Science.gov

Sample records for 7th kaist geometric

  1. 7th International Meshing Roundtable '98

    SciTech Connect

    Eldred, T.J.

    1998-10-01

    The goal of the 7th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the past, the Roundtable has enjoyed significant participation from each of these groups from a wide variety of countries.

  2. Fundamentals of Physics, Extended 7th Edition

    NASA Astrophysics Data System (ADS)

    Halliday, David; Resnick, Robert; Walker, Jearl

    2004-05-01

    No other book on the market today can match the 30-year success of Halliday, Resnick and Walker's Fundamentals of Physics! Fundamentals of Physics, 7th Edition and the Extended Version, 7th Edition offer a solid understanding of fundamental physics concepts, helping readers apply this conceptual understanding to quantitative problem solving, in a breezy, easy-to-understand style. A unique combination of authoritative content and stimulating applications. * Numerous improvements in the text, based on feedback from the many users of the sixth edition (both instructors and students) * Several thousand end-of-chapter problems have been rewritten to streamline both the presentations and answers * 'Chapter Puzzlers' open each chapter with an intriguing application or question that is explained or answered in the chapter * Problem-solving tactics are provided to help beginning Physics students solve problems and avoid common error * The first section in every chapter introduces the subject of the chapter by asking and answering, "What is Physics?" as the question pertains to the chapter * Numerous supplements available to aid teachers and students The extended edition provides coverage of developments in Physics in the last 100 years, including: Einstein and Relativity, Bohr and others and Quantum Theory, and the more recent theoretical developments like String Theory.

  3. Concept Mapping Improves Metacomprehension Accuracy among 7th Graders

    ERIC Educational Resources Information Center

    Redford, Joshua S.; Thiede, Keith W.; Wiley, Jennifer; Griffin, Thomas D.

    2012-01-01

    Two experiments explored concept map construction as a useful intervention to improve metacomprehension accuracy among 7th grade students. In the first experiment, metacomprehension was marginally better for a concept mapping group than for a rereading group. In the second experiment, metacomprehension accuracy was significantly greater for a…

  4. 7th meeting of the global arthritis research network

    PubMed Central

    2011-01-01

    Last October, the 7th meeting of the Global Arthritis Research Network was held in Zurich, Switzerland. European and American experts who have made major recent contributions to molecular biology got together to provide insights into novel technologies and approaches useful for biomedical research, especially for research on arthritis and related conditions. PMID:21892971

  5. Report of the Quadrennial Review of Military Compensation (7th)

    DTIC Science & Technology

    1992-08-21

    the matter is deeper, involv- The 7th QRMC reviewed the literature dealing ing policy choices between providing allowances or with the relationship...Report of the Seventh Quadrennial Review of Military Compensation AUGUST. 21 1992 DTIC gf ELECTE M AY 27 1993 D -1)Ijj~iiI@.1z OF 7T pi oe im i...COVERED 21 AUG 92 Final -- _ _ 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Report of the Seventh Quadrennial Review of Military Compensation ~ngaae’r

  6. Highlights from the 7th European meeting on molecular diagnostics.

    PubMed

    Loonen, Anne Jm; Schuurman, Rob; van den Brule, Adriaan Jc

    2012-01-01

    This report presents the highlights of the 7th European Meeting on Molecular Diagnostics held in Scheveningen, The Hague, The Netherlands, 12-14 October 2011. The areas covered included molecular diagnostics applications in medical microbiology, virology, pathology, hemato-oncology, clinical genetics and forensics. Novel real-time amplification approaches, novel diagnostic applications and new technologies, such as next-generation sequencing, PCR electrospray-ionization TOF mass spectrometry and techniques based on the detection of proteins or other molecules, were discussed. Furthermore, diagnostic companies presented their future visions for molecular diagnostics in human healthcare.

  7. Fundamentals of Physics, Student Study Guide, Extended 7th Edition

    NASA Astrophysics Data System (ADS)

    Halliday, David; Resnick, Robert; Walker, Jearl

    2004-06-01

    No other book on the market today can match the 30-year success of Halliday, Resnick and Walker's Fundamentals of Physics! Fundamentals of Physics, 7th Edition and the Extended Version, 7th Edition offer a solid understanding of fundamental physics concepts, helping readers apply this conceptual understanding to quantitative problem solving, in a breezy, easy-to-understand style. A unique combination of authoritative content and stimulating applications. * Numerous improvements in the text, based on feedback from the many users of the sixth edition (both instructors and students) * Several thousand end-of-chapter problems have been rewritten to streamline both the presentations and answers * 'Chapter Puzzlers' open each chapter with an intriguing application or question that is explained or answered in the chapter * Problem-solving tactics are provided to help beginning Physics students solve problems and avoid common error * The first section in every chapter introduces the subject of the chapter by asking and answering, "What is Physics?" as the question pertains to the chapter * Numerous supplements available to aid teachers and students The extended edition provides coverage of developments in Physics in the last 100 years, including: Einstein and Relativity, Bohr and others and Quantum Theory, and the more recent theoretical developments like String Theory.

  8. 7th International Immunoglobulin Conference: Interlaken Leadership Awards.

    PubMed

    Dalakas, M C; Löscher, W N

    2014-12-01

    The Interlaken Leadership Awards (ILAs), established in 2010, are monetary grants pledged annually by CSL Behring to fund research into the use of immunoglobulin (Ig) therapy, especially into its use in neurological disorders. Five recipients of the 2011/2012 Awards were invited to present their research at the 7th International Immunoglobulin Conference. Dr Honnorat reports on paraneoplastic neurological syndromes (PNS). His multi-centre Phase II trial, currently under way, will assess the efficacy of IVIg therapy in treating PNS in the first 3 months of treatment. Dr Geis shows improved disease scores after IVIg treatment in a mouse model of neuromyelitis optica (NMO). It is hoped that these promising results will translate well into human NMO. Dr Schmidt studied IVIg therapy in an mdx mouse model for Duchenne muscular dystrophy (DMD). He reports that motor function improved and myopathic changes in skeletal muscles and creatine kinase release were decreased. Dr Gamez presents the design and rationale for a Phase II clinical trial investigating the preoperative use of IVIg therapy in myasthenia gravis patients to prevent post-operative myasthenic crisis. Dr Goebel reports results from studies elucidating the immune-mediated pathogenesis of complex regional pain syndrome (CRPS), the successful IVIg therapy in a proportion of CRPS patients, and the development of a model for predicting which patients are more likely to respond to Ig therapy.

  9. 7th IGRSM International Remote Sensing & GIS Conference and Exhibition

    NASA Astrophysics Data System (ADS)

    Shariff, Abdul Rashid Mohamed

    2014-06-01

    IGRSM This proceedings consists of the peer-reviewed papers from the 7th IGRSM International Conference and Exhibition on Remote Sensing & GIS (IGRSM 2014), which was held on 21-22 April 2014 at Berjaya Times Square Hotel, Kuala Lumpur, Malaysia. The conference, with the theme Geospatial Innovation for Nation Building was aimed at disseminating knowledge, and sharing expertise and experiences in geospatial sciences in all aspects of applications. It also aimed to build linkages between local and international professionals in this field with industries. Highlights of the conference included: Officiation by Y B Datuk Dr Abu Bakar bin Mohamad Diah, Deputy Minister of Minister of Science, Technology & Innovation Keynote presentations by: Associate Professor Dr Francis Harvey, Chair of the Geographic Information Science Commission at the International Geographical Union (IGU) and Director of U-Spatial, University of Minnesota, US: The Next Age of Discovery and a Future in a Post-GIS World. Professor Dr Naoshi Kondo, Bio-Sensing Engineering, University of Kyoto, Japan: Mobile Fruit Grading Machine for Precision Agriculture. Datuk Ir Hj Ahmad Jamalluddin bin Shaaban, Director-General, National Hydraulic Research Institute of Malaysia (NAHRIM), Malaysia: Remote Sensing & GIS in Climate Change Analyses. Oral and poster presentations from 69 speakers, from both Malaysia (35) and abroad (34), covering areas of water resources management, urban sprawl & social mobility, agriculture, land use/cover mapping, infrastructure planning, disaster management, technology trends, environmental monitoring, atmospheric/temperature monitoring, and space applications for the environment. Post-conference workshops on: Space Applications for Environment (SAFE), which was be organised by the Japan Aerospace Exploration Agency (JAXA) Global Positioning System (GPS) Receiver Evaluation Using GPS Simulation, which was be organised by the Science & Technology Research Institute for Defence

  10. PREFACE: 7th European Conference on Applied Superconductivity (EUCAS '05)

    NASA Astrophysics Data System (ADS)

    Weber, Harald W.; Sauerzopf, Franz M.

    2006-07-01

    This issue of Journal of Physics: Conference Series contains those contributed papers that were submitted to the Conference Proceedings of the 7th European Conference on Applied Superconductivity (EUCAS '05) on 11 - 15 September 2005. The plenary and invited papers were published in the journal Superconductor Science and Technology 19 2006 (March issue). The scientific aims of EUCAS '05 followed the tradition established at the preceding conferences in Göttingen, Edinburgh, Eindhoven, Sitges (Barcelona), Lyngby (Copenhagen) and finally Sorrento (Napoli). The focus was placed on the interplay between the most recent developments in superconductor research and the positioning of applications of superconductivity in the marketplace. Although initially founded as an exchange forum mainly for European scientists, it has gradually developed into a truly international meeting with significant attendance from the Far East and the United States. The Vienna conference attracted 813 participants in the scientific programme and 90 guests: of the particpants 59% were from Europe, 31% from the Far East, 6% from the United States and Canada and 4% from other nations worldwide. There were 32 plenary and invited lectures highlighting the state-of-the-art in the areas of materials, large-scale and small-scale applications, and 625 papers were contributed (556 of these were posters) demonstrating the broad range of exciting activities in all research areas of our field. A total of 27 companies presented their most recent developments in the field. This volume contains 349 papers, among them 173 on materials (49.6%), 90 on large scale applications (25.8%) and 86 on small scale applications (24.6%). EUCAS '05 generated a feeling of optimism and enthusiasm for this fascinating field of research and for its well established technological potential, especially among the numerous young researchers attending this Conference. We are grateful to all those who participated in the meeting and

  11. The 7th International Workshop on Chiral Dynamics

    NASA Astrophysics Data System (ADS)

    The 7th International Workshop Chiral Dynamics: Theory and Experiment (CD12) took place at Jefferson Lab, Newport News, Virginia, USA, from August 6 to 10, 2012. Following in the tradition of this triennial series of Conferences, it attracted theorists and experimentalists, who were brought together to highlight the recent progress in the field of low energy QCD, and to discuss and explore the direction for future development. The conference consisted of plenary talks and three working groups. We would like to thank the working group organizers for their dedicated effort, namely: Goldstone Bosons: Mario Antonelli, Liping Gan, Jorge Portoles and Urs Wenger; Hadron Structure: Alessandro Bacchetta, Bastian Kubis, Kostas Orginos and Karl Slifer and Few Body Physics: Andreas Nogga, Assumpta Parreno, Michele Viviani and Henry Weller. We would like to express our special thanks to our co-organizers, Patricia Solvignon, Harald Griesshammer, Rocco Schiavilla, Dinko Pocanic, Robert Edwards, and Alexandre Deur for their hard work and advice. Last but not least, we thank the International Advisory Committee for their very useful inputs to the CD12 program. The organizers thank the excellent logistic and administrative support provided by the Jefferson Lab Conference Staff, Ruth Bizot, Cynthia Lockwood, Stephanie Vermeire, Marti Hightower and MeLaina Evans, and the Conference Secretary Mary Fox, which was instrumental for the success of the organization of CD12. We thank Joanna Griffin for the poster design. CD12 was primarily sponsored by Jefferson Lab, along with generous supports from Old Dominion University and the European Physics Journal. The CD12 homepage is located at http://www.jlab.org/conference/CD12 The upcoming Chiral Dynamics Workshop will take place in Pisa, Italy, in 2015. We thank Laura Marcucci and Michele Viviani for graciously taking the baton from us. Jose Goity and Jianping Chen

  12. PREFACE: 7th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Joffe, Roberts

    2013-12-01

    The 7th EEIGM Conference on Advanced Materials Research (AMR 2013) was held at Luleå University of Technology on the 21-22 March 2013 in Luleå, SWEDEN. This conference is intended as a meeting place for researchers involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE). This is great opportunity to present their on-going research in the various fields of Materials Science and Engineering, exchange ideas, strengthen co-operation as well as establish new contacts. More than 60 participants representing six countries attended the meeting, in total 26 oral talks and 19 posters were presented during two days. This issue of IOP Conference Series: Materials Science and Engineering presents a selection of articles from EEIGM-7 conference. Following tradition from previous EEIGM conferences, it represents the interdisciplinary nature of Materials Science and Engineering. The papers presented in this issue deal not only with basic research but also with applied problems of materials science. The presented topics include theoretical and experimental investigations on polymer composite materials (synthetic and bio-based), metallic materials and ceramics, as well as nano-materials of different kind. Special thanks should be directed to the senior staff of Division of Materials Science at LTU who agreed to review submitted papers and thus ensured high scientific level of content of this collection of papers. The following colleagues participated in the review process: Professor Lennart Walström, Professor Roberts Joffe, Professor Janis Varna, Associate Professor Marta-Lena Antti, Dr Esa Vuorinen, Professor Aji Mathew, Professor Alexander Soldatov, Dr Andrejs Purpurs, Dr Yvonne Aitomäki, Dr Robert Pederson. Roberts Joffe October 2013, Luleå Conference photograph EEIGM7 conference participants, 22 March 2013 The PDF

  13. 3. PHOTOGRAPHIC COPY OF MASTER PLAN, DETAIL SITE PLAN, 7TH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. PHOTOGRAPHIC COPY OF MASTER PLAN, DETAIL SITE PLAN, 7TH CAVALRY BUILDINGS, DATED SEPTEMBER 10, 1951, SEE ARROW, DRAWING # BM-036, COPY ON FILE IN THE ENVIRONMENTAL MANAGEMENT OFFICE, FORT BLISS - Fort Bliss, 7th Cavalry Buildings, U.S. Army Air Defence Artillery Center & Fort Bliss, El Paso, El Paso County, TX

  14. 7th International Conference on Mathematical Methods in Physics

    NASA Astrophysics Data System (ADS)

    Bonora, L.; Bytsenko, A. A.; Guimarães, M. E. X.; Helayël-Neto, J. A.

    The 7th International Conference on Mathematical Methods in Physics took place in the Centro Brasileiro de Pesquisas Físicas (CBPF/MCT), Rio de Janeiro - RJ, Brazil, from 16 to 20 April 2012, and was jointly organized by the following Institutions: Centro Brasileiro de Pesquisas Físicas (CBPF/MCT), The Abdus Salam International Centre for Theoretical Physics (ICTP, Italy), Instituto Nacional de Matemática Pura e Aplicada (IMPA, Brazil), The Academy of Sciences for the Developing World (TWAS, Italy) and The Scuola Internazionale di Studi Avanzati (SISSA,Italy). The Organizing Committees were composed by: E. ABDALLA (USP, Brazil), L. BONORA (SISSA, Italy), H. BURSZTYN (IMPA, Brazil), A. A. BYTSENKO (UEL, Brazil), B. DUBROVIN (SISSA, Italy), M.E.X. GUIMARÃES (UFF, Brazil), J.A. HELAYËL-NETO (CBPF, Brazil). Advisory Committee: A. V. ASHTEKAR (Penn State University, U.S.A.), V. M. BUCHSTABER (Steklov Mathematical Institute, Russia), L. D. FADDEEV (St. Petersburg Dept. of Steklov Mathematical Institute, Russia), I. M. KRICHEVER (Columbia Univ., U.S.A./ Landau Institute of Theoretical Physics, Russia), S. P. NOVIKOV (Univ. of Maryland, U.S.A./Landau Institute of Theoretical Physics, Russia), J. PALIS (IMPA, Brazil), A. QADIR (National University of Sciences and Technology, Pakistan), F. QUEVEDO (ICTP, Italy), S. RANDJBAR-DAEMI (ICTP, Italy), G. THOMPSON (ICTP, Italy), C. VAFA (Harvard University, U.S.A.). The Main Goal: The aim of the Conference was to present the latest advances in Mathematical Methods of Physics to researchers, young scientists and students of Latin America in general, and Brazil in particular, in the areas of High Energy Physics, Cosmology, Mathematical Physics and Applied Mathematics. The main goal was to promote an updating of knowledge and to facilitate the interaction between mathematicians and theoretical physicists, through plenary sessions and seminars. This Conference can be considered as a part of a network activity in a special effort to

  15. 7th Annual Symposium on Clinical and Pharmaceutical Solutions through Analysis.

    PubMed

    Zhang, Tianyi Tee; Wang, Li; Weng, Naidong; Dong, Kelly; Valaskovic, Gary; Lee, Mike

    2016-10-01

    7th Annual Symposium on Clinical & Pharmaceutical Solutions through Analysis, Renaissance Shanghai Pudong Hotel, Shanghai, China, 20-23 April 2016 The 7th Annual Shanghai Symposium on Innovative Approaches to Reduce Attrition and Predict Clinical Outcomes (CPSA Shanghai 2016) was held on 20-23 April 2016 in Renaissance Shanghai Pudong Hotel, Shanghai, China. The meeting was featured with highly interactive events including diversified symposia, round table discussions, workshops, poster sessions and conference awards. There were over 220 participants from more than ten countries, with 61 oral presentations and 29 posters presented. In addition, the meeting included one preconference workshop and three joint sessions held with bioanalytical experts from local communities.

  16. Proceedings of the 7th International Symposium on the Molecular Breeding of Forage and Turf

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 7th International Symposium on the Molecular Breeding of Forage and Turf, MBFT2012, was held in Salt Lake City, UT, USA, from 4-7 June 2012. One-hundred and fifteen researchers from around the world presented oral and poster formats relating to ten general topics: Genetic mechanisms and applic...

  17. Conceptions of Mathematics in Different Ability and Achievement Groups among 7th Grade Students

    ERIC Educational Resources Information Center

    Lepmann, Lea; Afanasjev, Juri

    2005-01-01

    This report deals with 7th grade pupils' conceptions of mathematics, its learning and teaching. The report focuses on the identification and comparison of views expressed by pupil groups of different mathematical ability and achievement. The analysis is based on the results of the ability tests, subject tests and a questionnaire conducted among…

  18. Effects of Concept Cartoons on Mathematics Self-Efficacy of 7th Grade Students

    ERIC Educational Resources Information Center

    Sengul, Sare

    2011-01-01

    The purpose of this research is to determine the effect of concept cartoons on the students' perception of their levels of self-efficacy towards mathematics. The research has been designed as the pre-test post-test with quasi experimental control group. The research participants are composed of 94 7th grade students attending an elementary school…

  19. The Effect of Learning Integers Using Cartoons on 7th Grade Students' Attitude to Mathematics

    ERIC Educational Resources Information Center

    Sengül, Sare; Dereli, Mehtap

    2013-01-01

    The purpose of this research is to investigate the effect on students' attitudes toward mathematics when cartoons are used in teaching integers. The research was designed in the form of a pre-test and post-test with a quasi experimental control group. The research participant group was composed of sixty-one (61) 7th grade students attending an…

  20. Opinions of 7th Grade Students about Enriched Educational Practices in the Scope of Science Course

    ERIC Educational Resources Information Center

    Idin, Sahin; Aydogdu, Cemil

    2016-01-01

    The purpose of this research was to determine the opinions of the students about 7th grade science courses carried out with enriched educational practices. The research was conducted throughout fall semester of 2014-2015 academic year in the scope of Systems within our Body Unit (SBU), Force and Motion Unit (FMU), and Electric within our Lives…

  1. Recommendations from the Workshop: Environment, Ecology and Sustainable Development ICAE 7th World Assembly

    ERIC Educational Resources Information Center

    Viezzer, Moema L.

    2006-01-01

    One of the workshops presented at the 7th International Council for Adult Education (ICAE) Assembly was focused on environment, ecology, and sustainable development. The workshop had participants from Asia, Africa, Europe, South America, North America and the South Pacific. This article presents a list of recommendations from the workshop.

  2. Medieval Armenian Costumes: A History of the Armenians from the 7th-14th Centuries.

    ERIC Educational Resources Information Center

    Soghikian, Juanita Will

    The booklet contains illustrations of 40 medieval Armenian costumes based upon statues and paintings of the 7th through the 14th centuries. Part of a series of seven instructional materials dealing with the history and culture of Armenian Americans, the booklet also provides a discussion of Armenian history and detailed descriptions of each…

  3. Activities Using The State of the World Atlas, 7th Edition

    ERIC Educational Resources Information Center

    Hegelbach, Peter; Haakenson, Dean; Starbird, Caroline

    2004-01-01

    This book is designed to accompany The State of the World Atlas, 7th Edition. The State of the World Atlas and this workbook provide a frame of reference for the changing pattern of world events. Students will become familiar with different statistical representations of the world, from birth rates to HIV/AIDS infections rates; from world…

  4. [Review of WHO Expert Committee on Leprosy 8th report, --comparison to 7th report].

    PubMed

    Kitajima, Shinichi; En, Junichiro; Kitajima, Shiori; Barua, Sumana; Goto, Masamichi

    2014-03-01

    In 2012 the WHO Expert Committee on Leprosy published its 8th report, 14 years after the publication of its 7th report in 1998. This report, the first since the leprosy reduction goal was met in 2000, highlights key points such as improvements in the quality of various services available to patients and the efforts of individuals and societies, in addition to medical progress in diagnosis and treatment. This review will mainly describe the changes made since the 7th report. Some of the main modifications are the deletion of single lesion paucibacillary type, elongated treatment of patients with high bacterial indices, the introduction of promising new drugs, and a shift from reducing the statistical number of patients to a new target for disability prevention.

  5. 16. TWO HEAD GATES ABOUT 500 FEET NORTH OF 7TH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. TWO HEAD GATES ABOUT 500 FEET NORTH OF 7TH AVENUE (SECTION 35). - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  6. Geometric Mechanics

    NASA Astrophysics Data System (ADS)

    Talman, Richard

    1999-10-01

    Mechanics for the nonmathematician-a modern approach For physicists, mechanics is quite obviously geometric, yet the classical approach typically emphasizes abstract, mathematical formalism. Setting out to make mechanics both accessible and interesting for nonmathematicians, Richard Talman uses geometric methods to reveal qualitative aspects of the theory. He introduces concepts from differential geometry, differential forms, and tensor analysis, then applies them to areas of classical mechanics as well as other areas of physics, including optics, crystal diffraction, electromagnetism, relativity, and quantum mechanics. For easy reference, Dr. Talman treats separately Lagrangian, Hamiltonian, and Newtonian mechanics-exploring their geometric structure through vector fields, symplectic geometry, and gauge invariance respectively. Practical perturbative methods of approximation are also developed. Geometric Mechanics features illustrative examples and assumes only basic knowledge of Lagrangian mechanics. Of related interest . . . APPLIED DYNAMICS With Applications to Multibody and Mechatronic Systems Francis C. Moon A contemporary look at dynamics at an intermediate level, including nonlinear and chaotic dynamics. 1998 (0-471-13828-2) 504 pp. MATHEMATICAL PHYSICS Applied Mathematics for Scientists and Engineers Bruce Kusse and Erik Westwig A comprehensive treatment of the mathematical methods used to solve practical problems in physics and engineering. 1998 (0-471-15431-8) 680 pp.

  7. Proceedings from the 7th Annual International Society for Musculoskeletal Imaging in Rheumatology (ISEMIR) conference.

    PubMed

    Troum, Orrin M; Pimienta, Olga L; Schmidt, Wolfgang A; Ostergaard, Mikkel; D'Agostino, Maria Antonietta; Gaylis, Norman; Arnold, William; Ben-Artzi, Ami; Ranganath, Veena; Seraphine, Judy L; Peterfy, Charles

    2015-08-01

    The International Society for Musculoskeletal Imaging in Rheumatology (ISEMIR) was founded in 2005 with the goal of discussing matters related to imaging in rheumatology, particularly, validation, education, and use in clinical practice and research. Because the field of musculoskeletal (MSK) imaging is rapidly evolving, continuous education in the field is imperative. ISEMIR's international faculty and world-renowned experts presented the newest information as it relates to the use of magnetic resonance imaging (MRI) and ultrasound (US) at the 7th annual ISEMIR meeting which took place on April 12-14, 2014 in Santa Monica, California. Presentations from the meeting can be viewed at www.isemir.org.

  8. Alzheimer's disease: a report from the 7th Kuopio Alzheimer symposium.

    PubMed

    Haapasalo, Annakaisa; Pikkarainen, Maria; Soininen, Hilkka

    2015-10-01

    The 7th Kuopio Alzheimer symposium was held on 11-13 June, 2015, in Kuopio, Finland and attracted ~250 attendees from 14 different countries around the world. The theme for the symposium in its seventh year was 'From mechanisms to prevention and intervention of Alzheimer's disease'. The 3-day international scientific symposium composed of seven oral sessions and a poster session. The program, spanning from molecular mechanisms to prevention, prediction, diagnosis and treatment of Alzheimer's disease, provided a forum for the attendees to share their research, network and to obtain a comprehensive overview of the current status and future directions of research into Alzheimer's disease.

  9. Morphometric variations of the 7th cervical vertebrae of Zulu, White, and Colored South Africans.

    PubMed

    Kibii, Job M; Pan, Rualing; Tobias, Phillip V

    2010-05-01

    The 7th cervical vertebrae of 240 cadavers of South African Zulu, White, and Colored population groups were examined to determine morphometric variation. White and Colored females had statistically significant narrower cervical anteroposterior diameters than their male counterparts, whereas no statistically significant difference between sexes of the Zulu population group was observed in this variable. In addition, although Zulu and Colored females had statistically significant narrower cervical transverse diameters than their male counterparts, there was no statistically significant variation between South African white males and females in this respect. The findings indicate that sexual dimorphism is more apparent in the vertebral centrum, across the three population groups, where males had significantly larger dimensions in centrum anteroposterior diameter, height, and width than their female counterparts. The study further reveals that sexual dimorphism is more apparent when one compares aspects of the 7th cervical vertebra between sexes within the same population group. Overall, the dimensions of the various variates of the vertebra are substantially smaller in women than in men. The smaller dimensions, particularly of the centrum, may be the result of lower skeletal mass in women and render them more vulnerable to fractures resulting from compression forces.

  10. The science behind the 7th edition Tumour, Node, Metastasis staging system for lung cancer.

    PubMed

    Marshall, Henry M; Leong, Steven C; Bowman, Rayleen V; Yang, Ian A; Fong, Kwun M

    2012-02-01

    The Tumour, Node, Metastasis (TNM) system for classifying lung cancer is the cornerstone of modern lung cancer treatment and underpins comparative research; yet is continuously evolving through updated revisions. The recently published Union for International Cancer Control 7th Edition TNM Classification for lung cancer addresses many of its predecessor's shortcomings and has been subject to rigorous evidence-based methodology. It is based on a retrospective analysis of over 80 000 lung cancer patients treated between 1990 and 2000 carried out by the International Association for the Study of Lung Cancer. The dataset was truly international and included patients treated by all modalities. Extensive internal and external validation of the findings has ensured that the recommendations are robust and generalizable. For the first time, a single classification system has been shown to be applicable not only to non-small cell lung cancer, but also to be of prognostic significance in small cell lung cancer and bronchopulmonary carcinoid tumours. We review the history of the Union for International Cancer Control TNM staging system, the changes in the most recent 7th edition and the strength of the scientific basis motivating these changes. Limitations of the current staging edition are explored, post-publication independent validation studies are reviewed, and the future of TNM staging for lung cancer is discussed.

  11. Aspects That Concern Assessing Lower Secondary School Students at the Physics National Contest Exemplification for the 7th Grade

    ERIC Educational Resources Information Center

    Florian, Gabriel

    2014-01-01

    In the present article, we aim at analysing the results obtained by the 7th grade students who participated in the 50th edition of the Physics National Contest, which took place in Cluj-Napoca between the 6th and the 11th of April, 2014. Why have we chosen the 7th grade? One of the reasons is represented by the good results obtained by the…

  12. PREFACE: 7th Asian International Seminar on Atomic and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Deshmukh, Pranawa C.; Chakraborty, Purushottam; Williams, Jim F.

    2007-09-01

    These proceedings arose from the 7th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the Indian Institute of Technology, Madras from 4-7 December 2006. The history of the AISAMP has been reviewed by Takayanagi http://www.physics.iitm.ac.in/~aisamp7/history.html. This international seminar/conference series grew out of the Japan-China meetings which were launched in 1985, the fourth of which was held in 1992 and carried a second title: The First Asian International Seminar on Atomic and Molecular Physics (AISAMP), thus providing a formal medium for scientists in this part of the world to report periodically and exchange their scientific thoughts. The founding nations of Japan and China were joined subsequently by Korea, Taiwan, India and Australia. The aims of the symposia included bringing together leading experts and students of atomic and molecular physics, the discussion of important problems, learning and sharing modern techniques and expanding the horizons of modern atomic and molecular physics. The fields of interest ranged from atomic and molecular structure and dynamics to photon, electron and positron scattering, to quantum information processing, the effects of symmetry and many body interactions, laser cooling, cold traps, electric and magnetic fields and to atomic and molecular physics with synchrotron radiation. Particular interest was evident in new techniques and the changes of the physical properties from atomic to condensed matter. Details of the 7th AISAMP, including the topics for the special sessions and the full programme, are available online at the conference website http://www.physics.iitm.ac.in/~aisamp7/. In total, 95 presentations were made at the 7th AISAMP, these included the Invited Talks and Contributed Poster Presentations, of which 52 appear in the present Proceedings after review by expert referees, refereed to the usual standard of the Institute of Physics journal: Journal of Physics B: Atomic

  13. Charge It! Translating Electric Vehicle Research Results to Engage 7th and 8th Grade Girls

    NASA Astrophysics Data System (ADS)

    Egbue, Ona; Long, Suzanna; Ng, Ean-Harn

    2015-10-01

    Despite attempts to generate interest in science and technology careers, US students continue to show reduced interest in science, technology, engineering and mathematics (STEM) majors at the collegiate level. If girls are not engaged in STEM learning by the middle school level, studies show that they are even less likely to choose a science- or engineering-related major. This article presents results from a workshop for 7th and 8th grade girls designed to promote knowledge building in the area of sustainability and alternative energy use in transportation and to stimulate greater interest in STEM subjects. The workshop based on research conducted at University X focused on basic concepts of electric vehicles and electric vehicles' batteries. Tests were conducted to evaluate the students' knowledge and perceptions of electric vehicles and to determine the impact of the workshop. Early exposure to meaningful engineering experiences for these young girls may boost interest and the eventual pursuit of engineering and technology education paths.

  14. [Dilemmas of the pharmacist, 7th edition of Hungarian National Formulary in practice].

    PubMed

    Pál, Szilárd

    2005-01-01

    Most important event of year 2004 of the history of Hungarian pharmacy was the release of the 7th edition of the National Formulary. The general part of the new formulary expanded, remarks on the preparations are more detailed and dispensing technologies are more elaborated. Knowledge base on pharmaceutical substances and incompatibility is inserted as novelty. Following the principles of modern pharmacy practice the new National Formulary excludes pills, though it is still accepted as an alternative dosage form. Usage of tablets, hard gelatine capsules and medication stick as a new dosage forms are introduced. The aim of my study was to prepare and examine some new compositions of the new edition of the National Formulary to help the pharmacist's work. Results confirmed the novel solutions of the new National Formulary.

  15. Report of the 7th African Rotavirus Symposium, Cape Town, South Africa, 8th November 2012.

    PubMed

    Seheri, L M; Mwenda, J M; Page, N

    2014-11-12

    The 7th African Rotavirus Symposium was held in Cape Town, South Africa, on the 8th November 2012 as a Satellite Symposium at the First International African Vaccinology Conference. Over 150 delegates participated in this symposium including scientists, clinicians, health officials, policymakers and vaccine manufacturers from across Africa. Key topics discussed included rotavirus surveillance, rotavirus vaccine introduction, post rotavirus vaccine impact analysis and intussusception data and surveillance in Africa. The symposium provided early rotavirus vaccine adopter countries in Africa (South Africa, Ghana and Botswana) an opportunity to share up-to-date information on vaccine introduction, and allowed colleagues to share experiences in establishing routine rotavirus surveillance (Tanzania, Niger and Rwanda). Overall, the symposium highlighted the high burden of rotavirus in Africa, and the need to continue to strengthen efforts in preventing rotavirus diarrhoea in Africa.

  16. Student Solutions Manual to accompany Fundamentals of Physics,7th Edition

    NASA Astrophysics Data System (ADS)

    Halliday, David; Resnick, Robert; Walker, Jearl; Christman, J. Richard

    2004-06-01

    Work more effectively and check solutions as you go along with the text! This Student Solutions Manual that accompanies Fundamentals of Physics, 7th Edition, provides readers with complete, worked-out solutions to 30% of the end-of-chapter problems. These problems are indicated in the text by an ssm icon. No other book on the market today can match the 30-year success of Halliday, Resnick and Walker's Fundamentals of Physics! In a breezy, easy-to-understand style this Seventh Edition offers a solid understanding of fundamental physics concepts, and helps readers apply this conceptual understanding to quantitative problem solving. This book offers a unique combination of authoritative content and stimulating applications.

  17. Proceedings of the 7th US/German Workshop on Salt Repository Research, Design, and Operation.

    SciTech Connect

    Hansen, Francis D.; Steininger, Walter; Bollingerfehr, Willhelm

    2017-01-01

    The 7th US/German Workshop on Salt Repository Research, Design, and Operation was held in Washington, DC on September 7-9, 2016. Over fifty participants representing governmental agencies, internationally recognized salt research groups, universities, and private companies helped advance the technical basis for salt disposal of radioactive waste. Representatives from several United States federal agencies were able to attend, including the Department of Energy´s Office of Environmental Management and Office of Nuclear Energy, the Environmental Protection Agency, the Nuclear Regulatory Commission, and the Nuclear Waste Technical Review Board. A similar representation from the German ministries showcased the covenant established in a Memorandum of Understanding executed between the United States and Germany in 2011. The US/German workshops´ results and activities also contribute significantly to the Nuclear Energy Agency Salt Club repository research agenda.

  18. Effects of the 5th and 7th grade enhanced versions of the keepin' it REAL substance use prevention curriculum.

    PubMed

    Elek, Elvira; Wagstaff, David A; Hecht, Michael L

    2010-01-01

    This study assessed the outcomes of adapting the culturally-grounded, middle school, substance-use prevention intervention, keepin ' it REAL (kiR), to target elementary school students and to address acculturation. At the beginning of 5th grade, 29 schools were randomly assigned to conditions obtained by crossing grade of implementation (5th, 7th, 5th + 7th, and control/comparison) by curriculum version [kiR-Plus vs. kiR-Acculturation Enhanced (AE)]. Students (n = 1984) completed 6 assessments through the end of 8th grade. The kiR curricula generally appear no more effective than the comparison schools' programming. Students receiving either version of the kiR intervention in only the 5th grade report greater increases in substance use than did control students. Receiving the kiR-AE version twice (both 5th and 7th grades) has benefits over receiving it once.

  19. The result of Venus Orbit Insertion of Akatsuki on December 7th, 2015

    NASA Astrophysics Data System (ADS)

    Sugiyama, K. I.; Nakamura, M.; Imamura, T.; Ishii, N.; Abe, T.; Kawakatsu, Y.; Hirose, C.; Satoh, T.; Suzuki, M.; Ueno, M.; Yamazaki, A.; Iwagami, N.; Watanabe, S.; Taguchi, M.; Fukuhara, T.; Takahashi, Y.; Yamada, M.; Imai, M.; Ohtsuki, S.; Uemizu, K.; Hashimoto, G. L.; Takagi, M.; Matsuda, Y.; Ogohara, K.; Sato, N.; Kasaba, Y.; Kouyama, T.; Hirata, N.; Nakamura, R.; Yamamoto, Y.; Horinouchi, T.; Yamamoto, M.; Hayashi, Y. Y.; Nakatsuka, J.; Kashimura, H.; Sakanoi, T.; Ando, H.; Murakami, S. Y.; Sato, T.; Takagi, S.; Nakajima, K.; Peralta, J.; Lee, Y. J.

    2015-12-01

    Japan launched Venus Climate Orbiter 'Akatsuki' (JAXA's mission code name: PLANET-C) to observe the dynamics of the Venus atmosphere globally and clarify the mechanism of the atmospheric circulation. The launch was on May 21st , 2010 from the Tanegashima Space Center. The cruise to Venus was smooth, however, the first Venus Orbit Insertion (VOI) trial on December 7th, 2010 tuned out to be a failure. Later Akatsuki has been orbiting the sun. Fortunately we keep the spacecraft in a healthy condition and surprisingly we have found another chance to let this spacecraft to meet Venus in 2015. Next VOI trial will be done on December 7th, 2015 and we report the result of this operation at this AGU meeting. This mission is planed to answer the question described below. The radius of the Earth and Venus are almost the same. In addition the radiation from the sun is also almost the same. The climates of these planets, however, are much different. For example, the strong zonal wind is observed on Venus with the period of 4 days, where Venus rotates westward with the period of 243 days. The wind speed is about 100 m s-1. This is called super rotation. We will investigate from data from Akatsuki what attributes to the difference of the climates between Earth and Venus. AKATSUKI was designed for remote sensing from an equatorial, elliptical orbit to tract the atmospheric motion at different altitudes using 5 cameras (3xIR, UV, Visible) and by the radio occultation technique. The first VOI has failed due to a malfunction of the propulsion system. The check valve between the helium tank and the fuel tank was blocked by an unexpected salt formation during the cruising from the Earth to Venus. As a result the main engine (orbital maneuvering engine, OME) became oxidizer-rich and fuel-poor condition, which led to an abnormal combustion in the engine with high temperature, and finally the engine was broken. We decide to use RCS thrusters for Trajectory Control Maneuvers' (TCMs) and

  20. International Symposium on Plant Lipids (7th) Held in Davis, California on 27-31 July 1986.

    DTIC Science & Technology

    1986-07-31

    Medium & Long Chain Biosynthesis, (7) Interaction of Federal, Industrial <a * Academic Research, Q8) Algal Lipids , and J?) The Future - Genetics & Biotech...i DT1C EECTE N OCT15 0UU ~0 Final Report 7th International Symposium on Plant Lipids 0Davis, CA, July 27-31, 1986 Prepared by P.K. Stumpf...41 %*t % 05 %p~~ a-a % %; The 7th International Symposium of Structure and Function of Plant Lipids was held on the Davis Campus of the University of

  1. Trends in Science and Technology Education: Reviews and Keynotes of the 7th IOSTE Symposium. (7th, De Koningshof Veldhoven, The Netherlands, August 23-31, 1994). Part 4.

    ERIC Educational Resources Information Center

    van Trommel, Jacques, Ed.

    The overall theme of the 7th International Organization for Science and Technology Education (IOSTE) symposium was "science and technology education in a demanding society". The aim of the symposium was to examine the state of science and technology education in the context of the main theme and to reflect on desirable and feasible educational…

  2. [TNM classification of breast cancer: changes and comments on the 7th edition].

    PubMed

    Sinn, H-P; Helmchen, B; Wittekind, C H

    2010-09-01

    The 7th edition of the TNM classification includes only minor changes in the main TNM categories for breast cancer. Only ductal and lobular carcinoma in situ (DCIS, LCIS), and isolated Paget's disease of the nipple are classified as pTis, but not precursor lesions such as atypical ductal or lobular hyperplasia (ADH, ALH). AJCC emphasizes that microscopic measurement is the most accurate and preferred method to determine pT in small invasive cancers and stresses the importance of strict adherence to criteria for T4 cancers. For better distinction from micrometastases in regional lymph nodes, small clusters of cells not greater than 0.2 mm, or nonconfluent or nearly confluent clusters of cells not exceeding 200 cells in a single histologic lymph node cross section are classified as isolated tumour cells (pN0(i+)). The pN classification has otherwise remained unchanged. In the setting of patients having received neoadjuvant therapy, ypT1-ypT3 is based on the total extent of viable tumour cells, irrespective of tumour regression. Stage I breast tumours have been subdivided into Stage IA and Stage IB; Stage IB includes small tumours (TI) with lymph node micrometastases (N1mi). These changes and clarifications will contribute to maintaining the clinical and prognostic relevance of TNM in breast cancer.

  3. Boston Edison and LG&E win 7th annual substation design contest

    SciTech Connect

    Beaty, W.

    1996-07-01

    Boston`s Edison`s Network Station 53 won First Place in the engineering/operations category of Electric Light & Power`s 7th annual substation design contest. Station 53 also took Second Place in the aesthetic design category. Boston Edison is no stranger to the contest, having won top honors in the aesthetic category in the very first contest in 1990. That same year, Boston took Second Place in engineering/operations design and Third Place in aesthetic design. Station 53 occupies a 12,074-square-foot site in the heart of the Boston financial district. It replaces an existing station where the land was required for Boston`s Central Artery project. Great care was taken to ensure that Station 53 would blend into the cityscape and be pleasing to the eye. The architectural treatment was designed by the Boston Anderson-Nichols & Company Inc., in cooperation with the Boston Redevelopment Authority. The latest in engineering technology was utilized to guarantee reliability, maintain the highest service quality and provide capacity for future load growth in the downtown area. Station 53 is supplied by two underground 115-kV pipe-type transmission cables. Unattended and remotely operated, Station 53 has the capability of sectionalizing the 115-kV power supply by remote control to isolate the faulted sections.

  4. PREFACE: Proceedings of the 7th International LISA Symposium, Barcelona, Spain, 16-20 June 2008

    NASA Astrophysics Data System (ADS)

    Lobo, Alberto; Sopuerta, Carlos F.

    2009-07-01

    In June 2006 the LISA International Science Team (LIST) accepted the bid presented by the Institut d'Estudis Espacials de Catalunya (IEEC) to host the 7th International LISA Symposium. This was during its 11th meeting at the University of Maryland, just before the 6th edition of the Symposium started in NASA's Goddard Space Flight Center. The 7th International LISA Symposium took place at the city of Barcelona, Spain, from 16-20 June 2008, in the premises of CosmoCaixa, a modern Science Museum located in the hills near Tibidabo. Almost 240 delegates registered for the event, a record breaking figure compared to previous editions of the Symposium. Many of the most renowned world experts in LISA, Gravitational Wave Science, and Astronomy, as well as Engineers, attended LISA 7 and produced state-of-the-art presentations, while everybody benefited from the opportunity to have live discussions during the week in a friendly environment. The programme included 31 invited plenary lectures in the mornings, and 8 parallel sessions in the afternoons. These were classified into 7 major areas of research: LISA Technology, LISA PathFinder, LISA PathFinder Data Analysis, LISA Data Analysis, Gravitational Wave sources, Cosmology and Fundamental Physics with LISA and Other Gravitational Wave Detectors. 138 abstracts for communications were received, of which a selection was made by the session convenors which would fit time constraints. Up to 63 posters completed the scientific programme. More details on the programme, including some of the talks, can be found at the Symposium website: http://www.ice.cat/research/LISA_Symposium. There was however a remarkable add-on: Professor Clifford Will delivered a startling presentation to the general public, who completely filled the Auditori—the main Conference Room, 320 seats—and were invited to ask questions to the speaker who had boldly guided them through the daunting world of Black Holes, Waves of Gravity, and other Warped Ideas of

  5. Ongoing problems concerning 7th TNM Staging System and Proposals for 8th TNM Staging System of Gastric Cancer

    PubMed Central

    Ureyen, Orhan; Meral, Ulvi Mehmet

    2016-01-01

    Because of different prognosis of gastric cancer patients with the same T and N stages, the impossibility of N3 staging in patients with fewer than 15 removed lymph nodes, and the presence of stage migration phenomenon, the 6th edition TNM Staging System for gastric cancer was updated to the 7th edition TNM staging system in 2009. Despite some opposing views, the superiority of the 7th edition TNM staging system compared to the 6th has been demonstrated in many studies. However, there are doubts about the 7th edition that it will reduce the stage migration phenomenon. The most important problem about the 7th TNM staging system is regarding subgroups N3a and N3b. The separation of N3 stage as N3a and N3b does not contribute to the TNM staging system. In conclusion, separate usage of N3a and N3b subgroups in the TNM staging system should be considered in the creation phase of the 8th edition. PMID:28053675

  6. Proceedings of the International Conference on Adults Learning Mathematics (ALM-7) (7th, July 6-8, 2000, Medford, Massachusetts).

    ERIC Educational Resources Information Center

    Schmitt, Mary Jane, Ed.; Safford-Ramus, Katherine, Ed.

    This volume contains the proceedings of the 7th international conference on Adults Learning Mathematics--A Research Forum held in July, 2000 in Massachusetts. It includes posters and short oral reports under these section headings: (1) Research into Practice; (2) Large- Scale Issues: Frameworks, Standards, and Assessment; (3) Theoretical…

  7. How 7th Graders Are Using Asynchronous Resources in an Online Science Course: A Mixed Methods Study

    ERIC Educational Resources Information Center

    Schafer-Mayse, Diane L.

    2013-01-01

    In this study 7th grade students were observed completing a series of lessons in an online science course to explore their thinking and strategies for using curriculum resources for learning, to explore their thinking and strategies for self-assessing their readiness for lesson assessment, and to explore the relationship between resource use and…

  8. Cultivating Environmental Virtue among 7th and 8th Graders in an Expeditionary Learning Outward Bound School

    ERIC Educational Resources Information Center

    Martin, Bruce; Bright, Alan; Cafaro, Philip; Mittelstaedt, Robin; Bruyere, Brett

    2008-01-01

    This study attempted to assess the development of environmental virtue in 7th and 8th grade students in an Expeditionary Learning Outward Bound school. The purpose of this study was twofold. First, the researchers were interested in introducing a virtue ethics perspective into their teaching of environmental ethics. Second, the researchers were…

  9. In vitro Comparative Evaluation of Tensile Bond Strength of 6th, 7th and 8th Generation Dentin Bonding Agents

    PubMed Central

    Kamble, Suresh S; Kandasamy, Baburajan; Thillaigovindan, Ranjani; Goyal, Nitin Kumar; Talukdar, Pratim; Seal, Mukut

    2015-01-01

    Background: Newer dentin bonding agents were developed to improve the quality of composite restoration and to reduce time consumption in its application. The aim of the present study was to evaluate tensile bond strength of 6th, 7th and 8th generation bonding agents by in vitro method. Materials and Methods: Selected 60 permanent teeth were assigned into 20 in each group (Group I: 6th generation bonding agent-Adper SE plus 3M ESPE, Group II: 7th generation bonding agent-G-Bond GC Corp Japan and Group III: 8th generation dentin adhesives-FuturaBond, DC, Voco, Germany). With high-speed diamond disc, coronal dentin was exposed, and selected dentin bonding agents were applied, followed by composite restoration. All samples were saved in saline for 24 h and tensile bond strength testing was done using a universal testing machine. The obtained data were tabulated and statistically analyzed using ANOVA test. Results: The tensile bond strength readings for 6th generation bonding agent was 32.2465, for 7th generation was 31.6734, and for 8th-generation dentine bonding agent was 34.74431. The highest tensile bond strength was seen in 8th generation bonding agent compared to 6th and 7th generation bonding agents. Conclusion: From the present study it can be conclude that 8th generation dentine adhesive (Futura DC, Voco, Germany) resulted in highest tensile bond strength compared to 6th (Adper SE plus, 3M ESPE) and 7th generation (G-Bond) dentin bonding agents. PMID:26028901

  10. PREFACE: 7th International Conference on Applications of Physics in Financial Analysis

    NASA Astrophysics Data System (ADS)

    Takayasu, M.; Watanabe, T.; Ikeda, Y.; Takayasu, H.

