D.

    1991-01-01

    Multichannel restoration using both within- and between-channel deterministic information is considered. A multichannel image is a set of image planes that exhibit cross-plane similarity. Existing optimal restoration filters for single-plane images yield suboptimal results when applied to multichannel images, since between-channel information is not utilized. Multichannel least squares restoration filters are developed using the set theoretic and the constrained optimization approaches. A geometric interpretation of the estimates of both filters is given. Color images (three-channel imagery with red, green, and blue components) are considered. Constraints that capture the within- and between-channel properties of color images are developed. Issues associated with the computation of the two estimates are addressed. A spatially adaptive, multichannel least squares filter that utilizes local within- and between-channel image properties is proposed. Experiments using color images are described.

  10. Simultaneous gas-phase and total water detection for airborne applications with a multi-channel TDL spectrometer at 1.4 μm and 2.6 μm

    NASA Astrophysics Data System (ADS)

    Buchholz, Bernhard; Afchine, Armin; Klein, Alexander; Barthel, Jochen; Kallweit, Sören; Klostermann, Tim; Krämer, Martina; Schiller, Cornelius; Ebert, Volker

    2013-04-01

    Water vapor measurements especially within clouds are difficult, in particular due to numerous instrument-specific limitations in precision, time resolution and accuracy. Notably the quantification of the ice and gas-phase water content in cirrus clouds, which play an important role in the global climate system, require new high-speed hygrometers concepts which are capable of resolving large water vapor gradients. Previously we demonstrated a stationary concept of a Tunable Diode Laser Absorption Spectroscopy (TDLAS)-based quantification of the ice/liquid water by independent, but simultaneous measurements of A) the gas-phase water in an open-path configuration (optical-path 125 m) and B) the total water in an extractive version with a closed cell (30 m path) after evaporating the condensed water [1]. In this case we used laboratory TDLAS instrumentation in combination with a long absorption paths and applied those to the AIDA cloud camber [2]. Recently we developed an advanced, miniature version of the concept, suitable for mobile field applications and in particular for use on aircrafts. First tests of our new, fiber-coupled open-path TDLAS cell [3] for airborne applications were combined with the experiences of our extractive SEALDH instruments [4] and led to a new, multi-channel, "multi-phase TDL-hygrometer" called "HAI" ("Hygrometer for Atmospheric Investigations"). HAI, which is explicitly designed for the new German HALO (High Altitude and Long Range Research Aircraft) airplane, provides a similar, but improved functionality like the stationary, multi-phase TDLAS developed for AIDA. However HAI comes in a much more compact, six height units, 30 kg, electronics rack for the main unit and with a new, completely fiber-coupled, compact, 21 kg, dual-wavelength open-path TDL-cell which is placed in the aircraft's skin. HAI is much more complex and versatile than the AIDA precursor and can be seen as comprised of four TDL-spectrometers, as it simultaneously

  11. Reconstruction of 7T-Like Images From 3T MRI

    PubMed Central

    Bahrami, Khosro; Shi, Feng; Zong, Xiaopeng; Shin, Hae Won; An, Hongyu

    2016-01-01

    In the recent MRI scanning, ultra-high-field (7T) MR imaging provides higher resolution and better tissue contrast compared to routine 3T MRI, which may help in more accurate and early brain diseases diagnosis. However, currently, 7T MRI scanners are more expensive and less available at clinical and research centers. These motivate us to propose a method for the reconstruction of images close to the quality of 7T MRI, called 7T-like images, from 3T MRI, to improve the quality in terms of resolution and contrast. By doing so, the post-processing tasks, such as tissue segmentation, can be done more accurately and brain tissues details can be seen with higher resolution and contrast. To do this, we have acquired a unique dataset which includes paired 3T and 7T images scanned from same subjects, and then propose a hierarchical reconstruction based on group sparsity in a novel multi-level Canonical Correlation Analysis (CCA) space, to improve the quality of 3T MR image to be 7T-like MRI. First, overlapping patches are extracted from the input 3T MR image. Then, by extracting the most similar patches from all the aligned 3T and 7T images in the training set, the paired 3T and 7T dictionaries are constructed for each patch. It is worth noting that, for the training, we use pairs of 3T and 7T MR images from each training subject. Then, we propose multi-level CCA to map the paired 3T and 7T patch sets to a common space to increase their correlations. In such space, each input 3T MRI patch is sparsely represented by the 3T dictionary and then the obtained sparse coefficients are used together with the corresponding 7T dictionary to reconstruct the 7T-like patch. Also, to have the structural consistency between adjacent patches, the group sparsity is employed. This reconstruction is performed with changing patch sizes in a hierarchical framework. Experiments have been done using 13 subjects with both 3T and 7T MR images. The results show that our method outperforms previous

  12. Reconstruction of 7T-Like Images From 3T MRI.

    PubMed

    Bahrami, Khosro; Shi, Feng; Zong, Xiaopeng; Shin, Hae Won; An, Hongyu; Shen, Dinggang

    2016-09-01

    In the recent MRI scanning, ultra-high-field (7T) MR imaging provides higher resolution and better tissue contrast compared to routine 3T MRI, which may help in more accurate and early brain diseases diagnosis. However, currently, 7T MRI scanners are more expensive and less available at clinical and research centers. These motivate us to propose a method for the reconstruction of images close to the quality of 7T MRI, called 7T-like images, from 3T MRI, to improve the quality in terms of resolution and contrast. By doing so, the post-processing tasks, such as tissue segmentation, can be done more accurately and brain tissues details can be seen with higher resolution and contrast. To do this, we have acquired a unique dataset which includes paired 3T and 7T images scanned from same subjects, and then propose a hierarchical reconstruction based on group sparsity in a novel multi-level Canonical Correlation Analysis (CCA) space, to improve the quality of 3T MR image to be 7T-like MRI. First, overlapping patches are extracted from the input 3T MR image. Then, by extracting the most similar patches from all the aligned 3T and 7T images in the training set, the paired 3T and 7T dictionaries are constructed for each patch. It is worth noting that, for the training, we use pairs of 3T and 7T MR images from each training subject. Then, we propose multi-level CCA to map the paired 3T and 7T patch sets to a common space to increase their correlations. In such space, each input 3T MRI patch is sparsely represented by the 3T dictionary and then the obtained sparse coefficients are used together with the corresponding 7T dictionary to reconstruct the 7T-like patch. Also, to have the structural consistency between adjacent patches, the group sparsity is employed. This reconstruction is performed with changing patch sizes in a hierarchical framework. Experiments have been done using 13 subjects with both 3T and 7T MR images. The results show that our method outperforms previous

  13. A Multichannel Bioluminescence Determination Platform for Bioassays.

    PubMed

    Kim, Sung-Bae; Naganawa, Ryuichi

    2016-01-01

    The present protocol introduces a multichannel bioluminescence determination platform allowing a high sample throughput determination of weak bioluminescence with reduced standard deviations. The platform is designed to carry a multichannel conveyer, an optical filter, and a mirror cap. The platform enables us to near-simultaneously determine ligands in multiple samples without the replacement of the sample tubes. Furthermore, the optical filters beneath the multichannel conveyer are designed to easily discriminate colors during assays. This optical system provides excellent time- and labor-efficiency to users during bioassays.

  14. Multi-channel polarized thermal emitter

    DOEpatents

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  15. 26 CFR 1.382-7T - Built-in gains and losses (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Built-in gains and losses (temporary). 1.382-7T... TAX (CONTINUED) INCOME TAXES Insolvency Reorganizations § 1.382-7T Built-in gains and losses... recognized built-in gain. The term prepaid income means any amount received prior to the change date that...

  16. Capacitance Probe Resonator for Multichannel Electrometer

    NASA Technical Reports Server (NTRS)

    Blaes, Brent R.; Schaefer, Rembrandt T> ; Glaser, Robert J.

    2012-01-01

    A multichannel electrometer voltmeter has been developed that employs a mechanical resonator with voltage-sensing capacitance-probe electrodes that enable high-impedance, high-voltage, radiation-hardened measurement of an Internal Electrostatic Discharge Monitor (IESDM) sensor. The IESDM is new sensor technology targeted for integration into a Space Environmental Monitor (SEM) subsystem used for the characterization and monitoring of deep dielectric charging on spacecraft. The resonator solution relies on a non-contact, voltage-sensing, sinusoidal-varying capacitor to achieve input impedances as high as 10 petaohms as determined by the resonator materials, geometries, cleanliness, and construction. The resonator is designed with one dominant mechanical degree of freedom, so it resonates as a simple harmonic oscillator and because of the linearity of the variable sense capacitor to displacement, generates a pure sinusoidal current signal for a fixed input voltage under measurement. This enables the use of an idealized phase-lock sensing scheme for optimal signal detection in the presence of noise.

  17. Line Profile Asymmetries in Records from the Multichannel Flare Spectrograph

    NASA Astrophysics Data System (ADS)

    Prosecký, T.

    2007-05-01

    The archive of the Ondřejov Multichannel Flare Spectrograph (MFS) contains video records of several hundreds of flares observed between 1995 and 2004. This contribution shows preliminary results of basic statistical processing on a sample of 50 flares observed in the Hα line between May, 1999 and May, 2001. No significant differences between occurrence of red and blue asymmetries for different flare importance and X-ray classes were found. For the decay phase of a flare no visible asymmetry or faint blue asymmetry seems to be typical.

  18. Alternative Optical Architectures for Multichannel Adaptive Optical Processing

    DTIC Science & Technology

    1993-04-01

    performance of the system can also be improved if we note that the input of EdO ) need not be centered at 9a but could be cenitred at -AO+A4La so that...characterization of a multichannel adaptive system that can perform cancellation of multiple wideband (In r!ll) interference sources in the presence...development of a single-loop electronic canceller for improved phase stability after the AO tapped delay line system . 14. SUBJECT TERMS ,I PANUI OF PACES

  19. Software Compression for Partially Parallel Imaging with Multi-channels.

    PubMed

    Huang, Feng; Vijayakumar, Sathya; Akao, James

    2005-01-01

    In magnetic resonance imaging, multi-channel phased array coils enjoy a high signal to noise ratio (SNR) and better parallel imaging performance. But with the increase in number of channels, the reconstruction time and requirement for computer memory become inevitable problems. In this work, principle component analysis is applied to reduce the size of data and protect the performance of parallel imaging. Clinical data collected using a 32-channel cardiac coil are used in the experiments. Experimental results show that the proposed method dramatically reduces the processing time without much damage to the reconstructed image.

  20. Pulse-width tunable multi-channel NRZ-to-RZ conversion with duplicate output

    NASA Astrophysics Data System (ADS)

    Yu, Yu; Zhang, Xinliang; Huang, Dexiu

    2012-01-01

    We demonstrate multi-channel non-return-to-zero (NRZ) to return-to-zero (RZ) conversions with tunable output pulse-width and single-to-dual function, using a phase modulator and an array waveguide grating (AWG), which acts both detuned multi-channel filter and demultiplexer. Four-channel NRZ signals after transmission can be converted to eight-channel RZ signals with timing jitter and extinction ratio improvement. Further transmission and bit error ratio (BER) measurements for the converted RZ signal show a good performance compared with conventional one.

  1. Classification of the venous architecture of the pineal gland by 7T MRI.

    PubMed

    Cho, Zang-Hee; Choi, Sang-Han; Chi, Je-Gun; Kim, Young-Bo

    2011-10-01

    Magnetic resonance imaging (MRI) at 7.0 Tesla (7T) can show many details of anatomical structures with unprecedented resolution and contrast. In this report, we describe for the first time the unexpected wide variation in pineal gland structure, as visualized by MR images obtained with 7T in a group of healthy young volunteers. A total of 34 volunteers (22 men and 12 women) were enrolled in the study. Their 7T MR images revealed such wide variations in pineal gland shape that it led us to attempt to classify the patterns seen in these pineal glands. Indeed, they were successfully correlated with a previous human cadaver study of venous structures by Tamaki et al., who classified the venous structures of the pineal gland into three categories. This is the first human in vivo pineal vein imaging study using 7T MRI. Pineal venous imaging may permit the early diagnosis of a pineal tumor.

  2. Anomaly Detection using Multi-channel FLAC for Supporting Diagnosis of ECG

    NASA Astrophysics Data System (ADS)

    Ye, Jiaxing; Kobayashi, Takumi; Murakawa, Masahiro; Higuchi, Tetsuya; Otsu, Nobuyuki

    In this paper, we propose an approach for abnormality detection in multi-channel ECG signals. This system serves as front end to detect the irregular sections in ECG signals, where symptoms may be observed. Thereby, the doctor can focus on only the detected suspected symptom sections, ignoring the disease-free parts. Hence the workload of the inspection by the doctors is significantly reduced and the diagnosis efficiency can be sharply improved. For extracting the predominant characteristics of multi-channel ECG signals, we propose multi-channel Fourier local auto-correlations (m-FLAC) features on multi-channel complex spectrograms. The method characterizes the amplitude and phase information as well as temporal dynamics of the multi-channel ECG signal. At the anomaly detection stage, we employ complex subspace method for statistically modeling the normal (healthy) ECG patterns as in one-class learning. Then, we investigate the input ECG signals by measuring its deviation distance to the trained subspace. The ECG sections with disordered spectral distributions can be effectively discerned based on such distance metric. To validate the proposed approach, we conducted experiments on ECG dataset. The experimental results demonstrated the effectiveness of the proposed approach including promising performance and high efficiency, compared to conventional methods.

  3. Many-terminal Majorana island: From topological to multichannel Kondo model

    NASA Astrophysics Data System (ADS)

    Herviou, Loïc; Le Hur, Karyn; Mora, Christophe

    2016-12-01

    We study Kondo screening obtained by coupling Majorana bound states, located on a topological superconducting island, to interacting electronic reservoirs. At the charge degeneracy points of the island, we formulate an exact mapping onto the spin-1 /2 multichannel Kondo effect. The coupling to Majorana fermions transforms the tunneling terms into effective fermionic bilinear contributions with a Luttinger parameter K in the leads that is effectively doubled. For strong interactions K =1 /2 , the intermediate fixed point of the standard multichannel Kondo model is exactly recovered. It evolves with K and connects to strong coupling in the noninteracting case K =1 , with maximum conductance between the leads and robustness against channel asymmetries similarly to the topological Kondo effect. For a number of leads above four, there exists a window of Luttinger parameters in which a quantum phase transition can occur between the strong coupling topological Kondo state and the partially conducting multichannel Kondo state.

  4. Magnetic Resonance Imaging of the Cervical Spinal Cord in Multiple Sclerosis at 7T

    PubMed Central

    Dula, Adrienne N.; Pawate, Siddharama; Dortch, Richard D.; Barry, Robert L.; George-Durrett, Kristen M.; Lyttle, Bailey D.; Dethrage, Lindsey M.; Gore, John C.; Smith, Seth A.

    2015-01-01

    Background The clinical course of MS is mainly attributable to cervical and upper thoracic spinal cord dysfunction. High-resolution, 7T anatomical imaging of the cervical spinal cord is presented. Image contrast between gray/white matter and lesions surpasses conventional, clinical T1- and T2-weighted sequences at lower field strengths. Objective To study the spinal cord of healthy controls and patients with MS using magnetic resonance imaging at 7T. Methods Axial (C2-C5) T1- and T2*-weighted and sagittal T2*-/spin-density-weighted images were acquired at 7T in 13 healthy volunteers (age 22-40 years), and 15 clinically diagnosed MS patients (age 19-53 years, EDSS 0-3) in addition to clinical 3T scans. In healthy volunteers, a high-resolution multi-echo gradient echo scan was obtained over the same geometry at both fields. Evaluation included signal and contrast to noise ratios and lesion counts for healthy and patient volunteers, respectively. Results/Conclusion High-resolution images at 7T exceeded resolutions reported at lower field strengths. Gray and white matter were sharply demarcated and MS lesions were more readily visualized at 7T compared to clinical acquisitions. with lesions apparent at both fields. Nerve roots were clearly visualized. White matter lesion counts averaged 4.7 vs. 3.1 (52% increase) per patient at 7T vs. 3T, respectively (p = 0.05). PMID:26209591

  5. Multichannel DBS halftoning for improved texture quality

    NASA Astrophysics Data System (ADS)

    Slavuj, Radovan; Pedersen, Marius

    2015-01-01

    The paper aims to develop a method for multichannel halftoning based on the Direct Binary Search (DBS) algorithm. We integrate specifics and benefits of multichannel printing into the halftoning method in order to further improve texture quality of DBS and to create halftoning that would suit for multichannel printing. Originally, multichannel printing is developed for an extended color gamut, at the same time additional channels can help to improve individual and combined texture of color halftoning. It does so in a similar manner to the introduction of the light colors (diluted inks) in printing. Namely, if one observes Red, Green and Blue inks as the light version of the M+Y, C+Y, C+M combinations, the visibility of the unwanted halftoning textures can be reduced. Analogy can be extent to any number of ink combinations, or Neugebauer Primaries (NPs) as the alternative building blocks. The extended variability of printing spatially distributed NPs could provide many practical solution and improvements in color accuracy, image quality, and could enable spectral printing. This could be done by selection of NPs per dot area location based on the constraint of the desired reproduction. Replacement with brighter NP at the location could induce a color difference where a tradeoff between image quality and color accuracy is created. With multichannel enabled DBS haftoning, we are able to reduce visibility of the textures, to provide better rendering of transitions, especially in mid and dark tones.

  6. Cerebral TOF Angiography at 7T: Impact of B1+ Shimming with a 16-Channel Transceiver Array

    PubMed Central

    Schmitter, Sebastian; Wu, Xiaoping; Adriany, Gregor; Auerbach, Edward J.; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2014-01-01

    Purpose Time-of-flight (TOF) MR imaging is clinically among the most common cerebral non-contrast enhanced MR angiography techniques allowing for high spatial resolution. As shown by several groups TOF contrast significantly improves at ultra-high field (UHF) of B0=7T, however, spatially varying transmit B1 (B1+) fields at 7T reduce TOF contrast uniformity, typically resulting in sub-optimal contrast and reduced vessel conspicuity in the brain periphery. Methods Using a 16-channel B1+ shimming system we compare different dynamically applied B1+ phase shimming approaches on the RF excitation to improve contrast homogeneity for a (0.5 mm)3 resolution multi-slab TOF acquisition. In addition, B1+ shimming applied on the venous saturation pulse was investigated to improve venous suppression, subcutaneous fat signal reduction and enhanced background suppression originating from MT effect. Results B1+ excitation homogeneity was improved by a factor 2.2 to 2.6 on average depending on the shimming approach, compared to a standard CP-like phase setting, leading to improved vessel conspicuity particularly in the periphery. Stronger saturation, higher fat suppression and improved background suppression were observed when dynamically applying B1+ shimming on the venous saturation pulse. Conclusion B1+ shimming can significantly improve high resolution TOF vascular investigations at UHF, holding strong promise for non contrast-enhanced clinical applications. PMID:23640915

  7. A multichannel continuously selectable multifrequency electrical impedance spectroscopy measurement system.

    PubMed

    Hartov, A; Mazzarese, R A; Reiss, F R; Kerner, T E; Osterman, K S; Williams, D B; Paulsen, K D

    2000-01-01

    There is increasing evidence that alterations in the electrical property spectrum of tissues below 10 MHz is diagnostic for tissue pathology and/or pathophysiology. Yet, the complexity associated with constructing a high-fidelity multichannel, multifrequency data acquisition instrument has limited widespread development of spectroscopic electrical impedance imaging concepts. To contribute to the relatively sparse experience with multichannel spectroscopy systems this paper reports on the design, realization and evaluation of a prototype 32-channel instrument. The salient features of the system include a continuously selectable driving frequency up to 1 MHz, either voltage or current source modes of operation and simultaneous measurement of both voltage and current on each channel in either of these driving configurations. Comparisons of performance with recently reported fixed-frequency systems is favorable. Volts dc (VDC) signal-to-noise ratios of 75-80 dB are achieved and the noise floor for ac signals is near 100 dB below the signal strength of interest at 10 kHz and 60 dB down at 1 MHz. The added benefit of being able to record multispectral information on source and sense signal amplitudes and phases has also been realized. Phase-sensitive detection schemes and multiperiod undersampling techniques have been deployed to ensure measurement fidelity over the full bandwidth of system operation.

  8. Restoration of multichannel microwave radiometric images

    NASA Technical Reports Server (NTRS)

    Chin, R. T.; Yeh, C.-L.; Olson, W. S.

    1985-01-01

    A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Its properties and limitations are presented. The effect of noise was investigated and a better understanding of the performance of the algorithm with noisy data has been achieved. The restoration scheme with the selection of appropriate constraints was applied to a practical problem. The 6.6, 10.7, 18, and 21 GHz satellite images obtained by the scanning multichannel microwave radiometer (SMMR), each having different spatial resolution, were restored to a common, high resolution (that of the 37 GHz channels) to demonstrate the effectiveness of the method. Both simulated data and real data were used in this study. The restored multichannel images may be utilized to retrieve rainfall distributions.

  9. Restoration of multichannel microwave radiometric images.

    PubMed

    Chin, R T; Yeh, C L; Olson, W S

    1985-04-01

    A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Its properties and limitations are presented. The effect of noise was investigated and a better understanding of the performance of the algorithm with noisy data has been achieved. The restoration scheme with the selection of appropriate constraints was applied to a practical problem. The 6.6, 10.7, 18, and 21 GHz satellite images obtained by the scanning multichannel microwave radiometer (SMMR), each having different spatial resolution, were restored to a common, high resolution (that of the 37 GHz channels) to demonstrate the effectiveness of the method. Both simulated data and real data were used in this study. The restored multichannel images may be utilized to retrieve rainfall distributions.

  10. Multichannel framework for singular quantum mechanics

    SciTech Connect

    Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner; García Canal, Carlos A.; Ordóñez, Carlos R.

    2014-01-15

    A multichannel S-matrix framework for singular quantum mechanics (SQM) subsumes the renormalization and self-adjoint extension methods and resolves its boundary-condition ambiguities. In addition to the standard channel accessible to a distant (“asymptotic”) observer, one supplementary channel opens up at each coordinate singularity, where local outgoing and ingoing singularity waves coexist. The channels are linked by a fully unitary S-matrix, which governs all possible scenarios, including cases with an apparent nonunitary behavior as viewed from asymptotic distances. -- Highlights: •A multichannel framework is proposed for singular quantum mechanics and analogues. •The framework unifies several established approaches for singular potentials. •Singular points are treated as new scattering channels. •Nonunitary asymptotic behavior is subsumed in a unitary multichannel S-matrix. •Conformal quantum mechanics and the inverse quartic potential are highlighted.

  11. Comparison of Muscle BOLD Responses to Arterial Occlusion at 3T and 7T

    PubMed Central

    Towse, Theodore F.; Childs, Benjamin T.; Sabin, Shea A.; Bush, Emily C.; Elder, Christopher P.; Damon, Bruce M.

    2014-01-01

    Purpose The purpose of this study was to determine the feasibility of muscle BOLD (mBOLD) imaging at 7T by comparing the changes in R2* of muscle at 3 and 7T in response to a brief period of tourniquet-induced ischemia. Methods Eight subjects (3 male), aged 29.5 ± 6.1 years (mean ± standard deviation, SD), 167.0 ± 10.6 cm tall with a body mass of 62.0 ± 18.0 kg, participated in the study. Subjects reported to the lab on four separate occasions including a habituation session, two MRI scans, and in a subset of subjects, a session during which changes in blood flow and blood oxygenation were quantified using Doppler ultrasound (U/S) and near-infrared spectroscopy (NIRS) respectively. For statistical comparisons between 3T and 7T, R2* rate constants were calculated as R2* = 1/T2*. Results The mean pre-occlusion R2* value was greater at 7T than at 3T (60.16 ± 2.95 vs 35.17 ± 0.35 s−1 respectively, p <0.001). Also, the mean ΔR2*END and ΔR2*POST values were greater for 7T than for 3T (−2.36 ± 0.25 vs. −1.24 ± 0.39 s−1, respectively, Table 1). Conclusion Muscle BOLD contrast at 7T is as much as six-fold greater than at 3T. In addition to providing greater SNR and CNR, 7T mBOLD studies may offer further advantages in the form of greater sensitivity to pathological changes in the muscle microcirculation. PMID:25884888

  12. Optical multichannel sensing of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Kukulis, Indulis; Ozols, Maris; Prieditis, Karlis

    2004-09-01

    Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide information on skin blood volume pulsations and can serve for cardiovascular assessment. The multi-channel PPG concept has been developed and clinically verified in this study. Portable two- and four-channel PPG monitoring devices have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions in extremities. The optically measured heartbeat pulse wave propagation made possible to estimate relative arterial resistances for numerous patients and healthy volunteers.

  13. Restoration of multichannel microwave radiometric images

    NASA Technical Reports Server (NTRS)

    Chin, R. T.; Yeh, C. L.; Olson, W. S.

    1983-01-01

    A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Some of its properties and limitations are also presented. The selection of appropriate constraints was emphasized in a practical application. Multichannel microwave images, each having different spatial resolution, were restored to a common highest resolution to demonstrate the effectiveness of the method. Both noise-free and noisy images were used in this investigation.

  14. The Ultra-fast Multichannel Radiopolarimetric System Operated in Trieste

    NASA Astrophysics Data System (ADS)

    Messerotti, M.; Zlobec, P.; Comari, M.; Padovan, S.

    The solar radiopolarimetric system operated by the Trieste Astronomical Observatory at the Basovizza Observing Station has undergone a long phase of maintenance and major upgrades during the recent years. The 10m antenna system of the metric multichannel radiopolarimeter (mMSRP) was completely renewed (Figure 1) and the receiving system upgraded. A new multichannel radiopolarimeter (dmMSRP) operating in the decimetric band (1-4 GHz, presently with two tunable channels) was built to expand the receiving band, which now ranges from 200 MHz to 3 GHz at fixed frequencies (6 channels as in Table 1). The 3m antenna alt-azimuthal system (Figure 1) is fed by a log-periodic cross-dipole feeder directly connected to a cooled front-end. The multichannel radiopolarimeters provide accurate measurements of the flux density in the L- and R-handed circular polarization. Figure 1. 10m (left panel) and 3m (right panel) antennas of the m and dm radiopolarimeters. A digital acquisition system serves both radio instruments. It is entirely programmable and allows a theoretical maximum sampling rate of 0.13 ms for each channel. This system is now under test to determine the optimum SNR reachable at the highest sampling rate. Such a key feature will allow a proper sampling of the fastest radio events. The temporary storage is made on high capacity hard disks and the permanent storage on CD-W. The data analysis and the archiving software packages were developed in IDL to allow for compatibility and portability. In particular, data can be exported upon request in FITS format according, e.g., to the SOHO synoptic archives specifications. Radiopolarimeter Channel Frequency Wavelength || || MHz || cm mMSRP || 1 || 237 || 127 || 2 || 327 || 92 || 3 || 408 || 74 || 4 || 610 || 49 dmMSRP || 1 || 1420 || 21 || 2 || 2695 || 11

  15. 26 CFR 1.482-7T - Methods to determine taxable income in connection with a cost sharing arrangement (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Methods to determine taxable income in connection with a cost sharing arrangement (temporary). 1.482-7T Section 1.482-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Adjustments § 1.482-7T Methods to determine taxable...

  16. 26 CFR 1.482-7T - Methods to determine taxable income in connection with a cost sharing arrangement (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Methods to determine taxable income in connection with a cost sharing arrangement (temporary). 1.482-7T Section 1.482-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Adjustments § 1.482-7T Methods to...

  17. A multi-channel waveform digitizer system

    SciTech Connect

    Bieser, F.; Muller, W.F.J. )

    1990-04-01

    The authors report on the design and performance of a multichannel waveform digitizer system for use with the Multiple Sample Ionization Chamber (MUSIC) Detector at the Bevalac. 128 channels of 20 MHz Flash ADC plus 256 word deep memory are housed in a single crate. Digital thresholds and hit pattern logic facilitate zero suppression during readout which is performed over a standard VME bus.

  18. Multichannel Compressive Sensing MRI Using Noiselet Encoding

    PubMed Central

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548

  19. Multichannel compressive sensing MRI using noiselet encoding.

    PubMed

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding.

  20. Multi-turn multi-gap transmission line resonators - Concept, design and first implementation at 4.7 T and 7 T

    NASA Astrophysics Data System (ADS)

    Frass-Kriegl, Roberta; Laistler, Elmar; Hosseinnezhadian, Sajad; Schmid, Albrecht Ingo; Moser, Ewald; Poirier-Quinot, Marie; Darrasse, Luc; Ginefri, Jean-Christophe

    2016-12-01

    A novel design scheme for monolithic transmission line resonators (TLRs) is presented - the multi-turn multi-gap TLR (MTMG-TLR) design. The MTMG-TLR design enables the construction of TLRs with multiple turns and multiple gaps. This presents an additional degree of freedom in tuning self-resonant TLRs, as their resonance frequency is fully determined by the coil geometry (e.g. diameter, number of turns, conductor width, etc.). The novel design is evaluated at 4.7 T and 7 T by simulations and experiments, where it is demonstrated that MTMG-TLRs can be used for MRI, and that the B1 distribution of MTMG-TLRs strongly depends on the number and distribution of turns. A comparison to conventional loop coils revealed that the B1 performance of MTMG-TLRs is comparable to a loop coil with the same mean diameter; however, lower 10g SAR values were found for MTMG-TLRs. The MTMG-TLR design is expected to bring most benefits at high static field, where it allows for independent size and frequency selection, which cannot be achieved with standard TLR design. However, it also enables more accurate geometric optimization at low static field. Thereby, the MTMG-TLR design preserves the intrinsic advantages of TLRs, i.e. mechanical flexibility, high SAR efficiency, mass production, and coil miniaturization.

  1. Multi-turn multi-gap transmission line resonators - Concept, design and first implementation at 4.7T and 7T.

    PubMed

    Frass-Kriegl, Roberta; Laistler, Elmar; Hosseinnezhadian, Sajad; Schmid, Albrecht Ingo; Moser, Ewald; Poirier-Quinot, Marie; Darrasse, Luc; Ginefri, Jean-Christophe

    2016-12-01

    A novel design scheme for monolithic transmission line resonators (TLRs) is presented - the multi-turn multi-gap TLR (MTMG-TLR) design. The MTMG-TLR design enables the construction of TLRs with multiple turns and multiple gaps. This presents an additional degree of freedom in tuning self-resonant TLRs, as their resonance frequency is fully determined by the coil geometry (e.g. diameter, number of turns, conductor width, etc.). The novel design is evaluated at 4.7T and 7T by simulations and experiments, where it is demonstrated that MTMG-TLRs can be used for MRI, and that the B1 distribution of MTMG-TLRs strongly depends on the number and distribution of turns. A comparison to conventional loop coils revealed that the B1 performance of MTMG-TLRs is comparable to a loop coil with the same mean diameter; however, lower 10g SAR values were found for MTMG-TLRs. The MTMG-TLR design is expected to bring most benefits at high static field, where it allows for independent size and frequency selection, which cannot be achieved with standard TLR design. However, it also enables more accurate geometric optimization at low static field. Thereby, the MTMG-TLR design preserves the intrinsic advantages of TLRs, i.e. mechanical flexibility, high SAR efficiency, mass production, and coil miniaturization.

  2. High resolution nuclear magnetic resonance imaging of pig knees at 4.7 T.

    PubMed

    Robinson, E M; Mackenzie, I S; Freemont, A; Jasani, M K

    1988-01-01

    We present images of the pig knee joint which illustrate the resolution that is easily obtainable in high field (4.7 T) NMR imaging. We also describe a variant of the birdcage resonator which utilizes a novel tuning mechanism of simple construction.

  3. Coupling output of multichannel high power microwaves

    SciTech Connect

    Li Guolin; Shu Ting; Yuan Chengwei; Zhang Jun; Yang Jianhua; Jin Zhenxing; Yin Yi; Wu Dapeng; Zhu Jun; Ren Heming; Yang Jie

    2010-12-15

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  4. Multichannel algorithms for seismic reflectivity inversion

    NASA Astrophysics Data System (ADS)

    Wang, Ruo; Wang, Yanghua

    2017-02-01

    Seismic reflectivity inversion is a deconvolution process for quantitatively extracting the reflectivity series and depicting the layered subsurface structure. The conventional method is a single channel inversion and cannot clearly characterise stratified structures, especially from seismic data with low signal-to-noise ratio. Because it is implemented on a trace-by-trace basis, the continuity along reflections in the original seismic data is deteriorated in the inversion results. We propose here multichannel inversion algorithms that apply the information of adjacent traces during seismic reflectivity inversion. Explicitly, we incorporate a spatial prediction filter into the conventional Cauchy-constrained inversion method. We verify the validity and feasibility of the method using field data experiments and find an improved lateral continuity and clearer structures achieved by the multichannel algorithms. Finally, we compare the performance of three multichannel algorithms and merit the effectiveness based on the lateral coherency and structure characterisation of the inverted reflectivity profiles, and the residual energy of the seismic data at the same time.

  5. Temperature measurements in a fiber optic interferometric multichannel automated instrumentation system

    NASA Astrophysics Data System (ADS)

    Lamela, Horacio; Garcia Souto, Jose A.; Varo, Antonio J.; Santos, Jose I.

    1999-05-01

    In this paper we present the results of an automated instrumentation system that we have designed for temperature gradient characterization in composite materials using the optical fibers embedded in it to construct a multichannel interferometer. The objective is to develop a specific automated measurement system that is able to interrogate different interferometric channels and electronic sensors at the same time. It is also of main concern the study of the interferometric signal processing and the disturbance analysis of such technique applied to this multichannel approach. Synchronous differential optical phase measurements have been used for both characterizations of common phase errors and spatial temperature gradient. Details of the performance, the system design and the experimental results obtained are given.

  6. Compressed sensing sodium MRI of cartilage at 7T: Preliminary study

    NASA Astrophysics Data System (ADS)

    Madelin, Guillaume; Chang, Gregory; Otazo, Ricardo; Jerschow, Alexej; Regatte, Ravinder R.

    2012-01-01

    Sodium MRI has been shown to be highly specific for glycosaminoglycan (GAG) content in articular cartilage, the loss of which is an early sign of osteoarthritis (OA). Quantitative sodium MRI techniques are therefore under development in order to detect and assess early biochemical degradation of cartilage, but due to low sodium NMR sensitivity and its low concentration, sodium images need long acquisition times (15-25 min) even at high magnetic fields and are typically of low resolution. In this preliminary study, we show that compressed sensing can be applied to reduce the acquisition time by a factor of 2 at 7T without losing sodium quantification accuracy. Alternatively, the nonlinear reconstruction technique can be used to denoise fully-sampled images. We expect to even further reduce this acquisition time by using parallel imaging techniques combined with SNR-improved 3D sequences at 3T and 7T.

  7. An Asymmetric Birdcage Coil for Small-animal MR Imaging at 7T.

    PubMed

    Kim, Kyoung-Nam; Han, Sang-Doc; Seo, Jeung-Hoon; Heo, Phil; Yoo, Dongkyeom; Im, Geun Ho; Lee, Jung Hee

    2016-09-30

    The birdcage (BC) coil is currently being utilized for uniform radiofrequency (RF) transmit/receive (Tx/Rx) or Tx-only configuration in many magnetic resonance (MR) imaging applications, but insufficient magnetic flux (|B1|) density and their non-uniform distribution still exists in high-field (HF) environments. We demonstrate that the asymmetric birdcage (ABC) transmit/receive (Tx/Rx) volume coil, which is a modified standard birdcage (SBC) coil with the end ring split into two halves, is suitable for improving the |B1| sensitivity in 7T small-animal MR imaging. Cylindrical SBC and ABC coils with 35 mm diameter were constructed and bench tested for mouse body MR imaging at 300 MHz using a 7T scanner. To assess the ABC coil performance, computational electromagnetic (EM) simulation and 7T MR experiment were performed by using a cylindrical phantom and in vivo mouse body and quantitatively compared with the SBC coil in terms of |B1| distribution, RF transmit (|B1(+)|) field, and signal-to-noise ratio (SNR). The bench measurements of the two BC coils are similar, yielding a quality value (Q-value) of 74.42 for the SBC coil and 77.06 for the ABC coil. The computational calculation results clearly show that the proposed ABC coil offers superior |B1| field and |B1(+)| field sensitivity in the central axial slice compared with the SBC coil. There was also high SNR and uniformly distributed flip angle (FA) under the loaded condition of mouse body in the 7T experiment. Although ABC geometry allows a further increase in the |B1| field and |B1(+)| field sensitivity in only the central axial slice, the geometrical modification of the SBC coil can make a high performance RF coil feasible in the central axial slice and also make target imaging possible in the diagonal direction.

  8. Precisely synchronous and cascadable multi-channel arbitrary waveform generator

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Tian, Shulin; Guo, Guangkun; Xiao, Yindong

    2017-03-01

    The output bandwidth and the capability to generate multiple analog outputs with accurately adjustable relative phase are important specifications of arbitrary waveform generator (AWG). To increase the output bandwidth, AWG with a multi-memory paralleled direct digital synthesizer structure (DDS) was proposed to break through operating speed limitations of memory and field programmable gate array. But this structure does complicate synchronization of the analog outputs. This paper proposes a structure for synchronization of the outputs of multi-channel high speed AWG that generates arbitrary waveforms using a multi-memory paralleled DDS. Careful distribution of the clock and trigger signals enables elimination of the random initial phase caused by the frequency divider. Based on this structure, a four-channel 600 mega samples per second AWG is designed. An embedded clock synchronization calibration module is designed to eliminate the random phase difference caused by a frequency divider inside a digital-to-analog converter. The AWG provides a 240 MHz bandwidth, 16 mega-samples storage depth, inter-channel initial skew accuracy less than 150 ps, and 0.0001° phase resolution, which can be used to generate two pairs of I/Q signals or a pair of differential I/Q signals for the quadrature modulator. Additionally, more AWGs can be cascaded to obtain more output channels with an output timing skew between adjacent channels of less than 1.6 ns.

  9. Precisely synchronous and cascadable multi-channel arbitrary waveform generator.

    PubMed

    Liu, Ke; Tian, Shulin; Guo, Guangkun; Xiao, Yindong

    2017-03-01

    The output bandwidth and the capability to generate multiple analog outputs with accurately adjustable relative phase are important specifications of arbitrary waveform generator (AWG). To increase the output bandwidth, AWG with a multi-memory paralleled direct digital synthesizer structure (DDS) was proposed to break through operating speed limitations of memory and field programmable gate array. But this structure does complicate synchronization of the analog outputs. This paper proposes a structure for synchronization of the outputs of multi-channel high speed AWG that generates arbitrary waveforms using a multi-memory paralleled DDS. Careful distribution of the clock and trigger signals enables elimination of the random initial phase caused by the frequency divider. Based on this structure, a four-channel 600 mega samples per second AWG is designed. An embedded clock synchronization calibration module is designed to eliminate the random phase difference caused by a frequency divider inside a digital-to-analog converter. The AWG provides a 240 MHz bandwidth, 16 mega-samples storage depth, inter-channel initial skew accuracy less than 150 ps, and 0.0001° phase resolution, which can be used to generate two pairs of I/Q signals or a pair of differential I/Q signals for the quadrature modulator. Additionally, more AWGs can be cascaded to obtain more output channels with an output timing skew between adjacent channels of less than 1.6 ns.

  10. Intensity inhomogeneity correction for magnetic resonance imaging of human brain at 7T

    SciTech Connect

    Uwano, Ikuko; Yamashita, Fumio; Higuchi, Satomi; Ito, Kenji; Sasaki, Makoto; Kudo, Kohsuke Goodwin, Jonathan; Harada, Taisuke; Ogawa, Akira

    2014-02-15

    Purpose: To evaluate the performance and efficacy for intensity inhomogeneity correction of various sequences of the human brain in 7T MRI using the extended version of the unified segmentation algorithm. Materials: Ten healthy volunteers were scanned with four different sequences (2D spin echo [SE], 3D fast SE, 2D fast spoiled gradient echo, and 3D time-of-flight) by using a 7T MRI system. Intensity inhomogeneity correction was performed using the “New Segment” module in SPM8 with four different values (120, 90, 60, and 30 mm) of full width at half maximum (FWHM) in Gaussian smoothness. The uniformity in signals in the entire white matter was evaluated using the coefficient of variation (CV); mean signal intensities between the subcortical and deep white matter were compared, and contrast between subcortical white matter and gray matter was measured. The length of the lenticulostriate (LSA) was measured on maximum intensity projection (MIP) images in the original and corrected images. Results: In all sequences, the CV decreased as the FWHM value decreased. The differences of mean signal intensities between subcortical and deep white matter also decreased with smaller FWHM values. The contrast between white and gray matter was maintained at all FWHM values. LSA length was significantly greater in corrected MIP than in the original MIP images. Conclusions: Intensity inhomogeneity in 7T MRI can be successfully corrected using SPM8 for various scan sequences.

  11. Multi-channel non-return-to-zero format to return-to-zero format conversion with duplicate output

    NASA Astrophysics Data System (ADS)

    Yu, Yu; Zhang, Xinliang; Huang, Dexiu

    2010-12-01

    We demonstrate multi-channel regenerative non-return-to-zero (NRZ) to return-to-zero (RZ) conversions with tunable output pulse-width and single-to-dual function, using a phase modulator and an array waveguide grating (AWG). Transmission and bit error ratio (BER) show a good performance for the converted RZ signal compared with conventional one.

  12. All-optical multi-channel wavelength conversion of Nyquist 16 QAM signal using a silicon waveguide.

    PubMed

    Long, Yun; Liu, Jun; Hu, Xiao; Wang, Andong; Zhou, Linjie; Zou, Kaiheng; Zhu, Yixiao; Zhang, Fan; Wang, Jian

    2015-12-01

    We experimentally demonstrate on-chip all-optical multi-channel wavelength conversion of Nyquist 16 ary quadrature amplitude modulation (16 QAM) signal in a silicon waveguide. The measured optical signal-to-noise ratio (OSNR) penalties of wavelength conversion are ∼2  dB. The observed constellations of converted idlers indicate favorable performance of silicon-waveguide-based multi-channel wavelength conversion. We also experimentally study and compare the phase-conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in the silicon waveguide.

  13. Voxel-based morphometry at ultra-high fields. A comparison of 7T and 3T MRI data

    PubMed Central

    Seiger, Rene; Hahn, Andreas; Hummer, Allan; Kranz, Georg S; Ganger, Sebastian; Küblböck, Martin; Kraus, Christoph; Sladky, Ronald; Kasper, Siegfried; Windischberger, Christian; Lanzenberger, Rupert

    2017-01-01

    Recent technological progress enables MRI recordings at ultra-high fields of 7 Tesla and above leading to brain images of higher resolution and increased signal-to-noise ratio. Despite these benefits, imaging at 7T exhibits distinct challenges due to B1 field inhomogeneities, causing decreased image quality and problems in data analysis. Although several strategies have been proposed, a systematic investigation of bias-corrected 7T data for voxel-based morphometry (VBM) is still missing and it is an ongoing matter of debate if VBM at 7T can be carried out properly. Here, an optimized VBM study was conducted, evaluating the impact of field strength (3T vs 7T) and pulse sequence (MPRAGE vs MP2RAGE) on gray matter volume (GMV) estimates. More specifically, twenty-two participants were measured under the conditions 3T MPRAGE, 7T MPRAGE and 7T MP2RAGE. Due to the fact that 7T MPRAGE data exhibited strong intensity inhomogeneities, an alternative preprocessing pipeline was proposed and applied for that data. VBM analysis revealed higher GMV estimates for 7T predominantly in superior cortical areas, caudate nucleus, cingulate cortex and the hippocampus. On the other hand, 3T yielded higher estimates especially in inferior cortical areas of the brain, cerebellum, thalamus and putamen compared to 7T. Besides minor exceptions, these results were observed for 7T MPRAGE as well for the 7T MP2RAGE measurements. Results gained in the inferior parts of the brain should be taken with caution, as native GM segmentations displayed misclassifications in these regions for both 7T sequences. This was supported by the test-retest measurements showing highest variability in these inferior regions of the brain for 7T also for the advanced MP2RAGE sequence. Hence, our data support the use of 7T MRI for VBM analysis in cortical areas, but direct comparison between field strengths and sequences requires careful assessment. Similarly, analysis of inferior cortical regions, cerebellum and

  14. 26 CFR 1.6049-7T - Market discount fraction reported with other financial information with respect to REMICs and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 13 2011-04-01 2011-04-01 false Market discount fraction reported with other financial information with respect to REMICs and collateralized debt obligations (temporary). 1.6049-7T... TAX (CONTINUED) INCOME TAXES (CONTINUED) Information Returns § 1.6049-7T Market discount...

  15. Multichannel image regularization using anisotropic geodesic filtering

    SciTech Connect

    Grazzini, Jacopo A

    2010-01-01

    This paper extends a recent image-dependent regularization approach introduced in aiming at edge-preserving smoothing. For that purpose, geodesic distances equipped with a Riemannian metric need to be estimated in local neighbourhoods. By deriving an appropriate metric from the gradient structure tensor, the associated geodesic paths are constrained to follow salient features in images. Following, we design a generalized anisotropic geodesic filter; incorporating not only a measure of the edge strength, like in the original method, but also further directional information about the image structures. The proposed filter is particularly efficient at smoothing heterogeneous areas while preserving relevant structures in multichannel images.

  16. Multichannel euv spectroscopy of high temperature plasmas

    SciTech Connect

    Fonck, R.J.

    1983-11-01

    Spectroscopy of magnetically confined high temperature plasmas in the visible through x-ray spectral ranges deals primarily with the study of impurity line radiation or continuum radiation. Detailed knowledge of absolute intensities, temporal behavior, and spatial distributions of the emitted radiation is desired. As tokamak facilities become more complex, larger, and less accessible, there has been an increased emphasis on developing new instrumentation to provide such information in a minimum number of discharges. The availability of spatially-imaging detectors for use in the vacuum ultraviolet region (especially the intensified photodiode array) has generated the development of a variety of multichannel spectrometers for applications on tokamak facilities.

  17. Multichannel correlation recognition method of optical images

    NASA Astrophysics Data System (ADS)

    Wang, Hongxia; He, Junfa; Sun, Honghui

    2000-10-01

    In this paper a multi-channel real-time hybrid joint transform correlator is proposed. In this correlator, the computer control is used to divide the screen into several equal size windows, reference images of the windows are all the same one and object images are adopted from different frames of image sequences by CCD, twice Fourier transforms of every channel images are realized by using hololens array. Areas of LCLV and the output light energy can be used effectively. The correlation performance can be improved.

  18. Multichannel analysis of forward scattered body waves

    NASA Astrophysics Data System (ADS)

    Neal, Scott Lawrence

    We describe a series of innovations which are the basis for a multichannel approach to direct imaging of forward scattered body waves recorded on broadband seismic arrays. The foundation is a method through which the irregularly sampled observed seismograms are interpolated onto an arbitrarily fine grid by means of a convolution between a spatial window function and the actual station locations. The result is a weighted stack which employs all the data to compute a robust and stable multichannel estimate of the wavefield. Deconvolution of the stacked data is shown to be equivalent to a multichannel deconvolution, with spatially variable weights equal to those used in stacking. Application to data from the Lodore array in Colorado and Wyoming shows variations in crustal structure across the array and also images upper mantle discontinuities. A second innovation focuses on the design of deconvolution operators that account for the loss of high frequency components of P-to- S conversions. Two variants are presented, the first increases linearly with P-to-S lag time, the second is based on convolutional quelling and a t* attenuation model. Both methods account for the high attentuation of S waves in the upper mantle. The quelling approach however, has two advantages; it is physically based, and it provides a unified framework for the combination of stacking and deconvolution. We apply multichannel stacking to derive three quantities from the observed data and the associated receiver functions: (1) correlation between stacks of the entire array and local subarray stacks, (2) RMS amplitude of the receiver functions, and (3) Pms-to- P amplitude variations. Application of these attributes to data from recent broadband array deployments in southern Africa, Colorado and Wyoming, and the Tien Shan of central Asia shows these attributes to be highly correlated with the geology of the study areas and to be indicative of major lithospheric discontinuities beneath an array

  19. Element decoupling of 7 T dipole body arrays by EBG metasurface structures: Experimental verification

    NASA Astrophysics Data System (ADS)

    Hurshkainen, Anna A.; Derzhavskaya, Tatyana A.; Glybovski, Stanislav B.; Voogt, Ingmar J.; Melchakova, Irina V.; van den Berg, Cornelis A. T.; Raaijmakers, Alexander J. E.

    2016-08-01

    Metasurfaces are artificial electromagnetic boundaries or interfaces usually implemented as two-dimensional periodic structures with subwavelength periodicity and engineered properties of constituent unit cells. The electromagnetic bandgap (EBG) effect in metasurfaces prevents all surface modes from propagating in a certain frequency band. While metasurfaces provide a number of important applications in microwave antennas and antenna arrays, their features are also highly suitable for MRI applications. In this work we perform a proof-of-principle experiment to study finite structures based on mushroom-type EBG metasurfaces and employ them for suppression of inter-element coupling in dipole transceive array coils for body imaging at 7 T. We firstly show experimentally that employment of mushroom structures leads to reduction of coupling between adjacent closely-spaced dipole antenna elements of a 7 T transceive body array, which reduces scattering losses in neighboring channels. The studied setup consists of two active fractionated dipole antennas previously designed by the authors for body imaging at 7 T. These are placed on top of a body-mimicking phantom and equipped with the manufactured finite-size periodic structure tuned to have EBG properties at the Larmor frequency of 298 MHz. To improve the detection range of the B1 + field distribution of the top elements, four additional elements were positioned along the bottom side of the phantom. Bench measurements of a scattering matrix showed that coupling between the two top elements can be considerably reduced depending on the distance to the EBG structure. On the other hand, the measurements performed on a 7 T MRI machine indicated redistribution of the B1 + field due to interaction between the dipoles with the structure. When the structure is located just over two closely spaced dipoles, one can reach a very high isolation improvement of -14 dB accompanied by a strong field redistribution. In contrast, when put

  20. Cervical cyst of the ligamentum flavum and C7-T1 subluxation: case report.

    PubMed

    Gazzeri, Roberto; Galarza, Marcelo; Gorgoglione, Leonardo; Bisceglia, Michele; D'Angelo, Vincenzo

    2005-10-01

    A patient with progressive gait disturbance resulting from a cyst of the cervical ligamentum flavum associated with C7-T1 listhesis is reported. Surgical removal of the cyst improved the patient's myelopathy. Intraspinal degenerative cysts are preferentially located in the lumbar region:unusual is the cervical localization. Differential diagnosis includes ligamentum flavum cyst, synovial and ganglion cysts. Association between degenerative intraspinal cysts and listhesis is discussed. To our knowledge, this is the first case of cyst of the ligamentum flavum associated with cervical subluxation.

  1. Recording and marking with silicon multichannel electrodes.

    PubMed

    Townsend, George; Peloquin, Pascal; Kloosterman, Fabian; Hetke, Jamille F; Leung, L Stan

    2002-04-01

    This protocol describes an implementation of recording and analysis of evoked potentials in the hippocampal cortex, combined with lesioning using multichannel silicon probes. Multichannel recording offers the advantage of capturing a potential field at one instant in time. The potentials are then subjected to current source density (CSD) analysis, to reveal the layer-by-layer current sources and sinks. Signals from each channel of a silicon probe (maximum 16 channels in this study) were amplified and digitized at up to 40 kHz after sample-and-hold circuits. A modular lesion circuit board could be inserted between the input preamplifiers and the silicon probe, such that any one of the 16 electrodes could be connected to a DC lesion current. By making a lesion at the electrode showing a physiological event of interest, the anatomical location of the event can be precisely identified, as shown for the distal dendritic current sink in CA1 following medial perforant path stimulation. Making two discrete lesions through the silicon probe is useful to indicate the degree of tissue shrinkage during histological procedures. In addition, potential/CSD profiles were stable following small movements of the silicon probe, suggesting that the probe did not cause excessive damage to the brain.

  2. Spatiotemporal Analysis of Multichannel EEG: CARTOOL

    PubMed Central

    Brunet, Denis; Murray, Micah M.; Michel, Christoph M.

    2011-01-01

    This paper describes methods to analyze the brain's electric fields recorded with multichannel Electroencephalogram (EEG) and demonstrates their implementation in the software CARTOOL. It focuses on the analysis of the spatial properties of these fields and on quantitative assessment of changes of field topographies across time, experimental conditions, or populations. Topographic analyses are advantageous because they are reference independents and thus render statistically unambiguous results. Neurophysiologically, differences in topography directly indicate changes in the configuration of the active neuronal sources in the brain. We describe global measures of field strength and field similarities, temporal segmentation based on topographic variations, topographic analysis in the frequency domain, topographic statistical analysis, and source imaging based on distributed inverse solutions. All analysis methods are implemented in a freely available academic software package called CARTOOL. Besides providing these analysis tools, CARTOOL is particularly designed to visualize the data and the analysis results using 3-dimensional display routines that allow rapid manipulation and animation of 3D images. CARTOOL therefore is a helpful tool for researchers as well as for clinicians to interpret multichannel EEG and evoked potentials in a global, comprehensive, and unambiguous way. PMID:21253358

  3. Spatiotemporal analysis of multichannel EEG: CARTOOL.

    PubMed

    Brunet, Denis; Murray, Micah M; Michel, Christoph M

    2011-01-01

    This paper describes methods to analyze the brain's electric fields recorded with multichannel Electroencephalogram (EEG) and demonstrates their implementation in the software CARTOOL. It focuses on the analysis of the spatial properties of these fields and on quantitative assessment of changes of field topographies across time, experimental conditions, or populations. Topographic analyses are advantageous because they are reference independents and thus render statistically unambiguous results. Neurophysiologically, differences in topography directly indicate changes in the configuration of the active neuronal sources in the brain. We describe global measures of field strength and field similarities, temporal segmentation based on topographic variations, topographic analysis in the frequency domain, topographic statistical analysis, and source imaging based on distributed inverse solutions. All analysis methods are implemented in a freely available academic software package called CARTOOL. Besides providing these analysis tools, CARTOOL is particularly designed to visualize the data and the analysis results using 3-dimensional display routines that allow rapid manipulation and animation of 3D images. CARTOOL therefore is a helpful tool for researchers as well as for clinicians to interpret multichannel EEG and evoked potentials in a global, comprehensive, and unambiguous way.

  4. Brain venular pattern by 7T MRI correlates with memory and haemoglobin in sickle cell anaemia.

    PubMed

    Novelli, Enrico M; Elizabeth Sarles, C; Jay Aizenstein, Howard; Ibrahim, Tamer S; Butters, Meryl A; Connelly Ritter, Anne; Erickson, Kirk I; Rosano, Caterina

    2015-07-30

    Sickle cell anaemia (SCA) is a hereditary hemoglobinopathy characterised by extensive vascular dysfunction that stems from inflammation, thrombosis and occlusion of post-capillary venules. Cognitive impairment is a neurological complication of SCA whose pathogenesis is unknown. We hypothesised that cerebral venular abnormalities are linked to cognitive impairment in SCA. Thus, we employed 7T magnetic resonance imaging (MRI) to examine the association between venular density and cognitive function in homozygous SCA. We quantified the density of total, long, and short venules in pre-defined regions of interest between the frontal and occipital cornu on each hemisphere. Cognitive function was assessed using the Hopkins Verbal Learning Test - Revised (HVLT-R) test of learning and memory. Patients (n=11) were compared with race, age and gender-equated controls (n=7). Compared to controls, patients had an overall venular rarefaction, with significantly lower density of long venules and greater density of short venules which was inversely related to HVLT-R performance and haemoglobin. To our knowledge, this is the first 7T MRI study in SCA and first report of associations between cerebral venular patterns and cognitive performance and haemoglobin. Future studies should examine whether these novel neuroimaging markers predict cognitive impairment longitudinally and are mechanistically linked to severity of anaemia.

  5. Magnetic resonance imaging of the initial active stage of equine laminitis at 4.7 T.

    PubMed

    Arble, Jason B; Mattoon, John S; Drost, Wm Tod; Weisbrode, Steven E; Wassenaar, Peter A; Pan, Xueliang; Hunt, Robert J; Belknap, James K

    2009-01-01

    Equine laminitis is a severely debilitating disease. There is a poor understanding of the underlying pathophysiology, and traditional imaging modalities have limited diagnostic capacity. High field strength magnetic resonance (MR) imaging allows direct visualization of the laminae, which other modalities do not. This would prove useful both in assessment of clinical patients and in further investigation into the pathophysiology of the disease. The objective of this study was to characterize the anatomic changes within the equine foot associated with the initial active stage of laminitis. Images obtained using a 4.7 T magnet were compared with digital radiographs using histologic diagnosis as the reference standard. Objective measurements and subjective evaluation for both modalities were evaluated for the ability to predict the histologic diagnosis in horses with clinical signs of laminitis as well as in clinically normal horses and horses that were in a population at risk for developing laminitis. Signal intensity and architectural changes within the corium and laminae were readily seen at 4.7 T, and there was a strong association with the histologic diagnosis of active laminitis. Measurements obtained with MR imaging were more sensitive and specific predictors of laminitis than those obtained radiographically. Subjective evaluation with MR imaging was more sensitive than with radiography and should become more specific with greater understanding of normal anatomy.

  6. Fourier-domain multichannel autofocus for synthetic aperture radar.

    PubMed

    Liu, Kuang-Hung; Munson, David C

    2011-12-01

    Synthetic aperture radar (SAR) imaging suffers from image focus degradation in the presence of phase errors in the received signal due to unknown platform motion or signal propagation delays. We present a new autofocus algorithm, termed Fourier-domain multichannel autofocus (FMCA), that is derived under a linear algebraic framework, allowing the SAR image to be focused in a noniterative fashion. Motivated by the mutichannel autofocus (MCA) approach, the proposed autofocus algorithm invokes the assumption of a low-return region, which generally is provided within the antenna sidelobes. Unlike MCA, FMCA works with the collected polar Fourier data directly and is capable of accommodating wide-angle monostatic SAR and bistatic SAR scenarios. Most previous SAR autofocus algorithms rely on the prior assumption that radar's range of look angles is small so that the phase errors can be modeled as varying along only one dimension in the collected Fourier data. And, in some cases, implicit assumptions are made regarding the SAR scene. Performance of such autofocus algorithms degrades if the assumptions are not satisfied. The proposed algorithm has the advantage that it does not require prior assumptions about the range of look angles, nor characteristics of the scene.

  7. Planar quadrature RF transceiver design using common-mode differential-mode (CMDM) transmission line method for 7T MR imaging.

    PubMed

    Li, Ye; Yu, Baiying; Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang

    2013-01-01

    The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.

  8. Planar Quadrature RF Transceiver Design Using Common-Mode Differential-Mode (CMDM) Transmission Line Method for 7T MR Imaging

    PubMed Central

    Li, Ye; Yu, Baiying; Pang, Yong; Vigneron, Daniel B.; Zhang, Xiaoliang

    2013-01-01

    The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays. PMID:24265823

  9. Multi-channel scanning SQUID microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Su-Young

    I designed, fabricated, assembled, and tested an 8-channel high- Tc scanning SQUID system. I started by modifying an existing single-channel 77 K high-Tc scanning SQUID microscope into a multi-channel system with the goal of reducing the scanning time and improving the spatial resolution by increasing the signal-to-noise ratio S/N. I modified the window assembly, SQUID chip assembly, cold-finger, and vacuum connector. The main concerns for the multi-channel system design were to reduce interaction between channels, to optimize the use of the inside space of the dewar for more than 50 shielded wires, and to achieve good spatial resolution. In the completed system, I obtained the transfer function and the dynamic range (phimax ˜ 11phi0) for each SQUID. At 1kHz, the slew rate is about 3000 phi0/s. I also found that the white noise level varies from 5 muphi0/Hz1/2 to 20 muphi 0/Hz1/2 depending on the SQUID. A new data acquisition program was written that triggered on position and collects data from up to eight SQUIDS. To generate a single image from the multichannel system, I calibrated the tilt of the xy-stage and z-stage manually, rearranged the scanned data by cutting overlapping parts, and determined the applied field by multiplying by the mutual inductance matrix. I found that I could reduce scanning time and improve the image quality by doing so. In addition, I have analyzed and observed the effect of position noise on magnetic field images and used these results to find the position noise in my scanning SQUID microscope. My analysis reveals the relationship between spatial resolution and position noise and that my system was dominated by position noise under typical operating conditions. I found that the smaller the sensor-sample separation, the greater the effect of position noise is on the total effective magnetic field noise and on spatial resolution. By averaging several scans, I found that I could reduce position noise and that the spatial resolution can

  10. Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T.

    PubMed

    Tourdias, Thomas; Saranathan, Manojkumar; Levesque, Ives R; Su, Jason; Rutt, Brian K

    2014-01-01

    Novel MR image acquisition strategies have been investigated to elicit contrast within the thalamus, but direct visualization of individual thalamic nuclei remains a challenge because of their small size and the low intrinsic contrast between adjacent nuclei. We present a step-by-step specific optimization of the 3D MPRAGE pulse sequence at 7T to visualize the intra-thalamic nuclei. We first measured T1 values within different sub-regions of the thalamus at 7T in 5 individuals. We used these to perform simulations and sequential experimental measurements (n=17) to tune the parameters of the MPRAGE sequence. The optimal set of parameters was used to collect high-quality data in 6 additional volunteers. Delineation of thalamic nuclei was performed twice by one rater and MR-defined nuclei were compared to the classic Morel histological atlas. T1 values within the thalamus ranged from 1400ms to 1800ms for adjacent nuclei. Using these values for theoretical evaluations combined with in vivo measurements, we showed that a short inversion time (TI) close to the white matter null regime (TI=670ms) enhanced the contrast between the thalamus and the surrounding tissues, and best revealed intra-thalamic contrast. At this particular nulling regime, lengthening the time between successive inversion pulses (TS=6000ms) increased the thalamic signal and contrast and lengthening the α pulse train time (N*TR) further increased the thalamic signal. Finally, a low flip angle during the gradient echo acquisition (α=4°) was observed to mitigate the blur induced by the evolution of the magnetization along the α pulse train. This optimized set of parameters enabled the 3D delineation of 15 substructures in all 6 individuals; these substructures corresponded well with the known anatomical structures of the thalamus based on the classic Morel atlas. The mean Euclidean distance between the centers of mass of MR- and Morel atlas-defined nuclei was 2.67mm (±1.02mm). The reproducibility of

  11. Proteomic analysis of organic sulfur compound utilisation in Advenella mimigardefordensis strain DPN7T

    PubMed Central

    Meinert, Christina; Brandt, Ulrike; Heine, Viktoria; Beyert, Jessica; Schmidl, Sina; Wübbeler, Jan Hendrik; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2017-01-01

    2-Mercaptosuccinate (MS) and 3,3´-ditiodipropionate (DTDP) were discussed as precursor substance for production of polythioesters (PTE). Therefore, degradation of MS and DTDP was investigated in Advenella mimigardefordensis strain DPN7T, applying differential proteomic analysis, gene deletion and enzyme assays. Protein extracts of cells cultivated with MS, DTDP or 3-sulfinopropionic acid (SP) were compared with those cultivated with propionate (P) and/or succinate (S). The chaperone DnaK (ratio DTDP/P 9.2, 3SP/P 4.0, MS/S 6.1, DTDP/S 6.2) and a Do-like serine protease (DegP) were increased during utilization of all organic sulfur compounds. Furthermore, a putative bacterioferritin (locus tag MIM_c12960) showed high abundance (ratio DTDP/P 5.3, 3SP/P 3.2, MS/S 4.8, DTDP/S 3.9) and is probably involved in a thiol-specific stress response. The deletion of two genes encoding transcriptional regulators (LysR (MIM_c31370) and Xre (MIM_c31360)) in the close proximity of the relevant genes of DTDP catabolism (acdA, mdo and the genes encoding the enzymes of the methylcitric acid cycle; prpC,acnD, prpF and prpB) showed that these two regulators are essential for growth of A. mimigardefordensis strain DPN7T with DTDP and that they most probably regulate transcription of genes mandatory for this catabolic pathway. Furthermore, proteome analysis revealed a high abundance (ratio MS/S 10.9) of a hypothetical cupin-2-domain containing protein (MIM_c37420). This protein shows an amino acid sequence similarity of 60% to a newly identified MS dioxygenase from Variovorax paradoxus strain B4. Deletion of the gene and the adjacently located transcriptional regulator LysR, as well as heterologous expression of MIM_c37420, the putative mercaptosuccinate dioxygenase (Msdo) from A. mimigardefordensis, showed that this protein is the key enzyme of MS degradation in A. mimigardefordensis strain DPN7T (KM 0.2 mM, specific activity 17.1 μmol mg-1 min-1) and is controlled by LysR (MIM_c37410

  12. Magnetic resonance imaging of the inner ear by using a hybrid radiofrequency coil at 7 T

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Nam; Heo, Phil; Kim, Young-Bo; Han, Gyu-Cheol

    2015-01-01

    Visualization of the membranous structures of the inner ear has been limited to the detection of the normal fluid signal intensity within the bony labyrinth by using magnetic resonance imaging (MRI) equipped with a 1.5 Tesla (T) magnet. High-field (HF) MRI has been available for more than a decade, and numerous studies have documented its significant advantages over conventional MRI with regards to its use in basic scientific research and routine clinical assessments. No previous studies of the inner ear by using HF MRI have been reported, in part because high-quality resolution of mastoid pneumatization is challenging due to artifacts generated in the HF environment and insufficient performance of radiofrequency (RF) coils. Therefore, a hybrid RF coil with integrated circuitry was developed at 7 T and was targeted for anatomical imaging to achieve a high resolution image of the structure of the human inner ear, excluding the bony portion. The inner-ear's structure is composed of soft tissues containing hydrogen ions and includes the membranous labyrinth, endolymphatic space, perilymphatic space, and cochlear-vestibular nerves. Visualization of the inner-ear's anatomy was performed in-vivo with a custom-designed hybrid RF coil and a specific imaging protocol based on an interpolated breath-held examination sequence. The comparative signal intensity value at 30-mm away from the phantom side was 88% higher for the hybrid RF coil and 24% higher for the 8-channel transmit/receive (Tx/Rx) coil than for the commercial birdcage coil. The optimized MRI protocol employed a hybrid RF coil because it enabled high-resolution imaging of the inner-ear's anatomy and accurate mapping of structures including the cochlea and the semicircular canals. These results indicate that 7 T MRI achieves high spatial resolution visualization of the inner-ear's anatomy. Therefore, MRI imaging using a hybrid RF coil at 7 T could provide a powerful tool for clinical investigations of petrous

  13. Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T

    PubMed Central

    Tourdias, Thomas; Saranathan, Manojkumar; Levesque, Ives R.; Su, Jason; Rutt, Brian K.

    2013-01-01

    Novel MR image acquisition strategies have been investigated to elicit contrast within the thalamus, but direct visualization of individual thalamic nuclei remains a challenge because of their small size and the low intrinsic contrast between adjacent nuclei. We present a step-by-step specific optimization of the 3D MPRAGE pulse sequence at 7T to visualize the intra-thalamic nuclei. We first measured T1 values within different sub-regions of the thalamus at 7T in 5 individuals. We used these to perform simulations and sequential experimental measurements (n=17) to tune the parameters of the MPRAGE sequence. The optimal set of parameters was used to collect high-quality data in 6 additional volunteers. Delineation of thalamic nuclei was performed twice by one rater and MR-defined nuclei were compared to the classic Morel histological atlas. T1 values within the thalamus ranged from 1400ms to 1800ms for adjacent nuclei. Using these values for theoretical evaluations combined with in vivo measurements, we showed that a short inversion time (TI) close to the white matter null regime (TI=670ms) enhanced the contrast between the thalamus and the surrounding tissues, and best revealed intra-thalamic contrast. At this particular nulling regime, lengthening the time between successive inversion pulses (TS=6000ms) increased the thalamic signal and contrast and lengthening the α pulse train time (N*TR) further increased the thalamic signal. Finally, a low flip angle during the gradient echo acquisition (α=4°) was observed to mitigate the blur induced by the evolution of the magnetization along the α pulse train. This optimized set of parameters enabled the 3D delineation of 15 substructures in all 6 individuals; these substructures corresponded well with the known anatomical structures of the thalamus based on the classical Morel atlas. The mean Euclidean distance between the centers of mass of MR- and Morel atlas-defined nuclei was 2.67mm (±1.02mm). The reproducibility

  14. Fault analysis of multichannel spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center proposes to implement computer-controlled fault injection into an electrical power system breadboard to study the reactions of the various control elements of this breadboard. Elements under study include the remote power controllers, the algorithms in the control computers, and the artificially intelligent control programs resident in this breadboard. To this end, a study of electrical power system faults is being performed to yield a list of the most common power system faults. The results of this study will be applied to a multichannel high-voltage DC spacecraft power system called the large autonomous spacecraft electrical power system (LASEPS) breadboard. The results of the power system fault study and the planned implementation of these faults into the LASEPS breadboard are described.

  15. Photonic generation for multichannel THz wireless communication.

    PubMed

    Shams, Haymen; Fice, Martyn J; Balakier, Katarzyna; Renaud, Cyril C; van Dijk, Frédéric; Seeds, Alwyn J

    2014-09-22

    We experimentally demonstrate photonic generation of a multichannel THz wireless signal at carrier frequency 200 GHz, with data rate up to 75 Gbps in QPSK modulation format, using an optical heterodyne technique and digital coherent detection. BER measurements were carried out for three subcarriers each modulated with 5 Gbaud QPSK or for two subcarriers modulated with 10 Gbaud QPSK, giving a total speed of 30 Gbps or 40 Gbps, respectively. The system evaluation was also performed with three subcarriers modulated with 12.5 Gbaud QPSK (75 Gbps total) without and with 40 km fibre transmission. The proposed system enhances the capacity of high-speed THz wireless transmission by using spectrally efficient modulated subcarriers spaced at the baud rate. This approach increases the overall transmission capacity and reduces the bandwidth requirement for electronic devices.

  16. Wireless multichannel electroencephalography in the newborn

    PubMed Central

    Ibrahim, Z.H.; Chari, G.; Abdel Baki, S.; Bronshtein, V.; Kim, M.R.; Weedon, J.; Cracco, J.; Aranda, J.V.

    2016-01-01

    OBJECTIVES: First, to determine the feasibility of an ultra-compact wireless device (microEEG) to obtain multichannel electroencephalographic (EEG) recording in the Neonatal Intensive Care Unit (NICU). Second, to identify problem areas in order to improve wireless EEG performance. STUDY DESIGN: 28 subjects (gestational age 24–30 weeks, postnatal age <30 days) were recruited at 2 sites as part of an ongoing study of neonatal apnea and wireless EEG. Infants underwent 8-9 hour EEG recordings every 2–4 weeks using an electrode cap (ANT-Neuro) connected to the wireless EEG device (Bio-Signal Group). A 23 electrode configuration was used incorporating the International 10–20 System. The device transmitted recordings wirelessly to a laptop computer for bedside assessment. The recordings were assessed by a pediatric neurophysiologist for interpretability. RESULTS: A total of 84 EEGs were recorded from 28 neonates. 61 EEG studies were obtained in infants prior to 35 weeks corrected gestational age (CGA). NICU staff placed all electrode caps and initiated all recordings. Of these recordings 6 (10%) were uninterpretable due to artifacts and one study could not be accessed. The remaining 54 (89%) EEG recordings were acceptable for clinical review and interpretation by a pediatric neurophysiologist. Of the recordings obtained at 35 weeks corrected gestational age or later only 11 out of 23 (48%) were interpretable. CONCLUSIONS: Wireless EEG devices can provide practical, continuous, multichannel EEG monitoring in preterm neonates. Their small size and ease of use could overcome obstacles associated with EEG recording and interpretation in the NICU. PMID:28009337

  17. A 7 T Pulsed Magnetic Field Generator for Magnetized Laser Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Hu, Guangyue; Liang, Yihan; Song, Falun; Yuan, Peng; Wang, Yulin; Zhao, Bin; Zheng, Jian

    2015-02-01

    A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (~230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.

  18. A Switched-Mode Breast Coil for 7 T MRI Using Forced-Current Excitation

    PubMed Central

    Bosshard, John C.; Rispoli, Joseph V.; Dimitrov, Ivan E.; Cheshkov, Sergey; McDougall, Mary Preston; Malloy, Craig; Wright, Steven M.

    2015-01-01

    In high-field magnetic resonance imaging, the radio frequency wavelength within the human body is comparable to anatomical dimensions, resulting in B1 inhomogeneity and nonuniform sensitivity patterns. Thus, this relatively short wavelength presents engineering challenges for RF coil design. In this study, a bilateral breast coil for 1H imaging at 7 T was designed and constructed using forced-current excitation. By forcing equal current through the coil elements, we reduce the effects of coupling between the elements to simplify tuning and to ensure a uniform field across both breasts. To combine the benefits of the higher power efficiency of a unilateral coil with the bilateral coverage of a bilateral coil, a switching circuit was implemented to allow the coil to be reconfigured for imaging the left, right, or both breasts. PMID:25706501

  19. A radiofrequency coil configuration for imaging the human vertebral column at 7 T

    NASA Astrophysics Data System (ADS)

    Vossen, M.; Teeuwisse, W.; Reijnierse, M.; Collins, C. M.; Smith, N. B.; Webb, A. G.

    2011-02-01

    We describe the design and testing of a quadrature transmit, eight-channel receive array RF coil configuration for the acquisition of images of the entire human spinal column at 7 T. Imaging parameters were selected to enable data acquisition in a clinically relevant scan time. Large field-of-view (FOV) scanning enabled sagittal imaging of the spine in two or three-stations, depending upon the height of the volunteer, with a total scan time of between 10 and 15 min. A total of 10 volunteers have been scanned, with results presented for the three subjects spanning the range of heights and weights, namely one female (1.6 m, 50 kg), one average male (1.8 m, 70 kg), and one large male (1.9 m, 100 kg).

  20. Integrated SSFP for functional brain mapping at 7 T with reduced susceptibility artifact

    NASA Astrophysics Data System (ADS)

    Sun, Kaibao; Xue, Rong; Zhang, Peng; Zuo, Zhentao; Chen, Zhongwei; Wang, Bo; Martin, Thomas; Wang, Yi; Chen, Lin; He, Sheng; Wang, Danny J. J.

    2017-03-01

    Balanced steady-state free precession (bSSFP) offers an alternative and potentially important tool to the standard gradient-echo echo-planar imaging (GE-EPI) for functional MRI (fMRI). Both passband and transition band based bSSFP have been proposed for fMRI. The applications of these methods, however, are limited by banding artifacts due to the sensitivity of bSSFP signal to off-resonance effects. In this article, a unique case of the SSFP-FID sequence, termed integrated-SSFP or iSSFP, was proposed to overcome the obstacle by compressing the SSFP profile into the width of a single voxel. The magnitude of the iSSFP signal was kept constant irrespective of frequency shift. Visual stimulation studies were performed to demonstrate the feasibility of fMRI using iSSFP at 7 T with flip angles of 4° and 25°, compared to standard bSSFP and gradient echo (GRE) imaging. The signal changes for the complex iSSFP signal in activated voxels were 2.48 ± 0.53 (%) and 2.96 ± 0.87 (%) for flip angles (FA) of 4° and 25° respectively at the TR of 9.88 ms. Simultaneous multi-slice acquisition (SMS) with the CAIPIRIHNA technique was carried out with iSSFP scanning to detect the anterior temporal lobe activation using a semantic processing task fMRI, compared with standard 2D GE-EPI. This study demonstrates the feasibility of iSSFP for fMRI with reduced susceptibility artifacts, while maintaining robust functional contrast at 7 T.

  1. Structural layers of ex vivo rat hippocampus at 7T MRI.

    PubMed

    Kamsu, Jeanine Manuella; Constans, Jean-Marc; Lamberton, Franck; Courtheoux, Patrick; Denise, Pierre; Philoxene, Bruno; Coquemont, Maelle; Besnard, Stephane

    2013-01-01

    Magnetic resonance imaging (MRI) applied to the hippocampus is challenging in studies of the neurophysiology of memory and the physiopathology of numerous diseases such as epilepsy, Alzheimer's disease, ischemia, and depression. The hippocampus is a well-delineated cerebral structure with a multi-layered organization. Imaging of hippocampus layers is limited to a few studies and requires high magnetic field and gradient strength. We performed one conventional MRI sequence on a 7T MRI in order to visualize and to delineate the multi-layered hippocampal structure ex vivo in rat brains. We optimized a volumic three-dimensional T2 Rapid Acquisition Relaxation Enhancement (RARE) sequence and quantified the volume of the hippocampus and one of its thinnest layers, the stratum granulare of the dentate gyrus. Additionally, we tested passive staining by gadolinium with the aim of decreasing the acquisition time and increasing image contrast. Using appropriated settings, six discrete layers were differentiated within the hippocampus in rats. In the hippocampus proper or Ammon's Horn (AH): the stratum oriens, the stratum pyramidale of, the stratum radiatum, and the stratum lacunosum moleculare of the CA1 were differentiated. In the dentate gyrus: the stratum moleculare and the stratum granulare layer were seen distinctly. Passive staining of one brain with gadolinium decreased the acquisition time by four and improved the differentiation between the layers. A conventional sequence optimized on a 7T MRI with a standard receiver surface coil will allow us to study structural layers (signal and volume) of hippocampus in various rat models of neuropathology (anxiety, epilepsia, neurodegeneration).

  2. Mapping of the internal structure of human habenula with ex vivo MRI at 7T

    PubMed Central

    Strotmann, Barbara; Kögler, Carsten; Bazin, Pierre-Louis; Weiss, Marcel; Villringer, Arno; Turner, Robert

    2013-01-01

    The habenula is a small but important nucleus located next to the third ventricle in front of the pineal body. It helps to control the human reward system and is considered to play a key role in emotion, showing increased activation in major depressive disorders. Its dysfunction may underlie several neurological and psychiatric disorders. It is now possible to visualize the habenula and its anatomical subdivisions—medial habenula (MHB) and lateral habenula (LHB)—using MR techniques. The aim of this study was to further differentiate substructures within human lateral habenula (LHB) using ex vivo ultra-high field MR structural imaging, distinguishing between a medial part (m-LHB) and a lateral part (l-LHB). High resolution T1w images with 0.3-mm isotropic resolution and T2*w images with 60-micrometer isotropic resolution were acquired on a 7T MR scanner and quantitative maps of T1 and T2* were calculated. Cluster analysis of image intensity was performed using the Fuzzy and Noise Tolerant Adaptive Segmentation Method (FANTASM) tool. Ultra-high resolution structural MRI of ex vivo brain tissue at 7T provided sufficient SNR and contrast to discriminate the medial and lateral habenular nuclei. Heterogeneity was observed in the lateral habenula (LHB) nuclei, with clear distinctions between lateral and medial parts (m-LHB, l-LHB) and with the neighboring medial habenula (MHB). Clustering analysis based on the T1 and T2* maps strongly showed 4–6 clusters as subcomponents of lateral and medial habenula. PMID:24391571

  3. Integrated SSFP for functional brain mapping at 7T with reduced susceptibility artifact.

    PubMed

    Sun, Kaibao; Xue, Rong; Zhang, Peng; Zuo, Zhentao; Chen, Zhongwei; Wang, Bo; Martin, Thomas; Wang, Yi; Chen, Lin; He, Sheng; Wang, Danny J J

    2017-03-01

    Balanced steady-state free precession (bSSFP) offers an alternative and potentially important tool to the standard gradient-echo echo-planar imaging (GE-EPI) for functional MRI (fMRI). Both passband and transition band based bSSFP have been proposed for fMRI. The applications of these methods, however, are limited by banding artifacts due to the sensitivity of bSSFP signal to off-resonance effects. In this article, a unique case of the SSFP-FID sequence, termed integrated-SSFP or iSSFP, was proposed to overcome the obstacle by compressing the SSFP profile into the width of a single voxel. The magnitude of the iSSFP signal was kept constant irrespective of frequency shift. Visual stimulation studies were performed to demonstrate the feasibility of fMRI using iSSFP at 7T with flip angles of 4° and 25°, compared to standard bSSFP and gradient echo (GRE) imaging. The signal changes for the complex iSSFP signal in activated voxels were 2.48±0.53 (%) and 2.96±0.87 (%) for flip angles (FA) of 4° and 25° respectively at the TR of 9.88ms. Simultaneous multi-slice acquisition (SMS) with the CAIPIRIHNA technique was carried out with iSSFP scanning to detect the anterior temporal lobe activation using a semantic processing task fMRI, compared with standard 2D GE-EPI. This study demonstrates the feasibility of iSSFP for fMRI with reduced susceptibility artifacts, while maintaining robust functional contrast at 7T.

  4. Progress on a Multichannel, Dual-Mixer Stability Analyzer

    NASA Technical Reports Server (NTRS)

    Kirk, Albert; Cole, Steven; Stevens, Gary; Tucker, Blake; Greenhall, Charles

    2005-01-01

    Several documents describe aspects of the continuing development of a multichannel, dual-mixer system for simultaneous characterization of the instabilities of multiple precise, low-noise oscillators. One of the oscillators would be deemed to be a reference oscillator, its frequency would be offset by an amount (100 Hz) much greater than the desired data rate, and each of the other oscillators would be compared with the frequency-offset signal by operation of a combination of hardware and software. A high-rate time-tag counter would collect zero-crossing times of the approximately equal 100-Hz beat notes. The system would effect a combination of interpolation and averaging to process the time tags into low-rate phase residuals at the desired grid times. Circuitry that has been developed since the cited prior article includes an eight-channel timer board to replace an obsolete commercial time-tag counter, plus a custom offset generator, cleanup loop, distribution amplifier, zero-crossing detector, and frequency divider.

  5. Packed multi-channels for parallel chromatographic separations in microchips.

    PubMed

    Nagy, Andrea; Gaspar, Attila

    2013-08-23

    Here we report on a simple method to fabricate microfluidic chip incorporating multi-channel systems packed by conventional chromatographic particles without the use of frits. The retaining effectivities of different bottlenecks created in the channels were studied. For the parallel multi-channel chromatographic separations several channel patterns were designed. The obtained multipackings were applied for parallel separations of dyes. The implementation of several chromatographic separation units in microscopic size makes possible faster and high throughput separations.

  6. Magnetic field sensitivity at 7-T using dual-helmholtz transmit-only coil and 12-channel receive-only bended coil.

    PubMed

    Kim, Kyoung-Nam; Ryu, Yeunchul; Seo, Jeung-Hoon; Kim, Young-Bo

    2016-11-01

    The purpose of this study was to combine a dual-Helmholtz (DH) transmit (Tx)-only coil and 12-channel receive (Rx)-only bended phased array (PA) coil to improve the magnetic flux (|B1 |) sensitivity in the superior-to-inferior (S-I) direction during human brain magnetic resonance imaging (MRI) at 7-T. The proposed coil combination was primarily implemented by electromagnetic (EM) simulation and compared with the 16-leg birdcage coil and 8-channel PA coil, which are generally used for the Tx- and Rx-only modes, respectively. The optimal coil combinations for the proposed structure were determined by |B1 | field calculations using the |BT(+) | and |BR(-) | fields, which are respectively the transmit and receive components of the |B1 | field. The coil performance was then evaluated by a bench test and 7-T MRI experiment. The results of the computational calculations indicated that the |BT(+) | field of the DH coil was distributed similarly to that of the 16-leg birdcage coil despite the fewer conducting legs of the former. However, the 12-channel Rx-only bended PA coil had clearly higher |BR(-) | profiles compared to the 8-channel PA coil. The results of the 7-T in vivo experiment showed that the proposed combination of the DH Tx-only coil and 12-channel Rx-only bended PA coil had better |B1 | field homogeneity in the sagittal slice as well as higher |B1 | field sensitivity during human brain MRI compared to an 8-channel Rx-only PA coil. SCANNING 38:515-524, © 2015 Wiley Periodicals, Inc.

  7. Fully adiabatic 31P 2D-CSI with reduced chemical shift displacement error at 7 T--GOIA-1D-ISIS/2D-CSI.

    PubMed

    Chmelík, M; Kukurová, I Just; Gruber, S; Krššák, M; Valkovič, L; Trattnig, S; Bogner, W

    2013-05-01

    A fully adiabatic phosphorus (31P) two-dimensional (2D) chemical shift spectroscopic imaging sequence with reduced chemical shift displacement error for 7 T, based on 1D-image-selected in vivo spectroscopy, combined with 2D-chemical shift spectroscopic imaging selection, was developed. Slice-selective excitation was achieved by a spatially selective broadband GOIA-W(16,4) inversion pulse with an interleaved subtraction scheme before nonselective adiabatic excitation, and followed by 2D phase encoding. The use of GOIA-W(16,4) pulses (bandwidth 4.3-21.6 kHz for 10-50 mm slices) reduced the chemical shift displacement error in the slice direction ∼1.5-7.7 fold, compared to conventional 2D-chemical shift spectroscopic imaging with Sinc3 selective pulses (2.8 kHz). This reduction was experimentally demonstrated with measurements of an MR spectroscopy localization phantom and with experimental evaluation of pulse profiles. In vivo experiments in clinically acceptable measurement times were demonstrated in the calf muscle (nominal voxel volume, 5.65 ml in 6 min 53 s), brain (10 ml, 6 min 32 s), and liver (8.33 ml, 8 min 14 s) of healthy volunteers at 7 T. High reproducibility was found in the calf muscle at 7 T. In combination with adiabatic excitation, this sequence is insensitive to the B1 inhomogeneities associated with surface coils. This sequence, which is termed GOIA-1D-ISIS/2D-CSI (goISICS), has the potential to be applied in both clinical research and in the clinical routine.

  8. A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging.

    PubMed

    Mainero, Caterina; Louapre, Céline; Govindarajan, Sindhuja T; Giannì, Costanza; Nielsen, A Scott; Cohen-Adad, Julien; Sloane, Jacob; Kinkel, Revere P

    2015-04-01

    We used a surface-based analysis of T2* relaxation rates at 7 T magnetic resonance imaging, which allows sampling quantitative T2* throughout the cortical width, to map in vivo the spatial distribution of intracortical pathology in multiple sclerosis. Ultra-high resolution quantitative T2* maps were obtained in 10 subjects with clinically isolated syndrome/early multiple sclerosis (≤ 3 years disease duration), 18 subjects with relapsing-remitting multiple sclerosis (≥ 4 years disease duration), 13 subjects with secondary progressive multiple sclerosis, and in 17 age-matched healthy controls. Quantitative T2* maps were registered to anatomical cortical surfaces for sampling T2* at 25%, 50% and 75% depth from the pial surface. Differences in laminar quantitative T2* between each patient group and controls were assessed using general linear model (P < 0.05 corrected for multiple comparisons). In all 41 multiple sclerosis cases, we tested for associations between laminar quantitative T2*, neurological disability, Multiple Sclerosis Severity Score, cortical thickness, and white matter lesions. In patients, we measured, T2* in intracortical lesions and in the intracortical portion of leukocortical lesions visually detected on 7 T scans. Cortical lesional T2* was compared with patients' normal-appearing cortical grey matter T2* (paired t-test) and with mean cortical T2* in controls (linear regression using age as nuisance factor). Subjects with multiple sclerosis exhibited relative to controls, independent from cortical thickness, significantly increased T2*, consistent with cortical myelin and iron loss. In early disease, T2* changes were focal and mainly confined at 25% depth, and in cortical sulci. In later disease stages T2* changes involved deeper cortical laminae, multiple cortical areas and gyri. In patients, T2* in intracortical and leukocortical lesions was increased compared with normal-appearing cortical grey matter (P < 10(-10) and P < 10(-7)), and mean

  9. Multichannel mode conversion and multiplexing based on a single spatial light modulator for optical communication

    NASA Astrophysics Data System (ADS)

    Nie, Song; Yu, Song; Cai, Shanyong; Lan, Mingying; Gu, Wanyi

    2016-07-01

    A method is proposed to achieve multichannel mode conversion and multiplexing by dividing a single spatial light modulator into several blocks with the mode conversion pattern and blazed grating loaded on each block. The conversion patterns realize the precise excitation of higher order modes using combined amplitude and phase modulation. The blazed gratings bring together incident beams, so these beams can be coupled into few-mode fiber (FMF). In the experiment, four higher order modes are precisely excited and converge with a tilt angle. Through the simulation method, these beams can be coupled into FMF with small tilt angles (0.0344 deg for LP11 mode).

  10. Multichannel microwave interferometer with an antenna switching system for electron density measurement in a laboratory plasma experiment

    SciTech Connect

    Kawamori, Eiichirou; Lin, Yu-Hsiang; Mase, Atsushi; Nishida, Yasushi; Cheng, C. Z.

    2014-02-15

    This study presents a simple and powerful technique for multichannel measurements of the density profile in laboratory plasmas by microwave interferometry. This technique uses electromechanical microwave switches to temporally switch the connection between multiple receiver antennas and one phase-detection circuit. Using this method, the phase information detected at different positions is rearranged into a time series that can be acquired from a minimum number of data acquisition channels (e.g., two channels in the case of quadrature detection). Our successfully developed multichannel microwave interferometer that uses the antenna switching method was applied to measure the radial electron density profiles in a magnetized plasma experiment. The advantage of the proposed method is its compactness and scalability to multidimensional measurement systems at low cost.

  11. SPIN-ECHO MRSI AT 7T WITH FREQUENCY MODULATED REFOCUSING PULSES

    PubMed Central

    Zhu, He; Soher, Brian J.; Ouwerkerk, Ronald; Schär, Michael; Barker, Peter B.

    2012-01-01

    Two approaches to high-resolution SENSE-encoded magnetic resonance spectroscopic imaging (MRSI) of the human brain at 7 Tesla (T) with whole-slice coverage are described. Both sequences use high-bandwidth radiofrequency pulses to reduce chemical shift displacement artifacts, SENSE-encoding to reduce scan time, and dual-band water and lipid suppression optimized for 7T. Simultaneous B0 and transmit B1 mapping was also used for both sequences to optimize field homogeneity using high order shimming and determine optimum radiofrequency (RF) transmit level, respectively. One sequence (‘Hahn-MRSI’) used reduced flip angle (90°) refocusing pulses for lower RF power deposition, while the other sequence used adiabatic fast passage (AFP) refocusing pulses for improved sensitivity and reduced signal dependence on the transmit-B1 level. In 4 normal subjects, AFP-MRSI showed a signal-to-noise ratio improvement of 3.2±0.5 compared to Hahn-MRSI at the same spatial resolution, TR, TE and SENSE-acceleration factor. An interleaved two-slice Hahn-MRSI sequence is also demonstrated to be experimentally feasible. PMID:22692894

  12. Spin-echo magnetic resonance spectroscopic imaging at 7 T with frequency-modulated refocusing pulses.

    PubMed

    Zhu, He; Soher, Brian J; Ouwerkerk, Ronald; Schär, Michael; Barker, Peter B

    2013-05-01

    Two approaches to high-resolution SENSE-encoded magnetic resonance spectroscopic imaging (MRSI) of the human brain at 7 Tesla (T) with whole-slice coverage are described. Both sequences use high-bandwidth radiofrequency pulses to reduce chemical shift displacement artifacts, SENSE-encoding to reduce scan time, and dual-band water and lipid suppression optimized for 7 T. Simultaneous B0 and transmit B1 mapping was also used for both sequences to optimize field homogeneity using high-order shimming and determine optimum radiofrequency transmit level, respectively. One sequence ("Hahn-MRSI") used reduced flip angle (90°) refocusing pulses for lower radiofrequency power deposition, while the other sequence used adiabatic fast passage refocusing pulses for improved sensitivity and reduced signal dependence on the transmit-B1 level. In four normal subjects, adiabatic fast passage-MRSI showed a signal-to-noise ratio improvement of 3.2±0.5 compared to Hahn-MRSI at the same spatial resolution, pulse repetition time, echo time, and SENSE-acceleration factor. An interleaved two-slice Hahn-MRSI sequence is also demonstrated to be experimentally feasible.

  13. Performance of a novel piezoelectric motor at 4.7 T: applications and initial tests.

    PubMed

    Turowski, Steven G; Seshadri, Mukund; Loecher, Michael; Podniesinski, Edward; Spernyak, Joseph A; Mazurchuk, Richard V

    2008-04-01

    The focus of this report was to test the performance of a novel piezoelectric motor under high magnetic field strength conditions and to investigate its potential applications in small animal magnetic resonance imaging (MRI). The device is made entirely of nonferrous materials and consists of four piezoelectric ceramic plates connected to a threaded metal tube through which a screw migrates. Ultrasonic vibrations of the threads inherent to the tube result in rotational and translational motion of the screw. Potential applications of the piezoelectric motor were investigated at 4.7 T. Firstly, phantom studies showed the motor was capable of accurately delivering low injection volumes ( approximately 0.01 ml). Dynamic contrast-enhanced MRI (DCE-MRI) studies performed in vivo using serially acquired T1-weighted, spin-echo imaging demonstrated the ability of the motor to reliably administer MR contrast-enhancing agent into live tumor-bearing mice without the introduction of image artifacts. In a second set of experiments, the motor allowed for controlled, dynamic repositioning of an anatomic slice of interest in a live animal to magnetic field isocenter, which resulted in reduced geometric distortion and image artifact due to improved radiofrequency and gradient field homogeneity. In conclusion, piezoelectric motors are MR compatible and offer great potential for improving MRI efficiency and throughput, particularly in a preclinical setting. Further investigation into applications such as automated capacitor tuning and impedance matching for MR transceiver coils is warranted.

  14. High-resolution 7T fMRI of Human Hippocampal Subfields during Associative Learning

    PubMed Central

    Suthana, Nanthia A.; Donix, Markus; Wozny, David R.; Bazih, Adam; Jones, Michael; Heidemann, Robin M.; Trampel, Robert; Ekstrom, Arne D.; Scharf, Maria; Knowlton, Barbara; Turner, Robert; Bookheimer, Susan Y.

    2015-01-01

    Examining the function of individual human hippocampal subfields remains challenging due to their small sizes and convoluted structures. Previous human functional magnetic resonance (fMRI) studies at 3 Tesla (T) have successfully detected differences in activation between hippocampal cornu ammonis (CA) field CA1, combined CA2, 3 and dentate gyrus (DG) region (CA23DG), and the subiculum during associative memory tasks. In this study we investigated hippocampal subfield activity in healthy participants using an associative memory paradigm during high-resolution functional magnetic resonance imaging (fMRI) scanning at 7T. We were able to localize fMRI activity to anterior CA2 and CA3 during learning, and to the posterior CA2 field, the CA1, and the posterior subiculum during retrieval of novel associations. These results provide insight into more specific human hippocampal subfield functions underlying learning and memory and a unique opportunity for future investigations of hippocampal subfield function in healthy individuals as well as those suffering from neurodegenerative diseases. PMID:25514656

  15. Refocused double-quantum editing for lactate detection at 7 T.

    PubMed

    Boer, Vincent O; Luijten, Peter R; Klomp, Dennis W J

    2013-01-01

    Lactate is an important marker for anaerobic glucose metabolism, and it is therefore of particular interest in, for example, cerebral ischemia, skeletal muscle disorders, and in the monitoring of oncology treatments. However, the in vivo detection of lactate with magnetic resonance spectroscopy is complicated by the overlap of the low-intensity lactate methyl resonance with lipid signal. Therefore, double-quantum filters have been employed to dephase the overlapping lipid signal, as they allow for a very high lipid suppression efficiency. For reliable lactate detection in lipid-rich environment, very large crushing gradients have to be employed to dephase the lipid signal under the noise level. Double-quantum filters are generally associated with signal loss of the metabolite of interest. For lactate, half of the signal is lost by selecting either the double- or the zero-quantum coherences. Moreover, owing to incomplete refocusing, traditional double-quantum filters with very large crusher gradients exhibit additional loss of the already low-lactate signal. In this study, a refocused double-quantum filter is described, which does not suffer from this source of additional signal loss. Therefore, it becomes possible to detect lactate at lower concentrations, or in lipid-rich environments. Lactate measurements are shown in the human calf muscle at 7 T.

  16. In vivo quantification of hippocampal subfields using 4.7 T fast spin echo imaging.

    PubMed

    Malykhin, N V; Lebel, R M; Coupland, N J; Wilman, A H; Carter, R

    2010-01-15

    Several neuropsychiatric disorders involving hippocampal structural changes have been studied extensively using volumetric magnetic resonance imaging (MRI). These studies have mostly measured total hippocampal volume while the present study aimed to delineate and measure hippocampal subfields within the whole hippocampus and subdivisions along its longitudinal axis. Images were acquired at 4.7 T in 11 healthy subjects (5 males and 6 females, aged 23-56 years), using a fast spin echo (FSE) sequence with 0.52 x 0.68 x 1.0 mm(3) native resolution, collecting 90 contiguous coronal slices. Subiculum, cornu ammonis (CA1-3), and dentate gyrus were traced manually within the hippocampal head, body, and tail. We reported volumes for the subfields and demonstrated differences in the distribution within the hippocampus and its parts. The biggest part of the dentate gyrus was located in the hippocampal body, following the hippocampal head and tail. In contrast, the hippocampal head had the largest part of CA1-3, following the hippocampal body and tail. The hippocampal tail had the smallest portion of the subiculum compared to hippocampal head and tail. Subfield volumes were consistent between hemispheres and showed distributions within the longitudinal subdivisions that were consistent with histological data. Direct measurements of subfield distribution along the longitudinal axis of the hippocampus may be more sensitive to detecting disease effects than total volume measures and the differential distribution of subfield volumes may aid in the interpretation of measurements obtained at lower field strength and spatial resolution.

  17. NAAG Detection in the Human Brain at 7T by TE Optimization and Improved Wiener Filtering

    PubMed Central

    An, Li; Li, Shizhe; Wood, Emily T; Reich, Daniel S; Shen, Jun

    2014-01-01

    Purpose We report enhanced signal detection for measuring N-acetyl-aspartyl-glutamate (NAAG) in the human brain at 7T by TE-optimized point-resolved spectroscopy (PRESS) and improved Wiener filtering. Methods Using a highly efficient in-house developed numerical simulation program, a PRESS sequence with (TE1, TE2) = (26, 72) ms was found to maximize the NAAG signals relative to the overlapping Glu signals. A new Wiener filtering water reference deconvolution method was developed to reduce broadening and distortions of metabolite peaks caused by B0 inhomogeneity and eddy currents. Results Monte Carlo simulation results demonstrated that the new Wiener filtering method offered higher spectral resolution, reduced spectral artifacts, and higher accuracy in NAAG quantification compared to the original Wiener filtering method. In vivo spectra and point spread functions of signal distortion confirmed that the new Wiener filtering method lead to improved spectral resolution and reduced spectral artifacts. Conclusions TE-optimized PRESS in combination with a new Wiener filtering method made it possible to fully utilize both the NAAG singlet signal at 2.05 ppm and the NAAG multiplet signal at 2.18 ppm in the quantification of NAAG. A more accurate characterization of lineshape distortion for Wiener filtering needs B0 field maps and segmented anatomical images to exclude contribution from cerebral spinal fluid. PMID:24243344

  18. A CMOS Neural Interface for a Multichannel Vestibular Prosthesis

    PubMed Central

    Hageman, Kristin N.; Kalayjian, Zaven K.; Tejada, Francisco; Chiang, Bryce; Rahman, Mehdi A.; Fridman, Gene Y.; Dai, Chenkai; Pouliquen, Philippe O.; Georgiou, Julio; Della Santina, Charles C.; Andreou, Andreas G.

    2015-01-01

    We present a high-voltage CMOS neural-interface chip for a multichannel vestibular prosthesis (MVP) that measures head motion and modulates vestibular nerve activity to restore vision- and posture-stabilizing reflexes. This application specific integrated circuit neural interface (ASIC-NI) chip was designed to work with a commercially available microcontroller, which controls the ASIC-NI via a fast parallel interface to deliver biphasic stimulation pulses with 9-bit programmable current amplitude via 16 stimulation channels. The chip was fabricated in the ONSemi C5 0.5 micron, high-voltage CMOS process and can accommodate compliance voltages up to 12 V, stimulating vestibular nerve branches using biphasic current pulses up to 1.45 ± 0.06 mA with durations as short as 10 µs/phase. The ASIC-NI includes a dedicated digital-to-analog converter for each channel, enabling it to perform complex multipolar stimulation. The ASIC-NI replaces discrete components that cover nearly half of the 2nd generation MVP (MVP2) printed circuit board, reducing the MVP system size by 48% and power consumption by 17%. Physiological tests of the ASIC-based MVP system (MVP2A) in a rhesus monkey produced reflexive eye movement responses to prosthetic stimulation similar to those observed when using the MVP2. Sinusoidal modulation of stimulus pulse rate from 68–130 pulses per second at frequencies from 0.1 to 5 Hz elicited appropriately-directed slow phase eye velocities ranging in amplitude from 1.9–16.7°/s for the MVP2 and 2.0–14.2°/s for the MVP2A. The eye velocities evoked by MVP2 and MVP2A showed no significant difference (t-test, p = 0.034), suggesting that the MVP2A achieves performance at least as good as the larger MVP2. PMID:25974945

  19. Multi-Channel Capacitive Sensor Arrays.

    PubMed

    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo

    2016-01-25

    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved.

  20. Fault-tolerant multichannel demultiplexer subsystems

    NASA Technical Reports Server (NTRS)

    Redinbo, Robert

    1991-01-01

    Fault tolerance in future processing and switching communication satellites is addressed by showing new methods for detecting hardware failures in the first major subsystem, the multichannel demultiplexer. An efficient method for demultiplexing frequency slotted channels uses multirate filter banks which contain fast Fourier transform processing. All numerical processing is performed at a lower rate commensurate with the small bandwidth of each bandbase channel. The integrity of the demultiplexing operations is protected by using real number convolutional codes to compute comparable parity values which detect errors at the data sample level. High rate, systematic convolutional codes produce parity values at a much reduced rate, and protection is achieved by generating parity values in two ways and comparing them. Parity values corresponding to each output channel are generated in parallel by a subsystem, operating even slower and in parallel with the demultiplexer that is virtually identical to the original structure. These parity calculations may be time shared with the same processing resources because they are so similar.

  1. Novel revolving multichannel electromechanical optical switch

    NASA Astrophysics Data System (ADS)

    Ge, Wenping; Yin, Zongmin; Liu, Jingjing; Zhou, Zhengli

    2001-10-01

    In this paper, we described a kind of structures and the principle about a multi-channel optical switch. we designed a novel revolving single mode optical switch, which based on electronically controlled fiber collimators directing the light to desired output fibers, and the movement of fiber collimator is implemented by the rotation of stepping micro-electromotor. The main parts of the optical switch are two cylinders being carrier of fiber collimators, one of which can revolve driven by stepping micro-electromotor which is controlled by micro-computer. With flexibility of structure,it is easy to design the series of 1xN optical switches. Furthermore, by using two or more revolving axes, we can design reasonably the position of the optical collimators, and get no-blocking 2x2 or 4x4 optical switch matrix. We fabricated a 1×8 single1 mode optical switch, and the experiment results indicate that the technical performance of the optical switch can satisfy requires for changing light channel.

  2. Sparse reconstruction of correlated multichannel activity.

    PubMed

    Peelman, Sem; Van der Herten, Joachim; De Vos, Maarten; Lee, Wen-Shin; Van Huffel, Sabine; Cuyt, Annie

    2013-01-01

    Parametric methods for modeling sinusoidal signals with line spectra have been studied for decades. In general, these methods start by representing each sinusoidal component by means of two complex exponential functions, thereby doubling the number of unknown parameters. Recently, a Hankel-plus-Toeplitz matrix pencil method was proposed which directly models sinusoidal signals with discrete spectral content. Compared to its counterpart, which uses a Hankel matrix pencil, it halves the required number of time-domain samples and reduces the size of the involved linear systems. The aim of this paper is twofold. Firstly, to show that this Hankel-plus-Toeplitz matrix pencil also applies to continuous spectra. Secondly, to explore its use in the reconstruction of real-life signals. Promising preliminary results in the reconstruction of correlated multichannel electroencephalographic (EEG) activity are presented. A principal component analysis preprocessing step is carried out to exploit the redundancy in the channel domain. Then the reduced signal representation is successfully reconstructed from fewer samples using the Hankel-plus-Toeplitz matrix pencil. The obtained results encourage the future development of this matrix pencil method along the lines of well-established spectral analysis methods.

  3. Multichannel hierarchical image classification using multivariate copulas

    NASA Astrophysics Data System (ADS)

    Voisin, Aurélie; Krylov, Vladimir A.; Moser, Gabriele; Serpico, Sebastiano B.; Zerubia, Josiane

    2012-03-01

    This paper focuses on the classification of multichannel images. The proposed supervised Bayesian classification method applied to histological (medical) optical images and to remote sensing (optical and synthetic aperture radar) imagery consists of two steps. The first step introduces the joint statistical modeling of the coregistered input images. For each class and each input channel, the class-conditional marginal probability density functions are estimated by finite mixtures of well-chosen parametric families. For optical imagery, the normal distribution is a well-known model. For radar imagery, we have selected generalized gamma, log-normal, Nakagami and Weibull distributions. Next, the multivariate d-dimensional Clayton copula, where d can be interpreted as the number of input channels, is applied to estimate multivariate joint class-conditional statistics. As a second step, we plug the estimated joint probability density functions into a hierarchical Markovian model based on a quadtree structure. Multiscale features are extracted by discrete wavelet transforms, or by using input multiresolution data. To obtain the classification map, we integrate an exact estimator of the marginal posterior mode.

  4. Multi-Channel Capacitive Sensor Arrays

    PubMed Central

    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo

    2016-01-01

    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023

  5. Development of multichannel MEG system at IGCAR

    NASA Astrophysics Data System (ADS)

    Mariyappa, N.; Parasakthi, C.; Gireesan, K.; Sengottuvel, S.; Patel, Rajesh; Janawadkar, M. P.; Radhakrishnan, T. S.; Sundar, C. S.

    2013-02-01

    We describe some of the challenging aspects in the indigenous development of the whole head multichannel magnetoencephalography (MEG) system at IGCAR, Kalpakkam. These are: i) fabrication and testing of a helmet shaped sensor array holder of a polymeric material experimentally tested to be compatible with liquid helium temperatures, ii) the design and fabrication of the PCB adapter modules, keeping in mind the inter-track cross talk considerations between the electrical leads used to provide connections from SQUID at liquid helium temperature (4.2K) to the electronics at room temperature (300K) and iii) use of high resistance manganin wires for the 86 channels (86×8 leads) essential to reduce the total heat leak which, however, inevitably causes an attenuation of the SQUID output signal due to voltage drop in the leads. We have presently populated 22 of the 86 channels, which include 6 reference channels to reject the common mode noise. The whole head MEG system to cover all the lobes of the brain will be progressively assembled when other three PCB adapter modules, presently under fabrication, become available. The MEG system will be used for a variety of basic and clinical studies including localization of epileptic foci during pre-surgical mapping in collaboration with neurologists.

  6. AOSC multichannel electronic variable optical attenuator

    NASA Astrophysics Data System (ADS)

    Vonsovici, Adrian P.; Day, Ian E.; House, Andrew A.; Asghari, Mehdi

    2001-05-01

    Optical networks are becoming a reality as the physical layer of high-performance telecommunication networks. The deployment of wavelength-division multiplexing (WDM) technology allows the extended exploitation of installed fibers now facing an increasing traffic capacity demand. Performances of such systems can be degraded by wide variations of the optical channel power following propagation in the network. Therefore a tilt control of optical amplifiers in WDM networks and dynamic channel power regulation and equalisation in cross-connected nodes is necessary. An important tool for the system designer is the variable optical attenuator (VOA). We present the design and the realization of newly developed VOAs using the ASOC technology. This technology refers to the fabrication of integrated optics components in silicon-on-insulator (SOI) material. The device is based on the light absorption by the free-carriers that are injected in the core of a rib waveguide from a p-i-n diode. The devices incorporate horizontally and vertically tapered waveguides for minimum fiber coupling loss. The p-i-n diode for carrier injection into the active region of the rib waveguide was optimised in order to enhance the attenuation. One major advantage of the ASOC technology is the possibility of monolithic integration of many integrated optics devices on one chip. In the light of this the paper illustrates the result of characterisation of multichannel VOAs.

  7. Time estimation with multichannel digital silicon photomultipliers.

    PubMed

    Venialgo, Esteban; Mandai, Shingo; Gong, Tim; Schaart, Dennis R; Charbon, Edoardo

    2015-03-21

    Accuracy in timemark estimation is crucial for time-of-flight positron emission tomography, in order to ensure high quality images after reconstruction. Since the introduction of multichannel digital silicon photomultipliers, it is possible to acquire several photoelectron timestamps for each individual gamma event. We study several timemark estimators based on multiple photoelectron timestamps by means of a comprehensive statistical model. In addition, we calculate the MSE of the estimators in comparison to the Cramér-Rao lower bound as a function of the system design parameters. We investigate the effect of skipping some of the photoelectron timestamps, which is a direct consequence of the limited number of time-to-digital converters and we propose a technique to compensate for this effect. In addition, we carry out an extensive analysis to evaluate the influence of dark counts on the detector timing performance. Moreover, we investigate the improvement of the timing performance that can be obtained with dark count filtering and we propose an appropriate filtering method based on measuring the time difference between sorted timestamps. Finally, we perform a full Monte Carlo simulation to compare different timemark estimators by exploring several system design parameters. It is demonstrated that a simple weighted-average estimator can achieve a comparable performance as the more complex maximum likelihood estimator.

  8. High-quality permanent draft genome sequence of the extremely osmotolerant diphenol degrading bacterium Halotalea alkalilenta AW-7T, and emended description of the genus Halotalea

    DOE PAGES

    Ntougias, Spyridon; Lapidus, Alla; Copeland, Alex; ...

    2015-08-13

    Members of the genus Halotalea (family Halomonadaceae) are of high significance since they can tolerate the greatest glucose and maltose concentrations ever reported for known bacteria and are involved in the degradation of industrial effluents. Here, the characteristics and the permanent-draft genome sequence and annotation of Halotalea alkalilenta AW-7T are described. The microorganism was sequenced as a part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project at the DOE Joint Genome Institute, and it is the only strain within the genus Halotalea having its genome sequenced. The genome is 4,467,826 bp longmore » and consists of 40 scaffolds with 64.62 % average GC content. A total of 4,104 genes were predicted, comprising of 4,028 protein-coding and 76 RNA genes. Most protein-coding genes (87.79 %) were assigned to a putative function. Halotalea alkalilenta AW-7T encodes the catechol and protocatechuate degradation to β-ketoadipate via the β-ketoadipate and protocatechuate ortho-cleavage degradation pathway, and it possesses the genetic ability to detoxify fluoroacetate, cyanate and acrylonitrile. Lastly, an emended description of the genus Halotalea Ntougias et al. 2007 is also provided in order to describe the delayed fermentation ability of the type strain.« less

  9. High-quality permanent draft genome sequence of the extremely osmotolerant diphenol degrading bacterium Halotalea alkalilenta AW-7T, and emended description of the genus Halotalea

    SciTech Connect

    Ntougias, Spyridon; Lapidus, Alla; Copeland, Alex; Reddy, T. B. K.; Pati, Amrita; Ivanova, Natalia N.; Markowitz, Victor M.; Klenk, Hans-Peter; Woyke, Tanja; Fasseas, Constantinos; Kyrpides, Nikos C.; Zervakis, Georgios I.

    2015-08-13

    Members of the genus Halotalea (family Halomonadaceae) are of high significance since they can tolerate the greatest glucose and maltose concentrations ever reported for known bacteria and are involved in the degradation of industrial effluents. Here, the characteristics and the permanent-draft genome sequence and annotation of Halotalea alkalilenta AW-7T are described. The microorganism was sequenced as a part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project at the DOE Joint Genome Institute, and it is the only strain within the genus Halotalea having its genome sequenced. The genome is 4,467,826 bp long and consists of 40 scaffolds with 64.62 % average GC content. A total of 4,104 genes were predicted, comprising of 4,028 protein-coding and 76 RNA genes. Most protein-coding genes (87.79 %) were assigned to a putative function. Halotalea alkalilenta AW-7T encodes the catechol and protocatechuate degradation to β-ketoadipate via the β-ketoadipate and protocatechuate ortho-cleavage degradation pathway, and it possesses the genetic ability to detoxify fluoroacetate, cyanate and acrylonitrile. Lastly, an emended description of the genus Halotalea Ntougias et al. 2007 is also provided in order to describe the delayed fermentation ability of the type strain.

  10. Making the most of fMRI at 7 T by suppressing spontaneous signal fluctuations.

    PubMed

    Bianciardi, Marta; van Gelderen, Peter; Duyn, Jeff H; Fukunaga, Masaki; de Zwart, Jacco A

    2009-01-15

    The presence of spontaneous BOLD fMRI signal fluctuations in human grey matter compromises the detection and interpretation of evoked responses and limits the sensitivity gains that are potentially available through coil arrays and high field systems. In order to overcome these limitations, we adapted and improved a recently described correlated noise suppression method (de Zwart et al., 2008), demonstrating improved precision in estimating the response to ultra-short visual stimuli at 7 T. In this procedure, the temporal dynamics of spontaneous signal fluctuations are estimated from a reference brain region outside the area targeted with the stimulus. Rather than using the average signal in this region as regressor, as proposed in the original method, we used principal component analysis to derive multiple regressors in order to optimally describe nuisance signals (e.g. spontaneous fluctuations) and separate these from evoked activity in the target region. Experimental results obtained from application of the original method showed a 66% improvement in estimation precision. The novel, enhanced version of the method, using 18 PCA-derived noise regressors, led to a 160% increase in precision. These increases were relative to a control condition without noise suppression, which was simulated by randomizing the time-course of the nuisance-signal regressor(s) without altering their power spectrum. The increase of estimation precision was associated with decreased autocorrelation levels of the residual errors. These results suggest that modeling of spontaneous fMRI signal fluctuations as multiple independent sources can dramatically improve detection of evoked activity, and fully exploit the potential sensitivity gains available with high field technology.