    2010-04-01

    This volume contains contributed papers from the 7th international conference on 'Applications of Physics in Financial Analysis (APFA)' held at Tokyo on 1-5 March 2009. The conference was organized jointly by Tokyo Institute of Technology and Hitotsubashi University with support from the Research Institute of Economy, Trade, and Industry (RIETI), Physical Society of Japan, Japanese Economic Association, Information Processing Society of Japan, Japanese Society for Artificial Intelligence, and Japan Association for Evolutionary Economics. The first APFA conference (APFA1) was held in 1999 at Dublin, followed by APFA2 at Liege in 2000, APFA3 at London in 2001, APFA4 at Warsaw in 2003, APFA5 at Torino in 2006, and APFA6 at Lisbon in 2007. The 7th APFA conference, which is the first meeting held outside Europe, was attended by 223 researchers in physics and economics from 23 countries world-wide. In keeping with past APFA conferences, we paid special attention to issues in financial markets, which turned out to be very timely. The conference was held in March 2009, in the middle of the global financial crisis that originally started in the US and spread quickly to every corner of the world. The topic of the conference is 'New Approaches to the Analysis of Large Scale Business and Economic data'. The rapid development of information and communication technology has enabled financial/non-financial firms to keep detailed records of their business activities in the form of, for example, tick-by-tick data in financial markets, point-of-sale (POS) data on individual household's purchasing activity, and interfirm network data describing relationships among firms in terms of suppliers/customers transactions and ownerships. This growth in the scope and amount of business data available to researchers has led to a far-reaching expansion in research possibilities. Researchers not only in social sciences but also in physics, mathematics, and information sciences have recently

  11. The Aegean in the Early 7th Millennium BC: Maritime Networks and Colonization.

    PubMed

    Horejs, B; Milić, B; Ostmann, F; Thanheiser, U; Weninger, B; Galik, A

    The process of Near Eastern neolithization and its westward expansion from the core zone in the Levant and upper Mesopotamia has been broadly discussed in recent decades, and many models have been developed to describe the spread of early farming in terms of its timing, structure, geography and sociocultural impact. Until now, based on recent intensive investigations in northwestern and western Anatolia, the discussion has mainly centred on the importance of Anatolian inland routes for the westward spread of neolithization. This contribution focuses on the potential impact of east Mediterranean and Aegean maritime networks on the spread of the Neolithic lifestyle to the western edge of the Anatolian subcontinent in the earliest phases of sedentism. Employing the longue durée model and the concept of 'social memory', we will discuss the arrival of new groups via established maritime routes. The existence of maritime networks prior to the spread of farming is already indicated by the high mobility of Epipalaeolithic/Mesolithic groups exploring the Aegean and east Mediterranean seas, and reaching, for example, the Cyclades and Cyprus. Successful navigation by these early mobile groups across the open sea is attested by the distribution of Melian obsidian. The potential existence of an additional Pre-Pottery Neolithic (PPN) obsidian network that operated between Cappadocia/Cilicia and Cyprus further hints at the importance of maritime coastal trade. Since both the coastal and the high seas networks were apparently already well established in this early period, we may further assume appropriate knowledge of geographic routes, navigational technology and other aspects of successful seafaring. This Mesolithic/PPN maritime know-how package appears to have been used by later groups, in the early 7th millennium calBC, exploring the centre of the Anatolian Aegean coast, and in time establishing some of the first permanent settlements in that region. In the present paper, we

  12. 7th International Workshop on Microbeam Probes of Cellular Radiation Response

    SciTech Connect

    Brenner, David J.

    2009-07-21

    The extended abstracts that follow present a summary of the Proceedings of the 7th International Workshop: Microbeam Probes of Cellular Radiation Response, held at Columbia University’s Kellogg Center in New York City on March 15–17, 2006. These International Workshops on Microbeam Probes of Cellular Radiation Response have been held regularly since 1993 (1–5). Since the first workshop, there has been a rapid growth (see Fig. 1) in the number of centers developing microbeams for radiobiological research, and worldwide there are currently about 30 microbeams in operation or under development. Single-cell/single-particle microbeam systems can deliver beams of different ionizing radiations with a spatial resolution of a few micrometers down to a few tenths of a micrometer. Microbeams can be used to addressquestions relating to the effects of low doses of radiation (a single radiation track traversing a cell or group of cells), to probe subcellular targets (e.g. nucleus or cytoplasm), and to address questions regarding the propagation of information about DNA damage (for example, the radiation-induced bystander effect). Much of the recent research using microbeams has been to study low-dose effects and ‘‘non-targeted’’ responses such as bystander effects, genomic instability and adaptive responses. This Workshop provided a forum to assess the current state of microbeam technology and current biological applications and to discuss future directions for development, both technological and biological. Over 100 participants reviewed the current state of microbeam research worldwide and reported on new technological developments in the fields of both physics and biology.

  13. PREFACE: The 7th International Seminar on Geometry, Continua and Microstructures

    NASA Astrophysics Data System (ADS)

    Burton, David A.

    2007-04-01

    It gives me great pleasure to present the proceedings of the 7th International Seminar on Geometry, Continua and Microstructures (GCM 7). The conference took place on 25-27 September 2006 at Lancaster University and the local organisers were Robin Tucker, Tim Walton, myself and Jonathan Gratus of the Lancaster University Mathematical Physics Group. Modern field theories of mechanically and electrically responsive continua have a wealth of interesting applications in physics. Such theories provide effective macroscopic models of complex systems, such as living tissue and material with dynamical defects, that capture macroscopic consequences of microscopic phenomena. GCM is an interdisciplinary conference series, initiated by the Eringen medallist Gérard A Maugin, that brings together physicists and applied mathematicians who have interests in continuum mechanics and differential geometry and who aim to develop new and powerful methods for analysing the behaviour of complex mechanical systems. The earlier conferences in the series were held in Paris, Madrid, Mannheim, Turin, Sinaia and Belgrade. This volume addresses a variety of topics including the physics of saturated porous media, the relationship between growth in living tissue and molecular transport, the mechanics of polymer bonds, the macroscopic properties of damaged elastomers, the mechanics of carbon nanotubes, the geometry of balance systems in Continuum Thermodynamics and wave propagation in the material manifold. I would like to warmly thank the rest of the organising committee and the conference participants for making GCM 7 an enjoyable and rewarding occasion. Photographs may be found at http://www.lancs.ac.uk/depts/spc/conf/gcm7/wss/index.htm David A Burton Editor

  14. PREFACE: 7th International Conference on Modern Practice in Stress and Vibration Analysis

    NASA Astrophysics Data System (ADS)

    Barton, J.

    2009-07-01

    The proceedings contain the papers presented at the 7th International Conference on Modern Practice in Stress and Vibration Analysis. The collection of papers represents the range of activities that are carried out to understand the functionality of engineering systems and structures through stress/strain based evaluation and dynamic response. The scope is broad and covers theoretical studies, modelling and experimental evaluations. Many of the papers cover integration techniques and approaches to better understanding of system performance and failure. All of the papers have been peer reviewed by at least two experts and represent the state of the art of research in this area. The conference is the seventh in the series, following on from previous conferences in Bath, Glasgow, Nottingham, Dublin, Sheffield and Liverpool. Although based in the British Isles the conference has a truly international flavour with offerings from 22 countries. The conference is organised by the Institute of Physics Applied Mechanics Group (formerly the Stress and Vibration Group). It incorporates activities associated with the British Society for Strain Measurement including the Measurements Lecture, the EMex Exhibition and the Young Stress Analyst Competition. The organising committee is grateful for the support of all of the authors, the scientific committee and keynote speakers who played a significant role in the review process, to John Edwards who was instrumental in managing the paper review and submission process, Dawn Stewart and Claire Garland of the Institute of Physics for organising the conference, social programme and registration and Biana Gale of the British Society for Strain Measurement for organising the Exhibition. The organising committee is also grateful to the sponsors of the conference for their kind support and to the co-sponsors for distributing information on the conference. Professor Janice Barton Professor of Experimental Mechanics University of Southampton

  15. PREFACE: 7th International Conference on Modern Practice in Stress and Vibration Analysis

    NASA Astrophysics Data System (ADS)

    Dulieu-Barton, J. M.

    2009-07-01

    The proceedings contain the papers presented at the 7th International Conference on Modern Practice in Stress and Vibration Analysis. The collection of papers represents the range of activities that are carried out to understand the functionality of engineering systems and structures through stress/strain based evaluation and dynamic response. The scope is broad and covers theoretical studies, modelling and experimental evaluations. Many of the papers cover integration techniques and approaches to better understanding of system performance and failure. All of the papers have been peer reviewed by at least two experts and represent the state of the art of research in this area. The conference is the seventh in the series, following on from previous conferences in Bath, Glasgow, Nottingham, Dublin, Sheffield and Liverpool. Although based in the British Isles the conference has a truly international flavour with offerings from 22 countries. The conference is organised by the Institute of Physics Applied Mechanics Group (formerly the Stress and Vibration Group). It incorporates activities associated with the British Society for Strain Measurement including the Measurements Lecture, the EMex Exhibition and the Young Stress Analyst Competition. The organising committee is grateful for the support of all of the authors, the scientific committee and keynote speakers who played a significant role in the review process, to John Edwards who was instrumental in managing the paper review and submission process, Dawn Stewart and Claire Garland of the Institute of Physics for organising the conference, social programme and registration and Biana Gale of the British Society for Strain Measurement for organising the Exhibition. The organising committee is also grateful to the sponsors of the conference for their kind support and to the co-sponsors for distributing information on the conference. Professor Janice M Dulieu-Barton Professor of Experimental Mechanics University of

  16. PREFACE: 7th International Conference on Cooling & Heating Technologies (ICCHT 2014)

    NASA Astrophysics Data System (ADS)

    2015-09-01

    The Kyoto protocol has initiated a pledge from almost all developing and developed countries to be committed to reducing CO2 emissions. Development of new renewable energy technologies are also of interest in this conference. Greenhouse gases have contributed to global warming and other man-made disasters. Cooling and Heating communities also have responsibilities towards the commitment of reducing the greenhouse gas emissions. In addition, depleting natural resources also act as a threat to the Cooling and Heating industries, causing them to develop highly efficient equipment and innovative technologies. The 1st International Conference on Cooling & Heating Technologies was held in Hanoi Vietnam (Jan. 2005). Whereas the 2nd, 3rd, 4th and 5th ICCHT conferences were held in Dalian, China (Jul. 2006), Tokyo, Japan (Jul. 2007), Jinhae, Korea (Oct. 2008) and Bandung, Indonesia (Dec. 2010) respectively. The 6th International Conference on Cooling & Heating Technologies (ICCTH2012) was held in Xi'an in China on November 9-12, 2012. It is our pleasure to welcome you to the 7th International Conference on Cooling & Heating Technologies (ICCTH2014) on 4th - 6th November 2014 at the Grand Dorsett Subang Hotel, Subang Jaya, Selangor Darul Ehsan, Malaysia The Theme of the Conference is ''Sustainability and Innovation in Heating & Cooling Technologies''. The sub-themes are:- • CO2 Reduction and Low Carbon Technologies • HVAC System and Natural Ventilation • Energy & Alternative Energy • Computational Fluid Dynamics • Low Temperature & Refrigeration Engineering In conjunction with the Conference, an Exhibition will be organized as an integral part of the Conference. Project experiences, product solutions, new applications and state-of-the art information will be highlighted.

  17. Selected papers from the 7th International Conference on Microtechnologies in Medicine and Biology (MMB 2013)

    NASA Astrophysics Data System (ADS)

    Meng, Ellis; Takayama, Shuichi

    2014-03-01

    In this special section of Journal of Micromechanics and Microengineering are a collection of the best microengineering papers presented at the 7th International Conference on Microtechnologies in Medicine and Biology (MMB 2013) which took place in the seaside town of Marina del Rey, California, USA on 10-12 April, 2013. During the 3-day conference, participants enjoyed talks from 6 invited keynote speakers and 125 flash oral/poster presentations. The MMB conference is a biennial meeting with the primary purpose of fostering interactions between biologists and medical researchers, clinicians, chemists, physicists and engineers to enhance and strengthen the potential microtechnologies that will revolutionize the fields of medicine and biological sciences. The conference possesses a unique format where all poster presenters provide a brief 60 s oral presentation highlighting their research. This format was devised to provide training and exposure for young researchers, especially PhD students and postdocs, in the field and stimulate interdisciplinary exchanges. Therefore, MMB provides an intimate intellectual venue the facilitate discussions and collaborations to advance new research tools and technologies for medicine and biological sciences. The MMB conference series was co-founded by Professor David Beebe (University of Wisconsin—Madison) and Professor André Dittmar (University of Lyon) and was the first international meeting to provide a forum focusing on emerging applications of microtechnologies to unmet needs in medicine and biology. The series was held for the first time in 2000, in Lyon, France and followed by Madison, USA (2002), Oahu Island in Hawaii, USA (2005), Okinawa, Japan (2006), Québec City, Canada (2009), Lucerne, Switzerland (2011), and Marina del Rey, USA (2013). The next conference will be held in Seoul, Korea in 2015. This collection of articles highlights recent progress in microtechnologies with medical and biological applications. We are

  18. FOREWORD: 7th Symposium on Vacuum-based Science and Technology (SVBST2013)

    NASA Astrophysics Data System (ADS)

    Gulbiński, W.

    2014-11-01

    These are the proceedings of the 7th Symposium on Vacuum based Science and Technology organized in Kołobrzeg (PL) on November 19-21, 2013 by the Institute of Technology and Education, Koszalin University of Technology and the Clausius Tower Society under auspices of the Polish Vacuum Society (PTP) and the German Vacuum Society (DVG) and in collaboration with the BalticNet PlasmaTec and the Society of Vacuum Coaters (SVC). It was accompanied by the 12-th Annual Meeting of the German Vacuum Society. The mission of the Symposium is to provide a forum for presentation and exchange of expertise and research results in the field of vacuum and plasma science. After already six successful meetings organized alternately in Poland and Germany our goal is to continue and foster cooperation within the vacuum and plasma science community. This year, the Rudolf-Jaeckel Prize, awarded by the DVG for outstanding achievements in the field of vacuum based sciences, was presented to Dr Ute Bergner, president of the VACOM Vakuum Komponenten & Messtechnik GmbH and a member of our community. The full-day course organized in the framework of the Educational Program by the Society of Vacuum Coaters (SVC) and entitled: An Introduction to Physical Vapor Deposition (PVD) Processes was held on November 18, 2013 as a satellite event of the Symposium. The instructor was Prof. Ismat Shah from Delaware University (US). The Clausius Session, already traditionally organized during the Symposium was addressed this year to young generation. We invited our young colleagues to attend a series of educational lectures reporting on achievements in graphene science, scanning probe microscopy and plasma science. Lectures were given by: Prof. Jacek Baranowski from the Institute of Electronic Materials Technology in Warsaw, Prof. Teodor Gotszalk from the Wroclaw University of Technology and Prof. Holger Kersten from the Christian Albrechts University in Kiel. The Symposium was accompanied by an industry

  19. FOREWORD: The 7th Gravitational Wave Data Analysis Workshop, 17-19 December 2002, Kyoto, Japan

    NASA Astrophysics Data System (ADS)

    Kanda, Nobuyuki; Sasaki, Misao; Tagoshi, Hideyuki

    2003-09-01

    The 7th Gravitational Wave Data Analysis Workshop (GWDAW2002) was held at the International Institute for Advanced Studies (IIAS) in Kyoto, Japan, on 17-19 December 2002. The GWDAW series is one of the important international conferences supported by the Gravitational Wave International Committee (GWIC). The workshops have been held annually, and the topics covered range from data analyses for all kinds of gravitational wave detectors to theoretical issues on gravitational wave sources. This year's workshop consisted of seven categories of sessions: the status of detectors, space-based detectors, event search, detector characterization, coincidence of detectors and detector network analysis, new methods of analysis, and sources for advanced ground-based detectors. The year 2002 was an epoch-making year for gravitational wave detection experiments. Some of the large-scale ground-based laser interferometric detectors (LIGO, GEO and TAMA) entered their initial or developed stage of observation, performing scientific runs with durations of several weeks. As a result, many of the talks presented at the workshop were based on actual data taken from these experiments, and we were able to have more realistic discussions on gravitational wave detection. Furthermore, the successful operations of these laser interferometric detectors gave the gravitational wave community a strong motive to form a worldwide detector network, as practised by existing resonant-type detectors. In fact, there were reports on the simultaneous operation of five laser interferometric detectors, and a report on a plan for coincidence operations over a month. There were also reports on future space-based detectors and their source studies from aspects of the data analysis. Thanks to well-prepared talks and vivid discussions by the participants, the workshop was extremely fruitful. These proceedings contain refined and updated papers based on the talks given at the workshop and will provide readers of

  20. Proceedings of the Seventh International Conference on Educational Data Mining (EDM) (7th, London, United Kingdom, July 4-7, 2014)

    ERIC Educational Resources Information Center

    Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed.

    2014-01-01

    The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…

  1. [The IASLC lung cancer staging project. Comparing the current 6(th) TNM edition with the proposed 7(th) edition].

    PubMed

    Carvalho, Lina; Cardoso, Edgar; Nunes, Henrique; Baptista, Victor; Gomes, Ana; Couceiro, Patrícia

    2009-01-01

    The future 7th edition of TNM classification for lung cancer will be published in 2009 and comprises the IASLC recommendations for TNM parameters. The general staging of lung cancer includes the new parameters: reclassification of tumours larger than 7 cm from T2 to T3; extra tumoral nodules will change their category to T3, T4 and M1 when in the same, ipsilateral or contralateral lobe, respectively; pleural effusion will be M1a. With these alterations, cases staged as IB - T2b N0 M0 will be IIA, cases staged IIB - T2a N1 M0 will be IIA and cases IIIB- T4 N0- -1 M0 will be IIIA. The 7(th) TNM edition recommendations were applied to 203 broncho -pulmonary carcinomas, concerning epidermoid carcinomas (83) and adenocarcinomas (120) registered in the archive of the Serviço de Anatomia Patológica of the Hospitais da Universidade de Coimbra - Portugal, previously submitted to surgical resection and lymph node excision. The following alterations will be kept as the application of the future 7(th) TNM edition: 20 cases in stage IB will move to stage IIA (17) and stage IIB (3); 18 cases will change from stage IIB to stage IIA (17) and 1 case to stage IIIA; 2 cases from stage IIIB will move to stage IV; 6 cases in stage IV will move to stage IIIA (5) and 1 case to stage IIIB. In this translational adaptation from 6th to 7th TNM staging, 51 out of the 203 analysed cases change their staging, corresponding to 25.1%.

  2. *Abstracts - 7th IN-CAM Research Symposium, Evaluating CAM Practices: Effectiveness, Integration, Economics & Safety - November 2012.

    PubMed

    Boon, Heather; Verhoef, Marja J

    2012-10-23

    Abstract The following are abstracts of oral and poster presentations given at the 7th IN-CAM Research Symposium - Evaluating CAM Practices: Effectiveness, Integration, Economics & Safety, and the 4th HomeoNet Research Forum, a pre-Symposium event. The IN-CAM Research Symposium was held November 2 to 4, 2012 at the Leslie Dan Faculty of Pharmacy, University of Toronto, in Toronto, Ontario, Canada. For more information, please visit: www.incamresearch.ca.

  3. 7th Annual Symposium on Self-Monitoring of Blood Glucose (SMBG), May 8–10, 2014, Helsinki, Finland

    PubMed Central

    Mlinac, Anita; Hinzmann, Rolf

    2014-01-01

    Abstract International experts in the fields of diabetes, diabetes technology, endocrinology, mobile health, sport science, and regulatory issues gathered for the 7th Annual Symposium on Self-Monitoring of Blood Glucose (SMBG). The aim of this meeting was to facilitate new collaborations and research projects to improve the lives of people with diabetes. The 2014 meeting comprised a comprehensive scientific program, parallel interactive workshops, and two keynote lectures. PMID:25211215

  4. [Change in short-term memory in pupils of 5-7th classes in the process of class work].

    PubMed

    Rybakov, V P; Orlova, N I

    2014-01-01

    The subject of this study was the investigation of the short-term memory (STM) of visual (SVM) and auditory (SAM) modality in boys and girls of the middle school age, as in the daytime, and during the course of the school week. The obtained data show that in pupils from the 5th to the 7th class SVM and SAM playback volume in children of both genders is significantly increased, while SVM productivity in boys from 6 - 7th classes is higher than in girls of the same age. The amplitude of day changes in SVM and SAM was found to decrease significantly with the age. In all age groups the range of daily fluctuations in short-term memory of both modalities in boys appears to be higher than in girls. In all age groups a significant part of schoolchildren was revealed to possess optimal forms of temporal organization of short-term memory: morning, day and morning-day types, in that while during the school week in pupils of 5th to 7th classes of both genders the number of optimal waveforms of curves of daily dynamics of short-term memory increases, which contributes to the optimization of their mental performance.

  5. PREFACE: 7th International Conference on 3D Radiation Dosimetry (IC3DDose)

    NASA Astrophysics Data System (ADS)

    Thwaites, David; Baldock, Clive

    2013-06-01

    IC3DDose 2013, the 7th International Conference on 3D Radiation Dosimetry held in Sydney, Australia from 4-8 November 2012, grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The aim of the first workshop was to bring together individuals, both researchers and users, with an interest in 3D radiation dosimetry techniques, with a mix of presentations from basic science to clinical applications, which has remained an objective for all of the meetings. One rationale of DosGel99 was stated as supporting the increasing clinical implementation of gel dosimetry, as the technique appeared, at that time, to be leaving the laboratories of gel dosimetry enthusiasts and entering clinical practice. Clearly by labelling the first workshop as the 1st, there was a vision of a continuing series, which has been fulfilled. On the other hand, the expectation of widespread clinical use of gel dosimetry has perhaps not been what was hoped for and anticipated. Nevertheless the rapidly increasing demand for advanced high-precision 3D radiotherapy technology and techniques has continued apace. The need for practical and accurate 3D dosimetry methods for development and quality assurance has only increased. By the 6th meeting, held in South Carolina in 2010, the Conference Scientific Committee recognised the wider developments in 3D systems and methods and decided to widen the scope, whilst keeping the same span from basic science to applications. This was signalled by a change of name from 'Dosgel' to 'IC3DDose', a name that has continued to this latest conference. The conference objectives were: to enhance the quality and accuracy of

  6. PREFACE: Proceedings of the 7th Liquid Matter Conference (Lund, Sweden, 27 June 1 July 2008)

    NASA Astrophysics Data System (ADS)

    Kahl, Gerhard; Sciortino, Francesco; Ullner, Magnus

    2008-12-01

    (Utrecht) and to Professor Peter Pusey (Edinburgh) for their seminal studies of colloidal matter. In addition to plenary speeches by the two recipients of the Liquid Matter Prize, the scientific program consisted of ten plenary lectures, 108 symposia talks, 23 of which were keynote lectures, and 458 poster contributions. This special issue of Journal of Physics: Condensed Matter contains 47 of the oral communications. The conference was held in the buildings of Lund University and the Student Union facing the University Square in the heart of Lund. The organizers gratefully acknowledge the substantial financial support offered by the Nobel Foundation and by the Swedish Research Council. The success of the conference owes a great debt of gratitude to the members of the Local Organizing Committee and all the people who helped them tirelessly (and very efficiently) to make the conference run smoothly and to the members of the International Program Committee, who were deeply involved in the planning of the conference. During the conference dinner our colleague Lennart Piculell gave a singing performance, which included a song dedicated to the two winners of the Liquid Matter Prize, entitled Hard-Breaking Gel, whose lyrics are printed below. Finally, the Board of the Liquids Section of the European Physical Society decided that the 8th Liquid Matter Conference will be held in Vienna (Austria) 6-10 September 2011. Hard-Breaking Gel New lyrics by Lennart Piculell to the melody of Heartbreak Hotel, created in June 2008 for the 7th Liquid Matter Conference, dedicated to Henk Lekkerkerker and Peter Pusey. Well, since my baby left me, I found a new place to be! It's downtown Lund, in a narrow street, Where hundreds of cool people meet! There I don't feel lonely, No, I don't feel lonely - So, if you feel lonely, you should try! It's all about liquid matter: Liquids flow, and soft bodies swell! Your mind is blown, and your blood will boil To a hard-breaking gel. And you won't be lonely

  7. PREFACE: XTOP 2004 -- 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging

    NASA Astrophysics Data System (ADS)

    Holý, Vaclav

    2005-05-01

    The 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging (XTOP 2004) was held in the Prague suburb of Pruhonice, Czech Republic, during 7-10 September 2004. It was organized by the Czech and Slovak Crystallographic Association in cooperation with the Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Masaryk University, Brno, and Charles University, Prague. XTOP 2004 took place just after EPDIC IX (European Powder Diffraction Conference) organised in Prague by the same Association during 2-5 September 2004. The Organizing Committee was supported by an International Programme Committee including about 20 prominent scientists from several European and overseas countries, whose helpful suggestions for speakers are acknowledged. The conference was sponsored by the International Union of Crystallography and by several industrial sponsors; this sponsorship allowed us to support about 20 students and young scientists. In total, 147 official delegates and 8 accompanying persons from 16 countries of three continents attended our conference. The scientific programme of the conference was divided into 11 half-day sessions and 2 poster sessions. The participants presented 147 accepted contributions; of these 9 were 45-minute long invited talks, 34 were 20-minute oral presentations and 104 were posters. All posters were displayed for the whole meeting to ensure maximum exposure and interaction between delegates. We followed the very good experience from the previous conference, XTOP 2002, and also organized pre-conference tutorial lectures presented by experts in the field: `Imaging with hard synchrotron radiation' (J Härtwig, Grenoble), `High-resolution x-ray diffractometry: determination of strain and composition' (J Stangl, Linz), `X-ray grazing-incidence scattering from surfaces and nanostructures' (U Pietsch, Potsdam) and `Hard x-ray optics' (J Hrdý, Prague). According to the recommendation of the International Program Committee

  8. Multi-MW K-Band 7th Harmonic Multiplier for High-Gradient Accelerator R&D

    SciTech Connect

    Solyak, N.A.; Yakovlev, V.P.; Hirschfield, J.L.; Kazakevich, G.M.; LaPointe, M.A.; /Yale U.

    2009-05-01

    A preliminary design and current status are presented for a two-cavity 7th harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power in K-band using as its RF driver an XK-5 S-band klystron (2.856 GHz). The multiplier is to be built with a TE{sub 111} rotating mode input cavity and interchangeable output cavities, a principal example being a TE{sub 711} rotating mode cavity running at 20 GHz. The design that is described uses a 250 kV, 20 A injected laminar electron beam. With 8.5 MW of S-band drive power, 4.4 MW of 20-GHz output power is predicted. The design uses a gun, magnetic coils, and beam collector from an existing waveguide 7th harmonic multiplier. The gun has been re-conditioned and the desired operating parameters have been achieved.

  9. Exploring New Geometric Worlds

    ERIC Educational Resources Information Center

    Nirode, Wayne

    2015-01-01

    When students work with a non-Euclidean distance formula, geometric objects such as circles and segment bisectors can look very different from their Euclidean counterparts. Students and even teachers can experience the thrill of creative discovery when investigating these differences among geometric worlds. In this article, the author describes a…

  10. Overview and research agenda arising from the 7th World Workshop on Oral Health and Disease in AIDS.

    PubMed

    Tappuni, A R; Shiboski, C

    2016-04-01

    The Research Agenda generated by the 7th World Workshop on Oral Health and Disease in AIDS (WW7) is delivered in this paper. Panels of international experts presided over nine workshops that constituted the conference held in November 2014 in Hyderabad, India. The main goal of the Workshop was to bring together clinician and scientists interested in the subject to debate with world-wide perspectives current issues related to the oral manifestations in HIV/AIDS. The workshops were structured around three themes; basic science, clinical/translational science and social science and were attended by 135 participants from 31 countries. The research questions debated at the workshops are presented in nine consensus papers published in this issue and are summarised in this paper along with an outline of the identified research needs in the field.

  11. A compositional study of a museum jewellery collection (7th-1st BC) by means of a portable XRF spectrometer

    NASA Astrophysics Data System (ADS)

    Karydas, A. G.; Kotzamani, D.; Bernard, R.; Barrandon, J. N.; Zarkadas, Ch.

    2004-11-01

    Within the framework of the project "Jewelmed" (ICA3-1999-10020), the chemical composition of 34 gold and four silver jewels was examined. These jewels belong to the Benaki museum's collection in Athens, Greece and are dating from the 7th to the 1st century BC. The compositional analysis of the jewels was performed by means of a "home-made" portable X-ray fluorescence (XRF) spectrometer. The XRF results have shown that the gold jewels can be categorized in two groups, which include artifacts made by native and by high purity gold, respectively. For the silver jewels the results have provided interesting information regarding the manufacturing technology, the authenticity of the jewels and the raw materials used. The potential and the limitations of the XRF technique, applied in the chemical analysis of archaeological metal artifacts, are also discussed.

  12. UV-induced Oxygen Removal for Photostable High Efficiency PTB7-Th: PC71BM Photovoltaic Cells.

    PubMed

    Liu, Quan; Mantilla-Perez, Paola; Montes Bajo, Miguel; Romero-Gomez, Pablo; Martorell, Jordi

    2016-10-03

    Solution-processed ZnO sol-gel or nanoparticles are widely used as the electron transporting layer (ETL) in optoelectronic devices. However, chemisorbed oxygen on the ZnO layer surface has been shown to be detrimental for the device performance as well as stability. Herein, we demonstrate that a chemisorbed oxygen removal based on a UV illumination of the ZnO surface layer under a nitrogen atmosphere can, simultaneously, improve power conversion efficiency and photostability of PTB7-Th: PC71BM based inverted polymer solar cells. By a systematic study of such UV illumination procedure, we obtained optimal conditions where, both, the cell efficiency and stability were improved. We fabricated cells with a power conversion efficiency higher than 9.8%, and with a T80 lifetime larger than 500 hours, corresponding to about a 2.5-fold enhancement relative to non-UV treated ZnO reference devices.

  13. Incorporation of perineural invasion of gastric carcinoma into the 7th edition tumor-node-metastasis staging system.

    PubMed

    Jiang, Nan; Deng, Jing-Yu; Liu, Yong; Ke, Bin; Liu, Hong-Gen; Liang, Han

    2014-09-01

    The aim of this study was to determine the prognostic value of perineural invasion (PNI) in patients with gastric cancer who underwent curative resection. We retrospectively analyzed 518 patients who had undergone curative gastrectomy. Paraffin sections of surgical specimens from all patients were stained with hematoxylin and eosin. PNI was defined when carcinoma cells infiltrated into the perineurium or neural fascicles. Patients with PNI had a significantly larger tumors (≥5.0 cm), lymphatic venous invasion (positive), deeper tumor invasion (T4), more number of lymph node metastases (N3), and higher tumor stage (III). Regarding survival, multivariate analysis showed that PNI emerged as an independent prognostic factor for survival (hazard ratio (HR) = 1.901, P < 0.001). We incorporated the PNI into the 7th edition tumor-node-metastasis (TNM) staging system. Comparing with the 7th edition staging system, the redefinition of TPNI stage had higher -2loglikelihood value (-2loglikelihood = 3,492.259) and lower HR and 95 % confidence interval (CI) (HR = 1.955, 95 % CI = 1.630-2.343); redefinition of NPNI and TNMIIIPNI stage both had lower -2loglikelihood value (-2loglikelihood = 3,306.608; -2loglikelihood = 2,535.151) and higher HR and 95 % CI (HR = 1.879, 95 % CI = 1.720-2.053; HR = 2.268, 95 % CI = 1.900-2.707), which represented the optimum prognostic stratification, together with better homogeneity, discriminatory ability. Our results showed that the frequency of PNI was high in patients with gastric cancer who underwent curative gastrectomy and the proportion of PNI positivity increased with progression and clinical stage of disease. PNI may be useful in detecting patients who had poor prognosis after curative resection in gastric cancer and it should be incorporated into TNM staging.

  14. EDITORIAL: Proceedings of the 7th International LISA Symposium, Barcelona, Spain, 16-20 June 2008 Proceedings of the 7th International LISA Symposium, Barcelona, Spain, 16-20 June 2008

    NASA Astrophysics Data System (ADS)

    Lobo, Alberto; Sopuerta, Carlos F.

    2009-05-01

    In June 2006 the LISA International Science Team (LIST) accepted the bid presented by the Institut d'Estudis Espacials de Catalunya (IEEC) to host the 7th International LISA Symposium. This was during its 11th meeting at the University of Maryland, just before the 6th edition of the symposium started at NASA's Goddard Space Flight Center. The 7th International LISA Symposium took place in the city of Barcelona, Spain, 16-20 June, 2008, in the premises of CosmoCaixa, a modern science museum located in the hills near Tibidabo. Almost 240 delegates registered for the event, a record breaking figure compared to previous editions of the symposium. Many of the most renowned world experts in LISA, gravitational wave science, and astronomy, as well as engineers, attended LISA #7 and produced state of the art presentations, while everybody benefited from the opportunity to have live discussions during the week in a friendly environment. The programme included 31 invited plenary lectures in the mornings, and eight parallel sessions in the afternoons. These were classified into seven major areas of research: LISA Technology, LISA PathFinder, LISA PathFinder Data Analysis, LISA Data Analysis, Gravitational Wave Sources, Cosmology and Fundamental Physics with LISA and Other Gravitational Wave Detectors. Abstracts for 138 communications were received, from which a selection was made by the session convenors which would fit time constraints. Up to 63 posters completed the scientific programme. More details on the programme, including some of the talks, can be found at the symposium website:http://www.ice.cat/research/LISA_Symposium. There was, however, a remarkable add-on: Professor Clifford Will delivered a startling presentation to the general public, who completely filled the Auditori—the main conference room, 320 seats—and were invited to ask questions to the speaker who boldly guided them through the daunting world of Black Holes, Waves of Gravity, and other Warped Ideas

  15. Prognostic Discrepancy of the 6th and 7th UICC N Classification for Lymph Node Staging in Gastric Cancer Patients after Curative Resection

    PubMed Central

    Oh, Sung Jin; Suh, Byoung Jo; Park, Jong Kwon; Oh, Sung Don; Yu, Hang Jong

    2017-01-01

    Background The validity of N classification of the 7th edition of the American Joint Committee on Cancer/Union Internationale contre le Cancer (AJCC/UICC) tumor-node-metastasis (TNM) staging system is still under debate. The purpose of this study was to evaluate the prognostic efficacy of the 7th edition of the AJCC/UICC TNM staging system (focusing on N stage), in comparison with the 6th edition, at a single Eastern institution. Methods We analyzed 1,435 patients with gastric cancer who underwent curative resection performed from September 1998 to August 2003 at the Memorial Jin-Pok Kim Korea Gastric Cancer Center. We analyzed the survival rate of the patients according to the AJCC/UICC 6th and 7th editions, and compared each stage, focusing on N stage. Results Significant differences in the 5-year survival rates were observed between the 6th and the 7th AJCC/UICC staging system. In the 6th edition staging system, the Kaplan-Meier curves discriminated each N stage significantly. In contrast, there was no difference in terms of survival curves for N stage according to the 7th edition, especially between N1 and N2: the Kaplan-Meier plots of survival curves between N1 (77.0%) and N2 (78.1%) stages overlapped significantly (p < 0.05). Conclusion Although the 7th UICC staging system is a more detailed and sophisticated system in the T category, there was no prognostic significance between the pN1 and pN2 stages according to our data. Therefore, we suggest establishing a new UICC staging system taking into consideration the application of the N stage. PMID:28203165

  16. [Case report of acute death on the 7th day due to exposure to the vapor of the insecticide chlorfenapyr].

    PubMed

    Hoshiko, Michiko; Naito, Shinji; Koga, Mitsuaki; Mori, Mihoko; Hara, Kunio; Ishitake, Tatsuya

    2007-04-01

    We present the case of a 55-year-old male agricultural worker who complained of severe general fatigue and hyperperspiration after exposure to an insecticide vapor. He worked in a tea plantation and used chlorfenapyr, a broad spectrum for harmful insects, without any protective mask or clothes. After one day of insecticide spray work, he gradually began to complain of general fatigue, hyperperspiration, nausea and vomiting. At first, he was diagnosed as being dehydrated and was treated with fluid replacement therapy. Although he received this conservative therapy, there was no effect on the above mentioned symptoms. On the 7th day of the onset of his symptoms, his consciousness level deteriorated rapidly and body temperature exceeded 40 degrees C. No cerebral vascular disease or meningitis was observed. Finally, he died despite intensive care. The findings of the clinical course and laboratory data suggest a clinical diagnosis of acute pesticide poisoning due to exposure to chlorfenapyr vapor. We suggest that agricultural workers should use this insecticide with caution and sufficient protective gear.

  17. Bond Strength of 5th, 6th and 7th Generation Bonding Agents to Intracanal Dentin of Primary Teeth

    PubMed Central

    Afshar, Hossein; Baradaran Nakhjavani, Yahya; Rahro Taban, Sedighe; Baniameri, Zahra; Nahvi, Azam

    2015-01-01

    Objectives: This in-vitro study sought to assess the push-out bond strength of a total etch and 2 self-etch bonding systems to intracanal dentin of primary anterior teeth (PAT). Materials and Methods: Thirty-six primary anterior teeth were randomly divided into 3 groups of 5th generation (Single Bond 2), 6th generation (Clearfil SE) and 7th generation (Single Bond Universal) bonding agents. The canal orifice was restored with composite resin and the push-out test was carried out to assess the bond strength. After applying the push-out load, specimens were evaluated under a light microscope at 40X magnification. One-way ANOVA and log-rank test on Kaplan-Meier curves were applied for the comparison of bond strength among the 3 groups. Results: The mean± standard deviation (SD) bond strength was 13.6±5.33 MPa for Single Bond 2, 13.85±5.86 MPa for Clearfil SE and 12.28±5.24 MPa for Single Bond Universal. The differences in bond strength among the 3 groups were not statistically significant (P>0.05). Conclusion: All three bonding agents are recommended for use with composite posts in PAT. However, due to high technical sensitivity of the Total Etch system, single or two-step self etch systems may be preferred for uncooperative children. PMID:26056518

  18. Assessment of nutrition and physical activity of 6th–7th grade schoolchildren in the city of Vilnius, Lithuania

    PubMed Central

    Skurdenyte, Vaida; Surkiene, Gene; Stukas, Rimantas; Zagminas, Kestutis; Giedraitis, Vincentas

    2015-01-01

    Background Evaluation of eating habits and physical activity is very important for health interventions. Our aim in this study was to assess the characteristics of eating and physical activity of 6–7th grade schoolchildren in the city of Vilnius, Lithuania, as well as the association between dietary habits and physical activity. Methods The study was conducted within the project “Education of healthy diets and physical activity in schools”. The sample consisted of 1008 schoolchildren from 22 schools in the city of Vilnius, and was based on empirical methods, including a questionnaire poll and comparative analysis. Statistical software Stata v.12.1 (Stata corp LP) was used to analyze the data. Results Our study showed that less than half (37.1%) of study participants had physically active leisure time. Boys were significantly more physically active than girls. More than half (61.4%) of children ate breakfast every day. Girls were more likely to eat vegetables and sweets. Schoolchildren who ate vegetables and dairy products as well as those who got enough information about physical activity and spoke about it with their family members were more physically active. Conclusions The results of the study confirmed that schoolchildren were not sufficiently physically active. It was found that low physical activity is related to dietary and other factors, such as lack of information about physical activity and its benefits. PMID:28352688

  19. Inflation from geometrical tachyons

    SciTech Connect

    Thomas, Steven; Ward, John

    2005-10-15

    We propose an alternative formulation of tachyon inflation using the geometrical tachyon arising from the time dependent motion of a BPS D3-brane in the background geometry due to k parallel NS5-branes arranged around a ring of radius R. Because of the fact that the mass of this geometrical tachyon field is {radical}(2/k) times smaller than the corresponding open-string tachyon mass, we find that the slow-roll conditions for inflation and the number of e-foldings can be satisfied in a manner that is consistent with an effective 4-dimensional model and with a perturbative string coupling. We also show that the metric perturbations produced at the end of inflation can be sufficiently small and do not lead to the inconsistencies that plague the open-string tachyon models. Finally we argue for the existence of a minimum of the geometrical tachyon potential which could give rise to a traditional reheating mechanism.

  20. Use of Jigsaw Technique to Teach the Unit "Science within Time" in Secondary 7th Grade Social Sciences Course and Students' Views on This Technique

    ERIC Educational Resources Information Center

    Yapici, Hakki

    2016-01-01

    The aim of this study is to apply the jigsaw technique in Social Sciences teaching and to unroll the effects of this technique on learning. The unit "Science within Time" in the secondary 7th grade Social Sciences text book was chosen for the research. It is aimed to compare the jigsaw technique with the traditional teaching method in…

  1. Determining the Effects of Using Different Writing Activities on the Academic Achievements Secondary School 7th Grade Students and Their Attitudes Towards the Course

    ERIC Educational Resources Information Center

    Uzoglu, Mustafa

    2014-01-01

    The purpose of the study is to determine the effects of using writing activities with different learning purposes by the secondary school 7th grade students on their academic achievement and attitudes towards the course. The study was carried out in a secondary school located in the centre of Erzurum in 2012-2013 academic year; the study is a…

  2. Studying the Ability of 7th Grade Students to Define the Circle and Its Elements in the Context of Mathematical Language

    ERIC Educational Resources Information Center

    Akarsu, Esra; Yilmaz, Süha

    2015-01-01

    In this study, it was aimed to study the mathematical language skills that the 7th grade students use in defining the circle and its elements. In the study, the mathematical language skills of students that they use in defining the circle and its elements in a scenario were compared to the mathematical language skills they use in defining them…

  3. Research Examination of the Options to Increase the Education Effectiveness in the Technical Subjects at the 7th Grade of Elementary School Using Hypertext Educational Material

    ERIC Educational Resources Information Center

    Žácok, L'ubomir

    2010-01-01

    The utilization of hypertext educational material is going to be solved in this paper as a source using which the effectiveness of education the technical subjects at the 7th grade of elementary school can be increased. As a comparison between reached results in the control and experimental groups of pupils we used final didactical examination,…

  4. The Effect of Learning Geometry Topics of 7th Grade in Primary Education with Dynamic Geometer's Sketchpad Geometry Software to Success and Retention

    ERIC Educational Resources Information Center

    Kesan, Cenk; Caliskan, Sevdane

    2013-01-01

    The aim of this study is to investigate the effect of learning geometry topics of 7th grade in primary education with dynamic geometer's sketchpad geometry software to student's success and retention. The experimental research design with The Posttest-Only Control Group was used in this study. In the experimental group, dynamic geometer's…

  5. Influence of Skip Patterns on Item Non-Response in a Substance Use Survey of 7th to 12th Grade Students

    ERIC Educational Resources Information Center

    Ding, Kele; Olds, R. Scott; Thombs, Dennis L.

    2009-01-01

    This retrospective case study assessed the influence of item non-response error on subsequent response to questionnaire items assessing adolescent alcohol and marijuana use. Post-hoc analyses were conducted on survey results obtained from 4,371 7th to 12th grade students in Ohio in 2005. A skip pattern design in a conventional questionnaire…

  6. Assessing the Development of Environmental Virtue in 7th and 8th Grade Students in an Expeditionary Learning Outward Bound School

    ERIC Educational Resources Information Center

    Martin, Bruce; Bright, Alan; Cafaro, Philip; Mittelstaedt, Robin; Bruyere, Brett

    2009-01-01

    This study attempted to assess the development of environmental virtue in 7th and 8th grade students in an Expeditionary Learning Outward Bound (ELOB) school using an instrument developed for this study--the Children's Environmental Virtue Scale (CEVS). Data for this study were obtained by administering the CEVS survey (pretest and posttest) to…

  7. Making the Grade: Do Nebraska Teachers and Administrators Working in Public Schools in 7th-12th Grade Settings Agree about What Constitutes Sound Grading Practice?

    ERIC Educational Resources Information Center

    Olson, Mark E.

    2013-01-01

    In this study, the researcher sought to determine whether Nebraska teachers and administrators agreed about what constitutes sound grading practice. The results of this study indicated that Nebraska teachers and administrators working in public schools in 7th-12th grade settings did not always agree about what constituted sound grading practice.…

  8. Chiral models: Geometrical aspects

    NASA Astrophysics Data System (ADS)

    Perelomov, A. M.

    1987-02-01

    Two-dimensional classical chiral models of field theory are considered, the main attention being paid on geometrical aspects of such theories. A characteristic feature of these models is that the interaction is inserted not by adding the interaction Lagrangian to the free field Lagrangian, but has a purely geometrical origin and is related to the inner curvature of the manifold. These models are in many respects analogous to non-Abelian gauge theories and as became clear recently, they are also important for the superstring theory which nowadays is the most probable candidate for a truly unified theory of all interactions including gravitation.

  9. [A development of Byzantine Christian charities during the 4(th)-7(th) centuries and the birth of the hospital].

    PubMed

    Nam, Sung Hyun

    2015-04-01

    This study aims to examine the beginning and the development of Christian Charities during the 4(th)-6(th) centuries which would eventually result in the birth of the hospital in modern sense in the first half of the 7(th) century. For this purpose, I looked carefully into various primary sources concerning the early Christian institutions for the poor and the sick. Above all, it's proper to note that the first xenodocheion where hospitality was combined with a systematic caring, is concerned with the Trinitarian debate of the 4(th) century. In 356, Eustathios, one of the leaders of homoiousios group, established xenodocheion to care for the sick and the lepers in Sebaste of Armenia, whereas his opponent Aetios, doctor and leader of the heteroousios party, was reckoned to have combined the medical treatment with his clerical activities. Then, Basil of Caesarea, disciple of Eustathios of Sebaste, also founded in 372 a magnificent benevolent complex named 'Basileias' after its founder. I scrupulously analysed several contemporary materials mentioning the charitable institution of Caesarea which was called alternatively katagogia, ptochotropheion, xenodocheion. John Chrysostome also founded several nosokomeia in Constantinople at the end of the 4(th) century and the beginning of the 5(th) century. Apparently, the contemporary sources mention that doctors existed for these Charities, but there is no sufficient proof that these 'Christian Hospitals,' Basileias or nosokomeia of Constantinople were hospitals in modern sense. Imperial constitutions began to mention ptochotropheion, xenodocheion and orphanotropheion since the second half of the 5(th) century and then some Justinian laws evoked nosokomium, brephotrophia, gerontocomia. These laws reveal that 'Christian Hospitals' were well clarified and deeply rooted in Byzantine society already in these periods. And then, new benevolent institutions emerged in the 6(th) century: nosokomeia for a specific class and

  10. PREFACE: EUCAS '05: The 7th European Conference on Applied Superconductivity (Vienna University of Technology, Austria, 11 15 September 2005)

    NASA Astrophysics Data System (ADS)

    Donaldson, Gordon; Weber, Harald W.; Sauerzopf, Franz M.

    2006-03-01

    This issue of Superconductor Science and Technology contains the plenary and invited papers presented at the 7th European Conference on Applied Superconductivity (EUCAS '05) that was held at the Vienna University of Technology from 11-15 September 2005. All those contributed papers that were submitted to the Conference Proceedings will be published in the Journal of Physics: Conference Series. The scientific aims of EUCAS '05 followed the tradition established at the preceding conferences in Göttingen, Edinburgh, Eindhoven, Sitges (Barcelona), Lyngby (Copenhagen) and finally Sorrento (Napoli). The focus was placed on the interplay between the most recent developments in superconductor research and the positioning of applications of superconductivity in the marketplace. Although initially founded as an exchange forum mainly for European scientists, it has gradually developed into a truly international meeting with significant attendance from the Far East and the United States. The Vienna conference attracted 813 participants in the scientific programme and 90 accompanying persons. 59% of all participants came from Europe, 31% from the Far East, 6% from the United States and Canada as well as 4% from other nations worldwide. 27 companies presented their latest developments in the field. 32 plenary and invited lectures highlighted the state-of-the-art in the areas of materials, large-scale as well as small-scale applications; 625 contributed papers (among them 556 posters) demonstrated the broad range of exciting activities in all research areas of our field. EUCAS '05 spread a lot of optimism and enthusiasm for this fascinating field of research and for its well established technological potential, especially among the numerous young researchers attending this conference. We are grateful to all those who participated in the meeting and contributed to its success.