  11. Intensity standardisation of 7T MR images for intensity-based segmentation of the human hypothalamus.

    PubMed

    Schindler, Stephanie; Schreiber, Jan; Bazin, Pierre-Louis; Trampel, Robert; Anwander, Alfred; Geyer, Stefan; Schönknecht, Peter

    2017-01-01

    The high spatial resolution of 7T MRI enables us to identify subtle volume changes in brain structures, providing potential biomarkers of mental disorders. Most volumetric approaches require that similar intensity values represent similar tissue types across different persons. By applying colour-coding to T1-weighted MP2RAGE images, we found that the high measurement accuracy achieved by high-resolution imaging may be compromised by inter-individual variations in the image intensity. To address this issue, we analysed the performance of five intensity standardisation techniques in high-resolution T1-weighted MP2RAGE images. Twenty images with extreme intensities in the GM and WM were standardised to a representative reference image. We performed a multi-level evaluation with a focus on the hypothalamic region-analysing the intensity histograms as well as the actual MR images, and requiring that the correlation between the whole-brain tissue volumes and subject age be preserved during standardisation. The results were compared with T1 maps. Linear standardisation using subcortical ROIs of GM and WM provided good results for all evaluation criteria: it improved the histogram alignment within the ROIs and the average image intensity within the ROIs and the whole-brain GM and WM areas. This method reduced the inter-individual intensity variation of the hypothalamic boundary by more than half, outperforming all other methods, and kept the original correlation between the GM volume and subject age intact. Mixed results were obtained for the other four methods, which sometimes came at the expense of unwarranted changes in the age-related pattern of the GM volume. The mapping of the T1 relaxation time with the MP2RAGE sequence is advertised as being especially robust to bias field inhomogeneity. We found little evidence that substantiated the T1 map's theoretical superiority over the T1-weighted images regarding the inter-individual image intensity homogeneity.

  12. Multimodal 7T Imaging of Thalamic Nuclei for Preclinical Deep Brain Stimulation Applications

    PubMed Central

    Xiao, YiZi; Zitella, Laura M.; Duchin, Yuval; Teplitzky, Benjamin A.; Kastl, Daniel; Adriany, Gregor; Yacoub, Essa; Harel, Noam; Johnson, Matthew D.

    2016-01-01

    Precise neurosurgical targeting of electrode arrays within the brain is essential to the successful treatment of a range of brain disorders with deep brain stimulation (DBS) therapy. Here, we describe a set of computational tools to generate in vivo, subject-specific atlases of individual thalamic nuclei thus improving the ability to visualize thalamic targets for preclinical DBS applications on a subject-specific basis. A sequential nonlinear atlas warping technique and a Bayesian estimation technique for probabilistic crossing fiber tractography were applied to high field (7T) susceptibility-weighted and diffusion-weighted imaging, respectively, in seven rhesus macaques. Image contrast, including contrast within thalamus from the susceptibility-weighted images, informed the atlas warping process and guided the seed point placement for fiber tractography. The susceptibility-weighted imaging resulted in relative hyperintensity of the intralaminar nuclei and relative hypointensity in the medial dorsal nucleus, pulvinar, and the medial/ventral border of the ventral posterior nuclei, providing context to demarcate borders of the ventral nuclei of thalamus, which are often targeted for DBS applications. Additionally, ascending fiber tractography of the medial lemniscus, superior cerebellar peduncle, and pallidofugal pathways into thalamus provided structural demarcation of the ventral nuclei of thalamus. The thalamic substructure boundaries were validated through in vivo electrophysiological recordings and post-mortem blockface tissue sectioning. Together, these imaging tools for visualizing and segmenting thalamus have the potential to improve the neurosurgical targeting of DBS implants and enhance the selection of stimulation settings through more accurate computational models of DBS. PMID:27375422

  13. Intensity standardisation of 7T MR images for intensity-based segmentation of the human hypothalamus

    PubMed Central

    Schreiber, Jan; Bazin, Pierre-Louis; Trampel, Robert; Anwander, Alfred; Geyer, Stefan; Schönknecht, Peter

    2017-01-01

    The high spatial resolution of 7T MRI enables us to identify subtle volume changes in brain structures, providing potential biomarkers of mental disorders. Most volumetric approaches require that similar intensity values represent similar tissue types across different persons. By applying colour-coding to T1-weighted MP2RAGE images, we found that the high measurement accuracy achieved by high-resolution imaging may be compromised by inter-individual variations in the image intensity. To address this issue, we analysed the performance of five intensity standardisation techniques in high-resolution T1-weighted MP2RAGE images. Twenty images with extreme intensities in the GM and WM were standardised to a representative reference image. We performed a multi-level evaluation with a focus on the hypothalamic region—analysing the intensity histograms as well as the actual MR images, and requiring that the correlation between the whole-brain tissue volumes and subject age be preserved during standardisation. The results were compared with T1 maps. Linear standardisation using subcortical ROIs of GM and WM provided good results for all evaluation criteria: it improved the histogram alignment within the ROIs and the average image intensity within the ROIs and the whole-brain GM and WM areas. This method reduced the inter-individual intensity variation of the hypothalamic boundary by more than half, outperforming all other methods, and kept the original correlation between the GM volume and subject age intact. Mixed results were obtained for the other four methods, which sometimes came at the expense of unwarranted changes in the age-related pattern of the GM volume. The mapping of the T1 relaxation time with the MP2RAGE sequence is advertised as being especially robust to bias field inhomogeneity. We found little evidence that substantiated the T1 map’s theoretical superiority over the T1-weighted images regarding the inter-individual image intensity homogeneity. PMID

  14. In vivo quantification of amygdala subnuclei using 4.7 T fast spin echo imaging.

    PubMed

    Aghamohammadi-Sereshki, Arash; Huang, Yushan; Olsen, Fraser; Malykhin, Nikolai V

    2017-03-10

    The amygdala (AG) is an almond-shaped heterogeneous structure located in the medial temporal lobe. The majority of previous structural Magnetic Resonance Imaging (MRI) volumetric methods for AG measurement have so far only been able to examine this region as a whole. In order to understand the role of the AG in different neuropsychiatric disorders, it is necessary to understand the functional role of its subnuclei. The main goal of the present study was to develop a reliable volumetric method to delineate major AG subnuclei groups using ultra-high resolution high field MRI. 38 healthy volunteers (15 males and 23 females, 21-60 years of age) without any history of medical or neuropsychiatric disorders were recruited for this study. Structural MRI datasets were acquired at 4.7T Varian Inova MRI system using a fast spin echo (FSE) sequence. The AG was manually segmented into its five major anatomical subdivisions: lateral (La), basal (B), accessory basal (AB) nuclei, and cortical (Co) and centromedial (CeM) groups. Inter-(intra-) rater reliability of our novel volumetric method was assessed using intra-class correlation coefficient (ICC) and Dice's Kappa. Our results suggest that reliable measurements of the AG subnuclei can be obtained by image analysts with experience in AG anatomy. We provided a step-by-step segmentation protocol and reported absolute and relative volumes for the AG subnuclei. Our results showed that the basolateral (BLA) complex occupies seventy-eight percent of the total AG volume, while CeM and Co groups occupy twenty-two percent of the total AG volume. Finally, we observed no hemispheric effects and no gender differences in the total AG volume and the volumes of its subnuclei. Future applications of this method will help to understand the selective vulnerability of the AG subnuclei in neurological and psychiatric disorders.

  15. Projecting multichannel acousto-optic cells with low crosstalk

    NASA Astrophysics Data System (ADS)

    Kludzin, Victor V.; Kulakov, Sergei V.; Molotok, Victor V.

    1997-09-01

    An acousto-optic method for spectral processing of rf signals is proposed. This method is based on a multichannel cell with frequency separated channels within a given band. The optimum structure of such a system is a multichannel cell with the slow shear mode in the (110) direction in TeO2 and far- axis anisotropic diffraction. A system with 12 channels covering the frequency band of 84 - 96 MHz with the bandwidth of each channel of approximately 0.5 MHz and frequency separation of approximately 1 MHz is experimentally studied. An optical beam which spreads in the plane orthogonal to that of the acousto-optic interaction must be used in this system. The influence of the transducer electrode shape on the acoustic crosstalk in the adjacent channels is studied. The experimental results are in good agreement with the calculated data. The expansion of acousto-optic processing requires that multichannel acousto-cells be used. Narrow-band acousto-optic interaction regimes can be used for frequency-domain filtering of rf signals in multichannel cells. This scheme can be used for the parallel analysis of an rf signal spectrum. This paper describes the process of the design and manufacturing of a multichannel acousto-optic filter for an rf signal with a narrow bandwidth of each channel and estimates its possible parameters. Each channel of the filter is tuned to its own frequency different from those of the adjacent channels within a given overall bandwidth of the whole device.

  16. 26 CFR 1.6049-7T - Market discount fraction reported with other financial information with respect to REMICs and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Market discount fraction reported with other... TAX (CONTINUED) INCOME TAXES Information Returns § 1.6049-7T Market discount fraction reported with... purposes of § 1.6049-7(f)(2)(i)(G)(1) relating to the market discount fraction to be reported with...

  17. Restoration of color images by multichannel Kalman filtering

    NASA Technical Reports Server (NTRS)

    Galatsanos, Nikolas P.; Chin, Roland T.

    1991-01-01

    A Kalman filter for optimal restoration of multichannel images is presented. This filter is derived using a multichannel semicausal image model that includes between-channel degradation. Both stationary and nonstationary image models are developed. This filter is implemented in the Fourier domain and computation is reduced from O(Lambda3N3M4) to O(Lambda3N3M2) for an M x M N-channel image with degradation length Lambda. Color (red, green, and blue (RGB)) images are used as examples of multichannel images, and restoration in the RGB and YIQ domains is investigated. Simulations are presented in which the effectiveness of this filter is tested for different types of degradation and different image model estimates.

  18. Compensation for z-directional non-uniformity of a monopole antenna at 7T MRI

    NASA Astrophysics Data System (ADS)

    Kim, Nambeom; Woo, Myung-Kyun; Kang, Chang-Ki

    2016-06-01

    The research was conducted to find ways to compensate for z-directional non-uniformity at a monopole antenna array (MA) coil by using a tilted optimized non-saturating excitation (TONE) pulse and to evaluate the feasibility of using the MA coil with the TONE pulse for anatomical and angiographic imaging. The sensitivity of a MA coil along the z-direction was measured by using an actual flip angle imaging pulse sequence with an oil phantom to evaluate the flip angle distributions of the MA coil for 7T magnetic resonance imaging (MRI). The effects on the z-directional uniformity were examined by using slow and fast TONE pulses, i.e., TONE SLOW and TONE FAST. T1- and T2* -weighted images of the human brain were also examined. The z-directional profiles of the TONE pulses were analyzed by using the average signal intensity throughout the brain. The effect of the TONE pulses on cerebral vessels was further examined by analyzing maximal intensity projections of T1-weighted images. With increasing the applied flip angles, the sensitivity slope slightly increased (0.044 per degree). For the MA coil, the TONE SLOWpulse yielded a compensated profile along the z-direction while the TONE HIGH pulse, which has a flat excitation profile along the z-direction, exhibited a tilted signal intensity toward the coil end, clearly indicating an intrinsic property of the MA coil. Similar to the phantom study, human brain images revealed z-directional symmetry around the peak value for the averaged signal intensity of the TONE SLOW pulse while the TONE HIGH pulse exhibited a tilted signal intensity toward the coil end. In vascular system imaging, the MA coil also clearly demonstrated a beneficial effect on the cerebral vessels, either with or without the TONE pulses. This study demonstrates that TONE pulses could compensate for the intrinsic z-directional non-uniformity of MA coils that exhibit strong uniformity in the x-y plane. Furthermore, tilted pulses, such as TONE pulses, were

  19. Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study.

    PubMed

    Petracca, Maria; Vancea, Roxana O; Fleysher, Lazar; Jonkman, Laura E; Oesingmann, Niels; Inglese, Matilde

    2016-03-01

    Intra-axonal accumulation of sodium ions is one of the key mechanisms of delayed neuro-axonal degeneration that contributes to disability accrual in multiple sclerosis. In vivo sodium magnetic resonance imaging studies have demonstrated an increase of brain total sodium concentration in patients with multiple sclerosis, especially in patients with greater disability. However, total sodium concentration is a weighted average of intra- and extra-cellular sodium concentration whose changes reflect different tissue pathophysiological processes. The in vivo, non-invasive measurement of intracellular sodium concentration is quite challenging and the few applications in patients with neurological diseases are limited to case reports and qualitative assessments. In the present study we provide first evidence of the feasibility of triple quantum filtered (23)Na magnetic resonance imaging at 7 T, and provide in vivo quantification of global and regional brain intra- and extra-cellular sodium concentration in 19 relapsing-remitting multiple sclerosis patients and 17 heathy controls. Global grey matter and white matter total sodium concentration (respectively P < 0.05 and P < 0.01), and intracellular sodium concentration (both P < 0.001) were higher while grey matter and white matter intracellular sodium volume fraction (indirect measure of extracellular sodium concentration) were lower (respectively P = 0.62 and P < 0.001) in patients compared with healthy controls. At a brain regional level, clusters of increased total sodium concentration and intracellular sodium concentration and decreased intracellular sodium volume fraction were found in several cortical, subcortical and white matter regions when patients were compared with healthy controls (P < 0.05 family-wise error corrected for total sodium concentration, P < 0.05 uncorrected for multiple comparisons for intracellular sodium concentration and intracellular sodium volume fraction). Measures of total sodium

  20. Sodium inversion recovery MRI of the knee joint in vivo at 7T

    NASA Astrophysics Data System (ADS)

    Madelin, Guillaume; Lee, Jae-Seung; Inati, Souheil; Jerschow, Alexej; Regatte, Ravinder R.

    2010-11-01

    The loss of proteoglycans (PG) in the articular cartilage is an early signature of osteoarthritis (OA). The ensuing changes in the fixed charge density in the cartilage can be directly linked to sodium concentration via charge balance. Sodium ions in the knee joint appear in two pools: in the synovial fluids or joint effusion where the ions are in free motion and bound within the cartilage tissue where the Na+ ions have a restricted motion. The ions in these two compartments have therefore different T1 and T2 relaxation times. The purpose of this study is to demonstrate the feasibility of a fluid-suppressed 3D ultrashort TE radial sodium sequence by implementing an inversion recovery (IR) preparation of the magnetization at 7T. This method could allow a more accurate and more sensitive quantification of loss of PG in patients with OA. It is shown that adiabatic pulses offer significantly improved performance in terms of robustness to B1 and B0 inhomogeneities when compared to the hard pulse sequence. Power deposition considerations further pose a limit to the RF inversion power, and we demonstrate in simulations and experiments how a practical compromise can be struck between clean suppression of fluid signals and power deposition levels. Two IR sequences with different types of inversion pulses (a rectangular pulse and an adiabatic pulse) were tested on a liquid phantom, ex vivo on a human knee cadaver and then in vivo on five healthy volunteers, with a (Nyquist) resolution of ∼3.6 mm and a signal-to-noise ratio of ∼30 in cartilage without IR and ∼20 with IR. Due to specific absorption rate limitations, the total acquisition time was ∼17 min for the 3D radial sequence without inversion or with the rectangular IR, and 24:30 min for the adiabatic IR sequence. It is shown that the adiabatic IR sequence generates a more uniform fluid suppression over the whole sample than the rectangular IR sequence.

  1. A comparison of distributional considerations with statistical analysis of resting state fMRI at 3T and 7T

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Holmes, Martha J.; Newton, Allen T.; Morgan, Victoria L.; Landman, Bennett A.

    2012-02-01

    Ultra-high field 7T magnetic resonance imaging (MRI) offers potentially unprecedented spatial resolution of functional activity within the human brain through increased signal and contrast to noise ratios over traditional 1.5T and 3T MRI scanners. However, the effects physiological and imaging artifacts are also greatly increased. Traditional statistical parametric mapping theories based on distributional properties representative of data acquired at lower fields may be inadequate for new 7T data. Herein, we investigate the model fitting residuals based on two 7T and one 3T protocols. We find that model residuals are substantively more non-Gaussian at 7T relative to 3T. Imaging slices that passed through regions with peak inhomogeneity problems (e.g., mid-brain acquisitions for the 7T hippocampus) exhibited visually higher degrees of distortion along with spatially correlated and extreme values of kurtosis (a measure of non- Gaussianity). The impacts of artifacts have been previously addressed for 3T data by estimating the covariance matrix of the regression errors. We further extend the robust estimation approach for autoregressive models and evaluate the qualitative impacts of this technique relative to traditional inference. Clear differences in statistical significance are shown between inferences based on classical versus robust assumptions, which suggest that inferences based on Gaussian assumptions are subject to practical (as well as theoretical) concerns regarding their power and validity. Hence, modern statistical approaches, such as the robust autoregressive model posed herein, are appropriate and suitable for inference with ultra-high field functional magnetic resonance imaging.

  2. Multimodal medical image fusion using improved multi-channel PCNN.

    PubMed

    Zhao, Yaqian; Zhao, Qinping; Hao, Aimin

    2014-01-01

    Multimodal medical image fusion is a method of integrating information from multiple image formats. Its aim is to provide useful and accurate information for doctors. Multi-channel pulse coupled neural network (m-PCNN) is a recently proposed fusion model. Compared with previous methods, this network can effectively manage various types of medical images. However, it has two drawbacks: lack of control to feed function and low-level automation. The improved multi-channel PCNN proposed in this paper can adjust the impact of feed function by linking strength and adaptively compute the weighting coefficients for each pixel. Experimental results demonstrated the effectiveness of the improved m-PCNN fusion model.

  3. Ultracold Long-Range Rydberg Molecules with Complex Multichannel Spectra

    NASA Astrophysics Data System (ADS)

    Eiles, Matthew T.; Greene, Chris H.

    2015-11-01

    A generalized class of ultralong-range Rydberg molecules is predicted which consist of a multichannel Rydberg atom whose outermost electron creates a chemical bond with a distant ground state atom. Such multichannel Rydberg molecules exhibit favorable properties for laser excitation, because states exist where the quantum defect varies strongly with the principal quantum number. The resulting occurrence of near degeneracies with states of high orbital angular momentum promotes the admixture of low l into the high l deeply bound "trilobite" molecule states, thereby circumventing the usual difficulty posed by electric dipole selection rules. Such states also can exhibit multiscale binding possibilities that could present novel options for quantum manipulation.

  4. Handling Deafness Problem of Scheduled Multi-Channel Polling MACs

    NASA Astrophysics Data System (ADS)

    Jiang, Fulong; Liu, Hao; Shi, Longxing

    Combining scheduled channel polling with channel diversity is a promising way for a MAC protocol to achieve high energy efficiency and performance under both light and heavy traffic conditions. However, the deafness problem may cancel out the benefit of channel diversity. In this paper, we first investigate the deafness problem of scheduled multi-channel polling MACs with experiments. Then we propose and evaluate two schemes to handle the deafness problem. Our experiment shows that deafness is a significant reason for performance degradation in scheduled multi-channel polling MACs. A proper scheme should be chosen depending on the traffic pattern and the design objective.

  5. Multichannel Analysis of Surface Waves and Dam Safety

    NASA Astrophysics Data System (ADS)

    Karastathis, V. K.

    2012-12-01

    Geophysical methodologies and particularly the Multichannel Analysis of Surface Waves (MASW) effectively proved their efficiency in the non-destructive testing of the dams, in the last decade, after many successful applications worldwide. The MASW method developed in the outset of this decade considerably improved the prospects and the validity of these geophysical applications. Since MASW and the other geophysical techniques do not require drilling they progressively increased their popularity significantly. The Multichannel Analysis of Surface Waves can be applied for the assessment of both earthen and concrete dams. Nevertheless, mostly cases of earthen dams can be found in the literature. The method can detect and map low shear wave velocity areas potentially associated with low cohesion zones due to differential settlement events in the core or increased seepage. The advantage of MASW is that it is not influenced by the water saturation of the interior of the dam contrary to other methods eg. p-wave tomography. Usually, a joint application of MASW with the p-wave techniques can be an optimal choice since the two methodologies can act complementary. An application of MASW on a three-dimensional structure, such as a dam, however, can actually be considered as a complicated problem since the effects of the lateral structural anomalies can strongly affect the results. For example, in an earthen dam the investigation of the core can be influenced by the presence of the shells. Therefore, the problem should be carefully examined by modeling all these the lateral anomalies with the aim to avoid a misinterpretation of the results. The effectiveness of MASW to the dam safety assessment is presented through two example applications, one at the Mornos Dam, an earthen dam responsible for the water supply of Athens, and a second one at the Marathon Dam which is a concrete dam also used for the water supply of Athens. In the case of Mornos Dam, MASW detected areas affected

  6. Multi-channel multi-carrier generation using multi-wavelength frequency shifting recirculating loop.

    PubMed

    Li, Xinying; Yu, Jianjun; Dong, Ze; Zhang, Junwen; Shao, Yufeng; Chi, Nan

    2012-09-24

    We propose and experimentally demonstrate a novel scheme to generate optical frequency-locked multi-channel multi-carriers (MCMC), using a recirculating frequency shifter (RFS) loop based on multi-wavelength frequency shifting single side band (MWFS-SSB) modulation. In this scheme, optical subcarriers with multiple wavelengths can be generated each round. Furthermore, the generated MCMC are frequency- and phase-locked within each channel, and therefore can be effectively used for WDM superchannel. Dual-wavelength frequency shifting SSB modulation is carried out with dual-wavelength optical seed source in our experimental demonstration. Using this scheme, we successfully generate dual-channel multi-carriers, and one channel has 28 subcarriers while the other has 29 ones with 25-GHz subcarrier spacing. We also experimentally demonstrate that this kind of source can be used to carry 50-Gb/s optical polarization-division-multiplexing quadrature phase shift keying (PDM-QPSK) signal.

  7. Multi-channel far-infrared HL-2A interferometer-polarimetera)

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Deng, Z. C.; Li, Y. G.; Yi, J.

    2012-10-01

    An HL-2A interferometer is upgraded to a multi-channel interferometer/polarimeter, which includes four chords for the interferometer and four chords for the polarimeter. The far-infrared lasers (at λ = 432.5 μm and 30 mW power) are used to probe plasmas horizontally in the midplane of HL-2A. A conventional heterodyne technique is used for the interferometer. Two counter-rotating circularly polarized waves are used to measure the Faraday rotation effect. A fast-phase comparator with temporal resolution of 1 μs and phase resolution 0.1° is developed. Further, the distortion of the polarization caused by the beam-splitters and the other optical components is also investigated.

  8. Multi-channel far-infrared HL-2A interferometer-polarimeter.

    PubMed

    Zhou, Y; Deng, Z C; Li, Y G; Yi, J

    2012-10-01

    An HL-2A interferometer is upgraded to a multi-channel interferometer∕polarimeter, which includes four chords for the interferometer and four chords for the polarimeter. The far-infrared lasers (at λ = 432.5 μm and 30 mW power) are used to probe plasmas horizontally in the midplane of HL-2A. A conventional heterodyne technique is used for the interferometer. Two counter-rotating circularly polarized waves are used to measure the Faraday rotation effect. A fast-phase comparator with temporal resolution of 1 μs and phase resolution 0.1° is developed. Further, the distortion of the polarization caused by the beam-splitters and the other optical components is also investigated.

  9. Nimbus-7 scanning multichannel microwave radiometer /SMMR/ in-orbit performance appraisal

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Cavalieri, D. J.; Gatlin, J. A.

    1981-01-01

    Calibration and processing techniques enacted during first year of operation of the Nimbus-7 scanning multichannel microwave radiometer (SMMR) are described. It was found that in-orbit calibration was necessary, as was fine-tuning of the geophysical parameter retrieval parameters to account for anomalies such as lower-than-expected polarization differences in ocean radiances. Phase shifts in the scan angles were corrected in order to avoid polarization mixing. Calibration constants to eliminate cross-talk and phase shift effects were established for radiation reflected from the earth, then averaged over data from 300 orbits to fit points on a sine curve to better than 0.2 K accuracy. An iterative approach was determined to be necessary due to signal anomalies caused by antenna dish oscillations. Global ocean and atmosphere parameters used to construct a radiation model of ten latitude bands are presented for use in radiation transfer equations.

  10. Development of data acquisition and analysis software for multichannel detectors

    SciTech Connect

    Chung, Y.

    1988-06-01

    This report describes the development of data acquisition and analysis software for Apple Macintosh computers, capable of controlling two multichannel detectors. With the help of outstanding graphics capabilities, easy-to-use user interface, and several other built-in convenience features, this application has enhanced the productivity and the efficiency of data analysis. 2 refs., 6 figs.

  11. Multichannel Polarization-Controllable Superpositions of Orbital Angular Momentum States.

    PubMed

    Yue, Fuyong; Wen, Dandan; Zhang, Chunmei; Gerardot, Brian D; Wang, Wei; Zhang, Shuang; Chen, Xianzhong

    2017-04-01

    A facile metasurface approach is shown to realize polarization-controllable multichannel superpositions of orbital angular momentum (OAM) states with various topological charges. By manipulating the polarization state of the incident light, four kinds of superpositions of OAM states are realized using a single metasurface consisting of space-variant arrays of gold nanoantennas.

  12. Quantification of N-Acetyl Aspartyl Glutamate in Human Brain using Proton Magnetic Resonance Spectroscopy at 7 T

    NASA Astrophysics Data System (ADS)

    Elywa, M.

    2015-07-01

    The separation of N-acetyl aspartyl glutamate (NAAG) from N-acetyl aspartate (NAA) and other metabolites, such as glutamate, by in vivo proton magnetic resonance spectroscopy at 7 T is described. This method is based on the stimulated echo acquisition mode (STEAM), with short and long echo time (TE) and allows quantitative measurements of NAAG in the parietal and pregenual anterior cingulate cortex (pgACC) of human brain. Two basesets for the LCModel have been established using nuclear magnetic resonance simulator software (NMR-SIM). Six healthy volunteers (age 25-35 years) have been examined at 7 T. It has been established that NAAG can be separated and quantified in the parietal location and does not get quantified in the pgACC location when using a short echo time, TE = 20 ms. On the other hand, by using a long echo time, TE = 74 ms, NAAG can be quantified in pgACC structures.

  13. Is there any difference in Amide and NOE CEST effects between white and gray matter at 7 T?

    NASA Astrophysics Data System (ADS)

    Khlebnikov, Vitaliy; Siero, Jeroen C. W.; Wijnen, Jannie; Visser, Fredy; Luijten, Peter R.; Klomp, Dennis W. J.; Hoogduin, Hans

    2016-11-01

    Measurement of Chemical Exchange Saturation Transfer (CEST) is providing tissue physiology dependent contrast, e.g. by looking at Amide and NOE (Nuclear Overhauser Enhancement) effects. CEST is unique in providing quantitative metabolite information at high imaging resolution. However, direct comparison of Amide and NOE effects between different tissues may result in wrong conclusions on the metabolite concentration due to the additional contributors to the observed CEST contrast, such as water content (WC) and water T1 relaxation (T1w). For instance, there are multiple contradictory reports in the literature on Amide and NOE effects in white matter (WM) and gray matter (GM) at 7 T. This study shows that at 7 T, tissue water T1 relaxation is a stronger contributor to CEST contrasts than WC. After water T1 correction, there was no difference in Amide effects between WM and GM, whereas WM/GM contrast was enhanced for NOE effects.

  14. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    NASA Astrophysics Data System (ADS)

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2010-05-01

    AimThis study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. MethodSix healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the 'progressive saturation' method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. ResultsT1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20-0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. ConclusionIn vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers.

  15. Mitigating transmit B 1 inhomogeneity in the liver at 7T using multi-spoke parallel transmit RF pulse design.

    PubMed

    Wu, Xiaoping; Schmitter, Sebastian; Auerbach, Edward J; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2014-02-01

    In this work, the use of multi-spoke slice-selective parallel transmit (pTX) RF pulse was explored to address B 1+ inhomogeneity in the largest transverse section of the liver at 7T. The impact of the number of spokes was specifically investigated, considering RF pulses consisting of 2, 3 and 4 spokes, as well as single-spoke RF pulses corresponding to static B 1 shimming. Healthy volunteers were imaged on a whole body MR scanner equipped with an eight-channel transmit system. A robust and fast transmit B 1 (B 1+) estimation method was employed to obtain the eight-channel B 1+ maps within a single breath hold. Gradient echo (GRE) images of the liver were acquired using the four different RF pulses and the results were compared. The use of static B 1 shimming (i.e., 1-spoke RF pulse) resulted in partial improvement but significant signal dropouts were still observed in the target region. By comparison, the use of multi-spoke pTX RF pulse design gave rise to much improved excitation homogeneity without signal dropouts. These results demonstrate the effectiveness of multi-spoke pTX RF pulse design in B 1+ homogenization for liver magnetic resonance imaging (MRI) at 7T. The current findings at 7T may have implications for body imaging applications in clinical settings at 3T where B 1+ inhomogeneities are also known for degrading image quality in the torso.

  16. Assessment of magnetic field interactions and radiofrequency-radiation-induced heating of metallic spinal implants in 7 T field.

    PubMed

    Tsukimura, Itsuko; Murakami, Hideki; Sasaki, Makoto; Endo, Hirooki; Yamabe, Daisuke; Oikawa, Ryosuke; Doita, Minoru

    2016-10-21

    The safety of metallic spinal implants in magnetic resonance imaging (MRI) performed using ultrahigh fields has not been established. Hence, we examined whether the displacement forces caused by a static magnetic field and the heating induced by radiofrequency radiation are substantial for spinal implants in a 7 T field. We investigated spinal rods of various lengths and materials, a screw, and a cross-linking bridge in accordance with the American Society for Testing and Materials guidelines. The displacement forces of the metallic implants in static 7 T and 3 T static magnetic fields were measured and compared. The temperature changes of the implants during 15-min-long fast spin-echo and balanced gradient-echo image acquisition sequences were measured in the 7 T field. The deflection angles of the metallic spinal materials in the 7 T field were 5.0-21.0° [median: 6.7°], significantly larger than those in the 3 T field (1.0-6.3° [2.2°]). Among the metallic rods, the cobalt-chrome rods had significantly larger deflection angles (17.8-21.0° [19.8°]) than the pure titanium and titanium alloy rods (5.0-7.7° [6.2°]). The temperature changes of the implants, including the cross-linked rods, were 0.7-1.0°C [0.8°C] and 0.6-1.0°C [0.7°C] during the fast spin-echo and balanced gradient-echo sequences, respectively; these changes were slightly larger than those of the controls (0.4-1.1°C [0.5°C] and 0.3-0.9°C [0.6°C], respectively). All of the metallic spinal implants exhibited small displacement forces and minimal heating, indicating that MRI examinations using 7 T fields may be performed safely on patients with these implants. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

  17. Multichannel seismic/oceanographic/biological monitoring of the oceans

    NASA Astrophysics Data System (ADS)

    Hello, Y.; Leymarie, E.; Ogé, A.; Poteau, A.; Argentino, J.; Sukhovich, A.; Claustre, H.; Nolet, G.

    2011-12-01

    Delays in seismic P wave are used to make scans or 3D images of the variations in seismic wave speed in the Earth's interior using the techniques of seismic tomography. Observations of such delays are ubiquitous on the continents but rare in oceanic regions. Free-drifting profiling floats that measure the temperature, salinity and current of the upper 2000 m of the ocean are used by physical oceanographers for continuous monitoring in the Argo program. Recently, seismologists developed the idea to use such floats in order to compensate for the lack of seismic delay observations, especially in the southern hemisphere. In project Globalseis, financed by a grant from the European Research Council (ERC), we have developed and tested a prototype of such a seismological sensor using an Apex float from Teledyne Webb Research, a Rafos hydrophone, and electronics developed in collaboration with Osean, a small engineering firm in France. `MERMAID', for `Mobile Earthquake Recorder in Marine Areas by Independent Divers' is approaching its final design and should become available off the shelf in 2012. In the meantime we initiated a collaboration between Globalseis and another ERC project, remOcean, for the acquisition of radiometric, bio-geochemical data and meteorological observations in addition to salinity and temperature (Bio-Argo program). In this collaboration of Geoazur and LOV (Laboratoire d'Océanologie de Villefranche sur mer), two laboratories located at the Observatory of Villefranche, we developed a multichannel acquisition hardware electronics called 'PAYLOAD' that allows commercial floats such as Apex (TWR) and Provor (NKE) to serve multiple observing missions simultaneously. Based on an algorithm using wavelet transforms PAYLOAD continuously analyzes acoustic signals to detect major seismic events and weather phenomena such rain, drizzle, open sea and ice during drift diving phase. The bio-geochemical and other parameters are recorded and analyzed during ascent

  18. Multichannel Linear Predictive Coding of Color Images,

    DTIC Science & Technology

    1984-01-01

    single- An alternative may of =oeling z(n,n) wmul output AniM , as described in 11,21, at me be to autoregressively model each channel average...being minimum shoulders Image with well definte tao.r&. The phase, where*6* dt-* d .~ ,s #% terminenst of a binary image of Fig. 2(d). howver. rinws

  19. 26 CFR 1.103(n)-7T - Election to allocate State ceiling to certain facilities for local furnishing of electricity...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Election to allocate State ceiling to certain facilities for local furnishing of electricity (temporary). 1.103(n)-7T Section 1.103(n)-7T Internal Revenue... certain facilities for local furnishing of electricity (temporary). (a) Election—(1) In general....

  20. 26 CFR 1.103(n)-7T - Election to allocate State ceiling to certain facilities for local furnishing of electricity...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Election to allocate State ceiling to certain facilities for local furnishing of electricity (temporary). 1.103(n)-7T Section 1.103(n)-7T Internal Revenue... certain facilities for local furnishing of electricity (temporary). (a) Election—(1) In general....

  1. 26 CFR 1.103(n)-7T - Election to allocate State ceiling to certain facilities for local furnishing of electricity...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Election to allocate State ceiling to certain facilities for local furnishing of electricity (temporary). 1.103(n)-7T Section 1.103(n)-7T Internal Revenue... certain facilities for local furnishing of electricity (temporary). (a) Election—(1) In general....

  2. 26 CFR 1.103(n)-7T - Election to allocate State ceiling to certain facilities for local furnishing of electricity...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Election to allocate State ceiling to certain facilities for local furnishing of electricity (temporary). 1.103(n)-7T Section 1.103(n)-7T Internal Revenue... certain facilities for local furnishing of electricity (temporary). (a) Election—(1) In general....

  3. 26 CFR 1.103(n)-7T - Election to allocate State ceiling to certain facilities for local furnishing of electricity...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Election to allocate State ceiling to certain facilities for local furnishing of electricity (temporary). 1.103(n)-7T Section 1.103(n)-7T Internal Revenue... certain facilities for local furnishing of electricity (temporary). (a) Election—(1) In general....

  4. The utility of multichannel local field potentials for brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Hwang, Eun Jung; Andersen, Richard A.

    2013-08-01

    Objective. Local field potentials (LFPs) that carry information about the subject's motor intention have the potential to serve as a complement or alternative to spike signals for brain-machine interfaces (BMIs). The goal of this study is to assess the utility of LFPs for BMIs by characterizing the largely unknown information coding properties of multichannel LFPs. Approach. Two monkeys were implanted, each with a 16-channel electrode array, in the parietal reach region where both LFPs and spikes are known to encode the subject's intended reach target. We examined how multichannel LFPs recorded during a reach task jointly carry reach target information, and compared the LFP performance to simultaneously recorded multichannel spikes. Main Results. LFPs yielded a higher number of channels that were informative about reach targets than spikes. Single channel LFPs provided more accurate target information than single channel spikes. However, LFPs showed significantly larger signal and noise correlations across channels than spikes. Reach target decoders performed worse when using multichannel LFPs than multichannel spikes. The underperformance of multichannel LFPs was mostly due to their larger noise correlation because noise de-correlated multichannel LFPs produced a decoding accuracy comparable to multichannel spikes. Despite the high noise correlation, decoders using LFPs in addition to spikes outperformed decoders using only spikes. Significance. These results demonstrate that multichannel LFPs could effectively complement spikes for BMI applications by yielding more informative channels. The utility of multichannel LFPs may be further augmented if their high noise correlation can be taken into account by decoders.

  5. The selection of field acquisition parameters for dispersion images from multichannel surface wave data

    USGS Publications Warehouse

    Zhang, S.X.; Chan, L.S.; Xia, J.

    2004-01-01

    The accuracy and resolution of surface wave dispersion results depend on the parameters used for acquiring data in the field. The optimized field parameters for acquiring multichannel analysis of surface wave (MASW) dispersion images can be determined if preliminary information on the phase velocity range and interface depth is available. In a case study on a fill slope in Hong Kong, the optimal acquisition parameters were first determined from a preliminary seismic survey prior to a MASW survey. Field tests using different sets of receiver distances and array lengths showed that the most consistent and useful dispersion images were obtained from the optimal acquisition parameters predicted. The inverted S-wave velocities from the dispersion curve obtained at the optimal offset distance range also agreed with those obtained by using direct refraction survey.

  6. Multichannel optical-fibre heterodyne interferometer for ultrasound detection of partial discharges in power transformers

    NASA Astrophysics Data System (ADS)

    Posada, J. E.; Garcia-Souto, J. A.; Rubio-Serrano, J.

    2013-09-01

    A multichannel interferometric system is proposed for the ultrasonic detection of partial discharges using intrinsic optical fibre sensors that may be immersed in oil. It is based on a heterodyne scheme which drives at least four sensor heads in order to localize the source of the acoustic emissions. Proper design of the sensing head improves its sensitivity through magnification and reaches a compact encapsulated probe able to be installed within power transformers. The optoelectronic implementation and the experimental tests are presented to optimize the resolution (4 channels—4 mrad). In addition, the results of ultrasound measurements at 150 kHz with an optical fibre sensor immersed in water in an acoustic test bench are shown, in which a resolution better than 10 Pa was obtained. Finally, the set-up for three-phase power transformers is demonstrated and characterized to detect and locate the source of acoustic emissions.

  7. Motion-Correction Enabled Ultra-High Resolution In-Vivo 7T-MRI of the Brain

    PubMed Central

    Federau, Christian

    2016-01-01

    Objectives To demonstrate the image quality that can be obtained for multiple contrasts using ultra-high resolution MRI (highest nominal resolution: 350 μm isotropic) at 7T using appropriate motion-correction. Materials and Methods An MRI-based fat-excitation motion navigator (which requires no additional hardware) was incorporated into T1-weighted (MP2RAGE, 350 μm nominal isotropic resolution, total scan time 124 mins over 2 sessions. The MP2RAGE also provides quantitative T1-maps), 3D-TSE (380 μm nominal isotropic resolution, total scan time 58 mins) and T2*-weighted protocols (3D-GRE, 380 μm nominal isotropic resolution, total scan time 42 mins) on a 7T MR system. Images from each contrast are presented from a single healthy adult male volunteer (34 years) for direct comparison. The subject provided written consent in accordance with the local review board. Results Images of various brain structures are revealed at unprecedented quality for in-vivo MRI. The presented images permit, for example, to delimit the internal structure of the basal ganglia and thalamus. The single digitationes of the hippocampus are visible, and the gyrus dentatus can be visualized. Intracortical contrast was also observed in the neocortex, including the stria of Gennari of the primary visual cortex. Conclusions Appropriate motion-correction allows MRI scans to be performed with extended scan times enabling exceptionally high resolution scans with high image quality, with the use of a 7T scanner allowing large brain coverage for 350–380 μm isotropic voxels with total scan times for each contrast ranging from 42 to 124 minutes. PMID:27159492

  8. High-resolution multi-parametric quantitative magnetic resonance imaging of the human cervical spinal cord at 7T.

    PubMed

    Massire, Aurélien; Taso, Manuel; Besson, Pierre; Guye, Maxime; Ranjeva, Jean-Philippe; Callot, Virginie

    2016-12-01

    Quantitative MRI techniques have the potential to characterize spinal cord tissue impairments occurring in various pathologies, from both microstructural and functional perspectives. By enabling very high image resolution and enhanced tissue contrast, ultra-high field imaging may offer further opportunities for such characterization. In this study, a multi-parametric high-resolution quantitative MRI protocol is proposed to characterize in vivo the human cervical spinal cord at 7T. Multi-parametric quantitative MRI acquizitions including T1, T2(*) relaxometry mapping and axial diffusion MRI were performed on ten healthy volunteers with a whole-body 7T system using a commercial prototype coil-array dedicated to cervical spinal cord imaging. Automatic cord segmentation and multi-parametric data registration to spinal cord templates enabled robust regional studies within atlas-based WM tracts and GM horns at the C3 cervical level. T1 value, cross-sectional area and GM/WM ratio evolutions along the cervical cord were also reported. An original correction method for B1(+)-biased T1 mapping sequence was additionally proposed and validated on phantom. As a result, relaxometry and diffusion parameters derived from high-resolution quantitative MRI acquizitions were reported at 7T for the first time. Obtained images, with unmatched resolutions compared to lower field investigations, provided exquisite anatomical details and clear delineation of the spinal cord substructures within an acquisition time of 30min, compatible with clinical investigations. Regional statistically significant differences were highlighted between WM and GM based on T1 and T2* maps (p<10(-3)), as well as between sensory and motor tracts based on diffusion tensor imaging maps (p<0.05). The proposed protocol demonstrates that ultra-high field spinal cord high-resolution quantitative MRI is feasible and lays the groundwork for future clinical investigations of degenerative spinal cord pathologies.

  9. Tunable multichannel absorber composed of graphene and doped periodic structures

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-kun; Shi, Xiang-zhu; Mo, Jin-jun; Fang, Yun-tuan; Chen, Xin-lei; Liu, Shao-bin

    2017-01-01

    A new design for a tunable multichannel compact absorber, which is achieved by using an asymmetric photonic crystal with graphene monolayers, is theoretically proposed. The graphene monolayers are periodically embedded into the first and last dielectric layers. The absorption, reflection, and transmission spectra of the absorber are studied numerically. A perfect absorption channel is achieved because of impedance matching, and channel number can be modulated by changing periodic number. The characteristic properties of the absorption channel depend on graphene conductivity, which can be controlled via the gate voltage. The proposed structure works as a perfect absorber that is independent from polarization. It has potential applications in the design of multichannel filters, thermal detectors, and electromagnetic wave energy collectors.

  10. The effect of a multichannel cochlear implant on phoneme perception.

    PubMed

    Välimaa, T T; Sorri, M J; Löppönen, H J

    2001-01-01

    This study was done to investigate the effects of a multichannel cochlear implant on phoneme perception in Finnish-speaking postlingually deafened adults. Phoneme recognition was studied with 100 prerecorded nonsense syllables (open-set) presented at 70 dB SPL, auditorily only, in a free-field situation. Ten subjects were tested before implantation both with and without a hearing aid (HA), and 3, 6 and 12 months after switching on the implant. Before implantation without a HA, the subjects did not recognize vowels, consonants or syllables. Four of the subjects used a HA before implantation, and the mean recognition scores of these subjects were 34% for vowels, 28% for consonants and 13% for syllables. One year after switching on the implant, the mean recognition scores were 77% for vowels, 66% for consonants and 46% for syllables. According to phonological analysis vowels appear to be easier to perceive than consonants during the first stage after multichannel cochlear implantation.

  11. Estimating T1 from Multichannel Variable Flip Angle SPGR Sequences

    PubMed Central

    Trzasko, Joshua D.; Mostardi, Petrice M.; Riederer, Stephen J.; Manduca, Armando

    2013-01-01

    Quantitative estimation of T1 is a challenging but important task inherent to many clinical applications. The most commonly used paradigm for estimating T1 in vivo involves performing a sequence of spoiled gradient-recalled echo acquisitions at different flip angles, followed by fitting of an exponential model to the data. Although there has been substantial work comparing different fitting methods, there has been little discussion on how these methods should be applied for data acquired using multichannel receivers. In this note, we demonstrate that the manner in which multichannel data is handled can have a substantial impact on T1 estimation performance and should be considered equally as important as choice of flip angles or fitting strategy. PMID:22807160

  12. Multi-channel atomic magnetometer for magnetoencephalography: a configuration study.

    PubMed

    Kim, Kiwoong; Begus, Samo; Xia, Hui; Lee, Seung-Kyun; Jazbinsek, Vojko; Trontelj, Zvonko; Romalis, Michael V

    2014-04-01

    Atomic magnetometers are emerging as an alternative to SQUID magnetometers for detection of biological magnetic fields. They have been used to measure both the magnetocardiography (MCG) and magnetoencephalography (MEG) signals. One of the virtues of the atomic magnetometers is their ability to operate as a multi-channel detector while using many common elements. Here we study two configurations of such a multi-channel atomic magnetometer optimized for MEG detection. We describe measurements of auditory evoked fields (AEF) from a human brain as well as localization of dipolar phantoms and auditory evoked fields. A clear N100m peak in AEF was observed with a signal-to-noise ratio of higher than 10 after averaging of 250 stimuli. Currently the intrinsic magnetic noise level is 4fTHz(-1/2) at 10Hz. We compare the performance of the two systems in regards to current source localization and discuss future development of atomic MEG systems.

  13. Investigation of the B1 field distribution and RF power deposition in a birdcage coil as functions of the number of coil legs at 4.7 T, 7.0 T, and 11.7 T

    NASA Astrophysics Data System (ADS)

    Seo, Jeung-Hoon; Han, Sang-Doc; Kim, Kyoung-Nam

    2015-06-01

    The proper design of birdcage (BC) coils plays a very important role in the acquisition of highresolution magnetic resonance imaging (MRI) of small animals such as rodents. In this context, we investigate multiple-leg (8-, 16-, 32-, 64-, and 128-leg) BC coils operating at ultra-high fields (UHF) of 7.0 T and 11.7 T and a high-field (HF) of 4.7 T for rodent magnetic resonance imaging (MRI). Primarily, Our study comparatively examines the parameters of the radiofrequency (RF) transmission (|B1 +|)-field, the magnetic flux (|B1|)-field, and RF power deposition (RF-PD) as functions of the number of BC-coil legs via finite-difference time-domain (FDTD) calculations under realistic loading conditions with a biological phantom. In particular, the specific ratio |E/B1 +| is defined for predicting RF-PD values in different coil structures. Our results indicate that the optimal number of legs of the BC coil can be chosen for different resonance frequencies of 200 MHz, 300 MHz, and 500 MHz and that this choice can be lead to superior |B1 +|-field intensity and |B1|-field homogeneity and decreased RF-PD. We believe that our approach to determining the optimal number of legs for a BC coil can contribute to rodent MR imaging.

  14. Bayesian Parametric Approach for Multichannel Adaptive Signal Detection

    DTIC Science & Technology

    2010-05-01

    covariance matrices, utilizing a priori knowledge, and exploring the inherent Block- Toeplitz structure of the spatial-temporal covariance matrix. Speci...cally, the Block- Toeplitz structure of the covariance matrix allows us to model the training signals as a multichannel auto-regressive (AR) process and...homogeneous environment, we further explore the inherent Block- Toeplitz structure of the spatial-temporal covariance matrix which allows the block LDU

  15. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope

    PubMed Central

    Zhang, Yunhai; Hu, Bian; Dai, Yakang; Yang, Haomin; Huang, Wei; Xue, Xiaojun; Li, Fazhi; Zhang, Xin; Jiang, Chenyu; Gao, Fei; Chang, Jian

    2013-01-01

    We have developed a new multichannel spectral imaging laser scanning confocal microscope for effective detection of multiple fluorescent labeling in the research of biological tissues. In this paper, the design and key technologies of the system are introduced. Representative results on confocal imaging, 3-dimensional sectioning imaging, and spectral imaging are demonstrated. The results indicated that the system is applicable to multiple fluorescent labeling in biological experiments. PMID:23585775

  16. A multichannel EEG telemetry system utilizing a PCM subcarrier

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.

    1974-01-01

    A multichannel personal-type telemetry system is described that utilizes PCM encoding for the most effective range with minimum RF bandwidth and noise interference. Recent IC developments (COS MOS) make it possible to implement a sophisticated encoding system (PCM) within the low power and size constraints necessary for a personal biotelemetry system. This system includes low-level high-impedance preamplifiers to make the system suitable for EEG recording.

  17. Variable power combiner for RF mode shimming in 7-T MR imaging.

    PubMed

    Yazdanbakhsh, Pedram; Solbach, Klaus; Bitz, Andreas K

    2012-09-01

    This contribution discusses the utilization of RF power in an MRI system with RF mode shimming which enables the superposition of circularly polarized modes of a transmit RF coil array driven by a Butler matrix. Since the required power for the individual modes can vary widely, mode-shimming can result in a significant underutilization of the total available RF power. A variable power combiner (VPC) is proposed to improve the power utilization: it can be realized as a reconfiguration of the MRI transmit system by the inclusion of one additional matrix network which receives the power from all transmit amplifiers at its input ports and provides any desired (combined) power distribution at its output ports by controlling the phase and amplitude of the amplifiers' input signals. The power distribution at the output ports of the VPC is then fed into the "mode" ports of the coil array Butler matrix in order to superimpose the spatial modes at the highest achievable power utilization. The VPC configuration is compared to the standard configuration of the transmit chain of our MRI system with 8 transmit channels and 16 coils. In realistic scenarios, improved power utilization was achieved from 17% to 60% and from 14% to 55% for an elliptical phantom and a region of interest in the abdomen, respectively, and an increase of the power utilization of 1 dB for a region of interest in the upper leg. In general, it is found that the VPC allows significant improvement in power utilization when the shimming solution demands only a few modes to be energized, while the technique can yield loss in power utilization in cases with many modes required at high power level.

  18. Multidimensional multichannel FIR deconvolution using Gröbner bases.

    PubMed

    Zhou, Jianping; Do, Minh N

    2006-10-01

    We present a new method for general multidimensional multichannel deconvolution with finite impulse response (FIR) convolution and deconvolution filters using Gröbner bases. Previous work formulates the problem of multichannel FIR deconvolution as the construction of a left inverse of the convolution matrix, which is solved by numerical linear algebra. However, this approach requires the prior information of the support of deconvolution filters. Using algebraic geometry and Gröbner bases, we find necessary and sufficient conditions for the existence of exact deconvolution FIR filters and propose simple algorithms to find these deconvolution filters. The main contribution of our work is to extend the previous Gröbner basis results on multidimensional multichannel deconvolution for polynomial or causal filters to general FIR filters. The proposed algorithms obtain a set of FIR deconvolution filters with a small number of nonzero coefficients (a desirable feature in the impulsive noise environment) and do not require the prior information of the support. Moreover, we provide a complete characterization of all exact deconvolution FIR filters, from which good FIR deconvolution filters under the additive white noise environment are found. Simulation results show that our approaches achieve good results under different noise settings.

  19. Efficiency analysis for 3D filtering of multichannel images

    NASA Astrophysics Data System (ADS)

    Kozhemiakin, Ruslan A.; Rubel, Oleksii; Abramov, Sergey K.; Lukin, Vladimir V.; Vozel, Benoit; Chehdi, Kacem

    2016-10-01

    Modern remote sensing systems basically acquire images that are multichannel (dual- or multi-polarization, multi- and hyperspectral) where noise, usually with different characteristics, is present in all components. If noise is intensive, it is desirable to remove (suppress) it before applying methods of image classification, interpreting, and information extraction. This can be done using one of two approaches - by component-wise or by vectorial (3D) filtering. The second approach has shown itself to have higher efficiency if there is essential correlation between multichannel image components as this often happens for multichannel remote sensing data of different origin. Within the class of 3D filtering techniques, there are many possibilities and variations. In this paper, we consider filtering based on discrete cosine transform (DCT) and pay attention to two aspects of processing. First, we study in detail what changes in DCT coefficient statistics take place for 3D denoising compared to component-wise processing. Second, we analyze how selection of component images united into 3D data array influences efficiency of filtering and can the observed tendencies be exploited in processing of images with rather large number of channels.

  20. Ultracold Long-Range Rydberg Molecules with Complex Multichannel Spectra

    NASA Astrophysics Data System (ADS)

    Eiles, Matthew; Greene, Chris

    2016-05-01

    A generalized class of exotic long-range Rydberg molecules consisting of a multichannel Rydberg atom bound to a distant ground state atom by the Rydberg electron is predicted. These molecules are characterized by the rich physics provided by the strongly perturbed multichannel Rydberg spectra of divalent atoms, in contrast to the regular Rydberg series of the alkali atoms used to form Rydberg molecules to date. These multichannel Rydberg molecules exhibit favorable properties for laser excitation, because states exist where the quantum defect varies strongly with the principal quantum number n. In particular, the nd Rydberg state of calcium becomes nearly degenerate with states of high orbital angular momentum over the range 17 < n < 22 , promoting its admixture into the high l deeply bound ``trilobite'' molecule states and thereby circumventing the usual difficulty posed by electric dipole selection rules. Further novel molecular states are predicted to occur in the low- J states of silicon, which are strongly perturbed due to channel interactions between Rydberg series leading to the spin-orbit split ionization thresholds. These interactions manifest themselves in potential curves exhibiting two distinct length scales, providing novel opportunities for quantum manipulation. Supported in part by the National Science Foundation under Grant No. PHY-1306905.

  1. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector.

    PubMed

    Smith, Richard J; Light, Roger A; Sharples, Steve D; Johnston, Nicholas S; Pitter, Mark C; Somekh, Mike G

    2010-02-01

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  2. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    SciTech Connect

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G.; Sharples, Steve D.

    2010-02-15

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  3. After-pulsing, cross-talk, dark-count, and gain of MPPC under 7-T static magnetic field.

    PubMed

    Hirano, Yoshiyuki; Nishikido, Fumihiko; Kokuryo, Daisuke; Yamaya, Taiga

    2016-07-01

    Multi-pixel photon counters (MPPCs) have been used instead of photomultiplier tubes for positron emission tomography combined with magnetic resonance (PET-MR). However, the effects of the magnetic field (MF) on the intrinsic properties-gain, cross-talk, after-pulsing, and dark-count-have not been sufficiently investigated. Therefore, we measured these properties for two types of MPPCs-S10931-50P and S12572-50P-in a static 7-T MF. These properties were measured with a pulse-shape analysis using pulse data acquired by a digital oscilloscope in the presence of the MF (w/MF) and the absence of the MF (w/o MF) by changing the supplied over-voltages (from 0.95 to 2.1 V for S10931 and from 2.1 to 3.3 V for S12572). No significant differences between the w/MF and w/o MF cases were observed for either MPPC, suggesting that the gain, cross-talk, after-pulsing, and dark-count are insensitive to a 7-T MF. The present work shows that constant MPPC performance is expected under a strong MF and demonstrates positive results for PET-MR.

  4. Oxygen and light effects on the expression of the photosynthetic apparatus in Bradyrhizobium sp. C7T1 strain.

    PubMed

    Montecchia, M S; Pucheu, N L; Kerber, N L; García, A F

    2006-12-01

    Photosynthetic bradyrhizobia are nitrogen-fixing symbionts colonizing the stem and roots of some leguminous plants like Aeschynomene. The effect of oxygen and light on the formation of the photosynthetic apparatus of Bradyrhizobium sp. C7T1 strain is described here. Oxygen is required for growth, but at high concentration inhibits the synthesis of bacteriochlorophyll (BChl) and of the photosynthetic apparatus. However, we show that in vitro, aerobic photosynthetic electron transport occurred leading to ADP photophosphorylation. The expression of the photosynthetic apparatus was regulated by oxygen in a manner which did not agree with earlier results in other photosynthetic bradyrhizobia since BChl accumulation was the highest under microaerobic conditions. This strain produces photosynthetic pigments when grown under cyclic illumination or darkness. However, under continuous white light illumination, a Northern blot analysis of the puf operon showed that, the expression of the photosynthetic genes of the antenna was considerable. Under latter conditions BChl accumulation in the cells was dependent on the oxygen concentration. It was not detectable at high oxygen tensions but became accumulated under low oxygen (microaerobiosis). It is known that in photosynthetic bradyrhizobia bacteriophytochrome photoreceptor (BphP) partially controls the synthesis of the photosystem in response to light. In C7T1 strain far-red light illumination did not stimulate the synthesis of the photosynthetic apparatus suggesting the presence of a non-functional BphP-mediated light regulatory mechanism.

  5. Rapid Isotropic 3D-Sodium MRI of the Knee Joint In-vivo at 7T

    PubMed Central

    Wang, Ligong; Wu, Yan; Chang, Gregory; Oesingmann, Niels; Schweitzer, Mark E.; Jerschow, Alexej; Regatte, Ravinder R.

    2009-01-01

    Purpose To demonstrate the feasibility of acquiring high resolution, isotropic 3D-sodium MR images of the whole knee joint in vivo at ultra high field strength (7.0T) via a 3D-radial acquisition with ultra short echo times and clinically acceptable acquisition times. Materials and Methods Five healthy controls (4 males, 1 female; mean ± standard deviation (SD) age 28.7 ± 4.8 years) and five patients with osteoarthritis (OA) (3 males, 2 females; mean ± SD age 52.4 ± 5.6 years) underwent 23Na–MRI on a 7T, multi-nuclei equipped whole body scanner. A quadrature 23Na knee coil and a 3D-gradient echo (GRE) imaging sequence with a radial acquisition were utilized. Cartilage sodium concentration was measured and compared between the healthy controls and OA patients. Results The average signal-to-noise ratio (SNR) for different spatial resolutions (1.2 mm – 4 mm) varied from ∼14 – 120, respectively. The mean sodium concentration of healthy subjects ranged from ∼240 ± 28 mM/L – 280 ± 22 mM/L. However, in OA patients the sodium concentrations were reduced, significantly by ∼30 – 60%, depending upon the degree of cartilage degeneration. Conclusion The preliminary results suggest that sodium imaging at 7T may be a feasible potential alternative for physiologic OA imaging and clinical diagnosis. PMID:19711406

  6. A compact multichannel spectrometer for Thomson scatteringa)

    NASA Astrophysics Data System (ADS)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te < 100 eV are achieved by a 2971 l/mm VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  7. A compact multichannel spectrometer for Thomson scattering.

    PubMed

    Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) < 100 eV are achieved by a 2971 l∕mm VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  8. A multi-channel magnetic induction tomography measurement system for human brain model imaging.