  11. Can we improve breast cancer mortality in Okinawa? Consensus of the 7th Okinawa Breast Oncology Meeting.

    PubMed

    Tamaki, Kentaro; Tamaki, Nobumitsu; Kamada, Yoshihiko; Uehara, Kano; Zaha, Hisamitsu; Onomura, Mai; Ueda, Makoto; Kurashita, Kaname; Miyazato, Keiko; Higa, Junko; Miyara, Kyuichiro; Shiraishi, Makiko; Murayama, Shigemi; Ishida, Takanori

    2015-01-01

    The rate of breast cancer mortality in Okinawa has gradually been increasing up to 2010. Now Okinawa has the second worst mortality rate in Japan, in part due to the enormous dietary changes resulting from the post-World War II US military occupation, high incidence of obesity, high non-optimal treatment rate, and low breast-cancer screening rate. To reduce breast cancer mortality in Okinawa, we established the Okinawa Breast Oncology Meeting (OBOM) in 2012. At the 7th OBOM held on January 10th, 2014, we discussed the breast cancer mortality in Okinawa focusing on lifestyle, breast cancer screening and optimal treatments. The Okinawan women who were overweight and/or obese during premenopausal and postmenopausal ages had a statistically significant higher risk of breast cancer development compared to those with non-overweight and/or obese women. The traditional diet of Okinawa consists of foods low in calories but rich in nutritional value. Therefore, we recommend Okinawan people not to forget the Okinawan traditional lifestyle, and to reduce their bodyweight to prevent breast cancer. One of the main goals of the OBOM is to raise breast cancer screening attendance rates to 50% (29.2% in 2010). We should standardize the quality control for breast cancer screening in Okinawa. It is important to continue enlightening the Okinawan population to receive optimal treatment. In addition, we are striving to establish systematic medical cooperation between the hospitals specializing in breast cancer treatment with rural hospitals. The OBOM group endeavors to contribute to the improvement of breast cancer mortality in Okinawa.

  12. Alloy characterization of a 7th Century BC archeological bronze vase - Overcoming patina constraints using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Manso, M.; Schiavon, N.; Queralt, I.; Arruda, A. M.; Sampaio, J. M.; Brunetti, A.

    2015-05-01

    In this work we evaluate the composition of a bronze alloy using X-ray fluorescence spectrometry (XRF) and Monte Carlo (MC) simulations. For this purpose, a 7th Century BC archeological vase from the SW Iberian Peninsula, displaying a well formed corrosion patina was analyzed by means of a portable X-ray fluorescence spectrometer. Realistic MC simulations of the experimental setup were performed with the XRMC code package which is based on an intensive use of variance-reduction techniques and uses XRAYLIB a constantly updated X-ray library of atomic data. A single layer model was applied for simulating XRF of polished/pristine bronze whereas a two-or-three-layer model was developed for bronze covered respectively by a corrosion patina alone or coupled with a superficial soil derived crust. These simulations took into account corrosion (cerussite (PbCO3), cuprite (Cu2O), malachite (Cu2CO3(OH)2), litharge (PbO)) and soil derived products (goethite (FeO(OH)) and quartz (SiO2)) identified by means of X-ray diffraction and Raman micro analytical techniques. Results confirm previous research indicating that the XRF/Monte Carlo protocol is well suited when a two-layered model is considered, whereas in areas where the patina + soil derived products' crust is too thick, X-rays from the alloy substrate are not able to exit the sample. Quantitative results based on MC simulations indicate that the vase is made of a lead-bronze alloy: Mn (0.2%), Fe (1.0%), Cu (81.8%), As (0.5%), Ag (0.6%), Sn (8.0%) and Pb (8.0%).

  13. Balancing acts: A mixed methods study of the figured world of African American 7th graders in urban science classrooms

    NASA Astrophysics Data System (ADS)

    Cleveland-Solomon, Tanya E.

    What beliefs and cultural models do youth who are underrepresented in science have about the domain of science and about themselves as science learners? What do they imagine is possible for them in relation to science both now and in the future? In other words, what constitutes their figured world of science? This dissertation study, using a mixed methods design, offers new perspectives on the ways that underrepresented youth's unexamined assumptions or cultural models and resources may shape their identities and motivation to learn science. Through analyses of survey and interview data, I found that urban African American youths' social context, gender, racial identity, and perceptions of the science they had in school influenced their motivation to learn science. Analyses of short-term classroom observations and interviews suggested that students had competing cultural models that they used in their constructions of identities as science learners, which they espoused and adopted in relation to how well they leveraged the science-related cultural resources available to them. Results from this study suggested that these 7th graders would benefit from access to more expansive cultural models through access to individuals with scientific capital as a way to allow them to create fruitful identities as science learners. If we want to ensure that students from groups that are underrepresented in science not only have better outcomes, but aspire to and enter the science career pipeline, we must also begin to support them in their negotiations of competing cultural models that limit their ability to adopt science-learner identities in their classrooms. This study endeavored to understand the particular cultural models and motivational beliefs that drive students to act, and what types of individuals they imagine scientists and science workers to be. This study also examined how cultural models and resources influence identity negotiation, specifically the roles youths

  14. PREFACE: Geometrically frustrated magnetism Geometrically frustrated magnetism

    NASA Astrophysics Data System (ADS)

    Gardner, Jason S.

    2011-04-01

    Frustrated magnetism is an exciting and diverse field in condensed matter physics that has grown tremendously over the past 20 years. This special issue aims to capture some of that excitement in the field of geometrically frustrated magnets and is inspired by the 2010 Highly Frustrated Magnetism (HFM 2010) meeting in Baltimore, MD, USA. Geometric frustration is a broad phenomenon that results from an intrinsic incompatibility between some fundamental interactions and the underlying lattice geometry based on triangles and tetrahedra. Most studies have centred around the kagomé and pyrochlore based magnets but recent work has looked at other structures including the delafossite, langasites, hyper-kagomé, garnets and Laves phase materials to name a few. Personally, I hope this issue serves as a great reference to scientist both new and old to this field, and that we all continue to have fun in this very frustrated playground. Finally, I want to thank the HFM 2010 organizers and all the sponsors whose contributions were an essential part of the success of the meeting in Baltimore. Geometrically frustrated magnetism contents Spangolite: an s = 1/2 maple leaf lattice antiferromagnet? T Fennell, J O Piatek, R A Stephenson, G J Nilsen and H M Rønnow Two-dimensional magnetism and spin-size effect in the S = 1 triangular antiferromagnet NiGa2S4 Yusuke Nambu and Satoru Nakatsuji Short range ordering in the modified honeycomb lattice compound SrHo2O4 S Ghosh, H D Zhou, L Balicas, S Hill, J S Gardner, Y Qi and C R Wiebe Heavy fermion compounds on the geometrically frustrated Shastry-Sutherland lattice M S Kim and M C Aronson A neutron polarization analysis study of moment correlations in (Dy0.4Y0.6)T2 (T = Mn, Al) J R Stewart, J M Hillier, P Manuel and R Cywinski Elemental analysis and magnetism of hydronium jarosites—model kagome antiferromagnets and topological spin glasses A S Wills and W G Bisson The Herbertsmithite Hamiltonian: μSR measurements on single crystals

  15. Geometric Series via Probability

    ERIC Educational Resources Information Center

    Tesman, Barry

    2012-01-01

    Infinite series is a challenging topic in the undergraduate mathematics curriculum for many students. In fact, there is a vast literature in mathematics education research on convergence issues. One of the most important types of infinite series is the geometric series. Their beauty lies in the fact that they can be evaluated explicitly and that…

  16. A Geometric Scavenger Hunt

    ERIC Educational Resources Information Center

    Smart, Julie; Marshall, Jeff

    2007-01-01

    Children possess a genuine curiosity for exploring the natural world around them. One third grade teacher capitalized on this inherent trait by leading her students on "A Geometric Scavenger Hunt." The four-lesson inquiry investigation described in this article integrates mathematics and science. Among the students' discoveries was the fact that…

  17. Geometric grid generation

    NASA Technical Reports Server (NTRS)

    Ives, David

    1995-01-01

    This paper presents a highly automated hexahedral grid generator based on extensive geometrical and solid modeling operations developed in response to a vision of a designer-driven one day turnaround CFD process which implies a designer-driven one hour grid generation process.

  18. Untangling Geometric Ideas

    ERIC Educational Resources Information Center

    Burgess, Claudia R.

    2014-01-01

    Designed for a broad audience, including educators, camp directors, afterschool coordinators, and preservice teachers, this investigation aims to help individuals experience mathematics in unconventional and exciting ways by engaging them in the physical activity of building geometric shapes using ropes. Through this engagement, the author…

  19. Pragmatic geometric model evaluation

    NASA Astrophysics Data System (ADS)

    Pamer, Robert

    2015-04-01

    Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to

  20. 7th U.S. / Japan Natural Resources (UJNR) Panel on Earthquake Research: Abstract Volume and Technical Program

    USGS Publications Warehouse

    Detweiler, Shane T.; Ellsworth, William L.

    2008-01-01

    making information public in a timely manner. The Panel visited sites along the east coast of Shikoku that were inundated by the tsunami caused by the 1946 Nankai earthquake where they heard from survivors of the disaster and saw new tsunami shelters and barriers. They also visited the Median Tectonic Line, a major onshore strike-slip fault on Shikoku. The 7th Joint Panel meeting was held in Seattle, Wash., U.S.A. from October 27-30, 2008.

  1. CAM - Geometric systems integration

    NASA Astrophysics Data System (ADS)

    Dunlap, G. C.

    The integration of geometric and nongeometric information for efficient use of CAM is examined. Requirements for engineering drawings requested by management are noted to involve large volumes of nongeometric data to define the materials and quantity variables which impinge on the required design, so that the actual design may be the last and smaller step in the CAM process. Geometric classification and coding are noted to offer an alpha/numeric identifier for integrating the engineering design, manufacturing, and quality assurance functions. An example is provided of a turbine gear part coding in terms of polycode and monocode displays, showing a possible covering of more than 10 trillion features. Software is stressed as the key to integration of company-wide data.

  2. Geometric measures of entanglement

    SciTech Connect

    Uyanik, K.; Turgut, S.

    2010-03-15

    The geometric measure of entanglement, which expresses the minimum distance to product states, has been generalized to distances to sets that remain invariant under the stochastic reducibility relation. For each such set, an associated entanglement monotone can be defined. The explicit analytical forms of these measures are obtained for bipartite entangled states. Moreover, the three-qubit case is discussed and it is argued that the distance to the W states is a new monotone.

  3. Geometrical deuteron stripping revisited

    SciTech Connect

    Neoh, Y. S.; Yap, S. L.

    2014-03-05

    We investigate the reality of the idea of geometrical deuteron stripping originally envisioned by Serber. By taking into account of realistic deuteron wavefunction, nuclear density, and nucleon stopping mean free path, we are able to estimate inclusive deuteron stripping cross section for deuteron energy up to before pion production. Our semiclassical model contains only one global parameter constant for all nuclei which can be approximated by Woods-Saxon or any other spherically symmetric density distribution.

  4. Perspective: Geometrically frustrated assemblies

    NASA Astrophysics Data System (ADS)

    Grason, Gregory M.

    2016-09-01

    This perspective will overview an emerging paradigm for self-organized soft materials, geometrically frustrated assemblies, where interactions between self-assembling elements (e.g., particles, macromolecules, proteins) favor local packing motifs that are incompatible with uniform global order in the assembly. This classification applies to a broad range of material assemblies including self-twisting protein filament bundles, amyloid fibers, chiral smectics and membranes, particle-coated droplets, curved protein shells, and phase-separated lipid vesicles. In assemblies, geometric frustration leads to a host of anomalous structural and thermodynamic properties, including heterogeneous and internally stressed equilibrium structures, self-limiting assembly, and topological defects in the equilibrium assembly structures. The purpose of this perspective is to (1) highlight the unifying principles and consequences of geometric frustration in soft matter assemblies; (2) classify the known distinct modes of frustration and review corresponding experimental examples; and (3) describe outstanding questions not yet addressed about the unique properties and behaviors of this broad class of systems.

  5. Quantum computation using geometric algebra

    NASA Astrophysics Data System (ADS)

    Matzke, Douglas James

    This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.

  6. Geometric diffusion of quantum trajectories

    PubMed Central

    Yang, Fan; Liu, Ren-Bao

    2015-01-01

    A quantum object can acquire a geometric phase (such as Berry phases and Aharonov–Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects. PMID:26178745

  7. Changing Configurations of Adult Education in Transitional Times. Conference Proceedings of the Triennial European Research Conference of the European Society for Research on the Education of Adults (ESREA) (7th, Berlin, Germany, September 4-7, 2013)

    ERIC Educational Resources Information Center

    Käpplinger, Bernd, Ed.; Lichte, Nina, Ed.; Haberzeth, Erik, Ed.; Kulmus, Claudia, Ed.

    2014-01-01

    This book assembles over 50 papers from the 7th Triennial European Research Conference of the European Society for Research on the Education of Adults (ESREA), which was held from the 4th to the 7th of September 2013 at Humboldt-University in Berlin. The title of the conference was "Changing Configurations of Adult Education in Transitional…

  8. 7th International Conference on Excitonic Processes in Condensed Matter (EXCON'06) Winston-Salem, NC, USA, 26-30 June 2006

    NASA Astrophysics Data System (ADS)

    Petelenz, P.; Schreiber, M.

    2006-10-01

    This conference report is meant to offer an authoritative view on a recently held scientific meeting rather than a comprehensive list of the conference presentations. We tried to describe what we feel were the most interesting contributions.The full Proceedings of the 7th International Conference on Excitonic Processes in Condensed Matter (EXCON'06) shall be published in phys. stat. sol. (b) and phys. stat. sol. (c) in November 2006.

  9. 7th EFIS Tatra Immunology Conference. Molecular determinants of T-cell immunity. 24-28 June 2006, High Tatra Mountains, Slovakia.

    PubMed

    Leishman, Andrew J

    2006-10-01

    This meeting was hosted by the European Federation of Immunological Societies celebrating its 7th meeting in the High Tatra Mountains of Slovakia on 24-28 June 2006. Entitled molecular determinants of T-cell immunity, the meeting covered a wide range of novel methods to regulate an unwanted immune response in autoimmunity and boost the immune system to combat viral infection and cancer.

  10. [First results of participation of the Czech Republic in the 7th Framework Programme, priority Health, in years 2007-2013].

    PubMed

    Kinkorová, Judita

    2013-01-01

    European Commission has announced the first preliminary results of participation in the 7th Framework Programme (FP7), priority Health. The overview presents the basic statistics regarding the participation of the Czech teams, universities, institutions, and small and medium size enterprises (SMEs) in FP7 projects. The aim of the article is to present the basic data on the projects with the Czech participation, the EU financial contribution for Czech teams and the main research topics.

  11. High Performance Proteomics: 7th HUPO Brain Proteome Project Workshop March 7-9, 2007 Wellcome Trust Conference Centre, Hinxton, UK.

    PubMed

    Hamacher, Michael; Stephan, Christian; Eisenacher, Martin; Lewczuk, Piotr; Wiltfang, Jens; Martens, Lennart; Vizcaíno, Juan Antonio; Kwon, Kyung-Hoon; Yoo, Jong Shin; Park, Young Mok; Beckers, Johannes; Horsch, Marion; de Angelis, Martin Hrabé; Cho, Zang-Hee; Apweiler, Rolf; Meyer, Helmut E

    2007-08-01

    The Wellcome Trust Conference Centre at Hinxton, UK, was the meeting place of the 7th HUPO Brain Proteome Project Workshop entitled "High Performance Proteomics". It started on Wednesday, March 7, 2007 with a steering committee meeting followed by a two days series of talks dealing with the standardization and handling of tissues, body fluids as well as of proteomics data. The presentation and accompanying vivid discussions created a picture of actual strategies and standards in recent proteomics.

  12. Metastatic lymph node ratio, 6th or 7th AJCC edition: witch is the best lymph node classification for esophageal cancer? Prognosis factor analysis in 487 patients

    PubMed Central

    CORAL, Roberto V.; BIGOLIN, André V.; CORAL, Roberto P.; HARTMANN, Antonio; DRANKA, Carolina; ROEHE, Adriana V.

    2015-01-01

    Background The esophageal cancer is one of the most common and aggressive worldwide. Recently, the AJCC changed the staging system, considering, among others, the important role of the lymph node metastasis on the prognosis. Aim To discuss the applicability of different forms of lymph node staging in a western surgical center. Methods Four hundred eighty seven patients with esophageal cancer were enrolled. Three staging systems were evaluated, the 6th and the 7th AJCC editions and the Lymph Node Metastatic Ratio. Results The majority of the cases were squamous cell carcinoma. The mean lymph node sample was eight. Considering the survival, there was no significant difference between the patients when they were classified by the 7th AJCC edition. Analysis of the Lymph Node Metastatic Ratio, just on the group of patients with 0 to 25%, has shown significant difference (p=0,01). The 6th AJCC edition shows the major significant difference between among the classifications evaluated. Conclusion In this specific population, the 7th AJCC edition for esophageal cancer was not able to find differences in survival when just the lymph node analysis was considered. PMID:26176242

  13. PREFACE: NC-AFM 2004: Proceedings of the 7th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Schwarz, Udo

    2005-03-01

    With the ongoing miniaturization of devices and controlled nanostructuring of materials, the importance of atomic-scale information on surfaces and surface properties is growing continuously. The astonishing progress in nanoscience and nanotechnology that took place during the last two decades was in many ways related to recent progress in high-resolution imaging techniques such as scanning tunnelling microscopy and transmission electron microscopy. Since the mid-1990s, non-contact atomic force microscopy (NC-AFM) performed in ultrahigh vacuum has evolved as an alternative technique that achieves atomic resolution, but without the restriction to conducting surfaces of the previously established techniques. Advances of the rapidly developing field of NC-AFM are discussed at annual conferences as part of a series that started in 1998 in Osaka, Japan. This special issue of Nanotechnology is a compilation of original work presented at the 7th International Conference on Non-contact Atomic Force Microscopy that took place in Seattle, USA, 12-15 September 2004. Over the years, the conference grew in size and scope. Atomic resolution imaging of oxides and semiconductors remains an issue. Noticeable new developments have been presented in this regard such as, e.g., the demonstrated ability to manipulate individual atoms. Additionally, the investigation of individual molecules, clusters, and organic materials gains more and more attention. In this context, considerable effort is undertaken to transfer the NC-AFM principle based on frequency modulation to applications in air and liquids with the goal of enabling high-resolution surface studies of biological material in native environments, as well as to reduce the experimental complexity, which so far involves the availability of (costly) vacuum systems. Force spectroscopy methods continue to be improved and are applied to topics such as the imaging of the three-dimensional force field as a function of the distance with

  14. Selected papers from the 7th International Conference on Biomimetics, Artificial Muscles and Nano-bio (BAMN2013)

    NASA Astrophysics Data System (ADS)

    Shahinpoor, Mohsen; Oh, Ilkwon

    2014-07-01

    The 7th International Congress on Biomimetics, Artificial Muscles and Nano-Bio was held on the magnificent and beautiful Jeju Island in Korea on 26-30 August 2013. In June 2007, the volcanic island and lava tube cave systems were designated as UNESCO World Natural Heritage Sites for their natural beauty and unique geographical values. The aim of the congress was to offer high-level lectures, extensive discussions and communications covering the state-of-the-art on biomimetics, artificial muscles, and nano-bio technologies providing an overview of their potential applications in the industrial, biomedical, scientific and robotic fields. This conference provided a necessary platform for an ongoing dialogue between researchers from different areas (chemistry, physics, biology, medicine, engineering, robotics, etc) within biomimetics, artificial muscle and nano-bio technologies. This special issue of Smart Materials and Structures is devoted to a selected number of research papers that were presented at BAMN2013. Of the 400 or so papers and over 220 posters presented at this international congress, 15 papers were finally received, reviewed and accepted for this special issue, following the regular peer review procedures of the journal. The special issue covers polymeric artificial muscles, electroactive polymers, multifunctional nanocomposites, and their applications. In particular, electromechanical performance and other characteristics of ionic polymer-metal composites (IPMCs) fabricated with various commercially available ion exchange membranes are discussed. Additionally, the control of free-edge interlaminar stresses in composite laminates using piezoelectric actuators is elaborated on. Further, the electrode effects of a cellulose-based electroactive paper energy harvester are described. Next, a flexible tactile-feedback touch screen using transparent ferroelectric polymer film vibrators is discussed. A broad coverage of bio-applications of IPMC transducers is

  15. Representing geometrical knowledge.

    PubMed

    Anderson, J A

    1997-08-29

    This paper introduces perspex algebra which is being developed as a common representation of geometrical knowledge. A perspex can currently be interpreted in one of four ways. First, the algebraic perspex is a generalization of matrices, it provides the most general representation for all of the interpretations of a perspex. The algebraic perspex can be used to describe arbitrary sets of coordinates. The remaining three interpretations of the perspex are all related to square matrices and operate in a Euclidean model of projective space-time, called perspex space. Perspex space differs from the usual Euclidean model of projective space in that it contains the point at nullity. It is argued that the point at nullity is necessary for a consistent account of perspective in top-down vision. Second, the geometric perspex is a simplex in perspex space. It can be used as a primitive building block for shapes, or as a way of recording landmarks on shapes. Third, the transformational perspex describes linear transformations in perspex space that provide the affine and perspective transformations in space-time. It can be used to match a prototype shape to an image, even in so called 'accidental' views where the depth of an object disappears from view, or an object stays in the same place across time. Fourth, the parametric perspex describes the geometric and transformational perspexes in terms of parameters that are related to everyday English descriptions. The parametric perspex can be used to obtain both continuous and categorical perception of objects. The paper ends with a discussion of issues related to using a perspex to describe logic.

  16. Representing geometrical knowledge.

    PubMed Central

    Anderson, J A

    1997-01-01

    This paper introduces perspex algebra which is being developed as a common representation of geometrical knowledge. A perspex can currently be interpreted in one of four ways. First, the algebraic perspex is a generalization of matrices, it provides the most general representation for all of the interpretations of a perspex. The algebraic perspex can be used to describe arbitrary sets of coordinates. The remaining three interpretations of the perspex are all related to square matrices and operate in a Euclidean model of projective space-time, called perspex space. Perspex space differs from the usual Euclidean model of projective space in that it contains the point at nullity. It is argued that the point at nullity is necessary for a consistent account of perspective in top-down vision. Second, the geometric perspex is a simplex in perspex space. It can be used as a primitive building block for shapes, or as a way of recording landmarks on shapes. Third, the transformational perspex describes linear transformations in perspex space that provide the affine and perspective transformations in space-time. It can be used to match a prototype shape to an image, even in so called 'accidental' views where the depth of an object disappears from view, or an object stays in the same place across time. Fourth, the parametric perspex describes the geometric and transformational perspexes in terms of parameters that are related to everyday English descriptions. The parametric perspex can be used to obtain both continuous and categorical perception of objects. The paper ends with a discussion of issues related to using a perspex to describe logic. PMID:9304680

  17. Geometric phase in Bohmian mechanics

    SciTech Connect

    Chou, Chia-Chun; Wyatt, Robert E.

    2010-10-15

    Using the quantum kinematic approach of Mukunda and Simon, we propose a geometric phase in Bohmian mechanics. A reparametrization and gauge invariant geometric phase is derived along an arbitrary path in configuration space. The single valuedness of the wave function implies that the geometric phase along a path must be equal to an integer multiple of 2{pi}. The nonzero geometric phase indicates that we go through the branch cut of the action function from one Riemann sheet to another when we locally travel along the path. For stationary states, quantum vortices exhibiting the quantized circulation integral can be regarded as a manifestation of the geometric phase. The bound-state Aharonov-Bohm effect demonstrates that the geometric phase along a closed path contains not only the circulation integral term but also an additional term associated with the magnetic flux. In addition, it is shown that the geometric phase proposed previously from the ensemble theory is not gauge invariant.

  18. Geometrical pattern learning

    SciTech Connect

    Goldberg, P.W.

    1993-04-01

    In this paper we consider the problem of learning the positions of spheres in metric spaces, given as data randomly drawn points classified according to whether they are internal or external to an unknown sphere. The particular metrics under consideration are geometrical shape metrics, and the results are intended to be applicable to the problem of learning to identify a shape from related shapes classified according to whether they resemble it visually. While it is typically NP-hard to locate a central point for a hypothesis sphere, we find that it is however often possible to obtain a non-spherical hypothesis which can accurately predict whether further random points lie within the unknown sphere. We exhibit algorithms which achieve this, and in the process indicate useful general techniques for computational learning. Finally we exhibit a natural shape metric and show that it defines a class of spheres not predictable in this sense, subject to standard cryptographic assumptions.

  19. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 1, Sessions 1-5

    SciTech Connect

    Block, R.C.; Feiner, F.

    1995-09-01

    This document, Volume 1, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  20. Comparison of Values in 5th, 6th, 7th and 8th Grade Primary Education Music Class Students'? Workbooks According to Rokeach?s and Akbas's Value Classifications

    ERIC Educational Resources Information Center

    Çakirer, H. Serdar

    2014-01-01

    The aim of the present study is to compare the values in the songs of 5th, 6th, 7th and 8th grade primary education music classes students? workbooks according to the value categorizations proposed by Rockeach and Akbas and which values among the categories mentioned are taught to the students in the 5th, 6th, 7th and 8th grade primary education…

  1. Geometric phase shifting digital holography.

    PubMed

    Jackin, Boaz Jessie; Narayanamurthy, C S; Yatagai, Toyohiko

    2016-06-01

    A new phase shifting digital holographic technique using a purely geometric phase in Michelson interferometric geometry is proposed. The geometric phase in the system does not depend upon either optical path length or wavelength, unlike dynamic phase. The amount of geometric phase generated is controllable through a rotating wave plate. The new approach has unique features and major advantages in holographic measurement of transparent and reflecting three-dimensional (3D) objects. Experimental results on surface shape measurement and imaging of 3D objects are presented using the proposed method.

  2. Geometric Effects on Electron Cloud

    SciTech Connect

    Wang, L

    2007-07-06

    The development of an electron cloud in the vacuum chambers of high intensity positron and proton storage rings may limit the machine performances by inducing beam instabilities, beam emittance increase, beam loss, vacuum pressure increases and increased heat load on the vacuum chamber wall. The electron multipacting is a kind of geometric resonance phenomenon and thus is sensitive to the geometric parameters such as the aperture of the beam pipe, beam shape and beam bunch fill pattern, etc. This paper discusses the geometric effects on the electron cloud build-up in a beam chamber and examples are given for different beams and accelerators.

  3. Activities: Geometric Transformations. Part 2.

    ERIC Educational Resources Information Center

    Eddins, Susan K.; And Others

    1994-01-01

    Presents a lesson that connects basic transformational concepts with transformations on a Cartesian-coordinate system, culminating with the application of matrix operations to perform geometric transformations. Includes reproducible student worksheets and assessment activities. (MKR)

  4. Guitars, Violins, and Geometric Sequences

    ERIC Educational Resources Information Center

    Barger, Rita; Haehl, Martha

    2007-01-01

    This article describes middle school mathematics activities that relate measurement, ratios, and geometric sequences to finger positions or the placement of frets on stringed musical instruments. (Contains 2 figures and 2 tables.)

  5. Abstracts presented at the 7th World Alliance for Risk Factor Surveillance (WARFS) Global Conference. October 16-19, 2011. Toronto, Ontario, Canada.

    PubMed

    2012-01-01

    The 7th World Alliance for Risk Factor Surveillance (WARFS) Global Conference, hosted by the Public Health Agency of Canada, was held in Toronto, Ontario, Canada, from October 16 to 19, 2011. Previous WARFS conferences were held in USA (1999), Finland (2001), Australia (2003), Uruguay (2005) and Italy (2007, 2009). WARFS is a global working group on surveillance under the International Union for Health Promotion and Education (IUHPE) It supports the development of risk factor surveillance as a tool for evidence-based public health, acknowledging the importance of this source of information to inform, monitor and evaluate disease prevention and health promotion policies and programs. The theme of the 2011 Global Conference was the role of surveillance in the promotion of health. The Global Conference had 146 registered participants, making it the second most attended WARFS conference in its history. Over the three days, participants attended oral and poster presentations from 30 countries. The conference would not have been possible without the hard work of the International Scientific Committee and the Local Organizing Committee. To highlight the importance and the significance of this conference at an international level, Chronic Diseases and Injuries in Canada (CDIC) is pleased to publish this supplementary issue, which contains 70 abstracts presented at the 7th WARFS Global Conference. In the spirit the Global Conference, this collection of abstracts brings together surveillance material on risk factors, chronic diseases, infectious diseases and injuries from around the world. By making these abstracts widely available, CDIC hopes to further the conference objectives through a continued dialogue between those interested in linking risk factor surveillance to health promotion.

  6. Antenna with Dielectric Having Geometric Patterns

    NASA Technical Reports Server (NTRS)

    Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)

    2013-01-01

    An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.

  7. Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach

    PubMed Central

    Arrieta, Jorge; Cartwright, Julyan H. E.; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan

    2015-01-01

    Mixing fluid in a container at low Reynolds number— in an inertialess environment—is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the “belly phase,” peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing. PMID:26154384

  8. Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.

    PubMed

    Arrieta, Jorge; Cartwright, Julyan H E; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan

    2015-01-01

    Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.

  9. Guiding light via geometric phases

    NASA Astrophysics Data System (ADS)

    Slussarenko, Sergei; Alberucci, Alessandro; Jisha, Chandroth P.; Piccirillo, Bruno; Santamato, Enrico; Assanto, Gaetano; Marrucci, Lorenzo

    2016-09-01

    All known methods for transverse confinement and guidance of light rely on modification of the refractive index, that is, on the scalar properties of electromagnetic radiation. Here, we disclose the concept of a dielectric waveguide that exploits vectorial spin-orbit interactions of light and the resulting geometric phases. The approach relies on the use of anisotropic media with an optic axis that lies orthogonal to the propagation direction but is spatially modulated, so that the refractive index remains constant everywhere. A spin-controlled cumulative phase distortion is imposed on the beam, balancing diffraction for a specific polarization. As well as theoretical analysis, we present an experimental demonstration of the guidance using a series of discrete geometric-phase lenses made from liquid crystal. Our findings show that geometric phases may determine the optical guiding behaviour well beyond a Rayleigh length, paving the way to a new class of photonic devices. The concept is applicable to the whole electromagnetic spectrum.

  10. Geometric scalar theory of gravity

    SciTech Connect

    Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D.; Moschella, U. E-mail: eduhsb@cbpf.br E-mail: egoulart@cbpf.br E-mail: toniato@cbpf.br

    2013-06-01

    We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.

  11. Geometrical modelling of textile reinforcements

    NASA Technical Reports Server (NTRS)

    Pastore, Christopher M.; Birger, Alexander B.; Clyburn, Eugene

    1995-01-01

    The mechanical properties of textile composites are dictated by the arrangement of yarns contained with the material. Thus to develop a comprehensive understanding of the performance of these materials, it is necessary to develop a geometrical model of the fabric structure. This task is quite complex, as the fabric is made form highly flexible yarn systems which experience a certain degree of compressability. Furthermore there are tremendous forces acting on the fabric during densification typically resulting in yarn displacement and misorientation. The objective of this work is to develop a methodology for characterizing the geometry of yarns within a fabric structure including experimental techniques for evaluating these models. Furthermore, some applications of these geometric results to mechanical prediction models are demonstrated. Although more costly than its predecessors, the present analysis is based on the detailed architecture developed by one of the authors and his colleagues and accounts for many of the geometric complexities that other analyses ignore.

  12. Geometric scaling as traveling waves.

    PubMed

    Munier, S; Peschanski, R

    2003-12-05

    We show the relevance of the nonlinear Fisher and Kolmogorov-Petrovsky-Piscounov (KPP) equation to the problem of high energy evolution of the QCD amplitudes. We explain how the traveling wave solutions of this equation are related to geometric scaling, a phenomenon observed in deep-inelastic scattering experiments. Geometric scaling is for the first time shown to result from an exact solution of nonlinear QCD evolution equations. Using general results on the KPP equation, we compute the velocity of the wave front, which gives the full high energy dependence of the saturation scale.

  13. Supersymmetric chiral models: Geometrical aspects

    NASA Astrophysics Data System (ADS)

    Perelomov, A. M.

    1989-03-01

    We consider classical supersymmetric chiral models of field theory and focus our attention on the geometrical aspects of such theories. A characteristic feature of such models is that the interaction is not introduced by adding the interaction Lagrangian to the free field Lagrangian, but has a purely geometrical origin and is related to the inner curvature of the target manifold. In many aspects these models are analogous to gauge theories and, as became clear recently, they are also important for superstring theory, which nowadays is the most probable candidate for a truly unified theory of all interactions including gravitation.

  14. Evaluating Earth and Space Sciences STEM Research Communication in 7th-12th Grade Rural Mississippi Classrooms and Resulting Student Attitudinal Impacts

    NASA Astrophysics Data System (ADS)

    Radencic, S.; McNeal, K. S.

    2013-05-01

    Observation and evaluation of STEM graduate students from Mississippi State University communicating their research of the Earth and Space Sciences in rural 7th-12th grade classrooms participating in the Initiating New Science Partnerships in Rural Education (INSPIRE) NSF GK-12 project. The methods they utilize to communicate their STEM research includes introducing new technologies and inquiry based learning experiences. These communication experiences have been observed and evaluated using two observational systems, the Mathematics Science Classroom Observational Profile System (M-SCOPS) and the Presentation Skills Protocol (PSP). M-SCOPS has been used over the first three years of the project to evaluate what Earth and Space research the STEM graduate students communicate in classroom activities along with how they are introducing STEM research through a variety of communication methods and levels of understanding. PSP, which INSPIRE began using this year, evaluates and provides feedback to the STEM graduate students on their communication during these classroom experiences using a rubric covering a range of skills for successful communication. PSP also allows the participating INSPIRE teacher partners to provide feedback to the STEM graduate students about development of their communication skills over the course of the year. In addition to feedback from the INSPIRE project and participating teachers, the STEM graduate students have the opportunity to evaluate their personal communication skills through video documentation to determine specific skills they would like to improve. Another area of research to be discussed is how the STEM graduate students communicating Earth and Space sciences research in the participating classrooms is impacting student attitudes about science and mathematics over the last three years. Student Attitudinal Surveys (SAS) are administered as a pre-evaluation tool in the fall when the STEM graduate students first enter into their

  15. Platonic Symmetry and Geometric Thinking

    ERIC Educational Resources Information Center

    Zsombor-Murray, Paul

    2007-01-01

    Cubic symmetry is used to build the other four Platonic solids and some formalism from classical geometry is introduced. Initially, the approach is via geometric construction, e.g., the "golden ratio" is necessary to construct an icosahedron with pentagonal faces. Then conventional elementary vector algebra is used to extract quantitative…

  16. The geometric oblateness of Uranus

    NASA Technical Reports Server (NTRS)

    Franklin, F. A.; Avis, C. C.; Colombo, G.; Shapiro, I. I.

    1980-01-01

    The paper considers photographs of Uranus obtained by the Stratoscope II balloon-borne telescope in 1970. These data have been redigitized and reanalyzed, and the geometric oblateness of Uranus was determined from the isophotes near the limb using an expression in terms of the equatorial and polar radii.

  17. Geometric Quantum Noise of Spin

    NASA Astrophysics Data System (ADS)

    Shnirman, Alexander; Gefen, Yuval; Saha, Arijit; Burmistrov, Igor S.; Kiselev, Mikhail N.; Altland, Alexander

    2015-05-01

    The presence of geometric phases is known to affect the dynamics of the systems involved. Here, we consider a quantum degree of freedom, moving in a dissipative environment, whose dynamics is described by a Langevin equation with quantum noise. We show that geometric phases enter the stochastic noise terms. Specifically, we consider small ferromagnetic particles (nanomagnets) or quantum dots close to Stoner instability, and investigate the dynamics of the total magnetization in the presence of tunneling coupling to the metallic leads. We generalize the Ambegaokar-Eckern-Schön effective action and the corresponding semiclassical equations of motion from the U(1) case of the charge degree of freedom to the SU(2) case of the magnetization. The Langevin forces (torques) in these equations are strongly influenced by the geometric phase. As a first but nontrivial application, we predict low temperature quantum diffusion of the magnetization on the Bloch sphere, which is governed by the geometric phase. We propose a protocol for experimental observation of this phenomenon.

  18. Celestial mechanics with geometric algebra

    NASA Technical Reports Server (NTRS)

    Hestenes, D.

    1983-01-01

    Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.

  19. One-year oral toxicity study on a genetically modified maize MON810 variety in Wistar Han RCC rats (EU 7th Framework Programme project GRACE).

    PubMed

    Zeljenková, Dagmar; Aláčová, Radka; Ondrejková, Júlia; Ambrušová, Katarína; Bartušová, Mária; Kebis, Anton; Kovrižnych, Jevgenij; Rollerová, Eva; Szabová, Elena; Wimmerová, Soňa; Černák, Martin; Krivošíková, Zora; Kuricová, Miroslava; Líšková, Aurélia; Spustová, Viera; Tulinská, Jana; Levkut, Mikuláš; Révajová, Viera; Ševčíková, Zuzana; Schmidt, Kerstin; Schmidtke, Jörg; Schmidt, Paul; La Paz, Jose Luis; Corujo, Maria; Pla, Maria; Kleter, Gijs A; Kok, Esther J; Sharbati, Jutta; Bohmer, Marc; Bohmer, Nils; Einspanier, Ralf; Adel-Patient, Karine; Spök, Armin; Pöting, Annette; Kohl, Christian; Wilhelm, Ralf; Schiemann, Joachim; Steinberg, Pablo

    2016-10-01

    The GRACE (GMO Risk Assessment and Communication of Evidence; www.grace-fp7.eu ) project was funded by the European Commission within the 7th Framework Programme. A key objective of GRACE was to conduct 90-day animal feeding trials, animal studies with an extended time frame as well as analytical, in vitro and in silico studies on genetically modified (GM) maize in order to comparatively evaluate their use in GM plant risk assessment. In the present study, the results of a 1-year feeding trial with a GM maize MON810 variety, its near-isogenic non-GM comparator and an additional conventional maize variety are presented. The feeding trials were performed by taking into account the guidance for such studies published by the EFSA Scientific Committee in 2011 and the OECD Test Guideline 452. The results obtained show that the MON810 maize at a level of up to 33 % in the diet did not induce adverse effects in male and female Wistar Han RCC rats after a chronic exposure.

  20. Solar particle event detected by ALTEA on board the International Space Station. The March 7th, 2012 X5.4 flare

    NASA Astrophysics Data System (ADS)

    Di Fino, Luca; Zaconte, Veronica; Stangalini, Marco; Sparvoli, Roberta; Picozza, Piergiorgio; Piazzesi, Roberto; Narici, Livio; Larosa, Marianna; Del Moro, Dario; Casolino, Marco; Berrilli, Francesco; Scardigli, Stefano

    2014-05-01

    Context. Solar activity poses substantial risk for astronauts of the International Space Station (ISS) both on board and during extravehicular activity. An accurate assessment of the charged radiation flux in space habitats is necessary to determine the risk and the specific type of radiation exposure of ISS crew members, and to develop ways to protect future crews for planetary missions, even in case of high solar activity. Aims: To reduce the present-day uncertainties about the nature and magnitude of the particle fluxes in space habitats during a solar event, it is fundamental to measure those fluxes in situ. Methods: The ALTEA (Anomalous Long Term Effects on Astronauts) experiment on board the ISS is an active detector composed of six silicon telescopes and is able to follow the dynamics of the radiation flux. During its operation in 2012 a number of flux peaks were detected in correspondence with solar events. Results: We present in this work an analysis of the ALTEA data measured during the March 7th, 2012 solar event, produced by NOAA AR11429. Conclusions: During this event, the flux was enhanced tenfold with respect to ``quiet Sun'' conditions, producing strong dose increases at high geomagnetic latitudes.

  1. Ninety-day oral toxicity studies on two genetically modified maize MON810 varieties in Wistar Han RCC rats (EU 7th Framework Programme project GRACE).

    PubMed

    Zeljenková, Dagmar; Ambrušová, Katarína; Bartušová, Mária; Kebis, Anton; Kovrižnych, Jevgenij; Krivošíková, Zora; Kuricová, Miroslava; Líšková, Aurélia; Rollerová, Eva; Spustová, Viera; Szabová, Elena; Tulinská, Jana; Wimmerová, Soňa; Levkut, Mikuláš; Révajová, Viera; Ševčíková, Zuzana; Schmidt, Kerstin; Schmidtke, Jörg; La Paz, Jose Luis; Corujo, Maria; Pla, Maria; Kleter, Gijs A; Kok, Esther J; Sharbati, Jutta; Hanisch, Carlos; Einspanier, Ralf; Adel-Patient, Karine; Wal, Jean-Michel; Spök, Armin; Pöting, Annette; Kohl, Christian; Wilhelm, Ralf; Schiemann, Joachim; Steinberg, Pablo

    2014-12-01

    The GMO Risk Assessment and Communication of Evidence (GRACE; www.grace-fp7.eu ) project is funded by the European Commission within the 7th Framework Programme. A key objective of GRACE is to conduct 90-day animal feeding trials, animal studies with an extended time frame as well as analytical, in vitro and in silico studies on genetically modified (GM) maize in order to comparatively evaluate their use in GM plant risk assessment. In the present study, the results of two 90-day feeding trials with two different GM maize MON810 varieties, their near-isogenic non-GM varieties and four additional conventional maize varieties are presented. The feeding trials were performed by taking into account the guidance for such studies published by the EFSA Scientific Committee in 2011 and the OECD Test Guideline 408. The results obtained show that the MON810 maize at a level of up to 33 % in the diet did not induce adverse effects in male and female Wistar Han RCC rats after subchronic exposure, independently of the two different genetic backgrounds of the event.

  2. [Prevalence of smoking habits of Upper Austria students of the 7th and 8th grade and effect of smoking habits of family and peers].

    PubMed

    Zidek, T; Haidinger, G; Zacharasiewicz, A; Waldhör, T; Vutuc, C

    2000-01-01

    The aim of the study was to explore the prevalence of different smoking habits in a population of Austrian pupils, 12 to 15 years old, and the relationship of familial and peer group smoking customs with these habits. In 1997 a population-based survey (International Study of Asthma and Allergies in Childhood, ISAAC) was conducted of all 7th and 8th grade school children of a district of Upper Austria. Information on the smoking habits of the adolescents, the family members, and of the peer as well as smoking habits of the teacher, gender, and age of the children was collected. The overall-prevalence of having ever smoked in this population is 57.8%. The percentage of eversmokers among the 12-year-olds is 50%. This amount increases to 63.8% among the 14- to 15-year-olds. The odds ratios for smoking daily is highest among those whose best friend smokes (OR: 70.63, CI: 9.19, 542.40). The risk of daily smoking increases also if the siblings of the juvenile (OR: 4.71, CI: 1.15, 19.35) or the mother (OR: 4.95, CI: 1.67, 14.70) smoke. If the father smokes the risk to smoke monthly is increased (OR: 2.09, CI: 1.28, 3.40). These results point to the fact that smoking prevention programes should take into account the influence of peers and family of the adolescents.

  3. Biomedical Challenges Presented by the American Indian, Proceedings of the Special Session of the PAHO Advisory Committee on Medical Research (7th, Washington, D.C., June 25, 1968).

    ERIC Educational Resources Information Center

    Pan American Health Organization, Washington, DC.

    At each meeting of the Pan American Health Organization Advisory Committee on Medical Research, a special 1-day session is held on a topic chosen by the committee as being of particular interest. At the 7th meeting, which convened in June of 1968 in Washington, D.C., the session surveyed the origin, present distribution, and principal biological…

  4. Geometrical Phases in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Christian, Joy Julius

    In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a

  5. Geometrical modelling of textile reinforcements

    NASA Technical Reports Server (NTRS)

    Pastore, Christopher M.; Birger, Alexander B.; Clyburn, Eugene

    1995-01-01

    The mechanical properties of textile composites are dictated by the arrangement of yarns contained within the material. Thus, to develop a comprehensive understanding of the performance of these materials, it is necessary to develop a geometrical model of the fabric structure. This task is quite complex, as the fabric is made from highly flexible yarn systems which experience a certain degree of compressibility. Furthermore there are tremendous forces acting on the fabric during densification typically resulting in yarn displacement and misorientation. The objective of this work is to develop a methodology for characterizing the geometry of yarns within a fabric structure including experimental techniques for evaluating these models. Furthermore, some applications of these geometric results to mechanical property predictions models are demonstrated.

  6. The verdict geometric quality library.

    SciTech Connect

    Knupp, Patrick Michael; Ernst, C.D. (Elemental Technologies, Inc., American Fork, UT); Thompson, David C.; Stimpson, C.J.; Pebay, Philippe Pierre

    2006-03-01

    Verdict is a collection of subroutines for evaluating the geometric qualities of triangles, quadrilaterals, tetrahedra, and hexahedra using a variety of metrics. A metric is a real number assigned to one of these shapes depending on its particular vertex coordinates. These metrics are used to evaluate the input to finite element, finite volume, boundary element, and other types of solvers that approximate the solution to partial differential equations defined over regions of space. The geometric qualities of these regions is usually strongly tied to the accuracy these solvers are able to obtain in their approximations. The subroutines are written in C++ and have a simple C interface. Each metric may be evaluated individually or in combination. When multiple metrics are evaluated at once, they share common calculations to lower the cost of the evaluation.

  7. Geometric Landau-Zener interferometry.

    PubMed

    Gasparinetti, S; Solinas, P; Pekola, J P

    2011-11-11

    We propose a new type of interferometry, based on geometric phases accumulated by a periodically driven two-level system undergoing multiple Landau-Zener transitions. As a specific example, we study its implementation in a superconducting charge pump. We find that interference patterns appear as a function of the pumping frequency and the phase bias, and clearly manifest themselves in the pumped charge. We also show that the effects described should persist in the presence of realistic decoherence.

  8. Geometrical interpretation of optical absorption

    SciTech Connect

    Monzon, J. J.; Barriuso, A. G.; Sanchez-Soto, L. L.; Montesinos-Amilibia, J. M.

    2011-08-15

    We reinterpret the transfer matrix for an absorbing system in very simple geometrical terms. In appropriate variables, the system appears as performing a Lorentz transformation in a (1 + 3)-dimensional space. Using homogeneous coordinates, we map that action on the unit sphere, which is at the realm of the Klein model of hyperbolic geometry. The effects of absorption appear then as a loxodromic transformation, that is, a rhumb line crossing all the meridians at the same angle.

  9. Cornelia de Lange syndrome and molecular implications of the cohesin complex: Abstracts from the 7th biennial scientific and educational symposium 2016.

    PubMed

    Kline, Antonie D; Krantz, Ian D; Deardorff, Matthew A; Shirahige, Katsuhiko; Dorsett, Dale; Gerton, Jennifer L; Wu, Meng; Mehta, Devanshi; Mills, Jason A; Carrico, Cheri S; Noon, Sarah; Herrera, Pamela S; Horsfield, Julia A; Bettale, Chiara; Morgan, Jeremy; Huisman, Sylvia A; Moss, Jo; McCleery, Joseph; Grados, Marco; Hansen, Blake D; Srivastava, Siddharth; Taylor-Snell, Emily; Kerr, Lynne M; Katz, Olivia; Calof, Anne L; Musio, Antonio; Egense, Alena; Haaland, Richard E

    2017-02-12

    Cornelia de Lange Syndrome (CdLS) is due to mutations in the genes for the structural and regulatory proteins that make up the cohesin complex, and is considered a cohesinopathy disorder or, more recently, a transcriptomopathy. New phenotypes have been recognized in this expanding field. There are multiple clinical issues facing individuals with all forms of CdLS, particularly in the neurodevelopmental system, but also gastrointestinal, cardiac, and musculoskeletal. Aspects of developmental and cell biology have found common endpoints in the biology of the cohesin complex, with improved understanding of the mechanisms, easier diagnostic tests, and the possibility of potential therapeutics, all major clinical implications for the individual with CdLS. The following abstracts are the presentations from the 7th Cornelia de Lange Syndrome Scientific and Educational Symposium, June 22-23, 2016, in Orlando, FL, in conjunction with the Cornelia de Lange Syndrome Foundation National Meeting. In addition to the scientific and clinical discussions, there were talks related to practical aspects of behavior including autism, transitions, communication, access to medical care, and databases. At the end of the symposium, a panel was held, which included several parents, affected individuals and genetic counselors, and discussed the greatest challenges in life and how this information can assist in guiding future research. The Research Committee of the CdLS Foundation organizes this meeting, reviews, and accepts abstracts, and subsequently disseminates the information to the families through members of the Clinical Advisory Board and publications. AMA CME credits were provided by Greater Baltimore Medical Center, Baltimore, MD.

  10. Trends of violence among 7th, 8th and 9th grade students in the state of Lara, Venezuela: The Global School Health Survey 2004 and 2008

    PubMed Central

    2011-01-01

    Background Violence by young people is one of the most visible forms of violence and contributes greatly to the global burden of premature death, injury and disability. Methods The Global School-based Student Health Survey (GSHS), State of Lara, Venezuela (GSHS-Lara) is a school-based surveillance system. It comprises a repeated, cross-sectional, self-administered survey drawn from a representative sample of 7th to 9th grade students, performed in the school years 2003-2004 (GSHS-Lara 2004) and 2007-2008 (GSHS-Lara 2008). It explores, among other things, a general violence indicator such as school absenteeism due to feeling unsafe at school or on the way to or from school for any reason; and more specific indicators of violence such as robbery, bullying, physical fights and use of weapons, as well as exposure to lectures on how to prevent violence. Results are given in terms of prevalence percentage. Results Absenteeism doubled between the two study periods (10.8% to 20.8%). The number of students that were a victim of robbery remained high and without change both outside (14.2% and 14.8%) and inside school (21.7% and 22.0%). The number of victims of bullying was high and increasing (33.4% and 43.6%). Bullying associated with being physically attacked decreased (18.5% to 14.3%). Physical attacks without active participation and not associated with bullying were frequent (21.5%). Physical fighting with active participation prevalence remained high and without change (27.5% and 28.2%). Carrying a weapon almost doubled (4.3% to 7.1%). Less than 65% reported classes for violence prevention. Conclusions The GSHS-Lara shows that violence is an important public health problem that needs to be addressed by the community and its authorities. PMID:22958602

  11. Novel C617Y mutation in the 7th transmembrane segment of luteinizing hormone/choriogonadotropin receptor in a Japanese boy with peripheral precocious puberty.

    PubMed

    Nagasaki, Keisuke; Katsumata, Noriyuki; Ogawa, Yohei; Kikuchi, Toru; Uchiyama, Makoto

    2010-01-01

    Testotoxicosis, also known as familial male-limited precocious puberty, is an autosomal dominant form of gonadotropin-independent precocious puberty caused by heterozygous constitutively activating mutations of the LHCGR gene encoding the luteinizing hormone/choriogonadotropin receptor (LH/CGR). The patient is an 8-year-old boy who started to develop pubic hair and penile enlargement at 6 years of age. The patient had elevated serum testosterone levels, but initially exhibited a prepubertal response of gonadotropins to GnRH, which was followed by central activation of the hypothalamo-pituitary-gonadal axis. The father reported having experienced precocious puberty, and is 158 cm tall. There is no history of short stature and precocious puberty in the family except for the father. The LHCGR gene was analyzed by direct DNA sequencing of amplified PCR products from the patient and his parents. The wild-type and mutant LH/CGRs were transiently expressed in COS-1 cells and cAMP levels in the cells were determined with or without hCG stimulation. Genetic analysis revealed a novel C617Y mutation of the LHCGR gene in the patient and his mother, while his father had no mutations. Functional expression study demonstrated around 15% increase in the basal intracellular cAMP level in cells expressing the mutant LH/CGR compared with that in cells expressing the wild-type receptor. We have reported the first missense C617Y mutation located in the 7th transmembrane segment of LH/CGR causing testotoxicosis. The modest phenotype of our patient may be explained, at least in part, by the modest increase in the intracellular cAMP level caused by the C617Y mutation.

  12. Identification, Geochemical Characterisation and Significance of Bitumen among the Grave Goods of the 7th Century Mound 1 Ship-Burial at Sutton Hoo (Suffolk, UK)

    PubMed Central

    Bowden, Stephen A.; Hacke, Marei; Parnell, John

    2016-01-01

    The 7th century ship-burial at Sutton Hoo is famous for the spectacular treasure discovered when it was first excavated in 1939. The finds include gold and garnet jewellery, silverware, coins and ceremonial armour of broad geographical provenance which make a vital contribution to understanding the political landscape of early medieval Northern Europe. Fragments of black organic material found scattered within the burial were originally identified as ‘Stockholm Tar’ and linked to waterproofing and maintenance of the ship. Here we present new scientific analyses undertaken to re-evaluate the nature and origin of these materials, leading to the identification of a previously unrecognised prestige material among the treasure: bitumen from the Middle East. Whether the bitumen was gifted as diplomatic gesture or acquired through trading links, its presence in the burial attests to the far-reaching network within which the elite of the region operated at this time. If the bitumen was worked into objects, either alone or in composite with other materials, then their significance within the burial would certainly have been strongly linked to their form or purpose. But the novelty of the material itself may have added to the exotic appeal. Archaeological finds of bitumen from this and earlier periods in Britain are extremely rare, despite the abundance of natural sources of bitumen within Great Britain. This find provides the first material evidence indicating that the extensively exploited Middle Eastern bitumen sources were traded northward beyond the Mediterranean to reach northern Europe and the British Isles. PMID:27906999

  13. Process evaluation for a school-based physical activity intervention for 6th- and 7th-grade boys: reach, dose, and fidelity.

    PubMed

    Robbins, Lorraine B; Pfeiffer, Karin Allor; Wesolek, Stacey M; Lo, Yun-Jia

    2014-02-01

    The purpose was to evaluate the reach, dose, and fidelity of Guys Only Activity for Life (G.O.A.L.), a 7-week pilot intervention conducted from February to March 2011 to increase 6th and 7th grade boys' moderate-to-vigorous physical activity (MVPA). One middle school was randomly assigned to the G.O.A.L. intervention and another from the same urban school district in the Midwestern U.S. to a comparison condition. Thirty boys, ages 10-14 years, participated in each school. The intervention, guided by the Health Promotion Model (HPM) and Self-Determination Theory (SDT), consisted of a 90-min after-school physical activity club 4 days/week and one motivational interviewing session with a registered (school) nurse. Data were gathered via attendance records, club observations, heart rate monitors, audio-taping of motivational interviewing sessions, and surveys. On average boys attended the club 2.11 days/week (SD=.86). A trained independent process evaluator reported that the physical activity club instructors provided the boys with the opportunity for a mean of 25.8 min/day of MVPA. Using a four-point Likert scale (1=disagree a lot; 4=agree a lot), the process evaluator perceived that the club was delivered with high fidelity and adherence to the underlying theories (M=3.48; SD=0.39). Sessions with the nurse lasted an average of 13 min, 29 s. All boys attended. Two trained independent coders indicated that the nurse demonstrated at least beginning proficiency for all tasks associated with motivational interviewing, with the exception of using sufficient open- as opposed to closed-ended questions and reflections compared to questions. Fidelity related to session delivery and adherence to the theories was high (M=3.83; SD=0.19). The process evaluation data indicated that strategies are needed to increase attendance and boys' MVPA during the club time.

  14. Report of the 7th meeting on Evaluation of Pandemic Influenza Vaccines in Clinical Trials, World Health Organization, Geneva, 17-18 February 2011.

    PubMed

    Girard, Marc P; Katz, Jacqueline M; Pervikov, Yuri; Hombach, Joachim; Tam, John S

    2011-10-13

    On February 17-18, 2011, the World Health Organization convened the 7th meeting on "The Evaluation of Pandemic Influenza Vaccines in Clinical Trials" to review the progress made on pandemic A (H1N1) 2009 vaccines and the evaluation of their effectiveness in the field, especially in children less than 3 years of age and in pregnant women. Other topics to be addressed included a comparison of egg- and cell culture-based influenza vaccines, technical issues related to vaccine strain development and vaccine potency, and the status of development of prototype influenza vaccines using new technologies. Pandemic A (H1N1) vaccines were safe in young children, pregnant women and immunocompromized individuals. Overall effectiveness of inactivated A (H1N1) vaccines for all ages was found to vary between 72% and 100% in different countries and with different vaccine preparations. Effectiveness of pandemic A (H1N1) 2009 live attenuated vaccine was estimated to be approximately 80% in pediatric populations in the USA. A single dose of inactivated vaccine adjuvanted with AS03, MF59 or AF03 induced protective immunity in young children and pregnant women. However, unadjuvanted vaccines as well as low dose adjuvanted vaccines (1.9 μg HA) required two doses to elicit protective antibody levels in these populations. Clinical trials of influenza vaccines developed using new technologies showed they were well tolerated and induced antibody and/or T cell immune responses to viral proteins. Further studies are warranted to validate novel immunological criteria for evaluation and licensing of such new influenza vaccine concepts. On the regulatory side, work should be undertaken to harmonize the results of serological tests used to evaluate the immunogenicity of traditional influenza vaccines.

  15. Polar metals by geometric design

    NASA Astrophysics Data System (ADS)

    Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P. J.; Choi, Y.; Kim, J.-W.; Patzner, J. R.; Ryu, S.; Podkaminer, J. P.; Irwin, J.; Ma, Y.; Fennie, C. J.; Rzchowski, M. S.; Pan, X. Q.; Gopalan, V.; Rondinelli, J. M.; Eom, C. B.

    2016-05-01

    Gauss’s law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions. Quantum physics supports this view, demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals—it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases. Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO3 perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements. We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra—the structural signatures of perovskites—owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported, non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.

  16. Polar Metals by Geometric Design

    SciTech Connect

    Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P. J.; Choi, Y.; Kim, J. -W.; Patzner, J. R.; Ryu, S.; Podkaminer, J. P.; Irwin, J.; Ma, Y.; Fennie, C. J.; Rzchowski, M. S.; Pan, X. Q.; Gopalan, V.; Rondinelli, J. M.; Eom, C. B.

    2016-05-05

    Gauss's law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions(1). Quantum physics supports this view(2), demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals(3)-it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases(4). Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO(3) perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements(5). We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra-the structural signatures of perovskites-owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported(6-10), non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.

  17. Development of a Geometric Spatial Visualization Tool

    ERIC Educational Resources Information Center

    Ganesh, Bibi; Wilhelm, Jennifer; Sherrod, Sonya

    2009-01-01

    This paper documents the development of the Geometric Spatial Assessment. We detail the development of this instrument which was designed to identify middle school students' strategies and advancement in understanding of four geometric concept domains (geometric spatial visualization, spatial projection, cardinal directions, and periodic patterns)…

  18. Geometrically Induced Interactions and Bifurcations

    NASA Astrophysics Data System (ADS)

    Binder, Bernd

    2010-01-01

    In order to evaluate the proper boundary conditions in spin dynamics eventually leading to the emergence of natural and artificial solitons providing for strong interactions and potentials with monopole charges, the paper outlines a new concept referring to a curvature-invariant formalism, where superintegrability is given by a special isometric condition. Instead of referring to the spin operators and Casimir/Euler invariants as the generator of rotations, a curvature-invariant description is introduced utilizing a double Gudermann mapping function (generator of sine Gordon solitons and Mercator projection) cross-relating two angular variables, where geometric phases and rotations arise between surfaces of different curvature. Applying this stereographic projection to a superintegrable Hamiltonian can directly map linear oscillators to Kepler/Coulomb potentials and/or monopoles with Pöschl-Teller potentials and vice versa. In this sense a large scale Kepler/Coulomb (gravitational, electro-magnetic) wave dynamics with a hyperbolic metric could be mapped as a geodesic vertex flow to a local oscillator singularity (Dirac monopole) with spherical metrics and vice versa. Attracting fixed points and dynamic constraints are given by special isometries with magic precession angles. The nonlinear angular encoding directly provides for a Shannon mutual information entropy measure of the geodesic phase space flow. The emerging monopole patterns show relations to spiral Fresnel holography and Berry/Aharonov-Bohm geometric phases subject to bifurcation instabilities and singularities from phase ambiguities due to a local (entropy) overload. Neutral solitons and virtual patterns emerging and mediating in the overlap region between charged or twisted holographic patterns are visualized and directly assigned to the Berry geometric phase revealing the role of photons, neutrons, and neutrinos binding repulsive charges in Coulomb, strong and weak interaction.

  19. Geometric Theory of Hinged Devices

    NASA Astrophysics Data System (ADS)

    Kovalev, M. D.

    1995-02-01

    This article contains results connected with engineering mechanics. Among them are: a theorem "on the nonuniqueness of a statically determinable truss", a classification of hinged mechanisms and their schemes, and an example of a hinged mechanism with variable number of degrees of freedom. The study of general geometric properties is based on the concept, introduced here, of an abstract hinged device in Rd. This concept formalizes a well-known approach in the theory of mechanisms. The formalization gives rise to a number of interesting mathematical questions.

  20. Geometric methods in quantum computation

    NASA Astrophysics Data System (ADS)

    Zhang, Jun

    Recent advances in the physical sciences and engineering have created great hopes for new computational paradigms and substrates. One such new approach is the quantum computer, which holds the promise of enhanced computational power. Analogous to the way a classical computer is built from electrical circuits containing wires and logic gates, a quantum computer is built from quantum circuits containing quantum wires and elementary quantum gates to transport and manipulate quantum information. Therefore, design of quantum gates and quantum circuits is a prerequisite for any real application of quantum computation. In this dissertation we apply geometric control methods from differential geometry and Lie group representation theory to analyze the properties of quantum gates and to design optimal quantum circuits. Using the Cartan decomposition and the Weyl group, we show that the geometric structure of nonlocal two-qubit gates is a 3-Torus. After further reducing the symmetry, the geometric representation of nonlocal gates is seen to be conveniently visualized as a tetrahedron. Each point in this tetrahedron except on the base corresponds to a different equivalent class of nonlocal gates. This geometric representation is one of the cornerstones for the discussion on quantum computation in this dissertation. We investigate the properties of those two-qubit operations that can generate maximal entanglement. It is an astonishing finding that if we randomly choose a two-qubit operation, the probability that we obtain a perfect entangler is exactly one half. We prove that given a two-body interaction Hamiltonian, it is always possible to explicitly construct a quantum circuit for exact simulation of any arbitrary nonlocal two-qubit gate by turning on the two-body interaction for at most three times, together with at most four local gates. We also provide an analytic approach to construct a universal quantum circuit from any entangling gate supplemented with local gates

  1. Geometric reasoning and spatial understanding

    SciTech Connect

    Binford, T.O.

    1982-01-01

    Progress has been made on extensions to ACRONYM which include: representation and reasoning with time, events, and sequences; collaboration with MIT to develop geometric learning: representation of function, and reasoning between structure and function. A new ribbon finder for ACRONYM is under construction. Work in figure/ground separation is underway as a basis for the ribbon finder. Preliminary results are shown in grouping operations to determine regularities in images. A stereo system has been completed which combines edge-based stereo matching with surface interpolation utilizing correspondence of gray levels. Design of a new stereo vision system is underway.

  2. Geometric morphology of granular materials

    NASA Astrophysics Data System (ADS)

    Schlei, Bernd R.; Prasad, Lakshman; Skourikhine, Alexei N.

    2000-10-01

    We present a new method to transform the spectral pixel information of a micrograph into an affine geometric description, which allows us to analyze the morphology of granular materials. We use spectral and pulse-coupled neural network based segmentation techniques to generate blobs, and a newly developed algorithm to extract dilated contours. A constrained Delaunay tessellation of the contour points results in a triangular mesh. This mesh is the basic ingredient of the Chodal Axis Transform, which provides a morphological decomposition of shapes. Such decomposition allows for grain separation and the efficient computation of the statistical features of granular materials.

  3. Graphene with geometrically induced vorticity.

    PubMed

    Pachos, Jiannis K; Stone, Michael; Temme, Kristan

    2008-04-18

    At half filling, the electronic structure of graphene can be modeled by a pair of free two-dimensional Dirac fermions. We explicitly demonstrate that in the presence of a geometrically induced gauge field an everywhere-real Kekulé modulation of the hopping matrix elements can correspond to a nonreal Higgs field with nontrivial vorticity. This provides a natural setting for fractionally charged vortices with localized zero modes. For fullerenelike molecules we employ the index theorem to demonstrate the existence of six low-lying states that do not depend strongly on the Kekulé-induced mass gap.

  4. Evolution: geometrical and dynamical aspects.

    PubMed

    Freguglia, Paolo; Bazzani, Armando

    2003-01-01

    We develop a possible axiomatic approach to the evolution theory that has been previously discussed in Freguglia [2002]. The axioms synthesize the fundamental ideas of evolution theory and allow a geometrical and dynamical interpretation of the generation law. Using the axioms we derive a simple reaction-diffusion model which introduces the species as self-organized stationary distribution of a finite population and simulates the evolution of a phenotypic character under the effect of an external perturbing action. The dynamical properties of the model are briefly presented using numerical simulations.

  5. Moving walls and geometric phases

    NASA Astrophysics Data System (ADS)

    Facchi, Paolo; Garnero, Giancarlo; Marmo, Giuseppe; Samuel, Joseph

    2016-09-01

    We unveil the existence of a non-trivial Berry phase associated to the dynamics of a quantum particle in a one dimensional box with moving walls. It is shown that a suitable choice of boundary conditions has to be made in order to preserve unitarity. For these boundary conditions we compute explicitly the geometric phase two-form on the parameter space. The unboundedness of the Hamiltonian describing the system leads to a natural prescription of renormalization for divergent contributions arising from the boundary.

  6. Science, art and geometrical imagination

    NASA Astrophysics Data System (ADS)

    Luminet, Jean-Pierre

    2011-06-01

    From the geocentric, closed world model of Antiquity to the wraparound universe models of relativistic cosmology, the parallel history of space representations in science and art illustrates the fundamental rôle of geometric imagination in innovative findings. Through the analysis of works of various artists and scientists like Plato, Dürer, Kepler, Escher, Grisey or the author, it is shown how the process of creation in science and in the arts rests on aesthetical principles such as symmetry, regular polyhedra, laws of harmonic proportion, tessellations, group theory, etc., as well as on beauty, conciseness and an emotional approach of the world.

  7. SQCD Vacua and Geometrical Engineering

    SciTech Connect

    Tatar, Radu; Wetenhall, Ben

    2008-11-23

    We consider the geometrical engineering constructions for the N = 1 SQCD vacua. After one T-duality, these geometries with wrapped D5 branes become N = 1 brane configurations with NS-branes and D4-branes. After performing a flop, the geometries contain branes, antibranes and branes wrapped on non-holomorphic cycles. The various tachyon condensations between pairs of wrapped D5 branes and anti-D5 branes together with deformations of the cycles give rise to a variety of supersymmetric and metastable non-supersymmetric vacua.

  8. A Multi-Layer Phoswich Radioxenon Detection System (7th Qtr Report), Reporting Period 10/01/07 - 12/31/07

    SciTech Connect

    David M. Hamby

    2008-01-29

    Description of activities conducted this report period: (1) Electronics Development--To improve the overall performance of the two-channel digital pulse processor (DPP2), the PCB has been redesigned and the new printed board is now under assembly. The system is enhanced with two new fast ADCs from Analog Devices (AD9230-250), each with a sampling rate of 250 MHz and a resolution of 12 bits. The data bus uses a high performance Low Voltage Differential Signaling (LVDS) standard. The offset and gain of each channel are separately controlled digitally by the GUI software. (2) GUI Software Development--A GUI is being developed using the Python programming language. All functions from the preceding MATLAB code have been re-implemented including basic waveform readout, pulse shape discrimination, and plotting of energy spectra. In addition, the GUI can be used to control sampling runs based on the number of pulses captured, either in real or live time. Calibration coefficients and pulse shape discrimination boundaries can be changed on the fly so that the detector may be characterized experimentally. Plots generated by the GUI can be exported as graphic data. At present, the software has only been tested using one channel, pending availability of the new DPP board (DPP2). However, the functions have been written to allow easy expansion to two channels. (3) Light Collection Modeling--The XEPHWICH design has been modeled to determine its light capture efficiency. Research in the 7th quarter includes additional simulations representing significant increase in data resolution, well over an order of magnitude greater than previous simulations. The final data set represents approximately 11 billion visible photons divided equally among 110 thousand data points. A laboratory experiment is being designed and executed to experimentally determine light capture efficiency as a function of position within the scintillators. (4) Radioxenon Fission Source--We have designed and

  9. NPP VIIRS Geometric Performance Status

    NASA Technical Reports Server (NTRS)

    Lin, Guoqing; Wolfe, Robert E.; Nishihama, Masahiro

    2011-01-01

    Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) satellite is scheduled for launch in October, 2011. It is to provide satellite measured radiance/reflectance data for both weather and climate applications. Along with radiometric calibration, geometric characterization and calibration of Sensor Data Records (SDRs) are crucial to the VIIRS Environmental Data Record (EDR) algorithms and products which are used in numerical weather prediction (NWP). The instrument geometric performance includes: 1) sensor (detector) spatial response, parameterized by the dynamic field of view (DFOV) in the scan direction and instantaneous FOV (IFOV) in the track direction, modulation transfer function (MTF) for the 17 moderate resolution bands (M-bands), and horizontal spatial resolution (HSR) for the five imagery bands (I-bands); 2) matrices of band-to-band co-registration (BBR) from the corresponding detectors in all band pairs; and 3) pointing knowledge and stability characteristics that includes scan plane tilt, scan rate and scan start position variations, and thermally induced variations in pointing with respect to orbital position. They have been calibrated and characterized through ground testing under ambient and thermal vacuum conditions, numerical modeling and analysis. This paper summarizes the results, which are in general compliance with specifications, along with anomaly investigations, and describes paths forward for characterizing on-orbit BBR and spatial response, and for improving instrument on-orbit performance in pointing and geolocation.

  10. Geometric effects in tomographic reconstruction

    SciTech Connect

    Barnes, F.L.; Azevedo, S.G.; Martz, H.E. Jr.; Roberson, G.P.; Schneberk, D.J.; Skeate, M.F.

    1990-01-08

    In x-ray and ion-beam computerized tomography, there are a number of reconstruction effects, manifested as artifacts, that can be attributed to the geometry of the experimental setup and of the object being scanned. In this work, we will examine four geometric effects that are common to first-and third-generation (parallel beam, 180 degree) computerized tomography (CT) scanners and suggest solutions for each problem. The geometric effects focused on in this paper are: X-pattern'' artifacts (believed to be caused by several errors), edge-generated ringing artifacts (due to improper choice of the reconstruction filter and cutoff frequency), circular-ring artifacts (caused by employing uncalibrated detectors), and tuning-fork artifacts (generated by an incorrectly specified center-of-rotation). Examples of four effects are presented. The X-pattern and edge-generated ringing artifacts are presented with actual experimental data introducing the artifact. given the source of the artifact, we present simulated data designed to replicate the artifact. Finally, we suggest ways to reduce or completely remove these artifacts. The circular-ring and tuning-fork artifacts are introduced with actual experimental data as well, while digital signal processing solutions are employed to remove the artifacts from the data. 15 refs., 12 figs.

  11. Image coding with geometric wavelets.

    PubMed

    Alani, Dror; Averbuch, Amir; Dekel, Shai

    2007-01-01

    This paper describes a new and efficient method for low bit-rate image coding which is based on recent development in the theory of multivariate nonlinear piecewise polynomial approximation. It combines a binary space partition scheme with geometric wavelet (GW) tree approximation so as to efficiently capture curve singularities and provide a sparse representation of the image. The GW method successfully competes with state-of-the-art wavelet methods such as the EZW, SPIHT, and EBCOT algorithms. We report a gain of about 0.4 dB over the SPIHT and EBCOT algorithms at the bit-rate 0.0625 bits-per-pixels (bpp). It also outperforms other recent methods that are based on "sparse geometric representation." For example, we report a gain of 0.27 dB over the Bandelets algorithm at 0.1 bpp. Although the algorithm is computationally intensive, its time complexity can be significantely reduced by collecting a "global" GW n-term approximation to the image from a collection of GW trees, each constructed separately over tiles of the image.

  12. Geometric frustration on a 1/9th site depleted triangular lattice

    NASA Astrophysics Data System (ADS)

    Hopkinson, John; Beck, Jarrett

    2013-03-01

    In the searches both for new spin liquid and spin ice (artificial and macroscopic) candidates, geometrically frustrated two-dimensional spin systems have played a prominent role. Here we present a study of the classical antiferromagnetic Ising (AFI) model on the sorrel net, a 1/9th site depleted and 1/7th bond depleted triangular lattice. The AFI model on this corner-shared triangle net is found to have a large residual entropy per spin S/N = 0 . 48185 +/- 0 . 00008 , indicating the sorrel net is highly geometrically frustrated. Anticipating that it may be difficult to achieve perfect bond depletion, we investigate the physics resulting from turning back on the depleted bonds (J2). We present the phase diagram, analytic expressions for the long range partially ordered ground state spin structure for antiferromagnetic J2 and the short range ordered ground state spin structure for ferromagnetic J2, the magnetic susceptibility and the static structure factor. We briefly comment on the possibility that artificial spin ice on the sorrel lattice could by made, and on a recent report [T. D. Keene et al., Dalton Trans. 40 2983 (2011)] of the creation of a 1/9th depleted cobalt hydroxide oxalate. This work was supported by NSERC (JMH) and NSERC USRA (JJB)

  13. Geometric asymmetry driven Janus micromotors.

    PubMed

    Zhao, Guanjia; Pumera, Martin

    2014-10-07

    The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a "coconut" micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors.

  14. Wrinkled flames and geometrical stretch

    NASA Astrophysics Data System (ADS)

    Denet, Bruno; Joulin, Guy

    2011-07-01

    Localized wrinkles of thin premixed flames subject to hydrodynamic instability and geometrical stretch of uniform intensity (S) are studied. A stretch-affected nonlinear and nonlocal equation, derived from an inhomogeneous Michelson-Sivashinsky equation, is used as a starting point, and pole decompositions are used as a tool. Analytical and numerical descriptions of isolated (centered or multicrested) wrinkles with steady shapes (in a frame) and various amplitudes are provided; their number increases rapidly with 1/S>0. A large constant S>0 weakens or suppresses all localized wrinkles (the larger the wrinkles, the easier the suppression), whereas S<0 strengthens them; oscillations of S further restrict their existence domain. Self-similar evolutions of unstable many-crested patterns are obtained. A link between stretch, nonlinearity, and instability with the cutoff size of the wrinkles in turbulent flames is suggested. Open problems are evoked.

  15. EDITORIAL: The 7th International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion Applications (PowerMEMS 2007)

    NASA Astrophysics Data System (ADS)

    Hebling, C.; Woias, P.

    2008-10-01

    This special issue of Journal of Micromechanics and Microengineering (JMM) contains a selection of papers from the 7th International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion (PowerMEMS 2007). The workshop was held in Freiburg, Germany on 27-29 November 2007 under the joint organization of the Fraunhofer Institute for Solar Energy Systems (FhG-ISE), Freiburg and the Department of Microsystems Engineering (IMTEK) of the Albert-Ludwig-University of Freiburg. PowerMEMS 2007 continues a series of workshops initiated in 2000 in Japan to create an annual discussion forum in the emerging field of micro energy technology. With a single exception in 2001, the workshop has continued as an annual meeting ever since, with a continuous increase in the number of presentations and participants. The program of PowerMEMS 2007 was composed of 2 invited talks, 25 oral talks and 61 poster presentations. From these 88 presentations 16 have been selected for this special issue. It was at the end of 1959 when the Caltech physicist Richard Feynman gave his famous lecture entitled 'There Is Plenty of Room at the Bottom' in which he discussed the possibilities of miniaturization for both storage capacity ('Encyclopaedia Britannica on the head of a pin') as well as micro machining ('rearranging the atoms'), although there were absolutely no technological possibilities in sight for an adequate realization of such ideas. Now, nearly 50 years later, we not only have incredible knowledge about the nanoworld, but even more we are now able to generate microelectromechanical devices which, next to their electronic properties, can integrate physical and analytical functions. Today, Feynman might easily have added a second lecture entitled 'There is Plenty of Energy at the Bottom'. Micro energy technology has seen a tremendous rise in MEMS and material sciences and is regarded today as one of their hot topics. Also, there are more and more companies in this

  16. Geometric solitons of Hamiltonian flows on manifolds

    SciTech Connect

    Song, Chong; Sun, Xiaowei; Wang, Youde

    2013-12-15

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.

  17. Geometric Quantization and Foliation Reduction

    NASA Astrophysics Data System (ADS)

    Skerritt, Paul

    A standard question in the study of geometric quantization is whether symplectic reduction interacts nicely with the quantized theory, and in particular whether "quantization commutes with reduction." Guillemin and Sternberg first proposed this question, and answered it in the affirmative for the case of a free action of a compact Lie group on a compact Kahler manifold. Subsequent work has focused mainly on extending their proof to non-free actions and non-Kahler manifolds. For realistic physical examples, however, it is desirable to have a proof which also applies to non-compact symplectic manifolds. In this thesis we give a proof of the quantization-reduction problem for general symplectic manifolds. This is accomplished by working in a particular wavefunction representation, associated with a polarization that is in some sense compatible with reduction. While the polarized sections described by Guillemin and Sternberg are nonzero on a dense subset of the Kahler manifold, the ones considered here are distributional, having support only on regions of the phase space associated with certain quantized, or "admissible", values of momentum. We first propose a reduction procedure for the prequantum geometric structures that "covers" symplectic reduction, and demonstrate how both symplectic and prequantum reduction can be viewed as examples of foliation reduction. Consistency of prequantum reduction imposes the above-mentioned admissibility conditions on the quantized momenta, which can be seen as analogues of the Bohr-Wilson-Sommerfeld conditions for completely integrable systems. We then describe our reduction-compatible polarization, and demonstrate a one-to-one correspondence between polarized sections on the unreduced and reduced spaces. Finally, we describe a factorization of the reduced prequantum bundle, suggested by the structure of the underlying reduced symplectic manifold. This in turn induces a factorization of the space of polarized sections that agrees

  18. Geometric asymmetry driven Janus micromotors

    NASA Astrophysics Data System (ADS)

    Zhao, Guanjia; Pumera, Martin

    2014-09-01

    The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors.The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors. Electronic supplementary information (ESI) available: Additional SEM images, data analysis, Videos S

  19. Geometric Reasoning for Automated Planning

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel

    2012-01-01

    An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.

  20. Geometrical aspects of quantum spaces

    SciTech Connect

    Ho, Pei -Ming

    1996-05-11

    Various geometrical aspects of quantum spaces are presented showing the possibility of building physics on quantum spaces. In the first chapter the authors give the motivations for studying noncommutative geometry and also review the definition of a Hopf algebra and some general features of the differential geometry on quantum groups and quantum planes. In Chapter 2 and Chapter 3 the noncommutative version of differential calculus, integration and complex structure are established for the quantum sphere S12 and the quantum complex projective space CP{sub q}(N), on which there are quantum group symmetries that are represented nonlinearly, and are respected by all the aforementioned structures. The braiding of Sq2 and CPq(N) is also described. In Chapter 4 the quantum projective geometry over the quantum projective space CPq(N) is developed. Collinearity conditions, coplanarity conditions, intersections and anharmonic ratios is described. In Chapter 5 an algebraic formulation of Reimannian geometry on quantum spaces is presented where Riemannian metric, distance, Laplacian, connection, and curvature have their quantum counterparts. This attempt is also extended to complex manifolds. Examples include the quantum sphere, the complex quantum projective space and the two-sheeted space. The quantum group of general coordinate transformations on some quantum spaces is also given.

  1. Generalized Geometric Quantum Speed Limits

    NASA Astrophysics Data System (ADS)

    Pires, Diego Paiva; Cianciaruso, Marco; Céleri, Lucas C.; Adesso, Gerardo; Soares-Pinto, Diogo O.

    2016-04-01

    The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the nonuniqueness of a bona fide measure of distinguishability defined on the quantum-state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum speed limits valid for unitary and nonunitary evolutions, based on an elegant information geometric formalism. Our work unifies and generalizes existing results on quantum speed limits and provides instances of novel bounds that are tighter than any established one based on the conventional quantum Fisher information. We illustrate our findings with relevant examples, demonstrating the importance of choosing different information metrics for open system dynamics, as well as clarifying the roles of classical populations versus quantum coherences, in the determination and saturation of the speed limits. Our results can find applications in the optimization and control of quantum technologies such as quantum computation and metrology, and might provide new insights in fundamental investigations of quantum thermodynamics.

  2. Geometric reasoning about assembly tools

    SciTech Connect

    Wilson, R.H.

    1997-01-01

    Planning for assembly requires reasoning about various tools used by humans, robots, or other automation to manipulate, attach, and test parts and subassemblies. This paper presents a general framework to represent and reason about geometric accessibility issues for a wide variety of such assembly tools. Central to the framework is a use volume encoding a minimum space that must be free in an assembly state to apply a given tool, and placement constraints on where that volume must be placed relative to the parts on which the tool acts. Determining whether a tool can be applied in a given assembly state is then reduced to an instance of the FINDPLACE problem. In addition, the author presents more efficient methods to integrate the framework into assembly planning. For tools that are applied either before or after their target parts are mated, one method pre-processes a single tool application for all possible states of assembly of a product in polynomial time, reducing all later state-tool queries to evaluations of a simple expression. For tools applied after their target parts are mated, a complementary method guarantees polynomial-time assembly planning. The author presents a wide variety of tools that can be described adequately using the approach, and surveys tool catalogs to determine coverage of standard tools. Finally, the author describes an implementation of the approach in an assembly planning system and experiments with a library of over one hundred manual and robotic tools and several complex assemblies.

  3. Geometric aspects of ordering phenomena

    NASA Astrophysics Data System (ADS)

    Cugliandolo, Leticia F.

    2017-01-01

    A macroscopic system prepared in a disordered phase and quenched across a second-order phase transition into an ordered phase undergoes a coarsening process whereby it orders locally in one of the equilibrium states. The study of the evolution of the morphology of the ordered structures in two dimensions has recently unveiled two interesting and generic features. On the one hand, the dynamics first approach a critical percolating state via the growth of a new lengthscale and satisfying scaling properties with respect to it. The time needed to reach the critical percolating state diverges with the system size, though more weakly than the equilibration time. On the other hand, once the critical percolating structures established, the geometrical and statistical properties at larger scales than the one established by the usual dynamic growing length remain the ones of critical percolation. These observations are common to different microscopic dynamics (single spin flip, local and non-local spin exchange, voter) in pure or weakly disordered systems. We discuss these results and we refer to the relevant publications for details. xml:lang="fr"

  4. PREFACE PASREG: The 7th International Workshop on the Processing and Applications of Superconducting (RE)BCO Large Grain Materials (Washington DC, 29-31 July 2010) PASREG: The 7th International Workshop on the Processing and Applications of Superconducting (RE)BCO Large Grain Materials (Washington DC, 29-31 July 2010)

    NASA Astrophysics Data System (ADS)

    Freyhardt, Herbert; Cardwell, David; Strasik, Mike

    2010-12-01

    Large grain, (RE)BCO bulk superconductors fabricated by top seeded melt growth (TSMG) are able to generate large magnetic fields compared to conventional, iron-based permanent magnets. Following 20 years of development, these materials are now beginning to realize their considerable potential for a variety of engineering applications such as magnetic separators, flywheel energy storage and magnetic bearings. MgB2 has also continued to emerge as a potentially important bulk superconducting material for engineering applications below 20 K due to its lack of granularity and the ease with which complex shapes of this material can be fabricated. This issue of Superconductor Science and Technology contains a selection of papers presented at the 7th International Workshop on the Processing and Applications of Superconducting (RE)BCO Large Grain Materials, including MgB2, held 29th-31sy July 2010 at the Omni Shoreham Hotel, Washington DC, USA, to report progress made in this field in the previous three year period. The workshop followed those held previously in Cambridge, UK (1997), Morioka, Japan (1999), Seattle, USA (2001), Jena, Germany (2003), Tokyo, Japan (2005) and again in Cambridge, UK (2007). The scope of the seventh PASREG workshop was extended to include processing and characterization aspects of the broader spectrum of bulk high temperature superconducting (HTS) materials, including melt-cast Bi-HTS and bulk MgB2, recent developments in the field and innovative applications of bulk HTS. A total of 38 papers were presented at this workshop, of which 30 were presented in oral form and 8 were presented as posters. The organizers wish to acknowledge the efforts of Sue Butler of the University of Houston for her local organization of the workshop. The eighth PASREG workshop will be held in Taiwan in the summer of 2012.

  5. The geometric semantics of algebraic quantum mechanics.

    PubMed

    Cruz Morales, John Alexander; Zilber, Boris

    2015-08-06

    In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects.

  6. Geometric Growing Patterns: What's the Rule?

    ERIC Educational Resources Information Center

    Hourigan, Mairéad; Leavy, Aisling

    2015-01-01

    While within a geometric repeating pattern, there is an identifiable core which is made up of objects that repeat in a predictable manner, a geometric growing pattern (also called visual or pictorial growing patterns in other curricula) "is a pattern that is made from a sequence of figures [or objects] that change from one term to the next in…

  7. Early Sex Differences in Weighting Geometric Cues

    ERIC Educational Resources Information Center

    Lourenco, Stella F.; Addy, Dede; Huttenlocher, Janellen; Fabian, Lydia

    2011-01-01

    When geometric and non-geometric information are both available for specifying location, men have been shown to rely more heavily on geometry compared to women. To shed insight on the nature and developmental origins of this sex difference, we examined how 18- to 24-month-olds represented the geometry of a surrounding (rectangular) space when…

  8. Geometrical splitting and reduction of Feynman diagrams

    NASA Astrophysics Data System (ADS)

    Davydychev, Andrei I.

    2016-10-01

    A geometrical approach to the calculation of N-point Feynman diagrams is reviewed. It is shown that the geometrical splitting yields useful connections between Feynman integrals with different momenta and masses. It is demonstrated how these results can be used to reduce the number of variables in the occurring functions.

  9. Second-quantized formulation of geometric phases

    SciTech Connect

    Deguchi, Shinichi; Fujikawa, Kazuo

    2005-07-15

    The level crossing problem and associated geometric terms are neatly formulated by the second-quantized formulation. This formulation exhibits a hidden local gauge symmetry related to the arbitrariness of the phase choice of the complete orthonormal basis set. By using this second-quantized formulation, which does not assume adiabatic approximation, a convenient exact formula for the geometric terms including off-diagonal geometric terms is derived. The analysis of geometric phases is then reduced to a simple diagonalization of the Hamiltonian, and it is analyzed both in the operator and path-integral formulations. If one diagonalizes the geometric terms in the infinitesimal neighborhood of level crossing, the geometric phases become trivial (and thus no monopole singularity) for arbitrarily large but finite time interval T. The integrability of Schroedinger equation and the appearance of the seemingly nonintegrable phases are thus consistent. The topological proof of the Longuet-Higgins' phase-change rule, for example, fails in the practical Born-Oppenheimer approximation where a large but finite ratio of two time scales is involved and T is identified with the period of the slower system. The difference and similarity between the geometric phases associated with level crossing and the exact topological object such as the Aharonov-Bohm phase become clear in the present formulation. A crucial difference between the quantum anomaly and the geometric phases is also noted.

  10. Geometric Hamiltonian quantum mechanics and applications

    NASA Astrophysics Data System (ADS)

    Pastorello, Davide

    2016-08-01

    Adopting a geometric point of view on Quantum Mechanics is an intriguing idea since, we know that geometric methods are very powerful in Classical Mechanics then, we can try to use them to study quantum systems. In this paper, we summarize the construction of a general prescription to set up a well-defined and self-consistent geometric Hamiltonian formulation of finite-dimensional quantum theories, where phase space is given by the Hilbert projective space (as Kähler manifold), in the spirit of celebrated works of Kibble, Ashtekar and others. Within geometric Hamiltonian formulation quantum observables are represented by phase space functions, quantum states are described by Liouville densities (phase space probability densities), and Schrödinger dynamics is induced by a Hamiltonian flow on the projective space. We construct the star-product of this phase space formulation and some applications of geometric picture are discussed.

  11. Mobility in geometrically confined membranes.

    PubMed

    Domanov, Yegor A; Aimon, Sophie; Toombes, Gilman E S; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S; Bassereau, Patricia

    2011-08-02

    Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the "membrane size" for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111-3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman-Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion.

  12. Mobility in geometrically confined membranes

    PubMed Central

    Domanov, Yegor A.; Aimon, Sophie; Toombes, Gilman E. S.; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S.; Bassereau, Patricia

    2011-01-01

    Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the “membrane size” for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111—3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman–Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion. PMID:21768336

  13. [Evaluation of American Joint Commission on Cancer(8(th) edition) and Japanese Pancreas Society(7(th) edition)changes for T and N staging in patients with pancreatic adenocarcinoma].

    PubMed

    Yang, Y M

    2017-01-01

    Accurate staging for cancer is the basis for clinical practice, individualized treatment strategy, and prognosis determination.Recently, the T and N staging systems for pancreatic adenocarcinoma were updated by both American Joint Commission on Cancer(AJCC)8(th) edition and Japanese Pancreas Society 7(th) edition, in which more objective parameters were applied.When a large number of patients within the test set were staged, AJCC 8(th) edition has showed more reproducible and helped to predict the patient prognosis more accurately.

  14. The Hospital Microbiome Project: Meeting Report for the 1st Hospital Microbiome Project Workshop on sampling design and building science measurements, Chicago, USA, June 7th-8th 2012.

    PubMed

    Smith, Daniel; Alverdy, John; An, Gary; Coleman, Maureen; Garcia-Houchins, Sylvia; Green, Jessica; Keegan, Kevin; Kelley, Scott T; Kirkup, Benjamin C; Kociolek, Larry; Levin, Hal; Landon, Emily; Olsiewski, Paula; Knight, Rob; Siegel, Jeffrey; Weber, Stephen; Gilbert, Jack

    2013-04-15

    This report details the outcome of the 1st Hospital Microbiome Project workshop held on June 7th-8th, 2012 at the University of Chicago, USA. The workshop was arranged to determine the most appropriate sampling strategy and approach to building science measurement to characterize the development of a microbial community within a new hospital pavilion being built at the University of Chicago Medical Center. The workshop made several recommendations and led to the development of a full proposal to the Alfred P. Sloan Foundation as well as to the creation of the Hospital Microbiome Consortium.

  15. Conceptual aspects of geometric quantum computation

    NASA Astrophysics Data System (ADS)

    Sjöqvist, Erik; Azimi Mousolou, Vahid; Canali, Carlo M.

    2016-10-01

    Geometric quantum computation is the idea that geometric phases can be used to implement quantum gates, i.e., the basic elements of the Boolean network that forms a quantum computer. Although originally thought to be limited to adiabatic evolution, controlled by slowly changing parameters, this form of quantum computation can as well be realized at high speed by using nonadiabatic schemes. Recent advances in quantum gate technology have allowed for experimental demonstrations of different types of geometric gates in adiabatic and nonadiabatic evolution. Here, we address some conceptual issues that arise in the realizations of geometric gates. We examine the appearance of dynamical phases in quantum evolution and point out that not all dynamical phases need to be compensated for in geometric quantum computation. We delineate the relation between Abelian and non-Abelian geometric gates and find an explicit physical example where the two types of gates coincide. We identify differences and similarities between adiabatic and nonadiabatic realizations of quantum computation based on non-Abelian geometric phases.

  16. On geometric factors for neutral particle analyzers.

    PubMed

    Stagner, L; Heidbrink, W W

    2014-11-01

    Neutral particle analyzers (NPA) detect neutralized energetic particles that escape from plasmas. Geometric factors relate the counting rate of the detectors to the intensity of the particle source. Accurate geometric factors enable quick simulation of geometric effects without the need to resort to slower Monte Carlo methods. Previously derived expressions [G. R. Thomas and D. M. Willis, "Analytical derivation of the geometric factor of a particle detector having circular or rectangular geometry," J. Phys. E: Sci. Instrum. 5(3), 260 (1972); J. D. Sullivan, "Geometric factor and directional response of single and multi-element particle telescopes," Nucl. Instrum. Methods 95(1), 5-11 (1971)] for the geometric factor implicitly assume that the particle source is very far away from the detector (far-field); this excludes applications close to the detector (near-field). The far-field assumption does not hold in most fusion applications of NPA detectors. We derive, from probability theory, a generalized framework for deriving geometric factors that are valid for both near and far-field applications as well as for non-isotropic sources and nonlinear particle trajectories.

  17. On geometric factors for neutral particle analyzers

    SciTech Connect

    Stagner, L.; Heidbrink, W. W.

    2014-11-15

    Neutral particle analyzers (NPA) detect neutralized energetic particles that escape from plasmas. Geometric factors relate the counting rate of the detectors to the intensity of the particle source. Accurate geometric factors enable quick simulation of geometric effects without the need to resort to slower Monte Carlo methods. Previously derived expressions [G. R. Thomas and D. M. Willis, “Analytical derivation of the geometric factor of a particle detector having circular or rectangular geometry,” J. Phys. E: Sci. Instrum. 5(3), 260 (1972); J. D. Sullivan, “Geometric factor and directional response of single and multi-element particle telescopes,” Nucl. Instrum. Methods 95(1), 5–11 (1971)] for the geometric factor implicitly assume that the particle source is very far away from the detector (far-field); this excludes applications close to the detector (near-field). The far-field assumption does not hold in most fusion applications of NPA detectors. We derive, from probability theory, a generalized framework for deriving geometric factors that are valid for both near and far-field applications as well as for non-isotropic sources and nonlinear particle trajectories.

  18. The promise of geometric morphometrics.

    PubMed

    Richtsmeier, Joan T; DeLeon, Valerie Burke; Lele, Subhash R

    2002-01-01

    Nontraditional or geometric morphometric methods have found wide application in the biological sciences, especially in anthropology, a field with a strong history of measurement of biological form. Controversy has arisen over which method is the "best" for quantifying the morphological difference between forms and for making proper statistical statements about the detected differences. This paper explains that many of these arguments are superfluous to the real issues that need to be understood by those wishing to apply morphometric methods to biological data. Validity, the ability of a method to find the correct answer, is rarely discussed and often ignored. We explain why demonstration of validity is a necessary step in the evaluation of methods used in morphometrics. Focusing specifically on landmark data, we discuss the concepts of size and shape, and reiterate that since no unique definition of size exists, shape can only be recognized with reference to a chosen surrogate for size. We explain why only a limited class of information related to the morphology of an object can be known when landmark data are used. This observation has genuine consequences, as certain morphometric methods are based on models that require specific assumptions, some of which exceed what can be known from landmark data. We show that orientation of an object with reference to other objects in a sample can never be known, because this information is not included in landmark data. Consequently, a descriptor of form difference that contains information on orientation is flawed because that information does not arise from evidence within the data, but instead is a product of a chosen orientation scheme. To illustrate these points, we apply superimposition, deformation, and linear distance-based morphometric methods to the analysis of a simulated data set for which the true differences are known. This analysis demonstrates the relative efficacy of various methods to reveal the true

  19. Harmonization of description and classification of fetal observations: achievements and problems still unresolved: report of the 7th Workshop on the Terminology in Developmental Toxicology Berlin, 4-6 May 2011.

    PubMed

    Solecki, Roland; Barbellion, Stephane; Bergmann, Brigitte; Bürgin, Heinrich; Buschmann, Jochen; Clark, Ruth; Comotto, Laura; Fuchs, Antje; Faqi, Ali Said; Gerspach, Ralph; Grote, Konstanze; Hakansson, Helen; Heinrich, Verena; Heinrich-Hirsch, Barbara; Hofmann, Thomas; Hübel, Ulrich; Inazaki, Thelma Helena; Khalil, Samia; Knudsen, Thomas B; Kudicke, Sabine; Lingk, Wolfgang; Makris, Susan; Müller, Simone; Paumgartten, Francisco; Pfeil, Rudolf; Rama, Elkiane Macedo; Schneider, Steffen; Shiota, Kohei; Tamborini, Eva; Tegelenbosch, Mariska; Ulbrich, Beate; van Duijnhoven, E A J; Wise, David; Chahoud, Ibrahim

    2013-01-01

    This article summarizes the 7th Workshop on the Terminology in Developmental Toxicology held in Berlin, May 4-6, 2011. The series of Berlin Workshops has been mainly concerned with the harmonization of terminology and classification of fetal anomalies in developmental toxicity studies. The main topics of the 7th Workshop were knowledge on the fate of anomalies after birth, use of Version 2 terminology for maternal-fetal observations and non-routinely used species, reclassification of "grey zone" anomalies and categorization of fetal observations for human health risk assessment. The paucity of data on health consequences of the postnatal permanence of fetal anomalies is relevant and further studies are needed. The Version 2 terminology is an important step forward and the terms listed in this glossary are considered also to be appropriate for most observations in non-routinely used species. Continuation of the Berlin Workshops was recommended. Topics suggested for the next Workshop were grouping of fetal observations for reporting and statistical analysis.