    PubMed

    Xu, Zheng; Luo, Haijun; He, Wei; He, Chuanhong; Song, Xiaodong; Zahng, Zhanglong

    2009-06-01

    This paper proposes a multi-channel magnetic induction tomography measurement system for biological conductivity imaging in a human brain model. A hemispherical glass bowl filled with a salt solution is used as the human brain model; meanwhile, agar blocks of different conductivity are placed in the solution to simulate the intracerebral hemorrhage. The excitation and detection coils are fixed co-axially, and the axial gradiometer is used as the detection coil in order to cancel the primary field. On the outer surface of the glass bowl, 15 sensor units are arrayed in two circles as measurement parts, and a single sensor unit for cancelling the phase drift is placed beside the glass bowl. The phase sensitivity of our system is 0.204 degrees /S m(-1) with the excitation frequency of 120 kHz and the phase noise is in the range of -0.03 degrees to +0.05 degrees . Only the coaxial detection coil is available for each excitation coil; therefore, 15 phase data are collected in each measurement turn. Finally, the two-dimensional images of conductivity distribution are obtained using an interpolation algorithm. The frequency-varying experiment indicates that the imaging quality becomes better as the excitation frequency is increased.

  9. All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination.

    PubMed

    Wang, Fei; Dong, Jianji; Xu, Enming; Zhang, Xinliang

    2010-11-22

    An all-optical UWB pulses generation and modulation scheme using cross phase modulation (XPM) effect of semiconductor optical amplifier (SOA) and DWDM-based multi-channel frequency discrimination is proposed and demonstrated, which has potential application in multiuser UWB-Over-Fiber communication systems. When a Gaussian pulse light and a wavelength-tunable CW probe light are together injected into the SOA, the probe light out from the SOA will have a temporal chirp due to SOA-XPM effect. When the chirped probe light is tuned to the slopes of single DWDM channel transmittance curve, the optical phase modulation to intensity modulation conversion is achieved at DWDM that serves as a multi-channel frequency discriminator, the inverted polarity Gaussian monocycle and doublet pulse is detected by a photodetector, respectively. If the probe lights are simultaneously aimed to different slopes of several DWDM channels, multi-channel or binary-phase-coded UWB signal generation can be acquired. Using proposed scheme, pulse amplitude modulation (PAM), pulse polarity modulation (PPM) and pulse shape modulation (PSM) to UWB pulses also can be conveniently realized.

  10. Spectral analysis of multichannel MRS data.

    PubMed

    Sandgren, Niclas; Stoica, Petre; Frigo, Frederick J; Selén, Yngve

    2005-07-01

    The use of phased-array receive coils is a well-known technique to improve the image quality in magnetic resonance imaging studies of, e.g., the human brain. It is common to incorporate proton (1H) magnetic resonance spectroscopy (MRS) experiments in these studies to quantify key metabolites in a region of interest. Detecting metabolites in vivo is often difficult, requiring extensive scans to achieve signal-to-noise ratios (SNR) that provide suitable diagnostic results. Combining the MR absorption spectra obtained from several receive coils is one possible approach to increase the SNR. Previous literature does not give a clear overview of the wide range of possible approaches that can be used to combine MRS data from multiple detector coils. In this paper, we consider the multicoil MRS approach and introduce several signal processing tools to address the problem from different nonparametric, semiparametric, and parametric perspectives, depending on the amount of available prior knowledge about the data. We present a numerical study of these tools using both simulated 1H MRS data and experimental MRS data acquired from a 3T MR scanner.

  11. Design and test of a double-nuclear RF coil for (1)H MRI and (13)C MRSI at 7T.

    PubMed

    Rutledge, Omar; Kwak, Tiffany; Cao, Peng; Zhang, Xiaoliang

    2016-06-01

    RF coil operation at the ultrahigh field of 7T is fraught with technical challenges that limit the advancement of novel human in vivo applications at 7T. In this work, a hybrid technique combining a microstrip transmission line and a lumped-element L-C loop coil to form a double-nuclear RF coil for proton magnetic resonance imaging and carbon magnetic resonance spectroscopy at 7T was proposed and investigated. Network analysis revealed a high Q-factor and excellent decoupling between the coils. Proton images and localized carbon spectra were acquired with high sensitivity. The successful testing of this novel double-nuclear coil demonstrates the feasibility of this hybrid design for double-nuclear MR imaging and spectroscopy studies at the ultrahigh field of 7T.

  12. Design and test of a double-nuclear RF coil for 1H MRI and 13C MRSI at 7 T

    NASA Astrophysics Data System (ADS)

    Rutledge, Omar; Kwak, Tiffany; Cao, Peng; Zhang, Xiaoliang

    2016-06-01

    RF coil operation at the ultrahigh field of 7 T is fraught with technical challenges that limit the advancement of novel human in vivo applications at 7 T. In this work, a hybrid technique combining a microstrip transmission line and a lumped-element L-C loop coil to form a double-nuclear RF coil for proton magnetic resonance imaging and carbon magnetic resonance spectroscopy at 7 T was proposed and investigated. Network analysis revealed a high Q-factor and excellent decoupling between the coils. Proton images and localized carbon spectra were acquired with high sensitivity. The successful testing of this novel double-nuclear coil demonstrates the feasibility of this hybrid design for double-nuclear MR imaging and spectroscopy studies at the ultrahigh field of 7 T.

  13. Simultaneous source separation using a new multichannel matching pursuit method with directional features

    NASA Astrophysics Data System (ADS)

    Cao, J.; Gu, H.

    2015-12-01

    Simultaneous source technology allows us to acquire seismic data in a much more efficient way and saves considerable acquisition time. However, it is necessary to separate these data into their conventionally acquired equivalent state. Luckily, we can simply treat the deblending problem as a noise attenuation problem because the blending noise has been performed to be incoherent in some domains such as common receiver, common offset domains. Multichannel matching pursuit (MCMP) is a lateral coherency based technique and has been widely used in a variety of seismic applications such as seismic trace decomposition and denoising seismic records. It decomposes the signals into a series of wavelets namely atoms, but the atom is just the best match to the average of multiple traces with the same scale factor, translation factor, frequency factor and phase parameter at each iteration, which is not in accord with the real seismic records. In this paper, we propose a new multichannel matching pursuit (MCMP) algorithm with directional features for simultaneous source separation in common receiver gathers. The new MCMP uses local lateral coherence as a constraint and utilizes the maximum semblance coefficient within a multidirectional window as the best direction at each iteration. To verify the effectiveness of this method, we use Ricker wavelet to synthetize a simultaneous source data set and sort the data to common receiver gathers. Comparing the deblending results with multidirectional vector median filter (MDVMF) method, the new MCMP preserves more useful seismic signals, but some individual useful signals are not reconstructed successfully probably because of the zero padding influence. The real data examples also prove that the new MCMP is effective in practice for deblending.

  14. A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T

    PubMed Central

    Sengupta, Shubharthi; Roebroeck, Alard; Kemper, Valentin G.; Poser, Benedikt A.; Zimmermann, Jan; Goebel, Rainer; Adriany, Gregor

    2016-01-01

    Purpose To design, construct and validate radiofrequency (RF) transmit and receive phased array coils for high-resolution visual cortex imaging at 7 Tesla. Methods A 4 channel transmit and 16 channel receive array was constructed on a conformal polycarbonate former. Transmit field efficiency and homogeneity were simulated and validated, along with the Specific Absorption Rate, using B1+ mapping techniques and electromagnetic simulations. Receiver signal-to-noise ratio (SNR), temporal SNR (tSNR) across EPI time series, g-factors for accelerated imaging and noise correlations were evaluated and compared with a commercial 32 channel whole head coil. The performance of the coil was further evaluated with human subjects through functional MRI (fMRI) studies at standard and submillimeter resolutions of upto 0.8mm isotropic. Results The transmit and receive sections were characterized using bench tests and showed good interelement decoupling, preamplifier decoupling and sample loading. SNR for the 16 channel coil was ∼ 1.5 times that of the commercial coil in the human occipital lobe, and showed better g-factor values for accelerated imaging. fMRI tests conducted showed better response to Blood Oxygen Level Dependent (BOLD) activation, at resolutions of 1.2mm and 0.8mm isotropic. Conclusion The 4 channel phased array transmit coil provides homogeneous excitation across the visual cortex, which, in combination with the dual row 16 channel receive array, makes for a valuable research tool for high resolution anatomical and functional imaging of the visual cortex at 7T. PMID:27911950

  15. Sub-millimeter T2 weighted fMRI at 7 T: comparison of 3D-GRASE and 2D SE-EPI.

    PubMed

    Kemper, Valentin G; De Martino, Federico; Vu, An T; Poser, Benedikt A; Feinberg, David A; Goebel, Rainer; Yacoub, Essa

    2015-01-01

    Functional magnetic resonance imaging (fMRI) allows studying human brain function non-invasively up to the spatial resolution of cortical columns and layers. Most fMRI acquisitions rely on the blood oxygenation level dependent (BOLD) contrast employing T(*) 2 weighted 2D multi-slice echo-planar imaging (EPI). At ultra-high magnetic field (i.e., 7 T and above), it has been shown experimentally and by simulation, that T2 weighted acquisitions yield a signal that is spatially more specific to the site of neuronal activity at the cost of functional sensitivity. This study compared two T2 weighted imaging sequences, inner-volume 3D Gradient-and-Spin-Echo (3D-GRASE) and 2D Spin-Echo EPI (SE-EPI), with evaluation of their imaging point-spread function (PSF), functional specificity, and functional sensitivity at sub-millimeter resolution. Simulations and measurements of the imaging PSF revealed that the strongest anisotropic blurring in 3D-GRASE (along the second phase-encoding direction) was about 60% higher than the strongest anisotropic blurring in 2D SE-EPI (along the phase-encoding direction). In a visual paradigm, the BOLD sensitivity of 3D-GRASE was found to be superior due to its higher temporal signal-to-noise ratio (tSNR). High resolution cortical depth profiles suggested that the contrast mechanisms are similar between the two sequences, however, 2D SE-EPI had a higher surface bias owing to the higher T(*) 2 contribution of the longer in-plane EPI echo-train for full field of view compared to the reduced field of view of zoomed 3D-GRASE.

  16. Effects of deposited nuclear and electronic energy on the hardness of R7T7-type containment glass

    NASA Astrophysics Data System (ADS)

    Peuget, S.; Noël, P.-Y.; Loubet, J.-L.; Pavan, S.; Nivet, P.; Chenet, A.

    2006-05-01

    The effects of elastic and inelastic interactions induced by cumulative alpha decay on the hardness of R7T7-type nuclear containment glass were investigated on actinide-doped glass specimens and by external irradiation of inactive glass by light and heavy ions. Vickers microindentation and nanoindentation hardness measurements showed that in the deposited energy range investigated (below 3 × 10 22 keV/cm 3) inelastic effects have no influence on the plastic response of the glass. Conversely, identical hardness variations versus the nuclear energy deposited in the material were observed on curium-doped glass and on glass irradiated by ion bombardment. The observed hardness variation stabilized after the deposited energy reached about 3 × 10 20 keV nucl/cm 3. These findings indicate that the change in the plastic response of the glass is a consequence of ballistic effects.

  17. Helmholtz-pair transmit coil with integrated receive array for high-resolution MRI of trabecular bone in the distal tibia at 7 T

    NASA Astrophysics Data System (ADS)

    Wright, Alexander C.; Lemdiasov, Rostislav; Connick, Thomas J.; Bhagat, Yusuf A.; Magland, Jeremy F.; Song, Hee Kwon; Toddes, Steven P.; Ludwig, Reinhold; Wehrli, Felix W.

    2011-05-01

    A Helmholtz-pair local transmit RF coil with an integrated four-element receive array RF coil and foot immobilization platform was designed and constructed for imaging the distal tibia in a whole-body 7 T MRI scanner. Simulations and measurements of the B1 field distribution of the transmit coil are described, along with SAR considerations for operation at 7 T. Results of imaging the trabecular bone of three volunteers at 1.5 T, 3 T and 7 T are presented, using identical 1.5 T and 3 T versions of the 7 T four-element receive array. The spatially registered images reveal improved visibility for individual trabeculae and show average gains in SNR of 2.8× and 4.9× for imaging at 7 T compared to 3 T and 1.5 T, respectively. The results thus display an approximately linear dependence of SNR with field strength and enable the practical utility of 7 T scanners for micro-MRI of trabecular bone.

  18. Traumatic high-grade spondylolisthesis at C7-T1 with no neurological deficits: Case series, literature review, and biomechanical implications

    PubMed Central

    Nguyen, Ha Son; Soliman, Hesham; Kurpad, Shekar

    2017-01-01

    Traumatic high-grade spondylolisthesis in subaxial cervical spine is frequently associated with acute spinal cord injury and quadriparesis. There have been rare cases where such pathology demonstrates minimal to no neurological deficits. Assessment of the underlying biomechanics may provide insight into the mechanism of injury and associated neurological preservation. Patient 1 is a 63-year-old female presenting after a motor vehicle collision with significant right arm pain without neurological deficits. Imaging demonstrated C7/T1 spondyloptosis, associated with a locked facet on the left at C6/7 and a locked facet on the right at C7/T1, with a fracture of the left C7 pedicle and right C7 lamina. Patient 2 is a 60-year-old male presenting after a bicycle collision with transient bilateral upper extremity paresthesias without neurological deficits. Imaging demonstrated C7/T1 spondyloptosis, with fractures of bilateral C7 pedicles, C7/T1 facets, and C7 lamina. Patient 3 is a 36-year-old male presenting after a motor vehicle collision with diffuse tingling sensation throughout all extremities. His neurological examination was nonfocal. Imaging demonstrated a grade 4 spondylolithesis at C7/T1, associated with bilateral C7/T1 locked facets. From literature, most cases were noted to be dislocations resulting from fractures of the posterior elements. A minority of cases has been found to involve facet dislocations without fractures. Further biomechanical studies are needed to understand the underlying mechanisms. PMID:28250641

  19. Multichannel intensified photodiode for near infrared single photon detection

    NASA Astrophysics Data System (ADS)

    Aebi, Verle W.; Sykora, Derek F.; Jurkovic, Michael J.; Costello, Kenneth A.

    2011-05-01

    An overview of the Intensified Photodiode (IPD) is presented with an emphasis on IPDs optimized for use in the 950nm to 1350nm spectral range for single photon detection applications. The theory of operation of the IPD, two different electron optics designs, and device performance for a multichannel, 4x4 pixel array, low jitter IPD optimized for operation at 1060nm are presented in this paper. Key results include greater than 15% quantum efficiency, large active area, and less than 550ps impulse response.

  20. Multichannel infrared fiber optic radiometer for controlled microwave heating

    NASA Astrophysics Data System (ADS)

    Drizlikh, S.; Zur, Albert; Katzir, Abraham

    1990-07-01

    An infrared fiberoptic multichannel radiometer was used for monitoring and controlling the temperature of samples in a microwave heating system. The temperature of water samples was maintained at about 40 °C, with a standard deviation of +/- 0.2°C and a maximum deviation of +/- 0.5°C. The temperature was monitored on the same time at several points on the surface and inside the sample. This novel controlled system is reliable and precise. Such system would be very useful for medical applications such as hypothermia and hyperthermi a.

  1. A multi-channel setup to study fractures in scintillators

    NASA Astrophysics Data System (ADS)

    Tantot, A.; Bouard, C.; Briche, R.; Lefèvre, G.; Manier, B.; Zaïm, N.; Deschanel, S.; Vanel, L.; Di Stefano, P. C. F.

    2016-12-01

    To investigate fractoluminescence in scintillating crystals used for particle detection, we have developed a multi-channel setup built around samples of double-cleavage drilled compression (DCDC) geometry in a controllable atmosphere. The setup allows the continuous digitization over hours of various parameters, including the applied load, and the compressive strain of the sample, as well as the acoustic emission. Emitted visible light is recorded with nanosecond resolution, and crack propagation is monitored using infrared lighting and camera. An example of application to \\text{B}{{\\text{i}}4}\\text{G}{{\\text{e}}3}{{\\text{O}}12} (BGO) is provided.

  2. Development of the multichannel data processing ASIC design flow

    NASA Astrophysics Data System (ADS)

    Ivanov, P. Y.; Atkin, E. V.; Normanov, D. D.; Shumkin, O. V.

    2017-01-01

    In modern multichannel data processing digital systems the number of channels ranges from some hundred thousand to millions. The basis of the elemental base of these systems are ASICs. Their most important characteristics are performance, power consumption and occupied area. ASIC design is a time and labor consuming process. In order to improve performance and reduce the designing time it is proposed to supplement the standard design flow with an optimization stage of the channel parameters based on the most efficient use of chip area and power consumption.

  3. Multichannel Fabry-Perot spectrometer for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Boyle, R. J.

    1986-01-01

    A multichannel design which makes use of the radiation normally rejected in a Fabry-Perot spectrometer is described, with application to infrared astronomy. The present optical design minimizes the diameters of the etalon and optics. The use of spherical mirrors ensures that no radiation is lost through the entrance aperture, and the beams can be completely collimated at the etalon. Laboratory studies demonstrate that the ability to employ eight channels increases by a factor of four the flux integrated during a given time period compared with that of a single-channel instrument. The spectrometer is nondispersive, and the source can be imaged at each of several output spectral positions.

  4. Development of multichannel low-energy neutron spectrometer

    SciTech Connect

    Arikawa, Y. Nagai, T.; Abe, Y.; Kojima, S.; Sakata, S.; Inoue, H.; Utsugi, M.; Iwasa, Y.; Sarukura, N.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H.; Murata, T.

    2014-11-15

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

  5. Multichannel analysis of surface waves (MASW) - Active and passive methods

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.; Ivanov, J.

    2007-01-01

    The conventional seismic approaches for near-surface investigation have usually been either high-resolution reflection or refraction surveys that deal with a depth range of a few tens to hundreds meters. Seismic signals from these surveys consist of wavelets with frequencies higher than 50 Hz. The multichannel analysis of surface waves (MASW) method deals with surface waves in the lower frequencies (e.g., 1-30 Hz) and uses a much shallower depth range of investigation (e.g., a few to a few tens of meters). ?? 2007 Society of Exploration Geophysicists.

  6. van Hove singularities in disordered multichannel quantum wires and nanotubes

    NASA Astrophysics Data System (ADS)

    Hügle, S.; Egger, R.

    2002-11-01

    We present a theory for the van Hove singularity (VHS) in the tunneling density of states (TDOS) of disordered multichannel quantum wires, in particular multiwall carbon nanotubes. We assume close-by gates that screen off electron-electron interactions. Diagrammatic perturbation theory within the noncrossing approximation yields analytical expressions governing the disorder-induced broadening and shift of VHS's as new subbands are opened. This problem is nontrivial because the (lowest-order) Born approximation breaks down close to the VHS. Interestingly, compared to the bulk case, the boundary TDOS shows drastically altered VHS's, even in the clean limit.

  7. Multichannel interactions in the resonant photoionization of HCl

    NASA Astrophysics Data System (ADS)

    White, M. G.; Leroi, G. E.; Ho, M.-H.; Poliakoff, E. D.

    1987-12-01

    Vibrational state distributions of the A 2Σ+ excited state of HCl+ were measured by dispersed fluorescence following resonant photoionization. Autoionization of levels excited at the NeI resonance line strongly influence the vibrational branching ratios of the A 2Σ+ state although not in accord with the propensity rule expected for vibrational autoionization. Other measurements utilizing total fluorescence yields and synchrotron radiation confirm the presence of competing dissociation channels for autoionizing Rydberg states converging to the A 2Σ+ limit. These results are discussed in terms of the multichannel interactions responsible for determining the observed ion and fragment product distributions.

  8. Multi-channel Scaler Cards Improve Data Collection

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Scientists interested in exploring the intricacies and dynamics of Earth's climate and ecosystems continually need smaller, lighter instrumentation that can be placed onboard various sensing platforms, such as Unmanned Aerial Vehicles (UAVs). Responding to a need for improved data collection for remote atmospheric measurement systems, ASRC Aerospace Corporation, of Greenbelt, Maryland, developed a series of low-power, highly integrated, multichannel scaler (MCS) cards. The cards were designed to meet the needs of NASA's ground-based and airborne Light Detection and Ranging (LIDAR) photoncounting programs. They can rapidly collect thousands of data points during a continuous scan of the atmosphere.

  9. A new multichannel interferometer system on HL-2A

    SciTech Connect

    Zhou, Y.; Deng, Z. C.; Liu, Z. T.; Yi, J.; Tang, Y. W.; Gao, B. Y.; Tian, C. L.; Li, Y. G.; Ding, X. T.

    2007-11-15

    A new multichannel HCN interferometer has been developed on HL-2A tokamak, which is characterized by two techniques: (1) the wave-guide HCN laser with cavity length of 6 m to increase the optical resource power and (2) high response room temperature waveguide Schottky diode detectors to obtain good beat signal. The space resolution is 7 cm by the use of focusing metal mirrors mounted on the vacuum chamber and a compensated optical system. In the 2006 experiment campaign, this new interferometer has been applied for plasma density profile and density sawtooth measurement.

  10. Efficient sequential compression of multi-channel biomedical signals.

    PubMed

    Capurro, Ignacio; Lecumberry, Federico; Martin, Alvaro; Ramirez, Ignacio; Rovira, Eugenio; Seroussi, Gadiel

    2016-06-21

    This work proposes lossless and near-lossless compression algorithms for multi-channel biomedical signals. The algorithms are sequential and efficient, which makes them suitable for low-latency and low-power signal transmission applications. We make use of information theory and signal processing tools (such as universal coding, universal prediction, and fast online implementations of multivariate recursive least squares), combined with simple methods to exploit spatial as well as temporal redundancies typically present in biomedical signals. The algorithms are tested with publicly available electroencephalogram and electrocardiogram databases, surpassing in all cases the current state of the art in near-lossless and lossless compression ratios.

  11. Strong dependence of multichannel ballistic transport on the geometric symmetry

    NASA Astrophysics Data System (ADS)

    Shin, M.; Park, K. W.; Lee, S.; Lee, E.-H.

    1998-01-01

    Ballistic electron transport in Aharonov-Bohm-type ring structures is investigated where the single-channel problem is nontrivially extended to the multichannel one in which the important interchannel scattering effect is considered. It is found that theS-matrix of a ring structure should reflect the geometric symmetry if the interchannel scattering effect is properly accounted for and that the symmetry relationships of theS-matrix plays a crucial role in the conductance oscillation behavior in ballistic two-dimensional rings. The magnetostatic as well as the electrostatic Aharonov-Bohm effects are studied for two ring structures of different symmetry.

  12. Multichannel demultiplexer/demodulator technologies for future satellite communication systems

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Budinger, James M.; Staples, Edward J.; Abramovitz, Irwin; Courtois, Hector A.

    1992-01-01

    NASA-Lewis' Space Electronics Div. supports ongoing research in advanced satellite communication architectures, onboard processing, and technology development. Recent studies indicate that meshed VSAT (very small aperture terminal) satellite communication networks using FDMA (frequency division multiple access) uplinks and TDMA (time division multiplexed) downlinks are required to meet future communication needs. One of the critical advancements in such a satellite communication network is the multichannel demultiplexer/demodulator (MCDD). The progress is described which was made in MCDD development using either acousto-optical, optical, or digital technologies.

  13. 75 FR 59645 - Radio Broadcast Services and Multichannel Video and Cable Television Service; Clarification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 73 and 76 Radio Broadcast Services and Multichannel Video and Cable Television... number of requirements related to Radio Broadcast Services and Multichannel Video and Cable...

  14. Multichannel biomedical time series clustering via hierarchical probabilistic latent semantic analysis.

    PubMed

    Wang, Jin; Sun, Xiangping; Nahavandi, Saeid; Kouzani, Abbas; Wu, Yuchuan; She, Mary

    2014-11-01

    Biomedical time series clustering that automatically groups a collection of time series according to their internal similarity is of importance for medical record management and inspection such as bio-signals archiving and retrieval. In this paper, a novel framework that automatically groups a set of unlabelled multichannel biomedical time series according to their internal structural similarity is proposed. Specifically, we treat a multichannel biomedical time series as a document and extract local segments from the time series as words. We extend a topic model, i.e., the Hierarchical probabilistic Latent Semantic Analysis (H-pLSA), which was originally developed for visual motion analysis to cluster a set of unlabelled multichannel time series. The H-pLSA models each channel of the multichannel time series using a local pLSA in the first layer. The topics learned in the local pLSA are then fed to a global pLSA in the second layer to discover the categories of multichannel time series. Experiments on a dataset extracted from multichannel Electrocardiography (ECG) signals demonstrate that the proposed method performs better than previous state-of-the-art approaches and is relatively robust to the variations of parameters including length of local segments and dictionary size. Although the experimental evaluation used the multichannel ECG signals in a biometric scenario, the proposed algorithm is a universal framework for multichannel biomedical time series clustering according to their structural similarity, which has many applications in biomedical time series management.

  15. 47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Interference from a multichannel video programming distributor (MVPD). 76.613 Section 76.613 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference...

  16. 47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Interference from a multichannel video programming distributor (MVPD). 76.613 Section 76.613 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference...

  17. 47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Interference from a multichannel video programming distributor (MVPD). 76.613 Section 76.613 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference...

  18. 47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Interference from a multichannel video programming distributor (MVPD). 76.613 Section 76.613 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference...

  19. Multichannel optical aperture synthesis imaging of zeta1 URSAE majoris with the Navy prototype optical interferometer.

    NASA Astrophysics Data System (ADS)

    Benson, J. A.; Hutter, D. J.; Elias, N. M., II; Bowers, P. F.; Johnston, K. J.; Hajian, A. R.; Armstrong, J. T.; Mozurkewich, D.; Pauls, T. A.; Rickard, L. J.; Hummel, C. A.; White, N. M.; Black, D.; Denison, C. S.

    1997-09-01

    We have used the Navy Prototype Optical Interferometer (NPOI) to obtain the first multi-channel optical aperture synthesis images of a star. We observed the spectroscopic binary zeta (1) Ursae Majoris at 6 to 10 milliarcseconds separation during seven nights, using three interferometric baselines and 19 spectral channels (lambda lambda520 - 850 nm) of the NPOI. After editing, a typical 90 sec scan yielded fringe visibilities at 50 spatial frequencies and closure phases at 15 wavelengths. Three to five scans were obtained each night. The separations and position angles are in good agreement with the visual orbit obtained with the Mark III interferometer (Hummel et al.markcite{hum1} 1995 [AJ, 110, 376]) but show small systematic difference that can be used to improve the orbit. The closure phase data provide a sensitive measure of the magnitude difference between the components. These results demonstrate the power of broad-band interferometric observations for fast imaging and the utility of vacuum delay lines for simultaneous observations over a wide band. These observations are the first to produce simultaneous visibilities and closure phases with a separate-aperture optical interferometer, and the second to produce closure phase images, following the results from COAST reported by Baldwin et al.markcite{bal} (1996 [A&A, 306, L13]). The angular resolution here is the highest ever achieved at visual wavelengths, exceeding by an order of magnitude the best thus far achieved by any single-aperture optical telescope. We generated complex visibilities and closure phases (the data types commonly used in radio interferometry) from the optical data and used standard radio interferometry techniques to produce these images. However, the fundamental observables of optical interferometry, the squared visibility amplitude and the closure phase, require the development of new analysis techniques.

  20. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  1. A duple watermarking strategy for multi-channel quantum images

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Iliyasu, Abdullah M.; Sun, Bo; Venegas-Andraca, Salvador E.; Dong, Fangyan; Hirota, Kaoru

    2015-05-01

    Utilizing a stockpile of efficient transformations consisting of channel of interest, channel swapping, and quantum Fourier transforms, a duple watermarking strategy on multi-channel quantum images is proposed. It embeds the watermark image both into the spatial domain and the frequency domain of the multi-channel quantum carrier image, while also providing a quantum measurement-based algorithm to generate an unknown key that is used to protect the color information, which accompanies another key that is mainly used to scramble the spatial content of the watermark image in order to further safeguard the copyright of the carrier image. Simulation-based experiments using a watermark logo and nine building images as watermark image and carrier images, respectively, offer a duple protection for the copyright of carrier images in terms of the visible quality of the watermarked images. The proposed stratagem advances available literature in the quantum watermarking research field and sets the stage for the applications aimed at quantum data protection.

  2. Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor

    NASA Astrophysics Data System (ADS)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, Abdelhamid A.; El Deeb, Walid S.; Obayya, Salah S. A.

    2016-10-01

    A design of a highly sensitive multichannel biosensor based on photonic crystal fiber is proposed and analyzed. The suggested design has a silver layer as a plasmonic material coated by a gold layer to protect silver oxidation. The reported sensor is based on detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes, which offers the possibility of multichannel/multianalyte sensing. The numerical results are obtained using a finite element method with perfect matched layer boundary conditions. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High-refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained according to the quasi TM and quasi TE modes of the proposed sensor, respectively. Further, the reported design can be used as a self-calibration biosensor within an unknown analyte refractive index ranging from 1.33 to 1.35 with high linearity and high accuracy. Moreover, the suggested biosensor has advantages in terms of compactness and better integration of microfluidics setup, waveguide, and metallic layers into a single structure.

  3. Discriminability of Single and Multichannel Intracortical Microstimulation within Somatosensory Cortex.

    PubMed

    Overstreet, Cynthia K; Hellman, Randall B; Ponce Wong, Ruben D; Santos, Veronica J; Helms Tillery, Stephen I

    2016-01-01

    The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS) of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g., encoding contact events and pressure on multiple digits). In this study, we evaluated the ability of an awake, behaving non-human primate (Macaca mulatta) to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex.

  4. Discriminability of Single and Multichannel Intracortical Microstimulation within Somatosensory Cortex

    PubMed Central

    Overstreet, Cynthia K.; Hellman, Randall B.; Ponce Wong, Ruben D.; Santos, Veronica J.; Helms Tillery, Stephen I.

    2016-01-01

    The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS) of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g., encoding contact events and pressure on multiple digits). In this study, we evaluated the ability of an awake, behaving non-human primate (Macaca mulatta) to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex. PMID:27995126

  5. Optimized multichannel decomposition for texture segmentation using Gabor filter bank

    NASA Astrophysics Data System (ADS)

    Nezamoddini-Kachouie, Nezamoddin; Alirezaie, Javad

    2004-05-01

    Texture segmentation and analysis is an important aspect of pattern recognition and digital image processing. Previous approaches to texture analysis and segmentation perform multi-channel filtering by applying a set of filters to the image. In this paper we describe a texture segmentation algorithm based on multi-channel filtering that is optimized using diagonal high frequency residual. Gabor band pass filters with different radial spatial frequencies and different orientations have optimum resolution in time and frequency domain. The image is decomposed by a set of Gabor filters into a number of filtered images; each one contains variation of intensity on a sub-band frequency and orientation. The features extracted by Gabor filters have been applied for image segmentation and analysis. There are some important considerations about filter parameters and filter bank coverage in frequency domain. This filter bank does not completely cover the corners of the frequency domain along the diagonals. In our method we optimize the spatial implementation for the Gabor filter bank considering the diagonal high frequency residual. Segmentation is accomplished by a feedforward backpropagation multi-layer perceptron that is trained by optimized extracted features. After MLP is trained the input image is segmented and each pixel is assigned to the proper class.

  6. Phoneme recognition and confusions with multichannel cochlear implants: consonants.

    PubMed

    Välimaa, Taina T; Määttä, Taisto K; Löppönen, Heikki J; Sorri, Martti J

    2002-10-01

    The aim of this study was to investigate how postlingually severely or profoundly hearing-impaired adults relearn to recognize consonants after receiving multichannel cochlear implants. Consonant recognition of 19 Finnish-speaking subjects was studied for a minimum of 6 months and a maximum of 24 months using an open-set nonsense-syllable test in a prospective repeated-measure design. Responses were coded for phoneme errors, and proportions of correct responses and 95% confidence intervals were calculated for recognition and confusions. Two years after the switch-on, the mean recognition of consonants was 71% (95% confidence interval = 68-73%). The manner of articulation was easier to classify than the place of articulation, and the consonants [s], [r], [k], [t], [p], [n], and [j] were easier to recognize than [h], [m], [l], and [v]. Adaptation to electrical hearing with a multichannel cochlear implant was successful, but consonants with alveolar, palatal, or velar transitions (high F2) were better recognized than consonants with labial transitions (low F2). The locus of the F2 transitions of the consonants with better recognition was at the frequencies 1.5-2 kHz, whereas the locus of the F2 transitions of the consonants with poorer recognition was at 1.2-1.4 kHz. A tendency to confuse consonants with the closest consonant with higher F2 transition was also noted.

  7. Phoneme recognition and confusions with multichannel cochlear implants: vowels.

    PubMed

    Välimaa, Taina T; Määttä, Taisto K; Löppönen, Heikki J; Sorri, Martti J

    2002-10-01

    The aim of this study was to investigate how postlingually severely or profoundly hearing-impaired adults relearn to recognize vowels after receiving multichannel cochlear implants. Vowel recognition of 19 Finnish-speaking subjects was studied for a minimum of 6 months and a maximum of 24 months using an open-set nonsense-syllable test in a prospective repeated-measure design. The responses were coded for phoneme errors, and 95% confidence intervals for recognition and confusions were calculated. The average vowel recognition was 68% (95% confidence interval = 66-70%) 6 months after switch-on and 80% (95% confidence interval = 78-82%) 24 months after switch-on. The vowels [ae], [u], [i], [o], and [a] were the easiest to recognize, and the vowels [y], [e], and [ø] were the most difficult. In conclusion, adaptation to electrical hearing using a multichannel cochlear implant was achieved well; but for at least 2 years, given two vowels with either F1 or F2 at roughly the some frequencies, confusions were drawn more towards the closest vowel with the next highest F1 or F2.

  8. Multi-channel fiber photometry for population neuronal activity recording.

    PubMed

    Guo, Qingchun; Zhou, Jingfeng; Feng, Qiru; Lin, Rui; Gong, Hui; Luo, Qingming; Zeng, Shaoqun; Luo, Minmin; Fu, Ling

    2015-10-01

    Fiber photometry has become increasingly popular among neuroscientists as a convenient tool for the recording of genetically defined neuronal population in behaving animals. Here, we report the development of the multi-channel fiber photometry system to simultaneously monitor neural activities in several brain areas of an animal or in different animals. In this system, a galvano-mirror modulates and cyclically couples the excitation light to individual multimode optical fiber bundles. A single photodetector collects excited light and the configuration of fiber bundle assembly and the scanner determines the total channel number. We demonstrated that the system exhibited negligible crosstalk between channels and optical signals could be sampled simultaneously with a sample rate of at least 100 Hz for each channel, which is sufficient for recording calcium signals. Using this system, we successfully recorded GCaMP6 fluorescent signals from the bilateral barrel cortices of a head-restrained mouse in a dual-channel mode, and the orbitofrontal cortices of multiple freely moving mice in a triple-channel mode. The multi-channel fiber photometry system would be a valuable tool for simultaneous recordings of population activities in different brain areas of a given animal and different interacting individuals.

  9. A multi-channel high-? SQUID system and its application

    NASA Astrophysics Data System (ADS)

    Itozaki, Hideo; Tanaka, Saburou; Toyoda, Haruhisa; Hirano, Tetsuya; Haruta, Yasuhiro; Nomura, Masahiro; Saijou, Tetsuya; Kado, Hisashi

    1996-04-01

    A multi-channel high-temperature superconducting interference device (high-0953-2048/9/4A/011/img11 SQUID) system has been developed. Step edge junctions were employed for the SQUID. Magnetic field resolution was in the range 0953-2048/9/4A/011/img12 at 1 Hz, 0953-2048/9/4A/011/img13 at 10 Hz and 0953-2048/9/4A/011/img14 at 1 kHz. We have designed and developed 16-channel and 32-channel high-0953-2048/9/4A/011/img11 SQUID systems. We used them in a magnetically shielded room to measure magnetic signals of the human heart. We obtained clear multi-channel magnetocardiac signals, which showed clearly the R, S, and T wave peaks. A clear isofield contour map of magnetocardiac signals was also obtained. We also observed activities of the stomach using a tiny steel ball as a tracer. These data indicate that the use of the high-0953-2048/9/4A/011/img11 SQUID is feasible for these biomagnetic applications.

  10. An Optimal Pulse System Design by Multichannel Sensors Fusion.

    PubMed

    Wang, Dimin; Zhang, David; Lu, Guangming

    2016-03-01

    Pulse diagnosis, recognized as an important branch of traditional Chinese medicine (TCM), has a long history for health diagnosis. Certain features in the pulse are known to be related with the physiological status, which have been identified as biomarkers. In recent years, an electronic equipment is designed to obtain the valuable information inside pulse. Single-point pulse acquisition platform has the benefit of low cost and flexibility, but is time consuming in operation and not standardized in pulse location. The pulse system with a single-type sensor is easy to implement, but is limited in extracting sufficient pulse information. This paper proposes a novel system with optimal design that is special for pulse diagnosis. We combine a pressure sensor with a photoelectric sensor array to make a multichannel sensor fusion structure. Then, the optimal pulse signal processing methods and sensor fusion strategy are introduced for the feature extraction. Finally, the developed optimal pulse system and methods are tested on pulse database acquired from the healthy subjects and the patients known to be afflicted with diabetes. The experimental results indicate that the classification accuracy is increased significantly under the optimal design and also demonstrate that the developed pulse system with multichannel sensors fusion is more effective than the previous pulse acquisition platforms.

  11. Threshold magnitudes for a multichannel correlation detector in background seismicity

    SciTech Connect

    Carmichael, Joshua D.; Hartse, Hans

    2016-04-01

    Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against "target" data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because non-target signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening non-target background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over six months of 2010, by processing International Monitoring System (IMS) array data with a multichannel waveform correlation detector. Our method (1) accounts for low amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. Furthermore, we find that underground explosions with body wave magnitudes mb = 1.66 are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P -waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the Feb.12, 2013 announced nuclear test.

  12. Enhanced multi-channel model for auditory spectrotemporal integration.

    PubMed

    Oh, Yonghee; Feth, Lawrence L; Hoglund, Evelyn M

    2015-11-01

    In psychoacoustics, a multi-channel model has traditionally been used to describe detection improvement for multicomponent signals. This model commonly postulates that energy or information within either the frequency or time domain is transformed into a probabilistic decision variable across the auditory channels, and that their weighted linear summation determines optimum detection performance when compared to a critical value such as a decision criterion. In this study, representative integration-based channel models, specifically focused on signal-processing properties of the auditory periphery are reviewed (e.g., Durlach's channel model). In addition, major limitations of the previous channel models are described when applied to spectral, temporal, and spectrotemporal integration performance by human listeners. Here, integration refers to detection threshold improvements as the number of brief tone bursts in a signal is increased. Previous versions of the multi-channel model underestimate listener performance in these experiments. Further, they are unable to apply a single processing unit to signals which vary simultaneously in time and frequency. Improvements to the previous channel models are proposed by considering more realistic conditions such as correlated signal responses in the auditory channels, nonlinear properties in system performance, and a peripheral processing unit operating in both time and frequency domains.

  13. A simple approach to evaluate the kinetic rate constant for ATP synthesis in resting human skeletal muscle at 7 T.

    PubMed

    Ren, Jimin; Sherry, A Dean; Malloy, Craig R

    2016-09-01

    Inversion transfer (IT) is a well-established technique with multiple attractive features for analysis of kinetics. However, its application in measurement of ATP synthesis rate in vivo has lagged behind the more common saturation transfer (ST) techniques. One well-recognized issue with IT is the complexity of data analysis in comparison with much simpler analysis by ST. This complexity arises, in part, because the γ-ATP spin is involved in multiple chemical reactions and magnetization exchanges, whereas Pi is involved in a single reaction, Pi → γ-ATP. By considering the reactions involving γ-ATP only as a lumped constant, the rate constant for the reaction of physiological interest, kPi→γATP , can be determined. Here, we present a new IT data analysis method to evaluate kPi→γATP using data collected from resting human skeletal muscle at 7 T. The method is based on the basic Bloch-McConnell equation, which relates kPi→γATP to m˙Pi, the rate of Pi magnetization change. The kPi→γATP value is accessed from m˙Pi data by more familiar linear correlation approaches. For a group of human subjects (n = 15), the kPi→γATP value derived for resting calf muscle was 0.066 ± 0.017 s(-1) , in agreement with literature-reported values. In this study we also explored possible time-saving strategies to speed up data acquisition for kPi→γATP evaluation using simulations. The analysis indicates that it is feasible to carry out a (31) P IT experiment in about 10 min or less at 7 T with reasonable outcome in kPi→γATP variance for measurement of ATP synthesis in resting human skeletal muscle. We believe that this new IT data analysis approach will facilitate the wide acceptance of IT to evaluate ATP synthesis rate in vivo. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Regional neurochemical profiles in the human brain measured by ¹H MRS at 7 T using local B₁ shimming.

    PubMed

    Emir, Uzay E; Auerbach, Edward J; Van De Moortele, Pierre-Francois; Marjańska, Małgorzata; Uğurbil, Kamil; Terpstra, Melissa; Tkáč, Ivan; Oz, Gülin

    2012-01-01

    Increased sensitivity and chemical shift dispersion at ultra-high magnetic fields enable the precise quantification of an extended range of brain metabolites from (1)H MRS. However, all previous neurochemical profiling studies using single-voxel MRS at 7 T have been limited to data acquired from the occipital lobe with half-volume coils. The challenges of (1)H MRS of the human brain at 7 T include short T(2) and complex B(1) distribution that imposes limitations on the maximum achievable B(1) strength. In this study, the feasibility of acquiring and quantifying short-echo (TE =8 ms), single-voxel (1)H MR spectra from multiple brain regions was demonstrated by utilizing a 16-channel transceiver array coil with 16 independent transmit channels, allowing local transmit B(1) (B(1)(+)) shimming. Spectra were acquired from volumes of interest of 1-8 mL in brain regions that are of interest for various neurological disorders: frontal white matter, posterior cingulate, putamen, substantia nigra, pons and cerebellar vermis. Local B(1)(+) shimming substantially increased the transmit efficiency, especially in the peripheral and ventral brain regions. By optimizing a STEAM sequence for utilization with a 16-channel coil, artifact-free spectra were acquired with a small chemical shift displacement error (<5% /ppm/direction) from all regions. The high signal-to-noise ratio enabled the quantification of neurochemical profiles consisting of at least nine metabolites, including γ-aminobutyric acid, glutamate and glutathione, in all brain regions. Significant differences in neurochemical profiles were observed between brain regions. For example, γ-aminobutyric acid levels were highest in the substantia nigra, total creatine was highest in the cerebellar vermis and total choline was highest in the pons, consistent with the known biochemistry of these regions. These findings demonstrate that single-voxel (1)H MRS at ultra-high field can reliably detect region-specific neurochemical

  15. Assessment of the intrinsic radiosensitivity of glioma cells and monitoring of metabolite ratio changes after irradiation by 14.7-T high-resolution ¹H MRS.

    PubMed

    Zhang, Zhaotao; Zeng, Qingshi; Liu, Yun; Li, Chuanfu; Feng, Dechao; Wang, Jianzheng

    2014-05-01

    Gliomas are the most common type of primary brain tumor. Radiation therapy (RT) is the primary adjuvant treatment to eliminate residual tumor tissue after surgery. However, the current RT guided by conventional imaging is unsatisfactory. A fundamental question is whether it is possible to further enhance the effectiveness and efficiency of RT based on individual radiosensitivity. In this research, to probe the correlation between radiosensitivity and the metabolite characteristics of glioma cells in vitro, a perchloric acid (PCA) extracting method was used to obtain water-soluble metabolites [such as N-acetylaspartate (NAA), choline (Cho), creatine (Cr) and succinate (Suc)]. Spectral patterns from these processed water-soluble metabolite samples were acquired by in vitro 14.7-T high-resolution ¹H MRS. Survival fraction analysis was performed to test the intrinsic radiosensitivity of glioma cell lines. Good ¹H MRS of PCA extracts from glioma cells was obtained. The radiosensitivity of glioma cells correlated positively with the Cho/Cr and Cho/NAA ratios, but negatively with the Suc/Cr ratio. Irradiation of the C6 cell line at different X-ray dosages led to changes in metabolite ratios and apoptotic rates. A plateau phase of metabolite ratio change and a decrease in apoptotic rate were found in the C6 cell line. We conclude that in vitro high-resolution ¹H MRS possesses the sensitivity required to detect subtle biochemical changes at the cellular level. ¹H MRS may aid in the assessment of the individual radiosensitivity of brain tumors, which is pivotal in the identification of the biological target volume.

  16. Modelling Temporal Stability of EPI Time Series Using Magnitude Images Acquired with Multi-Channel Receiver Coils

    PubMed Central

    Hutton, Chloe; Balteau, Evelyne; Lutti, Antoine; Josephs, Oliver; Weiskopf, Nikolaus

    2012-01-01

    In 2001, Krueger and Glover introduced a model describing the temporal SNR (tSNR) of an EPI time series as a function of image SNR (SNR0). This model has been used to study physiological noise in fMRI, to optimize fMRI acquisition parameters, and to estimate maximum attainable tSNR for a given set of MR image acquisition and processing parameters. In its current form, this noise model requires the accurate estimation of image SNR. For multi-channel receiver coils, this is not straightforward because it requires export and reconstruction of large amounts of k-space raw data and detailed, custom-made image reconstruction methods. Here we present a simple extension to the model that allows characterization of the temporal noise properties of EPI time series acquired with multi-channel receiver coils, and reconstructed with standard root-sum-of-squares combination, without the need for raw data or custom-made image reconstruction. The proposed extended model includes an additional parameter κ which reflects the impact of noise correlations between receiver channels on the data and scales an apparent image SNR (SNR′0) measured directly from root-sum-of-squares reconstructed magnitude images so that κ = SNR′0/SNR0 (under the condition of SNR0>50 and number of channels ≤32). Using Monte Carlo simulations we show that the extended model parameters can be estimated with high accuracy. The estimation of the parameter κ was validated using an independent measure of the actual SNR0 for non-accelerated phantom data acquired at 3T with a 32-channel receiver coil. We also demonstrate that compared to the original model the extended model results in an improved fit to human task-free non-accelerated fMRI data acquired at 7T with a 24-channel receiver coil. In particular, the extended model improves the prediction of low to medium tSNR values and so can play an important role in the optimization of high-resolution fMRI experiments at lower SNR levels. PMID:23284874

  17. Application of multi-channel photoelastic imaging technology in array type ultrasonic nondestructive testing

    NASA Astrophysics Data System (ADS)

    Fan, Zhen-zhong; Bi, Chao

    2015-08-01

    With the rapid development of modern nondestructive testing technologies, ultrasonic phased array and Ultrasonic array testing technology has been used widely, at the same time the propagation process of ultrasonic in the material becomes more and more complex. In order to make the ultrasonic propagation path become visible and researchers can observe the acoustic field directly, considering the properties of the ultrasonic as a stress wave, according to the theory of polarized light interference, a multi-channel dynamic photoelastic imaging system is developed successfully. The system can generate many kinds of focusing ultrasonic fields in optical specimen by controlling the ultrasonic transmission delay time of each equipment channel, and the system has the ability to simulate the acoustic field's focusing process of the ultrasonic phased array. The image shot by CCD camera reflects the propagation process of the acoustic field in the specimen, and the dynamic video is formed under control of the timing circuit, and the system has the ability to save the captured image in the computer.

  18. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization.

    PubMed

    Fujii, Kenjirou; Sakamoto, Yoshihiro; Wang, Wei; Arie, Hiroaki; Schmitz, Alexander; Sugano, Shigeki

    2015-09-30

    A hyperbolic positioning method with antenna arrays consisting of proximately-located antennas and a multi-channel pseudolite is proposed in order to overcome the problems of indoor positioning with conventional pseudolites (ground-based GPS transmitters). A two-dimensional positioning experiment using actual devices is conducted. The experimental result shows that the positioning accuracy varies centimeter- to meter-level according to the geometric relation between the pseudolite antennas and the receiver. It also shows that the bias error of the carrier-phase difference observables is more serious than their random error. Based on the size of the bias error of carrier-phase difference that is inverse-calculated from the experimental result, three-dimensional positioning performance is evaluated by computer simulation. In addition, in the three-dimensional positioning scenario, an initial value convergence analysis of the non-linear least squares is conducted. Its result shows that initial values that can converge to a right position exist at least under the proposed antenna setup. The simulated values and evaluation methods introduced in this work can be applied to various antenna setups; therefore, by using them, positioning performance can be predicted in advance of installing an actual system.

  19. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization

    PubMed Central

    Fujii, Kenjirou; Sakamoto, Yoshihiro; Wang, Wei; Arie, Hiroaki; Schmitz, Alexander; Sugano, Shigeki

    2015-01-01

    A hyperbolic positioning method with antenna arrays consisting of proximately-located antennas and a multi-channel pseudolite is proposed in order to overcome the problems of indoor positioning with conventional pseudolites (ground-based GPS transmitters). A two-dimensional positioning experiment using actual devices is conducted. The experimental result shows that the positioning accuracy varies centimeter- to meter-level according to the geometric relation between the pseudolite antennas and the receiver. It also shows that the bias error of the carrier-phase difference observables is more serious than their random error. Based on the size of the bias error of carrier-phase difference that is inverse-calculated from the experimental result, three-dimensional positioning performance is evaluated by computer simulation. In addition, in the three-dimensional positioning scenario, an initial value convergence analysis of the non-linear least squares is conducted. Its result shows that initial values that can converge to a right position exist at least under the proposed antenna setup. The simulated values and evaluation methods introduced in this work can be applied to various antenna setups; therefore, by using them, positioning performance can be predicted in advance of installing an actual system. PMID:26437405

  20. Measurements of T1 and T2 relaxation times of colon cancer metastases in rat liver at 7 T.

    PubMed

    Gambarota, G; Veltien, A; van Laarhoven, H; Philippens, M; Jonker, A; Mook, O R; Frederiks, W M; Heerschap, A

    2004-12-01

    The purpose of this study was to investigate the magnetic resonance imaging (MRI) characteristics of colon cancer metastases in rat liver at 7 T. A dedicated RF microstrip coil of novel design was built in order to increase the signal-to-noise ratio and, in combination with respiratory triggering, to minimize motion artifacts. T1- and T2-weighted MR imaging was performed to follow tumor growth. T1-weighted images provided a good anatomical delineation of the liver structure, while the best contrast between metastases and normal liver tissue was achieved with T2-weighted images. Measurements of T1 and T2 relaxation times were performed with inversion recovery FLASH and Carr-Purcell-Meiboom-Gill and inversion recovery FLASH imaging sequences, respectively, for quantitative MR characterization of metastases. Both the T1 and T2 of the metastases were significantly higher than those of normal liver tissue. Further, an increase in the T1 relaxation time of the metastases was observed with tumor growth. These findings suggest that quantitative in vivo MR characterization provides information on tumor development and possibly response to therapy, though additional studies are needed to elucidate the correlation between the changes in relaxation times and tumor microenvironment.

  1. Functional magnetic resonance imaging of the rat cerebellum during electrical stimulation of the fore- and hindpaw at 7 T

    NASA Astrophysics Data System (ADS)

    Peeters, Ronald; Verhoye, Marleen; Vos, Bart; De Schutter, Erik; Van der Linden, Anne-Marie

    1999-05-01

    Blood oxygenation level dependent contrast (BOLD) functional MRI responses at 7T were observed in the cerebellum of alpha- chloralose anesthetized rats in response to innocuous electrical stimulation of a forepaw or hindpaw. The responses were imaged in both coronal and sagittal slices which allowed for a clear delineation and localization of the observed activations. We demonstrate the validity of our fMRI protocol by imaging the responses in somatosensory cortex to the same stimuli and by showing a high level of reproducibility of the cerebellar responses. Widespread bilateral activations were found with mainly a patchy and medio-lateral band organization, more pronounced ipsilaterally. There was no overlap between the cerebellar activations caused by forepaw or hindpaw stimulation. Most remarkable was the overall horizontal organization of these responses: for both stimulation paradigms the patches and bands of activation were roughly positioned in either a cranial or caudal plane running antero-posteriorly through the whole cerebellum. This is the first fMRI study in the cerebellum of the rat. We relate our findings to the known projection patterns found with other techniques and to human fMRI studies. The horizontal organization found wasn't observed before in other studies using other techniques.

  2. Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7 T.

    PubMed

    Huber, Laurentius; Goense, Jozien; Kennerley, Aneurin J; Ivanov, Dimo; Krieger, Steffen N; Lepsien, Jöran; Trampel, Robert; Turner, Robert; Möller, Harald E

    2014-08-15

    Decreases in stimulus-dependent blood oxygenation level dependent (BOLD) signal and their underlying neurovascular origins have recently gained considerable interest. In this study a multi-echo, BOLD-corrected vascular space occupancy (VASO) functional magnetic resonance imaging (fMRI) technique was used to investigate neurovascular responses during stimuli that elicit positive and negative BOLD responses in human brain at 7 T. Stimulus-induced BOLD, cerebral blood volume (CBV), and cerebral blood flow (CBF) changes were measured and analyzed in 'arterial' and 'venous' blood compartments in macro- and microvasculature. We found that the overall interplay of mean CBV, CBF and BOLD responses is similar for tasks inducing positive and negative BOLD responses. Some aspects of the neurovascular coupling however, such as the temporal response, cortical depth dependence, and the weighting between 'arterial' and 'venous' contributions, are significantly different for the different task conditions. Namely, while for excitatory tasks the BOLD response peaks at the cortical surface, and the CBV change is similar in cortex and pial vasculature, inhibitory tasks are associated with a maximum negative BOLD response in deeper layers, with CBV showing strong constriction of surface arteries and a faster return to baseline. The different interplays of CBV, CBF and BOLD during excitatory and inhibitory responses suggests different underlying hemodynamic mechanisms.

  3. SAR Reduction in 7T C-Spine Imaging Using a “Dark Modes” Transmit Array Strategy

    PubMed Central

    Eryaman, Yigitcan; Guerin, Bastien; Keil, Boris; Mareyam, Azma; Herraiz, Joaquin L.; Kosior, Robert K.; Martin, Adrian; Torrado-Carvajal, Angel; Malpica, Norberto; Hernandez-Tamames, Juan A.; Schiavi, Emanuele; Adalsteinsson, Elfar; Wald, Lawrence L.

    2016-01-01

    Purpose Local specific absorption rate (SAR) limits many applications of parallel transmit (pTx) in ultra high-field imaging. In this Note, we introduce the use of an array element, which is intentionally inefficient at generating spin excitation (a “dark mode”) to attempt a partial cancellation of the electric field from those elements that do generate excitation. We show that adding dipole elements oriented orthogonal to their conventional orientation to a linear array of conventional loop elements can lower the local SAR hotspot in a C-spine array at 7 T. Methods We model electromagnetic fields in a head/torso model to calculate SAR and excitation B1+ patterns generated by conventional loop arrays and loop arrays with added electric dipole elements. We utilize the dark modes that are generated by the intentional and inefficient orientation of dipole elements in order to reduce peak 10g local SAR while maintaining excitation fidelity. Results For B1+ shimming in the spine, the addition of dipole elements did not significantly alter the B1+ spatial pattern but reduced local SAR by 36%. Conclusion The dipole elements provide a sufficiently complimentary B1+ and electric field pattern to the loop array that can be exploited by the radiofrequency shimming algorithm to reduce local SAR. PMID:24753012

  4. Magnetic Resonance Thermometry at 7T for Real-Time Monitoring and Correction of Ultrasound Induced Mild Hyperthermia

    PubMed Central

    Fite, Brett Z.; Liu, Yu; Kruse, Dustin E.; Caskey, Charles F.; Walton, Jeffrey H.; Lai, Chun-Yen; Mahakian, Lisa M.; Larrat, Benoit; Dumont, Erik; Ferrara, Katherine W.

    2012-01-01

    While Magnetic Resonance Thermometry (MRT) has been extensively utilized for non-invasive temperature measurement, there is limited data on the use of high field (≥7T) scanners for this purpose. MR-guided Focused Ultrasound (MRgFUS) is a promising non-invasive method for localized hyperthermia and drug delivery. MRT based on the temperature sensitivity of the proton resonance frequency (PRF) has been implemented in both a tissue phantom and in vivo in a mouse Met-1 tumor model, using partial parallel imaging (PPI) to speed acquisition. An MRgFUS system capable of delivering a controlled 3D acoustic dose during real time MRT with proportional, integral, and derivative (PID) feedback control was developed and validated. Real-time MRT was validated in a tofu phantom with fluoroptic temperature measurements, and acoustic heating simulations were in good agreement with MR temperature maps. In an in vivo Met-1 mouse tumor, the real-time PID feedback control is capable of maintaining the desired temperature with high accuracy. We found that real time MR control of hyperthermia is feasible at high field, and k-space based PPI techniques may be implemented for increasing temporal resolution while maintaining temperature accuracy on the order of 1°C. PMID:22536396

  5. Representation of Sound Objects within Early-Stage Auditory Areas: A Repetition Effect Study Using 7T fMRI.

    PubMed

    Da Costa, Sandra; Bourquin, Nathalie M-P; Knebel, Jean-François; Saenz, Melissa; van der Zwaag, Wietske; Clarke, Stephanie

    2015-01-01

    Environmental sounds are highly complex stimuli whose recognition depends on the interaction of top-down and bottom-up processes in the brain. Their semantic representations were shown to yield repetition suppression effects, i. e. a decrease in activity during exposure to a sound that is perceived as belonging to the same source as a preceding sound. Making use of the high spatial resolution of 7T fMRI we have investigated the representations of sound objects within early-stage auditory areas on the supratemporal plane. The primary auditory cortex was identified by means of tonotopic mapping and the non-primary areas by comparison with previous histological studies. Repeated presentations of different exemplars of the same sound source, as compared to the presentation of different sound sources, yielded significant repetition suppression effects within a subset of early-stage areas. This effect was found within the right hemisphere in primary areas A1 and R as well as two non-primary areas on the antero-medial part of the planum temporale, and within the left hemisphere in A1 and a non-primary area on the medial part of Heschl's gyrus. Thus, several, but not all early-stage auditory areas encode the meaning of environmental sounds.