  20. Geometric symmetries in superfluid vortex dynamics

    SciTech Connect

    Kozik, Evgeny; Svistunov, Boris

    2010-10-01

    Dynamics of quantized vortex lines in a superfluid feature symmetries associated with the geometric character of the complex-valued field, w(z)=x(z)+iy(z), describing the instant shape of the line. Along with a natural set of Noether's constants of motion, which - apart from their rather specific expressions in terms of w(z) - are nothing but components of the total linear and angular momenta of the fluid, the geometric symmetry brings about crucial consequences for kinetics of distortion waves on the vortex lines, the Kelvin waves. It is the geometric symmetry that renders Kelvin-wave cascade local in the wave-number space. Similar considerations apply to other systems with purely geometric degrees of freedom.

  1. Heat transfer in geometrically similar cylinders

    NASA Technical Reports Server (NTRS)

    Riekert, P; Held, A

    1941-01-01

    The power and heat-stress conditions of geometrically similar engines are discussed. The advantages accruing from smaller cylinder dimensions are higher specific horsepower, lower weight per horsepower, lower piston temperature, and less frontal area, with reduced detonation tendency.

  2. Hidden geometric correlations in real multiplex networks

    NASA Astrophysics Data System (ADS)

    Kleineberg, Kaj-Kolja; Boguñá, Marián; Ángeles Serrano, M.; Papadopoulos, Fragkiskos

    2016-11-01

    Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not random combinations of single network layers. Instead, they are organized in specific ways dictated by hidden geometric correlations between the layers. We find that these correlations are significant in different real multiplexes, and form a key framework for answering many important questions. Specifically, we show that these geometric correlations facilitate the definition and detection of multidimensional communities, which are sets of nodes that are simultaneously similar in multiple layers. They also enable accurate trans-layer link prediction, meaning that connections in one layer can be predicted by observing the hidden geometric space of another layer. And they allow efficient targeted navigation in the multilayer system using only local knowledge, outperforming navigation in the single layers only if the geometric correlations are sufficiently strong.

  3. The perception of geometrical structure from congruence

    NASA Technical Reports Server (NTRS)

    Lappin, Joseph S.; Wason, Thomas D.

    1989-01-01

    The principle function of vision is to measure the environment. As demonstrated by the coordination of motor actions with the positions and trajectories of moving objects in cluttered environments and by rapid recognition of solid objects in varying contexts from changing perspectives, vision provides real-time information about the geometrical structure and location of environmental objects and events. The geometric information provided by 2-D spatial displays is examined. It is proposed that the geometry of this information is best understood not within the traditional framework of perspective trigonometry, but in terms of the structure of qualitative relations defined by congruences among intrinsic geometric relations in images of surfaces. The basic concepts of this geometrical theory are outlined.

  4. Concepts and Figures in Geometric Reasoning.

    ERIC Educational Resources Information Center

    Fischbein, Efraim; Nachlieli, Talli

    1998-01-01

    Opens with the theoretical construct of figural concepts. Argues that geometrical figures are characterized by both conceptual and sensorial properties. Investigates the effects of interaction between conceptual and figural components. Contains 19 references. (DDR)

  5. The Geometric Grids of the Hieratic Numeral.

    NASA Astrophysics Data System (ADS)

    Aboulfotouh, Hossam M. K.

    The paper discusses the geometrical designs of the hieratic numeral signs. It shows the regular-grid-patterns of squares upon which, the shapes of the already decoded hieratic numeral-signs, have been designed. Also, it shows the design of some hieratic numeral signs, based on subdividing the circle; and the hieratic signs of modular notation. It might reveal the basic geometrical level of understanding of anonymous ancient Egyptians who designed them some four thousand years ago.

  6. Geometric sensitivity of ClearPET™ Neuro

    NASA Astrophysics Data System (ADS)

    Gundlich, Brigitte; Weber, Simone

    2007-02-01

    ClearPET™ Neuro is a small-animal positron emission tomography (PET) scanner dedicated to brain studies on rats and primates. The design of ClearPET™ Neuro leads to a specific geometric sensitivity, characterized by inhomogeneous and, depending on the measurement setup, even incomplete data. With respect to reconstruction techniques, homogeneous and complete data sets are a 'must' for analytical reconstruction methods, whereas iterative methods take the geometrical sensitivity into account during the reconstruction process. Nevertheless, here a homogeneous geometric sensitivity over the field of view is highly desirable. Therefore, this contribution aims at studying the impact of different scanner geometries and measurement setups on the geometric sensitivity. A data set of coincident events is computed for certain settings that contains each possible crystal combination once. The lines of response are rebinned into normalizing sinograms and backprojected into sensitivity images. Both, normalizing sinograms and sensitivity images mirror the geometric sensitivity and therefore, provide information which setting enables most complete and homogeneous data sets. An optimal measurement setup and scanner geometry in terms of homogeneous geometric sensitivity is found by analyzing the sensitivity images.

  7. Geometric phases in self-induced transparency

    SciTech Connect

    Sen, T; Milovich, J

    1991-05-01

    We consider the geometric phases arising in the lossless propagation of light pulses through a medium composed of near resonant two-level atoms. A reformulation of the coupled Maxwell-Schroedinger equations allows us to construct conservation laws in a general context. There exist periodic solutions of these equations which lead to the possibility of cyclical evolution of the state vector and the appearance of a geometric phase. We first show that if the ground state is the initial state of the system, then it acquires a geometric phase after the passage of the soliton pulses of McCall and Hahn. More generally if the initial state is a superposition of the two levels, continuous pulse trains can propagate without appreciable loss. We also find in this case that the state vector develops a geometric phase provided the parameters take on the particular values required for cyclical evolution. In both cases we exhibit the geometric character of the calculated phases by showing that they equal half the solid angle subtended by a closed curve traced by the Bloch, vector on the Bloch sphere. We verify a recent assertion of Anandan and Aharonov that the energy uncertainty in the state is directly related to the speed at which the tip of the Bloch vector moves along the curve on the Bloch sphere (or in more general terms the energy uncertainty is related to the speed in the projective Hilbert space).

  8. Morphing of geometric composites via residual swelling.

    PubMed

    Pezzulla, Matteo; Shillig, Steven A; Nardinocchi, Paola; Holmes, Douglas P

    2015-08-07

    Understanding and controlling the shape of thin, soft objects has been the focus of significant research efforts among physicists, biologists, and engineers in the last decade. These studies aim to utilize advanced materials in novel, adaptive ways such as fabricating smart actuators or mimicking living tissues. Here, we present the controlled growth-like morphing of 2D sheets into 3D shapes by preparing geometric composite structures that deform by residual swelling. The morphing of these geometric composites is dictated by both swelling and geometry, with diffusion controlling the swelling-induced actuation, and geometric confinement dictating the structure's deformed shape. Building on a simple mechanical analog, we present an analytical model that quantitatively describes how the Gaussian and mean curvatures of a thin disk are affected by the interplay among geometry, mechanics, and swelling. This model is in excellent agreement with our experiments and numerics. We show that the dynamics of residual swelling is dictated by a competition between two characteristic diffusive length scales governed by geometry. Our results provide the first 2D analog of Timoshenko's classical formula for the thermal bending of bimetallic beams - our generalization explains how the Gaussian curvature of a 2D geometric composite is affected by geometry and elasticity. The understanding conferred by these results suggests that the controlled shaping of geometric composites may provide a simple complement to traditional manufacturing techniques.

  9. Geometric modeling of pelvic organs with thickness

    NASA Astrophysics Data System (ADS)

    Bay, T.; Chen, Z.-W.; Raffin, R.; Daniel, M.; Joli, P.; Feng, Z.-Q.; Bellemare, M.-E.

    2012-03-01

    Physiological changes in the spatial configuration of the internal organs in the abdomen can induce different disorders that need surgery. Following the complexity of the surgical procedure, mechanical simulations are necessary but the in vivo factor makes complicate the study of pelvic organs. In order to determine a realistic behavior of these organs, an accurate geometric model associated with a physical modeling is therefore required. Our approach is integrated in the partnership between a geometric and physical module. The Geometric Modeling seeks to build a continuous geometric model: from a dataset of 3D points provided by a Segmentation step, surfaces are created through a B-spline fitting process. An energy function is built to measure the bidirectional distance between surface and data. This energy is minimized with an alternate iterative Hoschek-like method. A thickness is added with an offset formulation, and the geometric model is finally exported in a hexahedral mesh. Afterward, the Physical Modeling tries to calculate the properties of the soft tissues to simulate the organs displacements. The physical parameters attached to the data are determined with a feedback loop between finite-elements deformations and ground-truth acquisition (dynamic MRI).

  10. Young Children's Understanding of Geometric Shapes: The Role of Geometric Models

    ERIC Educational Resources Information Center

    Elia, Iliada; Gagatsis, Athanasios; Kyriakides, Leonidas

    2003-01-01

    In this paper, we explore the role of polygonal shapes as geometrical models in teaching mathematics, so as to elicit and interpret children's geometric conceptions and understanding about shapes. Primary pupils were asked to draw a stairway of figures (triangles, squares and rectangles) each one bigger than the preceding one. Pupils use two…

  11. [Effect of artificial skull deformation in vitro on sensory performance in the human. Morphologic and tomographic study based on the calvarium E2 of Tell es Sultan/Jericho (7th millenium b.c.)].

    PubMed

    Röhrer-Ertl, O; Frey, K W

    1984-01-01

    The question of an influence of artificial skull deformations on sensory performances in man has been discussed since Torquemada (1615). It was inquired into by means of the individual E2 of the Tell es Sultan/Jericho (7th millenium B.C.). At first a morphological expert evidence and then an ear tomography (Mündnich and Frey's method) were carried out. Hereby abnormal displacements of all head organs or their parts could be seen. Evaluable pathological findings, however, did not result. Thus an influence of artificial skull deformation on sensory performance in man has to be refused in the same way as the connection of the same with infant mortality invented by Torquemada (in this case political reasons were probably responsible for it). The functional thesis of Toldt for the formation of Arcus superciliares etc. was confirmed.

  12. Quantification of Osteon Morphology Using Geometric Histomorphometrics.

    PubMed

    Dillon, Scott; Cunningham, Craig; Felts, Paul

    2016-03-01

    Many histological methods in forensic anthropology utilize combinations of traditional histomorphometric parameters which may not accurately describe the morphology of microstructural features. Here, we report the novel application of a geometric morphometric method suitable when considering structures without anatomically homologous landmarks for the quantification of complete secondary osteon size and morphology. The method is tested for its suitability in the measurement of intact secondary osteons using osteons digitized from transverse femoral diaphyseal sections prepared from two human individuals. The results of methodological testing demonstrate the efficacy of the technique when applied to intact secondary osteons. In providing accurate characterization of micromorphology within the robust mathematical framework of geometric morphometrics, this method may surpass traditional histomorphometric variables currently employed in forensic research and practice. A preliminary study of the intersectional histomorphometric variation within the femoral diaphysis is made using this geometric histomorphometric method to demonstrate its potential.

  13. The geometric phase controls ultracold chemistry

    SciTech Connect

    Kendrick, B. K.; Hazra, Jisha; Balakrishnan, N.

    2015-07-30

    In this study, the geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born–Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O + OH → H + O2 reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity.

  14. Geometric spin echo under zero field

    PubMed Central

    Sekiguchi, Yuhei; Komura, Yusuke; Mishima, Shota; Tanaka, Touta; Niikura, Naeko; Kosaka, Hideo

    2016-01-01

    Spin echo is a fundamental tool for quantum registers and biomedical imaging. It is believed that a strong magnetic field is needed for the spin echo to provide long memory and high resolution, since a degenerate spin cannot be controlled or addressed under a zero magnetic field. While a degenerate spin is never subject to dynamic control, it is still subject to geometric control. Here we show the spin echo of a degenerate spin subsystem, which is geometrically controlled via a mediating state split by the crystal field, in a nitrogen vacancy centre in diamond. The demonstration reveals that the degenerate spin is protected by inherent symmetry breaking called zero-field splitting. The geometric spin echo under zero field provides an ideal way to maintain the coherence without any dynamics, thus opening the way to pseudo-static quantum random access memory and non-invasive biosensors. PMID:27193936

  15. The Geometric Phase of Stock Trading

    PubMed Central

    2016-01-01

    Geometric phases describe how in a continuous-time dynamical system the displacement of a variable (called phase variable) can be related to other variables (shape variables) undergoing a cyclic motion, according to an area rule. The aim of this paper is to show that geometric phases can exist also for discrete-time systems, and even when the cycles in shape space have zero area. A context in which this principle can be applied is stock trading. A zero-area cycle in shape space represents the type of trading operations normally carried out by high-frequency traders (entering and exiting a position on a fast time-scale), while the phase variable represents the cash balance of a trader. Under the assumption that trading impacts stock prices, even zero-area cyclic trading operations can induce geometric phases, i.e., profits or losses, without affecting the stock quote. PMID:27556642

  16. Geometric spin echo under zero field

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Yuhei; Komura, Yusuke; Mishima, Shota; Tanaka, Touta; Niikura, Naeko; Kosaka, Hideo

    2016-05-01

    Spin echo is a fundamental tool for quantum registers and biomedical imaging. It is believed that a strong magnetic field is needed for the spin echo to provide long memory and high resolution, since a degenerate spin cannot be controlled or addressed under a zero magnetic field. While a degenerate spin is never subject to dynamic control, it is still subject to geometric control. Here we show the spin echo of a degenerate spin subsystem, which is geometrically controlled via a mediating state split by the crystal field, in a nitrogen vacancy centre in diamond. The demonstration reveals that the degenerate spin is protected by inherent symmetry breaking called zero-field splitting. The geometric spin echo under zero field provides an ideal way to maintain the coherence without any dynamics, thus opening the way to pseudo-static quantum random access memory and non-invasive biosensors.

  17. Overview on METEOSAT geometrical image data processing

    NASA Technical Reports Server (NTRS)

    Diekmann, Frank J.

    1994-01-01

    Digital Images acquired from the geostationary METEOSAT satellites are processed and disseminated at ESA's European Space Operations Centre in Darmstadt, Germany. Their scientific value is mainly dependent on their radiometric quality and geometric stability. This paper will give an overview on the image processing activities performed at ESOC, concentrating on the geometrical restoration and quality evaluation. The performance of the rectification process for the various satellites over the past years will be presented and the impacts of external events as for instance the Pinatubo eruption in 1991 will be explained. Special developments both in hard and software, necessary to cope with demanding tasks as new image resampling or to correct for spacecraft anomalies, are presented as well. The rotating lens of MET-5 causing severe geometrical image distortions is an example for the latter.

  18. MM Algorithms for Geometric and Signomial Programming.

    PubMed

    Lange, Kenneth; Zhou, Hua

    2014-02-01

    This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.

  19. The geometric phase controls ultracold chemistry

    PubMed Central

    Kendrick, B. K.; Hazra, Jisha; Balakrishnan, N.

    2015-01-01

    The geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born–Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O+OH→H+O2 reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity. PMID:26224326

  20. Geometric uncertainty relation for mixed quantum states

    SciTech Connect

    Andersson, Ole Heydari, Hoshang

    2014-04-15

    In this paper we use symplectic reduction in an Uhlmann bundle to construct a principal fiber bundle over a general space of unitarily equivalent mixed quantum states. The bundle, which generalizes the Hopf bundle for pure states, gives in a canonical way rise to a Riemannian metric and a symplectic structure on the base space. With these we derive a geometric uncertainty relation for observables acting on quantum systems in mixed states. We also give a geometric proof of the classical Robertson-Schrödinger uncertainty relation, and we compare the two. They turn out not to be equivalent, because of the multiple dimensions of the gauge group for general mixed states. We give examples of observables for which the geometric relation provides a stronger estimate than that of Robertson and Schrödinger, and vice versa.

  1. Geometric Computation of Human Gyrification Indexes from Magnetic Resonance Images

    DTIC Science & Technology

    2009-04-01

    GEOMETRIC COMPUTATION OF HUMAN GYRIFICATION INDEXES FROM MAGNETIC RESONANCE IMAGES By Shu Su Tonya White Marcus Schmidt Chiu-Yen Kao and Guillermo...00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Geometric Computation of Human Gyrification Indexes from Magnetic Resonance Images 5a. CONTRACT NUMBER... Geometric Computation of Gyrification Indexes Chiu-Yen Kao 1 Geometric Computation of Human Gyrification

  2. Primary School Teacher Candidates' Geometric Habits of Mind

    ERIC Educational Resources Information Center

    Köse, Nilu¨fer Y.; Tanisli, Dilek

    2014-01-01

    Geometric habits of mind are productive ways of thinking that support learning and using geometric concepts. Identifying primary school teacher candidates' geometric habits of mind is important as they affect the development of their future students' geometric thinking. Therefore, this study attempts to determine primary school teachers' geometric…

  3. Methods of geometrical integration in accelerator physics

    NASA Astrophysics Data System (ADS)

    Andrianov, S. N.

    2016-12-01

    In the paper we consider a method of geometric integration for a long evolution of the particle beam in cyclic accelerators, based on the matrix representation of the operator of particles evolution. This method allows us to calculate the corresponding beam evolution in terms of two-dimensional matrices including for nonlinear effects. The ideology of the geometric integration introduces in appropriate computational algorithms amendments which are necessary for preserving the qualitative properties of maps presented in the form of the truncated series generated by the operator of evolution. This formalism extends both on polarized and intense beams. Examples of practical applications are described.

  4. Classical light beams and geometric phases.

    PubMed

    Mukunda, N; Chaturvedi, S; Simon, R

    2014-06-01

    We present a study of geometric phases in classical wave and polarization optics using the basic mathematical framework of quantum mechanics. Important physical situations taken from scalar wave optics, pure polarization optics, and the behavior of polarization in the eikonal or ray limit of Maxwell's equations in a transparent medium are considered. The case of a beam of light whose propagation direction and polarization state are both subject to change is dealt with, attention being paid to the validity of Maxwell's equations at all stages. Global topological aspects of the space of all propagation directions are discussed using elementary group theoretical ideas, and the effects on geometric phases are elucidated.

  5. Model-based vision using geometric hashing

    NASA Astrophysics Data System (ADS)

    Akerman, Alexander, III; Patton, Ronald

    1991-04-01

    The Geometric Hashing technique developed by the NYU Courant Institute has been applied to various automatic target recognition applications. In particular, I-MATH has extended the hashing algorithm to perform automatic target recognition ofsynthetic aperture radar (SAR) imagery. For this application, the hashing is performed upon the geometric locations of dominant scatterers. In addition to being a robust model-based matching algorithm -- invariant under translation, scale, and 3D rotations of the target -- hashing is of particular utility because it can still perform effective matching when the target is partially obscured. Moreover, hashing is very amenable to a SIMD parallel processing architecture, and thus potentially realtime implementable.

  6. Quantum gates and their coexisting geometric phases

    SciTech Connect

    Wu Lianao; Bishop, C. Allen; Byrd, Mark S.

    2011-08-15

    Geometric phases arise naturally in a variety of quantum systems with observable consequences. They also arise in quantum computations when dressed states are used in gating operations. Here we show how they arise in these gating operations and how one may take advantage of the dressed states producing them. Specifically, we show that for a given, but arbitrary Hamiltonian, and at an arbitrary time {tau}, there always exists a set of dressed states such that a given gate operation can be performed by the Hamiltonian up to a phase {phi}. The phase is a sum of a dynamical phase and a geometric phase. We illustrate the dressed phase for several systems.

  7. Geometric Integration of Weakly Dissipative Systems

    NASA Astrophysics Data System (ADS)

    Modin, K.; Führer, C.; Soöderlind, G.

    2009-09-01

    Some problems in mechanics, e.g. in bearing simulation, contain subsystems that are conservative as well as weakly dissipative subsystems. Our experience is that geometric integration methods are often superior for such systems, as long as the dissipation is weak. Here we develop adaptive methods for dissipative perturbations of Hamiltonian systems. The methods are "geometric" in the sense that the form of the dissipative perturbation is preserved. The methods are linearly explicit, i.e., they require the solution of a linear subsystem. We sketch an analysis in terms of backward error analysis and numerical comparisons with a conventional RK method of the same order is given.

  8. Local Geometrical Machinery for Complexity and Control

    NASA Astrophysics Data System (ADS)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    In this Chapter, we present local geometrical machinery for studying complexity and control, consisting of dynamics on Kähler manifolds, which combine three geometrical structures-Riemannian, symplectic and complex (Hermitian)-in a mutually compatible way. In other words, every Kähler manifold is simultaneously Riemannian, symplectic and complex (Hermitian). It is well known that Riemannian manifolds represent the stage on which Lagrangian dynamics is set, symplectic manifolds represent the stage for Hamiltonian dynamics, and complex (Hermitian) varieties comprise the stage for quantum dynamics. Therefore, Kähler manifolds represent the richest dynamical stage available where Lagrangian, Hamiltonian, and quantum dynamics all dance together.

  9. Integral representation for geometric optics solutions

    NASA Astrophysics Data System (ADS)

    Hazak, G.; Bernstein, I. B.; Smith, T. M.

    1983-03-01

    An integral representation of the geometric optics solutions for the field of dressed particles in inhomogeneous plasma is derived. The representation is a natural generalization of the Fourier integral used for homogeneous systems. The set of plane waves is replaced by a complete orthogonal set of 'quasi-plane waves' which in practice may be constructed by using the existing ray tracing codes.

  10. Geometric Transformations in Middle School Mathematics Textbooks

    ERIC Educational Resources Information Center

    Zorin, Barbara

    2011-01-01

    This study analyzed treatment of geometric transformations in presently available middle grades (6, 7, 8) student mathematics textbooks. Fourteen textbooks from four widely used textbook series were evaluated: two mainline publisher series, Pearson (Prentice Hall) and Glencoe (Math Connects); one National Science Foundation (NSF) funded curriculum…

  11. Geometric Models for Collaborative Search and Filtering

    ERIC Educational Resources Information Center

    Bitton, Ephrat

    2011-01-01

    This dissertation explores the use of geometric and graphical models for a variety of information search and filtering applications. These models serve to provide an intuitive understanding of the problem domains and as well as computational efficiencies to our solution approaches. We begin by considering a search and rescue scenario where both…

  12. Geometrizing the Quantum - A Toy Model

    SciTech Connect

    Koch, Benjamin

    2009-12-15

    It is shown that the equations of relativistic Bohmian mechanics for multiple bosonic particles have a dual description in terms of a classical theory of conformally 'curved' space-time. This shows that it is possible to formulate quantum mechanics as a purely classical geometrical theory. The results are further generalized to interactions with an external electromagnetic field.

  13. On Arithmetic-Geometric-Mean Polynomials

    ERIC Educational Resources Information Center

    Griffiths, Martin; MacHale, Des

    2017-01-01

    We study here an aspect of an infinite set "P" of multivariate polynomials, the elements of which are associated with the arithmetic-geometric-mean inequality. In particular, we show in this article that there exist infinite subsets of probability "P" for which every element may be expressed as a finite sum of squares of real…

  14. Estimation on Geometric Measure of Quantum Coherence

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Jun; Chen, Bin; Li, Ming; Fei, Shao-Ming; Long, Gui-Lu

    2017-02-01

    We study the geometric measure of quantum coherence recently proposed in [Phys. Rev. Lett. 115, 020403 (2015)]. Both lower and upper bounds of this measure are provided. These bounds are shown to be tight for a class of important coherent states -- maximally coherent mixed states. The trade-off relation between quantum coherence and mixedness for this measure is also discussed.

  15. More Meaning from the Geometric Mean.

    ERIC Educational Resources Information Center

    Dorner, Bryan C.

    2003-01-01

    Provides classroom suggestions for combining numerical, algebraic, and geometric techniques with the understanding of a simple method for computing square roots. Historical origins of the method illustrate the debt owed to ancient minds living in what are now India, Pakistan, Iraq, and Egypt. (Author/NB)

  16. Geometric Probability and the Areas of Leaves

    ERIC Educational Resources Information Center

    Hoiberg, Karen Bush; Sharp, Janet; Hodgson, Ted; Colbert, Jim

    2005-01-01

    This article describes how a group of fifth-grade mathematics students measured irregularly shaped objects using geometric probability theory. After learning how to apply a ratio procedure to find the areas of familiar shapes, students extended the strategy for use with irregularly shaped objects, in this case, leaves. (Contains 2 tables and 8…

  17. Using geometric algebra to study optical aberrations

    SciTech Connect

    Hanlon, J.; Ziock, H.

    1997-05-01

    This paper uses Geometric Algebra (GA) to study vector aberrations in optical systems with square and round pupils. GA is a new way to produce the classical optical aberration spot diagrams on the Gaussian image plane and surfaces near the Gaussian image plane. Spot diagrams of the third, fifth and seventh order aberrations for square and round pupils are developed to illustrate the theory.

  18. Impossible Geometric Constructions: A Calculus Writing Project

    ERIC Educational Resources Information Center

    Awtrey, Chad

    2013-01-01

    This article discusses a writing project that offers students the opportunity to solve one of the most famous geometric problems of Greek antiquity; namely, the impossibility of trisecting the angle [pi]/3. Along the way, students study the history of Greek geometry problems as well as the life and achievements of Carl Friedrich Gauss. Included is…

  19. A Geometric Approach to Fair Division

    ERIC Educational Resources Information Center

    Barbanel, Julius

    2010-01-01

    We wish to divide a cake among some collection of people (who may have very different notions of the comparative value of pieces of cake) in a way that is both "fair" and "efficient." We explore the meaning of these terms, introduce two geometric tools to aid our analysis, and present a proof (due to Dietrich Weller) that establishes the existence…

  20. Plato alleges that God forever geometrizes

    NASA Astrophysics Data System (ADS)

    Ne'Eman, Yuval

    1996-05-01

    Since 1961, the experimental exploration at the fundamental level of physical reality has surprised physists by revealing to them a highly geometric scenery. Like Einstein's (classical) theory of gravity, the “standard model,” describing the strong, weak, and electromagnetic interaction, testifies in favor of Plato's reported allegation.

  1. Geometric Interpretations of Some Psychophysical Results.

    ERIC Educational Resources Information Center

    Levine, Michael V.

    A theory of psychophysics is discussed that enlarges the classical theory in three general ways: (1) the multidimensional nature of perception is made explicit; (2) the transformations of the theory are interpreted geometrically; and (3) attributes are distinguished from sensations and only partially ordered. It is shown that, with the enlarged…

  2. How Do Young Children Learn Geometric Concepts.

    ERIC Educational Resources Information Center

    Ohe, Pia

    Twenty children (ages 5 and 6) from each of seven cultural groups (Caucasian, Black, Jewish, Puerto Rican, Chinese, Korean-American and native Korean) were given a copying task of 21 geometric shapes to test the cultural invariancy of Piaget's topological-projective-Euclidean concept acquisition sequence. All subjects were either middle or lower…

  3. Modern Geometric Algebra: A (Very Incomplete!) Survey

    ERIC Educational Resources Information Center

    Suzuki, Jeff

    2009-01-01

    Geometric algebra is based on two simple ideas. First, the area of a rectangle is equal to the product of the lengths of its sides. Second, if a figure is broken apart into several pieces, the sum of the areas of the pieces equals the area of the original figure. Remarkably, these two ideas provide an elegant way to introduce, connect, and…

  4. Geometric interpretations for resonances of plasmonic nanoparticles

    PubMed Central

    Liu, Wei; Oulton, Rupert F.; Kivshar, Yuri S.

    2015-01-01

    The field of plasmonics can be roughly categorized into two branches: surface plasmon polaritons (SPPs) propagating in waveguides and localized surface plasmons (LSPs) supported by scattering particles. Investigations along these two directions usually employ different approaches, resulting in more or less a dogma that the two branches progress almost independently of each other, with few interactions. Here in this work we interpret LSPs from a Bohr model based geometric perspective relying on SPPs, thus establishing a connection between these two sub-fields. Besides the clear explanations of conventional scattering features of plasmonic nanoparticles, based on this geometric model we further demonstrate other anomalous scattering features (higher order modes supported at lower frequencies, and blueshift of the resonance with increasing particle sizes) and multiple electric resonances of the same order supported at different frequencies, which have been revealed to originate from backward SPP modes and multiple dispersion bands supported in the corresponding plasmonic waveguides, respectively. Inspired by this geometric model, it is also shown that, through solely geometric tuning, the absorption of each LSP resonance can be maximized to reach the single channel absorption limit, provided that the scattering and absorption rates are tuned to be equal. PMID:26173797

  5. An underlying geometrical manifold for Hamiltonian mechanics

    NASA Astrophysics Data System (ADS)

    Horwitz, L. P.; Yahalom, A.; Levitan, J.; Lewkowicz, M.

    2017-02-01

    We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture), that can be put into correspondence with the usual Hamilton-Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamiltonian-Lagrange picture, defined on the Hamilton-Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton-Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton-Lagrange picture can be generated by variations along geodesics in the geometrical picture and establish a correspondence which provides a basis for understanding how the instability in the geometrical picture is manifested in the instability of the the original Hamiltonian motion.

  6. Calculation of Geometric Dilution of Precision

    NASA Astrophysics Data System (ADS)

    Zhu, Jijie

    1992-07-01

    In this short communication, a very simple closed-form formula for the calculation of the Geometric Dilution of Precision (GDOP) in Global Positioning System (GPS) navigation and in Global Navigation Satellite System (GLONASS) navigation is presented, which requires less than 40 multiplications.

  7. Geometric Representations for Discrete Fourier Transforms

    NASA Technical Reports Server (NTRS)

    Cambell, C. W.

    1986-01-01

    Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.

  8. Reflections on representing non-geometric data

    NASA Technical Reports Server (NTRS)

    Emnett, R. F.; Shu, H. H.

    1984-01-01

    The American National Standard Y14.26M-1981 on Digital Representation for Communication of Product Definition Data includes an introduction, three sections corresponding to IGES (Initial Graphics Exchange Specification) Version 1.0, and Section 5, which is a constructive, relational, language based representation for geometric and topological entitles.

  9. A GEOMETRICAL HEIGHT SCALE FOR SUNSPOT PENUMBRAE

    SciTech Connect

    Puschmann, K. G.; Ruiz Cobo, B.; MartInez Pillet, V. E-mail: brc@iac.e

    2010-09-10

    Inversions of spectropolarimetric observations of penumbral filaments deliver the stratification of different physical quantities in an optical depth scale. However, without establishing a geometrical height scale, their three-dimensional geometrical structure cannot be derived. This is crucial in understanding the correct spatial variation of physical properties in the penumbral atmosphere and to provide insights into the mechanism capable of explaining the observed penumbral brightness. The aim of this work is to determine a global geometrical height scale in the penumbra by minimizing the divergence of the magnetic field vector and the deviations from static equilibrium as imposed by a force balance equation that includes pressure gradients, gravity, and the Lorentz force. Optical depth models are derived from the inversion of spectropolarimetric data of an active region observed with the Solar Optical Telescope on board the Hinode satellite. We use a genetic algorithm to determine the boundary condition for the inference of geometrical heights. The retrieved geometrical height scale permits the evaluation of the Wilson depression at each pixel and the correlation of physical quantities at each height. Our results fit into the uncombed penumbral scenario, i.e., a penumbra composed of flux tubes with channeled mass flow and with a weaker and more horizontal magnetic field as compared with the background field. The ascending material is hotter and denser than their surroundings. We do not find evidence of overturning convection or field-free regions in the inner penumbral area analyzed. The penumbral brightness can be explained by the energy transfer of the ascending mass carried by the Evershed flow, if the physical quantities below z = -75 km are extrapolated from the results of the inversion.

  10. NRP 7th Edition: Are You Prepared?

    PubMed

    Zaichkin, Jeanette; Mccarney, Linda; Weiner, Gary

    2016-01-01

    The seventh edition of the American Academy of Pediatrics/American Heart Association Neonatal Resuscitation Program (NRP) materials must be in use by January 1, 2017. As in previous editions, changes in resuscitation science are based on an international review and consensus of current resuscitation science. The seventh edition NRP materials also include enhancements to training materials aimed at improving the quality of NRP instruction and providing the opportunity for ongoing education. A standardized approach to instructor training, an online Instructor Toolkit, eSim cases, and a new learning management system are among the new resources.

  11. 7(th) International Immunoglobulin Conference: Poster presentations.

    PubMed

    Warnatz, K; Ballow, M; Stangel, M; Bril, V

    2014-12-01

    Immunoglobulin (Ig) therapy is the mainstay of treatment for primary antibody deficiency disorders and has proved to be efficacious in specific autoimmune and inflammatory diseases. Additionally, due to the role of Ig in complement activation, it is being used increasingly in solid organ transplantation. Furthermore, Ig is the primary or secondary treatment in some immune-mediated neuropathies such as chronic inflammatory demyelinating polyneuropathy (CIDP) or multifocal motor neuropathy (MMN). This session discusses trends of Ig use in Europe, proposed mechanisms of action, adverse effects and the potential role of Ig therapy in transplantation. Dr Šedivá reported that Ig therapy is available in all European countries, although dosing is not always optimal, due partly to reimbursement plans. Subcutaneous immunoglobulin (SCIg) has become increasingly accessible in recent years; however, the chosen route of administration still varies widely between countries. Dr Berger's presentation on optimization of Ig therapy in neuropathies, and Dr Rojavin's report on a pharmacometric model to determine the serum IgG levels achieved by different dosing regimens in primary antibody deficiency (PAD) patients, led to the challenging concept of using individualized dosing strategies. Dr Klehmet reported on the potential benefit of using antigen-specific T cell responses as a biomarker of IVIg responsiveness in CIDP patients, while Dr von Gunten provided an insight into the mechanisms of action of Ig preparations, suggesting that the immunoregulatory effects of IgG may be mediated by IgG antibodies against glycans. Dr Basta reported on the potential thrombogenic adverse effects associated with Ig therapy. Although these adverse events are rare, further studies are needed to clarify the relationship between Ig replacement and immunomodulatory therapy and these adverse reactions. In transplantation, Dr Carbone described that prophylactic IVIg treatment was found to decrease the incidence of severe infection in IgG hypogammaglobulinaemia patients undergoing heart transplantations. Furthermore, Dr Clatworthy reported that inactivating polymorphisms in the inhibitory receptor FcγRIIB do not impact upon kidney allograft survival.

  12. 7th International Immunoglobulin Conference: Poster Presentations

    PubMed Central

    Warnatz, K; Ballow, M; Stangel, M; Bril, V

    2014-01-01

    Immunoglobulin (Ig) therapy is the mainstay of treatment for primary antibody deficiency disorders and has proved to be efficacious in specific autoimmune and inflammatory diseases. Additionally, due to the role of Ig in complement activation, it is being used increasingly in solid organ transplantation. Furthermore, Ig is the primary or secondary treatment in some immune-mediated neuropathies such as chronic inflammatory demyelinating polyneuropathy (CIDP) or multifocal motor neuropathy (MMN). This session discusses trends of Ig use in Europe, proposed mechanisms of action, adverse effects and the potential role of Ig therapy in transplantation. Dr Šedivá reported that Ig therapy is available in all European countries, although dosing is not always optimal, due partly to reimbursement plans. Subcutaneous immunoglobulin (SCIg) has become increasingly accessible in recent years; however, the chosen route of administration still varies widely between countries. Dr Berger's presentation on optimization of Ig therapy in neuropathies, and Dr Rojavin's report on a pharmacometric model to determine the serum IgG levels achieved by different dosing regimens in primary antibody deficiency (PAD) patients, led to the challenging concept of using individualized dosing strategies. Dr Klehmet reported on the potential benefit of using antigen-specific T cell responses as a biomarker of IVIg responsiveness in CIDP patients, while Dr von Gunten provided an insight into the mechanisms of action of Ig preparations, suggesting that the immunoregulatory effects of IgG may be mediated by IgG antibodies against glycans. Dr Basta reported on the potential thrombogenic adverse effects associated with Ig therapy. Although these adverse events are rare, further studies are needed to clarify the relationship between Ig replacement and immunomodulatory therapy and these adverse reactions. In transplantation, Dr Carbone described that prophylactic IVIg treatment was found to decrease the incidence of severe infection in IgG hypogammaglobulinaemia patients undergoing heart transplantations. Furthermore, Dr Clatworthy reported that inactivating polymorphisms in the inhibitory receptor FcγRIIB do not impact upon kidney allograft survival. PMID:25546796

  13. European Immunology Congress (7th), Jerusalem, Israel.

    DTIC Science & Technology

    1985-11-22

    cell. Using CTLL-2 cells (an IL-2 dependent cyto- isolated nuclei (which allows for the toxic cell line). Furthermore, in vivo! direct quantification ...before or after nists (haloperidol, chlorpromazine ) in- " the challenge with specific antigen. duces opposite alterations of the in S ’ontrol animals...antigen, while the primary ceptors (flupenthixol, haloperidol, and "condary allogeneic tumor trans- chlorpromazine ) but not those of D-2 re- ?!ants grew

  14. 7th International Immunoglobulin Conference: Immunodeficiencies

    PubMed Central

    Schmidt, R E; Ochs, H D

    2014-01-01

    Most primary immunodeficiency disorders (PID) are the result of single gene defects. Based on this fact, more than 240 different entities have been identified. Those PIDs with predominant antibody deficiency are treated with immunoglobulin (Ig) replacement therapy. This review focuses on the diagnosis, clinical characteristics and treatment of patients suffering from PID, or secondary immunodeficiency disorders (SID) caused, for instance, by irradiation, immunosuppressive drugs or thymectomy. Common variable immunodeficiency (CVID) is the most commonly diagnosed and least understood form of PID, with a heterogeneous range of symptoms and genotypes, requiring individualized treatment plans. This includes adjusting the dose and treatment interval, administrating Ig by intravenous or subcutaneous injection by either pump or push, and finally deciding which treatment options are best for a given patient. Ig therapy can also be used to treat immunodeficiencies resulting from lymphoproliferative and autoimmune diseases or immunosuppression following organ transplantation; however, there is an urgent need for research in this field. Accurate and early diagnosis of PID is important to ensure that optimal treatment is started early to maintain the patient's health. Detailed patient registries have been established to increase awareness of PID, as well as provide a valuable resource for further research. PMID:25546741

  15. 7th International Immunoglobulin Conference: Immunodeficiencies

    PubMed Central

    Schmidt, R E; Ochs, H D

    2014-01-01

    Awareness of the challenges involved in diagnosing and treating a heterogeneous group of immunodeficiency disorders is growing. The improvements in neonatal screening offer new methods to ensure that primary immunodeficiencies (PIDs) are diagnosed as early as possible, enabling accurate treatment and the prevention of life-threatening infections and other complications. Additionally, the need to individualize patient therapy in order to optimize both clinical outcomes and quality-of-life is obvious and is exemplified by the ability to switch between intravenous and subcutaneous immunoglobulin administration offering flexible treatment regimens. However, further research is crucial in order to determine the optimal treatment for secondary immunodeficiencies, and to gain greater understanding of the underlying causes of PIDs, including common variable immunodeficiency. The information relating to the growth of patient registries is encouraging, with approximately 25 000 patients with PIDs included in the two registries discussed. Registries such as this are vital for future research, as well as providing an educational resource. PMID:25546748

  16. The 7th International Cryocooler Conference

    NASA Astrophysics Data System (ADS)

    1993-04-01

    The partial contents of this document include the following: SDIO and Air Force Cryocooler Technology Developments at USAF Phillips Laboratory; JPL Cryocooler Development and Test Program Overview; Development and Demonstration of a Diaphragm Stirling 65 K Standard Spacecraft Cryocooler; Stirling Space Cooler; Thermal, Vibration, and Reliability Test Results for a Balanced 80 K Cryocooler; Spacecraft Cooler Characterization; Performance of a Long Life Reverse Brayton Cryocooler; SDI Cryocooler Producibility Program; Miniature Pulse Tube Cooler; Flow Patterns Intrinsic to the Pulse Tube Refrigerator; Experimental Investigation of the Regenerative Magnetic Refrigerator Operating Between 4.2 K and 1.8 K; A 4 K Gifford-McMahon Refrigerator for Radio Astronomy; A Stirling Cycle Cryocooler for 4 K Applications; Regenerator Performance and Refrigeration Mechanism for 4 K GM Refrigerator Using Rare Earth Compound Regenerator Materials; Superfluid Stirling Refrigerator with a Counterflow Regenerator; Graded and Nongraded Regenerator Performance; Evolution of the 10 K Periodic Sorption Refrigerator Concept; Development of a Periodic 10 K Sorption Cryocooler; Assessment of a Hydrogen Joule-Thomson Expander and Vanadium Hydride Sorption Beds for 20 K Cryocoolers; Design of a Metal Hydride Sorption Cryocooler System; Linear Compressor for JT Cryocooler; JT Cryostat with Liquid-Solid Cryogen Reservoir; Design of A Metal Hydride Sorption Cryocooler System; Linear Compressor for JT Cooler; and Phase Equilibria in Cryogenic Mixtures.

  17. 7th International Immunoglobulin Conference: Poster presentations.

    PubMed

    Warnatz, K; Ballow, M; Stangel, M; Bril, V

    2014-12-01

    The pan-European survey provides useful information on the accessibility and trends of intravenous and subcutaneous immunoglobulin (IVIg/SCIg) therapy, which is used to treat primary immunodeficiency disorders (PIDs). Although immunoglobulin (Ig) therapy is the first-line treatment for PIDs, the mechanisms of action of Ig therapy may differ according to the condition it is used to treat. Moreover, intriguing presentations suggest that further investigation is required to understand more clearly both the haematological and immunoregulatory effects of therapeutic immunoglobulin. This can ultimately provide more information on optimizing Ig therapy efficacy, and establish whether individualized dosing regimens for patients will be conducive to better clinical outcomes. In addition to treating autoimmune and inflammatory conditions, there is evidence to suggest that immunoglobulins can potentially play a role in transplantation, which warrants further investigation for future use.

  18. 7th International Immunoglobulin Conference: Immunomodulation

    PubMed Central

    Danieli, M G; Shoenfeld, Y

    2014-01-01

    Rheumatoid arthritis (RA) is a debilitating autoimmune disease that is usually treated aggressively to slow the rate of joint destruction. The therapeutic strategy used at the French centre, described here, is to use the non-biological disease-modifying drug, methotrexate, as first-line therapy and to add biological agents as second-line treatment. The two other autoimmune diseases discussed in this session were immunobullous skin diseases, and secondary recurrent miscarriage (RM). In the former conditions, low levels of pathogenic autoantibodies can be achieved with adjuvant intravenous immunoglobulin (IVIg) therapy, usually in combination with an immunosuppressant. Secondary RM has an autoimmune basis, as shown by high tumour necrosis factor (TNF)-α levels and specific human leucocyte antigen (HLA) polymorphisms. Although the mechanism is not yet known, IVIg may also be an effective treatment, despite the generally low doses used in published studies. PMID:25546788

  19. 7th International Immunoglobulin Conference: Immunomodulation

    PubMed Central

    Danieli, M G; Shoenfeld, Y

    2014-01-01

    Immunomodulation uses synthetic, natural and recombinant preparations to modify the immune response to a desired level, typically to treat specific autoimmune diseases, as will be discussed in this section. Rheumatoid arthritis (RA) is a common systemic autoimmune disease, affecting 1% of the population worldwide. Currently, a first-line disease-modifying therapy for RA is methotrexate; however, more than 40 monoclonal antibodies are in use or under investigation for the treatment of RA. This panoply of biological disease-modifying agents means that clinicians can make use of drugs with different mechanisms of action should one type become ineffective. In autoimmune pemphigus conditions, identification of pathogenic autoantibodies against intercellular cadherin desmoglein 1 and/or 3 antigens is one of the criteria for appropriate diagnosis. In pemphigoid conditions, autoantibodies are directed against bullous pemphigoid antigens BP230 and BP180, and in both types of immunobullous disease intravenous immunoglobulin (IVIg), as adjuvant therapy in combination with a cytotoxic drug, is effective in reducing autoantibody levels, disease severity and background steroid use. Further studies are required to establish the role of monoclonal antibodies in the treatment of autoimmune bullous disease. IVIg may also be effective in another at-risk population with autoimmune disease, namely secondary recurrent miscarriage (RM). However, the mechanism of action of IVIg in secondary RM is largely unknown, although levels of natural killer cell biomarkers, particularly CD56+, have been shown to decline after IVIg treatment [1-6]. Data from meta-analyses of heterogeneous placebo-controlled trials indicate that IVIg may be effective in secondary RM, but most trials to date have used immunomodulatory doses lower than those considered to be efficient in autoimmune disease. The results of a recently completed study may help to address this question. PMID:25546784

  20. Fundamentals of Physics, 7th Edition

    NASA Astrophysics Data System (ADS)

    Halliday, David; Resnick, Robert; Walker, Jearl

    2004-05-01

    No other book on the market today can match the 30-year success of Halliday, Resnick and Walker's Fundamentals of Physics! In a breezy, easy-to-understand style the book offers a solid understanding of fundamental physics concepts, and helps readers apply this conceptual understanding to quantitative problem solving. This book offers a unique combination of authoritative content and stimulating applications.

  1. The bouncing ball through a geometrical series

    NASA Astrophysics Data System (ADS)

    Flores, Sergio; Alfaro, Luis L.; Chavez, Juan E.; Bastarrachea, Aztlan; Hurtado, Jazmin

    2008-10-01

    The mathematical representation of the physical situation related to a bouncing ball on the floor is an important understanding difficulty for most of the students during the introductory mechanics and mathematics courses. The research group named Physics and mathematics in context from the University of Ciudad Juarez is concerned about the versatility in the change from a mathematical representation to the own physical context of any problem under a traditional instruction. In this case, the main idea is the association of the physical properties of the bouncing ball situation to the nearest mathematical model based on a geometrical series. The proposal of the cognitive development is based on a geometrical series that shows the time the ball takes to stop. In addition, we show the behavior of the ratio of the consecutive heights during the motion.

  2. Geometric stability of topological lattice phases

    PubMed Central

    Jackson, T. S.; Möller, Gunnar; Roy, Rahul

    2015-01-01

    The fractional quantum Hall (FQH) effect illustrates the range of novel phenomena which can arise in a topologically ordered state in the presence of strong interactions. The possibility of realizing FQH-like phases in models with strong lattice effects has attracted intense interest as a more experimentally accessible venue for FQH phenomena which calls for more theoretical attention. Here we investigate the physical relevance of previously derived geometric conditions which quantify deviations from the Landau level physics of the FQHE. We conduct extensive numerical many-body simulations on several lattice models, obtaining new theoretical results in the process, and find remarkable correlation between these conditions and the many-body gap. These results indicate which physical factors are most relevant for the stability of FQH-like phases, a paradigm we refer to as the geometric stability hypothesis, and provide easily implementable guidelines for obtaining robust FQH-like phases in numerical or real-world experiments. PMID:26530311

  3. Geometric Mechanics of Periodic Pleated Origami

    NASA Astrophysics Data System (ADS)

    Wei, Z. Y.; Guo, Z. V.; Dudte, L.; Liang, H. Y.; Mahadevan, L.

    2013-05-01

    Origami structures are mechanical metamaterials with properties that arise almost exclusively from the geometry of the constituent folds and the constraint of piecewise isometric deformations. Here we characterize the geometry and planar and nonplanar effective elastic response of a simple periodically folded Miura-ori structure, which is composed of identical unit cells of mountain and valley folds with four-coordinated ridges, defined completely by two angles and two lengths. We show that the in-plane and out-of-plane Poisson’s ratios are equal in magnitude, but opposite in sign, independent of material properties. Furthermore, we show that effective bending stiffness of the unit cell is singular, allowing us to characterize the two-dimensional deformation of a plate in terms of a one-dimensional theory. Finally, we solve the inverse design problem of determining the geometric parameters for the optimal geometric and mechanical response of these extreme structures.

  4. Geometric mechanics of periodic pleated origami.

    PubMed

    Wei, Z Y; Guo, Z V; Dudte, L; Liang, H Y; Mahadevan, L

    2013-05-24

    Origami structures are mechanical metamaterials with properties that arise almost exclusively from the geometry of the constituent folds and the constraint of piecewise isometric deformations. Here we characterize the geometry and planar and nonplanar effective elastic response of a simple periodically folded Miura-ori structure, which is composed of identical unit cells of mountain and valley folds with four-coordinated ridges, defined completely by two angles and two lengths. We show that the in-plane and out-of-plane Poisson's ratios are equal in magnitude, but opposite in sign, independent of material properties. Furthermore, we show that effective bending stiffness of the unit cell is singular, allowing us to characterize the two-dimensional deformation of a plate in terms of a one-dimensional theory. Finally, we solve the inverse design problem of determining the geometric parameters for the optimal geometric and mechanical response of these extreme structures.