  6. On the effect of resistive EEG electrodes and leads during 7 T MRI: simulation and temperature measurement studies.

    PubMed

    Angelone, Leonardo M; Vasios, Christos E; Wiggins, Graham; Purdon, Patrick L; Bonmassar, Giorgio

    2006-07-01

    The purpose of the study was to assess the effects of electrodes and leads on electromagnetic field and specific absorption rate (SAR) distributions during simultaneous electroencephalography (EEG) and 7-T MRI. Two different approaches were evaluated and compared to the case without electrodes: (a) the use of different EEG lead resistivity and (b) the use of a radiofrequency (RF) resistor on the lead near the EEG electrode. These configurations are commonly used in research and clinical settings. Electromagnetic field and SAR distributions generated by the transmit RF coil were evaluated using finite difference time domain simulations on an anatomically accurate head model. The spatiotemporal changes of temperature were estimated with the heat equation. Temperature changes during turbo spin echo sequences were also measured using a custom-made phantom: the conductive head mannequin anthropomorphic (CHEMA). The results of this study showed that the SAR and temperature distributions in CHEMA (a) increased when using low resistive leads, with respect to the no-electrode case; (b) were affected by the resistivity of the EEG leads, with carbon fiber leads performing better than standard copper leads; and (c) were not affected by the use of an RF resistor between the EEG electrode and the lead.

  7. Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak

    NASA Astrophysics Data System (ADS)

    Shi, Peiwan; Shi, Zhongbing; Chen, Wei; Zhong, Wulyu; Yang, Zengchen; Jiang, Min; Zhang, Boyu; Li, Yonggao; Yu, Liming; Liu, Zetian; Ding, Xuantong

    2016-07-01

    A multichannel microwave interferometer system has been developed on the HL-2A tokomak. Its working frequency is well designed to avoid the fringe jump effect. Taking the structure of HL-2A into account, its antennas are installed in the horizontal direction, i.e. one launcher in high field side (HFS) and four receivers in low field side (LFS). The fan-shaped measurement area covers those regions where the magnetohydrodynamics (MHD) instabilities are active. The heterodyne technique contributes to its high temporal resolution (1 μs). It is possible for the multichannel system to realize simultaneous measurements of density and its fluctuation. The quadrature phase detection based on the zero-crossing method is introduced to density measurement. With this system, reliable line-averaged densities and density profiles are obtained. The location of the saturated internal kink mode can be figured out from the mode showing different intensities on four channels, and the result agrees well with that measured by electron cyclotron emission imaging (ECEI). supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB104002, 2013GB107002, 2014GB107001) and National Natural Science Foundation of China (Nos. 11475058, 11475057, 11261140326, 11405049)

  8. Modified reconstruction algorithm based on space-time adaptive processing for multichannel synthetic aperture radar systems in azimuth

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojiang; Gao, Yesheng; Wang, Kaizhi; Liu, Xingzhao

    2016-07-01

    A spectrum reconstruction algorithm based on space-time adaptive processing (STAP) can effectively suppress azimuth ambiguity for multichannel synthetic aperture radar (SAR) systems in azimuth. However, the traditional STAP-based reconstruction approach has to estimate the covariance matrix and calculate matrix inversion (MI) for each Doppler frequency bin, which will result in a very large computational load. In addition, the traditional STAP-based approach has to know the exact platform velocity, pulse repetition frequency, and array configuration. Errors involving these parameters will significantly degrade the performance of ambiguity suppression. A modified STAP-based approach to solve these problems is presented. The traditional array steering vectors and corresponding covariance matrices are Doppler-variant in the range-Doppler domain. After preprocessing by a proposed phase compensation method, they would be independent of Doppler bins. Therefore, the modified STAP-based approach needs to estimate the covariance matrix and calculate MI only once. The computation load could be greatly reduced. Moreover, by combining the reconstruction method and a proposed adaptive parameter estimation method, the modified method is able to successfully achieve multichannel SAR signal reconstruction and suppress azimuth ambiguity without knowing the above parameters. Theoretical analysis and experiments showed the simplicity and efficiency of the proposed methods.

  9. Improving Pulse Rate Measurements during Random Motion Using a Wearable Multichannel Reflectance Photoplethysmograph

    PubMed Central

    Warren, Kristen M.; Harvey, Joshua R.; Chon, Ki H.; Mendelson, Yitzhak

    2016-01-01

    Photoplethysmographic (PPG) waveforms are used to acquire pulse rate (PR) measurements from pulsatile arterial blood volume. PPG waveforms are highly susceptible to motion artifacts (MA), limiting the implementation of PR measurements in mobile physiological monitoring devices. Previous studies have shown that multichannel photoplethysmograms can successfully acquire diverse signal information during simple, repetitive motion, leading to differences in motion tolerance across channels. In this paper, we investigate the performance of a custom-built multichannel forehead-mounted photoplethysmographic sensor under a variety of intense motion artifacts. We introduce an advanced multichannel template-matching algorithm that chooses the channel with the least motion artifact to calculate PR for each time instant. We show that for a wide variety of random motion, channels respond differently to motion artifacts, and the multichannel estimate outperforms single-channel estimates in terms of motion tolerance, signal quality, and PR errors. We have acquired 31 data sets consisting of PPG waveforms corrupted by random motion and show that the accuracy of PR measurements achieved was increased by up to 2.7 bpm when the multichannel-switching algorithm was compared to individual channels. The percentage of PR measurements with error ≤ 5 bpm during motion increased by 18.9% when the multichannel switching algorithm was compared to the mean PR from all channels. Moreover, our algorithm enables automatic selection of the best signal fidelity channel at each time point among the multichannel PPG data. PMID:26959034

  10. Improving Pulse Rate Measurements during Random Motion Using a Wearable Multichannel Reflectance Photoplethysmograph.

    PubMed

    Warren, Kristen M; Harvey, Joshua R; Chon, Ki H; Mendelson, Yitzhak

    2016-03-07

    Photoplethysmographic (PPG) waveforms are used to acquire pulse rate (PR) measurements from pulsatile arterial blood volume. PPG waveforms are highly susceptible to motion artifacts (MA), limiting the implementation of PR measurements in mobile physiological monitoring devices. Previous studies have shown that multichannel photoplethysmograms can successfully acquire diverse signal information during simple, repetitive motion, leading to differences in motion tolerance across channels. In this paper, we investigate the performance of a custom-built multichannel forehead-mounted photoplethysmographic sensor under a variety of intense motion artifacts. We introduce an advanced multichannel template-matching algorithm that chooses the channel with the least motion artifact to calculate PR for each time instant. We show that for a wide variety of random motion, channels respond differently to motion artifacts, and the multichannel estimate outperforms single-channel estimates in terms of motion tolerance, signal quality, and PR errors. We have acquired 31 data sets consisting of PPG waveforms corrupted by random motion and show that the accuracy of PR measurements achieved was increased by up to 2.7 bpm when the multichannel-switching algorithm was compared to individual channels. The percentage of PR measurements with error ≤ 5 bpm during motion increased by 18.9% when the multichannel switching algorithm was compared to the mean PR from all channels. Moreover, our algorithm enables automatic selection of the best signal fidelity channel at each time point among the multichannel PPG data.

  11. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2004-05-18

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  12. A study of fault injection in multichannel spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1991-01-01

    NASA/Marshall Space Flight Center proposes to implement fault injection into an electrical power system breadboard to study the reactions of the various control elements of this breadboard. Among the elements to be studied are the remote power controllers, the algorithms in the control computers, and the artificially intelligent control programs resident in this breadboard. To this end, a study of electrical power is being performed to yield a list of the most common power system faults. The results of this study are being applied to a multichannel high-voltage DC spacecraft power system called the Large Autonomous Spacecraft Electrical Power System Breadboard. Some of the reactions of the breadboard to some of the faults which have been encountered are presented along with the results of this study.

  13. Adaptive enhancement of magnetoencephalographic signals via multichannel filtering

    SciTech Connect

    Lewis, P.S.

    1989-01-01

    A time-varying spatial/temporal filter for enhancing multichannel magnetoencephalographic (MEG) recordings of evoked responses is described. This filter is based in projections derived from a combination of measured data and a priori models of the expected response. It produces estimates of the evoked fields in single trial measurements. These estimates can reduce the need for signal averaging in some situations. The filter uses the a priori model information to enhance responses where they exist, but avoids creating responses that do not exist. Examples are included of the filter's application to both MEG single trial data containing an auditory evoked field and control data with no evoked field. 5 refs., 7 figs.

  14. Real time analysis of multichannel data in tokamaks

    NASA Astrophysics Data System (ADS)

    Wijnands, T.; Parlange, F.; Couturier, B.; Moulin, D.

    1996-10-01

    Four different techniques for the fast analysis of multichannel data in plasma physics are discussed. All four of these techniques are general and sufficiently fast to be used in real time applications. Function parametrization, canonical correlation analysis and a neural network of the multilayer perceptron (MLP) type are compared with a unique linear mapping based on a singular value decomposition, which is used as a reference. Applications deal with the identification of the plasma boundary and some global plasma parameters in the DIII-D and the Tore Supra tokamaks by using magnetic measurements. The results of an MLP-1 neural network, employed for the real time plasma position determination in Tore Supra, are presented

  15. A calibration method of the multi-channel imaging lidar

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Liu, Jun; Shu, Rong

    2014-06-01

    We design a kind of imaging LiDAR with sixteen channels, which consists of a fiber laser source, dual scanning galvanometers, range measurement circuits and information processing circuits etc. The image LiDAR provides sixteen range measurements for one laser shot and the distance accuracy of each channel is about 4cm. This paper provides a calibrate method to correct point cloud images captured with the multi-channel LiDAR. The method needs to construct different slanted planes to cover the imaging field, and establish precise plane equations in the known ground coordinates, then fit planes with point clouds data and calculate correction parameters of all channels through the error model. The image accuracy is better than 5cm processed by this calibration method.

  16. A multichannel nanosensor for instantaneous readout of cancer drug mechanisms

    NASA Astrophysics Data System (ADS)

    Rana, Subinoy; Le, Ngoc D. B.; Mout, Rubul; Saha, Krishnendu; Tonga, Gulen Yesilbag; Bain, Robert E. S.; Miranda, Oscar R.; Rotello, Caren M.; Rotello, Vincent M.

    2015-01-01

    Screening methods that use traditional genomic, transcriptional, proteomic and metabonomic signatures to characterize drug mechanisms are known. However, they are time consuming and require specialized equipment. Here, we present a high-throughput multichannel sensor platform that can profile the mechanisms of various chemotherapeutic drugs in minutes. The sensor consists of a gold nanoparticle complexed with three different fluorescent proteins that can sense drug-induced physicochemical changes on cell surfaces. In the presence of cells, fluorescent proteins are rapidly displaced from the gold nanoparticle surface and fluorescence is restored. Fluorescence ‘turn on’ of the fluorescent proteins depends on the drug-induced cell surface changes, generating patterns that identify specific mechanisms of cell death induced by drugs. The nanosensor is generalizable to different cell types and does not require processing steps before analysis, offering an effective way to expedite research in drug discovery, toxicology and cell-based sensing.

  17. Detection of forced oscillations in power systems with multichannel methods

    SciTech Connect

    Follum, James D.

    2015-09-30

    The increasing availability of high fidelity, geographically dispersed measurements in power systems improves the ability of researchers and engineers to study dynamic behaviors in the grid. One such behavior that is garnering increased attention is the presence of forced oscillations. Power system engineers are interested in forced oscillations because they are often symptomatic of the malfunction or misoperation of equipment. Though the resulting oscillation is not always large in amplitude, the root cause may be serious. In this report, multi-channel forced oscillation detection methods are developed. These methods leverage previously developed detection approaches based on the periodogram and spectral-coherence. Making use of geographically distributed channels of data is shown to improved detection performance and shorten the delay before an oscillation can be detected in the online environment. Results from simulated and measured power system data are presented.

  18. Electronic systems for the new multichannel spectrometer at Sacramento Peak.

    NASA Technical Reports Server (NTRS)

    Hobbs, R. W.; Harris, G. D.; Epstein, G.

    1972-01-01

    Description of the design features and operation of a new multichannel solar spectrometer to be used for ground-based observations of active regions whose X-ray and EUV emissions are studied by the OSO-H and other satellites. The electronic systems associated with the instrument include (1) an electrooptical guider controlled by a punched paper tape capable of making raster scans of selected portions of the solar disk, (2) a programmer unit that applies paper-tape commands to various portions of the instrument, (3) a closed-loop servosystem for the vacuum heliostat, (4) stepping motor controls for spectral scans, (5) a 40-channel photomultiplier readout, and (6) a magnetometer. Preliminary solar observations indicate satisfactory performance of the system.

  19. Large-memory real-time multichannel multiplexed pattern recognition

    NASA Astrophysics Data System (ADS)

    Gregory, D. A.; Liu, H. K.

    1984-12-01

    The principle and experimental design of a real-time multichannel multiplexed optical pattern recognition system via use of a 25-focus dichromated gelatin holographic lens (hololens) are described. Each of the 25 foci of the hololens may have a storage and matched filtering capability approaching that of a single-lens correlator. If the space-bandwidth product of an input image is limited, as is true in most practical cases, the 25-focus hololens system has 25 times the capability of a single lens. Experimental results have shown that the interfilter noise is not serious. The system has already demonstrated the storage and recognition of over 70 matched filters - which is a larger capacity than any optical pattern recognition system reported to date.

  20. Multichannel optical signal processing using sampled fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Zhang, Guiju; Wang, Chinhua; Zhu, Xiaojun

    2008-12-01

    Sampled and linearly chirped fiber Bragg gratings provide multiple wavelength responses and linear group delays (constant dispersions) within each of the wavelength channels. We show that the sampled and chirped fiber Bragg gratings can be used to perform multiwavelength signal processing. In particular, we demonstrate, by numerical simulation, their use for performing real-time Fourier transform (RTFT) and for pulse repetition rate multiplication (PRRM) simultaneously over multiple wavelength channels. To present how the sampled fiber Bragg gratings perform the multichannel optical signal processing, a 9-channel sampled fiber grating with 100GHz channel spacing was designed and the effect of ripples in both amplitude and the group delay channel on the performance of the signal processing was examined and discussed.

  1. Stacked, Filtered Multi-Channel X-Ray Diode Array

    SciTech Connect

    MacNeil, Lawrence P.; Dutra, Eric C.; Raphaelian, Mark; Compton, Steven; Jacoby, Barry

    2015-08-01

    This system meets the need for a low-cost, robust X-ray diode array to use for experiments in hostile environments on multiple platforms, and for experiments utilizing forces that may destroy the diode(s). Since these uses require a small size with a minimal single line-of-sight, a parallel array often cannot be used. So a stacked, filtered multi-channel X-ray diode array was developed that was called the MiniXRD. The design was modeled, built, and tested at National Security Technologies, LLC (NSTec) Livermore Operations (LO) to determine fundamental characteristics. Then, several different systems were fielded as ancillary “ridealong” diagnostics at several national facilities to allow us to iteratively improve the design and usability. Presented here are design considerations and experimental results. This filtered diode array is currently at Technical Readiness Level (TRL) 6.

  2. Multichannel Brain-Signal-Amplifying and Digitizing System

    NASA Technical Reports Server (NTRS)

    Gevins, Alan

    2005-01-01

    An apparatus has been developed for use in acquiring multichannel electroencephalographic (EEG) data from a human subject. EEG apparatuses with many channels in use heretofore have been too heavy and bulky to be worn, and have been limited in dynamic range to no more than 18 bits. The present apparatus is small and light enough to be worn by the subject. It is capable of amplifying EEG signals and digitizing them to 22 bits in as many as 150 channels. The apparatus is controlled by software and is plugged into the USB port of a personal computer. This apparatus makes it possible, for the first time, to obtain high-resolution functional EEG images of a thinking brain in a real-life, ambulatory setting outside a research laboratory or hospital.

  3. A scalable correlator for multichannel diffuse correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Stapels, Christopher J.; Kolodziejski, Noah J.; McAdams, Daniel; Podolsky, Matthew J.; Fernandez, Daniel E.; Farkas, Dana; Christian, James F.

    2016-03-01

    Diffuse correlation spectroscopy (DCS) is a technique which enables powerful and robust non-invasive optical studies of tissue micro-circulation and vascular blood flow. The technique amounts to autocorrelation analysis of coherent photons after their migration through moving scatterers and subsequent collection by single-mode optical fibers. A primary cost driver of DCS instruments are the commercial hardware-based correlators, limiting the proliferation of multi-channel instruments for validation of perfusion analysis as a clinical diagnostic metric. We present the development of a low-cost scalable correlator enabled by microchip-based time-tagging, and a software-based multi-tau data analysis method. We will discuss the capabilities of the instrument as well as the implementation and validation of 2- and 8-channel systems built for live animal and pre-clinical settings.

  4. Large-memory real-time multichannel multiplexed pattern recognition

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Liu, H. K.

    1984-01-01

    The principle and experimental design of a real-time multichannel multiplexed optical pattern recognition system via use of a 25-focus dichromated gelatin holographic lens (hololens) are described. Each of the 25 foci of the hololens may have a storage and matched filtering capability approaching that of a single-lens correlator. If the space-bandwidth product of an input image is limited, as is true in most practical cases, the 25-focus hololens system has 25 times the capability of a single lens. Experimental results have shown that the interfilter noise is not serious. The system has already demonstrated the storage and recognition of over 70 matched filters - which is a larger capacity than any optical pattern recognition system reported to date.

  5. Automatic landslide and mudflow detection method via multichannel sparse representation

    NASA Astrophysics Data System (ADS)

    Chao, Chen; Zhou, Jianjun; Hao, Zhuo; Sun, Bo; He, Jun; Ge, Fengxiang

    2015-10-01

    Landslide and mudflow detection is an important application of aerial images and high resolution remote sensing images, which is crucial for national security and disaster relief. Since the high resolution images are often large in size, it's necessary to develop an efficient algorithm for landslide and mudflow detection. Based on the theory of sparse representation and, we propose a novel automatic landslide and mudflow detection method in this paper, which combines multi-channel sparse representation and eight neighbor judgment methods. The whole process of the detection is totally automatic. We make the experiment on a high resolution image of ZhouQu district of Gansu province in China on August, 2010 and get a promising result which proved the effective of using sparse representation on landslide and mudflow detection.

  6. Performance prediction for 3D filtering of multichannel images

    NASA Astrophysics Data System (ADS)

    Rubel, Oleksii; Kozhemiakin, Ruslan A.; Abramov, Sergey K.; Lukin, Vladimir V.; Vozel, Benoit; Chehdi, Kacem

    2015-10-01

    Performance of denoising based on discrete cosine transform applied to multichannel remote sensing images corrupted by additive white Gaussian noise is analyzed. Images obtained by satellite Earth Observing-1 (EO-1) mission using hyperspectral imager instrument (Hyperion) that have high input SNR are taken as test images. Denoising performance is characterized by improvement of PSNR. For hard-thresholding 3D DCT-based denoising, simple statistics (probabilities to be less than a certain threshold) are used to predict denoising efficiency using curves fitted into scatterplots. It is shown that the obtained curves (approximations) provide prediction of denoising efficiency with high accuracy. Analysis is carried out for different numbers of channels processed jointly. Universality of prediction for different number of channels is proven.

  7. Timing optimization utilizing order statistics and multichannel digital silicon photomultipliers.

    PubMed

    Mandai, Shingo; Venialgo, Esteban; Charbon, Edoardo

    2014-02-01

    We present an optimization technique utilizing order statistics with a multichannel digital silicon photomultiplier (MD-SiPM) for timing measurements. Accurate timing measurements are required by 3D rangefinding and time-of-flight positron emission tomography, to name a few applications. We have demonstrated the ability of the MD-SiPM to detect multiple photons, and we verified the advantage of detecting multiple photons assuming incoming photons follow a Gaussian distribution. We have also shown the advantage of utilizing multiple timestamps for estimating time-of-arrivals more accurately. This estimation technique can be widely available in various applications, which have a certain probability density function of incoming photons, such as a scintillator or a laser source.

  8. Multichannel DC SQUID sensor array for biomagnetic applications

    SciTech Connect

    Hoenig, H.E.; Daalmans, G.M.; Bar, L.; Bommel, F.; Paulus, A.; Uhl, D.; Weisse, H.J. ); Schneider, S.; Seifert, H.; Reichenberger, H.; Abraham-Fuchs, K. )

    1991-03-01

    This paper reports on a biomagnetic multichannel system for medical diagnosis of brain and heart KRENIKON has been developed. 37 axial 2st order gradiometers - manufactured as flexible superconducting printed circuits - are arranged in a circular flat array of 19 cm diameter. Additionally, 3 orthogonal magnetometers are provided. The DC SQUIDs are fabricated in all-Nb technology, ten on a chip. The sensor system is operated in a shielded room with two layers of soft magnetic material and one layer of Al. The every day noise level is 10 fT/Hz{sup 1/2} at frequencies above 10 Hz. Within 2 years of operation in a normal urban surrounding, useful clinical applications have been demonstrated (e.g. for epilepsy and heart arrhythmias).

  9. Disorder-induced topological transitions in multichannel Majorana wires

    NASA Astrophysics Data System (ADS)

    Pekerten, B.; Teker, A.; Bozat, Ö.; Wimmer, M.; Adagideli, I.

    2017-02-01

    In this work, we investigate the effect of disorder on the topological properties of multichannel superconductor nanowires. While the standard expectation is that the spectral gap is closed and opened at transitions that change the topological index of the wire, we show that the closing and opening of a transport gap can also cause topological transitions, even in the presence of nonzero density of states across the transition. Such transport gaps induced by disorder can change the topological index, driving a topologically trivial wire into a nontrivial state or vice versa. We focus on the Rashba spin-orbit coupled semiconductor nanowires in proximity to a conventional superconductor, which is an experimentally relevant system, and we obtain analytical formulas for topological transitions in these wires, valid for generic realizations of disorder. Full tight-binding simulations show excellent agreement with our analytical results without any fitting parameters.

  10. Multi-channel detector readout method and integrated circuit

    SciTech Connect

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2006-12-12

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  11. Ground moving target indication via multi-channel airborne SAR

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Guo, Bin; Xu, Luzhou; Li, Jian

    2011-06-01

    We consider moving target detection and velocity estimation for multi-channel synthetic aperture radar (SAR) based ground moving target indication (GMTI). Via forming velocity versus cross-range images, we show that small moving targets can be detected even in the presence of strong stationary ground clutter. Furthermore, the velocities of the moving targets can be estimated, and the misplaced moving targets can be placed back to their original locations based on the estimated velocities. An iterative adaptive approach (IAA), which is robust and user parameter free, is used to form velocity versus cross-range images for each range bin of interest. Moreover, we discuss calibration techniques to combat near-field coupling problems encountered in practical systems. Furthermore, we present a sparse signal recovery approach for stationary clutter cancellation. We conclude by demonstrating the effectiveness of our approaches by using the Air Force Research Laboratory (AFRL) publicly-released Gotcha airborne SAR based GMTI data set.

  12. Multichannel biosensing platform of surface-immobilized gold nanospheres for linear and nonlinear optical imaging.

    PubMed

    Tsuboi, Kazuma; Fukuba, Shinya; Naraoka, Ryo; Fujita, Katsuhiko; Kajikawa, Kotaro

    2007-07-10

    What we believe to be a new label-free multichannel biosensing platform is proposed. It is composed of surface-immobilized gold nanospheres (SIGNs) above a gold surface with a nanogap supported by a merocyanine self-assembled monolayer. The circular SIGN spots with a diameter of 120 microm were arrayed for multichannel biosensing on a glass slide. Two kinds of sensing methods were examined: One is a reflectivity measurement of a blue ray and the other is a second-harmonic generation measurement. It was found that the SIGN system can be used as a promising platform for multichannel biosensing in both sensing methods.

  13. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics.

    PubMed

    Park, Sung Il; Shin, Gunchul; McCall, Jordan G; Al-Hasani, Ream; Norris, Aaron; Xia, Li; Brenner, Daniel S; Noh, Kyung Nim; Bang, Sang Yun; Bhatti, Dionnet L; Jang, Kyung-In; Kang, Seung-Kyun; Mickle, Aaron D; Dussor, Gregory; Price, Theodore J; Gereau, Robert W; Bruchas, Michael R; Rogers, John A

    2016-12-13

    Optogenetic methods to modulate cells and signaling pathways via targeted expression and activation of light-sensitive proteins have greatly accelerated the process of mapping complex neural circuits and defining their roles in physiological and pathological contexts. Recently demonstrated technologies based on injectable, microscale inorganic light-emitting diodes (μ-ILEDs) with wireless control and power delivery strategies offer important functionality in such experiments, by eliminating the external tethers associated with traditional fiber optic approaches. Existing wireless μ-ILED embodiments allow, however, illumination only at a single targeted region of the brain with a single optical wavelength and over spatial ranges of operation that are constrained by the radio frequency power transmission hardware. Here we report stretchable, multiresonance antennas and battery-free schemes for multichannel wireless operation of independently addressable, multicolor μ-ILEDs with fully implantable, miniaturized platforms. This advance, as demonstrated through in vitro and in vivo studies using thin, mechanically soft systems that separately control as many as three different μ-ILEDs, relies on specially designed stretchable antennas in which parallel capacitive coupling circuits yield several independent, well-separated operating frequencies, as verified through experimental and modeling results. When used in combination with active motion-tracking antenna arrays, these devices enable multichannel optogenetic research on complex behavioral responses in groups of animals over large areas at low levels of radio frequency power (<1 W). Studies of the regions of the brain that are involved in sleep arousal (locus coeruleus) and preference/aversion (nucleus accumbens) demonstrate the unique capabilities of these technologies.

  14. MEMS micromirrors for optical switching in multichannel spectrophotometers

    NASA Astrophysics Data System (ADS)

    Tuantranont, Adisorn; Lomas, Tanom; Bright, Victor M.

    2004-04-01

    This paper reports for the first time that a novel MEMS-based micromirror switch has successfully demonstrated for optical switching in a multi-channel fiber optics spectrophotometer system. The conventional optomechanical fiber optic switches for multi-channel spectrophotometers available in market are bulky, slow, low numbers of channels and expensive. Our foundry MEMS-based micromirror switch designed for integrating with commercially available spectrophotometers offers more compact devices, increased number of probing channels, higher performance and cheaper. Our MEMS-based micromirror switch is a surface micromachined mirror fabricated through MUMPs foundry. The 280 μm x 280 μm gold coated mirror is suspended by the double-gimbal structure for X and Y axis scanning. Self-assembly by solders is used to elevate the torsion mirror 30 μm over the substrate to achieve large scan angle. The solder self-assembly approach dramatically reduces the time to assembly the switch. The scan mirror is electrostatically controlled by applying voltages. The individual probing signal from each probing head is guided by fibers with collimated lenses and incidents on the center of the mirror. The operating scan angle is in the range of 3.5 degrees with driving voltage of 0-100 V. The fastest switching time of 4 millisecond (1 ms rise time and 3 ms fall time) is measured corresponding to the maximum speed of the mirror of 0.25 kHz when the mirror is scanning at +/- 1.5 degrees. The micromirror switch is packaged with a multi-mode fiber bundle using active alignment technique. A centered fiber is the output fiber that is connected to spectrophotometer. Maximum insertion loss of 5 dB has been obtained. The accuracy of measured spectral data is equivalent to the single channel spectrophotometer with a small degradation on probing signal due to fiber coupling.

  15. Cerebellar cortex and cerebellar nuclei are concomitantly activated during eyeblink conditioning: a 7T fMRI study in humans.

    PubMed

    Thürling, Markus; Kahl, Fabian; Maderwald, Stefan; Stefanescu, Roxana M; Schlamann, Marc; Boele, Henk-Jan; De Zeeuw, Chris I; Diedrichsen, Jörn; Ladd, Mark E; Koekkoek, Sebastiaan K E; Timmann, Dagmar

    2015-01-21

    There are controversies whether learning of conditioned eyeblink responses primarily takes place within the cerebellar cortex, the interposed nuclei, or both. It has also been suggested that the cerebellar cortex may be important during early stages of learning, and that there is a shift to the cerebellar nuclei during later stages. As yet, human studies have provided little to resolve this question. In the present study, we established a setup that allows ultra-high-field 7T functional magnetic resonance imaging (fMRI) of the cerebellar cortex and interposed cerebellar nuclei simultaneously during delay eyeblink conditioning in humans. Event-related fMRI signals increased concomitantly in the cerebellar cortex and nuclei during early acquisition of conditioned eyeblink responses in 20 healthy human subjects. ANOVAs with repeated-measures showed significant effects of time across five blocks of 20 conditioning trials in the cortex and nuclei (p < 0.05, permutation corrected). Activations were most pronounced in, but not limited to, lobules VI and interposed nuclei. Increased activations were most prominent at the first time the maximum number of conditioned responses was achieved. Our data are consistent with a simultaneous and synergistic two-site model of learning during acquisition of classically conditioned eyeblinks. Because increased MRI signal reflects synaptic activity, concomitantly increased signals in the cerebellar nuclei and cortex are consistent with findings of learning related potentiation at the mossy fiber to nuclear cell synapse and mossy fiber to granule cell synapse. Activity related to the expression of conditioned responses, however, cannot be excluded.

  16. Neurodegenerative evidences during early onset of depression in CMS rats as detected by proton magnetic resonance spectroscopy at 7 T.

    PubMed

    Hemanth Kumar, B S; Mishra, Sushanta Kumar; Rana, Poonam; Singh, Sadhana; Khushu, Subash

    2012-06-15

    Depression is a complex psychiatric disorder characterized by anhedonia and feeling of sadness and chronic mild stress (CMS) seems to be a valuable animal model of depression. CMS animal model was induced and validated using behavioral studies. In the present study we investigated the neuro-metabolite changes occurring in prefrontal cortex and hippocampus during the onset of depression, in CMS rat model using in vivo proton magnetic resonance spectroscopy ((1)H MRS) at field strength of 7 T. Results showed that CMS caused depression-like behavior in rats, as indicated by the decrease in sucrose consumption and locomotor activity. (1)H MRS was performed in both control and CMS rats (n=10, in each group) and the quantitative assessment of the neurometabolites was done using LC model. Relative concentrations of all the metabolites along with the macromolecules were calculated for analysis. The results revealed a significant decrease of glutamate (Glu), glutamine (Gln), NAA+NAAG, Glx and GABA levels in both hippocampus and prefrontal cortex of CMS animals and an elevated level of myo-ionisitol (mI) and taurine (Tau) was observed only in hippocampus. These metabolite fluctuations revealed by proton MRS indicate that there might be change in the neuronal integrity of the glial cells and neurons within prefrontal cortex and hippocampus in CMS model of depression. The present study also suggests that there may be a degenerative process concerning the brain morphology in the CMS rats. The overall finding using (1)H MRS suggests that, there might be a major role of the glia and neuron in the onset of depression.

  17. MR-compatibility of a high-resolution small animal PET insert operating inside a 7 T MRI

    NASA Astrophysics Data System (ADS)

    Thiessen, J. D.; Shams, E.; Stortz, G.; Schellenberg, G.; Bishop, D.; Khan, M. S.; Kozlowski, P.; Retière, F.; Sossi, V.; Thompson, C. J.; Goertzen, A. L.

    2016-11-01

    A full-ring PET insert consisting of 16 PET detector modules was designed and constructed to fit within the 114 mm diameter gradient bore of a Bruker 7 T MRI. The individual detector modules contain two silicon photomultiplier (SiPM) arrays, dual-layer offset LYSO crystal arrays, and high-definition multimedia interface (HDMI) cables for both signal and power transmission. Several different RF shielding configurations were assessed prior to construction of a fully assembled PET insert using a combination of carbon fibre and copper foil for RF shielding. MR-compatibility measurements included field mapping of the static magnetic field (B 0) and the time-varying excitation field (B 1) as well as acquisitions with multiple pulse sequences: spin echo (SE), rapid imaging with refocused echoes (RARE), fast low angle shot (FLASH) gradient echo, and echo planar imaging (EPI). B 0 field maps revealed a small degradation in the mean homogeneity (+0.1 ppm) when the PET insert was installed and operating. No significant change was observed in the B 1 field maps or the image homogeneity of various MR images, with a 9% decrease in the signal-to-noise ratio (SNR) observed only in EPI images acquired with the PET insert installed and operating. PET detector flood histograms, photopeak amplitudes, and energy resolutions were unchanged in individual PET detector modules when acquired during MRI operation. There was a small baseline shift on the PET detector signals due to the switching amplifiers used to power MRI gradient pulses. This baseline shift was observable when measured with an oscilloscope and varied as a function of the gradient duty cycle, but had no noticeable effect on the performance of the PET detector modules. Compact front-end electronics and effective RF shielding led to minimal cross-interference between the PET and MRI systems. Both PET detector and MRI performance was excellent, whether operating as a standalone system or a hybrid PET/MRI.

  18. Hemispheric asymmetry in cerebrovascular reactivity of the human primary motor cortex: an in vivo study at 7 T.

    PubMed

    Driver, Ian D; Andoh, Jamila; Blockley, Nicholas P; Francis, Susan T; Gowland, Penny A; Paus, Tomáš

    2015-05-01

    Current functional MRI (fMRI) approaches assess underlying neuronal activity through monitoring the related local variations in cerebral blood oxygenation, blood volume and blood flow. This vascular response is likely to vary across brain regions and across individuals, depending on the composition of the local vascular bed and on the vascular capacity to dilate. The most widely used technique uses the blood oxygen level dependent (BOLD) fMRI signal, which arises from a complex combination of all of these factors. The model of handedness provides a case where one brain region (dominant motor cortex) is known to have a stronger BOLD response over another (non-dominant motor cortex) during hand motor task performance. We predict that this is accompanied by a higher vascular reactivity in the dominant motor cortex, when compared with the non-dominant motor cortex. Precise measurement of end-tidal CO2 and a novel sinusoidal CO2 respiratory challenge were combined with the high sensitivity and finer spatial resolution available for fMRI at 7 T to measure BOLD cerebrovascular reactivity (CVR) in eight healthy male participants. BOLD CVR was compared between the left (dominant) and right (non-dominant) primary motor cortices of right-handed adults. Hemispheric asymmetry in vascular reactivity was predicted and observed in the primary motor cortex (left CVR = 0.60 ± 0.15%/mm Hg; right CVR = 0.47 ± 0.08%/mm Hg; left CVR > right CVR, P = 0.04), the first reported evidence of such a vascular difference. These findings demonstrate a cerebral vascular asymmetry between the left and right primary motor cortex. The origin of this asymmetry largely arises from the contribution of large draining veins. This work has implications for future motor laterality studies that use BOLD, and it is also suggestive of a vascular plasticity in the human primary motor cortex.

  19. MR-compatibility of a high-resolution small animal PET insert operating inside a 7 T MRI.

    PubMed

    Thiessen, J D; Shams, E; Stortz, G; Schellenberg, G; Bishop, D; Khan, M S; Kozlowski, P; Retière, F; Sossi, V; Thompson, C J; Goertzen, A L

    2016-11-21

    A full-ring PET insert consisting of 16 PET detector modules was designed and constructed to fit within the 114 mm diameter gradient bore of a Bruker 7 T MRI. The individual detector modules contain two silicon photomultiplier (SiPM) arrays, dual-layer offset LYSO crystal arrays, and high-definition multimedia interface (HDMI) cables for both signal and power transmission. Several different RF shielding configurations were assessed prior to construction of a fully assembled PET insert using a combination of carbon fibre and copper foil for RF shielding. MR-compatibility measurements included field mapping of the static magnetic field (B 0) and the time-varying excitation field (B 1) as well as acquisitions with multiple pulse sequences: spin echo (SE), rapid imaging with refocused echoes (RARE), fast low angle shot (FLASH) gradient echo, and echo planar imaging (EPI). B 0 field maps revealed a small degradation in the mean homogeneity (+0.1 ppm) when the PET insert was installed and operating. No significant change was observed in the B 1 field maps or the image homogeneity of various MR images, with a 9% decrease in the signal-to-noise ratio (SNR) observed only in EPI images acquired with the PET insert installed and operating. PET detector flood histograms, photopeak amplitudes, and energy resolutions were unchanged in individual PET detector modules when acquired during MRI operation. There was a small baseline shift on the PET detector signals due to the switching amplifiers used to power MRI gradient pulses. This baseline shift was observable when measured with an oscilloscope and varied as a function of the gradient duty cycle, but had no noticeable effect on the performance of the PET detector modules. Compact front-end electronics and effective RF shielding led to minimal cross-interference between the PET and MRI systems. Both PET detector and MRI performance was excellent, whether operating as a standalone system or a hybrid PET/MRI.

  20. Laser time-of-flight measurement based on multi-channel time delay estimation

    NASA Astrophysics Data System (ADS)

    Li, Chao; Chen, Qian; Gu, Guohua; Man, Tian

    2013-03-01

    In this paper, a novel method based on multichannel time delay estimation with linear fitting correction for laser time-of-flight (TOF) measurement is described. The laser TOF measurement system is constructed with a laser source, a stop receiver channel, a reference receiver multichannel, an ADC sampling unit and a digital signal processing unit. Limited by the sampling rate, the precision of laser TOF measurement is restricted no more than the ADC sampling period in conventional methods. As this problem is considered, multi-channel correlation time delay estimation with linear fitting correction is devised. It is shown that the measuring precision is better than 2ns with multi-channel time delay estimation and not influenced by SNR. The experimental results demonstrate that the proposed method is effective and stable.

  1. CONTROL OF LASER RADIATION PARAMETERS: Multichannel optical modulator for a laser diode array

    NASA Astrophysics Data System (ADS)

    Derzhavin, S. I.; Kuz'minov, V. V.; Mashkovskii, D. A.; Timoshkin, V. N.

    2007-07-01

    The possibility of the development of a multichannel electrooptical modulator of laser radiation with a large diffraction divergence and a small coherence length is studied experimentally and its design is described.

  2. Solving non-Markovian open quantum systems with multi-channel reservoir coupling

    NASA Astrophysics Data System (ADS)

    Broadbent, Curtis J.; Jing, Jun; Yu, Ting; Eberly, Joseph H.

    2012-08-01

    We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which canonical transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction Hamiltonian to one. We show that the non-Markovian QSD equation for multi-channel reservoir coupling can, in some cases, lead to an exact master equation which we derive. We then derive the exact master equation for the three-level system in a vee-type configuration which has multi-channel reservoir coupling and give the analytical solution. Finally, we examine the evolution of the three-level vee-type system with generalized Ornstein-Uhlenbeck reservoir correlations numerically.

  3. A fast multichannel Martin-Puplett interferometer for electron cyclotron emission measurements on JET

    SciTech Connect

    Simonetto, A.; Sozzi, C.; Garavaglia, S.; Nowak, S.; Fessey, J. A.; Collaboration: JET-EFDA Contributors

    2011-11-15

    A Martin Puplett interferometer for electron cyclotron emission (ECE) measurements from JET tokamak plasmas was extended to multichannel operation for simultaneous radial and oblique ECE measurements. This paper describes the new optics and the instrument's performance.

  4. Mapping buried parts of a megalithic tomb with multichannel analysis of Rayleigh-waves and GPR

    NASA Astrophysics Data System (ADS)

    Wilken, D.; Erkul, E.; Glomb, V.; Rabbel, W.

    2012-04-01

    The objective of the presented study was to image buried parts of a megalithic tomb in northern Germany with GPR and multichannel analysis of surface-waves (MASW). The latter method was applied with the aim of testing its feasibility when used on intermediate scale archaeological targets. As we do not expect MASW of being able to resolve archaeological objects in terms of inverted velocity structure, we look for spectral effects due to subsurface heterogeneity. Identifying and mapping these effects would give a distribution of possibly archaeological objects. The presented seismic dataset shows an amplitude shift between normal and a guided Rayleigh-wave mode. When mapped along parallel profiles the spatial distribution of this effect matches the geometry of the grave. The observed anomalies show good correlation to GPR results that included strong reflectors inside the grave border. Elastic finite difference modelling of the surface-wave propagation showed that the spectral effect can be reproduced by a compacted or bulked column above the GPR anomaly depth indicating that the observed anomalies may be caused by construction activities or load effects during multiple construction phases of the tomb. Observed GPR reflectors thus indicate the bottom of the disturbed zones and MASW effects map the distribution of disturbed subsoil columns.

  5. Sightline optimization of the multichannel laser interferometer for W7-X

    NASA Astrophysics Data System (ADS)

    Airila, M. I.; Dumbrajs, O.; Hirsch, M.; Geiger, J.; Neuner, U.; Hartfuss, H.-J.

    2005-02-01

    A multichannel CO2 laser interferometer is planned for electron density profile measurements in the Wendelstein 7-X stellarator under construction. This article describes the mathematical methods used to find the optimum orientation of the various sightlines. The problem of reconstructing local densities from line integrated density measurements can be formulated as a matrix inversion. The quality of the reconstruction is largely determined by the condition number of the matrix describing the problem, which has to be minimized, i.e., the sightlines have to be chosen such that the information content of different channels is maximally distinct. For the W7-X interferometer four- and eight-sightline arrangements are investigated and their orientations are optimized for standard conditions of magnetic configuration and density profile. The optimized arrangements are tested by simulating the inversion of hypothetical reference density profiles in a number of different magnetic configurations. In the ideal case the error of a reconstruction using four sightlines is typically a few times larger than that with eight sightlines. The robustness of the optimization is demonstrated by a variation of the position of the whole interferometer, and the influence of noisy phase data on the reconstructed profiles is investigated. These factors significantly narrow the difference between the four- and eight-beam setups. Finally, the use of regularization methods for the analysis of experimental data is briefly discussed.

  6. Development of a Multichannel Spectrometer for the Thomson Scattering Diagnostic on Pegasus

    NASA Astrophysics Data System (ADS)

    Schoenbeck, N. L.; Dowd, A. S.; Fonck, R. J.; Schlossberg, D. J.; Winz, G. R.

    2011-10-01

    To explore electron transport in helicity-driven discharges and investigate edge stability, a multi-point Thomson scattering diagnostic is being developed. Red-shifted scattered light from the Nd:YAG laser, 532-632 nm, is imaged using a custom lens coupled to fiber optic cables capable of imaging 1.4 cm along the length of the laser beam. Initially 1 spectrometer, containing up to 8 radial spatial points will be available for detection, with an upgrade to 3 spectrometers planned in the near future. New high efficiency volume phase holographic gratings, with > 75% transmission, allow for a simplified spectrometer design. This provides high optical throughput and readily couples to new high quantum efficiency (~45%) image intensified CCD cameras for multichannel design. These cameras can be gated to as low as 2 ns. The two gratings fabricated for this system (2971 lines/mm and 2072 lines/mm) cover the design temperature range of 10 eV to 1 keV. Completing the spectrometer are high quality lenses with focal lengths of 130 cm on the collimating lens and 85 cm on the exit lens. This design has a spectral range compatible with the blue shift from a conventional ruby laser and allows for a compact, simplified system. Work supported by US DOE Grant DE-FG02-96ER54375.

  7. A novel multi-channel quadrature Doppler backward scattering reflectometer on the HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Shi, Zhongbing; Zhong, Wulu; Jiang, Min; Yang, Zengchen; Zhang, Boyu; Shi, Peiwan; Chen, Wei; Wen, Jie; Chen, Chengyuan; Fu, Bingzhong; Liu, Zetian; Ding, Xuantong; Yang, Qingwei; Duan, Xuru

    2016-11-01

    A novel 16-channel fixed frequency Doppler backward scattering (DBS) reflectometer system has been developed on the HL-2A tokamak. This system is based on the filter-based feedback loop microwave source (FFLMS) technique, which has lower phase noise and lower power variation compared with present tunable frequency generation and comb frequency array generation techniques [J. C. Hillesheim et al. Rev. Sci. Instrum. 80, 083507 (2009) and W. A. Peebles et al. Rev. Sci. Instrum. 81, 10D902 (2010)]. The 16-channel DBS system is comprised of four × four-frequency microwave transmitters and direct quadrature demodulation receivers. The working frequencies are 17-24 GHz and 31-38 GHz with the frequency interval of 1 GHz. They are designed to measure the localized intermediate wave-number (k⊥ρ ˜ 1-2, k⊥ ˜ 2-9 cm-1) density fluctuations and the poloidal rotation velocity profile of turbulence. The details of the system design and laboratory tests are presented. Preliminary results of Doppler spectra measured by the multi-channel DBS reflectometer systems are obtained. The plasma rotation and turbulence distribution during supersonic molecular beam injection are analyzed.

  8. Multi-channel poloidal correlation reflectometry on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Qu, H.; Zhang, T.; Han, X.; Xiang, H. M.; Wen, F.; Geng, K. N.; Wang, Y. M.; Kong, D. F.; Cai, J. Q.; Huang, C. B.; Gao, Y.; Gao, X.; Zhang, S.

    2016-11-01

    A new multi-channel poloidal correlation reflectometry is developed at Experimental Advanced Superconducting Tokamak. Eight dielectric resonator oscillators with frequencies of 12.5 GHz, 13.5 GHz, 14.5 GHz, 15 GHz, 15.5 GHz, 16 GHz, 17 GHz, and 18 GHz are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together. The output waves are launched by one single antenna after passing through a 20 dB directional coupler which can provide the reference signal. Two poloidally separated antennae are installed to receive the reflected waves from plasma. The reference and reflected signals are down-converted by mixing with a quadrupled signal from a phase-locked source with a frequency of 14.2 GHz and the IF signals pass through the filter bank. The resulting signals from the mixers are detected by I/Q demodulators. The setup enables the measurement of density fluctuation at 8 (radial) × 2 (poloidal) spatial points. A coherent mode with an increasing velocity from 50 kHz to 100 kHz is observed by using the system. The mode is located in the steep gradient region of the pedestal.

  9. Multi-channel poloidal correlation reflectometry on experimental advanced superconducting tokamak.

    PubMed

    Qu, H; Zhang, T; Han, X; Xiang, H M; Wen, F; Geng, K N; Wang, Y M; Kong, D F; Cai, J Q; Huang, C B; Gao, Y; Gao, X; Zhang, S

    2016-11-01

    A new multi-channel poloidal correlation reflectometry is developed at Experimental Advanced Superconducting Tokamak. Eight dielectric resonator oscillators with frequencies of 12.5 GHz, 13.5 GHz, 14.5 GHz, 15 GHz, 15.5 GHz, 16 GHz, 17 GHz, and 18 GHz are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together. The output waves are launched by one single antenna after passing through a 20 dB directional coupler which can provide the reference signal. Two poloidally separated antennae are installed to receive the reflected waves from plasma. The reference and reflected signals are down-converted by mixing with a quadrupled signal from a phase-locked source with a frequency of 14.2 GHz and the IF signals pass through the filter bank. The resulting signals from the mixers are detected by I/Q demodulators. The setup enables the measurement of density fluctuation at 8 (radial) × 2 (poloidal) spatial points. A coherent mode with an increasing velocity from 50 kHz to 100 kHz is observed by using the system. The mode is located in the steep gradient region of the pedestal.

  10. A novel multi-channel quadrature Doppler backward scattering reflectometer on the HL-2A tokamak.

    PubMed

    Shi, Zhongbing; Zhong, Wulu; Jiang, Min; Yang, Zengchen; Zhang, Boyu; Shi, Peiwan; Chen, Wei; Wen, Jie; Chen, Chengyuan; Fu, Bingzhong; Liu, Zetian; Ding, Xuantong; Yang, Qingwei; Duan, Xuru

    2016-11-01

    A novel 16-channel fixed frequency Doppler backward scattering (DBS) reflectometer system has been developed on the HL-2A tokamak. This system is based on the filter-based feedback loop microwave source (FFLMS) technique, which has lower phase noise and lower power variation compared with present tunable frequency generation and comb frequency array generation techniques [J. C. Hillesheim et al. Rev. Sci. Instrum. 80, 083507 (2009) and W. A. Peebles et al. Rev. Sci. Instrum. 81, 10D902 (2010)]. The 16-channel DBS system is comprised of four × four-frequency microwave transmitters and direct quadrature demodulation receivers. The working frequencies are 17-24 GHz and 31-38 GHz with the frequency interval of 1 GHz. They are designed to measure the localized intermediate wave-number (k⊥ρ ∼ 1-2, k⊥ ∼ 2-9 cm(-1)) density fluctuations and the poloidal rotation velocity profile of turbulence. The details of the system design and laboratory tests are presented. Preliminary results of Doppler spectra measured by the multi-channel DBS reflectometer systems are obtained. The plasma rotation and turbulence distribution during supersonic molecular beam injection are analyzed.

  11. 26 CFR 20.2031-7T - Valuation of annuities, interests for life or term of years, and remainder or reversionary...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... individual. See § 25.2512-5T(d)(2)(v) for examples explaining how to compute the present value of an annuity..., “Actuarial Valuations Version 3A” (2009). Publication 1457 also includes examples that illustrate how to... ESTATE TAX; ESTATES OF DECEDENTS DYING AFTER AUGUST 16, 1954 Gross Estate § 20.2031-7T Valuation...

  12. Dynamic contrast-enhanced MRI in mouse tumors at 11.7 T: comparison of three contrast agents with different molecular weights to assess the early effects of combretastatin A4.

    PubMed

    Fruytier, A-C; Magat, J; Neveu, M-A; Karroum, O; Bouzin, C; Feron, O; Jordan, B; Cron, G O; Gallez, B

    2014-11-01

    Dynamic contrast-enhanced (DCE)-MRI is useful to assess the early effects of drugs acting on tumor vasculature, namely anti-angiogenic and vascular disrupting agents. Ultra-high-field MRI allows higher-resolution scanning for DCE-MRI while maintaining an adequate signal-to-noise ratio. However, increases in susceptibility effects, combined with decreases in longitudinal relaxivity of gadolinium-based contrast agents (GdCAs), make DCE-MRI more challenging at high field. The aim of this work was to explore the feasibility of using DCE-MRI at 11.7 T to assess the tumor hemodynamics of mice. Three GdCAs possessing different molecular weights (gadoterate: 560 Da, 0.29 mmol Gd/kg; p846: 3.5 kDa, 0.10 mmol Gd/kg; and p792: 6.47 kDa, 0.15 mmol Gd/kg) were compared to see the influence of the molecular weight in the highlight of the biologic effects induced by combretastatin A4 (CA4). Mice bearing transplantable liver tumor (TLT) hepatocarcinoma were divided into two groups (n = 5-6 per group and per GdCA): a treated group receiving 100 mg/kg CA4, and a control group receiving vehicle. The mice were imaged at 11.7 T with a T1 -weighted FLASH sequence 2 h after the treatment. Individual arterial input functions (AIFs) were computed using phase imaging. These AIFs were used in the Extended Tofts Model to determine K(trans) and vp values. A separate immunohistochemistry study was performed to assess the vascular perfusion and the vascular density. Phase imaging was used successfully to measure the AIF for the three GdCAs. In control groups, an inverse relationship between the molecular weight of the GdCA and K(trans) and vp values was observed. K(trans) was significantly decreased in the treated group compared with the control group for each GdCA. DCE-MRI at 11.7 T is feasible to assess tumor hemodynamics in mice. With K(trans) , the three GdCAs were able to track the early vascular effects induced by CA4 treatment.

  13. Comparison of SNR and CNR for in vivo mouse brain imaging at 3 and 7 T using well matched scanner configurations.

    PubMed

    DiFrancesco, M W; Rasmussen, J M; Yuan, W; Pratt, R; Dunn, S; Dardzinski, B J; Holland, S K

    2008-09-01

    Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for magnetic resonance microimaging were measured using two nearly identical magnetic resonance imaging (MRI) scanners operating at field strengths of 3 and 7 T. Six mice were scanned using two imaging protocols commonly applied for in vivo imaging of small animal brain: RARE and FLASH. An accounting was made of the field dependence of relaxation times as well as a small number of hardware disparities between scanner systems. Standard methods for relaxometry were utilized to measure T1 and T2 for two white matter (WM) and two gray matter (GM) regions in the mouse brain. An average increase in T1 between 3 and 7 T of 28% was observed in the brain. T2 was found to decrease by 27% at 7 T in agreement with theoretical models. The SNR was found to be uniform throughout the mouse brain, increasing at higher field by a factor statistically indistinguishable from the ratio of Larmor frequencies when imaging with either method. The CNR between GM and WM structures was found to adhere to the expected field dependence for the RARE imaging sequence. Improvement in the CNR for the FLASH imaging sequence between 3 and 7 T was observed to be greater than the Larmor ratio, reflecting a greater susceptibility to partial volume effects at the lower SNR values at 3 T. Imaging at 7 T versus 3 T in small animals clearly provides advantages with respect to the CNR, even beyond the Larmor ratio, especially in lower SNR regimes. This careful multifaceted assessment of the benefits of higher static field is instructive for those newly embarking on small animal imaging. Currently the number of 7 T MRI scanners in use for research in human subjects is increasing at a rapid pace with approximately 30 systems deployed worldwide in 2008. The data presented in this article verify that if system performance and radio frequency uniformity is optimized at 7 T, it should be possible to realize the expected improvements in the CNR and SNR

  14. Assessment of blood flow velocity and pulsatility in cerebral perforating arteries with 7-T quantitative flow MRI.

    PubMed

    Bouvy, W H; Geurts, L J; Kuijf, H J; Luijten, P R; Kappelle, L J; Biessels, G J; Zwanenburg, J J M

    2016-09-01

    Thus far, blood flow velocity measurements with MRI have only been feasible in large cerebral blood vessels. High-field-strength MRI may now permit velocity measurements in much smaller arteries. The aim of this proof of principle study was to measure the blood flow velocity and pulsatility of cerebral perforating arteries with 7-T MRI. A two-dimensional (2D), single-slice quantitative flow (Qflow) sequence was used to measure blood flow velocities during the cardiac cycle in perforating arteries in the basal ganglia (BG) and semioval centre (CSO), from which a mean normalised pulsatility index (PI) per region was calculated (n = 6 human subjects, aged 23-29 years). The precision of the measurements was determined by repeated imaging and performance of a Bland-Altman analysis, and confounding effects of partial volume and noise on the measurements were simulated. The median number of arteries included was 14 in CSO and 19 in BG. In CSO, the average velocity per volunteer was in the range 0.5-1.0 cm/s and PI was 0.24-0.39. In BG, the average velocity was in the range 3.9-5.1 cm/s and PI was 0.51-0.62. Between repeated scans, the precision of the average, maximum and minimum velocity per vessel decreased with the size of the arteries, and was relatively low in CSO and BG compared with the M1 segment of the middle cerebral artery. The precision of PI per region was comparable with that of M1. The simulations proved that velocities can be measured in vessels with a diameter of more than 80 µm, but are underestimated as a result of partial volume effects, whilst pulsatility is overestimated. Blood flow velocity and pulsatility in cerebral perforating arteries have been measured directly in vivo for the first time, with moderate to good precision. This may be an interesting metric for the study of haemodynamic changes in aging and cerebral small vessel disease. © 2015 The Authors NMR in Biomedicine Published by John Wiley & Sons Ltd.

  15. Single versus multichannel applicator in high-dose-rate vaginal brachytherapy optimized by inverse treatment planning

    PubMed Central

    Constantinescu, Camelia; Hassouna, Ashraf H.; Eltaher, Maha M.; Ghassal, Noor M.; Awad, Nesreen A.