  5. Superatoms: Electronic and Geometric Effects on Reactivity.

    PubMed

    Reber, Arthur C; Khanna, Shiv N

    2017-02-21

    The relative role of electronic and geometric effects on the stability of clusters has been a contentious topic for quite some time, with the focus on electronic structure generally gaining the upper hand. In this Account, we hope to demonstrate that both electronic shell filling and geometric shell filling are necessary concepts for an intuitive understanding of the reactivity of metal clusters. This work will focus on the reactivity of aluminum based clusters, although these concepts may be applied to clusters of different metals and ligand protected clusters. First we highlight the importance of electronic shell closure in the stability of metallic clusters. Quantum confinement in small compact metal clusters results in the bunching of quantum states that are reminiscent of the electronic shells in atoms. Clusters with closed electronic shells and large HOMO-LUMO (highest occupied molecular orbital-lowest unoccupied molecular orbital) gaps have enhanced stability and reduced reactivity with O2 due to the need for the cluster to accommodate the spin of molecular oxygen during activation of the molecule. To intuitively understand the reactivity of clusters with protic species such as water and methanol, geometric effects are needed. Clusters with unsymmetrical structures and defects usually result in uneven charge distribution over the surface of the cluster, forming active sites. To reduce reactivity, these sites must be quenched. These concepts can also be applied to ligand protected clusters. Clusters with ligands that are balanced across the cluster are less reactive, while clusters with unbalanced ligands can result in induced active sites. Adatoms on the surface of a cluster that are bound to a ligand result in an activated adatom that reacts readily with protic species, offering a mechanism by which the defects will be etched off returning the cluster to a closed geometric shell. The goal of this Account is to argue that both geometric and electronic shell

  6. Small-on-large geometric anelasticity

    NASA Astrophysics Data System (ADS)

    Sadik, Souhayl; Yavari, Arash

    2016-11-01

    In this paper, we are concerned with finding exact solutions for the stress fields of nonlinear solids with non-symmetric distributions of defects (or more generally finite eigenstrains) that are small perturbations of symmetric distributions of defects with known exact solutions. In the language of geometric mechanics, this corresponds to finding a deformation that is a result of a perturbation of the metric of the Riemannian material manifold. We present a general framework that can be used for a systematic analysis of this class of anelasticity problems. This geometric formulation can be thought of as a material analogue of the classical small-on-large theory in nonlinear elasticity. We use the present small-on-large anelasticity theory to find exact solutions for the stress fields of some non-symmetric distributions of screw dislocations in incompressible isotropic solids.

  7. Topological minimally entangled states via geometric measure

    NASA Astrophysics Data System (ADS)

    Buerschaper, Oliver; García-Saez, Artur; Orús, Román; Wei, Tzu-Chieh

    2014-11-01

    Here we show how the Minimally Entangled States (MES) of a 2d system with topological order can be identified using the geometric measure of entanglement. We show this by minimizing this measure for the doubled semion, doubled Fibonacci and toric code models on a torus with non-trivial topological partitions. Our calculations are done either quasi-exactly for small system sizes, or using the tensor network approach in Orús et al (arXiv:1406.0585) for large sizes. As a byproduct of our methods, we see that the minimisation of the geometric entanglement can also determine the number of Abelian quasiparticle excitations in a given model. The results in this paper provide a very efficient and accurate way of extracting the full topological information of a 2d quantum lattice model from the multipartite entanglement structure of its ground states.

  8. A geometric description of human intestine.

    PubMed

    Coşkun, Ihsaniye; Yildiz, Hüseyin; Arslan, Kadri; Yildiz, Bahri

    2007-01-01

    Mathematical models of natural phenomena play a central role in the physical sciences. Moreover, modeling of the organs draws from some beautiful areas of mathematics, such as nonlinear dynamics, multiscale transforms and stability analysis. In this study, a geometric recognition of the separate intestine sections (duodenum, jejunum, ileum, cecum and colon) of the human is presented. The human intestine was considered a tubular shape along a special curve and two male Turkish men were used for the modeling study. The length (cm) and diameter (mm) of the intestines were measured with a digital compass and formulated. These models were compared with their original photographs. It has been concluded that the geometric modeling and experimental work were consistent. These kinds of organ modeling techniques will also profit to medical lecturers to show 3-D figures to their students.

  9. a Modular Geometric Model for Underwater Photogrammetry

    NASA Astrophysics Data System (ADS)

    Maas, H.-G.

    2015-04-01

    Underwater applications of photogrammetric measurement techniques usually need to deal with multimedia photogrammetry aspects, which are characterized by the necessity of handling optical rays that are broken at interfaces between optical media with different refrative indices according to Snell's Law. This so-called multimedia geometry has to be incorporated into geometric models in order to achieve correct measurement results. The paper shows a flexible yet strict geometric model for the handling of refraction effects on the optical path, which can be implemented as a module into photogrammetric standard tools such as spatial resection, spatial intersection, bundle adjustment or epipolar line computation. The module is especially well suited for applications, where an object in water is observed by cameras in air through one or more plane parallel glass interfaces, as it allows for some simplifications here.

  10. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.

    1993-01-01

    Over the past several years, it has been the primary goal of this grant to design and implement software to be used in the conceptual design of aerospace vehicles. The work carried out under this grant was performed jointly with members of the Vehicle Analysis Branch (VAB) of NASA LaRC, Computer Sciences Corp., and Vigyan Corp. This has resulted in the development of several packages and design studies. Primary among these are the interactive geometric modeling tool, the Solid Modeling Aerospace Research Tool (smart), and the integration and execution tools provided by the Environment for Application Software Integration and Execution (EASIE). In addition, it is the purpose of the personnel of this grant to provide consultation in the areas of structural design, algorithm development, and software development and implementation, particularly in the areas of computer aided design, geometric surface representation, and parallel algorithms.

  11. Geometric continuum regularization of quantum field theory

    SciTech Connect

    Halpern, M.B. . Dept. of Physics)

    1989-11-08

    An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs.

  12. Geometric Phases in Sensing and Control

    DTIC Science & Technology

    2003-01-01

    this idea with an equal-sided, spring-jointed, four-bar mechanism and then apply the technique to a vibrating ring gyroscope. In physical systems the...Douglas Sparks of Delco Au- tomotive Systems ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 Equal-Sided Four-Bar Mechanism ...Landsberg in [48, 49]. Many researchers have investigated the role of the geometric phase in mechan - ical systems . In problems of this type, changes

  13. Chirality: a relational geometric-physical property.

    PubMed

    Gerlach, Hans

    2013-11-01

    The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term.

  14. Multiphase flow in geometrically simple fracture intersections

    USGS Publications Warehouse

    Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,

    2006-01-01

    A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.

  15. Geometric Factors in Target Positioning and Tracking

    DTIC Science & Technology

    2009-07-01

    used in active management of distributed sensor resources and sensor path planning. Keywords: Ranging & Bearing-Only Sensors, Geometry, LOS, GDOP ... GDOP ) A scalar value that characterizes the position solution is the geometrical dilution of precision ( GDOP ) defined as [4, 13]: ))((traceGDOP 11...HRHT (14a) ))((trace 1−= HHT when R = I (14b) For the case with two ranging sensors, the GDOP can be written as: )(sin GDOP 21 2 2 2 2 1

  16. The geometric phase controls ultracold chemistry

    DOE PAGES

    Kendrick, B. K.; Hazra, Jisha; Balakrishnan, N.

    2015-07-30

    In this study, the geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born–Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O + OH → H + O2more » reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity.« less

  17. Salt bridges: geometrically specific, designable interactions.

    PubMed

    Donald, Jason E; Kulp, Daniel W; DeGrado, William F

    2011-03-01

    Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed, and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, co-operativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction on formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but, at close distances, there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms.

  18. Time as a geometric property of space

    NASA Astrophysics Data System (ADS)

    Chappell, James; Hartnett, John; Iannella, Nicolangelo; Iqbal, Azhar; Abbott, Derek

    2016-11-01

    The proper description of time remains a key unsolved problem in science. Newton conceived of time as absolute and universal which `flows equably without relation to anything external'. In the nineteenth century, the four-dimensional algebraic structure of the quaternions developed by Hamilton, inspired him to suggest that they could provide a unified representation of space and time. With the publishing of Einstein's theory of special relativity these ideas then lead to the generally accepted Minkowski spacetime formulation in 1908. Minkowski, though, rejected the formalism of quaternions suggested by Hamilton and adopted rather an approach using four-vectors. The Minkowski framework is indeed found to provide a versatile formalism for describing the relationship between space and time in accordance with Einstein's relativistic principles, but nevertheless fails to provide more fundamental insights into the nature of time itself. In order to answer this question we begin by exploring the geometric properties of three-dimensional space that we model using Clifford geometric algebra, which is found to contain sufficient complexity to provide a natural description of spacetime. This description using Clifford algebra is found to provide a natural alternative to the Minkowski formulation as well as providing new insights into the nature of time. Our main result is that time is the scalar component of a Clifford space and can be viewed as an intrinsic geometric property of three-dimensional space without the need for the specific addition of a fourth dimension.

  19. Light polarization: A geometric-algebra approach

    NASA Astrophysics Data System (ADS)

    Baylis, W. E.; Bonenfant, J.; Derbyshire, J.; Huschilt, J.

    1993-06-01

    The geometric algebra of three-dimensional space (the ``Pauli algebra'') is known to provide an efficient geometric description of electromagnetic phenomena. Here, it is applied to the three-dimensional Stokes subspace to describe the polarization of an approximately monochromatic collimated beam of electromagnetic radiation. The coherency density ρ is a real element of the algebra whose components are the four Stokes parameters: a scalar representing the total photon flux density plus a three-dimensional vector whose direction and length in the Poincaré sphere give the type and degree of polarization. The detection of the radiation and the incoherent and coherent modification of the polarization by various optical elements are calculated by algebraic multiplication which has faithful representations in 2×2 matrices. One matrix representation of ρ is the coherency matrix with which Jones and Mueller matrices are related whereas another representation is the spin density matrix. However, the calculations are simplest to perform and interpret in the algebraic form independent of any particular matrix representation. It is shown that any possible change in the Stokes parameters can be treated algebraically by a combination of attenuation, depolarization, polarization, and rotation transformations of ρ. The geometric algebra thus unifies Stokes parameters, the Poincaré sphere, Jones and Mueller matrices, and the coherency and density matrices in a single, simple formalism.

  20. Geometric Morphometrics of Rodent Sperm Head Shape

    PubMed Central

    Varea Sánchez, María; Bastir, Markus; Roldan, Eduardo R. S.

    2013-01-01

    Mammalian spermatozoa, particularly those of rodent species, are extremely complex cells and differ greatly in form and dimensions. Thus, characterization of sperm size and, particularly, sperm shape represents a major challenge. No consensus exists on a method to objectively assess size and shape of spermatozoa. In this study we apply the principles of geometric morphometrics to analyze rodent sperm head morphology and compare them with two traditional morphometry methods, that is, measurements of linear dimensions and dimensions-derived parameters calculated using formulae employed in sperm morphometry assessments. Our results show that geometric morphometrics clearly identifies shape differences among rodent spermatozoa. It is also capable of discriminating between size and shape and to analyze these two variables separately. Thus, it provides an accurate method to assess sperm head shape. Furthermore, it can identify which sperm morphology traits differ between species, such as the protrusion or retraction of the base of the head, the orientation and relative position of the site of flagellum insertion, the degree of curvature of the hook, and other distinct anatomical features and appendices. We envisage that the use of geometric morphometrics may have a major impact on future studies focused on the characterization of sperm head formation, diversity of sperm head shape among species (and underlying evolutionary forces), the effects of reprotoxicants on changes in cell shape, and phenotyping of genetically-modified individuals. PMID:24312234

  1. A Geometric Theory of Nonlinear Morphoelastic Shells

    NASA Astrophysics Data System (ADS)

    Sadik, Souhayl; Angoshtari, Arzhang; Goriely, Alain; Yavari, Arash

    2016-08-01

    Many thin three-dimensional elastic bodies can be reduced to elastic shells: two-dimensional elastic bodies whose reference shape is not necessarily flat. More generally, morphoelastic shells are elastic shells that can remodel and grow in time. These idealized objects are suitable models for many physical, engineering, and biological systems. Here, we formulate a general geometric theory of nonlinear morphoelastic shells that describes both the evolution of the body shape, viewed as an orientable surface, as well as its intrinsic material properties such as its reference curvatures. In this geometric theory, bulk growth is modeled using an evolving referential configuration for the shell, the so-called material manifold. Geometric quantities attached to the surface, such as the first and second fundamental forms, are obtained from the metric of the three-dimensional body and its evolution. The governing dynamical equations for the body are obtained from variational consideration by assuming that both fundamental forms on the material manifold are dynamical variables in a Lagrangian field theory. In the case where growth can be modeled by a Rayleigh potential, we also obtain the governing equations for growth in the form of kinetic equations coupling the evolution of the first and the second fundamental forms with the state of stress of the shell. We apply these ideas to obtain stress-free growth fields of a planar sheet, the time evolution of a morphoelastic circular cylindrical shell subject to time-dependent internal pressure, and the residual stress of a morphoelastic planar circular shell.

  2. Landsat-5 bumper-mode geometric correction

    USGS Publications Warehouse

    Storey, J.C.; Choate, Michael J.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) scan mirror was switched from its primary operating mode to a backup mode in early 2002 in order to overcome internal synchronization problems arising from long-term wear of the scan mirror mechanism. The backup bumper mode of operation removes the constraints on scan start and stop angles enforced in the primary scan angle monitor operating mode, requiring additional geometric calibration effort to monitor the active scan angles. It also eliminates scan timing telemetry used to correct the TM scan geometry. These differences require changes to the geometric correction algorithms used to process TM data. A mathematical model of the scan mirror's behavior when operating in bumper mode was developed. This model includes a set of key timing parameters that characterize the time-varying behavior of the scan mirror bumpers. To simplify the implementation of the bumper-mode model, the bumper timing parameters were recast in terms of the calibration and telemetry data items used to process normal TM imagery. The resulting geometric performance, evaluated over 18 months of bumper-mode operations, though slightly reduced from that achievable in the primary operating mode, is still within the Landsat specifications when the data are processed with the most up-to-date calibration parameters.

  3. Geometric simulation of structures containing rigid units

    NASA Astrophysics Data System (ADS)

    Wells, Stephen

    2005-03-01

    Much insight into the behaviour of the framework silicates can be obtained from the Rigid Unit model. I review results from geometric analyses [1] of framework structures, quantifying the significance of rigid unit motion in thermal disorder and in defect accomodation, and from a method of simulation [2,3] based on a whole-body `geometric potential' rather than on interatomic potentials. I show the application of the geometric potential to the symmetry-constrained generation of hypothetical zeolite frameworks [4], and to the rapid generation of protein conformations using insights from rigid cluster decomposition [5]. 1. Wells, Dove and Tucker, Journal of Applied Crystallography, 37:536--544 (2004). 2. G.D. Gatta and S.A. Wells, Phys. Chem. Min. 31:1--10 (2004). 3. A. Sartbaeva, S. A. Wells, S. A. T. Redfern, J. Phys.: Condens. Matter 16, 8173 (2004) 4. M. M. J. Treacy, I. Rivin, E. Balkovsky, K. H. Randall and M. D. Foster, Micropor. Mesopor. Mater. 74, 121-132 (2004). 5. M.F. Thorpe, Ming Lei, A.J. Rader, Donald J. Jacobs, and Leslie A. Kuhn, Journal of Molecular Graphics and Modelling 19, 1:60 - 69, (2001).

  4. Evolutionary Optimization of a Geometrically Refined Truss

    NASA Technical Reports Server (NTRS)

    Hull, P. V.; Tinker, M. L.; Dozier, G. V.

    2007-01-01

    Structural optimization is a field of research that has experienced noteworthy growth for many years. Researchers in this area have developed optimization tools to successfully design and model structures, typically minimizing mass while maintaining certain deflection and stress constraints. Numerous optimization studies have been performed to minimize mass, deflection, and stress on a benchmark cantilever truss problem. Predominantly traditional optimization theory is applied to this problem. The cross-sectional area of each member is optimized to minimize the aforementioned objectives. This Technical Publication (TP) presents a structural optimization technique that has been previously applied to compliant mechanism design. This technique demonstrates a method that combines topology optimization, geometric refinement, finite element analysis, and two forms of evolutionary computation: genetic algorithms and differential evolution to successfully optimize a benchmark structural optimization problem. A nontraditional solution to the benchmark problem is presented in this TP, specifically a geometrically refined topological solution. The design process begins with an alternate control mesh formulation, multilevel geometric smoothing operation, and an elastostatic structural analysis. The design process is wrapped in an evolutionary computing optimization toolset.

  5. Geometric phase effects in ultracold chemistry

    NASA Astrophysics Data System (ADS)

    Hazra, Jisha; Naduvalath, Balakrishnan; Kendrick, Brian K.

    2016-05-01

    In molecules, the geometric phase, also known as Berry's phase, originates from the adiabatic transport of the electronic wavefunction when the nuclei follow a closed path encircling a conical intersection between two electronic potential energy surfaces. It is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. It arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. Illustrative results are presented for the O+ OH --> H+ O2 reaction and for hydrogen exchange in H+ H2 and D+HD reactions. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.).

  6. Algebraic and geometric spread in finite frames

    NASA Astrophysics Data System (ADS)

    King, Emily J.

    2015-08-01

    When searching for finite unit norm tight frames (FUNTFs) of M vectors in FN which yield robust representations, one is concerned with finding frames consisting of frame vectors which are in some sense as spread apart as possible. Algebraic spread and geometric spread are the two most commonly used measures of spread. A frame with optimal algebraic spread is called full spark and is such that any subcollection of N frame vectors is a basis for FN. A Grassmannian frame is a FUNTF which satisfies the Grassmannian packing problem; that is, the frame vectors are optimally geometrically spread given fixed M and N. A particular example of a Grassmannian frame is an equiangular frame, which is such that the absolute value of all inner products of distinct vectors is equal. The relationship between these two types of optimal spread is complicated. The folk knowledge for many years was that equiangular frames were full spark; however, this is now known not to hold for an infinite class of equiangular frames. The exact relationship between these types of spread will be further explored in this talk, as well as Plücker coordinates and coherence, which are measures of how much a frame misses being optimally algebraically or geometrically spread.

  7. Geometric Approaches to Quadratic Equations from Other Times and Places.

    ERIC Educational Resources Information Center

    Allaire, Patricia R.; Bradley, Robert E.

    2001-01-01

    Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)

  8. Design of geometric phase measurement in EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Lan, T.; Liu, H. Q.; Liu, J.; Jie, Y. X.; Wang, Y. L.; Gao, X.; Qin, H.

    2016-07-01

    The optimum scheme for geometric phase measurement in EAST Tokamak is proposed in this paper. The theoretical values of geometric phase for the probe beams of EAST Polarimeter-Interferometer (POINT) system are calculated by path integration in parameter space. Meanwhile, the influences of some controllable parameters on geometric phase are evaluated. The feasibility and challenge of distinguishing geometric effect in the POINT signal are also assessed in detail.

  9. Design of geometric phase measurement in EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Lan, Ting; Liu, Haiqing; Liu, Jian; Qin, Hong

    2016-10-01

    The aim of this work is to propose the optimum scheme for geometric phase measurement in EAST Tokamak. On the one hand, the experimental observation of geometric phase in plasma systems is an essential verification of the geometric phase theory by a new experimental technique. On the other hand, the measurement of geometric phase confirms geometric effect as a new system error in the existing diagnostics. The geometric phase in Faraday rotation angle for linearly polarized electromagnetic waves propagating in non-uniform magnetized plasmas is a good candidate for the first identification of geometric phase in plasma. In this work, the theoretical values of geometric phase for the probe beams of EAST Polarimeter-Interferometer (POINT) system are calculated by path integration in parameter space. Several schemes are proposed for the measurement of the geometric phase in POINT system by amplifying the geometric phase and enhancing the diagnostic resolution. To reach the conditions of the designed scheme for geometric phase measurement, the feasibility of replacing individual retro reflectors (RRs) with retro reflector array (RRA) in POINT system is verified experimentally. Corresponding results are beneficial for geometric phase measurement in EAST Tokamak.

  10. Identifying and Fostering Higher Levels of Geometric Thinking

    ERIC Educational Resources Information Center

    Škrbec, Maja; Cadež, Tatjana Hodnik

    2015-01-01

    Pierre M. Van Hiele created five levels of geometric thinking. We decided to identify the level of geometric thinking in the students in Slovenia, aged 9 to 11 years. The majority of students (60.7%) are at the transition between the zero (visual) level and the first (descriptive) level of geometric thinking. Nearly a third (31.7%) of students is…

  11. Geometric incompatibility in a fault system.

    PubMed Central

    Gabrielov, A; Keilis-Borok, V; Jackson, D D

    1996-01-01

    Interdependence between geometry of a fault system, its kinematics, and seismicity is investigated. Quantitative measure is introduced for inconsistency between a fixed configuration of faults and the slip rates on each fault. This measure, named geometric incompatibility (G), depicts summarily the instability near the fault junctions: their divergence or convergence ("unlocking" or "locking up") and accumulation of stress and deformations. Accordingly, the changes in G are connected with dynamics of seismicity. Apart from geometric incompatibility, we consider deviation K from well-known Saint Venant condition of kinematic compatibility. This deviation depicts summarily unaccounted stress and strain accumulation in the region and/or internal inconsistencies in a reconstruction of block- and fault system (its geometry and movements). The estimates of G and K provide a useful tool for bringing together the data on different types of movement in a fault system. An analog of Stokes formula is found that allows determination of the total values of G and K in a region from the data on its boundary. The phenomenon of geometric incompatibility implies that nucleation of strong earthquakes is to large extent controlled by processes near fault junctions. The junctions that have been locked up may act as transient asperities, and unlocked junctions may act as transient weakest links. Tentative estimates of K and G are made for each end of the Big Bend of the San Andreas fault system in Southern California. Recent strong earthquakes Landers (1992, M = 7.3) and Northridge (1994, M = 6.7) both reduced K but had opposite impact on G: Landers unlocked the area, whereas Northridge locked it up again. Images Fig. 1 Fig. 2 PMID:11607673

  12. Optimization of biotechnological systems through geometric programming

    PubMed Central

    Marin-Sanguino, Alberto; Voit, Eberhard O; Gonzalez-Alcon, Carlos; Torres, Nestor V

    2007-01-01

    Background In the past, tasks of model based yield optimization in metabolic engineering were either approached with stoichiometric models or with structured nonlinear models such as S-systems or linear-logarithmic representations. These models stand out among most others, because they allow the optimization task to be converted into a linear program, for which efficient solution methods are widely available. For pathway models not in one of these formats, an Indirect Optimization Method (IOM) was developed where the original model is sequentially represented as an S-system model, optimized in this format with linear programming methods, reinterpreted in the initial model form, and further optimized as necessary. Results A new method is proposed for this task. We show here that the model format of a Generalized Mass Action (GMA) system may be optimized very efficiently with techniques of geometric programming. We briefly review the basics of GMA systems and of geometric programming, demonstrate how the latter may be applied to the former, and illustrate the combined method with a didactic problem and two examples based on models of real systems. The first is a relatively small yet representative model of the anaerobic fermentation pathway in S. cerevisiae, while the second describes the dynamics of the tryptophan operon in E. coli. Both models have previously been used for benchmarking purposes, thus facilitating comparisons with the proposed new method. In these comparisons, the geometric programming method was found to be equal or better than the earlier methods in terms of successful identification of optima and efficiency. Conclusion GMA systems are of importance, because they contain stoichiometric, mass action and S-systems as special cases, along with many other models. Furthermore, it was previously shown that algebraic equivalence transformations of variables are sufficient to convert virtually any types of dynamical models into the GMA form. Thus

  13. The Electromagnetic Duality Formulation of Geometric Phases

    NASA Astrophysics Data System (ADS)

    Zhang, Yuchao; Li, Kang

    2015-06-01

    This paper focuses on the electromagnetic(EM) duality formulation of geometric phases of Aharonov-Bohm(A-B) effect and Aharonov-Casher(A-C) effect. Through the two four-vector potential formulation of electromagnetic theory, we construct a EM duality formulation for both A-B effect and A-C effect. The He-McKellar-Wilkens(HMW) effect is included as a EM duality counterpart of the A-C effect, and also the EM duality counterpart of the A-B effect is also predicted.

  14. Toroidal Precession as a Geometric Phase

    SciTech Connect

    J.W. Burby and H. Qin

    2012-09-26

    Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.

  15. CMOS-integrated geometrically tunable optical filters.

    PubMed

    Lerose, Damiana; Hei, Evie Kho Siaw; Ching, Bong Ching; Sterger, Martin; Yaw, Liau Chu; Schulze, Frank Michael; Schmidt, Frank; Schmidt, Andrei; Bach, Konrad

    2013-03-10

    We present a method for producing monolithically integrated complementary metal-oxide-semiconductor (CMOS) optical filters with different and customer-specific responses. The filters are constituted by a Fabry-Perot resonator formed by two Bragg mirrors separated by a patterned cavity. The filter response can be tuned by changing the geometric parameters of the patterning, and consequently the cavity effective refractive index. In this way, many different filters can be produced at once on a single chip, allowing multichanneling. The filter has been designed, produced, and characterized. The results for a chip with 24 filters are presented.

  16. In the Realm of Geometric Transitions

    SciTech Connect

    Alexander, S

    2004-09-09

    We complete the duality cycle by constructing the geometric transition duals in the type IIB, type I and heterotic theories. We show that in the type IIB theory the background on the closed string side is a Kahler deformed conifold, as expected, even though the mirror type IIA backgrounds are non-Kahler (both before and after the transition). On the other hand, the Type I and heterotic backgrounds are non-Kahler. Therefore, on the heterotic side these backgrounds give rise to new torsional manifolds that have not been studied before. We show the consistency of these backgrounds by verifying the torsional equation.

  17. Minimal representations, geometric quantization, and unitarity.

    PubMed Central

    Brylinski, R; Kostant, B

    1994-01-01

    In the framework of geometric quantization we explicitly construct, in a uniform fashion, a unitary minimal representation pio of every simply-connected real Lie group Go such that the maximal compact subgroup of Go has finite center and Go admits some minimal representation. We obtain algebraic and analytic results about pio. We give several results on the algebraic and symplectic geometry of the minimal nilpotent orbits and then "quantize" these results to obtain the corresponding representations. We assume (Lie Go)C is simple. PMID:11607478

  18. Advances in Geometric Acoustic Propagation Modeling Methods

    NASA Astrophysics Data System (ADS)

    Blom, P. S.; Arrowsmith, S.

    2013-12-01

    Geometric acoustics provides an efficient numerical method to model propagation effects. At leading order, one can identify ensonified regions and calculate celerities of the predicted arrivals. Beyond leading order, the solution of the transport equation provides a means to estimate the amplitude of individual acoustic phases. The auxiliary parameters introduced in solving the transport equation have been found to provide a means of identifying ray paths connecting source and receiver, or eigenrays, for non-planar propagation. A detailed explanation of the eigenray method will be presented as well as an application to predicting azimuth deviations for infrasonic data recorded during the Humming Roadrunner experiment of 2012.

  19. FOLD LENS FLUX ANOMALIES: A GEOMETRIC APPROACH

    SciTech Connect

    Goldberg, David M.; Chessey, Mary K.; Harris, Wendy B.; Richards, Gordon T.

    2010-06-01

    We develop a new approach for studying flux anomalies in quadruply imaged fold lens systems. We show that in the absence of substructure, microlensing, or differential absorption, the expected flux ratios of a fold pair can be tightly constrained using only geometric arguments. We apply this technique to 11 known quadruple lens systems in the radio and infrared and compare our estimates to the Monte Carlo based results of Keeton et al. We show that a robust estimate for a flux ratio from a smoothly varying potential can be found, and at long wavelengths those lenses deviating from this ratio almost certainly contain significant substructure.

  20. Fold Lens Flux Anomalies: A Geometric Approach

    NASA Astrophysics Data System (ADS)

    Goldberg, David M.; Chessey, Mary K.; Harris, Wendy B.; Richards, Gordon T.

    2010-06-01

    We develop a new approach for studying flux anomalies in quadruply imaged fold lens systems. We show that in the absence of substructure, microlensing, or differential absorption, the expected flux ratios of a fold pair can be tightly constrained using only geometric arguments. We apply this technique to 11 known quadruple lens systems in the radio and infrared and compare our estimates to the Monte Carlo based results of Keeton et al. We show that a robust estimate for a flux ratio from a smoothly varying potential can be found, and at long wavelengths those lenses deviating from this ratio almost certainly contain significant substructure.

  1. Aerospace plane guidance using geometric control theory

    NASA Technical Reports Server (NTRS)

    Van Buren, Mark A.; Mease, Kenneth D.

    1990-01-01

    A reduced-order method employing decomposition, based on time-scale separation, of the 4-D state space in a 2-D slow manifold and a family of 2-D fast manifolds is shown to provide an excellent approximation to the full-order minimum-fuel ascent trajectory. Near-optimal guidance is obtained by tracking the reduced-order trajectory. The tracking problem is solved as regulation problems on the family of fast manifolds, using the exact linearization methodology from nonlinear geometric control theory. The validity of the overall guidance approach is indicated by simulation.

  2. Geometric extension through Schwarzschild R = 0

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, D.; Katz, J.

    1990-12-01

    A very simple conservation theorem pertaining to embeddings of Tolman solutions into flat space has been found which, in nonsingular regions of space-time, follows from Einstein's equations and the equations that define the embedding. If the conservation is extended to cover the singular 'surface' r = 0, it furnishes the requisite physical and geometrical supplement to Einstein's equations at the singularity; by thus bridging the singular region, a unique extension is found beyond the singularity. The passage of an extended particle through the singularity is illustrated by a classical toy model that demonstrates both the expected crushing and the emergence into extended space.

  3. Geometrical Wake of a Smooth Flat Collimator

    SciTech Connect

    Stupakov, G.V.; /SLAC

    2011-09-09

    A transverse geometrical wake generated by a beam passing through a smooth flat collimator with a gradually varying gap between the upper and lower walls is considered. Based on generalization of the approach recently developed for a smooth circular taper we reduce the electromagnetic problem of the impedance calculation to the solution of two much simpler static problems - a magnetostatic and an electrostatic ones. The solution shows that in the limit of not very large frequencies, the impedance increases with the ratio h/d where h is the width and d is the distance between the collimating jaws. Numerical results are presented for the NLC Post Linac collimator.

  4. Overview of geometrical room acoustic modeling techniques.

    PubMed

    Savioja, Lauri; Svensson, U Peter

    2015-08-01

    Computerized room acoustics modeling has been practiced for almost 50 years up to date. These modeling techniques play an important role in room acoustic design nowadays, often including auralization, but can also help in the construction of virtual environments for such applications as computer games, cognitive research, and training. This overview describes the main principles, landmarks in the development, and state-of-the-art for techniques that are based on geometrical acoustics principles. A focus is given to their capabilities to model the different aspects of sound propagation: specular vs diffuse reflections, and diffraction.

  5. Geometric formalism for DNA quadruplex folding.

    PubMed

    Webba da Silva, Mateus

    2007-01-01

    Understanding the control of self-assembly and stereochemical properties of DNA higher order architectural folds is of fundamental importance in biology as well as biochemical technological applications. Guanine-rich DNA sequences can form tetrahelical architectures termed quadruplexes. A formalism is presented describing the interdependency of a set of structural descriptors as a geometric basis for folding of unimolecular quadruplex topologies. It represents a standard for interpretation of structural characteristics of quadruplexes, and is comprehensive in explicitly harmonizing the results of published literature with a unified language. The formalism is a fundamental step towards prediction of unimolecular quadruplex folding topologies from primary sequence.

  6. Supersymmetric QCD vacua and geometrical engineering

    SciTech Connect

    Tatar, Radu; Wetenhall, Ben

    2008-02-15

    We consider the geometrical engineering constructions for the N=1 supersymmetric QCD vacua recently proposed by Giveon and Kutasov. After 1 T-duality, the geometries with wrapped D5 branes become N=1 brane configurations with NS branes and D4 branes. The field theories encoded by the geometries contain extra massive adjoint fields for the flavor group. After performing a flop, the geometries contain branes, antibranes and branes wrapped on nonholomorphic cycles. The various tachyon condensations between pairs of wrapped D5 branes and anti-D5 branes together with deformations of the cycles give rise to a variety of supersymmetric and metastable nonsupersymmetric vacua.

  7. Finite octree meshing through topologically driven geometric operators

    NASA Technical Reports Server (NTRS)

    Grice, Kurt R.

    1987-01-01

    The octree technique is developed into the finite octree, and an overview is given. Modeler requirements are given. The octree discretization is discussed along with geometric communication operators. Geometric communication operators returning topological associativity and geometric communication operators returning spatial data are also discussed and illustrated. The advantages are given of the boundary representation and of geometric communication operators. The implementation plays an important role in the integration with a variety of geometric modelers. The capabilities of closed loop processes within a complete finite element system are presented.

  8. Geometric spin Hall effect of light with inhomogeneous polarization

    NASA Astrophysics Data System (ADS)

    Ling, Xiaohui; Zhou, Xinxing; Yi, Xunong

    2017-01-01

    The spin Hall effect of light originates from spin-orbit interaction of light, which manifests two types of geometric phases. In this paper, we report the observation of a geometric spin Hall effect by generating a light beam with inhomogeneous polarization distribution. Unlike the previously reported geometric spin Hall effect observed in a tilted beam-detector system, which is believed to result from an effective spin-redirection Berry geometric phase, the geometric spin Hall effect demonstrated here is attributed to an effective, spatially varying Pancharatnam-Berry geometric phase generated by the inhomogeneous polarization geometry. Our further experiments show that the geometric spin Hall effect can be tuned by tailoring the polarization geometry of light, demonstrating the spin states of photons can be steered with a great flexibility.

  9. The effect of the 4MAT learning model on the achievement and motivation of 7th grade students on the subject of particulate nature of matter and an examination of student opinions on the model

    NASA Astrophysics Data System (ADS)

    Aktas, İdris; Bılgın, İbrahim

    2015-01-01

    Background:Many researchers agree that students, especially primary students, have learning difficulties on the 'Particulate Nature of Matter' unit. One reason for this difficulty is not considering individual differences for teaching science. In 4MAT model learning, environment is arranged according to individual differences. Purpose:The purpose of this study is to examine (1) the effects of the 4MAT learning model on the7th grade students' academic achievement and motivation on the 'Particulate Nature of Matter' unit and (2) identify student opinions on the 4MAT model. Sample:The sample consists of 235 students (115 experimental, 120 control) in Turkey. Design and methods:Experimental groups were instructed with the 4MAT model while control groups were instructed with a traditional method. Achievement Test (AchToM) and Motivation Scale (MotScl) were administered to students as pre- and post-tests. Moreover, the opinions of students in the experimental groups on the 4MAT model were ascertained through open-ended questions after the application. Results:According to independent t-test results, statistical difference in favour of the experimental groups was detected between the post-AchToM (ES = 1.43; p < .0001) and post-MotScl (ES = 0.32; p < .05) scores. According to data obtained from the questionnaire, the application of the 4MAT model increases student motivation and participation in the lesson, lessons are more amusing and enjoyable, and the self-confidence of the students increases. Besides these positive opinions, however, a few students stated that the method took too much time, they were not motivated and it did not help them in understanding the subject. Conclusions:The 4MAT model is more effective than traditional method in terms of increasing achievement and motivation. The model takes all learners into account. Thus, the teacher or educator should use the 4MAT model to ensure all students' learning in their classroom.

  10. Comparative Evaluation of Microshear Bond Strength of 5th, 6th and 7th Generation Bonding Agents to Coronal Dentin Versus Dentin at Floor of Pulp Chamber: An In vitro Study

    PubMed Central

    Deepa, Velagala Lakshmi; Damaraju, Bhargavi; Priyadharsini, Bollu Indira; Subbarao, Vummidisetti V; Raju, K Rama Krishna

    2014-01-01

    Background: Lack of seal and adhesion between the final restoration and tooth structure adversely affects the results of root canal treatment. Lots of adhesive bonding agents are marketed to overcome this deficiency and achieve successful restoration. So the study compares and evaluates the micro shear bond strength of coronal dentin and pulp chamber dentin using three different generation dentin bonding systems and to know clinical efficiency for clinical use. Materials and Methods: Different generation dentin bonding systems used were: (1) One bottle total etch system (XP Bond-5th generation), (2) Two-step self-etch system (Clearfil SE Bond-6th generation) and (3) All-in-one system (G Bond-7th generation). Thirty human mandibular molars were collected out of which sixty samples were prepared by sectioning each tooth into coronal dentin and pulpal floor dentin. They were divided into two major groups. Group I: 30 Coronal dentin samples. Group II:30 Pulpal floor dentin samples. Both the groups were further subdivided depending on the bonding agent used. Subgroup Ia:XP Bond, Subgroup Ib:Clearfil SE Bond, Subgroup Ic:G Bond, Subgroup IIa:XP Bond, Subgroup IIb:Clearfil SE Bond, Subgroup IIc:G Bond. Resin composite was bonded to these samples and tested for micro-shear bond strength. The mean bond strengths and standard deviations were calculated and analyzed using one-way ANOVA test and Student’s t-test (unpaired) and honestly significant difference post-hoc tests. Results: Coronal dentin showed higher values of micro shear bond strength than the pulpal floor dentin. All-in-one system (G Bond) showed least bond strength values to both the regions coronal dentin and pulpal floor dentin. Conclusion: Factors affecting the shear bond strength are dependent on material (adhesive system), substrate depth and adhesive/depth interaction. Hence composition and substrate treatment should be considered for good adhesive. Chemical composition of adhesive system determines

  11. Geometric and Radiometric Evaluation of Rasat Images

    NASA Astrophysics Data System (ADS)

    Cam, Ali; Topan, Hüseyin; Oruç, Murat; Özendi, Mustafa; Bayık, Çağlar

    2016-06-01

    RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space) Technologies Research Institute (Ankara). RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD) and RGB (15 m GSD) bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R) of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM) reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.

  12. Geometric Observers for Dynamically Evolving Curves

    PubMed Central

    Niethammer, Marc; Vela, Patricio A.; Tannenbaum, Allen

    2009-01-01

    This paper proposes a deterministic observer design for visual tracking based on nonparametric implicit (level-set) curve descriptions. The observer is continuous discrete with continuous-time system dynamics and discrete-time measurements. Its state-space consists of an estimated curve position augmented by additional states (e.g., velocities) associated with every point on the estimated curve. Multiple simulation models are proposed for state prediction. Measurements are performed through standard static segmentation algorithms and optical-flow computations. Special emphasis is given to the geometric formulation of the overall dynamical system. The discrete-time measurements lead to the problem of geometric curve interpolation and the discrete-time filtering of quantities propagated along with the estimated curve. Interpolation and filtering are intimately linked to the correspondence problem between curves. Correspondences are established by a Laplace-equation approach. The proposed scheme is implemented completely implicitly (by Eulerian numerical solutions of transport equations) and thus naturally allows for topological changes and subpixel accuracy on the computational grid. PMID:18421113

  13. Geometric-optical illusions at isoluminance.

    PubMed

    Hamburger, Kai; Hansen, Thorsten; Gegenfurtner, Karl R

    2007-12-01

    The idea of a largely segregated processing of color and form was initially supported by observations that geometric-optical illusions vanish under isoluminance. However, this finding is inconsistent with some psychophysical studies and also with physiological evidence showing that color and luminance are processed together by largely overlapping sets of neurons in the LGN, in V1, and in extrastriate areas. Here we examined the strength of nine geometric-optical illusions under isoluminance (Delboeuf, Ebbinghaus, Hering, Judd, Müller-Lyer, Poggendorff, Ponzo, Vertical, Zöllner). Subjects interactively manipulated computer-generated line drawings to counteract the illusory effect. In all cases, illusions presented under isoluminance (both for colors drawn from the cardinal L-M or S-(L+M) directions of DKL color space) were as effective as the luminance versions (both for high and low contrast). The magnitudes of the illusion effects were highly correlated across subjects for the different conditions. In two additional experiments we determined that the strong illusions observed under isoluminance were not due to individual deviations from the photometric point of isoluminance or due to chromatic aberrations. Our findings show that our conscious percept is affected similarly for both isoluminance and luminance conditions, suggesting that the joint processing for chromatic and luminance defined contours may extend well beyond early visual areas.

  14. Geometrical effects in X-mode scattering

    SciTech Connect

    Bretz, N.

    1986-10-01

    One technique to extend microwave scattering as a probe of long wavelength density fluctuations in magnetically confined plasmas is to consider the launching and scattering of extraordinary (X-mode) waves nearly perpendicular to the field. When the incident frequency is less than the electron cyclotron frequency, this mode can penetrate beyond the ordinary mode cutoff at the plasma frequency and avoid significant distortions from density gradients typical of tokamak plasmas. In the more familiar case, where the incident and scattered waves are ordinary, the scattering is isotropic perpendicular to the field. However, because the X-mode polarization depends on the frequency ratios and the ray angle to the magnetic field, the coupling between the incident and scattered waves is complicated. This geometrical form factor must be unfolded from the observed scattering in order to interpret the scattering due to density fluctuations alone. The geometrical factor is calculated here for the special case of scattering perpendicular to the magnetic field. For frequencies above the ordinary mode cutoff the scattering is relatively isotropic, while below cutoff there are minima in the forward and backward directions which go to zero at approximately half the ordinary mode cutoff density.

  15. Geometrically nonlinear behavior of piezoelectric laminated plates

    NASA Astrophysics Data System (ADS)

    Rabinovitch, Oded

    2005-08-01

    The geometrically nonlinear behavior of piezo-laminated plates actuated with isotropic or anisotropic piezoelectric layers is analytically investigated. The analytical model is derived using the variational principle of virtual work along with the lamination and plate theories, the von Karman large displacement and moderate rotation kinematic relations, and the anisotropic piezoelectric constitutive laws. A solution strategy that combines the approach of the method of lines, the advantages of the finite element concept, and the variational formulation is developed. This approach yields a set of nonlinear ordinary differential equations with nonlinear boundary conditions, which are solved using the multiple-shooting method. Convergence and verification of the model are examined through comparison with linear and nonlinear results of other approximation methods. The nonlinear response of two active plate structures is investigated numerically. The first plate is actuated in bending using monolithic piezoceramic layers and the second one is actuated in twist using macro-fiber composites. The results quantitatively reveal the complicated in-plane stress state associated with the piezoelectric actuation and the geometrically nonlinear coupling of the in-plane and out-of-plane responses of the plate. The influence of the nonlinear effects ranges from significant stiffening in certain combinations of electrical loads and boundary conditions to amplifications of the induced deflections in others. The paper closes with a summary and conclusions.

  16. Geometric Modelling of Octagonal Lamp Poles

    NASA Astrophysics Data System (ADS)

    Chan, T. O.; Lichti, D. D.

    2014-06-01

    Lamp poles are one of the most abundant highway and community components in modern cities. Their supporting parts are primarily tapered octagonal cones specifically designed for wind resistance. The geometry and the positions of the lamp poles are important information for various applications. For example, they are important to monitoring deformation of aged lamp poles, maintaining an efficient highway GIS system, and also facilitating possible feature-based calibration of mobile LiDAR systems. In this paper, we present a novel geometric model for octagonal lamp poles. The model consists of seven parameters in which a rotation about the z-axis is included, and points are constrained by the trigonometric property of 2D octagons after applying the rotations. For the geometric fitting of the lamp pole point cloud captured by a terrestrial LiDAR, accurate initial parameter values are essential. They can be estimated by first fitting the points to a circular cone model and this is followed by some basic point cloud processing techniques. The model was verified by fitting both simulated and real data. The real data includes several lamp pole point clouds captured by: (1) Faro Focus 3D and (2) Velodyne HDL-32E. The fitting results using the proposed model are promising, and up to 2.9 mm improvement in fitting accuracy was realized for the real lamp pole point clouds compared to using the conventional circular cone model. The overall result suggests that the proposed model is appropriate and rigorous.

  17. Translating cosmological special relativity into geometric algebra

    NASA Astrophysics Data System (ADS)

    Horn, Martin Erik

    2012-11-01

    Geometric algebra and Clifford algebra are important tools to describe and analyze the physics of the world we live in. Although there is enormous empirical evidence that we are living in four dimensional spacetime, mathematical worlds of higher dimensions can be used to present the physical laws of our world in an aesthetical and didactical more appealing way. In physics and mathematics education we are therefore confronted with the question how these high dimensional spaces should be taught. But as an immediate confrontation of students with high dimensional compactified spacetimes would expect too much from them at the beginning of their university studies, it seems reasonable to approach the mathematics and physics of higher dimensions step by step. The first step naturally is the step from four dimensional spacetime of special relativity to a five dimensional spacetime world. As a toy model for this artificial world cosmological special relativity, invented by Moshe Carmeli, can be used. This five dimensional non-compactified approach describes a spacetime which consists not only of one time dimension and three space dimensions. In addition velocity is regarded as a fifth dimension. This model very probably will not represent physics correctly. But it can be used to discuss and analyze the consequences of an additional dimension in a clear and simple way. Unfortunately Carmeli has formulated cosmological special relativity in standard vector notation. Therefore a translation of cosmological special relativity into the mathematical language of Grassmann and Clifford (Geometric algebra) is given and the physics of cosmological special relativity is discussed.

  18. Geometrical Monte Carlo simulation of atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Yuksel, Demet; Yuksel, Heba

    2013-09-01

    Atmospheric turbulence has a significant impact on the quality of a laser beam propagating through the atmosphere over long distances. Turbulence causes intensity scintillation and beam wander from propagation through turbulent eddies of varying sizes and refractive index. This can severely impair the operation of target designation and Free-Space Optical (FSO) communications systems. In addition, experimenting on an FSO communication system is rather tedious and difficult. The interferences of plentiful elements affect the result and cause the experimental outcomes to have bigger error variance margins than they are supposed to have. Especially when we go into the stronger turbulence regimes the simulation and analysis of the turbulence induced beams require delicate attention. We propose a new geometrical model to assess the phase shift of a laser beam propagating through turbulence. The atmosphere along the laser beam propagation path will be modeled as a spatial distribution of spherical bubbles with refractive index discontinuity calculated from a Gaussian distribution with the mean value being the index of air. For each statistical representation of the atmosphere, the path of rays will be analyzed using geometrical optics. These Monte Carlo techniques will assess the phase shift as a summation of the phases that arrive at the same point at the receiver. Accordingly, there would be dark and bright spots at the receiver that give an idea regarding the intensity pattern without having to solve the wave equation. The Monte Carlo analysis will be compared with the predictions of wave theory.

  19. Geometric representation of fundamental particles' inertial mass

    SciTech Connect

    Schachter, L.; Spencer, James

    2015-07-22

    A geometric representation of the (N = 279) masses of quarks, leptons, hadrons and gauge bosons was introduced by employing a Riemann Sphere facilitating the interpretation of the N masses in terms of a single particle, the Masson, which might be in one of the N eigen-states. Geometrically, its mass is the radius of the Riemann Sphere. Dynamically, its derived mass is near the mass of the nucleon regardless of whether it is determined from all N particles of only the hadrons, the mesons or the baryons separately. Ignoring all the other properties of these particles, it is shown that the eigen-values, the polar representation θν of the masses on the Sphere, satisfy the symmetry θν + θN+1-ν = π within less than 1% relative error. In addition, these pair correlations include the pairs θγ + θtop ≃ π and θgluon + θH ≃ π as well as pairing the weak gauge bosons with the three neutrinos.

  20. Geometric Phases in Single Molecule Magnets

    NASA Astrophysics Data System (ADS)

    Fenochio, Brian Canchola

    The characterization of the material properties of Single Molecule Magnets (SMMs) has grown in importance over the last few decades with the rise of novel applications such as high-density magnetic storage and quantum computation. Many of the applications require the probing of SMMs with spectroscopic methods that make use of electromagnetic radiation. The interaction with these time-dependent fields leads to energy shifts, which can be attributed to the geometric phase acquired by the system or the Bloch-Siegert shift. We model an SMM by a giant spin Hamiltonian, and use Floquet perturbation theory to find the geometric phase shifts. The locations where the phase shift between two levels is zero is useful for performing accurate spectroscopies, whereas the regions where relative phase differences exist are useful in applications like quantum computing. Using the same giant spin Hamiltonian, we can use Floquet theory and Salwen perturbation theory to determine the Bloch-Siegert shift and derive a modified version of the Rabi formula for transition probabilities between the energy states Ealpha → Ealpha+/-1, Ealpha → Ealpha+/-3, and Ealpha → Ealpha+/-5 , where alpha is the index of an arbitrary initial state. The shifted eigenvalues and modified transition probabilities can be useful in spectroscopies where accurate values for the energy-splitting between magnetic states needs to be determined.