    2014-01-01

    Purpose To retrospectively compare the potential dosimetric advantages of a multichannel vaginal applicator vs. a single channel one in intracavitary vaginal high-dose-rate (HDR) brachytherapy after hysterectomy, and evaluate the dosimetric advantage of fractional re-planning. Material and methods We randomly selected 12 patients with endometrial carcinoma, who received adjuvant vaginal cuff HDR brachytherapy using a multichannel applicator. For each brachytherapy fraction, two inverse treatment plans (for central channel and multichannel loadings) were performed and compared. The advantage of fractional re-planning was also investigated. Results Dose-volume-histogram (DVH) analysis showed limited, but statistically significant difference (p = 0.007) regarding clinical-target-volume dose coverage between single and multichannel approaches. For the organs-at-risk rectum and bladder, the use of multichannel applicator demonstrated a noticeable dose reduction, when compared to single channel, but statistically significant for rectum only (p = 0.0001). For D2cc of rectum, an average fractional dose of 6.1 ± 0.7 Gy resulted for single channel vs. 5.1 ± 0.6 Gy for multichannel. For D2cc of bladder, an average fractional dose of 5 ± 0.9 Gy occurred for single channel vs. 4.9 ± 0.8 Gy for multichannel. The dosimetric benefit of fractional re-planning was demonstrated: DVH analysis showed large, but not statistically significant differences between first fraction plan and fractional re-planning, due to large inter-fraction variations for rectum and bladder positioning and filling. Conclusions Vaginal HDR brachytherapy using a multichannel vaginal applicator and inverse planning provides dosimetric advantages over single channel cylinder, by reducing the dose to organs at risk without compromising the target volume coverage, but at the expense of an increased vaginal mucosa dose. Due to large inter-fraction dose variations, we recommend individual fraction treatment plan

  16. Adaptive Multichannel Radiation Sensors for Plant Parameter Monitoring

    NASA Astrophysics Data System (ADS)

    Mollenhauer, Hannes; Remmler, Paul; Schuhmann, Gudrun; Lausch, Angela; Merbach, Ines; Assing, Martin; Mollenhauer, Olaf; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    Nutrients such as nitrogen are playing a key role in the plant life cycle. They are much needed for chlorophyll production and other plant cell components. Therefore, the crop yield is strongly affected by plant nutrient status. Due to the spatial and temporal variability of soil characteristics or swaying agricultural inputs the plant development varies within a field. Thus, the determination of these fluctuations in the plant development is valuable for a detection of stress conditions and optimization of fertilisation due to its high environmental and economic impact. Plant parameters play crucial roles in plant growth estimation and prediction since they are used as indicators of plant performance. Especially indices derived out of remote sensing techniques provide quantitative information about agricultural crops instantaneously, and above all, non-destructively. Due to the specific absorption of certain plant pigments, a characteristic spectral signature can be seen in the visible and IR part of the electromagnetic spectrum, known as narrow-band peaks. In an analogous manner, the presence and concentration of different nutrients cause a characteristic spectral signature. To this end, an adequate remote sensing monitoring concept is needed, considering heterogeneity and dynamic of the plant population and economical aspects. This work will present the development and field investigations of an inexpensive multichannel radiation sensor to observe the incoming and reflected specific parts or rather distinct wavelengths of the solar light spectrum on the crop and facilitate the determination of different plant indices. Based on the selected sensor wavelengths, the sensing device allows the detection of specific parameters, e.g. plant vitality, chlorophyll content or nitrogen content. Besides the improvement of the sensor characteristic, the simple wavelength adaption, and the price-performance ratio, the achievement of appropriate energy efficiency as well as a

  17. MO-H-19A-04: Multichannel CW Ultrasonic Thermometry for Imaging Therapeutic Dose Fields in Water

    SciTech Connect

    Tosh, R

    2014-06-15

    Purpose: To develop a scalable, multichannel ultrasonic thermometry system suitable for imaging clinical-beam dose distributions in a water phantom. Method: A small, glass-walled rectangular water phantom (15 cm × 20 cm × 30 cm) was filled with distilled water, and two ultrasonic transducers were placed on the outside, against opposing walls, approximately 5 cm below the water line, and were aligned to optimize transmission/reception of ultrasound between them. Two synchronized lock-in amplifiers were connected to the transducers to enable full-duplex operation of two separate ultrasonic frequency channels configured to transmit simultaneously through the same volume of water and thereby provide independent measurements of the temperature-dependent ultrasonic phase lag. Controlled heating of the water via immersed power resistors provided a means to study dependence of measured phase lag on temperature change for both channels; cross-correlation of the phase outputs enabled much smaller temperature fluctuations in the phantom to be used to ascertain the noise floor and achievable temperature resolution. Results: Temperature measurements from both channels, converted from phase measurements via polynomials available in the literature, exhibited the expected linear dependence of ultrasonic phase on temperature change (measured via calibrated thermistor probe). Cross-correlation analysis of phase fluctuations yielded rms noise estimates of approximately 1-2 microKelvin, comparable to that observed in standard water calorimeters. Conclusion: Phase-sensitive detection of cw ultrasound has been shown to provide temperature sensitivity needed for calorimetry of external treatment beams, and the present simple demonstration establishes that multiple channels may be run simultaneously without phase disturbances that currently affect time-of-flight techniques utilizing phase-detection. Immediate plans include doubling the number of sensors, to enable a simple tomographic

  18. Estimating neugebauer primaries for multi-channel spectral printing modeling

    NASA Astrophysics Data System (ADS)

    Slavuj, Radovan; Coppel, Ludovic G.; Olen, Melissa; Hardeberg, Jon Yngve

    2014-02-01

    Multichannel printer modeling has been an active area of research in the field of spectral printing. The most commonly used models for characterization of such systems are the spectral Neugebauer (SN) and its extensions. This work addresses issues that can arise during calibration and testing of the SN model when modelling a 7-colorant printer. Since most substrates are limited in their capacity to take in large amount of ink, it is not always possible to print all colorant combinations necessary to determine the Neugebauer primaries (NP). A common solution is to estimate the nonprintable Neugebauer primaries from the single colorant primaries using the Kubelka-Munk (KM) optical model. In this work we test whether a better estimate can be obtained using general radiative transfer theory, which better represents the angular variation of the reflectance from highly absorbing media, and takes surface scattering into account. For this purpose we use the DORT2002 model. We conclude DORT2002 does not offer significant improvements over KM in the estimation of the NPs, but a significant improvement is obtained when using a simple surface scattering model. When the estimated primaries are used as inputs to the SN model instead of measured ones, it is found the SN model performs the same or better in terms of color difference and spectral error. If the mixed measured and estimated primaries are used as inputs to the SN model, it performs better than using either measured or estimated.

  19. Multichannel instantaneous frequency analysis of ultrasound propagating in cancellous bone.

    PubMed

    Nagatani, Yoshiki; Tachibana, Ryosuke O

    2014-03-01

    An ultrasonic pulse propagating in cancellous bone can be separated into two waves depending on the condition of the specimen. These two waves, which are called the fast wave and the slow wave, provide important information for the diagnosis of osteoporosis. The present study proposes to utilize a signal processing method that extracts the instantaneous frequency (IF) of waveforms from multiple spectral channels. The instantaneous frequency was expected to be able to show detailed time-frequency properties of ultrasonic waves being transmitted through cancellous bone. The employed method, termed the multichannel instantaneous frequency (MCIF) method, showed robustness against background noise as compared to the IF that was directly derived from the original waveform. The extracted IF revealed that the frequency of the fast wave was affected by both the propagation distance within the specimen and the bone density, independently. On the other hand, the alternation of the center frequency of the originally transmitted wave did not produce proportional changes in the extracted IF values of the fast waves, suggesting that the fast wave IF mainly reflected the thickness of the specimens. These findings may provide the possibility of obtaining a more precise diagnosis of osteoporosis.

  20. Probabilistic Common Spatial Patterns for Multichannel EEG Analysis

    PubMed Central

    Chen, Zhe; Gao, Xiaorong; Li, Yuanqing; Brown, Emery N.; Gao, Shangkai

    2015-01-01

    Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel electroencephalogram (EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic modeling setting. Specifically, probabilistic CSP (P-CSP) is proposed as a generic EEG spatio-temporal modeling framework that subsumes the CSP and regularized CSP algorithms. The proposed framework enables us to resolve the overfitting issue of CSP in a principled manner. We derive statistical inference algorithms that can alleviate the issue of local optima. In particular, an efficient algorithm based on eigendecomposition is developed for maximum a posteriori (MAP) estimation in the case of isotropic noise. For more general cases, a variational algorithm is developed for group-wise sparse Bayesian learning for the P-CSP model and for automatically determining the model size. The two proposed algorithms are validated on a simulated data set. Their practical efficacy is also demonstrated by successful applications to single-trial classifications of three motor imagery EEG data sets and by the spatio-temporal pattern analysis of one EEG data set recorded in a Stroop color naming task. PMID:26005228

  1. Diffuse optical tomography using multichannel robotic platform for interstitial PDT

    PubMed Central

    Sharikova, Anna V.; Liang, Xing; Zhu, Timothy C.

    2015-01-01

    In the operating room, time is extremely precious, and the speed of one’s data acquisition system often determines whether the data will be taken or not. Our multichannel robotic platform addresses this issue by optimizing source and detector scanning procedures. Up to 16 fibers can be moved independently with resolution of 0.05 mm and speed of 50 mm/s using motors with position feedback. The initial fiber alignment employs a light beam/optical detector system for identical positioning of all motors. Peak and edge detection algorithms, for point and linear sources, are used with multiple fibers simultaneously for fast realignment of sources and detectors. The robotic platform is used to perform Diffuse Optical Tomography (DOT) measurements in solid prostate phantoms with both homogenous and inhomogeneous Optical Properties (OP). Correct positioning is critical for the accurate recovery of the OP. The light fluence rate distribution is determined by scanning multiple detector fibers simultaneously along lit linear sources placed throughout the phantom volume inside catheter needles. The scanning time for the entire DOT is about 10 seconds after the initial alignment. The OP distribution reconstruction is based on the steady-state light diffusion equation. The inverse interstitial DOT problem is solved using NIRFAST. The optical properties are recovered by iterative minimization of the difference between measured and calculated light fluence rates. Recovered OP agree with the actual values within 10%. The OP corrections are used to significantly improve light fluence accuracy for the entire volume of bulk tumor. PMID:25999650

  2. A robotic multi-channel platform for interstitial photodynamic therapy

    PubMed Central

    Sharikova, Anna V.; Finlay, Jarod C.; Dimofte, Andreea; Zhu, Timothy C.

    2015-01-01

    A custom-made robotic multichannel platform for interstitial photodynamic therapy (PDT) and diffuse optical tomography (DOT) was developed and tested in a phantom experiment. The system, which was compatible with the operating room (OR) environment, had 16 channels for independent positioning of light sources and/or isotropic detectors in separate catheters. Each channel’s motor had an optical encoder for position feedback, with resolution of 1.5 mm, and a maximum speed of 5 cm/s. Automatic calibration of detector positions was implemented using an optical diode beam that defined the starting position of each motor, and by means of feedback algorithms controlling individual channels. As a result, the accuracy of zero position of 0.1 mm for all channels was achieved. We have also employed scanning procedures where detectors automatically covered the appropriate range around source positions. Thus, total scan time for a typical optical properties (OP) measurement throughout the phantom was about 1.5 minutes with point sources. The OP were determined based on the measured light fluence rates. These enhancements allow a tremendous improvement of treatment quality for a bulk tumor compared to the systems employed in previous clinical trials. PMID:25914794

  3. Local Spectral Component Decomposition for Multi-Channel Image Denoising.

    PubMed

    Rizkinia, Mia; Baba, Tatsuya; Shirai, Keiichiro; Okuda, Masahiro

    2016-07-01

    We propose a method for local spectral component decomposition based on the line feature of local distribution. Our aim is to reduce noise on multi-channel images by exploiting the linear correlation in the spectral domain of a local region. We first calculate a linear feature over the spectral components of an M -channel image, which we call the spectral line, and then, using the line, we decompose the image into three components: a single M -channel image and two gray-scale images. By virtue of the decomposition, the noise is concentrated on the two images, and thus our algorithm needs to denoise only the two gray-scale images, regardless of the number of the channels. As a result, image deterioration due to the imbalance of the spectral component correlation can be avoided. The experiment shows that our method improves image quality with less deterioration while preserving vivid contrast. Our method is especially effective for hyperspectral images. The experimental results demonstrate that our proposed method can compete with the other state-of-the-art denoising methods.

  4. Multichannel Convolutional Neural Network for Biological Relation Extraction

    PubMed Central

    Quan, Chanqin; Sun, Xiao; Bai, Wenjun

    2016-01-01

    The plethora of biomedical relations which are embedded in medical logs (records) demands researchers' attention. Previous theoretical and practical focuses were restricted on traditional machine learning techniques. However, these methods are susceptible to the issues of “vocabulary gap” and data sparseness and the unattainable automation process in feature extraction. To address aforementioned issues, in this work, we propose a multichannel convolutional neural network (MCCNN) for automated biomedical relation extraction. The proposed model has the following two contributions: (1) it enables the fusion of multiple (e.g., five) versions in word embeddings; (2) the need for manual feature engineering can be obviated by automated feature learning with convolutional neural network (CNN). We evaluated our model on two biomedical relation extraction tasks: drug-drug interaction (DDI) extraction and protein-protein interaction (PPI) extraction. For DDI task, our system achieved an overall f-score of 70.2% compared to the standard linear SVM based system (e.g., 67.0%) on DDIExtraction 2013 challenge dataset. And for PPI task, we evaluated our system on Aimed and BioInfer PPI corpus; our system exceeded the state-of-art ensemble SVM system by 2.7% and 5.6% on f-scores. PMID:28053977

  5. The SRI24 multichannel brain atlas: construction and applications

    NASA Astrophysics Data System (ADS)

    Rohlfing, Torsten; Zahr, Natalie M.; Sullivan, Edith V.; Pfefferbaum, Adolf

    2008-03-01

    We present a new standard atlas of the human brain based on magnetic resonance images. The atlas was generated using unbiased population registration from high-resolution images obtained by multichannel-coil acquisition at 3T in a group of 24 normal subjects. The final atlas comprises three anatomical channels (T I-weighted, early and late spin echo), three diffusion-related channels (fractional anisotropy, mean diffusivity, diffusion-weighted image), and three tissue probability maps (CSF, gray matter, white matter). The atlas is dynamic in that it is implicitly represented by nonrigid transformations between the 24 subject images, as well as distortion-correction alignments between the image channels in each subject. The atlas can, therefore, be generated at essentially arbitrary image resolutions and orientations (e.g., AC/PC aligned), without compounding interpolation artifacts. We demonstrate in this paper two different applications of the atlas: (a) region definition by label propagation in a fiber tracking study is enabled by the increased sharpness of our atlas compared with other available atlases, and (b) spatial normalization is enabled by its average shape property. In summary, our atlas has unique features and will be made available to the scientific community as a resource and reference system for future imaging-based studies of the human brain.

  6. A multichannel telemetry system for single unit neural recordings.

    PubMed

    Obeid, Iyad; Nicolelis, Miguel A L; Wolf, Patrick D

    2004-02-15

    We present the design, testing, and evaluation of a 16 channel wearable telemetry system to facilitate multichannel single unit recordings from freely moving test subjects. Our design is comprised of (1) a 16-channel analog front end board to condition and sample signals derived from implanted neural electrodes, (2) a digital board for processing and buffering the digitized waveforms, and (3) an index-card sized 486 PC equipped with an IEEE 802.11b wireless ethernet card. Digitized data (up to 12 bits of resolution at 31.25k samples/s per channel) is transferred to the PC and sent to a nearby host computer on a wireless local area network. Up to 12 of the 16 channels were transmitted simultaneously for sustained periods at a range of 9 m. The device measures 5.1 cm x 8.1 cm x 12.4 cm, weighs 235 g, and is powered from rechargeable lithium ion batteries with a lifespan of 45 min at maximum transmission power. The device was successfully used to record signals from awake, chronically implanted macaque and owl monkeys.

  7. A 94/183 GHz multichannel radiometer for Convair flights

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.

    1979-01-01

    A multichannel 94/183 GHz radiometer was designed, built, and installed on the NASA Convair 990 research aircraft to take data for hurricane penetration flights, SEASAT-A underflights for measuring rain and water vapor, and Nimbus-G underflights for new sea ice signatures and sea surface temperature data (94 GHz only). The radiometer utilized IF frequencies of 1, 5, and 8.75 GHz about the peak of the atmospheric water vapor absorption line, centered at 183.3 GHz, to gather data needed to determine the shape of the water molecule line. Another portion of the radiometer operated at 94 GHz and obtained data on the sea brightness temperature, sea ice signatures, and on areas of rain near the ocean surface. The radiometer used a multiple lens antenna/temperature calibration technique using 3 lenses and corrugated feed horns at 94 GHz and 183 GHz. Alignment of the feed beams at 94 GHz and 183 GHz was accomplished using a 45 deg oriented reflecting surface which permitted simultaneous viewing of the feeds on alternate cycles of the chopping intervals.

  8. Multichannel analysis of surface wave method with the autojuggie

    USGS Publications Warehouse

    Tian, G.; Steeples, D.W.; Xia, J.; Miller, R.D.; Spikes, K.T.; Ralston, M.D.

    2003-01-01

    The shear (S)-wave velocity of near-surface materials and its effect on seismic-wave propagation are of fundamental interest in many engineering, environmental, and groundwater studies. The multichannel analysis of surface wave (MASW) method provides a robust, efficient, and accurate tool to observe near-surface S-wave velocity. A recently developed device used to place large numbers of closely spaced geophones simultaneously and automatically (the 'autojuggie') is shown here to be applicable to the collection of MASW data. In order to demonstrate the use of the autojuggie in the MASW method, we compared high-frequency surface-wave data acquired from conventionally planted geophones (control line) to data collected in parallel with the automatically planted geophones attached to steel bars (test line). The results demonstrate that the autojuggie can be applied in the MASW method. Implementation of the autojuggie in very shallow MASW surveys could drastically reduce the time required and costs incurred in such surveys. ?? 2003 Elsevier Science Ltd. All rights reserved.

  9. Automated measurement of urinary creatinine by multichannel kinetic spectrophotometry.

    PubMed

    Ohira, Shin-Ichi; Kirk, Andrea B; Dasgupta, Purnendu K

    2009-01-15

    Urinary creatinine analysis is required for clinical diagnosis, especially for evaluation of renal function. Creatinine adjustment is also widely used to estimate 24-h excretion from spot samples. Few convenient validated approaches are available for in-house creatinine measurement for small- to medium-scale studies. Here we apply the Jáffe reaction to creatinine determination with zone fluidic multichannel kinetic spectrophotometry. Diluted urine sample and reagent, alkaline picric acid, were mixed by a computer-programmed dispenser and rapidly delivered to a four-channel detection cell. The absorbance change was monitored by a flow-through light-emitting diode-photodiode-based detector. Validation results against high-performance liquid chromatography-ultraviolet (HPLC-UV)/mass spectrometry (MS) are presented. Responses for 10-fold diluted samples were linear within clinically relevant ranges (0-250 mg/L after dilution). The system can analyze 70 samples per hour with a limit of detection of 0.76 mg/L. The relative standard deviation was 1.29% at 100 mg/L creatinine (n=225). Correlation with the HPLC (UV quantitation/MS confirmation) system was excellent (linear, r2=0.9906). The developed system allows rapid, simple, cost-effective, and robust creatinine analysis and is suitable for the analysis of large numbers of urine samples.

  10. Speech perception and functional benefit after multichannel cochlear implantation.

    PubMed

    Välimaa, T T; Sorri, M J; Löppönen, H J

    2001-01-01

    This study was done to investigate the effect of a multichannel cochlear implant on speech perception and the functional benefit of cochlear implantation in Finnish-speaking postlingually deafened adults. Fourteen subjects were enrolled. Sentence and word recognition were studied with open-set tests auditorily only. One year after implantation, the listening performance was assessed by case histories and interviews. Before implantation for subjects with a hearing aid, the mean recognition score was 38% for sentences and 17% for words. One year after switching on the implant, the mean recognition score was 84% for sentences and 70% for words. Before implantation, the majority of the subjects were not aware of environmental sounds and only a few were able to recognize some environmental sounds. One year after switching on the implant, the majority of the subjects were able to use the telephone with a familiar speaker. All the subjects were able to recognize speech auditorily only and had thus gained good functional benefit from the implant.

  11. A research of a high precision multichannel data acquisition system

    NASA Astrophysics Data System (ADS)

    Zhong, Ling-na; Tang, Xiao-ping; Yan, Wei

    2013-08-01

    The output signals of the focusing system in lithography are analog. To convert the analog signals into digital ones which are more flexible and stable to process, a desirable data acquisition system is required. The resolution of data acquisition, to some extent, affects the accuracy of focusing. In this article, we first compared performance between the various kinds of analog-to-digital converters (ADC) available on the market at the moment. Combined with the specific requirements (sampling frequency, converting accuracy, numbers of channels etc) and the characteristics (polarization, amplitude range etc) of the analog signals, the model of the ADC to be used as the core chip in our hardware design was determined. On this basis, we chose other chips needed in the hardware circuit that would well match with ADC, then the overall hardware design was obtained. Validation of our data acquisition system was verified through experiments and it can be demonstrated that the system can effectively realize the high resolution conversion of the multi-channel analog signals and give the accurate focusing information in lithography.

  12. Single particle multichannel bio-aerosol fluorescence sensor

    NASA Astrophysics Data System (ADS)

    Kaye, P. H.; Stanley, W. R.; Hirst, E.; Foot, E. V.; Baxter, K. L.; Barrington, S. J.

    2005-05-01

    We describe a prototype low-cost multi-channel aerosol fluorescence sensor designed for unattended deployment in medium to large area bio-aerosol detection networks. Individual airborne particles down to ~1μm in size are detected and sized by measurement of light scattered from a continuous-wave diode laser (660nm). This scatter signal is then used to trigger the sequential firing of two xenon sources which irradiate the particle with UV pulses at ~280 nm and ~370 nm, optimal for excitation of bio-fluorophores tryptophan and NADH (nicotinamide adenine dinucleotide) respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Current measurement rates are up to ~125 particles/s, corresponding to all particles for concentrations up to 1.3 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Device sensitivity is illustrated in preliminary data recorded from aerosols of E.coli, BG spores, and a variety of non-biological materials.

  13. The Optimum Loudspeaker Arrangements for Multichannel Sound System

    NASA Astrophysics Data System (ADS)

    Hiyama, Koichiro; Komiyama, Setsu; Hamasaki, Kimio

    2002-09-01

    This paper discusses the number of loudspeakers for multichannel sound systems to reproduce the spatial impression of diffuse sound field, such as in auditorium. Some subjective experiments were conducted in order to find suitable numbers and arrangement of loudspeakers. On the experiments, reference diffuse sound filed was produced by 24 loudspeakers that were placed at every 15 degrees along a concentric circle around the listener in an anechoic room. And then, the number of loudspeakers, which radiated sound sources or reverberations, was reduced from 24 to 12, 8, 6, 4, 3, 2 and then each spatial impression was compared with the reference sound of 24 loudspeakers. For the sound source of these experiments, noises and musical sounds were used. It becomes clear that the spatial impression of diffuse sound field can be reproduced by only two symmetrical pairs of loudspeakers (that is, four loudspeakers in all). On this arrangement, one pair of loudspeakers should be place in the frontal area around the listener with in angle of about 60 deg, and the other pair should be in the rear area with an angle of 120 to 180 deg.

  14. Quasiclassical theory of disordered multi-channel Majorana quantum wires

    NASA Astrophysics Data System (ADS)

    Neven, Patrick; Bagrets, Dmitry; Altland, Alexander

    2013-05-01

    Multi-channel spin-orbit quantum wires, when subjected to a magnetic field and proximity coupled to an s-wave superconductor, may support Majorana states. We study what happens to these systems in the presence of disorder. Inspired by the widely established theoretical methods of mesoscopic superconductivity, we develop á la Eilenberger a quasiclassical approach to topological nanowires valid in the limit of strong spin-orbit coupling. We find that the ‘Majorana number’ {\\cal M} , distinguishing between the state with Majorana fermions (symmetry class B) and no Majorana fermions (class D), is given by the product of two Pfaffians of gapped quasiclassical Green's functions fixed by the right and left terminals connected to the wire. A numerical solution of the Eilenberger equations reveals that the class D disordered quantum wires are prone to the formation of the zero-energy anomaly (class D impurity spectral peak) in the local density of states that shares the key features of the Majorana peak. In this way, we confirm the robustness of our previous conclusions (Bagrets and Altland 2012 Phys. Rev. Lett. 109 227005) on a more restrictive system setup. Generally speaking, we find that the quasiclassical approach provides a highly efficient means to address disordered class D superconductors both in the presence and in the absence of topological structures.

  15. Simulation of polycapillary and multichannel plate x-ray optics

    NASA Astrophysics Data System (ADS)

    Schmitz, Robert

    Simulation of x-ray optical systems is an important tool for optics design for known applications, and optic development for potential applications. Polycapillary optics are thin glass cylinders containing hundreds of thousands of hollow channels that transmit x rays using total external reflection. These optics have been developed for many applications, from beam filtering to x-ray collimating or focusing. A Monte Carlo based ray-tracing simulation was developed to model a wide range of polycapillary optic geometries. The simulation uses a vector-based approach to model all photons and optical geometries in three dimensions. Simulation verification was performed for a wide range of optical geometries, x-ray source configurations and photon energies and included comparison with both theoretical modeling and experimental results. Good agreement to experimental data was found using only a small amount of free fitting parameters. Glass defects including roughness and surface tilt (waviness) have been incorporated into the simulation and shown to reduce throughput especially at higher energies. Multichannel plate (MCP) optics are wide-angle reflective optics being intensively investigated for astronomical use. A Monte-Carlo based ray-tracing simulation was also developed to simulate a specific type of MCP optic. The simulation is fully three-dimensional, and incorporates waviness and channel twist (mosaicity) defects, both of which reduce the efficiency of the optic. The simulation results are promising, and help to support the theory that MCP optics are suitable for satellite based x-ray astronomy.

  16. Biomimetic Micropatterned Multi-channel Nerve Guides by Templated Electrospinning

    PubMed Central

    Jeffries, Eric; Wang, Yadong

    2012-01-01

    This report describes a new approach for fabricating micro-channels within three-dimensional electrospun constructs. These key features serve to mimic the fascicular architecture and fibrous extracellular matrix found in native nerve. Both electrospun fibers and multi-channeled structure nerve guides have become areas of increasing interest for their beneficial roles in nerve repair. However, to the best of our knowledge, this is the first report of a guide that incorporates both. Multiple parallel channels provide a greater number of defined paths and increased surface area compared to cylindrical guides. Additionally, the fibrous nature of electrospun fibers permits better mass transport than solid-walled constructs. The flexible fabrication scheme allows tailoring of nerve guide parameters such as channel diameters ranging from 33-176μm and various wall thicknesses. Channel and fiber structures were assessed by optical and electron microscope images. Geometric calculations estimated a porosity of over 85% for these guides with 16% or less from the channels. In vitro culture with Schwann cells demonstrated cellular infiltration into channels with restricted migration between fibers. Finally, cell proliferation and survival throughout the guide indicates that this design warrants future in vivo examination. PMID:22179932

  17. Wireless multichannel biopotential recording using an integrated FM telemetry circuit.

    PubMed

    Mohseni, Pedram; Najafi, Khalil; Eliades, Steven J; Wang, Xiaoqin

    2005-09-01

    This paper presents a four-channel telemetric microsystem featuring on-chip alternating current amplification, direct current baseline stabilization, clock generation, time-division multiplexing, and wireless frequency-modulation transmission of microvolt- and millivolt-range input biopotentials in the very high frequency band of 94-98 MHz over a distance of approximately 0.5 m. It consists of a 4.84-mm2 integrated circuit, fabricated using a 1.5-microm double-poly double-metal n-well standard complementary metal-oxide semiconductor process, interfaced with only three off-chip components on a custom-designed printed-circuit board that measures 1.7 x 1.2 x 0.16 cm3, and weighs 1.1 g including two miniature 1.5-V batteries. We characterize the microsystem performance, operating in a truly wireless fashion in single-channel and multichannel operation modes, via extensive benchtop and in vitro tests in saline utilizing two different micromachined neural recording microelectrodes, while dissipating approximately 2.2 mW from a 3-V power supply. Moreover, we demonstrate successful wireless in vivo recording of spontaneous neural activity at 96.2 MHz from the auditory cortex of an awake marmoset monkey at several transmission distances ranging from 10 to 50 cm with signal-to-noise ratios in the range of 8.4-9.5 dB.

  18. Threshold magnitudes for a multichannel correlation detector in background seismicity

    DOE PAGES

    Carmichael, Joshua D.; Hartse, Hans

    2016-04-01

    Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against "target" data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because non-target signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening non-target background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over six months of 2010, by processing International Monitoring System (IMS) array data with a multichannelmore » waveform correlation detector. Our method (1) accounts for low amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. Furthermore, we find that underground explosions with body wave magnitudes mb = 1.66 are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P -waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the Feb.12, 2013 announced nuclear test.« less

  19. Multichannel waveguides for the simultaneous detection of disease biomarkers

    SciTech Connect

    Mukundan, Harshini; Price, Dominique Z; Grace, Wynne K; Swanson, Basil I

    2009-01-01

    The sensor team at the Los Alamos National Laboratory has developed a waveguide-based optical biosensor that has previously been used for the detection of biomarkers associated with diseases such as tuberculosis, breast cancer, anthrax and influenza in complex biological samples (e.g., serum and urine). However, no single biomarker can accurately predict disease. To address this issue, we developed a multiplex assay for the detection of components of the Bacillus anthracis lethal toxin on single mode planar optical waveguides with tunable quantum dots as the fluorescence reporter. This limited ability to multiplex is still insufficient for accurate detection of disease or for monitoring prognosis. In this manuscript, we demonstrate for the first time, the design, fabrication and successful evaluation of a multichannel planar optical waveguide for the simultaneous detection of at least three unknown samples in quadruplicate. We demonstrate the simultaneous, rapid (30 min), quantitative (with internal standard) and sensitive (limit of detection of 1 pM) detection of protective antigen and lethal factor of Bacillus anthracis in complex biological samples (serum) using specific monoclonal antibodies labeled with quantum dots as the fluorescence reporter.

  20. Spectral decomposition in multichannel recordings based on multivariate parametric identification.

    PubMed

    Baselli, G; Porta, A; Rimoldi, O; Pagani, M; Cerutti, S

    1997-11-01

    A method of spectral decomposition in multichannel recordings is proposed, which represents the results of multivariate (MV) parametric identification in terms of classification and quantification of different oscillating mechanisms. For this purpose, a class of MV dynamic adjustment (MDA) models in which a MV autoregressive (MAR) network of causal interactions is fed by uncorrelated autoregressive (AR) processes is defined. Poles relevant to the MAR network closed-loop interactions (cl-poles) and poles relevant to each AR input are disentangled and accordingly classified. The autospectrum of each channel can be divided into partial spectra each relevant to an input. Each partial spectrum is affected by the cl-poles and by the poles of the corresponding input; consequently, it is decomposed into the relevant components by means of the residual method. Therefore, different oscillating mechanisms, even at similar frequencies, are classified by different poles and quantified by the corresponding components. The structure of MDA models is quite flexible and can be adapted to various sets of available signals and a priori hypotheses about the existing interactions; a graphical layout is proposed that emphasizes the oscillation sources and the corresponding closed-loop interactions. Application examples relevant to cardiovascular variability are briefly illustrated.

  1. Spatial mapping of dynamic cerebral autoregulation by multichannel near-infrared spectroscopy in high-grade carotid artery disease

    NASA Astrophysics Data System (ADS)

    Reinhard, Matthias; Schumacher, F. Konrad; Rutsch, Sebastian; Oeinck, Maximilian; Timmer, Jens; Mader, Irina; Schelter, Björn; Weiller, Cornelius; Kaller, Christoph P.

    2014-09-01

    The exact spatial distribution of impaired cerebral autoregulation in carotid artery disease is unknown. In this pilot study, we present a new approach of multichannel near-infrared spectroscopy (mcNIRS) for noninvasive spatial mapping of dynamic autoregulation in carotid artery disease. In 15 patients with unilateral severe carotid artery stenosis or occlusion, cortical hemodynamics in the bilateral frontal cortex were assessed from changes in oxyhemoglobin concentration using 52-channel NIRS (spatial resolution ˜2 cm). Dynamic autoregulation was graded by the phase shift between respiratory-induced 0.1 Hz oscillations of blood pressure and oxyhemoglobin. Ten of 15 patients showed regular phase values in the expected (patho) physiological range. Five patients had clearly outlying irregular phase values mostly due to artifacts. In patients with a regular phase pattern, a significant side-to-side difference of dynamic autoregulation was observed for the cortical border zone area between the middle and anterior cerebral artery (p<0.05). In conclusion, dynamic cerebral autoregulation can be spatially assessed from slow hemodynamic oscillations with mcNIRS. In high-grade carotid artery disease, cortical dynamic autoregulation is affected mostly in the vascular border zone. Spatial mapping of dynamic autoregulation may serve as a powerful tool for identifying brain regions at specific risks for hemodynamic infarction.

  2. Hydrotalcite formed by alteration of R7T7 nuclear waste glass and basaltic glass in salt brine at 190{degrees}C

    SciTech Connect

    Abdelouas, A.; Crovisier, J.L.; Lutze, W.; Mueller, R.; Bernotat, W.

    1994-12-31

    The R7T7 and synthetic basaltic glasses were submitted to corrosion in a saline MgCl{sub 2} dominated solution at 190{degrees}C. For both glasses, the early alteration product is a hydrotalcite-like compound in which HPO{sub 4}{sup 2{minus}}, SO{sub 4}{sup 2{minus}} and Cl{sup {minus}} substitutes to CO{sub 3}{sup 2{minus}}. The measured d{sub 003} spacing is 7.68 {angstrom} for the hydrotalcite formed from R7T7 glass and 7.62 {angstrom} for the hydrotalcite formed from basaltic glass which reflect the high aluminium content. Chemical microanalyses show that the hydrotalcite is subsequently covered by a silica-rich gel which evolves into saponite after few months.

  3. Experimental and numerical analysis of B1+ field and SAR with a new transmit array design for 7 T breast MRI

    NASA Astrophysics Data System (ADS)

    Kim, Junghwan; Krishnamurthy, Narayan; Santini, Tales; Zhao, Yujuan; Zhao, Tiejun; Bae, Kyongtae Ty; Ibrahim, Tamer S.

    2016-08-01

    Developing a radiofrequency (RF) coil system that produces a uniform B1+ field (circularly polarized component of the transverse magnetic field responsible for excitation) and low specific absorption rate (SAR) is critical for high performance ultrahigh field human imaging. In this study, we provide the design of a new eight channel radiofrequency (RF) transmit (Tx) array for breast MRI at 7 T. A numerical analysis utilizing an in-house finite difference time domain (FDTD) package was carried out in (1) four breast models, (2) homogeneous spherical model and (3) full body model to calculate the B1+ intensity (μT) and homogeneity represented by coefficient of variation (CoV = standard deviation/mean) in the proposed RF array design. The numerical results were compared with that measured in breast phantom (Bphantom) and homogeneous spherical phantom at 7 T MRI and showed very good agreement. Average and peak SARs were also calculated in the four breast models and the temperature rises due to the operation of the RF array were also measured in the Bphantom. The proposed RF array; which can operate in a single or multi transmit modes, demonstrates homogeneous RF field excitation with acceptable local/average SAR levels for breast MRI at 7 T.

  4. Restoration of hand function in C7-T1 brachial plexus palsies using a staged approach with nerve and tendon transfer.

    PubMed

    Zhang, Cheng-Gang; Dong, Zhen; Gu, Yu-Dong

    2014-11-01

    Brachial plexus palsies of C7-T1 result in the complete loss of hand function, including finger and thumb flexion and extension as well as intrinsic muscle function. The task of reanimating such a hand remains challenging, and so far there has been no reliable neurological reconstructive method for restoring hand function. The authors aimed to establish a reliable strategy to reanimate the paralyzed hand. Two patients had sustained C7-T1 complete lesions. In the first stage of the operative procedure, a supinator motor branch to posterior interosseous nerve transfer was performed with brachialis motor branch transfer to the median nerve to restore finger and thumb extension and flexion. In the second stage, the intact brachioradialis muscle was used for abductorplasty to restore thumb opposition. Both patients regained good finger extension and flexion. Thumb opposition was also attained, and overall hand function was satisfactory. The described strategy proved effective and reliable in restoring hand function after C7-T1 brachial plexus palsies.

  5. Adaptive multichannel sequential lattice prediction filtering method for ARMA spectrum estimation in subbands

    NASA Astrophysics Data System (ADS)

    Ozden, Mehmet Tahir

    2013-12-01

    A multichannel characterization for autoregressive moving average (ARMA) spectrum estimation in subbands is considered in this article. The fullband ARMA spectrum estimation can be realized in two-channels as a special form of this characterization. A complete orthogonalization of input multichannel data is accomplished using a modified form of sequential processing multichannel lattice stages. Matrix operations are avoided, only scalar operations are used, and a multichannel ARMA prediction filter with a highly modular and suitable structure for VLSI implementations is achieved. Lattice reflection coefficients for autoregressive (AR) and moving average (MA) parts are simultaneously computed. These coefficients are then converted to process parameters using a newly developed Levinson-Durbin type multichannel conversion algorithm. Hence, a novel method for spectrum estimation in subbands as well as in fullband is developed. The computational complexity is given in terms of model order parameters, and comparisons with the complexities of nonparametric methods are provided. In addition, the performance is visually and statistically compared against those of the nonparametric methods under both stationary and nonstationary conditions.

  6. Multichannel adaptive signal detection in space-time colored compound-gaussian autoregressive processes

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Ma, Xiaochuan; Yan, Shefeng; Hao, Chengpeng; Shi, Bo

    2012-12-01

    In this article, we consider the problem of adaptive detection for a multichannel signal in the presence of spatially and temporally colored compound-Gaussian disturbance. By modeling the disturbance as a multichannel autoregressive (AR) process, we first derive a parametric generalized likelihood ratio test against compound-Gaussian disturbance (CG-PGLRT) assuming that the true multichannel AR parameters are perfectly known. For the two-step GLRT design criterion, we combine the multichannel AR parameter estimation algorithm with three covariance matrix estimation strategies for compound-Gaussian environment, then obtain three adaptive CG-PGLRT detectors by replacing the ideal multichannel AR parameters with their estimates. Owing to treating the random texture components of disturbance as deterministic unknown parameters, all of the proposed detectors require no a priori knowledge about the disturbance statistics. The performance assessments are conducted by means of Monte Carlo trials. We focus on the issues of constant false alarm rate (CFAR) behavior, detection and false alarm probabilities. Numerical results show that the proposed adaptive CG-PGLRT detectors have dramatically ease the training and computational burden compared to the generalized likelihood ratio test-linear quadratic (GLRT-LQ) which is referred to as covariance matrix based detector and relies more heavily on training.

  7. Advanced technology for a satellite multichannel demultiplexer/demodulator

    NASA Technical Reports Server (NTRS)

    Abramovitz, Irwin J.; Flechsig, Drew E.; Matteis, Richard M., Jr.

    1994-01-01

    Satellite on-board processing is needed to efficiently service multiple users while at the same time minimizing earth station complexity. The processing satellite receives a wideband uplink at 30 GHz and down-converts it to a suitable intermediate frequency. A multichannel demultiplexer then separates the composite signal into discrete channels. Each channel is then demodulated by bulk demodulators, with the baseband signals routed to the downlink processor for retransmission to the receiving earth stations. This type of processing circumvents many of the difficulties associated with traditional bent-pipe repeater satellites. Uplink signal distortion and interference are not retransmitted on the downlink. Downlink power can be allocated in accordance with user needs, independent of uplink transmissions. This allows the uplink users to employ different data rates as well as different modulation and coding schemes. In addition, all downlink users have a common frequency standard and symbol clock on the satellite, which is useful for network synchronization in time division multiple access schemes. The purpose of this program is to demonstrate the concept of an optically implemented multichannel demultiplexer (MCD). A proof-of-concept (POC) model has been developed which has the ability to receive a 40 MHz wide composite signal consisting of up to 1000 40 kHz QPSK modulated channels and perform the demultiplexing process. In addition a set of special test equipment (STE) has been configured to evaluate the performance of the POC model. The optical MCD is realized as an acousto-optic spectrum analyzer utilizing the capability of Bragg cells to perform the required channelization. These Bragg cells receive an optical input from a laser source and an RF input (the signal). The Bragg interaction causes optical output diffractions at angles proportional to the RF input frequency. These discrete diffractions are optically detected and output to individual demodulators for

  8. SU-E-T-10: A Clinical Implementation and the Dosimetric Evidence in High Dose Rate Vaginal Multichannel Applicator Brachytherapy

    SciTech Connect

    Syh, J; Syh, J; Patel, B; Zhang, J; Wu, H; Rosen, L

    2015-06-15

    Purpose: The multichannel cylindrical applicator has a distinctive modification of the traditional single channel cylindrical applicator. The novel multichannel applicator has additional peripheral channels that provide more flexibility both in treatment planning process and outcomes. To protect by reducing doses to adjacent organ at risk (OAR) while maintaining target coverage with inverse plan optimization are the goals for such novel Brachytherapy device. Through a series of comparison and analysis of reults in more than forty patients who received HDR Brachytherapy using multichannel vaginal applicator, this procedure has been implemented in our institution. Methods: Multichannel planning was CT image based. The CTV of 5mm vaginal cuff rind with prescribed length was well reconstructed as well as bladder and rectum. At least D95 of CTV coverage is 95% of prescribed dose. Multichannel inverse plan optimization algorithm not only shapes target dose cloud but set dose avoids to OAR’s exclusively. The doses of D2cc, D5cc and D5; volume of V2Gy in OAR’s were selected to compare with single channel results when sole central channel is only possibility. Results: Study demonstrates plan superiorly in OAR’s doe reduction in multi-channel plan. The D2cc of the rectum and bladder were showing a little lower for multichannel vs. single channel. The V2Gy of the rectum was 93.72% vs. 83.79% (p=0.007) for single channel vs. multichannel respectively. Absolute reduced mean dose of D5 by multichannel was 17 cGy (s.d.=6.4) and 44 cGy (s.d.=15.2) in bladder and rectum respectively. Conclusion: The optimization solution in multichannel was to maintain D95 CTV coverage while reducing the dose to OAR’s. Dosimetric advantage in sparing critical organs by using a multichannel applicator in HDR Brachytherapy treatment of the vaginal cuff is so promising and has been implemented clinically.

  9. Stacked, filtered multi-channel X-ray diode array

    NASA Astrophysics Data System (ADS)

    MacNeil, L. P.; Dutra, E. C.; Compton, S. M.; Jacoby, B. A.; Raphaelian, M. L.

    2015-08-01

    There are many types of X-ray diodes that are used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need arose for a low cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustness and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. We fielded individual and stacked systems at several national facilities as ancillary `ride-along' diagnostics to test and improve the design usability. We present the MiniXRD system performance which supports consideration as a viable low-cost alternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.

  10. Multichannel activity propagation across an engineered axon network

    NASA Astrophysics Data System (ADS)

    Chen, H. Isaac; Wolf, John A.; Smith, Douglas H.

    2017-04-01

    . These results provide insight into how the brain potentially processes information and generates the neural code and could guide the development of clinical therapies based on multichannel brain stimulation.

  11. Development of a Multi-Channel, High Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    DePalma, Jude L.

    2003-01-01

    With the advent of the ISS era and the potential requirement for increased cardiovascular monitoring of crewmembers during extended EVAs, NASA flight surgeons would stand to benefit from an evolving technology that allows for a more rapid diagnosis of myocardial ischemia compared to standard electrocardiography. Similarly, during the astronaut selection process, NASA flight surgeons and other physicians would also stand to benefit from a completely noninvasive technology that, either at rest or during maximal exercise tests, is more sensitive than standard ECG in identifying the presence of ischemia. Perhaps most importantly, practicing cardiologists and emergency medicine physicians could greatly benefit from such a device as it could augment (or even replace) standard electrocardiography in settings where the rapid diagnosis of myocardial ischemia (or the lack thereof) is required for proper clinical decision-making. A multi-channel, high-frequency QRS electrocardiograph is currently under development in the Life Sciences Research Laboratories at JSC. Specifically the project consisted of writing software code, some of which contained specially-designed digital filters, which will be incorporated into an existing commercial software program that is already designed to collect, plot and analyze conventional 12-lead ECG signals on a desktop, portable or palm PC. The software will derive the high-frequency QRS signals, which will be analyzed (in numerous ways) and plotted alongside of the conventional ECG signals, giving the PC-viewing clinician advanced diagnostic information that has never been available previously in all 12 ECG leads simultaneously. After the hardware and software for the advanced digital ECG monitor have been fully integrated, plans are to use the monitor to begin clinical studies both on healthy subjects and on patients with known coronary artery disease in both the outpatient and hospital settings. The ultimate goal is to get the technology

  12. Stacked, filtered multi-channel X-ray diode array

    SciTech Connect

    MacNeil, Lawrence; Dutra, Eric; Raphaelian, Mark; Compton, Steve; Jacoby, Barry

    2015-08-01

    There are many types of X-ray diodes used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need exists for a low-cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustness and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. The authors fielded individual and stacked systems at several national facilities as ancillary "ride-along" diagnostics to test and improve the design usability. This paper presents the MiniXRD system performance, which supports consideration as a viable low-costalternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.

  13. A Wireless Headstage for Combined Optogenetics and Multichannel Electrophysiological Recording.

    PubMed

    Gagnon-Turcotte, Gabriel; LeChasseur, Yoan; Bories, Cyril; Messaddeq, Younes; De Koninck, Yves; Gosselin, Benoit

    2017-02-01

    This paper presents a wireless headstage with real-time spike detection and data compression for combined optogenetics and multichannel electrophysiological recording. The proposed headstage, which is intended to perform both optical stimulation and electrophysiological recordings simultaneously in freely moving transgenic rodents, is entirely built with commercial off-the-shelf components, and includes 32 recording channels and 32 optical stimulation channels. It can detect, compress and transmit full action potential waveforms over 32 channels in parallel and in real time using an embedded digital signal processor based on a low-power field programmable gate array and a Microblaze microprocessor softcore. Such a processor implements a complete digital spike detector featuring a novel adaptive threshold based on a Sigma-delta control loop, and a wavelet data compression module using a new dynamic coefficient re-quantization technique achieving large compression ratios with higher signal quality. Simultaneous optical stimulation and recording have been performed in-vivo using an optrode featuring 8 microelectrodes and 1 implantable fiber coupled to a 465-nm LED, in the somatosensory cortex and the Hippocampus of a transgenic mouse expressing ChannelRhodospin (Thy1::ChR2-YFP line 4) under anesthetized conditions. Experimental results show that the proposed headstage can trigger neuron activity while collecting, detecting and compressing single cell microvolt amplitude activity from multiple channels in parallel while achieving overall compression ratios above 500. This is the first reported high-channel count wireless optogenetic device providing simultaneous optical stimulation and recording. Measured characteristics show that the proposed headstage can achieve up to 100% of true positive detection rate for signal-to-noise ratio (SNR) down to 15 dB, while achieving up to 97.28% at SNR as low as 5 dB. The implemented prototype features a lifespan of up to 105

  14. Processing of multichannel seismic reflection data acquired in 2013 for seismic investigations of gas hydrates in the Gulf of Mexico

    USGS Publications Warehouse

    Miller, John J.; Agena, Warren F.; Haines, Seth S.; Hart, Patrick E.

    2016-04-13

    As part of a cooperative effort among the U.S. Geological Survey (USGS), the U.S. Department of Energy, and the U.S. Department of the Interior Bureau of Ocean Energy Management, two grids of two-dimensional multichannel seismic reflection data were acquired in the Gulf of Mexico over lease blocks Green Canyon 955 and Walker Ridge 313 between April 18 and May 3, 2013. The purpose of the data acquisition was to fill knowledge gaps in an ongoing study of known gas hydrate accumulations in the area. These data were initially processed onboard the recording ship R/V Pelican for more quality control during the recording. The data were subsequently processed in detail by the U.S. Geological Survey in Denver, Colorado, in two phases. The first phase was to create a “kinematic” dataset that removed extensive noise present in the data but did not preserve relative amplitudes. The second phase was to create a true relative amplitude dataset that included noise removal and “wavelet” deconvolution that preserved the amplitude information. This report describes the processing techniques used to create both datasets.

  15. Time-varying bispectral analysis of visually evoked multi-channel EEG

    NASA Astrophysics Data System (ADS)

    Chandran, Vinod

    2012-12-01

    Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the response at the same offset from the reference are considered as ergodic cyclostationary processes within a non-stationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multi-channel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital region in visual processing and demonstrate a link between the frontal and occipital regions during the response. Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4 and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects. The methodology shows potential as a neurological functional imaging technique that can be further developed for diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.

  16. Recent Progress of the HL-2A Multi-Channel HCOOH Laser Interferometer/Polarimeter

    NASA Astrophysics Data System (ADS)

    Li, Yonggao; Zhou, Yan; Deng, Zhongchao; Li, Yuan; Yi, Jiang; Wang, Haoxi

    2015-05-01

    A multichannel methanoic acid (HCOOH, λ = 432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ = 337 μm) laser interferometer in the HL-2A tokamak. A conventional Michelson-type interometer is used for the electron density measurement, and a Dodel-Kunz-type polarimeter is used for the Faraday rotation effect measurement, respectively. Each HCOOH laser can produce a linearly polarized radiation at a power lever of ˜30 mW, and a power stability <10% in 50 min. A beam waist (diameter d0 ≈12.0 mm, about 200 mm away from the outlet) is finally determined through a chopping modulation technique. The latest optical layout of the interferometer/polarimeter has been finished, and the hardware data processing system based on the fast Fourier transform phase-comparator technique is being explored. In order to demonstrate the feasibility of the diagnostic scheme, two associated bench simulation experiments were carried out in the laboratory, in which the plasma was simulated by a piece of polytetrafluoroethene plate, and the Faraday rotation effect was simulated by a rotating half-wave plate. Simulation results agreed well with the initial experimental conditions. At present, the HCOOH laser interferometer/polarimeter system is being assembled on HL-2A, and is planned to be applied in the 2014-2015 experimental campaign. supported by the National Magnetic Confinement Fusion Science Programs of China (Nos. 2010GB101002 and 2014GB109001), and National Natural Science Foundation of China (Nos. 11075048 and 11275059)

  17. Anisoplanatic studies and Fried parameter estimation via multi-channel laser communication system

    NASA Astrophysics Data System (ADS)

    Sergeyev, A.; Roggemann, M.

    The knowledge of the turbulence conditions and the ability to describe its properties are the key aspects to improve performance and extend the range of optical communication systems. The developed multi-channel, outdoor 3.2 km, partially over water, turbulence measurement and monitoring communication platform is directed to collect significant amount of the experimental data with the goal of statistically describe atmospheric turbulence. The communication system described in this paper has two transmitters and two receivers. The transmitter side is equipped with the laser and the bank of 14 horizontally, in-line mounted LEDs. The receiver side consists of two channels for wave front sensor (WFS) and point spread function (PSF) measurements. Data collected via both channels is further used for Fried parameter estimation and anisoplanatic studies. In this article authors provide comprehensive analysis of the turbulence statistics extracted from the experimental data. Statistics of Freid parameter r0 is derived from 6 Tb of data collected through 40 days time interval, and under various day and night atmospheric conditions. These data collected from WFS and PSF channels are digitally post processed and results obtained from PSF measurements are compared with the ones derived from the WFS data. Consistent results obtained via both channels allows authors to conclude that the entire system performs reliably and generates trustworthy results. Results extracted from the data collected via both channels show significant fluctuations of r0 with the values ranging from 2mm and up to 20 cm. The data collected from the PSF channel is also used for measurements of anisoplanetic effects. Theoretically, the severe anisoplanatic conditions found in horizontally imaging scenarios can be approximated by a finite number of phase screens placed along the imaging path. However, comparison of adjacent PSFs generated in this manner reveals significant correlation a- angles much larger

  18. Multi-Channel Seismic Images of the Mariana Forearc: EW0202 Initial Results

    NASA Astrophysics Data System (ADS)

    Oakley, A. J.; Goodliffe, A. M.; Taylor, B.; Moore, G. F.; Fryer, P.

    2002-12-01

    During the Spring of 2002, the Mariana Subduction Factory was surveyed using multi-channel seismics (MCS) as the first major phase of a US-Japanese collaborative NSF-MARGINS funded project. The resulting geophysical transects extend from the Pacific Plate to the West Mariana remnant arc. For details of this survey, including the results from the back-arc, refer to Taylor et al. (this session). The incoming Pacific Plate and its accompanying seamounts are deformed by plate flexure, resulting in extension of the upper crust as it enters the subduction zone. The resultant trench parallel faults dominate the bathymetry and MCS data. Beneath the forearc, in the southern transects near Saipan, the subducting slab is imaged to a distance of 50-60 km arcward. In addition to ubiquitous trench parallel normal faulting, a N-S transect of the forearc clearly shows normal faults perpendicular to the trench resulting from N-S extension. On the east side of the Mariana Ridge, thick sediment packages extend into the forearc. Directly east of Saipan and Tinian, a large, deeply scouring slide mass is imaged. Several serpentine mud volcanoes (Big Blue, Turquoise and Celestial) were imaged on the Mariana Forearc. Deep horizontal reflectors (likely original forearc crust) are imaged under the flanks of some of these seamounts. A possible "throat" reflector is resolved on multiple profiles at the summit of Big Blue, the northern-most seamount in the study area. The flanks of Turquoise seamount terminate in toe thrusts that represent uplift and rotation of surrounding sediments as the volcano grows outward. These thrusts form a basal ridge around the seamount similar to that previously noted encircling Conical Seamount. Furthermore, MCS data has revealed that some forearc highs previously thought to be fault blocks are in actuality mud volcanoes.

  19. mCENTRIST: A Multi-Channel Feature Generation Mechanism for Scene Categorization.

    PubMed

    Xiao, Yang; Wu, Jianxin; Yuan, Junsong

    2014-02-01

    mCENTRIST, a new multichannel feature generation mechanism for recognizing scene categories, is proposed in this paper. mCENTRIST explicitly captures the image properties that are encoded jointly by two image channels, which is different from popular multichannel descriptors. In order to avoid the curse of dimensionality, tradeoffs at both feature and channel levels have been executed to make mCENTRIST computationally practical. As a result, mCENTRIST is both efficient and easy to implement. In addition, a hyperopponent color space is proposed by embedding Sobel information into the opponent color space for further performance improvements. Experiments show that mCENTRIST outperforms established multichannel descriptors on four RGB and RGB-near infrared data sets, including aerial orthoimagery, indoor, and outdoor scene category recognition tasks. Experiments also verify that the hyper opponent color space enhances descriptors' performance effectively.

  20. Novel Methods for Measuring Depth of Anesthesia by Quantifying Dominant Information Flow in Multichannel EEGs

    PubMed Central

    Choi, Byung-Moon; Noh, Gyu-Jeong

    2017-01-01

    In this paper, we propose novel methods for measuring depth of anesthesia (DOA) by quantifying dominant information flow in multichannel EEGs. Conventional methods mainly use few EEG channels independently and most of multichannel EEG based studies are limited to specific regions of the brain. Therefore the function of the cerebral cortex over wide brain regions is hardly reflected in DOA measurement. Here, DOA is measured by the quantification of dominant information flow obtained from principle bipartition. Three bipartitioning methods are used to detect the dominant information flow in entire EEG channels and the dominant information flow is quantified by calculating information entropy. High correlation between the proposed measures and the plasma concentration of propofol is confirmed from the experimental results of clinical data in 39 subjects. To illustrate the performance of the proposed methods more easily we present the results for multichannel EEG on a two-dimensional (2D) brain map.

  1. Multichannel-Hadamard calibration of high-order adaptive optics systems.

    PubMed

    Guo, Youming; Rao, Changhui; Bao, Hua; Zhang, Ang; Zhang, Xuejun; Wei, Kai

    2014-06-02

    we present a novel technique of calibrating the interaction matrix for high-order adaptive optics systems, called the multichannel-Hadamard method. In this method, the deformable mirror actuators are firstly divided into a series of channels according to their coupling relationship, and then the voltage-oriented Hadamard method is applied to these channels. Taking the 595-element adaptive optics system as an example, the procedure is described in detail. The optimal channel dividing is discussed and tested by numerical simulation. The proposed method is also compared with the voltage-oriented Hadamard only method and the multichannel only method by experiments. Results show that the multichannel-Hadamard method can produce significant improvement on interaction matrix measurement.

  2. Note: Design and investigation of a multichannel plasma-jet triggered gas switch.

    PubMed

    Tie, Weihao; Liu, Xuandong; Zhang, Qiaogen; Liu, Shanhong

    2014-07-01

    We described the fabrication and testing of a multichannel plasma-jet triggered gas switch (MPJTGS). A novel six-channel annular micro-plasma-gun was embedded in the trigger electrode to generate multichannel plasma jets as a nanosecond trigger pulse arrived. The gas breakdown in multiple sites of the spark gap was induced and fixed around jet orifices by the plasma jets. We tested the multichannel discharge characteristics of the MPJTGS in two working modes with charge voltage of 50 kV, trigger voltage of +40 kV (25 ns rise time), and trigger energy of 240 J, 32 J, and 2 J, respectively, at different working coefficients. Results show that the average number of discharge channels increased as the trigger energy increased, and decreased as the working coefficient decreased. At a working coefficient of 87.1% and trigger energy of 240 J, the average number of discharge channels in Mode II could reach 4.1.

  3. Maximum a posteriori video super-resolution using a new multichannel image prior.

    PubMed

    Belekos, Stefanos P; Galatsanos, Nikolaos P; Katsaggelos, Aggelos K

    2010-06-01

    Super-resolution (SR) is the term used to define the process of estimating a high-resolution (HR) image or a set of HR images from a set of low-resolution (LR) observations. In this paper we propose a class of SR algorithms based on the maximum a posteriori (MAP) framework. These algorithms utilize a new multichannel image prior model, along with the state-of-the-art single channel image prior and observation models. A hierarchical (two-level) Gaussian nonstationary version of the multichannel prior is also defined and utilized within the same framework. Numerical experiments comparing the proposed algorithms among themselves and with other algorithms in the literature, demonstrate the advantages of the adopted multichannel approach.

  4. Space Doppler Processing for Multichannel ISAR Imaging of Non-Cooperative Targets Embedded in Strong Clutter (PREPRINT)

    DTIC Science & Technology

    2014-10-09

    Space-Doppler Processing for Multichannel ISAR Imaging of Non-Cooperative Targets Embedded in Strong Clutter Alessio Bacci1,2, Douglas Gray2, Marco...cooperative moving targets embedded in strong clutter, by exploiting Multichannel SAR (M-SAR) systems. Clutter mitigation and radar motion compensation are

  5. Overdeepened glacigenic landforms in Lake Thun (Switzerland) revealed by a multichannel reflection seismic survey

    NASA Astrophysics Data System (ADS)

    Fabbri, Stefano; Herwegh, Marco; Schlunegger, Fritz; Hübscher, Christian; Weiss, Benedikt J.; Schmelzbach, Cédric; Horstmeyer, Heinrich; Buechi, Marius W.; Anselmetti, Flavio S.

    2016-04-01

    Recently acquired high-resolution multibeam bathymetry, in combination with a 2D multichannel reflection seismic campaign on perialpine Lake Thun (Switzerland) reveals new insights into the diverse geometry of the lake basin and a so far unknown subaquatic moraine crest with unprecedented clarity. These new data will improve our comprehension concerning the retreat phases of the Aare glacier, the morphology of its proximal deposits and the facies architecture of the subglacial units. The overdeepened basin of Lake Thun was formed by a combination of tectonically predefined weak zones and glacial erosion during the last glacial periods. The new data indicate that below the outermost edge of a morphologically distinct platform in the south eastern part of the lake basin, a ridge structure marked by strong reflection amplitudes occurs. This structure is interpreted as a subaquatic terminal moraine crest, most likely created by a slightly advancing or stagnant grounded Aare glacier during its major retreating phase. The terminal moraine smoothly transforms downstream into well distinguishable foresets with internally recognisable layering, which dip steeply towards the deepest part of the basin, eventually transforming into bottomsets. This depositional sequence formed by the fore- and bottomsets represents ˜50% of the overall sediment volume that fills the basin and was deposited while the glacier was stagnant, interpreted to represent a rather short period of time of a few hundreds of years. This sequence is overlain by lacustrine deposits formed by late-glacial and Holocene laminated muds comprising intercalated turbidites (Wirth et al. 2011). Little is known about the exact timing and behaviour of retreating glaciers between their recessional phase from the Alpine foreland to the deglaciation of the inner-Alpine ice cap, mostly due to the lack of well-developed moraines that indicate glacial stabilization or slight readvance. Findings from pollen analyses by

  6. Multi-Channel Distributed Coordinated Function over Single Radio in Wireless Sensor Networks

    PubMed Central

    Campbell, Carlene E.-A.; Loo, Kok-Keong (Jonathan); Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band. PMID:22346614

  7. Multi-channel distributed coordinated function over single radio in wireless sensor networks.

    PubMed

    Campbell, Carlene E-A; Loo, Kok-Keong Jonathan; Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band.

  8. Fibercore AstroGain fiber: multichannel erbium doped fibers for optical space communications

    NASA Astrophysics Data System (ADS)

    Hill, Mark; Gray, Rebecca; Hankey, Judith; Gillooly, Andy

    2014-03-01

    Fibercore have developed AstroGainTM fiber optimized for multichannel amplifiers used in optical satellite communications and control. The fiber has been designed to take full advantage of the photo-annealing effect that results from pumping in the 980nm region. The proprietary trivalent structure of the core matrix allows optimum recovery following radiation damage to the fiber, whilst also providing a market leading Erbium Doped Fiber Amplifier (EDFA) efficiency. Direct measurements have been taken of amplifier efficiency in a multichannel assembly, which show an effective photo-annealing recovery of up to 100% of the radiation induced attenuation through excitation of point defects.

  9. Blind source separation of multichannel electroencephalogram based on wavelet transform and ICA

    NASA Astrophysics Data System (ADS)

    You, Rong-Yi; Chen, Zhong

    2005-11-01

    Combination of the wavelet transform and independent component analysis (ICA) was employed for blind source separation (BSS) of multichannel electroencephalogram (EEG). After denoising the original signals by discrete wavelet transform, high frequency components of some noises and artifacts were removed from the original signals. The denoised signals were reconstructed again for the purpose of ICA, such that the drawback that ICA cannot distinguish noises from source signals can be overcome effectively. The practical processing results showed that this method is an effective way to BSS of multichannel EEG. The method is actually a combination of wavelet transform with adaptive neural network, so it is also useful for BBS of other complex signals.

  10. Study on the separation performance of the multi-channel reduced graphene oxide membranes

    NASA Astrophysics Data System (ADS)

    Zhao, Yongjiao; Li, Chun; Fan, Xiaoyan; Wang, Jiesheng; Yuan, Guang; Song, Xinxiang; Chen, Jing; Li, Zhangde

    2016-10-01

    The multi-channel reduced graphene oxide membranes with separation function have been synthesized by a simple hydrothermal reduction method and vacuum filtration. In the as-synthesized membranes, the size, number, and type of the nanochannels can be controlled by the reduced temperature. The flux and retention rate of solution are investigated by filtering different size dye molecules. The interception and adsorption effect in the separation process are discussed. Furthermore, the sizes of the nanochannels in the membranes prepared by the different reduced temperatures are estimated. The results indicate that the multi-channel reduced graphene oxide membranes have potential application in water purification area.

  11. Electron density fluctuation measurements using a multichannel microwave interferometer in GAMMA 10

    SciTech Connect

    Yoshikawa, M.; Shima, Y.; Matsumoto, T.; Nakahara, A.; Yanagi, N.; Itakura, A.; Hojo, H.; Kobayashi, T.; Matama, K.; Tatematsu, Y.; Imai, T.; Kohagura, J.; Hirata, M.; Nakashima, Y.; Cho, T.

    2006-10-15

    Measurement of fluctuation in plasma is important for studying the improvement in plasma confinement by the formation of the plasma confinement potential. The density fluctuation is observed by microwaves by methods such as interferometry, reflectometry and Fraunhofer diffraction method. We have constructed a new multichannel microwave interferometer to measure the plasma density and fluctuation radial profiles in a single plasma shot. We successfully measured the time-dependent density and line-integrated density fluctuation radial profiles in a single plasma shot using the multichannel microwave interferometer. Thus, we have developed a useful tool for studying the improvement in plasma confinement by the formation of plasma confinement potential.

  12. Surgical planning and Neurologic Outcome after anterior approach to remove a disc herniation at the C7-T1 Level in 19 patients.

    PubMed

    Falavigna, Asdrubal; Righesso, Orlando; Betemps, Alejandro; de Los Rios, Pablo Fernando Vela; Guimarães, Rangel; Ziegler, Marcus; de Souza, Olivia Egger; da Silva, Pedro Guarise; Riew, Daniel K

    2013-11-18

    Study Design. Retrospective cohort study.Objective. The purpose of this study was to report the neurological presentation, outcome and surgical planning in a series of patients with a symptomatic single level C7-T1 disc herniation who underwent anterior surgical discectomy and fusion.Summary of Background Data. Disc herniations at C7-T1 are uncommon and there are few large series in the literature describing anterior treatment of such herniations.Methods. We performed a retrospective study of patients who underwent surgery for a C7-T1 disc herniation and reviewed the medical records, operative reports, and imaging studies. The surgeons' view line was drawn and its relation to the manubrium and the great vessels was determined on T1 sagittal magnetic resonance imaging (MRI). The location of the herniated disc in the spinal canal was determined using a T2 axial MRI and classified as central, foraminal and central/foraminal. Loss of muscle strength was evaluated preoperatively and at the last follow-up according to the classification of the Medical Research Council (MRC). The disc space was approached anteriorly by a standard cervical supramanubrial Smith-Robinson approach.Results. We identified 19 patients who had undergone C7-T1 discectomy and fusion. The mean age of the sample was 54.26 (±8.65) years. There was a higher proportion of male patients (57.9%, 11/19). The clinical presentation was predominantly motor deficit in 15/19 cases (78.9%) in intrinsic hand muscles, and usually improved after surgery. The mean follow-up period was 27.05 (± 15.10) months. All the patients underwent an anterior cervical supramanubrial approach with microdiscectomy and fusion. Anterior cervical plate fixation was used in 9/19 cases (47.3%). In the rest of the cases, a stand-alone intervertebral device was placed.Conclusion. An anterior cervical supramanubrial approach was easily accomplished in all patients. Motor deficit was the most common surgical indication.

  13. Implanted, inductively-coupled, radiofrequency coils fabricated on flexible polymeric material: Application to in vivo rat brain MRI at 7 T

    NASA Astrophysics Data System (ADS)

    Ginefri, J.-C.; Rubin, A.; Tatoulian, M.; Woytasik, M.; Boumezbeur, F.; Djemaï, B.; Poirier-Quinot, M.; Lethimonnier, F.; Darrasse, L.; Dufour-Gergam, E.

    2012-11-01

    Combined with high-field MRI scanners, small implanted coils allow for high resolution imaging with locally improved SNR, as compared to external coils. Small flexible implantable coils dedicated to in vivo MRI of the rat brain at 7 T were developed. Based on the Multi-turn Transmission Line Resonator design, they were fabricated with a Teflon substrate using copper micromolding process and a specific metal-polymer adhesion treatment. The implanted coils were made biocompatible by PolyDimethylSiloxane (PDMS) encapsulation. The use of low loss tangent material achieves low dielectric losses within the substrate and the use of the PDMS layer reduces the parasitic coupling with the surrounding media. An implanted coil was implemented in a 7 T MRI system using inductive coupling and a dedicated external pick-up coil for signal transmission. In vivo images of the rat brain acquired with in plane resolution of (150 μm)2 thanks to the implanted coil revealed high SNR near the coil, allowing for the visualization of fine cerebral structures.

  14. Dual Optimization Method of RF and Quasi-Static Field Simulations for Reduction of Eddy Currents Generated on 7T RF Coil Shielding

    PubMed Central

    Zhao, Yujuan; Zhao, Tiejun; Raval, Shailesh B.; Krishnamurthy, Narayanan; Zheng, Hai; Harris, Chad T.; Handler, William B.; Chronik, Blaine A.; Ibrahim, Tamer S.

    2015-01-01

    Purpose To optimize the design of radiofrequency (RF) shielding of transmit coils at 7T and reduce eddy currents generated on the RF shielding when imaging with rapid gradient waveforms. Methods One set of a four-element, 2×2 Tic-Tac-Toe (TTT) head coil structure is selected and constructed to study eddy currents on the RF coil shielding. The generated eddy currents are quantitatively studied in the time and frequency domains. The RF characteristics are studied using the finite-difference time-domain (FDTD) method. Five different kinds of RF shielding were tested on a 7T MRI scanner with phantoms and in-vivo human subjects. Results The eddy current simulation method is verified by the measurement results. Eddy currents induced by solid/intact and simple-structured slotted RF shielding can significantly distort the gradient fields. EPI images, B1+ maps and S matrix measurements verified that the proposed slot pattern can suppress the eddy currents while maintaining the RF characteristics of the transmit coil. Conclusion The presented dual-optimization method could be used to design the RF shielding and reduce the gradient field-induced eddy currents while maintaining the RF characteristics of the transmit coil. PMID:25367703

  15. Designing Multi-Channel Web Frameworks for Cultural Tourism Applications: The MUSE Case Study.

    ERIC Educational Resources Information Center

    Garzotto, Franca; Salmon, Tullio; Pigozzi, Massimiliano

    A framework for the design of multi-channel (MC) applications in the cultural tourism domain is presented. Several heterogeneous interface devices are supported including location-sensitive mobile units, on-site stationary devices, and personalized CDs that extend the on-site experience beyond the visit time thanks to personal memories gathered…

  16. Optical Methods For Transient Plasmas Studies By Multichannel TEA Nitrogen Laser

    NASA Astrophysics Data System (ADS)

    Ursu, Ioan; Popescu, Ion M.; Ivascu, M.; Baltog, I.; Mihut, L.; Zambreanu, V.; Zoita, V.

    1989-05-01

    A multichannel TEA nitrogen laser has been realized for some optical diagnostics. The following methods have been applied on the plasma focus device (PFD): interferometry, schlieren, shadowgraphy and a new combination of the last two. The background of these methods and some qualitative and quantitative results obtained in plasma focus (PF) studies are presented.

  17. 47 CFR 1.824 - Random selection procedures for Multichannel Multipoint Distribution Service and Multipoint...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Multipoint Distribution Service and Multipoint Distribution Service H-Channel stations. 1.824 Section 1.824... for Multichannel Multipoint Distribution Service and Multipoint Distribution Service H-Channel...) or (b)(3) shall be granted to any MMDS or MDS H-channel applicant whose owners, when aggregated,...

  18. 47 CFR 1.824 - Random selection procedures for Multichannel Multipoint Distribution Service and Multipoint...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Multipoint Distribution Service and Multipoint Distribution Service H-Channel stations. 1.824 Section 1.824... for Multichannel Multipoint Distribution Service and Multipoint Distribution Service H-Channel...) or (b)(3) shall be granted to any MMDS or MDS H-channel applicant whose owners, when aggregated,...

  19. [Prerequisites to the use of multichannel programmed muscle electrostimulation in patients with infantile cerebral palsy].

    PubMed

    Dotsenko, V I; Zhuravlev, A M; Esiutin, A A; Zuev, S L; Demin, P P; Markov, A A; Prokhorov, E V

    2002-01-01

    The paper deals with the use of multichannel programmed electrostimulation of muscles or artificial correction of movements to treat patients with infantile cerebral paralysis. This electrostimulation is a highly effective technique for correction of a pathological human motor stereotype and serves to consolidate the physiological movement patterns simulated during treatment sessions.

  20. Comparison of the single channel and multichannel (multivariate) concepts of selectivity in analytical chemistry.

    PubMed

    Dorkó, Zsanett; Verbić, Tatjana; Horvai, George

    2015-07-01

    Different measures of selectivity are in use for single channel and multichannel linear analytical measurements, respectively. It is important to understand that these two measures express related but still distinctly different features of the respective measurements. These relationships are clarified by introducing new arguments. The most widely used selectivity measure of multichannel linear methods (which is based on the net analyte signal, NAS, concept) expresses the sensitivity to random errors of a determination where all bias from interferents is computationally eliminated using pure component spectra. The conventional selectivity measure of single channel linear measurements, on the other hand, helps to estimate the bias caused by an interferent in a biased measurement. In single channel methods expert knowledge about the samples is used to limit the possible range of interferent concentrations. The same kind of expert knowledge allows improved (lower mean squared error, MSE) analyte determinations also in "classical" multichannel measurements if those are intractable due to perfect collinearity or to high noise inflation. To achieve this goal bias variance tradeoff is employed, hence there remains some bias in the results and therefore the concept of single channel selectivity can be extended in a natural way to multichannel measurements. This extended definition and the resulting selectivity measure can also be applied to the so-called inverse multivariate methods like partial least squares regression (PLSR), principal component regression (PCR) and ridge regression (RR).

  1. A Multichannel Calorimetric Simultaneous Assay Platform Using a Microampere Constant-Current Looped Enthalpy Sensor Array

    PubMed Central

    Wei, Hsien-Chin; Huang, Su-Hua; Jiang, Joe-Air; Lee, Yeun-Chung

    2017-01-01

    Calorimetric biochemical measurements offer various advantages such as low waste, low cost, low sample consumption, short operating time, and labor-savings. Multichannel calorimeters can enhance the possibility of performing higher-throughput biochemical measurements. An enthalpy sensor (ES) array is a key device in multichannel calorimeters. Most ES arrays use Wheatstone bridge amplifiers to condition the sensor signals, but such an approach is only suitable for null detection and low resistance sensors. To overcome these limitations, we have developed a multichannel calorimetric simultaneous assay (MCSA) platform. An adjustable microampere constant-current (AMCC) source was designed for exciting the ES array using a microampere current loop measurement circuit topology. The MCSA platform comprises a measurement unit, which contains a multichannel calorimeter and an automatic simultaneous injector, and a signal processing unit, which contains multiple ES signal conditioners and a data processor. This study focused on the construction of the MCSA platform; in particular, construction of the measurement circuit and calorimeter array in a single block. The performance of the platform, including current stability, temperature sensitivity and heat sensitivity, was evaluated. The sensor response time and calorimeter constants were given. The capability of the platform to detect relative enzyme activity was also demonstrated. The experimental results show that the proposed MCSA is a flexible and powerful biochemical measurement device with higher throughput than existing alternatives. PMID:28165412

  2. Raman Spectroscopy of Bacillus megaterium Using an Optical Multi-channel Analyzer

    NASA Astrophysics Data System (ADS)

    Layne, Scott P.; Bigio, Irving J.

    1986-01-01

    Using a spectrometer equipped with an optical multi-channel analyzer as the detector, we have observed the Stokes laser-Raman spectra of metabolically active B. megaterium from 930-1720 cm-1. No Raman lines attributable to the metabolic process nor the cells themselves were found. This result is consistent with our previous laser-Raman measurements of synchronous E. coli cultures.

  3. A Multi-Channel Approach for Collaborative Web-Based Learning

    ERIC Educational Resources Information Center

    Azeta, A. A.

    2008-01-01

    This paper describes an architectural framework and a prototype implementation of a web-based multi-channel e-Learning application that allows students, lecturers and the research communities to collaborate irrespective of the communication device a user is carrying. The application was developed based on the concept of "right once run on any…

  4. Digital filter suppresses effects of nonstatistical noise bursts on multichannel scaler digital averaging systems

    NASA Technical Reports Server (NTRS)

    Goodman, L. S.; Salter, F. O.

    1968-01-01

    Digital filter suppresses the effects of nonstatistical noise bursts on data averaged over multichannel scaler. Interposed between the sampled channels and the digital averaging system, it uses binary logic circuitry to compare the number of counts per channel with the average number of counts per channel.

  5. Multi-channel holographic birfurcative neural network system for real-time adaptive EOS data analysis

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Diep, J.; Huang, K.

    1991-01-01

    Viewgraphs on multi-channel holographic bifurcative neural network system for real-time adaptive Earth Observing System (EOS) data analysis are presented. The objective is to research and develop an optical bifurcating neuromorphic pattern recognition system for making optical data array comparisons and to evaluate the use of the system for EOS data classification, reduction, analysis, and other applications.

  6. A Multichannel Calorimetric Simultaneous Assay Platform Using a Microampere Constant-Current Looped Enthalpy Sensor Array.

    PubMed

    Wei, Hsien-Chin; Huang, Su-Hua; Jiang, Joe-Air; Lee, Yeun-Chung

    2017-02-04

    Calorimetric biochemical measurements offer various advantages such as low waste, low cost, low sample consumption, short operating time, and labor-savings. Multichannel calorimeters can enhance the possibility of performing higher-throughput biochemical measurements. An enthalpy sensor (ES) array is a key device in multichannel calorimeters. Most ES arrays use Wheatstone bridge amplifiers to condition the sensor signals, but such an approach is only suitable for null detection and low resistance sensors. To overcome these limitations, we have developed a multichannel calorimetric simultaneous assay (MCSA) platform. An adjustable microampere constant-current (AMCC) source was designed for exciting the ES array using a microampere current loop measurement circuit topology. The MCSA platform comprises a measurement unit, which contains a multichannel calorimeter and an automatic simultaneous injector, and a signal processing unit, which contains multiple ES signal conditioners and a data processor. This study focused on the construction of the MCSA platform; in particular, construction of the measurement circuit and calorimeter array in a single block. The performance of the platform, including current stability, temperature sensitivity and heat sensitivity, was evaluated. The sensor response time and calorimeter constants were given. The capability of the platform to detect relative enzyme activity was also demonstrated. The experimental results show that the proposed MCSA is a flexible and powerful biochemical measurement device with higher throughput than existing alternatives.

  7. Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons.

    PubMed

    Zhang, Qiang; Zhao, Yahong; Yan, Shuqin; Yang, Yumin; Zhao, Huijing; Li, Mingzhong; Lu, Shenzhou; Kaplan, David L

    2012-07-01

    Physical guidance cues have been exploited to stimulate neuron adhesion and neurite outgrowth. In the present study, three-dimensional (3-D) silk fibroin scaffolds with uniaxial multichannels (42-142 μm in diameter) were prepared by a directional temperature field freezing technique, followed by lyophilization. By varying the initial silk fibroin concentration, the chemical potential and quantity of free water around cylindrical ice crystals could be controlled to control the cross-section morphology of the scaffold channels. Aligned ridges also formed on the inner surface of the multichannels in parallel to the direction of the channels. In vitro, primary hippocampal neurons were seeded in these 3-D silk fibroin scaffolds with uniaxial multichannels of ∼120 μm in diameter. The morphology of the neurons was multipolar and alignment along the scaffold channels was observed. Cell-cell networks and cell-matrix interactions established by newly formed axons were observed after 7 days in culture. These neurons expressed β-III-tubulin, nerve filament and microtubule-associated protein, while glial fibrillary acidic protein immunofluorescence was barely above background. The ridges on the inner surface of the channels played a critical role in the adhesion and extension of neurons by providing continuous contact guidance. These new 3-D silk scaffolds with uniaxial multichannels provided a favorable microenvironment for the development of hippocampal neurons by guiding axonal elongation and cell migration.

  8. Visual Representation of Eye Gaze Is Coded by a Nonopponent Multichannel System

    ERIC Educational Resources Information Center

    Calder, Andrew J.; Jenkins, Rob; Cassel, Anneli; Clifford, Colin W. G.

    2008-01-01

    To date, there is no functional account of the visual perception of gaze in humans. Previous work has demonstrated that left gaze and right gaze are represented by separate mechanisms. However, these data are consistent with either a multichannel system comprising separate channels for distinct gaze directions (e.g., left, direct, and right) or an…

  9. Closed-Loop, Multichannel Experimentation Using the Open-Source NeuroRighter Electrophysiology Platform

    PubMed Central

    Newman, Jonathan P.; Zeller-Townson, Riley; Fong, Ming-Fai; Arcot Desai, Sharanya; Gross, Robert E.; Potter, Steve M.

    2013-01-01

    Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API) for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand-alone application, its plugin API, and an extensive set of case studies that highlight the system’s abilities for conducting closed-loop, multichannel interfacing experiments. PMID:23346047

  10. The Objective and Subjective Evaluation of Multichannel Expansion in Wide Dynamic Range Compression Hearing Instruments

    ERIC Educational Resources Information Center

    Plyler, Patrick N.; Lowery, Kristy J.; Hamby, Hilary M.; Trine, Timothy D.

    2007-01-01

    Purpose: The effects of multichannel expansion on the objective and subjective evaluation of 20 listeners fitted binaurally with 4-channel, digital in-the-ear hearing instruments were investigated. Method: Objective evaluations were conducted in quiet using the Connected Speech Test (CST) and in noise using the Hearing in Noise Test (HINT) at 40,…

  11. Consequences of Broad Auditory Filters for Identification of Multichannel-Compressed Vowels

    ERIC Educational Resources Information Center

    Souza, Pamela; Wright, Richard; Bor, Stephanie

    2012-01-01

    Purpose: In view of previous findings (Bor, Souza, & Wright, 2008) that some listeners are more susceptible to spectral changes from multichannel compression (MCC) than others, this study addressed the extent to which differences in effects of MCC were related to differences in auditory filter width. Method: Listeners were recruited in 3 groups:…

  12. A possible edge effect in enhanced network. [solar K-line observations by multichannel spectrometer

    NASA Technical Reports Server (NTRS)

    Jones, H. P.; Brown, D. R.

    1977-01-01

    K-line observations of enhanced network taken with the NASA/SPO Multichannel Spectrometer on September 28, 1975, in support of OSO-8 are discussed. The data show a correlation between core brightness and asymmetry for spatial scans which cross enhanced network boundaries. The implications of this result concerning mass flow in and near supergranule boundaries are discussed.

  13. Schwinger multichannel study of the 2Pi(g) shape resonance in N2

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Gibson, Thomas L.; Lima, Marco A. P.; Mckoy, Vincent

    1987-01-01

    The results of a study on electron-target correlations in the 2Pi(g) shape resonance of elastic e-N2 scattering, using the Schwinger multichannel formulation, are reported. The effects of basis set, orbital representation, and closed-channel-configurations are delineated. The different roles of radial and angular correlations are compared.

  14. Multichannel fNIRS Assessment of Overt and Covert Confrontation Naming

    ERIC Educational Resources Information Center

    Moriai-Izawa, Ayano; Dan, Haruka; Dan, Ippeita; Sano, Toshifumi; Oguro, Keiji; Yokota, Hidenori; Tsuzuki, Daisuke; Watanabe, Eiju

    2012-01-01

    Confrontation naming tasks assess cognitive processes involved in the main stage of word production. However, in fMRI, the occurrence of movement artifacts necessitates the use of covert paradigms, which has limited clinical applications. Thus, we explored the feasibility of adopting multichannel functional near-infrared spectroscopy (fNIRS) to…

  15. 47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... interference to radio communications involving the safety of life and protection of property cannot be promptly... programming distributor (MVPD). 76.613 Section 76.613 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards §...

  16. Using image synthesis for multi-channel registration of different image modalities.

    PubMed

    Chen, Min; Jog, Amod; Carass, Aaron; Prince, Jerry L

    2015-02-21

    This paper presents a multi-channel approach for performing registration between magnetic resonance (MR) images with different modalities. In general, a multi-channel registration cannot be used when the moving and target images do not have analogous modalities. In this work, we address this limitation by using a random forest regression technique to synthesize the missing modalities from the available ones. This allows a single channel registration between two different modalities to be converted into a multi-channel registration with two mono-modal channels. To validate our approach, two openly available registration algorithms and five cost functions were used to compare the label transfer accuracy of the registration with (and without) our multi-channel synthesis approach. Our results show that the proposed method produced statistically significant improvements in registration accuracy (at an α level of 0.001) for both algorithms and all cost functions when compared to a standard multi-modal registration using the same algorithms with mutual information.

  17. Self-adaptive method for high frequency multi-channel analysis of surface wave method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When the high frequency multi-channel analysis of surface waves (MASW) method is conducted to explore soil properties in the vadose zone, existing rules for selecting the near offset and spread lengths cannot satisfy the requirements of planar dominant Rayleigh waves for all frequencies of interest ...

  18. Exploring active layer thaw depth and water content dynamics with multi-channel GPR

    NASA Astrophysics Data System (ADS)

    Wollschlaeger, U.; Gerhards, H.; Westermann, S.; Pan, X.; Boike, J.; Schiwek, P.; Yu, Q.; Roth, K.

    2011-12-01

    In permafrost landscapes, the active layer is the highly dynamic uppermost section of the ground where many important hydrological, biological and geomorphological processes take place. Active layer hydrological processes are controlled by many different factors like thaw depth, soil textural properties, vegetation, and snow cover. These may lead to complex runoff patterns that are difficult to estimate from point measurements in boreholes. New multi-channel GPR systems provide the opportunity to non-invasively estimate reflector depth and average volumetric water content of distinct soil layers over distances ranging from some ten meters up to a few kilometers. Due to the abrupt change in dielectric permittivity between frozen and unfrozen ground, multi-channel GPR is a valuable technique for mapping the depth of the frost table along with the volumetric water content of the active layer without the need of laborious drillings or frost probe measurements. Knowing both values, the total amount of water stored in the active layer can be determined which may be used as an estimate of its latent heat content. Time series of measurements allow spatial monitoring of the progression of the thawing front. Multi-channel GPR thus offers new opportunities for monitoring active layer hydrological processes. This presentation will provide a brief introduction of the multi-channel GPR evaluation technique and will present different applications from several permafrost sites.

  19. RF/microwave system high-fidelity modeling and simulation: application to airborne multi-channel receiver system for angle of arrival estimation

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Rajan, Sreeraman; Young, Anne; O'Regan, Christina

    2014-06-01

    In this paper, a high-fidelity RF modeling and simulation framework is demonstrated to model an airborne multi-channel receiver system that is used to estimate the angle of arrival (AoA) of received signals from a stationary emitter. The framework is based on System Tool Kit (STK®), Matlab and SystemVue®. The SystemVue-based multi-channel receiver estimates the AoA of incoming signals using adjacent channel amplitude and phase comparisons, and it estimates the Doppler frequency shift of the aircraft by processing the transmitted and received signals. The estimated AoA and Doppler frequency are compared with the ground-truth data provided by STK to validate the efficacy of the modeling process. Unlike other current RF electronic warfare simulation frameworks, the received signal described herein is formed using the received power, the propagation delay and the transmitted waveform, and does not require information such as Doppler frequency shift or radial velocity of the moving platform from the scenario; hence, the simulation is more computationally efficient. In addition, to further reduce the overall modeling and simulation time, since the high-fidelity model computation is costly, the high-fidelity electronic system model is evoked only when the received power is higher than a predetermined threshold.

  20. Predictable Equilibrium Multichannel Network Characteristizes The Indus River, Pakistan

    NASA Astrophysics Data System (ADS)

    Carling, Paul

    2015-04-01

    PREDICTABLE EQUILIBRIUM MULTICHANNEL NETWORK CHARACTERIZES THE INDUS RIVER, PAKISTAN Carling, P.A.1, Trieu, H.1, Hornby, D.2, Darby, S.E.1, Sear, D.A.1, Hutton, C.2, Ali, Z.3, Iqbal, I.3 1Geography & Environment, University of Southampton, Southampton, UK; 2GeoData, University of Southampton, Southampton, UK; 3SUPARCO, Karachi, Pakistan The Indus River in Pakistan between Chasma and Taunsa is a 304 river km reach characterised by islands dividing multiple channels. Previously, the behaviour of such channel networks has been considered unpredictable. Crosato & Mosselman (2009) argue that physics-based predictors of channel splitting developed for braided-river bars apply poorly to island-divided rivers and recommend the application of regime theory (Bettess & White, 1983) to predict the number (n) of channels in rivers such as the Indus. The Indus is characterized by two to 11 channels at each cross section with, on average, about four channels being active during the dry season and five during the monsoon. Thus the expansion of the network during the monsoon is slight and is due to reoccupation of channels that are dry during low flows. The network evolves on an annual basis primarily due to bendway progression, whilst avulsions to form major new channels are relatively rare (one or two in the reach per year) and are matched by a similar number of closures. Thus the network structure, if not its shape, is relatively stable year to year. The standard deviation of channel numbers comparing sections throughout the reach is practically identical at c. two channels and there is no significant variation between years. Theory indicates that stable networks have three to four channels, thus the stability in the number of active channels through the annual monsoon and between years accords with the presence of a near-equilibrium reach-scale channel network that demonstrates local disequilibrium when 3 > n > 4, being perturbed by the annual monsoon. Application of the

  1. Digital image profilers for detecting faint sources which have bright companions, phase 2

    NASA Technical Reports Server (NTRS)

    Morris, Elena; Flint, Graham

    1991-01-01

    A breadboard image profiling system developed for the first phase of this project demonstrated the potential for detecting extremely faint optical sources in the presence of light companions. Experimental data derived from laboratory testing of the device supports the theory that image profilers of this type may approach the theoretical limit imposed by photon statistics. The objective of Phase 2 of this program is the development of a ground-based multichannel image profiling system capable of detecting faint stellar objects slightly displaced from brighter stars. We have finalized the multichannel image profiling system and attempted three field tests.

  2. Direct observation of the Aharonov-Casher phase.

    PubMed

    König, M; Tschetschetkin, A; Hankiewicz, E M; Sinova, Jairo; Hock, V; Daumer, V; Schäfer, M; Becker, C R; Buhmann, H; Molenkamp, L W

    2006-02-24

    Ring structures fabricated from HgTe/HgCdTe quantum wells have been used to study Aharonov-Bohm type conductance oscillations as a function of Rashba spin-orbit splitting strength. We observe nonmonotonic phase changes indicating that an additional phase factor modifies the electron wave function. We associate these observations with the Aharonov-Casher effect. This is confirmed by comparison with numerical calculations of the magnetoconductance for a multichannel ring structure within the Landauer-Büttiker formalism.

  3. Multi-Channel Seismic Images of the Mariana Trough: EW0202 Initial Results

    NASA Astrophysics Data System (ADS)

    Taylor, B.; Goodliffe, A. M.; Moore, G. F.; Oakley, A. J.; Fryer, P.

    2002-12-01

    As the first major phase of a US-Japanese collaborative NSF-MARGINS funded project titled "Multi-scale seismic imaging of the Mariana Subduction factory", we collected 5124 km of multi-channel seismic (MCS) data between 14N and 19N across the Mariana subduction-arc-back-arc system. Using the R/V Maurice Ewing, we deployed a 6-km, 480-channel streamer and shot every 50 m using a 20-airgun array (6817 cu in). Coincident gravity, magnetic, and Hydrosweep DS2 data were collected on all 48 lines. The entire MCS dataset, with a common midpoint interval of 6.25 m, was processed through migration during the 30-day cruise. The resulting geophysical transects extend from the Pacific Plate, across the forearc (including several serpentine mud volcanoes), active arc and rifted margin, and back-arc spreading center to the remnant arc. The margins of the back-arc basin are irregular in plan form and contain arc salients that are almost surrounded by back-arc crust. Well-imaged, normal-fault bounded blocks are commonly juxtaposed against back-arc crust with few resolvable internal reflectors. A boundary of this type, with a prominent magnetic anomaly, is imaged on two MCS lines that cross the active arc south of Anatahan volcano at 16.2N. From the position of this boundary, to the east of the arc line, we infer that Anatahan is built on back-arc crust. This likely results in oceanic crust being sandwiched between arc extrusives and cumulates. Other active arc volcanoes may be built on or through rifted former-arc crust. Near 17.5N, 143.5E, an east-dipping low-angle normal fault (approximately 20 degree dip) is imaged beneath the graben at the boundary between the eastern edge of the West Mariana Ridge remnant arc and the oldest crust of the Mariana Trough. North of DSDP Site 451, on the rifted edge of the West Mariana Ridge, there are reflectors at 10-10.5 seconds two-way travel time that may be from the Moho. The back-arc spreading center has an hourglass-shaped inflated segment

  4. Sodium Magnetic Resonance Imaging of Ankle Joint in Cadaver Specimens, Volunteers, and Patients After Different Cartilage Repair Techniques at 7 T

    PubMed Central

    Zbýň, Štefan; Brix, Martin O.; Juras, Vladimir; Domayer, Stephan E.; Walzer, Sonja M.; Mlynarik, Vladimir; Apprich, Sebastian; Buckenmaier, Kai; Windhager, Reinhard; Trattnig, Siegfried

    2015-01-01

    Objectives The goal of cartilage repair techniques such as microfracture (MFX) or matrix-associated autologous chondrocyte transplantation (MACT) is to produce repair tissue (RT) with sufficient glycosaminoglycan (GAG) content. Sodium magnetic resonance imaging (MRI) offers a direct and noninvasive evaluation of the GAG content in native cartilage and RT. In the femoral cartilage, this method was able to distinguish between RTs produced by MFX and MACT having different GAG contents. However, it needs to be clarified whether sodium MRI can be useful for evaluating RT in thin ankle cartilage. Thus, the aims of this 7-T study were (1) to validate our sodium MRI protocol in cadaver ankle samples, (2) to evaluate the sodium corrected signal intensities (cSI) in cartilage of volunteers, (3) and to compare sodium values in RT between patients after MFX and MACT treatment. Materials and Methods Five human cadaver ankle samples as well as ankles of 9 asymptomatic volunteers, 6 MFX patients and 6 MACT patients were measured in this 7-T study. Sodium values from the ankle samples were compared with histochemically evaluated GAG content. In the volunteers, sodium cSI values were calculated in the cartilages of ankle and subtalar joint. In the patients, sodium cSI in RT and reference cartilage were measured, morphological appearance of RT was evaluated using the magnetic resonance observation of cartilage repair tissue (MOCART) scoring system, and clinical outcome before and after surgery was assessed using the American Orthopaedic Foot and Ankle Society score and Modified Cincinnati Knee Scale. All regions of interest were defined on morphological images and subsequently transferred to the corresponding sodium images. Analysis of variance, t tests, and Pearson correlation coefficients were evaluated. Results In the patients, significantly lower sodium cSI values were found in RT than in reference cartilage for the MFX (P = 0.007) and MACT patients (P = 0.008). Sodium cSI and

  5. Paternally derived der(7)t(Y;7)(p11.1 approximately 11.2;p22.3)dn in a mosaic case with Turner syndrome.

    PubMed

    Polityko, Anna D; Khurs, Olga M; Kulpanovich, Anna I; Mosse, Konstantin A; Solntsava, Angelica V; Rumyantseva, Natalia V; Naumchik, Irina V; Liehr, Thomas; Weise, Anja; Mkrtchyan, Hasmik

    2009-01-01

    An unusual mosaic karyotype was detected in a 6-year-old female patient with clinical diagnosis of Turner syndrome (TS). Cytogenetic and molecular cytogenetic studies revealed besides a cell line with 45,X a second cell line where the short arm of the Y-chromosome was translocated onto the short arm of a chromosome 7; karyotype: 45,X,der(7)t(Y;7)(p11.1 approximately 11.2;p22.3)/45,X. To delineate the mechanisms of rearrangement and karyotypic evolution in this case, further studies were performed. A maternal origin of the X-chromosome and biparental origin of both chromosomes 7 were determined by microsatellite analysis. Furthermore, using parental-origin-determination fluorescence in situ hybridization (pod-FISH) it could be established that the derivative chromosome 7 was of paternal origin. Overall, this is to the best of our knowledge the first report of such a complex mosaic TS karyotype.

  6. Water Selective Imaging and bSSFP Banding Artifact Correction in Humans and Small Animals at 3T and 7T, Respectively

    PubMed Central

    Ribot, Emeline J.; Wecker, Didier; Trotier, Aurélien J.; Dallaudière, Benjamin; Lefrançois, William; Thiaudière, Eric; Franconi, Jean-Michel; Miraux, Sylvain

    2015-01-01

    Introduction The purpose of this paper is to develop an easy method to generate both fat signal and banding artifact free 3D balanced Steady State Free Precession (bSSFP) images at high magnetic field. Methods In order to suppress fat signal and bSSFP banding artifacts, two or four images were acquired with the excitation frequency of the water-selective binomial radiofrequency pulse set On Resonance or shifted by a maximum of 3/4TR. Mice and human volunteers were imaged at 7T and 3T, respectively to perform whole-body and musculoskeletal imaging. “Sum-Of-Square” reconstruction was performed and combined or not with parallel imaging. Results The frequency selectivity of 1-2-3-2-1 or 1-3-3-1 binomial pulses was preserved after (3/4TR) frequency shifting. Consequently, whole body small animal 3D imaging was performed at 7T and enabled visualization of small structures within adipose tissue like lymph nodes. In parallel, this method allowed 3D musculoskeletal imaging in humans with high spatial resolution at 3T. The combination with parallel imaging allowed the acquisition of knee images with ~500μm resolution images in less than 2min. In addition, ankles, full head coverage and legs of volunteers were imaged, demonstrating the possible application of the method also for large FOV. Conclusion In conclusion, this robust method can be applied in small animals and humans at high magnetic fields. The high SNR and tissue contrast obtained in short acquisition times allows to prescribe bSSFP sequence for several preclinical and clinical applications. PMID:26426849

  7. An experimental study on use of 7T MRI for evaluation of myocardial infarction in SD rats transfected with pcDNA 3.1(+)/VEGF121 plasmid

    PubMed Central

    Zhang, Yan; Tian, Ruiqing; Shen, Xiangchun; Chen, Yushu; Chen, Wei; Gan, Lu; Shen, Guiquan; Ju, Haiyue; Yang, Li; Gao, Fabao

    2016-01-01

    This study aims to build the myocardial infarction model in SD rats transfected with pcDNA 3.1(+)/VEGF121 plasmid and study the effect of the transfection using 7T MRI. Twenty-four male SD rats were randomly divided into 2 groups, pcDNA 3.1(+)/VEGF121 plasmid transfection group (with improved coronary perfusion delivery) and myocardial infarction model group. Cardiac cine magnetic resonance imaging (Cine-MRI), T2-mapping and late gadolinium enhancement (LGE) cardiac imaging were performed at 24 h, 48 h, 72 h and 7 d after myocardial infarction, respectively. The signal intensity, area at risk (AAR), myocardium infarction core (MIC) and salvageable myocardial zone (SMZ) were compared. The hearts were harvested for anatomic characterization, which was related to pathological examination (TTC staining, HE staining, Masson staining and immunohistochemical staining). The Cine-MRI results showed that pcDNA 3.1(+)/VEGF121 plasmid transfection group had higher end-diastolic volume (EDV) with a reduction in MIC and SMZ, as compared with the myocardial infarction model group. MIC, SMZ and AAR of the plasmid transfection declined over time. At 7 d, the two groups did not differ significantly in AAR and T2 value. According to Western Blotting, VEGF was up-regulated, while CaSR and caspase-3 were downregulated in the plasmid transfection group, as compared with the model group. In conclusion, a good treatment effect was achieved by coronary perfusion of pcDNA 3.1(+)/VEGF121 plasmid. 7T CMR sequences provide a non-invasive quantification of the treatment efficacy. However, the assessment of myocardial injury using T2 value and AAR in the presence of edema is less accurate. The myocardial protection of the plasmid transfection group may be related to the inhibition of myocardial apoptosis, vascular endothelial cell (VEC) proliferation and collagen proliferation. The CaSR signaling pathway may contribute to reversing the apoptosis. PMID:27648128

  8. Short-echo 3D H-1 Magnetic Resonance Spectroscopic Imaging of patients with glioma at 7T for characterization of differences in metabolite levels

    PubMed Central

    Li, Yan; Larson, Peder; Chen, Albert P.; Lupo, Janine M.; Ozhinsky, Eugene; Kelley, Douglas; Chang, Susan M.; Nelson, Sarah J.

    2014-01-01

    Purpose The purpose of this study was to evaluate the feasibility of using a short echo time, 3D H-1 magnetic resonance spectroscopic imaging (MRSI) sequence at 7T to assess the metabolic signature of lesions for patients with glioma. Materials and Methods 29 patients with glioma were studied. MRSI data were obtained using CHESS water suppression, spectrally-selective adiabatic inversion-recovery pulses and automatically prescribed outer-volume-suppression for lipid suppression, and spin echo slice selection (TE=30ms). An interleaved flyback echo-planar trajectory was applied to shorten the total acquisition time (~10min). Relative metabolite ratios were estimated in tumor and in normal-appearing white and gray matter (NAWM, GM). Results Levels of glutamine, myo-inositol, glycine and glutathione relative to total creatine (tCr) were significantly increased in the T2 lesions for all tumor grades compared to those in the NAWM (p < 0.05), while N-acetyl aspartate to tCr were significantly decreased (p < 0.05). In grade 2 gliomas, level of total choline-containing-compounds to tCr was significantly increased (p = 0.0137), while glutamate to tCr was significantly reduced (p = 0.0012). Conclusion The improved sensitivity of MRSI and the increased number of metabolites that can be evaluated using 7T MR scanners is of interest for evaluating patients with glioma. This study has successfully demonstrated the application of a short-echo spin-echo MRSI sequence to detect characteristic differences in regions of tumor versus normal appearing brain. PMID:24935758

  9. Control System for Readout Electronics of Multi-Channel Magnetocardiographs Using High-Temperature DC Superconducting Quantum Interference Devices

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Suzuki, Daisuke; Tsukamoto, Akira; Kumagai, Yukio; Miyashita, Tsuyoshi; Ogata, Kuniomi; Seki, Yusuke; Yokosawa, Koichi; Tsukada, Keiji

    2005-09-01

    We aimed to develop a control system for multichannel magnetocardiography (MCG) based on a high-temperature DC superconducting quantum interference device (high-Tc SQUID). To create this system, we used one oscillator as an AC bias controller to operate a multichannel high-Tc SQUID. To optimize the SQUID parameters (such as the AC bias, offset voltage), two new control sequences based on a cross-correlation method and a fast Fourier transform method were developed. Using the AC bias controller and the sequences, the typical white noise level of the SQUID was about 50--60 fT Hz-1/2 around 100 Hz. Multichannel MCG signals were detected clearly in the system with the SQUIDs. We conclude that our control system with one oscillator and new protocols can reliably operate a multichannel SQUID.

  10. Very Fast Algorithms and Detection Performance of Multi-Channel and 2-D Parametric Adaptive Matched Filters for Airborne Radar

    DTIC Science & Technology

    2007-06-05

    tive to the AMF, [1] and [5] discovered that multi-channel and two-dimensional parametric estimation approaches could (1) reduce the computational...dimensional (2-D) parametric estimation using the 2-D least-squares-based lattice algorithm [4]. The specifics of the inverse are found in the next...non- parametric estimation techniques • Least square error (LSE) vs mean square error (MSE) • Primarily multi-channel (M-C) structures; also try 2-D

  11. Modeling the Digital Output of the Multichannel Astrometric Photometer

    NASA Astrophysics Data System (ADS)

    de Jonge, Joost Kiewiet

    1995-05-01

    The periodic variation in the photon counts induced by the precision Ronchi ruling among the target and field stars imaged in the focal plane of the Thaw refractor has been and continues to be analyzed for phase differences in a purely numerical way. Efforts to develop a theoretical analytical output model for the MAP have so far been thwarted by the lack of an available, readily integrable mathematical function accurately representing the observed extended wing profiles of star images. However, it is shown that such a function exists in the form of a modified Bessel function. A complete theory of the instrument can therefore in principle be constructed. The derived time dependent output function has one given parameter (the ruling constant) and four adjustable parameters: FWHM image diameter (seeing diameter), semi-amplitude of the star's photon count, the cycle period and the time of zero phase. For each star first order approximations to these adjustable parameters (same for all cycles in a given run) are then improved by the method of differential corrections by solving the linearized equations of condition in a standard least square solution. The least square adjustments may extend over a few cycles or longer, yielding times of zero phase for each star and ultimately mean phase differences between all stars for a given run. Because the analytical model is capable of fitting the digital output of the MAP with great fidelity and is very flexible (it can accommodate a very wide variation in seeing and sky transparency) it is expected that its application to ongoing astrometric studies will bring about a further increase in the precision of astrometric observations at Allegheny Observatory.

  12. A lossless multichannel bio-signal compression based on low-complexity joint coding scheme for portable medical devices.

    PubMed

    Kim, Dong-Sun; Kwon, Jin-San

    2014-09-18

    Research on real-time health systems have received great attention during recent years and the needs of high-quality personal multichannel medical signal compression for personal medical product applications are increasing. The international MPEG-4 audio lossless coding (ALS) standard supports a joint channel-coding scheme for improving compression performance of multichannel signals and it is very efficient compression method for multi-channel biosignals. However, the computational complexity of such a multichannel coding scheme is significantly greater than that of other lossless audio encoders. In this paper, we present a multichannel hardware encoder based on a low-complexity joint-coding technique and shared multiplier scheme for portable devices. A joint-coding decision method and a reference channel selection scheme are modified for a low-complexity joint coder. The proposed joint coding decision method determines the optimized joint-coding operation based on the relationship between the cross correlation of residual signals and the compression ratio. The reference channel selection is designed to select a channel for the entropy coding of the joint coding. The hardware encoder operates at a 40 MHz clock frequency and supports two-channel parallel encoding for the multichannel monitoring system. Experimental results show that the compression ratio increases by 0.06%, whereas the computational complexity decreases by 20.72% compared to the MPEG-4 ALS reference software encoder. In addition, the compression ratio increases by about 11.92%, compared to the single channel based bio-signal lossless data compressor.

  13. Optimization of a digital lock-in algorithm with a square-wave reference for frequency-divided multi-channel sensor signal detection

    NASA Astrophysics Data System (ADS)

    Zhang, Shengzhao; Li, Gang; Lin, Ling; Zhao, Jing

    2016-08-01

    A digital lock-in detection technique is commonly used to measure the amplitude and phase of a selected frequency signal. A technique that uses a square wave as the reference signal has an advantage over the one using a sinusoidal wave due to its easier implementation and higher computational efficiency. However, demodulating multiple-frequency composite signals using square wave reference may result in interference between channels. To avoid interference between channels and reduce the computational complexity, we modify the calculations and determine the optimal parameter settings of the low-pass filter and carrier frequency, as detailed in this paper. The results of our analysis show that when the length of the average filter and carrier frequencies are properly set, the interference between the channels is removed. This optimization produces the digital lock-in detection suitable for measuring multi-channel sensor signals.

  14. Towards a multi-channel TOF-PET system with SiPM readout

    NASA Astrophysics Data System (ADS)

    Garutti, Erika; Göttlich, Martin; Harion, Tobias; Hegemann, Niklas; Schmidt, Maximilian; Schultz-Coulon, Hans-Christian; Shen, Wei; Silenzi, Alessandro; Stamen, Rainer; Tadday, Alexander; Xu, Chen

    2012-12-01

    The goal of this project is to develop a multi-channel TOF-PET system with a 300 ps FWHM time resolution, a factor two improvement with respect to commercially available systems (Surti et al., 2007 [1]). In a TOF-PET system, the time-of-flight information can be used to improve significantly the sensitivity of the detector as shown in Karp et al. (2008) [2]. The target time resolution has been achieved in two channel systems with LYSO (Kim and Wang, 2008 [3]), the aim is to port this results into a multi-channel system. This work extends the results shown in Göttlich et al. (2010) [4], studying the stability of the detector performance in different geometries and configurations.

  15. A multichannel speech enhancement method for functional MRI systems using a distributed microphone array.

    PubMed

    Milani, Ali A; Kannan, Govind; Panahi, Issa M S; Briggs, Richard

    2009-01-01

    Multichannel speech enhancement has been shown to be an effective method to decrease speech distortion introduced during speech enhancement, especially in environments like MRI (magnetic resonance imaging) which have a distributed noise source. However, these methods suffer from high computational complexity which makes them almost impractical. The use of subband filtering has been suggested to reduce this complexity but the performance of the existing subband methods deteriorate as the number of subbands increases. In this paper we introduce a new multichannel speech enhancement algorithm based on subband adaptive filtering that works for higher number of subbands at a lower complexity. The real-world experiments demonstrate the performance of the new scheme in an MRI room.

  16. A building-block approach to 3D printing a multichannel, organ-regenerative scaffold.

    PubMed

    Wang, Xiaohong; Rijff, Boaz Lloyd; Khang, Gilson

    2015-06-29

    Multichannel scaffolds, formed by rapid prototyping technologies, retain a high potential for regenerative medicine and the manufacture of complex organs. This study aims to optimize several parameters for producing poly(lactic-co-glycolic acid) (PLGA) scaffolds by a low-temperature, deposition manufacturing, three-dimensional printing (3DP, or rapid prototyping) system. Concentration of the synthetic polymer solution, nozzle speed and extrusion rate were analysed and discussed. Polymer solution with a concentration of 12% w/v was determined as optimal for formation; large deviation of this figure failed to maintain the desired structure. The extrusion rate was also modified for better construct quality. Finally, several solid organ scaffolds, such as the liver, with proper wall thickness and intact contour were printed. This study gives basic instruction to design and fabricate scaffolds with de novo material systems, particularly by showing the approximation of variables for manufacturing multichannel PLGA scaffolds. Copyright © 2015 John Wiley & Sons, Ltd.

  17. On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission.

    PubMed

    Liga, Gabriele; Xu, Tianhua; Alvarado, Alex; Killey, Robert I; Bayvel, Polina

    2014-12-01

    The performance of digital backpropagation (DBP) equalization when applied over multiple channels to compensate for the nonlinear impairments in optical fiber transmission systems is investigated. The impact of a suboptimal multichannel DBP operation is evaluated, where implementation complexity is reduced by varying parameters such as the number of nonlinear steps per span and sampling rate. Results have been obtained for a reference system consisting of a 5×32 Gbaud PDM-16QAM superchannel with 33 GHz subchannel spacing and Nyquist pulse shaping under long-haul transmission. The reduction in the effectiveness of the algorithm is evaluated and compared with the ideal gain expected from the cancellation of the nonlinear signal distortion. The detrimental effects of polarization mode dispersion (PMD) with varying DBP bandwidth are also studied. Key parameters which ensure the effectiveness of multichannel DBP are identified.

  18. Signal Quality Estimation With Multichannel Adaptive Filtering in Intensive Care Settings

    PubMed Central

    Lee, Joon; Mark, Roger G.

    2013-01-01

    A signal quality estimate of a physiological waveform can be an important initial step for automated processing of real-world data. This paper presents a new generic point-by-point signal quality index (SQI) based on adaptive multichannel prediction that does not rely on ad hoc morphological feature extraction from the target waveform. An application of this new SQI to photoplethysmograms (PPG), arterial blood pressure (ABP) measurements, and ECG showed that the SQI is monotonically related to signal-to-noise ratio (simulated by adding white Gaussian noise) and to subjective human quality assessment of 1361 multichannel waveform epochs. A receiver-operating-characteristic (ROC) curve analysis, with the human “bad” quality label as positive and the “good” quality label as negative, yielded areas under the ROC curve of 0.86 (PPG), 0.82 (ABP), and 0.68 (ECG). PMID:22717504

  19. A high efficiency tile-fiber hodoscope read out by multichannel phototubes

    NASA Astrophysics Data System (ADS)

    Cushman, P.; Giron, S.; Kindem, J.; Maxam, D.; Miller, D.; Timmermans, C.

    1996-02-01

    Plastic scintillator tiles of 7 mm × 8 mm cross section with an embedded green wavelength shifting fiber form the elements of an x- y hodoscope to be used in the g-2 experiment at Brookhaven. The fibers are read out through 1.5 m clear fibers by a new "low crosstalk" design of the Phillips multi-channel photomultiplier tube XP1723/D1. An average light yield of 30 photoelectrons are produced in a standard bialkali tube per minimum ionizing particle. Detection efficiencies of 98.6% averaged across an assembled plane can be completely accounted for by the measured 110 μm of paint thickness between elements. Data is presented on the light yield and attenuation of the hodoscope elements; the crosstalk, uniformity, and fast gating of the multichannel tubes; and the overall performance of the device in a test beam.

  20. Multichannel Speech Enhancement Based on Generalized Gamma Prior Distribution with Its Online Adaptive Estimation

    NASA Astrophysics Data System (ADS)

    Dat, Tran Huy; Takeda, Kazuya; Itakura, Fumitada

    We present a multichannel speech enhancement method based on MAP speech spectral magnitude estimation using a generalized gamma model of speech prior distribution, where the model parameters are adapted from actual noisy speech in a frame-by-frame manner. The utilization of a more general prior distribution with its online adaptive estimation is shown to be effective for speech spectral estimation in noisy environments. Furthermore, the multi-channel information in terms of cross-channel statistics are shown to be useful to better adapt the prior distribution parameters to the actual observation, resulting in better performance of speech enhancement algorithm. We tested the proposed algorithm in an in-car speech database and obtained significant improvements of the speech recognition performance, particularly under non-stationary noise conditions such as music, air-conditioner and open window.

  1. Tunability of multichannel optical filter based on magnetized one-dimensional plasma photonic crystal

    SciTech Connect

    Jamshidi-Ghaleh, K. Karami-Garehgeshlagi, F.; Mazloom, A. A.

    2015-10-15

    A one dimensional plasma photonic crystal (1DPPC) structure was proposed to design a tunable compressing/broadening multi-channel optical filter with external controllability. The 1DPPC with arrangement of (AP){sup n}D(PA){sup n}, where A and D are the dielectric materials, P is a magnetized plasma layer and n is the number of the periodicity, was proposed. The well-known transfer matrix method was employed for analysis. In linear transmittance spectrum, n − 1 defect modes were appeared inside the photonic band gap. The results were shown that by increasing the applied magnetic field intensity and its direction, a red-shift and blue-shift were, respectively, observed in defect mode frequencies. On the other hand, the modes were compressed and broadened with increasing the intensity and the direction of the applied magnetic field, respectively. Externally controllable defect modes can be useful in designing a multichannel tunable optical filter.

  2. Testing and Performance Analysis of the Multichannel Error Correction Code Decoder

    NASA Technical Reports Server (NTRS)

    Soni, Nitin J.

    1996-01-01

    This report provides the test results and performance analysis of the multichannel error correction code decoder (MED) system for a regenerative satellite with asynchronous, frequency-division multiple access (FDMA) uplink channels. It discusses the system performance relative to various critical parameters: the coding length, data pattern, unique word value, unique word threshold, and adjacent-channel interference. Testing was performed under laboratory conditions and used a computer control interface with specifically developed control software to vary these parameters. Needed technologies - the high-speed Bose Chaudhuri-Hocquenghem (BCH) codec from Harris Corporation and the TRW multichannel demultiplexer/demodulator (MCDD) - were fully integrated into the mesh very small aperture terminal (VSAT) onboard processing architecture and were demonstrated.

  3. IPOD-USGS multichannel seismic reflection profile from Cape Hatteras to the Mid-Atlantic Ridge

    USGS Publications Warehouse

    Grow, John A.; Markl, Rudi G.

    1977-01-01

    A 3,400-km-long multichannel seismic-reflection profile from Cape Hatteras to the Mid-Atlantic Ridge was acquired commercially under contract to the National Science Foundation and the U.S. Geological Survey. These data show evidence for massive erosion of the continental slope, diapirs at the base of the continental slope, and mantle reflections beneath the Hatteras Abyssal Plain.

  4. [Use of multichannel programmed electrostimulation for the rehabilitation of patients with multiple sclerosis].

    PubMed

    Popova, N F; Shagaev, A S

    2009-01-01

    Ninety-eight patients with definite multiple sclerosis (MS) have been examined. An effect of functional multichannel programmed electrostimulation (FMPES) on the restoration of balance and biomechanics of walking of patients with different types of MS and severity of neurological deficit was estimated. The effectiveness was measured with stabilometric analysis. The method was efficient in patients with mild and moderate degree of neurological deficit severity. Recommendations on the use of FMPES for patients with different disease severity are formulated.

  5. Bayesian experimental design of a multichannel interferometer for Wendelstein 7-Xa)

    NASA Astrophysics Data System (ADS)

    Dreier, H.; Dinklage, A.; Fischer, R.; Hirsch, M.; Kornejew, P.

    2008-10-01

    Bayesian experimental design (BED) is a framework for the optimization of diagnostics basing on probability theory. In this work it is applied to the design of a multichannel interferometer at the Wendelstein 7-X stellarator experiment. BED offers the possibility to compare diverse designs quantitatively, which will be shown for beam-line designs resulting from different plasma configurations. The applicability of this method is discussed with respect to its computational effort.