  1. Geometric similarity between protein-RNA interfaces.

    PubMed

    Zhou, Peng; Zou, Jianwei; Tian, Feifei; Shang, Zhicai

    2009-12-01

    A new method is described to measure the geometric similarity between protein-RNA interfaces quantitatively. The method is based on a procedure that dissects the interface geometry in terms of the spatial relationships between individual amino acid nucleotide pairs. Using this technique, we performed an all-on-all comparison of 586 protein-RNA interfaces deposited in the current Protein Data Bank, as the result, an interface-interface similarity score matrix was obtained. Based upon this matrix, hierarchical clustering was carried out which yielded a complete clustering tree for the 586 protein-RNA interfaces. By investigating the organizing behavior of the clustering tree and the SCOP classification of protein partners in complexes, a geometrically nonredundant, diverse data set (representative data set) consisting of 45 distinct protein-RNA interfaces was extracted for the purpose of studying protein-RNA interactions, RNA regulations, and drug design. We classified protein-RNA interfaces into three types. In type I, the families and interface structural classes of the protein partners, as well as the interface geometries are all similar. In type II, the interface geometries and the interface structural classes are similar, whereas the protein families are different. In type III, only the interface geometries are similar but the protein families and the interface structural classes are distinct. Furthermore, we also show two new RNA recognition themes derived from the representative data set.

  2. Geometric defects in quantum Hall states

    NASA Astrophysics Data System (ADS)

    Gromov, Andrey

    2016-08-01

    We describe a geometric (or gravitational) analog of the Laughlin quasiholes in fractional quantum Hall states. Analogously to the quasiholes, these defects can be constructed by an insertion of an appropriate vertex operator into the conformal block representation of a trial wave function; however, unlike the quasiholes these defects are extrinsic and do not correspond to true excitations of the quantum fluid. We construct a wave function in the presence of such defects and explain how to assign an electric charge and a spin to each defect and calculate the adiabatic, non-Abelian statistics of the defects. The defects turn out to be equivalent to the genons in that their adiabatic exchange statistics can be described in terms of representations of the mapping class group of an appropriate higher genus Riemann surface. We present a general construction that, in principle, makes it possible to calculate the statistics of Zn genons for any "parent" topological phase. We illustrate the construction on the example of the Laughlin state and perform an explicit calculation of the braiding matrices. In addition to non-Abelian statistics, geometric defects possess a universal Abelian overall phase, determined by the gravitational anomaly.

  3. Geometrical acoustics and transonic helicopter sound

    NASA Technical Reports Server (NTRS)

    Isom, Morris; Purcell, Timothy W.; Strawn, Roger C.

    1987-01-01

    A new method is presented for predicting the impulsive noise generated by a transonic rotor blade. The method is a combined approach involving computational fluid dynamics and geometrical acoustics. A full-potential finite-difference method is used to obtain the pressure field close to the blade. A Kirchhoff integral formulation is then used to extend these finite-difference results into the far field. This Kirchhoff formula is based on geometrical acoustics approximations. It requires initial data across a plane at the sonic radius in a blade-fixed coordinate system. This data is provided by the finite-difference solution. Acoustic pressure predictions show good agreement with hover experimental data for cases with hover tip Mach numbers of 0.88 through 0.96. The cases above 0.92 tip Mach number are dominated by non-linear transonic effects seen as strong shocks on and off the blade tip. This paper gives the first successful predictions of far-field acoustic pressures for high-speed impulsive noise over a range of Mach numbers after delocalization.

  4. Geometric Toys in the Attic? A Corpus Analysis of Early Exposure to Geometric Shapes

    ERIC Educational Resources Information Center

    Resnick, Ilyse; Verdine, Brian; Golinkoff, Roberta; Hirsh-Pasek, Kathy

    2016-01-01

    Preschoolers' experiences with shapes are important because geometry is foundational to aspects of mathematics and it is now part of the Common Core for school-readiness. Exposure to shapes also provides experiences that are key to developing spatial thinking more broadly. Yet achieving a strong conceptual understanding of geometric categories can…

  5. Thematic mapper: detailed radiometric and geometric characteristics

    USGS Publications Warehouse

    Kieffer, Hugh

    1983-01-01

    Those radiometric characteristics of the Landsat 4 Thematic Mapper (TM) that can be established without absolute calibration of spectral data have been examined. Subscenes of radiometric all raw data (B-data) were examined on an individual detector basis: areas of uniform radiance were used to characterize subtle radiometric differences and noise problems. A variety of anomalies have been discovered with magnitude of a few digital levels or less: the only problem not addressable by ground processing is irregular width of the digital levels. Essentially all of this non-ideal performance is incorporated in the fully processed (P-type) images, but disguised by the geometric resampling procedure. The overall performance of the Thematic Mapper is a great improvement over previous Landsat scanners. The effective resolution in radiance is degraded by about a factor of two by irregular width of the digital levels. Several detectors have a change of gain with a period of several scans, the largest effect is about 4%. These detectors appear to switch between two response levels during scan direction reversal; there is no apparent periodicity to these changes. This can cause small apparent difference between forward and reverse scans for portions of an image. The high-frequency noise level of each detector was characterized by the standard deviation of the first derivative in the sample direction across a flat field. Coherent sinusoidal noise patterns were determined using one-dimensional Fourier transforms. A "stitching" pattern in Band 1 has a period of 13.8 samples with a peak-to-peak amplitude ranging from 1 to 5 DN. Noise with a period of 3.24 samples is pronounced for most detectors in band 1, to a lesser extent in bands 2, 3, and 4, and below background noise levels in bands 5, 6, and 7. The geometric fidelity of the GSFC film writer used for Thematic Mapper (TM) images was assessed by measurement with accuracy bette than three micrometers of a test grid. A set of 55

  6. Geometric aspects of Painlevé equations

    NASA Astrophysics Data System (ADS)

    Kajiwara, Kenji; Noumi, Masatoshi; Yamada, Yasuhiko

    2017-02-01

    In this paper a comprehensive review is given on the current status of achievements in the geometric aspects of the Painlevé equations, with a particular emphasis on the discrete Painlevé equations. The theory is controlled by the geometry of certain rational surfaces called the spaces of initial values, which are characterized by eight point configuration on {{{P}}}1× {{{P}}}1 and classified according to the degeneration of points. We give a systematic description of the equations and their various properties, such as affine Weyl group symmetries, hypergeometric solutions and Lax pairs under this framework, by using the language of Picard lattice and root systems. We also provide with a collection of basic data; equations, point configurations/root data, Weyl group representations, Lax pairs, and hypergeometric solutions of all possible cases.

  7. Random geometric graphs with general connection functions

    NASA Astrophysics Data System (ADS)

    Dettmann, Carl P.; Georgiou, Orestis

    2016-03-01

    In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson point process, and links formed between those within a fixed range. Motivated by wireless ad hoc networks "soft" or "probabilistic" connection models have recently been introduced, involving a "connection function" H (r ) that gives the probability that two nodes at distance r are linked (directly connect). In many applications (not only wireless networks), it is desirable that the graph is connected; that is, every node is linked to every other node in a multihop fashion. Here the connection probability of a dense network in a convex domain in two or three dimensions is expressed in terms of contributions from boundary components for a very general class of connection functions. It turns out that only a few quantities such as moments of the connection function appear. Good agreement is found with special cases from previous studies and with numerical simulations.

  8. Geometrical shock dynamics of fast magnetohydrodynamic shocks

    NASA Astrophysics Data System (ADS)

    Mostert, Wouter; Pullin, Dale I.; Samtaney, Ravi; Wheatley, Vincent

    2016-11-01

    We extend the theory of geometrical shock dynamics (GSD, Whitham 1958), to two-dimensional fast magnetohydrodynamic (MHD) shocks moving in the presence of nonuniform magnetic fields of general orientation and strength. The resulting generalized area-Mach number rule is adapted to MHD shocks moving in two spatial dimensions. A partially-spectral numerical scheme developed from that of Schwendeman (1993) is described. This is applied to the stability of plane MHD fast shocks moving into a quiescent medium containing a uniform magnetic field whose field lines are inclined to the plane-shock normal. In particular, we consider the time taken for an initially planar shock subject to an initial perturbed magnetosonic Mach number distribution, to first form shock-shocks. Supported by KAUST OCRF Award No. URF/1/2162-01.

  9. Geometric Correction System Capabilities, Processing, and Application

    SciTech Connect

    Brewster, S.B.

    1999-06-30

    The U.S. Department of Energy's Remote Sensing Laboratory developed the geometric correction system (GCS) as a state-of-the-art solution for removing distortions from multispectral line scanner data caused by aircraft motion. The system operates on Daedalus AADS-1268 scanner data acquired from fixed-wing and helicopter platforms. The aircraft attitude, altitude, acceleration, and location are recorded and applied to the data, thereby determining the location of the earth with respect to a given datum and projection. The GCS has yielded a positional accuracy of 0.5 meters when used with a 1-meter digital elevation model. Data at this level of accuracy are invaluable in making precise areal estimates and as input into a geographic information system. The combination of high-spatial resolution and accurate geo-rectification makes the GCS a unique tool in identifying and locating environmental conditions, finding targets of interest, and detecting changes as they occur over time.

  10. On the geometrization of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Tavernelli, Ivano

    2016-08-01

    Nonrelativistic quantum mechanics is commonly formulated in terms of wavefunctions (probability amplitudes) obeying the static and the time-dependent Schrödinger equations (SE). Despite the success of this representation of the quantum world a wave-particle duality concept is required to reconcile the theory with observations (experimental measurements). A first solution to this dichotomy was introduced in the de Broglie-Bohm theory according to which a pilot-wave (solution of the SE) is guiding the evolution of particle trajectories. Here, I propose a geometrization of quantum mechanics that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is induced by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space-time, as it is the case for gravitation in the general relativity.

  11. A geometric approach to spectral subtraction

    PubMed Central

    Lu, Yang; Loizou, Philipos C.

    2008-01-01

    The traditional power spectral subtraction algorithm is computationally simple to implement but suffers from musical noise distortion. In addition, the subtractive rules are based on incorrect assumptions about the cross terms being zero. A new geometric approach to spectral subtraction is proposed in the present paper that addresses these shortcomings of the spectral subtraction algorithm. A method for estimating the cross terms involving the phase differences between the noisy (and clean) signals and noise is proposed. Analysis of the gain function of the proposed algorithm indicated that it possesses similar properties as the traditional MMSE algorithm. Objective evaluation of the proposed algorithm showed that it performed significantly better than the traditional spectral subtractive algorithm. Informal listening tests revealed that the proposed algorithm had no audible musical noise. PMID:19122867

  12. Geometric Mechanics of Curved Crease Origami

    NASA Astrophysics Data System (ADS)

    Dias, Marcelo A.; Dudte, Levi H.; Mahadevan, L.; Santangelo, Christian D.

    2012-09-01

    Folding a sheet of paper along a curve can lead to structures seen in decorative art and utilitarian packing boxes. Here we present a theory for the simplest such structure: an annular circular strip that is folded along a central circular curve to form a three-dimensional buckled structure driven by geometrical frustration. We quantify this shape in terms of the radius of the circle, the dihedral angle of the fold, and the mechanical properties of the sheet of paper and the fold itself. When the sheet is isometrically deformed everywhere except along the fold itself, stiff folds result in creases with constant curvature and oscillatory torsion. However, relatively softer folds inherit the broken symmetry of the buckled shape with oscillatory curvature and torsion. Our asymptotic analysis of the isometrically deformed state is corroborated by numerical simulations that allow us to generalize our analysis to study structures with multiple curved creases.

  13. Geometric mechanics of curved crease origami.

    PubMed

    Dias, Marcelo A; Dudte, Levi H; Mahadevan, L; Santangelo, Christian D

    2012-09-14

    Folding a sheet of paper along a curve can lead to structures seen in decorative art and utilitarian packing boxes. Here we present a theory for the simplest such structure: an annular circular strip that is folded along a central circular curve to form a three-dimensional buckled structure driven by geometrical frustration. We quantify this shape in terms of the radius of the circle, the dihedral angle of the fold, and the mechanical properties of the sheet of paper and the fold itself. When the sheet is isometrically deformed everywhere except along the fold itself, stiff folds result in creases with constant curvature and oscillatory torsion. However, relatively softer folds inherit the broken symmetry of the buckled shape with oscillatory curvature and torsion. Our asymptotic analysis of the isometrically deformed state is corroborated by numerical simulations that allow us to generalize our analysis to study structures with multiple curved creases.

  14. A Geometrical Approach to Bell's Theorem

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2000-01-01

    Bell's theorem can be proved through simple geometrical reasoning, without the need for the Psi function, probability distributions, or calculus. The proof is based on N. David Mermin's explication of the Einstein-Podolsky-Rosen-Bohm experiment, which involves Stern-Gerlach detectors which flash red or green lights when detecting spin-up or spin-down. The statistics of local hidden variable theories for this experiment can be arranged in colored strips from which simple inequalities can be deduced. These inequalities lead to a demonstration of Bell's theorem. Moreover, all local hidden variable theories can be graphed in such a way as to enclose their statistics in a pyramid, with the quantum-mechanical result lying a finite distance beneath the base of the pyramid.

  15. Random broadcast on random geometric graphs

    SciTech Connect

    Bradonjic, Milan; Elsasser, Robert; Friedrich, Tobias

    2009-01-01

    In this work, we consider the random broadcast time on random geometric graphs (RGGs). The classic random broadcast model, also known as push algorithm, is defined as: starting with one informed node, in each succeeding round every informed node chooses one of its neighbors uniformly at random and informs it. We consider the random broadcast time on RGGs, when with high probability: (i) RGG is connected, (ii) when there exists the giant component in RGG. We show that the random broadcast time is bounded by {Omicron}({radical} n + diam(component)), where diam(component) is a diameter of the entire graph, or the giant component, for the regimes (i), or (ii), respectively. In other words, for both regimes, we derive the broadcast time to be {Theta}(diam(G)), which is asymptotically optimal.

  16. Efficient broadcast on random geometric graphs

    SciTech Connect

    Bradonjic, Milan; Elsasser, Robert; Friedrich, Tobias; Sauerwald, Thomas

    2009-01-01

    A Randon Geometric Graph (RGG) is constructed by distributing n nodes uniformly at random in the unit square and connecting two nodes if their Euclidean distance is at most r, for some prescribed r. They analyze the following randomized broadcast algorithm on RGGs. At the beginning, there is only one informed node. Then in each round, each informed node chooses a neighbor uniformly at random and informs it. They prove that this algorithm informs every node in the largest component of a RGG in {Omicron}({radical}n/r) rounds with high probability. This holds for any value of r larger than the critical value for the emergence of a giant component. In particular, the result implies that the diameter of the giant component is {Theta}({radical}n/r).

  17. Geometric Phase of a Transported Oscillator

    SciTech Connect

    Dittirich, W.

    2004-02-25

    An oscillator constrained to a plane that is transported along some surface will rotate by an angle dependent only on the path and the surface, not on the speed at which it is transported. This is thus an example of a geometric phase. We analyze this phase using the methods of parallel transport. This concept plays a key role in General Relativity, but it can also be applied in classical mechanics. The Foucault pendulum can be seen as an application of this analysis, where the surface is a sphere and the curve is a line of constant latitude. In view of some considerable confusion and erroneous treatments in the recent literature, we here present a rather simple way for visualizing the motion of the Foucault pendulum using concepts that are based on Frenet's formulae and the methods of parallel displacement.

  18. Geometric calibration of rotational kaleidoscopic instrument

    NASA Astrophysics Data System (ADS)

    Havran, Vlastimil; Němcová, Šárka; Čáp, Jiří; Hošek, Jan; Bittner, Jiří; Macúchová, Karolina

    2016-11-01

    The measurement of spatially varying surface reflectance is required for faithful reproduction of real world to allow for predictive look of computer generated images. One such proposed method uses a rotational kaleidoscopic imaging, where illumination and imaging paths are realized by subimages on kaleidoscopic mirrors and illumination is carried out by a DLP projector. We describe a novel geometric calibration method for a rotational kaleidoscope that is necessary to get aligned and accurate data from measurement. The calibration has two stages. The first stage mechanically adjusts the camera, the projector, and the autocollimator against the kaleidoscope mirrors. The second stage is based on the software. By random perturbation of camera and projector in corresponding mathematical model of the kaleidoscope we estimate better real positions of camera and projector in a physical setup, comparing the computed images from the software simulator and the acquired images from the physical setup.

  19. Generalized geometric vacua with eight supercharges

    NASA Astrophysics Data System (ADS)

    Graña, Mariana; Ntokos, Praxitelis

    2016-08-01

    We investigate compactifications of type II and M-theory down to AdS 5 with generic fluxes that preserve eight supercharges, in the framework of Exceptional Generalized Geometry. The geometric data and gauge fields on the internal manifold are encoded in a pair of generalized structures corresponding to the vector and hyper-multiplets of the reduced five-dimensional supergravity. Supersymmetry translates into integrability conditions for these structures, generalizing, in the case of type IIB, the Sasaki-Einstein conditions. We show that the ten and eleven-dimensional type IIB and M-theory Killing-spinor equations specialized to a warped AdS 5 background imply the generalized integrability conditions.

  20. On the geometrization of quantum mechanics

    SciTech Connect

    Tavernelli, Ivano

    2016-08-15

    Nonrelativistic quantum mechanics is commonly formulated in terms of wavefunctions (probability amplitudes) obeying the static and the time-dependent Schrödinger equations (SE). Despite the success of this representation of the quantum world a wave–particle duality concept is required to reconcile the theory with observations (experimental measurements). A first solution to this dichotomy was introduced in the de Broglie–Bohm theory according to which a pilot-wave (solution of the SE) is guiding the evolution of particle trajectories. Here, I propose a geometrization of quantum mechanics that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is induced by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space–time, as it is the case for gravitation in the general relativity.

  1. A Geometric Classification of Jaw Deformities

    PubMed Central

    Gateno, Jaime; Alfi, David; Xia, James J.; Teichgraeber, John F.

    2015-01-01

    In the United States, the most widely used classification system for jaw deformities is the one provided by the International Classification of Diseases, Clinical Modification (ICD-CM), a taxonomy scheme that is based on the World Health Organization's International Classification of Diseases (ICD). The last iteration of ICD-CM, version 10, sorts jaw deformities according to geometry, into 3 groups: anomalies of jaw size, anomalies of jaw-cranial base relationship, or unspecified. Yet these deformities can affect 6 different geometric attributes: size, position, orientation, shape, symmetry, and completeness. In clinical practice and in teaching we have found the ICD-CM classification to be incomplete and disjointed. With this in mind, we have developed a better classification system. The purpose of this paper is to present it. PMID:26608152

  2. Geometrical-numerical approach to diffraction phenomena.

    PubMed

    Bosch, S; Ferré-Borrull, J

    2001-02-15

    The calculation of diffracted fields is considered by means of a geometrical analysis of the incoming wave into semiperiodic zones in the aperture plane, followed by a numerical process for addition of the contributions corresponding to the semiperiodic zones. This general approach constitutes a novel interpretation of diffraction phenomena that permits exact evaluation of the mathematical expressions of diffraction theory and overcomes the limitations of any approximation. The method is illustrated by analysis of two important configuration in optics: the pinhole camera, for which we deduce the optimum radius for imaging, and the diffraction of a spherical converging wave through a circular aperture, from which we determine the limit of the validity of the Fraunhofer approximation (i.e., of the Airy pattern) and the influence of the obliquity factor.

  3. Geometric formulation of the uncertainty principle

    NASA Astrophysics Data System (ADS)

    Bosyk, G. M.; Osán, T. M.; Lamberti, P. W.; Portesi, M.

    2014-03-01

    A geometric approach to formulate the uncertainty principle between quantum observables acting on an N-dimensional Hilbert space is proposed. We consider the fidelity between a density operator associated with a quantum system and a projector associated with an observable, and interpret it as the probability of obtaining the outcome corresponding to that projector. We make use of fidelity-based metrics such as angle, Bures, and root infidelity to propose a measure of uncertainty. The triangle inequality allows us to derive a family of uncertainty relations. In the case of the angle metric, we recover the Landau-Pollak inequality for pure states and show, in a natural way, how to extend it to the case of mixed states in arbitrary dimension. In addition, we derive and compare alternative uncertainty relations when using other known fidelity-based metrics.

  4. Monolithic geometric anti-spring blades

    NASA Astrophysics Data System (ADS)

    Cella, G.; Sannibale, V.; DeSalvo, R.; Márka, S.; Takamori, A.

    2005-03-01

    In this article we investigate the principle and properties of a vertical passive seismic noise attenuator conceived for ground based gravitational wave interferometers. This mechanical attenuator based on a particular geometry of cantilever blades called monolithic geometric anti springs (MGAS) permits the design of mechanical harmonic oscillators with very low resonant frequency (below 10 mHz). Here we address the theoretical description of the mechanical device, focusing on the most important quantities for the low-frequency regime, on the distribution of internal stresses, and on the thermal stability. In order to obtain physical insight of the attenuator peculiarities, we devise some simplified models, rather than use the brute force of finite element analysis. Those models have been used to optimize the design of a seismic attenuation system prototype for LIGO advanced configurations and for the next generation of the TAMA interferometer.

  5. Geometric investigations of a vorticity model equation

    NASA Astrophysics Data System (ADS)

    Bauer, Martin; Kolev, Boris; Preston, Stephen C.

    2016-01-01

    This article consists of a detailed geometric study of the one-dimensional vorticity model equation which is a particular case of the generalized Constantin-Lax-Majda equation. Wunsch showed that this equation is the Euler-Arnold equation on Diff (S1) when the latter is endowed with the right-invariant homogeneous H ˙ 1 / 2-metric. In this article we prove that the exponential map of this Riemannian metric is not Fredholm and that the sectional curvature is locally unbounded. Furthermore, we prove a Beale-Kato-Majda-type blow-up criterion, which we then use to demonstrate a link to our non-Fredholmness result. Finally, we extend a blow-up result of Castro-Córdoba to the periodic case and to a much wider class of initial conditions, using a new generalization of an inequality for Hilbert transforms due to Córdoba-Córdoba.

  6. A geometrical perspective for the bargaining problem.

    PubMed

    Wong, Kelvin Kian Loong

    2010-04-26

    A new treatment to determine the Pareto-optimal outcome for a non-zero-sum game is presented. An equilibrium point for any game is defined here as a set of strategy choices for the players, such that no change in the choice of any single player will increase the overall payoff of all the players. Determining equilibrium for multi-player games is a complex problem. An intuitive conceptual tool for reducing the complexity, via the idea of spatially representing strategy options in the bargaining problem is proposed. Based on this geometry, an equilibrium condition is established such that the product of their gains over what each receives is maximal. The geometrical analysis of a cooperative bargaining game provides an example for solving multi-player and non-zero-sum games efficiently.

  7. A Geometric Representation of Collective Attention Flows.

    PubMed

    Shi, Peiteng; Huang, Xiaohan; Wang, Jun; Zhang, Jiang; Deng, Su; Wu, Yahui

    2015-01-01

    With the fast development of Internet and WWW, "information overload" has become an overwhelming problem, and collective attention of users will play a more important role nowadays. As a result, knowing how collective attention distributes and flows among different websites is the first step to understand the underlying dynamics of attention on WWW. In this paper, we propose a method to embed a large number of web sites into a high dimensional Euclidean space according to the novel concept of flow distance, which both considers connection topology between sites and collective click behaviors of users. With this geometric representation, we visualize the attention flow in the data set of Indiana university clickstream over one day. It turns out that all the websites can be embedded into a 20 dimensional ball, in which, close sites are always visited by users sequentially. The distributions of websites, attention flows, and dissipations can be divided into three spherical crowns (core, interim, and periphery). 20% popular sites (Google.com, Myspace.com, Facebook.com, etc.) attracting 75% attention flows with only 55% dissipations (log off users) locate in the central layer with the radius 4.1. While 60% sites attracting only about 22% traffics with almost 38% dissipations locate in the middle area with radius between 4.1 and 6.3. Other 20% sites are far from the central area. All the cumulative distributions of variables can be well fitted by "S"-shaped curves. And the patterns are stable across different periods. Thus, the overall distribution and the dynamics of collective attention on websites can be well exhibited by this geometric representation.

  8. Discrimination of geometric angles by adult humans.

    PubMed

    Reichert, James F; Kelly, Debbie M

    2012-03-01

    Men and women learned to discriminate between two different size angles presented to them as objects within a real-world task. During Experiment 1, participants in group 50 were trained to choose a 50° angle and participants in group 75 were trained to choose a 75° angle. During testing, both groups were provided with a choice between their training angle and one of a set of test angles that was either smaller or larger than the training angle. Results showed a generalized pattern of responding, with group 50 showing increased responding to test angles smaller than 50° and group 75 showing increased responding to test angles larger than 75°. Further analysis of the response patterns revealed that participants in group 50 showed evidence of absolute learning, whereas participants in group 75 showed evidence of relational learning. During Experiment 2, a third group of participants (group 25) trained to choose a smaller angle (25°) was included in addition to group 50 and group 75. Participants were trained with three angles present and tested with just two, one being their training angle and the other being one of a set of novel test angles. Similar to the participants from Experiment 1, group 75 showed evidence of relational learning. Group 50, for which no relational rule could be applied during training, showed an absolute learning pattern with no response shift to test angles smaller or larger than their training angle. Group 25 showed evidence of absolute responding that was more pronounced than that found for the smallest training angle during Experiment 1. These findings suggest differential learning of geometric angles based on amplitude with smaller angles perceived as more distinct and thus more resistant to broader generalization than larger angles. Implications of these results are that certain geometric properties may be subject to different learning processes based on the specific magnitude of that property.

  9. A Geometric Representation of Collective Attention Flows

    PubMed Central

    Shi, Peiteng; Huang, Xiaohan; Wang, Jun; Zhang, Jiang; Deng, Su; Wu, Yahui

    2015-01-01

    With the fast development of Internet and WWW, “information overload” has become an overwhelming problem, and collective attention of users will play a more important role nowadays. As a result, knowing how collective attention distributes and flows among different websites is the first step to understand the underlying dynamics of attention on WWW. In this paper, we propose a method to embed a large number of web sites into a high dimensional Euclidean space according to the novel concept of flow distance, which both considers connection topology between sites and collective click behaviors of users. With this geometric representation, we visualize the attention flow in the data set of Indiana university clickstream over one day. It turns out that all the websites can be embedded into a 20 dimensional ball, in which, close sites are always visited by users sequentially. The distributions of websites, attention flows, and dissipations can be divided into three spherical crowns (core, interim, and periphery). 20% popular sites (Google.com, Myspace.com, Facebook.com, etc.) attracting 75% attention flows with only 55% dissipations (log off users) locate in the central layer with the radius 4.1. While 60% sites attracting only about 22% traffics with almost 38% dissipations locate in the middle area with radius between 4.1 and 6.3. Other 20% sites are far from the central area. All the cumulative distributions of variables can be well fitted by “S”-shaped curves. And the patterns are stable across different periods. Thus, the overall distribution and the dynamics of collective attention on websites can be well exhibited by this geometric representation. PMID:26325390

  10. Generalizations of fuzzy linguistic control points in geometric design

    NASA Astrophysics Data System (ADS)

    Sallehuddin, M. H.; Wahab, A. F.; Gobithaasan, R. U.

    2014-07-01

    Control points are geometric primitives that play an important role in designing the geometry curve and surface. When these control points are blended with some basis functions, there are several geometric models such as Bezier, B-spline and NURBS(Non-Uniform Rational B-Spline) will be produced. If the control points are defined by the theory of fuzzy sets, then fuzzy geometric models are produced. But the fuzzy geometric models can only solve the problem of uncertainty complex. This paper proposes a new definition of fuzzy control points with linguistic terms. When the fuzzy control points with linguistic terms are blended with basis functions, then a fuzzy linguistic geometric model is produced. This paper ends with some numerical examples illustrating linguistic control attributes of fuzzy geometric models.

  11. Geometrical description of algebraic structures: Applications to Quantum Mechanics

    SciTech Connect

    Carinena, J. F.; Ibort, A.; Marmo, G.; Morandi, G.

    2009-05-06

    Geometrization of physical theories have always played an important role in their analysis and development. In this contribution we discuss various aspects concerning the geometrization of physical theories: from classical mechanics to quantum mechanics. We will concentrate our attention into quantum theories and we will show how to use in a systematic way the transition from algebraic to geometrical structures to explore their geometry, mainly its Jordan-Lie structure.

  12. Geometric quantum gates that are robust against stochastic control errors

    SciTech Connect

    Zhu Shiliang; Zanardi, Paolo

    2005-08-15

    The realistic application of geometric quantum computation is crucially dependent on an unproved robustness conjecture, claiming that geometric quantum gates are more resilient against random noise than dynamic gates. We propose a suitable model that allows a direct and fair comparison between geometrical and dynamical operations. In the presence of stochastic control errors we find that the maximum of gate fidelity corresponds to quantum gates with a vanishing dynamical phase. This is a clear evidence for the robustness of nonadiabatic geometric quantum computation. The predictions here presented can be experimentally tested in almost all of the already existing quantum computer candidates.

  13. Anisotropy without tensors: a novel approach using geometric algebra.

    PubMed

    Matos, Sérgio A; Ribeiro, Marco A; Paiva, Carlos R

    2007-11-12

    The most widespread approach to anisotropic media is dyadic analysis. However, to get a geometrical picture of a dielectric tensor, one has to resort to a coordinate system for a matrix form in order to obtain, for example, the index-ellipsoid, thereby obnubilating the deeper coordinate-free meaning of anisotropy itself. To overcome these shortcomings we present a novel approach to anisotropy: using geometric algebra we introduce a direct geometrical interpretation without the intervention of any coordinate system. By applying this new approach to biaxial crystals we show the effectiveness and insight that geometric algebra can bring to the optics of anisotropic media.

  14. Comparison of geometrical and diffraction optical transfer functions

    NASA Astrophysics Data System (ADS)

    Mahajan, Virendra N.; Díaz, José Antonio

    2015-09-01

    The geometrical and diffraction point-spread functions of an optical imaging system have been reviewed and compared in the past [V. N. Mahajan, "Comparison of geometrical and diffraction point-spread functions," SPIE Proc. 3729, 434-445 (1999)]. In this paper, we review and compare its corresponding optical transfer functions. While the truth lies with the diffraction OTF, it is considered easier and quicker to calculate the geometrical OTF, especially for large aberrations. We briefly describe the theory of the two OTFs, and explore the range of spatial frequencies and the magnitude of the primary aberrations over which the geometrical OTF may provide a reasonable approximation of the diffraction OTF.

  15. Geometrical analysis of the LiCN vibrational dynamics: a stability geometrical indicator.

    PubMed

    Vergel, A; Benito, R M; Losada, J C; Borondo, F

    2014-02-01

    The vibrational dynamics of the LiNC/LiCN molecular system is examined making use of the Riemannian geometry. Stability and chaoticity are analyzed, in this context, by means of the Jacobi-Levi-Civita equations, derived from the Jacobi metric, and its solutions. A dynamical indicator, called stability geometrical indicator, is introduced in order to ascertain the dynamical characteristics of stability and chaos in the molecule under study.

  16. An Introduction to Geometric Algebra with some Preliminary Thoughts on the Geometric Meaning of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Horn, Martin Erik

    2014-10-01

    It is still a great riddle to me why Wolfgang Pauli and P.A.M. Dirac had not fully grasped the meaning of their own mathematical constructions. They invented magnificent, fantastic and very important mathematical features of modern physics, but they only delivered half of the interpretations of their own inventions. Of course, Pauli matrices and Dirac matrices represent operators, which Pauli and Dirac discussed in length. But this is only part of the true meaning behind them, as the non-commutative ideas of Grassmann, Clifford, Hamilton and Cartan allow a second, very far reaching interpretation of Pauli and Dirac matrices. An introduction to this alternative interpretation will be discussed. Some applications of this view on Pauli and Dirac matrices are given, e.g. a geometric algebra picture of the plane wave solution of the Maxwell equation, a geometric algebra picture of special relativity, a toy model of SU(3) symmetry, and some only very preliminary thoughts about a possible geometric meaning of quantum mechanics.

  17. Efficient Geometric Sound Propagation Using Visibility Culling

    NASA Astrophysics Data System (ADS)

    Chandak, Anish

    2011-07-01

    Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying

  18. Geometric strategies for neuroanatomic analysis from MRI

    PubMed Central

    Duncan, James S.; Papademetris, Xenophon; Yang, Jing; Jackowski, Marcel; Zeng, Xiaolan; Staib, Lawrence H.

    2010-01-01

    In this paper, we describe ongoing work in the Image Processing and Analysis Group (IPAG) at Yale University specifically aimed at the analysis of structural information as represented within magnetic resonance images (MRI) of the human brain. Specifically, we will describe our applied mathematical approaches to the segmentation of cortical and subcortical structure, the analysis of white matter fiber tracks using diffusion tensor imaging (DTI), and the intersubject registration of neuroanatomical (aMRI) data sets. Many of our methods rally around the use of geometric constraints, statistical (MAP) estimation, and the use of level set evolution strategies. The analysis of gray matter structure and connecting white matter paths combined with the ability to bring all information into a common space via intersubject registration should provide us with a rich set of data to investigate structure and variation in the human brain in neuropsychiatric disorders, as well as provide a basis for current work in the development of integrated brain function–structure analysis. PMID:15501099

  19. Geometrical beaming of stellar mass ULXs

    NASA Astrophysics Data System (ADS)

    Middleton, Matthew J.; King, Andrew

    2016-10-01

    The presence or lack of eclipses in the X-ray light curves of ultraluminous X-ray sources (ULXs) can be directly linked to the accreting system geometry. In the case where the compact object is stellar mass and radiates isotropically, we should expect eclipses by a main-sequence to sub-giant secondary star on the recurrence time-scale of hours to days. X-ray light curves are now available for large numbers of ULXs as a result of the latest XMM-Newton catalogue. We determine the amount of fractional variability that should be injected into an otherwise featureless light curve for a given set of system parameters as a result of eclipses and compare this to the available data. We find that the vast majority of sources for which the variability has been measured to be non-zero and for which available observations meet the criteria for eclipse searches, have fractional variabilities which are too low to derive from eclipses and so must be viewed such that θ ≤ cos- 1(R*/a). This would require that the disc subtends a larger angle than that of the secondary star and is therefore consistent with a conical outflow formed from super-critical accretion rates and implies some level of geometrical beaming in ULXs.

  20. On pool spreading around tanks: geometrical considerations.

    PubMed

    Brambilla, Sara; Manca, Davide

    2008-10-01

    The paper discusses a straightforward approach for evaluating the distance covered by a spreading liquid pool, when the axisymmetric hypothesis is no longer valid. This distance is evaluated by a three-steps methodology: the pre-processing of input data (bund radius, if present, and radial velocity); the simulation of pool spreading by a model based on the axisymmetric hypothesis; and the post-processing of results. The paper reports some geometrical correlations to pre- and post-process the data, with regard to four case-studies. Some numerical examples are also presented to prove that the pre-processed input data and post-processed results differ from those based on the axisymmetric hypothesis. Finally, we validate our modeling approach with the experimental data of Cronin and Evans [P.S. Cronin, J.A. Evans, A series of experiments to study the spreading of liquid pools with different bund arrangements, HSE Contract Research Report 405/2002, Advantica Technologies Limited, 2002].

  1. Geometric Model of a Coronal Cavity

    NASA Technical Reports Server (NTRS)

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; Schmidt, D. J.; Sterling, A. C.; Tripathi, D. K.; Williams, D. R.; Zhang, M.

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  2. Effect of geometrical frustration on inverse freezing

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Morais, C. V.; Zimmer, F. M.

    2016-01-01

    The interplay between geometrical frustration (GF) and inverse freezing (IF) is studied within a cluster approach. The model considers first-neighbor (J1) and second-neighbor (J2) intracluster antiferromagnetic interactions between Ising spins on a checkerboard lattice and long-range disordered couplings (J ) among clusters. We obtain phase diagrams of temperature versus J1/J in two cases: the absence of J2 interaction and the isotropic limit J2=J1 , where GF takes place. An IF reentrant transition from the spin-glass (SG) to paramagnetic (PM) phase is found for a certain range of J1/J in both cases. The J1 interaction leads to a SG state with high entropy at the same time that can introduce a low-entropy PM phase. In addition, it is observed that the cluster size plays an important role. The GF increases the PM phase entropy, but larger clusters can give an entropic advantage for the SG phase that favors IF. Therefore, our results suggest that disordered systems with antiferromagnetic clusters can exhibit an IF transition even in the presence of GF.

  3. Geometric investigation of a gaming active device

    NASA Astrophysics Data System (ADS)

    Menna, Fabio; Remondino, Fabio; Battisti, Roberto; Nocerino, Erica

    2011-07-01

    3D imaging systems are widely available and used for surveying, modeling and entertainment applications, but clear statements regarding their characteristics, performances and limitations are still missing. The VDI/VDE and the ASTME57 committees are trying to set some standards but the commercial market is not reacting properly. Since many new users are approaching these 3D recording methodologies, clear statements and information clarifying if a package or system satisfies certain requirements before investing are fundamental for those users who are not really familiar with these technologies. Recently small and portable consumer-grade active sensors came on the market, like TOF rangeimaging cameras or low-cost triangulation-based range sensor. A quite interesting active system was produced by PrimeSense and launched on the market thanks to the Microsoft Xbox project with the name of Kinect. The article reports the geometric investigation of the Kinect active sensors, considering its measurement performances, the accuracy of the retrieved range data and the possibility to use it for 3D modeling application.

  4. Geometric stiffening in multibody dynamics formulations

    NASA Technical Reports Server (NTRS)

    Sharf, Inna

    1993-01-01

    In this paper we discuss the issue of geometric stiffening as it arises in the context of multibody dynamics. This topic has been treated in a number of previous publications in this journal and appears to be a debated subject. The controversy revolves primarily around the 'correct' methodology for incorporating the stiffening effect into dynamics formulations. The main goal of this work is to present the different approaches that have been developed for this problem through an in-depth review of several publications dealing with this subject. This is done with the goal of contributing to a precise understanding of the existing methodologies for modelling the stiffening effects in multibody systems. Thus, in presenting the material we attempt to illuminate the key characteristics of the various methods as well as show how they relate to each other. In addition, we offer a number of novel insights and clarifying interpretations of these schemes. The paper is completed with a general classification and comparison of the different approaches.

  5. Generalized Bergman kernels and geometric quantization

    NASA Astrophysics Data System (ADS)

    Tuynman, G. M.

    1987-03-01

    In geometric quantization it is well known that, if f is an observable and F a polarization on a symplectic manifold (M,ω), then the condition ``Xf leaves F invariant'' (where Xf denotes the Hamiltonian vector field associated to f ) is sufficient to guarantee that one does not have to compute the BKS kernel explicitly in order to know the corresponding quantum operator. It is shown in this paper that this condition on f can be weakened to ``Xf leaves F+F° invariant''and the corresponding quantum operator is then given implicitly by formula (4.8); in particular when F is a (positive) Kähler polarization, all observables can be quantized ``directly'' and moreover, an ``explicit'' formula for the corresponding quantum operator is derived (Theorem 5.8). Applying this to the phase space R2n one obtains a quantization prescription which ressembles the normal ordering of operators in quantum field theory. When we translate this prescription to the usual position representation of quantum mechanics, the result is (a.o) that the operator associated to a classical potential is multiplication by a function which is essentially the convolution of the potential function with a Gaussian function of width ℏ, instead of multiplication by the potential itself.

  6. Geometric Modeling of Inclusions as Ellipsoids

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.

    2008-01-01

    Nonmetallic inclusions in gas turbine disk alloys can have a significant detrimental impact on fatigue life. Because large inclusions that lead to anomalously low lives occur infrequently, probabilistic approaches can be utilized to avoid the excessively conservative assumption of lifing to a large inclusion in a high stress location. A prerequisite to modeling the impact of inclusions on the fatigue life distribution is a characterization of the inclusion occurrence rate and size distribution. To help facilitate this process, a geometric simulation of the inclusions was devised. To make the simulation problem tractable, the irregularly sized and shaped inclusions were modeled as arbitrarily oriented, three independent dimensioned, ellipsoids. Random orientation of the ellipsoid is accomplished through a series of three orthogonal rotations of axes. In this report, a set of mathematical models for the following parameters are described: the intercepted area of a randomly sectioned ellipsoid, the dimensions and orientation of the intercepted ellipse, the area of a randomly oriented sectioned ellipse, the depth and width of a randomly oriented sectioned ellipse, and the projected area of a randomly oriented ellipsoid. These parameters are necessary to determine an inclusion s potential to develop a propagating fatigue crack. Without these mathematical models, computationally expensive search algorithms would be required to compute these parameters.

  7. Geometric Exponents of Dilute Loop Models

    NASA Astrophysics Data System (ADS)

    Provencher, Guillaume; Saint-Aubin, Yvan; Pearce, Paul A.; Rasmussen, Jørgen

    2012-04-01

    The fractal dimensions of the hull, the external perimeter and of the red bonds are measured through Monte Carlo simulations for dilute minimal models, and compared with predictions from conformal field theory and SLE methods. The dilute models used are those first introduced by Nienhuis. Their loop fugacity is β=-2 \\cos(π/bar{kappa}) where the parameter bar{kappa} is linked to their description through conformal loop ensembles. It is also linked to conformal field theories through their central charges c(bar{kappa})=13-6(bar{kappa}+bar{kappa}^{-1}) and, for the minimal models of interest here, bar{kappa}=p/p' where p and p' are two coprime integers. The geometric exponents of the hull and external perimeter are studied for the pairs ( p, p')=(1,1),(2,3),(3,4),(4,5),(5,6),(5,7), and that of the red bonds for ( p, p')=(3,4). Monte Carlo upgrades are proposed for these models as well as several techniques to improve their speeds. The measured fractal dimensions are obtained by extrapolation on the lattice size H, V→∞. The extrapolating curves have large slopes; despite these, the measured dimensions coincide with theoretical predictions up to three or four digits. In some cases, the theoretical values lie slightly outside the confidence intervals; explanations of these small discrepancies are proposed.

  8. Geometric median for missing rainfall data imputation

    NASA Astrophysics Data System (ADS)

    Burhanuddin, Siti Nur Zahrah Amin; Deni, Sayang Mohd; Ramli, Norazan Mohamed

    2015-02-01

    Missing data is a common problem faced by researchers in environmental studies. Environmental data, particularly, rainfall data are highly vulnerable to be missed, which is due to several reasons, such as malfunction instrument, incorrect measurements, and relocation of stations. Rainfall data are also affected by the presence of outliers due to the temporal and spatial variability of rainfall measurements. These problems may harm the quality of rainfall data and subsequently, produce inaccuracy in the results of analysis. Thus, this study is aimed to propose an imputation method that is robust towards the presence of outliers for treating the missing rainfall data. Geometric median was applied to estimate the missing values based on the available rainfall data from neighbouring stations. The method was compared with several conventional methods, such as normal ratio and inverse distance weighting methods, in order to evaluate its performance. Thirteen rainfall stations in Peninsular Malaysia were selected for the application of the imputation methods. The results indicated that the proposed method provided the most accurate estimation values compared to both conventional methods based on the least mean absolute error. The normal ratio was found to be the worst method in estimating the missing rainfall values.

  9. Fold Lens Flux Anomalies: A Geometric Approach

    NASA Astrophysics Data System (ADS)

    Harris, Wendy B.; Chessey, M. K.; Goldberg, D. M.; Richards, G. T.

    2010-01-01

    Strong gravitational lensing of quasars is a powerful tool to learn about the distribution of dark matter in lensing galaxies. Multiply imaged quasar systems have symmetries which allow for an understanding of the lensing galaxy without detailed mass reconstructions. Keeton et al. (2005) defined a useful expression for the flux anomaly of "fold'' lenses, which we might naively expect to have the same flux: Rfold=(fA-fB)/(fA+fB), where "A'' and "B'' represent the positive and negative parity images straddling a critical curve. We show that the geometric configuration of the images greatly constrains the possible flux anomalies allowable from a smooth galaxy potential. Using gravlens, we create a number of simple galaxies from various mass models to put our solution to the test, and find that simulated flux anomalies are reproduced to an accuracy of |δ R| < 0.04. We then apply our approach to a radio sample of 9 well-studied fold lenses and quickly identify those with significant substructure.

  10. Geometric conditions for violation of Bell's inequality

    SciTech Connect

    Mendas, Istok P.

    2005-03-01

    The geometric conditions for violation of Bell's inequality, in its original form dealing with a pair of spin one-half particles formed in the singlet spin state, are discussed. The parameters x{sub 1}, x{sub 2}, and x{sub 3} are introduced as the cosines of angles {theta}{sub ab}=angle(a,b), {theta}{sub ac}=angle(a,c), and {theta}{sub bc}=angle(b,c) between the unit vectors a, b, and c defining the orientation of the corresponding Stern-Gerlach magnets. A Monte Carlo experiment shows that in order to obtain violation, the three parameters must belong to a definite region in the parametric space that encompasses 1/3 of all possible triplets of unit vectors generated randomly from the isotropic distribution in the ordinary space. By introducing a measure of violation D{identical_to}|x{sub 1}-x{sub 2}|+x{sub 3}-1, it is found that 0{<=}D{<=}1/2 and that the maximal violation D=1/2 is obtained only in two isolated cases, when the relevant angles are {theta}{sub ab}=2{pi}/3, {theta}{sub ac}={theta}{sub bc}={pi}/3, or when {theta}{sub ab}={theta}{sub bc}={pi}/3, {theta}{sub ac}=2{pi}/3. In both cases the unit vectors a, b, and c are coplanar.

  11. Digital polarization holography advancing geometrical phase optics.

    PubMed

    De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

    2016-08-08

    Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.

  12. Geometrical features underlying the perception of collinearity.

    PubMed

    Morgan, Michael; Dillenburger, Barbara

    2016-11-01

    The magnitude of the Poggendorff bias in perceived collinearity was measured with a 2AFC task and roving pedestal, and was found to be in the region of 6-8deg, within the range of previous estimates. Further measurements dissected the bias into several components: (1) The small (∼1deg) repulsion of the orientation of the pointer from the parallel, probably localized in the part of the line near the intersection (2) A small (<1deg) location bias affecting the intersection of pointers and inducing lines; and (3) A larger (>1deg) bias in the orientation of virtual lines crossing the gap between two parallels, towards the orientation of the parallels, or equivalently (4) An orthogonal bias in actively constructing a virtual line across the gap. We conclude that orientation repulsion by itself is an inadequate explanation of the Poggendorff effect, and that a full explanation must take account of the way in which observers construct virtual lines in visual space in order to carry out elementary geometrical tasks such as extrapolation.

  13. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.; Olariu, Stephen

    1995-01-01

    The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes.

  14. Geometric facial gender scoring: objectivity of perception.

    PubMed

    Gilani, Syed Zulqarnain; Rooney, Kathleen; Shafait, Faisal; Walters, Mark; Mian, Ajmal

    2014-01-01

    Gender score is the cognitive judgement of the degree of masculinity or femininity of a face which is considered to be a continuum. Gender scores have long been used in psychological studies to understand the complex psychosocial relationships between people. Perceptual scores for gender and attractiveness have been employed for quality assessment and planning of cosmetic facial surgery. Various neurological disorders have been linked to the facial structure in general and the facial gender perception in particular. While, subjective gender scoring by human raters has been a tool of choice for psychological studies for many years, the process is both time and resource consuming. In this study, we investigate the geometric features used by the human cognitive system in perceiving the degree of masculinity/femininity of a 3D face. We then propose a mathematical model that can mimic the human gender perception. For our experiments, we obtained 3D face scans of 64 subjects using the 3dMDface scanner. The textureless 3D face scans of the subjects were then observed in different poses and assigned a gender score by 75 raters of a similar background. Our results suggest that the human cognitive system employs a combination of Euclidean and geodesic distances between biologically significant landmarks of the face for gender scoring. We propose a mathematical model that is able to automatically assign an objective gender score to a 3D face with a correlation of up to 0.895 with the human subjective scores.