  6. Processing mossbauer spectra with an EMG-666 microcomputer and an NTA-1024 multichannel analyzer

    SciTech Connect

    Zakhar'in, D.S.; Chibinova, F.K.; Reiman, S.I.

    1986-01-01

    A program is presented for processing Mossbauer spectra containing less than or equal to 19 peaks for an EMG-666 microcomputer in conjunction with an NTA-1024 multichannel analyzer. Spectrum parameters are selected by their step-by-step variation. Processing of spectra containing seven or eight peaks requires about 1-2 h. The program allows the NTA-1024 display to be used for comparison of the measured and calculated spectra and preliminary estimation of the spectrum parameters.

  7. Multi-Channel Electronically Scanned Cryogenic Pressure Sensor And Method For Making Same

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Hopson, Purnell, Jr. (Inventor); Holloway, Nancy M. (Inventor)

    2001-01-01

    A miniature, multi-channel, electronically scanned pressure measuring device uses electrostatically bonded silicon dies in a multi-element array. These dies are bonded at specific sites on a glass, pre-patterned substrate. Thermal data is multiplexed and recorded on each individual pressure measuring diaphragm. The device functions in a cryogenic environment without the need of heaters to keep the sensor at constant temperatures.

  8. Optical multichannel room temperature magnetic field imaging system for clinical application

    PubMed Central

    Lembke, G.; Erné, S. N.; Nowak, H.; Menhorn, B.; Pasquarelli, A.

    2014-01-01

    Optically pumped magnetometers (OPM) are a very promising alternative to the superconducting quantum interference devices (SQUIDs) used nowadays for Magnetic Field Imaging (MFI), a new method of diagnosis based on the measurement of the magnetic field of the human heart. We present a first measurement combining a multichannel OPM-sensor with an existing MFI-system resulting in a fully functional room temperature MFI-system. PMID:24688820

  9. Transport properties of a multichannel Kondo dot in a magnetic field

    NASA Astrophysics Data System (ADS)

    Hörig, Christoph B. M.; Schuricht, Dirk

    2012-04-01

    We study the nonequilibrium transport through a multichannel Kondo quantum dot in the presence of a magnetic field. We use the exact solution of the two-loop renormalization group equation to derive analytical results for the g factor, the spin relaxation rates, the magnetization, and the differential conductance. We show that the finite magnetization leads to a coupling between the conduction channels, which manifests itself in additional features in the differential conductance.

  10. Multichannel system based on a high sensitivity superconductive sensor for magnetoencephalography.

    PubMed

    Rombetto, Sara; Granata, Carmine; Vettoliere, Antonio; Russo, Maurizio

    2014-07-08

    We developed a multichannel system based on superconducting quantum interference devices (SQUIDs) for magnetoencephalography measurements. Our system consists of 163 fully-integrated SQUID magnetometers, 154 channels and 9 references, and all of the operations are performed inside a magnetically-shielded room. The system exhibits a magnetic field noise spectral density of approximatively 5 fT/Hz(1=2). The presented magnetoencephalography is the first system working in a clinical environment in Italy.

  11. Multichannel System Based on a High Sensitivity Superconductive Sensor for Magnetoencephalography

    PubMed Central

    Rombetto, Sara; Granata, Carmine; Vettoliere, Antonio; Russo, Maurizio

    2014-01-01

    We developed a multichannel system based on superconducting quantum interference devices (SQUIDs) for magnetoencephalography measurements. Our system consists of 163 fully-integrated SQUID magnetometers, 154 channels and 9 references, and all of the operations are performed inside a magnetically-shielded room. The system exhibits a magnetic field noise spectral density of approximatively 5 fT/Hz1/2. The presented magnetoencephalography is the first system working in a clinical environment in Italy. PMID:25006995

  12. Feasibility of Interfacing a Microcomputer with a Multichannel Analyzer to Perform Gamma Ray Spectroscopy.

    DTIC Science & Technology

    1981-03-01

    Single Board Computer , model SBC 80/20 manufacted by Intel Corporation (Ref 2). The single board computer ccntains...available but is only used to regain control of the system when a program malfunctions. The most important feature of the single board computer is...because there are 41 output lines from the multichannel analyzer and 24 input lines to the single board computer . One reset and two interupt

  13. Performance of SQAM systems in a nonlinearly amplified multichannel interference environment

    NASA Astrophysics Data System (ADS)

    Seo, J.-S.; Feher, K.

    1985-06-01

    The performance of superposed-quadrature amplitude-modulation (SQAM) systems in a nonlinearly amplified multichannel environment in the presence of additive white Gaussian noise (AWGN), intersymbol interference (ISI), adjacent-channel interference (ACI), and cochannel interference (CCI) is investigated. Typical system configurations are analyzed by means of computer simulations. The results demonstrate that SQAM modems outperform OQPSK, MSK, and IJF-OQPSK (or SQORC) modems.

  14. Avian embryo monitoring during incubation using multi-channel diffuse speckle contrast analysis

    PubMed Central

    Yeo, Chaebeom; Park, Hyun-cheol; Lee, Kijoon; Song, Cheol

    2015-01-01

    Determining the survival rate of avian embryos during incubation is essential for cost-saving in the poultry industry. A multi-channel diffuse speckle contrast analysis (DSCA) system, comprising four optical fiber channels, is proposed to achieve noninvasive in vivo measurements of deep tissue flow. The system was able to monitor chick embryo vital signs over the entire incubation period. Moreover, it proved useful in distinguishing between chick embryos in healthy and weakened conditions. PMID:26819820

  15. Multi-channel high-resolution terahertz spectrometer for analytical studies

    NASA Astrophysics Data System (ADS)

    Vaks, V.; Domracheva, E.; Pripolzin, S.; Chernyaeva, M.; Yablokov, A.

    2016-12-01

    A method of multi-channel THz spectroscopy and a sample device that embodies the method were developed and described by the authors. The device has two independent THz radiation sources and a single receiving module. The novel method allows detecting preliminary and short-living chemical compounds and therefore to studychemical reaction dynamics. This has been shown by a series of test experiments. The method can be applied to researches in Physics, Chemistry, Astronomy, Medicine, and Biology.

  16. High performance multi-channel MOSFET on InGaAs for RF amplifiers

    NASA Astrophysics Data System (ADS)

    Adhikari, Manoj Singh; Singh, Yashvir

    2017-02-01

    In this paper, we propose a multi-channel MOSFET (MC-MOSFET) on In0.53Ga0.47As for the first time by utilising trenches in the conventional planar MOSFET (CP-MOSFET) for RF amplifier applications. The proposed multi-channel MOSFET (MC-MOSFET) has two vertical-gates placed in trenches creating multiple channels in p-body for parallel conduction of drain current. High-k Al2O3 having thickness of 2 nm is used as gate dielectric in the proposed device. The TaN gate electrodes are placed in two different trenches in the p-type InGaAs layer where multiple n-channels are formed. Simultaneous conduction from multiple channels enhances the drain current (ID) and gives higher transconductance (gm) leading to improvement in overall frequency response. Two-dimensional (2D) numerical simulations of both MC-MOSFET and CP-MOSFET are performed by using ATLAS device simulator and their different performance parameters are compared. The proposed multi-channel structure provides 6.79 times higher ID, 5.57 times improvement in gm, 2.5 times increase in unity current gain (ft), 15.85% higher unilateral power gain (fmax) and suppress the short-channel effects (SCEs) as compared with the CP-MOSFET.

  17. Active listening room compensation for massive multichannel sound reproduction systems using wave-domain adaptive filtering.

    PubMed

    Spors, Sascha; Buchner, Herbert; Rabenstein, Rudolf; Herbordt, Wolfgang

    2007-07-01

    The acoustic theory for multichannel sound reproduction systems usually assumes free-field conditions for the listening environment. However, their performance in real-world listening environments may be impaired by reflections at the walls. This impairment can be reduced by suitable compensation measures. For systems with many channels, active compensation is an option, since the compensating waves can be created by the reproduction loudspeakers. Due to the time-varying nature of room acoustics, the compensation signals have to be determined by an adaptive system. The problems associated with the successful operation of multichannel adaptive systems are addressed in this contribution. First, a method for decoupling the adaptation problem is introduced. It is based on a generalized singular value decomposition and is called eigenspace adaptive filtering. Unfortunately, it cannot be implemented in its pure form, since the continuous adaptation of the generalized singular value decomposition matrices to the variable room acoustics is numerically very demanding. However, a combination of this mathematical technique with the physical description of wave propagation yields a realizable multichannel adaptation method with good decoupling properties. It is called wave domain adaptive filtering and is discussed here in the context of wave field synthesis.

  18. Processing and Analysis of Multichannel Extracellular Neuronal Signals: State-of-the-Art and Challenges.

    PubMed

    Mahmud, Mufti; Vassanelli, Stefano

    2016-01-01

    In recent years multichannel neuronal signal acquisition systems have allowed scientists to focus on research questions which were otherwise impossible. They act as a powerful means to study brain (dys)functions in in-vivo and in in-vitro animal models. Typically, each session of electrophysiological experiments with multichannel data acquisition systems generate large amount of raw data. For example, a 128 channel signal acquisition system with 16 bits A/D conversion and 20 kHz sampling rate will generate approximately 17 GB data per hour (uncompressed). This poses an important and challenging problem of inferring conclusions from the large amounts of acquired data. Thus, automated signal processing and analysis tools are becoming a key component in neuroscience research, facilitating extraction of relevant information from neuronal recordings in a reasonable time. The purpose of this review is to introduce the reader to the current state-of-the-art of open-source packages for (semi)automated processing and analysis of multichannel extracellular neuronal signals (i.e., neuronal spikes, local field potentials, electroencephalogram, etc.), and the existing Neuroinformatics infrastructure for tool and data sharing. The review is concluded by pinpointing some major challenges that are being faced, which include the development of novel benchmarking techniques, cloud-based distributed processing and analysis tools, as well as defining novel means to share and standardize data.

  19. Processing and Analysis of Multichannel Extracellular Neuronal Signals: State-of-the-Art and Challenges

    PubMed Central

    Mahmud, Mufti; Vassanelli, Stefano

    2016-01-01

    In recent years multichannel neuronal signal acquisition systems have allowed scientists to focus on research questions which were otherwise impossible. They act as a powerful means to study brain (dys)functions in in-vivo and in in-vitro animal models. Typically, each session of electrophysiological experiments with multichannel data acquisition systems generate large amount of raw data. For example, a 128 channel signal acquisition system with 16 bits A/D conversion and 20 kHz sampling rate will generate approximately 17 GB data per hour (uncompressed). This poses an important and challenging problem of inferring conclusions from the large amounts of acquired data. Thus, automated signal processing and analysis tools are becoming a key component in neuroscience research, facilitating extraction of relevant information from neuronal recordings in a reasonable time. The purpose of this review is to introduce the reader to the current state-of-the-art of open-source packages for (semi)automated processing and analysis of multichannel extracellular neuronal signals (i.e., neuronal spikes, local field potentials, electroencephalogram, etc.), and the existing Neuroinformatics infrastructure for tool and data sharing. The review is concluded by pinpointing some major challenges that are being faced, which include the development of novel benchmarking techniques, cloud-based distributed processing and analysis tools, as well as defining novel means to share and standardize data. PMID:27313507

  20. Calibrating spectral estimation for the LISA Technology Package with multichannel synthetic noise generation

    NASA Astrophysics Data System (ADS)

    Ferraioli, Luigi; Hueller, Mauro; Vitale, Stefano; Heinzel, Gerhard; Hewitson, Martin; Monsky, Anneke; Nofrarias, Miquel

    2010-08-01

    The scientific objectives of the LISA Technology Package experiment on board of the LISA Pathfinder mission demand accurate calibration and validation of the data analysis tools in advance of the mission launch. The level of confidence required in the mission outcomes can be reached only by intensively testing the tools on synthetically generated data. A flexible procedure allowing the generation of a cross-correlated stationary noise time series was set up. A multichannel time series with the desired cross-correlation behavior can be generated once a model for a multichannel cross-spectral matrix is provided. The core of the procedure comprises a noise coloring, multichannel filter designed via a frequency-by-frequency eigendecomposition of the model cross-spectral matrix and a subsequent fit in the Z domain. The common problem of initial transients in a filtered time series is solved with a proper initialization of the filter recursion equations. The noise generator performance was tested in a two-dimensional case study of the closed-loop LISA Technology Package dynamics along the two principal degrees of freedom.

  1. Harmonic filters for 3D multichannel data: rotation invariant detection of mitoses in colorectal cancer.

    PubMed

    Schlachter, Matthias; Reisert, Marco; Herz, Corinna; Schlürmann, Fabienne; Lassmann, Silke; Werner, Martin; Burkhardt, Hans; Ronneberger, Olaf

    2010-08-01

    In this paper, we present a novel approach for a trainable rotation invariant detection of complex structures in 3D microscopic multichannel data using a nonlinear filter approach. The basic idea of our approach is to compute local features in a window around each 3D position and map these features by means of a nonlinear mapping onto new local harmonic descriptors of the local window. These local harmonic descriptors are then combined in a linear way to form the output of the filter. The optimal combination of the computed local harmonic descriptors is determined in previous training step, and allows the filter to be adapted to an arbitrary structure depending on the problem at hand. Our approach is not limited to scalar-valued images and can also be used for vector-valued (multichannel) images such as gradient vector flow fields. We present realizations of a scalar-valued and a vector-valued multichannel filter. Our proposed algorithm was quantitatively evaluated on colorectal cancer cell lines (cells grown under controlled conditions), on which we successfully detected complex 3D mitotic structures. For a qualitative evaluation we tested our algorithms on human 3D tissue samples of colorectal cancer. We compare our results with a steerable filter approach as well as a morphology-based approach.

  2. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network

    PubMed Central

    Lin, Kai; Wang, Di; Hu, Long

    2016-01-01

    With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC). The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S) evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods. PMID:27376302

  3. Concept of a multichannel spin-resolving electron analyzer based on Mott scattering

    PubMed Central

    Strocov, Vladimir N.; Petrov, Vladimir N.; Dil, J. Hugo

    2015-01-01

    The concept of a multichannel electron spin detector based on optical imaging principles and Mott scattering (iMott) is presented. A multichannel electron image produced by a standard angle-resolving (photo) electron analyzer or microscope is re-imaged by an electrostatic lens at an accelerating voltage of 40 kV onto the Au target. Quasi-elastic electrons bearing spin asymmetry of the Mott scattering are imaged by magnetic lenses onto position-sensitive electron CCDs whose differential signals yield the multichannel spin asymmetry image. Fundamental advantages of this concept include acceptance of inherently divergent electron sources from the electron analyzer or microscope focal plane as well as small aberrations achieved by virtue of high accelerating voltages, as demonstrated by extensive ray-tracing analysis. The efficiency gain compared with the single-channel Mott detector can be a factor of more than 104 which opens new prospects of spin-resolved spectroscopies in application not only to standard bulk and surface systems (Rashba effect, topological insulators, etc.) but also to buried heterostructures. The simultaneous spin detection combined with fast CCD readout enables efficient use of the iMott detectors at X-ray free-electron laser facilities. PMID:25931087

  4. A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics.

    PubMed

    Wang, Li-Ju; Chang, Yu-Chung; Sun, Rongrong; Li, Lei

    2017-01-15

    Current reported smartphone spectrometers are only used to monitor or measure one sample at a time. For the first time, we demonstrate a multichannel smartphone spectrometer (MSS) as an optical biosensor that can simultaneously optical sense multiple samples. In this work, we developed a novel method to achieve the multichannel optical spectral sensing with nanometer resolution on a smartphone. A 3D printed cradle held the smartphone integrated with optical components. This optical sensor performed accurate and reliable spectral measurements by optical intensity changes at specific wavelength or optical spectral shifts. A custom smartphone multi-view App was developed to control the optical sensing parameters and to align each sample to the corresponding channel. The captured images were converted to the transmission spectra in the visible wavelength range from 400nm to 700nm with the high resolution of 0.2521nm per pixel. We validated the performance of this MSS via measuring the concentrations of protein and immunoassaying a type of human cancer biomarker. Compared to the standard laboratory instrument, the results sufficiently showed that this MSS can achieve the comparative analysis detection limits, accuracy and sensitivity. We envision that this multichannel smartphone optical biosensor will be useful in high-throughput point-of-care diagnostics with its minimizing size, light weight, low cost and data transmission function.

  5. Arctic and Antarctic Sea Ice Concentrations from Multichannel Passive-Microwave Satellite Data Sets: User's Guide

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Parkinson, Claire L.; Gloersen, Per; Zwally, H. Jay

    1997-01-01

    Satellite multichannel passive-microwave sensors have provided global radiance measurements with which to map, monitor, and study the Arctic and Antarctic polar sea ice covers. The data span over 18 years (as of April 1997), starting with the launch of the Scanning Multichannel Microwave Radiometer (SMMR) on NASA's SeaSat A and Nimbus 7 in 1978 and continuing with the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSMI) series beginning in 1987. It is anticipated that the DMSP SSMI series will continue into the 21st century. The SSMI series will be augmented by new, improved sensors to be flown on Japanese and U.S. space platforms. This User's Guide provides a description of a new sea ice concentration data set generated from observations made by three of these multichannel sensors. The data set includes gridded daily ice concentrations (every-other-day for the SMMR data) for both the north and south polar regions from October 26, 1978 through September 30, 1995, with the one exception of a 6-week data gap from December 3, 1987 through January 12, 1988. The data have been placed on two CD-ROMs that include a ReadMeCD file giving the technical details on the file format, file headers, north and south polar grids, ancillary data sets, and directory structure of the CD-ROM. The CD-ROMS will be distributed by the National Snow and Ice Data Center in Boulder, CO.

  6. Exploring effective multiplicity in multichannel functional near-infrared spectroscopy using eigenvalues of correlation matrices

    PubMed Central

    Uga, Minako; Dan, Ippeita; Dan, Haruka; Kyutoku, Yasushi; Taguchi, Y-h; Watanabe, Eiju

    2015-01-01

    Abstract. Recent advances in multichannel functional near-infrared spectroscopy (fNIRS) allow wide coverage of cortical areas while entailing the necessity to control family-wise errors (FWEs) due to increased multiplicity. Conventionally, the Bonferroni method has been used to control FWE. While Type I errors (false positives) can be strictly controlled, the application of a large number of channel settings may inflate the chance of Type II errors (false negatives). The Bonferroni-based methods are especially stringent in controlling Type I errors of the most activated channel with the smallest p value. To maintain a balance between Types I and II errors, effective multiplicity (Meff) derived from the eigenvalues of correlation matrices is a method that has been introduced in genetic studies. Thus, we explored its feasibility in multichannel fNIRS studies. Applying the Meff method to three kinds of experimental data with different activation profiles, we performed resampling simulations and found that Meff was controlled at 10 to 15 in a 44-channel setting. Consequently, the number of significantly activated channels remained almost constant regardless of the number of measured channels. We demonstrated that the Meff approach can be an effective alternative to Bonferroni-based methods for multichannel fNIRS studies. PMID:26157982

  7. Clustering of periodic multichannel timeseries data with application to plasma fluctuations

    NASA Astrophysics Data System (ADS)

    Haskey, S. R.; Blackwell, B. D.; Pretty, D. G.

    2014-06-01

    A periodic datamining algorithm has been developed and used to extract distinct plasma fluctuations in multichannel oscillatory timeseries data. The technique uses the Expectation Maximisation algorithm to solve for the maximum likelihood estimates and cluster assignments of a mixture of multivariate independent von Mises distributions (EM-VMM). The performance of the algorithm shows significant benefits when compared to a periodic k-means algorithm and clustering using non-periodic techniques on several artificial datasets and real experimental data. Additionally, a new technique for identifying interesting features in multichannel oscillatory timeseries data is described (STFT-clustering). STFT-clustering identifies the coincidence of spectral features over most channels of a multi-channel array using the averaged short time Fourier transform of the signals. These features are filtered using clustering to remove noise. This method is particularly good at identifying weaker features and complements existing methods of feature extraction. Results from applying the STFT-clustering and EM-VMM algorithm to the extraction and clustering of plasma wave modes in the time series data from a helical magnetic probe array on the H-1NF heliac are presented.

  8. Battery-powered implantable nerve stimulator for chronic activation of two skeletal muscles using multichannel techniques.

    PubMed

    Lanmüller, H; Sauermann, S; Unger, E; Schnetz, G; Mayr, W; Bijak, M; Rafolt, D; Girsch, W

    1999-05-01

    Chronic activation of skeletal muscle is used clinically in representative numbers for diaphragm pacing to restore breathing and for dynamic graciloplasty to achieve fecal continence. The 3 different stimulation techniques currently used for electrophrenic respiration (EPR) all apply high frequency powered implants. It was our goal to make these stimulation methods applicable for EPR by a battery-powered nerve stimulator that would maximize the patient's freedom of movement. Additionally, the system should allow the implementation of multichannel techniques and alternating stimulation of 2 skeletal muscles as a further improvement in graciloplasty. Generally, the developed implantable nerve stimulator can be used for simultaneous and alternating activation of 2 skeletal muscles. Stimulation of the motor nerve is achieved by either single channel or multichannel methods. Carousel stimulation and sequential stimulation can be used for graciloplasty as well as for EPR. For EPR we calculated an operating time of the implant battery of 4.1 years based on the clinically used stimulation parameters with carousel stimulation. The multichannel pulse generator is hermetically sealed in a titanium case sized 65 x 17 mm (diameter x height) and weighs 88 g.

  9. Effects of a multichannel dynamic functional electrical stimulation system on hemiplegic gait and muscle forces

    PubMed Central

    Qian, Jing-guang; Rong, Ke; Qian, Zhenyun; Wen, Chen; Zhang, Songning

    2015-01-01

    [Purpose] The purpose of the study was to design and implement a multichannel dynamic functional electrical stimulation system and investigate acute effects of functional electrical stimulation of the tibialis anterior and rectus femoris on ankle and knee sagittal-plane kinematics and related muscle forces of hemiplegic gait. [Subjects and Methods] A multichannel dynamic electrical stimulation system was developed with 8-channel low frequency current generators. Eight male hemiplegic patients were trained for 4 weeks with electric stimulation of the tibia anterior and rectus femoris muscles during walking, which was coupled with active contraction. Kinematic data were collected, and muscle forces of the tibialis anterior and rectus femoris of the affected limbs were analyzed using a musculoskelatal modeling approach before and after training. A paired sample t-test was used to detect the differences between before and after training. [Results] The step length of the affected limb significantly increased after the stimulation was applied. The maximum dorsiflexion angle and maximum knee flexion angle of the affected limb were both increased significantly during stimulation. The maximum muscle forces of both the tibia anterior and rectus femoris increased significantly during stimulation compared with before functional electrical stimulation was applied. [Conclusion] This study established a functional electrical stimulation strategy based on hemiplegic gait analysis and musculoskeletal modeling. The multichannel functional electrical stimulation system successfully corrected foot drop and altered circumduction hemiplegic gait pattern. PMID:26696734

  10. A Multichannel Dampened Flow System for Studies on Shear Stress-Mediated Mechanotransduction

    PubMed Central

    Voyvodic, Peter L.; Min, Daniel; Baker, Aaron B.

    2012-01-01

    Shear stresses are powerful regulators of cellular function and potent mediators of the development of vascular disease. We have designed and optimized a system allowing the application of flow to cultured cells in a multichannel format. By using a multichannel peristaltic pump, flow can be driven continuously in the system for long-term studies in multiple isolated flow loops. A key component of the system is a dual-chamber pulse dampener that removes the pulsatility of the flow without the need for having an open system or elevated reservoir. We optimized the design parameters of the pulse dampening chambers for the maximum reduction in flow pulsation while minimizing the fluid needed for each isolated flow channel. Human umbilical vein endothelial cells (HUVECs) were exposed to steady and pulsatile shear stress using the system. We found that cells under steady flow had a marked increased production of eNOS and formation of actin stress fibers in comparison to those under pulsatile flow conditions. Overall, the results confirm the utility of the device as a practical means to apply shear stress to cultured cells in the multichannel format and provide steady, long term flow to microfluidic devices. PMID:22836694

  11. Development of refined MCNPX-PARET multi-channel model for transient analysis in research reactors

    SciTech Connect

    Kalcheva, S.; Koonen, E.; Olson, A. P.

    2012-07-01

    Reactivity insertion transients are often analyzed (RELAP, PARET) using a two-channel model, representing the hot assembly with specified power distribution and an average assembly representing the remainder of the core. For the analysis of protected by the reactor safety system transients and zero reactivity feedback coefficients this approximation proves to give adequate results. However, a more refined multi-channel model representing the various assemblies, coupled through the reactivity feedback effects to the whole reactor core is needed for the analysis of unprotected transients with excluded over power and period trips. In the present paper a detailed multi-channel PARET model has been developed which describes the reactor core in different clusters representing typical BR2 fuel assemblies. The distribution of power and reactivity feedback in each cluster of the reactor core is obtained from a best-estimate MCNPX calculation using the whole core geometry model of the BR2 reactor. The sensitivity of the reactor response to power, temperature and energy distributions is studied for protected and unprotected reactivity insertion transients, with zero and non-zero reactivity feedback coefficients. The detailed multi-channel model is compared vs. simplified fewer-channel models. The sensitivities of transient characteristics derived from the different models are tested on a few reactivity insertion transients with reactivity feedback from coolant temperature and density change. (authors)

  12. Single-channel and multi-channel orthogonal matching pursuit for seismic trace decomposition

    NASA Astrophysics Data System (ADS)

    Feng, Xuan; Zhang, Xuebing; Liu, Cai; Lu, Qi

    2017-02-01

    The conventional matching pursuit (MP) algorithm can decompose a 1D signal into a set of wavelet atoms adaptively. As to reflection seismic data, some applicable algorithms based on the MP decomposition has been developed, such as single-channel matching pursuit (SCMP) and multi-channel matching pursuit (MCMP). However, these algorithms cannot always select the optimal atoms, which results in less meaningful decompositions. To overcome this limitation, we introduce the idea of orthogonal matching pursuit into a multi-channel decomposition scheme, which we refer to as the multi-channel orthogonal matching pursuit (MCOMP). Each iteration of the proposed MCOMP might extract a more reasonable atom among a redundant Morlet wavelet dictionary, like the MCMP decomposition does, and estimate the corresponding amplitude more accurately by solving a least-squares problem. In order to correspond to SCMP, we also simplified the MCOMP decomposition to single-channel orthogonal matching pursuit (SCOMP) for decompositions of an individual seismic trace. We tested the proposed SCOMP algorithm on a synthetic signal and a field seismic trace. Then a field marine dataset example showed relative high resolution of the proposed MCOMP method with applications to the detection of low-frequency anomalies. These application examples all demonstrate more meaningful decomposition results and relative high convergence speed of the proposed algorithms.

  13. Load-adaptive practical multi-channel communications in wireless sensor networks.

    PubMed

    Islam, Md Shariful; Alam, Muhammad Mahbub; Hong, Choong Seon; Lee, Sungwon

    2010-01-01

    In recent years, a significant number of sensor node prototypes have been designed that provide communications in multiple channels. This multi-channel feature can be effectively exploited to increase the overall capacity and performance of wireless sensor networks (WSNs). In this paper, we present a multi-channel communications system for WSNs that is referred to as load-adaptive practical multi-channel communications (LPMC). LPMC estimates the active load of a channel at the sink since it has a more comprehensive view of the network behavior, and dynamically adds or removes channels based on the estimated load. LPMC updates the routing path to balance the loads of the channels. The nodes in a path use the same channel; therefore, they do not need to switch channels to receive or forward packets. LPMC has been evaluated through extensive simulations, and the results demonstrate that it can effectively increase the delivery ratio, network throughput, and channel utilization, and that it can decrease the end-to-end delay and energy consumption.

  14. Multichannel heterodyning for wideband interferometry, correlation and signal processing

    DOEpatents

    Erskine, David J.

    1999-01-01

    A method of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized.

  15. Multichannel heterodyning for wideband interferometry, correlation and signal processing

    DOEpatents

    Erskine, D.J.

    1999-08-24

    A method is disclosed of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized. 50 figs.

  16. Imaging P-to-S conversions with multichannel receiver functions

    NASA Astrophysics Data System (ADS)

    Neal, Scott L.; Pavlis, Gary L.

    We present a new methodology in the direct imaging of P-to-S converted phases recorded on broadband seismic arrays. Our approach is based on conventional three-component array processing and receiver function techniques with the key addition of a weighted stack based on an aerial smoothing function. This creates synthetic arrays with a specified aperture whose image points vary continuously across the array. With this approach, it is possible to interpolate data from an array of broadband stations onto an arbitrarily fine grid. We have applied this technique to a single deep event recorded by the Lodore broadband array, located in northern Colorado and southern Wyoming. The resulting images show distinct differences in crustal structure across the array, and also image major upper mantle discontinuities.

  17. Multi-channel spatialization system for audio signals

    NASA Technical Reports Server (NTRS)

    Begault, Durand R. (Inventor)

    1995-01-01

    Synthetic head related transfer functions (HRTF's) for imposing reprogramable spatial cues to a plurality of audio input signals included, for example, in multiple narrow-band audio communications signals received simultaneously are generated and stored in interchangeable programmable read only memories (PROM's) which store both head related transfer function impulse response data and source positional information for a plurality of desired virtual source locations. The analog inputs of the audio signals are filtered and converted to digital signals from which synthetic head related transfer functions are generated in the form of linear phase finite impulse response filters. The outputs of the impulse response filters are subsequently reconverted to analog signals, filtered, mixed and fed to a pair of headphones.

  18. Multi-channel spatialization systems for audio signals

    NASA Technical Reports Server (NTRS)

    Begault, Durand R. (Inventor)

    1993-01-01

    Synthetic head related transfer functions (HRTF's) for imposing reprogrammable spatial cues to a plurality of audio input signals included, for example, in multiple narrow-band audio communications signals received simultaneously are generated and stored in interchangeable programmable read only memories (PROM's) which store both head related transfer function impulse response data and source positional information for a plurality of desired virtual source locations. The analog inputs of the audio signals are filtered and converted to digital signals from which synthetic head related transfer functions are generated in the form of linear phase finite impulse response filters. The outputs of the impulse response filters are subsequently reconverted to analog signals, filtered, mixed, and fed to a pair of headphones.

  19. Development of high field SQUID magnetometer for magnetization studies up to 7 T and temperatures in the range from 4.2 to 300 K

    SciTech Connect

    Nagendran, R.; Thirumurugan, N.; Chinnasamy, N.; Janawadkar, M. P.; Sundar, C. S.

    2011-01-15

    We present the design, fabrication, integration, testing, and calibration of a high field superconducting quantum interference device (SQUID) magnetometer. The system is based on dc SQUID sensor with flux locked loop readout electronics. The design is modular and all the subsystems have been fabricated in the form of separate modules in order to simplify the assembly and for ease of maintenance. A novel feature of the system is that the current induced in the pickup loop is distributed as inputs to two different SQUID sensors with different strengths of coupling in order to improve the dynamic range of the system. The SQUID magnetometer has been calibrated with yttrium iron garnet (YIG) sphere as a standard reference material. The calibration factor was determined by fitting the measured flux profile of the YIG sphere to that expected for a point dipole. Gd{sub 2}O{sub 3} was also used as another reference material for the calibration and the effective magnetic moment of the Gd{sup 3+} could be evaluated from the temperature dependent magnetization measurements. The sensitivity of the system has been estimated to be about 10{sup -7} emu at low magnetic fields and about 10{sup -5} emu at high magnetic fields {approx}7 T.

  20. Ultra-low field T1 vs. T1rho at 3T and 7T: study of rotationally immobilized protein gels and animal brain tissues

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Inglis, Ben; Barr, Ian; Clarke, John

    2015-03-01

    Clinical magnetic resonance imaging (MRI) machines operating in static fields of typically 1.5 T or 3 T can capture information on slow molecular dynamics utilizing the so-called T1rho technique. This technique, in which a radiofrequency (RF) spin-lock field is applied with microtesla amplitude, has been used, for example, to determine the onset time of stroke in studies on rats. The long RF pulse, however, may exceed the specific absorption rate (SAR) limit, putting subjects at risk. Ultra-low-field (ULF) MRI, based on Superconducting Quantum Interference Devices (SQUIDs), directly detects proton signals at a static magnetic field of typically 50-250 μT. Using our ULF MRI system with adjustable static field of typically 55 to 240 μT, we systematically measured the T1 and T2 dispersion profiles of rotationally immobilized protein gels (bovine serum albumin), ex vivo pig brains, and ex vivo rat brains with induced stroke. Comparing the ULF results with T1rho dispersion obtained at 3 T and 7 T, we find that the degree of protein immobilization determines the frequency-dependence of both T1 and T1rho. Furthermore, T1rho and ULF T1 show similar results for stroke, suggesting that ULF MRI may be used to image traumatic brain injury with negligible SAR. This research was supported by the Henry H. Wheeler, Jr. Brain Imaging Center and the Donaldson Trust.

  1. A comparative numerical study of rotating and stationary RF coils in terms of flip angle and specific absorption rate for 7 T MRI

    NASA Astrophysics Data System (ADS)

    Trakic, A.; Jin, J.; Li, M. Y.; McClymont, D.; Weber, E.; Liu, F.; Crozier, S.

    2013-11-01

    While high-field magnetic resonance imaging promises improved image quality and faster scan time, it is affected by non-uniform flip angle distributions and unsafe specific absorption rate levels within the patient, as a result of the complicated radiofrequency (RF) field - tissue interactions. This numerical study explored the possibility of using a single mechanically rotating RF coil for RF shimming and specific absorption rate management applications at 7 T. In particular, this new approach (with three different RF coil element arrangements) was compared against both an 8-channel parallel coil array and a birdcage volume coil, with and without RF current optimisation. The evaluation was conducted using an in-house developed and validated finite-difference time-domain method in conjunction with a tissue-equivalent human head model. It was found that, without current optimisation, the rotating RF coil method produced a more uniform flip angle distribution and a lower maximum global and local specific absorption rate compared to the 8-channel parallel coil array and birdcage resonator. In addition, due to the large number of degrees of freedom in the form of rotated sensitivity profiles, the rotating RF coil approach exhibited good RF shimming and specific absorption rate management performance. This suggests that the proposed method can be useful in the development of techniques that address contemporary RF issues associated with high-field magnetic resonance imaging.

  2. A comparative numerical study of rotating and stationary RF coils in terms of flip angle and specific absorption rate for 7 T MRI.

    PubMed

    Trakic, A; Jin, J; Li, M Y; McClymont, D; Weber, E; Liu, F; Crozier, S

    2013-11-01

    While high-field magnetic resonance imaging promises improved image quality and faster scan time, it is affected by non-uniform flip angle distributions and unsafe specific absorption rate levels within the patient, as a result of the complicated radiofrequency (RF) field-tissue interactions. This numerical study explored the possibility of using a single mechanically rotating RF coil for RF shimming and specific absorption rate management applications at 7 T. In particular, this new approach (with three different RF coil element arrangements) was compared against both an 8-channel parallel coil array and a birdcage volume coil, with and without RF current optimisation. The evaluation was conducted using an in-house developed and validated finite-difference time-domain method in conjunction with a tissue-equivalent human head model. It was found that, without current optimisation, the rotating RF coil method produced a more uniform flip angle distribution and a lower maximum global and local specific absorption rate compared to the 8-channel parallel coil array and birdcage resonator. In addition, due to the large number of degrees of freedom in the form of rotated sensitivity profiles, the rotating RF coil approach exhibited good RF shimming and specific absorption rate management performance. This suggests that the proposed method can be useful in the development of techniques that address contemporary RF issues associated with high-field magnetic resonance imaging.

  3. Numerical Analysis of a Flexible Dual Loop Coil and its Experimental Validation for pre-Clinical Magnetic Resonance Imaging of Rodents at 7 T

    NASA Astrophysics Data System (ADS)

    Solis-Najera, S.; Vazquez, F.; Hernandez, R.; Marrufo, O.; Rodriguez, A. O.

    2016-12-01

    A surface radio frequency coil was developed for small animal image acquisition in a pre-clinical magnetic resonance imaging system at 7 T. A flexible coil composed of two circular loops was developed to closely cover the object to be imaged. Electromagnetic numerical simulations were performed to evaluate its performance before the coil construction. An analytical expression of the mutual inductance for the two circular loops as a function of the separation between them was derived and used to validate the simulations. The RF coil is composed of two circular loops with a 5 cm external diameter and was tuned to 300 MHz and 50 Ohms matched. The angle between the loops was varied and the Q factor was obtained from the S11 simulations for each angle. B1 homogeneity was also evaluated using the electromagnetic simulations. The coil prototype was designed and built considering the numerical simulation results. To show the feasibility of the coil and its performance, saline-solution phantom images were acquired. A correlation of the simulations and imaging experimental results was conducted showing a concordance of 0.88 for the B1 field. The best coil performance was obtained at the 90° aperture angle. A more realistic phantom was also built using a formaldehyde-fixed rat phantom for ex vivo imaging experiments. All images showed a good image quality revealing clearly defined anatomical details of an ex vivo rat.

  4. Design Study of a Multi-channel Array Particle Spectrometer for Space Missions

    NASA Astrophysics Data System (ADS)

    Trindade, Andreia; Assis, P.; Brogueira, P.; Gonçalves, P.; Keating, A.; Pimenta, M.; Rodrigues, P.; Trindade, A.

    In this work, a novel particle spectrometer is proposed to fulfil the need to map the space radiation environment for future space missions and to provide more accurate scientific data. The concept of the instrument brings together new radiation-hard technologies, for the photo-sensors and scintillating materials that will improve the quality of the data, while taking into account the limited resources such as mass, power and accommodation, allocated for space radiation monitors. The Multi-channel Array Particle Spectrometer (MAPS), can measure fluxes and energy dis-tributions of protons, ions, electrons and gammas in a wide energy range based on the 3D reconstruction of the particle track through the detector and its deposited energy in the active volume. It consists on a 8 x 8 segmented scintillator block built from 3.2 x 3.2 x 20 mm3 indi-vidual LYSO:Ce rods that are readout at both ends by two 64 pixel Silicon Photo-Multipliers (SiPMs) matrices, a new generation of high gain (105-106) avalanche photodiodes working in controlled Geiger mode, that collect the scintillating light produced by the interactions of the charged particles in the crystals. Each SiPM matrix is readout by a 64 channel mixed sig-nal analog-digital ASIC, offering both particle identification and particle counting capabilities. Power cycling design of the ASIC allows to activate the particle identification block only during a pre-determined time slice, keeping the total power budget of less than 1 mW/channel. An on-board FPGA sorts the serialized data from the two ASICs and computes the trigger primitives in real-time and in an event-by-event basis. Whenever a charged particle crosses the segmented volume of the detector, the XY coordinates, given by the pixelized crystal positions, and the deposited energy in each crystal is recorded. The double readout scheme allows to compute the light collection asymmetry between both ends of the crystal and to use that information to record the

  5. Adaptive spatio-temporal filtering of disturbed ECGs: a multi-channel approach to heartbeat detection in smart clothing.

    PubMed

    Wiklund, Urban; Karlsson, Marcus; Ostlund, Nils; Berglin, Lena; Lindecrantz, Kaj; Karlsson, Stefan; Sandsjö, Leif

    2007-06-01

    Intermittent disturbances are common in ECG signals recorded with smart clothing: this is mainly because of displacement of the electrodes over the skin. We evaluated a novel adaptive method for spatio-temporal filtering for heartbeat detection in noisy multi-channel ECGs including short signal interruptions in single channels. Using multi-channel database recordings (12-channel ECGs from 10 healthy subjects), the results showed that multi-channel spatio-temporal filtering outperformed regular independent component analysis. We also recorded seven channels of ECG using a T-shirt with textile electrodes. Ten healthy subjects performed different sequences during a 10-min recording: resting, standing, flexing breast muscles, walking and pushups. Using adaptive multi-channel filtering, the sensitivity and precision was above 97% in nine subjects. Adaptive multi-channel spatio-temporal filtering can be used to detect heartbeats in ECGs with high noise levels. One application is heartbeat detection in noisy ECG recordings obtained by integrated textile electrodes in smart clothing.

  6. Human finger somatotopy in areas 3b, 1, and 2: a 7T fMRI study using a natural stimulus.

    PubMed

    Martuzzi, Roberto; van der Zwaag, Wietske; Farthouat, Juliane; Gruetter, Rolf; Blanke, Olaf

    2014-01-01

    To study the properties of human primary somatosensory (S1) cortex as well as its role in cognitive and social processes, it is necessary to noninvasively localize the cortical representations of the body. Being arguably the most relevant body parts for tactile exploration, cortical representations of fingers are of particular interest. The aim of the present study was to investigate the cortical representation of individual fingers (D1-D5), using human touch as a stimulus. Utilizing the high BOLD sensitivity and spatial resolution at 7T, we found that each finger is represented within three subregions of S1 in the postcentral gyrus. Within each of these three areas, the fingers are sequentially organized (from D1 to D5) in a somatotopic manner. Therefore, these finger representations likely reflect distinct activations of BAs 3b, 1, and 2, similar to those described in electrophysiological work in non-human primates. Quantitative analysis of the local BOLD responses revealed that within BA3b, each finger representation is specific to its own stimulation without any cross-finger responsiveness. This finger response selectivity was less prominent in BA 1 and in BA 2. A test-retest procedure highlighted the reproducibility of the results and the robustness of the method for BA 3b. Finally, the representation of the thumb was enlarged compared to the other fingers within BAs 1 and 2. These findings extend previous human electrophysiological and neuroimaging data but also reveal differences in the functional organization of S1 in human and nonhuman primates.

  7. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study.

    PubMed

    Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R

    2014-10-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task.

  8. Simultaneous Multi-slice Turbo-FLASH Imaging with CAIPIRINHA for Whole Brain Distortion-Free Pseudo-Continuous Arterial Spin Labeling at 3 and 7T

    PubMed Central

    Wang, Yi; Moeller, Steen; Li, Xiufeng; Vu, An T.; Krasileva, Kate; Ugurbil, Kamil; Yacoub, Essa; Wang, Danny JJ

    2015-01-01

    Simultaneous multi-slice (SMS) or multiband (MB) imaging has recently been attempted for arterial spin labeled (ASL) perfusion MRI in conjunction with echo-planar imaging (EPI) readout. It was found that SMS-EPI can reduce the T1 relaxation effect of the label, improve image coverage and resolution with little penalty in signal-to-noise ratio (SNR). However, EPI still suffers from geometric distortion and signal dropout from field inhomogeneity effects especially at high and ultrahigh magnetic fields. Here we present a novel scheme for achieving high fidelity distortion-free quantitative perfusion imaging by combining pseudo-continuous ASL (pCASL) with SMS Turbo-FLASH (TFL) readout at both 3 and 7 Tesla. Bloch equation simulation was performed to characterize and optimize the TFL-based pCASL perfusion signal. Two MB factors (3 and 5) were implemented in SMS-TFL pCASL and compared with standard 2D TFL and EPI pCASL sequences. The temporal SNR of SMS-TFL pCASL relative to that of standard TFL pCASL was 0.76±0.10 and 0.74±0.11 at 7T, 0.70±0.05 and 0.65±0.05 at 3T for MB factor of 3 and 5, respectively. By implementing background suppression in conjunction with SMS-TFL at 3T, the relative temporal SNR improved to 0.84±0.09 and 0.79±0.10 for MB factor of 3 and 5 respectively. Compared to EPI pCASL, significantly increased temporal SNR (p<0.001) and improved visualization of orbitofrontal cortex were achieved using SMS-TFL pCASL. By combining SMS acceleration with TFL pCASL, we demonstrated the feasibility for whole brain distortion-free quantitative mapping of cerebral blood flow at high and ultrahigh magnetic fields. PMID:25837601

  9. Towards high-quality simultaneous EEG-fMRI at 7 T: Detection and reduction of EEG artifacts due to head motion.

    PubMed

    Jorge, João; Grouiller, Frédéric; Gruetter, Rolf; van der Zwaag, Wietske; Figueiredo, Patrícia

    2015-10-15

    The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7 T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field.

  10. Evaluation of B0-inhomogeneity correction for triple-quantum-filtered sodium MRI of the human brain at 4.7 T

    NASA Astrophysics Data System (ADS)

    Tsang, Adrian; Stobbe, Robert W.; Beaulieu, Christian

    2013-05-01

    Off-resonance can result in signal loss on triple-quantum-filtered (TQF) sodium images. Three correction methods have been proposed to mitigate this problem, but their effectiveness and necessity has not yet been evaluated for human brain. This evaluation is warranted given the doubling or quadrupling of scan length without the expected signal-to-noise ratio (SNR) benefit. First, simulations and agar gel experiments showed that the off-resonance effects on signal loss were asymmetric about on-resonance. Second, the two scan length doubling correction methods were tested for two sets of TQF acquisition parameters in 10 healthy volunteers at 4.7 Tesla. Using only manual shimming on the sodium signal and a 3-pulse TQF sequence with an optimal preparation time value of 6 ms, the majority of brain tissue voxels (87-94% depending on sequence parameters) experienced B0 inhomogeneity amounting to less than 10% signal losses. Relative signal intensities of 0.96 ± 0.04 and 0.98 ± 0.02 were measured in these voxels relative to on-resonant voxels for SNR-optimized and standard TQF parameters. The remaining brain voxels in regions with known susceptibility problems suffered more substantial signal losses, which were partially recovered with the correction methods. At field strengths below 4.7 T, at similar ranges of offset frequencies at higher fields and in typical volunteers, B0 correction appears unnecessary for TQF analysis in most of the brain. In many cases where regions with known susceptibility issues are not of concern, a doubling of scan time may be better spent to either improve SNR or spatial resolution in the TQF sodium images.

  11. Gas phase chemical detection with an integrated chemical analysis system

    SciTech Connect

    CASALNUOVO,STEPHEN A.; FRYE-MASON,GREGORY CHARLES; KOTTENSTETTE,RICHARD; HELLER,EDWIN J.; MATZKE,CAROLYN M.; LEWIS,PATRICK R.; MANGINELL,RONALD P.; BACA,ALBERT G.; HIETALA,VINCENT M.

    2000-04-12

    Microfabrication technology has been applied to the development of a miniature, multi-channel gas phase chemical laboratory that provides fast response, small size, and enhanced versatility and chemical discrimination. Each analysis channel includes a sample preconcentrator followed by a gas chromatographic separator and a chemically selective surface acoustic wave detector array to achieve high sensitivity and selectivity. The performance of the components, individually and collectively, is described.

  12. High-pressure duo-multichannel soft x-ray spectrometer for tokamak plasma diagnostics

    SciTech Connect

    Schwob, J.L.; Wouters, A.W.; Suckewer, S.

    1987-03-01

    A high-resolution, time-resolving soft X-ray multichannel spectrometer (SOXMOS) that permits the simultaneous measurement of emission in two different spectral ranges has been developed and tested extensively for tokamak plasma diagnostics. The basic instrument is a high-resolution, interferometrically adjusted, extreme grazing incidence Schwob-Fraenkel duochromator. The instrument is equipped with two multichannel detectors that are adjusted interferometrically and scan along the Rowland circle. Each consists of an MgF/sub 2/ coated, funneled microchannel plate, associated with a phosphor screen image intensifier that is coupled to a 1024-element photodiode array by a flexible fibrer optic conduit. The total wavelength coverage of the instrument is 5 to 340/sup 0/ A with a measured resolution (FWHM) of about 0.2 A when equipped with a 600 g/mm grating, and 5 to 85 A with a resolution of about 0.06 A using a 2400 g/mm grating. The simultaneous spectral coverage of each detector varies from 15 A at the short wavelength limit to 70 A at the long wavelength limit with the lower dispersion grating. The minimum read-out time for a full spectral portion is 17 ms, but several individual lines can be measured with 1 ms time resolution by selected pixel readout. Higher time resolution can be achieved by replacing one multichannel detector with a single channel electron multiplier detector. Examples of data from the PLT and TFTR tokamaks are presented to illustrate the instrument's versatility, high spectral resolution, and high signal-to-noise ratio even in the 10 A region. 44 refs., 20 figs.

  13. Wideband Multichannel Time-Reversal Processing for Acoustic Communications in a Tunnel-like Structure

    SciTech Connect

    Candy, J V; Chambers, D H; Robbins, C L; Guidry, B L; Poggio, A J; Dowla, F; Hertzog, C A

    2006-01-12

    The development of multichannel time-reversal (T/R) processing techniques continues to progress rapidly especially when the need to communicate in a highly reverberative environment becomes critical. The underlying T/R concept is based on time-reversing the Green's function characterizing the uncertain communications channel investigating the deleterious dispersion and multipath effects. In this paper, attention is focused on two major objectives: (1) wideband communications leading to a time reference modulation technique; and (2) multichannel acoustic communications in a tunnel (or cave or pipe) with many obstructions, multipath returns, severe background noise, disturbances, long propagation paths ({approx}180) with disruptions (bends). For this extremely hostile environment, it is shown that multichannel T/R receivers can easily be extended to the wideband designs while demonstrating their performance in both the ''canonical'' stairwell of our previous work as well as a tunnel-like structure. Acoustic information signals are transmitted with an 8-element host or base station array to two client receivers with a significant loss in signal levels due to the propagation environment. In this paper, the results of the new wideband T/R processor and modulation scheme are discussed to demonstrate the overall performance for both high (24-bit) and low (1-bit) bit level analog-to-digital (A/D) converter designs. These results are validated by performing proof-of-principle acoustic communications experiments in air. It is shown that the resulting T/R receivers are capable of extracting the transmitted coded sequence from noisy microphone array measurements with zero-bit error.

  14. Spherical Deconvolution of Multichannel Diffusion MRI Data with Non-Gaussian Noise Models and Spatial Regularization.

    PubMed

    Canales-Rodríguez, Erick J; Daducci, Alessandro; Sotiropoulos, Stamatios N; Caruyer, Emmanuel; Aja-Fernández, Santiago; Radua, Joaquim; Yurramendi Mendizabal, Jesús M; Iturria-Medina, Yasser; Melie-García, Lester; Alemán-Gómez, Yasser; Thiran, Jean-Philippe; Sarró, Salvador; Pomarol-Clotet, Edith; Salvador, Raymond

    2015-01-01

    Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on many factors such as the number of coils and the methodology used to combine multichannel MRI signals. Indeed, the two prevailing methods for multichannel signal combination lead to noise patterns better described by Rician and noncentral Chi distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in human brain data.

  15. First results from different investigations on MHD flow in multichannel U-Bends

    SciTech Connect

    Reimann, J.; Barleon, L.; Molokov, S.

    1995-04-01

    In electrically coupled multichannel ducts with a U-bend geometry, MHD effects can result in strongly non-uniform distributions of flow rates Q{sub i} and pressure drops {Delta}p{sub i} in the individual channels. A multichannel U-bend geometry is part of the KfK self-cooled Pb-17Li blanket design for a fusion reactor (radial-toroidal-radial channels). However, inserts are proposed which decouple electrically the radial channels. The multi-channel effects (MCDs) were investigated by (i) Screening test with InGaSn at LAS, Riga, and (ii) more detailed experiments with NaK at KfK, Karlsruhe. Different flow channel geometries and channel numbers between 1 and 5 were used. Hartmann numbers and interaction parameters were varied between O {le} M {le} 2300 and O {le} N {le} 40000. In parallel, a theoretical analysis was performed, based on the method of core flow approximation (CFA) which is valid for M {r_arrow} {infinity} and N {r_arrow} {infinity}. Significant MCEs occur in all ducts with totally electrically coupled channels. For the mode {Delta}p{sub i} = const, the flow rates in the outer channels can become significantly larger than those in the inner channels. For Q{sub i} = const, the highest pressure drop occurs in the middle channel and the lowest in the outer channels. The CFA predicts correctly the ratios of the pressure drops of the single channels but gives lower values than observed experimentally. No marked MCE was found for flow geometry which is similar to the KfK design, i.e., a fairly uniform flow rate and pressure drop distribution was observed for all values of M and N.

  16. Comparison of planform multi-channel network characteristics of alluvial and bedrock constrained large rivers

    NASA Astrophysics Data System (ADS)

    Carling, P. A.; Meshkova, L.; Robinson, R. A.

    2011-12-01

    The Mekong River in northern Cambodia is an multi-channel mixed bedrock-alluvial river but it was poorly researched until present. Preliminary study of the Mekong geomorphology was conducted by gathering existing knowledge of its geological and tectonic settings, specific riparian vegetation and ancient alluvial terraces in which the river has incised since the Holocene. Altogether this process has allowed a geomorphological portrait of the river to be composed within the Quaternary context. Following this outline, the planform characteristics of the Mekong River network are compared, using analysis of channel network and islands configurations, with the fluvial patterns of the Orange River (South Africa), Upper Columbia River (Canada) and the Ganga River (India, Bangladesh). These rivers are selected as examples of multi-channel mixed bedrock alluvial, anastomosed alluvial and braided alluvial rivers respectively. Network parameters such as channel bifurcation angles asymmetry, sinuosity, braid intensity and island morphometric shape metrics are compared and contrasted between bedrock and alluvial systems. In addition, regional and local topographic trend surfaces produced for each river planform help explain the local changes in river direction and the degree of anastomosis, and distinguish the bedrock-alluvial rivers from the alluvial rivers. Variations between planform characteristics are to be explained by channel forming processes and in the case of mixed bedrock-alluvial rivers mediated by structural control. Channel metrics (derived at the reach-scale) provide some discrimination between different multi-channel patterns but are not always robust when considered singly. In contrast, island shape metrics (obtained at subreach-scale) allow robust discrimination between alluvial and bedrock systems.

  17. Multi-channel analysis of passive surface waves based on cross-correlations

    NASA Astrophysics Data System (ADS)

    Cheng, F.; Xia, J.; Xu, Z.; Hu, Y.

    2015-12-01

    Traditional active seismic survey can no longer be properly applied in highly populated urban areas due to restrictions in modern civilian life styles. Passive seismic methods, however, have gained much more attention from the engineering geophysics community because of their environmental friendly and deeper investigation depth. Due to extracting signal from noise has never been as comfortable as that in active seismic survey, how to make it more efficiently and accurately has been emphasized. We propose a multi-channel analysis of passive surface waves (MAPW) based on long noise sequences cross-correlations to meet the demand for increasing investigation depth by acquiring surface-wave data at a relative low-frequency range (1 Hz ≤ f ≤ 10 Hz) in urban areas. We utilize seismic interferometry to produce common virtual source gathers from one-hour-long noise records and do dispersion measurements by using the classic passive multi-channel analysis of surface waves (PMASW). We used synthetic tests to demonstrate the advantages of MAPW for various noise distributions. Results show that our method has the superiority of maximizing the analysis accuracy. Finally, we used two field data applications to demonstrate the advantages of our MAPW over the classic PMASW on isolating azimuth of the predominant noise sources and the effectivity of combined survey of active multi-channel analysis of surface waves (MASW) and MAPW. We suggest, for the field operation using MAPW, that a parallel receiver line which is close to a main road or river, if any, with one or two hours noise observation will be an effective means for an unbiased dispersion image. Keywords: passive seismic method, MAPW, MASW, cross-correlation, directional noise source, spatial-aliasing effects, inversion

  18. Spherical Deconvolution of Multichannel Diffusion MRI Data with Non-Gaussian Noise Models and Spatial Regularization

    PubMed Central

    Canales-Rodríguez, Erick J.; Caruyer, Emmanuel; Aja-Fernández, Santiago; Radua, Joaquim; Yurramendi Mendizabal, Jesús M.; Iturria-Medina, Yasser; Melie-García, Lester; Alemán-Gómez, Yasser; Thiran, Jean-Philippe; Sarró, Salvador; Pomarol-Clotet, Edith; Salvador, Raymond

    2015-01-01

    Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on many factors such as the number of coils and the methodology used to combine multichannel MRI signals. Indeed, the two prevailing methods for multichannel signal combination lead to noise patterns better described by Rician and noncentral Chi distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in human brain data. PMID:26470024

  19. Multichannel seismic/weather/Zoological monitoring of the oceans

    NASA Astrophysics Data System (ADS)

    Hello, Yann; Bonnieux, Sebastien; Sukovitch, Alexey; Argentino, Jean-Francois; Nolet, Guust

    2013-04-01

    position. A second, dual channel, prototype version of Mermaid using two dedicated hydrophones is designed to enlarge the band pass for acoustic signals with much higher frequency than seismic. Based on the same algorithm using wavelet transforms, Mermaid continuously analyzes acoustic signals to detect both major seismic events and weather phenomena such rain, drizzle, open sea and ice, or whale migration, during its drift phase. This extension to multi-purpose applications makes the Mermaid very attractive for the Argo program. In fact, Mermaids using passive low cost sensors form a very light and complementary solution that can be integrated with an Argo float; Mermaids listen during the passive drift while CTD data are taken during ascent and descent. Such multidisciplinary approach should allow seismologists to participate in international program such as Argo and obtain the dense ocean coverage needed to image the deep structure of the Earth.

  20. Resolution enhancement of multichannel microwave imagery from the Nimbus-7 SMMR for maritime rainfall analysis

    NASA Technical Reports Server (NTRS)

    Olson, W. S.; Yeh, C. L.; Weinman, J. A.; Chin, R. T.

    1985-01-01

    A restoration of the 37, 21, 18, 10.7, and 6.6 GHz satellite imagery from the scanning multichannel microwave radiometer (SMMR) aboard Nimbus-7 to 22.2 km resolution is attempted using a deconvolution method based upon nonlinear programming. The images are deconvolved with and without the aid of prescribed constraints, which force the processed image to abide by partial a priori knowledge of the high-resolution result. The restored microwave imagery may be utilized to examined the distribution of precipitating liquid water in marine rain systems.