  15. Geometrical modeling of fibrous materials under compression

    NASA Astrophysics Data System (ADS)

    Maze, Benoit; Vahedi Tafreshi, Hooman; Pourdeyhimi, Behnam

    2007-10-01

    Many fibrous materials such as nonwovens are consolidated via compaction rolls in a so-called calendering process. Hot rolls compress the fiber assembly and cause fiber-to-fiber bonding resulting in a strong yet porous structure. In this paper, we describe an algorithm for generating three dimensional virtual fiberwebs and simulating the geometrical changes that happen to the structure during the calendering process. Fibers are assumed to be continuous filaments with square cross sections lying randomly in the x or y direction. The fibers are assumed to be flexible to allow bending over one another during the compression process. Lateral displacement is not allowed during the compaction process. The algorithm also does not allow the fibers to interpenetrate or elongate and so the mass of the fibers is conserved. Bending of the fibers is modeled either by considering a constant "slope of bending" or constant "span of bending." The influence of the bending parameters on the propagation of compression through the material's thickness is discussed. In agreement with our experimental observations, it was found that the average solid volume fraction profile across the thickness becomes U shaped after the calendering. The application of these virtual structures in studying transport phenomena in fibrous materials is also demonstrated.

  16. Oscillating Filaments. I. Oscillation and Geometrical Fragmentation

    NASA Astrophysics Data System (ADS)

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas

    2017-01-01

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.

  17. Geometric deviation modeling by kinematic matrix based on Lagrangian coordinate

    NASA Astrophysics Data System (ADS)

    Liu, Weidong; Hu, Yueming; Liu, Yu; Dai, Wanyi

    2015-09-01

    Typical representation of dimension and geometric accuracy is limited to the self-representation of dimension and geometric deviation based on geometry variation thinking, yet the interactivity affection of geometric variation and gesture variation of multi-rigid body is not included. In this paper, a kinematic matrix model based on Lagrangian coordinate is introduced, with the purpose of unified model for geometric variation and gesture variation and their interactive and integrated analysis. Kinematic model with joint, local base and movable base is built. The ideal feature of functional geometry is treated as the base body; the fitting feature of functional geometry is treated as the adjacent movable body; the local base of the kinematic model is fixed onto the ideal geometry, and the movable base of the kinematic model is fixed onto the fitting geometry. Furthermore, the geometric deviation is treated as relative location or rotation variation between the movable base and the local base, and it's expressed by the Lagrangian coordinate. Moreover, kinematic matrix based on Lagrangian coordinate for different types of geometry tolerance zones is constructed, and total freedom for each kinematic model is discussed. Finally, the Lagrangian coordinate library, kinematic matrix library for geometric deviation modeling is illustrated, and an example of block and piston fits is introduced. Dimension and geometric tolerances of the shaft and hole fitting feature are constructed by kinematic matrix and Lagrangian coordinate, and the results indicate that the proposed kinematic matrix is capable and robust in dimension and geometric tolerances modeling.

  18. Active Learning Environment with Lenses in Geometric Optics

    ERIC Educational Resources Information Center

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  19. Growing and Growing: Promoting Functional Thinking with Geometric Growing Patterns

    ERIC Educational Resources Information Center

    Markworth, Kimberly A.

    2010-01-01

    Design research methodology is used in this study to develop an empirically-substantiated instruction theory about students' development of functional thinking in the context of geometric growing patterns. The two research questions are: (1) How does students' functional thinking develop in the context of geometric growing patterns? (2) What are…

  20. Geometric quadratic stochastic operator on countable infinite set

    SciTech Connect

    Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar

    2015-02-03

    In this paper we construct the family of Geometric quadratic stochastic operators defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. Such operators can be reinterpreted in terms of of evolutionary operator of free population. We show that Geometric quadratic stochastic operators are regular transformations.

  1. Homothetic Transformations and Geometric Loci: Properties of Triangles and Quadrilaterals

    ERIC Educational Resources Information Center

    Mammana, Maria Flavia

    2016-01-01

    In this paper, we use geometric transformations to find some interesting properties related with geometric loci. In particular, given a triangle or a cyclic quadrilateral, the locus generated by the centroid or by the orthocentre (for triangles) or by the anticentre (for cyclic quadrilaterals) when one vertex moves on the circumcircle of the…

  2. Creativity and Motivation for Geometric Tasks Designing in Education

    ERIC Educational Resources Information Center

    Rumanová, Lucia; Smiešková, Edita

    2015-01-01

    In this paper we focus on creativity needed for geometric tasks designing, visualization of geometric problems and use of ICT. We present some examples of various problems related to tessellations. Altogether 21 students--pre-service teachers participated in our activity within a geometry course at CPU in Nitra, Slovakia. Our attempt was to…

  3. Geometric Potential and Transport in Photonic Topological Crystals

    SciTech Connect

    Szameit, Alexander; Dreisow, Felix; Heinrich, Matthias; Keil, Robert; Nolte, Stefan; Tuennermann, Andreas; Longhi, Stefano

    2010-04-16

    We report on the experimental realization of an optical analogue of a quantum geometric potential for light wave packets constrained on thin dielectric guiding layers fabricated in silica by the femtosecond laser writing technology. We further demonstrate the optical version of a topological crystal, with the observation of Bloch oscillations and Zener tunneling of a purely geometric nature.

  4. Developing a Network of and for Geometric Reasoning

    ERIC Educational Resources Information Center

    Mamolo, Ami; Ruttenberg-Rozen, Robyn; Whiteley, Walter

    2015-01-01

    In this article, we develop a theoretical model for restructuring mathematical tasks, usually considered advanced, with a network of spatial visual representations designed to support geometric reasoning for learners of disparate ages, stages, strengths, and preparation. Through our geometric reworking of the well-known "open box…

  5. Prospective Middle School Mathematics Teachers' Preconceptions of Geometric Translations

    ERIC Educational Resources Information Center

    Yanik, H. Bahadir

    2011-01-01

    This article reports an analysis of 44 prospective middle school mathematics teachers' pre-existing knowledge of rigid geometric transformations, specifically the geometric translations. The main data source for this study was the participants' responses to the tasks that were presented during semi-structured clinical interviews. The findings of…

  6. On an Assumption of Geometric Foundation of Numbers

    ERIC Educational Resources Information Center

    Anatriello, Giuseppina; Tortoriello, Francesco Saverio; Vincenzi, Giovanni

    2016-01-01

    In line with the latest positions of Gottlob Frege, this article puts forward the hypothesis that the cognitive bases of mathematics are geometric in nature. Starting from the geometry axioms of the "Elements" of Euclid, we introduce a geometric theory of proportions along the lines of the one introduced by Grassmann in…

  7. Children's Strategies in Imagining Spatio-Geometrical Transformations.

    ERIC Educational Resources Information Center

    McGillicuddy-De Lisi, Ann V.; De Lisi, Richard

    1981-01-01

    Seventy-five children, 6 to 13 years of age, were assigned to one of five groups on the basis of Piagetian tests of spatial-geometrical knowledge. Subjects imagined and executed three transformations of geometric figures: square-enlargement, diamond enlargement and transformation of a small diamond into a large square. (CM)

  8. Geometric perturbation theory and plasma physics

    SciTech Connect

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  9. Geometrical and FEA study on Millipede Forming

    NASA Astrophysics Data System (ADS)

    Kong, Lingran; Tang, Di; Ding, Shichao; Zhang, Yuankun

    2013-12-01

    Millipede Forming is an innovative sheet metal forming approach that has been proposed and developed in Australia. U-channels, Z-channels or tubular products can be made by Millipede Forming. While a strip moves through an optimal transitional surface between the entry to exit of a forming stand, the redundant longitudinal membrane strain can be significantly reduced compared to the conventional roll forming, which is the essential principle to obtaining high quality products. The incremental forming process studied has demonstrated major advantages on space efficiency, power consumption and materials sensitivities. The purpose of this study is to investigate the effects of main geometrical parameters and their optimization, in order to minimize the redundant longitudinal strains into elastic to avoid the redundant plastic deformations at flange during forming. In this study, a mild-steel U-channel sample with 10 mm flange width, fabricated by Millipede Forming in a forming length of 200 mm has been studied. Theoretical longitudinal membrane strains at profile's edge of different transitional surfaces and downhill pass are also analyzed. The results showed that obtaining an optimal transitional surface is essential and necessary in controlling the peak longitudinal strain to an acceptable amount and that by increasing downhill pass, longitudinal strain can be significantly reduced. The optimized transitional surface and downhill pass flow were simulated by Abaqus, and the peak longitudinal strain was finally less than 0.2% through a very short forming length of 200 mm. The results prove that Millipede Forming can achieve a better product quality in a much shorter forming distance than conventional roll forming.

  10. Geometric view of adaptive optics control

    NASA Astrophysics Data System (ADS)

    Wiberg, Donald M.; Max, Claire E.; Gavel, Donald T.

    2005-05-01

    The objective of an astronomical adaptive optics control system is to minimize the residual wave-front error remaining on the science-object wave fronts after being compensated for atmospheric turbulence and telescope aberrations. Minimizing the mean square wave-front residual maximizes the Strehl ratio and the encircled energy in pointlike images and maximizes the contrast and resolution of extended images. We prove the separation principle of optimal control for application to adaptive optics so as to minimize the mean square wave-front residual. This shows that the residual wave-front error attributable to the control system can be decomposed into three independent terms that can be treated separately in design. The first term depends on the geometry of the wave-front sensor(s), the second term depends on the geometry of the deformable mirror(s), and the third term is a stochastic term that depends on the signal-to-noise ratio. The geometric view comes from understanding that the underlying quantity of interest, the wave-front phase surface, is really an infinite-dimensional vector within a Hilbert space and that this vector space is projected into subspaces we can control and measure by the deformable mirrors and wave-front sensors, respectively. When the control and estimation algorithms are optimal, the residual wave front is in a subspace that is the union of subspaces orthogonal to both of these projections. The method is general in that it applies both to conventional (on-axis, ground-layer conjugate) adaptive optics architectures and to more complicated multi-guide-star- and multiconjugate-layer architectures envisaged for future giant telescopes. We illustrate the approach by using a simple example that has been worked out previously [J. Opt. Soc. Am. A73, 1171 (1983)] for a single-conjugate, static atmosphere case and follow up with a discussion of how it is extendable to general adaptive optics architectures.

  11. Geometrically consistent approach to stochastic DBI inflation

    SciTech Connect

    Lorenz, Larissa; Martin, Jerome; Yokoyama, Jun'ichi

    2010-07-15

    Stochastic effects during inflation can be addressed by averaging the quantum inflaton field over Hubble-patch-sized domains. The averaged field then obeys a Langevin-type equation into which short-scale fluctuations enter as a noise term. We solve the Langevin equation for an inflaton field with a Dirac-Born-Infeld (DBI) kinetic term perturbatively in the noise and use the result to determine the field value's probability density function (PDF). In this calculation, both the shape of the potential and the warp factor are arbitrary functions, and the PDF is obtained with and without volume effects due to the finite size of the averaging domain. DBI kinetic terms typically arise in string-inspired inflationary scenarios in which the scalar field is associated with some distance within the (compact) extra dimensions. The inflaton's accessible range of field values therefore is limited because of the extra dimensions' finite size. We argue that in a consistent stochastic approach the inflaton's PDF must vanish for geometrically forbidden field values. We propose to implement these extra-dimensional spatial restrictions into the PDF by installing absorbing (or reflecting) walls at the respective boundaries in field space. As a toy model, we consider a DBI inflaton between two absorbing walls and use the method of images to determine its most general PDF. The resulting PDF is studied in detail for the example of a quartic warp factor and a chaotic inflaton potential. The presence of the walls is shown to affect the inflaton trajectory for a given set of parameters.

  12. Geometric and potential driving formation and evolution of biomolecular surfaces.

    PubMed

    Bates, P W; Chen, Zhan; Sun, Yuhui; Wei, Guo-Wei; Zhao, Shan

    2009-08-01

    This paper presents new geometrical flow equations for the theoretical modeling of biomolecular surfaces in the context of multiscale implicit solvent models. To account for the local variations near the biomolecular surfaces due to interactions between solvent molecules, and between solvent and solute molecules, we propose potential driven geometric flows, which balance the intrinsic geometric forces that would occur for a surface separating two homogeneous materials with the potential forces induced by the atomic interactions. Stochastic geometric flows are introduced to account for the random fluctuation and dissipation in density and pressure near the solvent-solute interface. Physical properties, such as free energy minimization (area decreasing) and incompressibility (volume preserving), are realized by some of our geometric flow equations. The proposed approach for geometric and potential forces driving the formation and evolution of biological surfaces is illustrated by extensive numerical experiments and compared with established minimal molecular surfaces and molecular surfaces. Local modification of biomolecular surfaces is demonstrated with potential driven geometric flows. High order geometric flows are also considered and tested in the present work for surface generation. Biomolecular surfaces generated by these approaches are typically free of geometric singularities. As the speed of surface generation is crucial to implicit solvent model based molecular dynamics, four numerical algorithms, a semi-implicit scheme, a Crank-Nicolson scheme, and two alternating direction implicit (ADI) schemes, are constructed and tested. Being either stable or conditionally stable but admitting a large critical time step size, these schemes overcome the stability constraint of the earlier forward Euler scheme. Aided with the Thomas algorithm, one of the ADI schemes is found to be very efficient as it balances the speed and accuracy.

  13. Capability of geometric features to classify ships in SAR imagery

    NASA Astrophysics Data System (ADS)

    Lang, Haitao; Wu, Siwen; Lai, Quan; Ma, Li

    2016-10-01

    Ship classification in synthetic aperture radar (SAR) imagery has become a new hotspot in remote sensing community for its valuable potential in many maritime applications. Several kinds of ship features, such as geometric features, polarimetric features, and scattering features have been widely applied on ship classification tasks. Compared with polarimetric features and scattering features, which are subject to SAR parameters (e.g., sensor type, incidence angle, polarization, etc.) and environment factors (e.g., sea state, wind, wave, current, etc.), geometric features are relatively independent of SAR and environment factors, and easy to be extracted stably from SAR imagery. In this paper, the capability of geometric features to classify ships in SAR imagery with various resolution has been investigated. Firstly, the relationship between the geometric feature extraction accuracy and the SAR imagery resolution is analyzed. It shows that the minimum bounding rectangle (MBR) of ship can be extracted exactly in terms of absolute precision by the proposed automatic ship-sea segmentation method. Next, six simple but effective geometric features are extracted to build a ship representation for the subsequent classification task. These six geometric features are composed of length (f1), width (f2), area (f3), perimeter (f4), elongatedness (f5) and compactness (f6). Among them, two basic features, length (f1) and width (f2), are directly extracted based on the MBR of ship, the other four are derived from those two basic features. The capability of the utilized geometric features to classify ships are validated on two data set with different image resolutions. The results show that the performance of ship classification solely by geometric features is close to that obtained by the state-of-the-art methods, which obtained by a combination of multiple kinds of features, including scattering features and geometric features after a complex feature selection process.

  14. Geometric effects on stress wave propagation.

    PubMed

    Johnson, K L; Trim, M W; Horstemeyer, M F; Lee, N; Williams, L N; Liao, J; Rhee, H; Prabhu, R

    2014-02-01

    The present study, through finite element simulations, shows the geometric effects of a bioinspired solid on pressure and impulse mitigation for an elastic, plastic, and viscoelastic material. Because of the bioinspired geometries, stress wave mitigation became apparent in a nonintuitive manner such that potential real-world applications in human protective gear designs are realizable. In nature, there are several toroidal designs that are employed for mitigating stress waves; examples include the hyoid bone on the back of a woodpecker's jaw that extends around the skull to its nose and a ram's horn. This study evaluates four different geometries with the same length and same initial cross-sectional diameter at the impact location in three-dimensional finite element analyses. The geometries in increasing complexity were the following: (1) a round cylinder, (2) a round cylinder that was tapered to a point, (3) a round cylinder that was spiraled in a two dimensional plane, and (4) a round cylinder that was tapered and spiraled in a two-dimensional plane. The results show that the tapered spiral geometry mitigated the greatest amount of pressure and impulse (approximately 98% mitigation) when compared to the cylinder regardless of material type (elastic, plastic, and viscoelastic) and regardless of input pressure signature. The specimen taper effectively mitigated the stress wave as a result of uniaxial deformational processes and an induced shear that arose from its geometry. Due to the decreasing cross-sectional area arising from the taper, the local uniaxial and shear stresses increased along the specimen length. The spiral induced even greater shear stresses that help mitigate the stress wave and also induced transverse displacements at the tip such that minimal wave reflections occurred. This phenomenon arose although only longitudinal waves were introduced as the initial boundary condition (BC). In nature, when shearing occurs within or between materials

  15. Geometrical parameters of E+S pairs

    NASA Technical Reports Server (NTRS)

    Rampazzo, Roberto; Sulentic, Jack W.

    1990-01-01

    Local environmental conditions (i.e., density and angular momentum properties of protogalactic clouds) are thought to be factors affecting the ultimate morphology of a galaxy. The existence of significant numbers of mixed morphology (E/SO+S) pairs of galaxies would represent a direct challenge to this idea unless all early-type components are formed by mergers. The authors wished to isolate candidate E+S pairs for detailed study. The authors have observed 22 pairs of mixed morphology galaxies (containing at least one early-type component) selected from a catalog of Sulentic (1988: unpublished) based upon the ESO sky survey. The observed sample and relevant morphological and interaction characteristics are summarized in tabular form. The authors report the relevant geometrical properties of the galaxies in another table. They list the maximum values measured for the ellipticity and the a(4)/a shape parameter together with the total measured twisting along the profile beyond the seeing disk (they set an inner limit of 3 arcsed). An asterisk indicates objects in which a(4)/a is neither predominantly boxy nor disky. They found a large number of true mixed pairs with 13/22 E+S pairs in the present sample. The remaining objects include 5 disk pairs (composed of SO and S members) and 3 early-type pairs comprising E and SO members. They estimate that between 25 and 50 percent of the pairs in any complete sample will be of the E+S type. This suggests that 100 to 200 such pairs exist on the sky brighter than m sub pg = 16.0. They found no global evidence for a difference between E members of this sample and those in more general samples (e.g., Bender et al. 1989). In particular, they found that about 30 percent of the early-type galaxies cannot be classified either predominantly boxy or disky because the a(4)/a profile shows both of these features at a comparable level or does not show any significant trend. Isophotal twisting is observed with a range and distribution

  16. Geometric Perturbation Theory and Plasma Physics

    NASA Astrophysics Data System (ADS)

    Omohundro, Stephen Malvern

    1985-12-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a long-standing question posed by Kruskal about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements, which is then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A theory motivated by free electron lasers gives new restrictions on the change of area of projected parallelepipeds under canonical transformations. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem

  17. Geometrical Pumping with a Bose-Einstein Condensate.

    PubMed

    Lu, H-I; Schemmer, M; Aycock, L M; Genkina, D; Sugawa, S; Spielman, I B

    2016-05-20

    We realized a quantum geometric "charge" pump for a Bose-Einstein condensate (BEC) in the lowest Bloch band of a novel bipartite magnetic lattice. Topological charge pumps in filled bands yield quantized pumping set by the global-topological-properties of the bands. In contrast, our geometric charge pump for a BEC occupying just a single crystal momentum state exhibits nonquantized charge pumping set by local-geometrical-properties of the band structure. Like topological charge pumps, for each pump cycle we observed an overall displacement (here, not quantized) and a temporal modulation of the atomic wave packet's position in each unit cell, i.e., the polarization.

  18. An overview of the thematic mapper geometric correction system

    NASA Technical Reports Server (NTRS)

    Beyer, E. P.

    1983-01-01

    Geometric accuracy specifications for LANDSAT 4 are reviewed and the processing concepts which form the basis of NASA's thematic mapper geometric correction system are summarized for both the flight and ground segments. The flight segment includes the thematic mapper instrument, attitude measurement devices, attitude control, and ephemeris processing. For geometric correction the ground segment uses mirror scan correction data, payload correction data, and control point information to determine where TM detector samples fall on output map projection systems. Then the raw imagery is reformatted and resampled to produce image samples on a selected output projection grid system.

  19. Auto-focusing accelerating hyper-geometric laser beams

    NASA Astrophysics Data System (ADS)

    Kovalev, A. A.; Kotlyar, V. V.; Porfirev, A. P.

    2016-02-01

    We derive a new solution to the paraxial wave equation that defines a two-parameter family of three-dimensional structurally stable vortex annular auto-focusing hyper-geometric (AH) beams, with their complex amplitude expressed via a degenerate hyper-geometric function. The AH beams are found to carry an orbital angular momentum and be auto-focusing, propagating on an accelerating path toward a focus, where the annular intensity pattern is ‘sharply’ reduced in diameter. An explicit expression for the complex amplitude of vortex annular auto-focusing hyper-geometric-Gaussian beams is derived. The experiment has been shown to be in good agreement with theory.

  20. Geometric measure of quantum discord with weak measurements

    NASA Astrophysics Data System (ADS)

    Li, Lei; Wang, Qing-Wen; Shen, Shu-Qian; Li, Ming

    2016-01-01

    Super quantum discord based on weak measurements was introduced by Singh and Pati (Ann Phys 343:141-152, 2014). We propose a geometric way of quantifying quantum discord with weak measurements. It is shown that this geometric measure of quantum discord with weak measurements (GQDW) is linearly dependent on geometric measure of quantum discord (Dakic et al. in Phys Rev Lett 105:190502, 2010) and only captures partial quantumness of the states. It is found that the quantum correlation can be extracted by a sequence of infinitesimal weak measurements. Finally, the level surfaces of GQDW for Bell-diagonal states are depicted and the results are demonstrated by explicit example.

  1. Witnessed entanglement and the geometric measure of quantum discord

    NASA Astrophysics Data System (ADS)

    Debarba, Tiago; Maciel, Thiago O.; Vianna, Reinaldo O.

    2012-08-01

    We establish relations between geometric quantum discord and entanglement quantifiers obtained by means of optimal witness operators. In particular, we prove a relation between negativity and geometric discord in the Hilbert-Schmidt norm, which has been conjectured before [D. Girolami and G. Adesso, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.84.052110 84, 052110 (2011)]. We also show that, redefining the geometric discord with the trace norm, better bounds can be obtained. We illustrate our results numerically for Werner states and for families of bound entangled states.

  2. Calculus students' ability to solve geometric related-rates problems

    NASA Astrophysics Data System (ADS)

    Martin, Tami

    2000-09-01

    This study assessed the ability of university students enrolled in an introductory calculus course to solve related-rates problems set in geometric contexts. Students completed a problem-solving test and a test of performance on the individual steps involved in solving such problems. Each step was characterised as primarily relying on procedural knowledge or conceptual understanding. Results indicated that overall performance on the geometric related-rates problems was poor. The poorest performance was on steps linked to conceptual understanding, specifically steps involving the translation of prose to geometric and symbolic representations. Overall performance was most strongly related to performance on the procedural steps.

  3. Measurement of geometric dephasing using a superconducting qubit

    PubMed Central

    Berger, S.; Pechal, M.; Kurpiers, P.; Abdumalikov, A. A.; Eichler, C.; Mlynek, J. A.; Shnirman, A.; Gefen, Yuval; Wallraff, A.; Filipp, S.

    2015-01-01

    A quantum system interacting with its environment is subject to dephasing, which ultimately destroys the information it holds. Here we use a superconducting qubit to experimentally show that this dephasing has both dynamic and geometric origins. It is found that geometric dephasing, which is present even in the adiabatic limit and when no geometric phase is acquired, can either reduce or restore coherence depending on the orientation of the path the qubit traces out in its projective Hilbert space. It accompanies the evolution of any system in Hilbert space subjected to noise. PMID:26515812

  4. NPP VIIRS Early On-Orbit Geometric Performance

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert E.; Lin, Guoqing; Nishihama, Masahiro; Tewari, Krishna; Montano, Enrique

    2012-01-01

    The NASA/NOAA Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the Suomi National Polar-orbiting Partnership (NPP) satellite was launched in October, 2011. The instrument geometric performance includes sensor spatial response, band-to-band co-registration (BBR), and geolocation accuracy and precision. The geometric performance is an important aspect of sensor data record (SDR) calibration and validation. In this paper we will discuss geometric performance parameter characterization using the first seven-month of VIIRS' earth and lunar data, and compare with the at-launch performance using ground testing data and analysis of numerical modeling results as the first step in on-orbit geometric calibration and validation.

  5. Shield support selection based on geometric characteristics of coal seam

    SciTech Connect

    K. Goshtasbi; K. Oraee; F. Khakpour-yeganeh

    2006-01-15

    The most initial investment in longwall face equipping is the cost of powered support. Selection of proper shields for powered supports is based on load, geometric characterization of coal seams and economical considerations.

  6. RESEARCH PAPERS : The reciprocity properties of geometrical spreading

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; Chapman, Chris

    1998-01-01

    Reciprocity is an important property of acoustic and elastic waves. In this work it is explicity verified that acoustic waves also satisfy the reciprocity theorem in a ray-geometric approximation. This is achieved by deriving a reciprocity relation for the geometric spreading. The analysis is based on integrating the equations of dynamic ray tracing from the source to a receiver and in the reverse direction. It is shown that for a point source the geometric spreading for rays travelling in opposite directions differs by a factor depending on the velocities at the endpoints of the ray. This factor depends on the number of dimensions that one considers. Since the equations of kinematic and dynamic ray tracing are the same for elastic waves and acoustic waves, the derived reciprocity relations for the geometrical spreading hold for elastic waves as well. The results obtained are used to correct some errors in the derivation of an averaging theorem by Snieder & Lomax (1996).

  7. Geometric phases in neutrino oscillations with nonlinear refraction

    NASA Astrophysics Data System (ADS)

    Johns, Lucas; Fuller, George M.

    2017-02-01

    Neutrinos propagating in dense astrophysical environments sustain nonlinear refractive effects due to neutrino-neutrino forward scattering. We study geometric phases in neutrino oscillations that arise out of cyclic evolution of the potential generated by these forward-scattering processes. We perform several calculations, exact and perturbative, that illustrate the robustness of such phases, and of geometric effects more broadly, in the flavor evolution of neutrinos. The scenarios we consider are highly idealized in order to make them analytically tractable, but they suggest the possible presence of complicated geometric effects in realistic astrophysical settings. We also point out that in the limit of extremely high neutrino densities, the nonlinear potential in three flavors naturally gives rise to non-Abelian geometric phases. This paper is intended to be accessible to neutrino experts and nonspecialists alike.

  8. Geometric analysis and restitution of digital multispectral scanner data arrays

    NASA Technical Reports Server (NTRS)

    Baker, J. R.; Mikhail, E. M.

    1975-01-01

    An investigation was conducted to define causes of geometric defects within digital multispectral scanner (MSS) data arrays, to analyze the resulting geometric errors, and to investigate restitution methods to correct or reduce these errors. Geometric transformation relationships for scanned data, from which collinearity equations may be derived, served as the basis of parametric methods of analysis and restitution of MSS digital data arrays. The linearization of these collinearity equations is presented. Algorithms considered for use in analysis and restitution included the MSS collinearity equations, piecewise polynomials based on linearized collinearity equations, and nonparametric algorithms. A proposed system for geometric analysis and restitution of MSS digital data arrays was used to evaluate these algorithms, utilizing actual MSS data arrays. It was shown that collinearity equations and nonparametric algorithms both yield acceptable results, but nonparametric algorithms possess definite advantages in computational efficiency. Piecewise polynomials were found to yield inferior results.

  9. Geometric curvature and phase of the Rabi model

    SciTech Connect

    Mao, Lijun; Huai, Sainan; Guo, Liping; Zhang, Yunbo

    2015-11-15

    We study the geometric curvature and phase of the Rabi model. Under the rotating-wave approximation (RWA), we apply the gauge independent Berry curvature over a surface integral to calculate the Berry phase of the eigenstates for both single and two-qubit systems, which is found to be identical with the system of spin-1/2 particle in a magnetic field. We extend the idea to define a vacuum-induced geometric curvature when the system starts from an initial state with pure vacuum bosonic field. The induced geometric phase is related to the average photon number in a period which is possible to measure in the qubit–cavity system. We also calculate the geometric phase beyond the RWA and find an anomalous sudden change, which implies the breakdown of the adiabatic theorem and the Berry phases in an adiabatic cyclic evolution are ill-defined near the anti-crossing point in the spectrum.

  10. The arithmetico-geometric sequence: an application of linear algebra

    NASA Astrophysics Data System (ADS)

    Orosi, Greg

    2016-07-01

    In this paper, we present a linear algebra-based derivation of the analytic formula for the sum of the first nth terms of the arithmetico-geometric sequence. Furthermore, the advantage of the derivation is briefly discussed.

  11. Measurement of a vacuum-induced geometric phase

    PubMed Central

    Gasparinetti, Simone; Berger, Simon; Abdumalikov, Abdufarrukh A.; Pechal, Marek; Filipp, Stefan; Wallraff, Andreas J.

    2016-01-01

    Berry’s geometric phase naturally appears when a quantum system is driven by an external field whose parameters are slowly and cyclically changed. A variation in the coupling between the system and the external field can also give rise to a geometric phase, even when the field is in the vacuum state or any other Fock state. We demonstrate the appearance of a vacuum-induced Berry phase in an artificial atom, a superconducting transmon, interacting with a single mode of a microwave cavity. As we vary the phase of the interaction, the artificial atom acquires a geometric phase determined by the path traced out in the combined Hilbert space of the atom and the quantum field. Our ability to control this phase opens new possibilities for the geometric manipulation of atom-cavity systems also in the context of quantum information processing. PMID:27386533

  12. On an assumption of geometric foundation of numbers

    NASA Astrophysics Data System (ADS)

    Anatriello, Giuseppina; Saverio Tortoriello, Francesco; Vincenzi, Giovanni

    2016-04-01

    In line with the latest positions of Gottlob Frege, this article puts forward the hypothesis that the cognitive bases of mathematics are geometric in nature. Starting from the geometry axioms of the Elements of Euclid, we introduce a geometric theory of proportions along the lines of the one introduced by Grassmann in Ausdehnungslehre in 1844. Assuming as axioms, the cognitive contents of the theorems of Pappus and Desargues, through their configurations, in an Euclidean plane a natural field structure can be identified that reveals the purely geometric nature of complex numbers. Reasoning based on figures is becoming a growing interdisciplinary field in logic, philosophy and cognitive sciences, and is also of considerable interest in the field of education, moreover, recently, it has been emphasized that the mutual assistance that geometry and complex numbers give is poorly pointed out in teaching and that a unitary vision of geometrical aspects and calculation can be clarifying.

  13. "Geometric" planetology and origin of the Moon

    NASA Astrophysics Data System (ADS)

    Kochemasov, Gennady G.

    2010-05-01

    The comparative wave planetology [1 & othres] demonstrates graphically its main conceptual point: orbits make structures. The structures are produced by a warping action of stationary waves induced in bodies by non-circular orbits with periodically changing bodies' accelerations. A geometric model of tectonic granulation of planets is a schematic row of even circles adorned with granules radius of which increases in direction from Sun to the outer planets. It was shown that the granule radii are inversely proportional to the orbital frequencies of planets. Thus, there is a following row of these radii: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. It was also shown that these radii well correlate with planetary surface "ruggedness". This observation led to a conception of the "relief-forming potential of planets"[2]. So, this potential is rather weak in Mercury and Venus, rather high in Mars and intermediate in Earth. Certainly, orbital eccentricities were even higher at the earlier period of planet formation, at debris zones of their accretion causing scattering debris material. This scattering was small at Mercury' and Venus' zones, large at the Mars' zone and intermediate at the Earth's zone. Consequently, gravity kept debris in the first zones, allowed them escape in the martian zone, and allowed to have separated debris sub zone in the vicinity of the Earth's zone or around not fully consolidated (accreted) Earth. Rejecting the giant impact hypotheses of Moon formation as contradicting the fact of the ubiquitous wave induced tectonic dichotomy of celestial bodies (Theorem1 [3]) one should concentrate at hypotheses dealing with formation of the satellite from primordial debris in a near-Earth heliocentric orbit or in a circumterrestrial orbit from debris wave separated from the Earth' zone of accretion. Wave scattering of primordial material from an accretion zone or from a not fully accreted (consolidated) body is a normal process

  14. Geometric Phase for Adiabatic Evolutions of General Quantum States

    SciTech Connect

    Wu, Biao; Liu, Jie; Niu, Qian; Singh, David J

    2005-01-01

    The concept of a geometric phase (Berry's phase) is generalized to the case of noneigenstates, which is applicable to both linear and nonlinear quantum systems. This is particularly important to nonlinear quantum systems, where, due to the lack of the superposition principle, the adiabatic evolution of a general state cannot be described in terms of eigenstates. For linear quantum systems, our new geometric phase reduces to a statistical average of Berry's phases. Our results are demonstrated with a nonlinear two-level model.

  15. GENERAL: Nonadiabatic Geometric Phase in Composite Systems and Its Subsystem

    NASA Astrophysics Data System (ADS)

    Li, Xin

    2008-11-01

    We point out that the time-dependent gauge transformation technique may be effective in investigating the nonadiabatic geometric phase of a subsystem in a composite system. As an example, we consider two uniaxially coupled spin —1/2 particles with one of particles driven by rotating magnetic Geld. The influences of coupling and precession frequency of the magnetic Geld on geometric phase are also discussed in detail.

  16. Special generalized densities and propagators: A geometric account

    NASA Astrophysics Data System (ADS)

    Canarutto, Daniel

    2016-11-01

    Starting from a short review of spaces of generalized sections of vector bundles, we give a concise systematic description, in precise geometric terms, of Leray densities, principal value densities, propagators and elementary solutions of field equations in flat spacetime. We then sketch a partly original geometric presentation of free quantum fields and show how propagators arise from their graded commutators in the boson and fermion cases.

  17. Geometric Visualization of Self-Propulsion in a Complex Medium

    NASA Astrophysics Data System (ADS)

    Hatton, Ross L.; Ding, Yang; Choset, Howie; Goldman, Daniel I.

    2013-02-01

    Combining geometric mechanics theory, laboratory robotic experiment, and numerical simulation, we study the locomotion in granular media of the simplest noninertial swimmer, the Purcell three-link swimmer. Using granular resistive force laws as inputs, the theory relates translation and rotation of the body to shape changes (movements of the links). This allows analysis, visualization, and prediction of effective movements that are verified by experiment. The geometric approach also facilitates comparison between swimming in granular media and in viscous fluids.

  18. Geometric constrained variational calculus. II: The second variation (Part I)

    NASA Astrophysics Data System (ADS)

    Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico

    2016-10-01

    Within the geometrical framework developed in [Geometric constrained variational calculus. I: Piecewise smooth extremals, Int. J. Geom. Methods Mod. Phys. 12 (2015) 1550061], the problem of minimality for constrained calculus of variations is analyzed among the class of differentiable curves. A fully covariant representation of the second variation of the action functional, based on a suitable gauge transformation of the Lagrangian, is explicitly worked out. Both necessary and sufficient conditions for minimality are proved, and reinterpreted in terms of Jacobi fields.

  19. Optimized geometric configuration of active ring laser gyroscopes

    NASA Astrophysics Data System (ADS)

    Gormley, John; Salloum, Tony

    2016-05-01

    We present a thorough derivation of the Sagnac effect for a ring laser gyroscope of any arbitrary polygonal configuration. We determine optimized alternative geometric configurations for the mirrors. The simulations incur the implementation of a lasing medium with the standard square system, triangular, pentagonal, and oblongated square configuration (diamond). Simulations of possible new geometric configurations are considered, as well as the possibility of adjusting the concavity of the mirrors.

  20. Geometric phase for open quantum systems and stochastic unravelings

    SciTech Connect

    Bassi, Angelo; Ippoliti, Emiliano

    2006-06-15

    We analyze the geometric phase for an open quantum system when computed by resorting to a stochastic unraveling of the reduced density matrix (quantum jump approach or stochastic Schroedinger equations). We show that the resulting phase strongly depends on the type of unraveling used for the calculations: as such, this phase is not a geometric object since it depends on nonphysical parameters, which are not related to the path followed by the density matrix during the evolution of the system.

  1. A Geometrically Nonlinear Phase Field Theory of Brittle Fracture

    DTIC Science & Technology

    2014-10-01

    A Geometrically Nonlinear Phase Field Theory of Brittle Fracture by JD Clayton and J Knap ARL-RP-0511 October 2014...21005-5069 ARL-RP-0511 October 2014 A Geometrically Nonlinear Phase Field Theory of Brittle Fracture JD Clayton and J Knap Weapons and...Nonlinear Phase Field Theory of Brittle Fracture 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) JD Clayton

  2. Modal Substructuring of Geometrically Nonlinear Finite-Element Models

    SciTech Connect

    Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.

    2015-12-21

    The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying a series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.

  3. Modal Substructuring of Geometrically Nonlinear Finite-Element Models

    DOE PAGES

    Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.

    2015-12-21

    The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying amore » series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.« less

  4. Geometric integrator for simulations in the canonical ensemble.

    PubMed

    Tapias, Diego; Sanders, David P; Bravetti, Alessandro

    2016-08-28

    We introduce a geometric integrator for molecular dynamics simulations of physical systems in the canonical ensemble that preserves the invariant distribution in equations arising from the density dynamics algorithm, with any possible type of thermostat. Our integrator thus constitutes a unified framework that allows the study and comparison of different thermostats and of their influence on the equilibrium and non-equilibrium (thermo-)dynamic properties of a system. To show the validity and the generality of the integrator, we implement it with a second-order, time-reversible method and apply it to the simulation of a Lennard-Jones system with three different thermostats, obtaining good conservation of the geometrical properties and recovering the expected thermodynamic results. Moreover, to show the advantage of our geometric integrator over a non-geometric one, we compare the results with those obtained by using the non-geometric Gear integrator, which is frequently used to perform simulations in the canonical ensemble. The non-geometric integrator induces a drift in the invariant quantity, while our integrator has no such drift, thus ensuring that the system is effectively sampling the correct ensemble.

  5. Iso-geometric analysis for neutron diffusion problems

    SciTech Connect

    Hall, S. K.; Eaton, M. D.; Williams, M. M. R.

    2012-07-01

    Iso-geometric analysis can be viewed as a generalisation of the finite element method. It permits the exact representation of a wider range of geometries including conic sections. This is possible due to the use of concepts employed in computer-aided design. The underlying mathematical representations from computer-aided design are used to capture both the geometry and approximate the solution. In this paper the neutron diffusion equation is solved using iso-geometric analysis. The practical advantages are highlighted by looking at the problem of a circular fuel pin in a square moderator. For this problem the finite element method requires the geometry to be approximated. This leads to errors in the shape and size of the interface between the fuel and the moderator. In contrast to this iso-geometric analysis allows the interface to be represented exactly. It is found that, due to a cancellation of errors, the finite element method converges more quickly than iso-geometric analysis for this problem. A fuel pin in a vacuum was then considered as this problem is highly sensitive to the leakage across the interface. In this case iso-geometric analysis greatly outperforms the finite element method. Due to the improvement in the representation of the geometry iso-geometric analysis can outperform traditional finite element methods. It is proposed that the use of iso-geometric analysis on neutron transport problems will allow deterministic solutions to be obtained for exact geometries. Something that is only currently possible with Monte Carlo techniques. (authors)

  6. Geometric somersaults of a polymer chain through cyclic twisting motions

    NASA Astrophysics Data System (ADS)

    Yanao, Tomohiro; Hino, Taiko

    2017-01-01

    This study explores the significance of geometric angle shifts, which we call geometric somersaults, arising from cyclic twisting motions of a polymer chain. A five-bead polymer chain serves as a concise and minimal model of a molecular shaft throughout this study. We first show that this polymer chain can change its orientation about its longitudinal axis largely, e.g., 120∘, under conditions of zero total angular momentum by changing the two dihedral angles in a cyclic manner. This phenomenon is an example of the so-called "falling cat" phenomenon, where a falling cat undergoes a geometric somersault by changing its body shape under conditions of zero total angular momentum. We then extend the geometric somersault of the polymer chain to a noisy and viscous environment, where the polymer chain is steered by external driving forces. This extension shows that the polymer chain can achieve an orientation change keeping its total angular momentum and total external torque fluctuating around zero in a noisy and viscous environment. As an application, we argue that the geometric somersault of the polymer chain by 120∘ may serve as a prototypical and coarse-grained model for the rotary motion of the central shaft of ATP synthase (FOF1 -ATPase). This geometric somersault is in clear contrast to the standard picture for the rotary motion of the central shaft as a rigid body, which generally incurs nonzero total angular momentum and nonzero total external torque. The power profile of the geometric somersault implies a preliminary mechanism for elastic power transmission. The results of this study may be of fundamental interest in twisting and rotary motions of biomolecules.

  7. Landsat 8 thermal infrared sensor geometric characterization and calibration

    USGS Publications Warehouse

    Storey, James C.; Choate, Michael J.; Moe, Donald

    2014-01-01

    The Landsat 8 spacecraft was launched on 11 February 2013 carrying two imaging payloads: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The TIRS instrument employs a refractive telescope design that is opaque to visible wavelengths making prelaunch geometric characterization challenging. TIRS geometric calibration thus relied heavily on on-orbit measurements. Since the two Landsat 8 payloads are complementary and generate combined Level 1 data products, the TIRS geometric performance requirements emphasize the co-alignment of the OLI and TIRS instrument fields of view and the registration of the OLI reflective bands to the TIRS long-wave infrared emissive bands. The TIRS on-orbit calibration procedures include measuring the TIRS-to-OLI alignment, refining the alignment of the three TIRS sensor chips, and ensuring the alignment of the two TIRS spectral bands. The two key TIRS performance metrics are the OLI reflective to TIRS emissive band registration accuracy, and the registration accuracy between the TIRS thermal bands. The on-orbit calibration campaign conducted during the commissioning period provided an accurate TIRS geometric model that enabled TIRS Level 1 data to meet all geometric accuracy requirements. Seasonal variations in TIRS-to-OLI alignment have led to several small calibration parameter adjustments since commissioning.

  8. Geometric and electrostatic modeling using molecular rigidity functions

    DOE PAGES

    Mu, Lin; Xia, Kelin; Wei, Guowei

    2017-03-01

    Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less

  9. Geometrical relationships specifying the phyllotactic pattern of aquatic plants.

    PubMed

    Kelly, Wanda J; Cooke, Todd J

    2003-08-01

    The complete range of various phyllotaxes exemplified in aquatic plants provide an opportunity to characterize the fundamental geometrical relationships operating in leaf patterning. A new polar-coordinate model was used to characterize the correlation between the shapes of shoot meristems and the arrangements of young leaf primordia arising on those meristems. In aquatic plants, the primary geometrical relationship specifying spiral vs. whorled phyllotaxis is primordial position: primordia arising on the apical dome (as defined by displacement angles θ ≤ 90° during maximal phase) are often positioned in spiral patterns, whereas primordia arising on the subtending axis (as defined by displacement angles of θ ≥ 90° during maximal phase) are arranged in whorled patterns. A secondary geometrical relationship derived from the literature shows an inverse correlation between the primordial size : available space ratio and the magnitude of the Fibonacci numbers in spiral phyllotaxis or the number of leaves per whorl in whorled phyllotaxis. The data available for terrestrial plants suggest that their phyllotactic patterning may also be specified by these same geometrical relationships. Major exceptions to these correlations are attributable to persistent embryonic patterning, leaflike structures arising from stipules, congenital splitting of young primordia, and/or non-uniform elongating of internodes. The geometrical analysis described in this paper provides the morphological context for interpreting the phenotypes of phyllotaxis mutants and for constructing realistic models of the underlying mechanisms responsible for generating phyllotactic patterns.

  10. Linear patterning of mesenchymal condensations is modulated by geometric constraints.

    PubMed

    Klumpers, Darinka D; Mao, Angelo S; Smit, Theo H; Mooney, David J

    2014-06-06

    The development of the vertebral column starts with the formation of a linear array of mesenchymal condensations, forming the blueprint for the eventual alternating pattern of bone and cartilage. Despite growing insight into the molecular mechanisms of morphogenesis, the impact of the physical aspects of the environment is not well understood. We hypothesized that geometric boundary conditions may play a pivotal role in the linear patterning of condensations, as neighbouring tissues provide physical constraints to the cell population. To study the process of condensation and the patterning thereof under tightly controlled geometric constraints, we developed a novel in vitro model that combines micropatterning with the established micromass assay. The spacing and alignment of condensations changed with the width of the cell adhesive patterns, a phenomenon that could not be explained by cell availability alone. Moreover, the extent of chondrogenic commitment was increased on substrates with tighter geometric constraints. When the in vivo pattern of condensations was investigated in the developing vertebral column of chicken embryos, the measurements closely fit into the quantitative relation between geometric constraints and inter-condensation distance found in vitro. Together, these findings suggest a potential role of geometric constraints in skeletal patterning in a cellular process of self-organization.

  11. Geometric modeling of subcellular structures, organelles, and multiprotein complexes.

    PubMed

    Feng, Xin; Xia, Kelin; Tong, Yiying; Wei, Guo-Wei

    2012-12-01

    Recently, the structure, function, stability, and dynamics of subcellular structures, organelles, and multiprotein complexes have emerged as a leading interest in structural biology. Geometric modeling not only provides visualizations of shapes for large biomolecular complexes but also fills the gap between structural information and theoretical modeling, and enables the understanding of function, stability, and dynamics. This paper introduces a suite of computational tools for volumetric data processing, information extraction, surface mesh rendering, geometric measurement, and curvature estimation of biomolecular complexes. Particular emphasis is given to the modeling of cryo-electron microscopy data. Lagrangian-triangle meshes are employed for the surface presentation. On the basis of this representation, algorithms are developed for surface area and surface-enclosed volume calculation, and curvature estimation. Methods for volumetric meshing have also been presented. Because the technological development in computer science and mathematics has led to multiple choices at each stage of the geometric modeling, we discuss the rationales in the design and selection of various algorithms. Analytical models are designed to test the computational accuracy and convergence of proposed algorithms. Finally, we select a set of six cryo-electron microscopy data representing typical subcellular complexes to demonstrate the efficacy of the proposed algorithms in handling biomolecular surfaces and explore their capability of geometric characterization of binding targets. This paper offers a comprehensive protocol for the geometric modeling of subcellular structures, organelles, and multiprotein complexes.

  12. Geometric phases in astigmatic optical modes of arbitrary order

    SciTech Connect

    Habraken, Steven J. M.; Nienhuis, Gerard

    2010-08-15

    The transverse spatial structure of a paraxial beam of light is fully characterized by a set of parameters that vary only slowly under free propagation. They specify bosonic ladder operators that connect modes of different orders, in analogy to the ladder operators connecting harmonic-oscillator wave functions. The parameter spaces underlying sets of higher-order modes are isomorphic to the parameter space of the ladder operators. We study the geometry of this space and the geometric phase that arises from it. This phase constitutes the ultimate generalization of the Gouy phase in paraxial wave optics. It reduces to the ordinary Gouy phase and the geometric phase of nonastigmatic optical modes with orbital angular momentum in limiting cases. We briefly discuss the well-known analogy between geometric phases and the Aharonov-Bohm effect, which provides some complementary insights into the geometric nature and origin of the generalized Gouy phase shift. Our method also applies to the quantum-mechanical description of wave packets. It allows for obtaining complete sets of normalized solutions of the Schroedinger equation. Cyclic transformations of such wave packets give rise to a phase shift, which has a geometric interpretation in terms of the other degrees of freedom involved.

  13. Multiscale geometric modeling of macromolecules II: Lagrangian representation

    PubMed Central

    Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599

  14. Stress measurement in thin films by geometrical optics

    NASA Technical Reports Server (NTRS)

    Rossnagel, S. M.; Gilstrap, P.; Rujkorakarn, R.

    1982-01-01

    A variation of Newton's rings experiment is proposed for measuring film stress. The procedure described, the geometrical optics method, is used to measure radii of curvature for a series of film depositions with Ta, Al, and Mo films. The method has a sensitivity of 1 x 10 to the 9th dyn/sq cm, corresponding to the practical radius limit of about 50 m, and a repeatability usually within five percent. For the purposes of comparison, radii are also measured by Newton's rings method and the Talysurf method; all results are found to be in general agreement. Measurement times are also compared: the geometrical optics method requires only 1/2-1 minute. It is concluded that the geometrical optics method provides an inexpensive, fast, and a reasonably correct technique with which to measure stresses in film.

  15. Geometric descriptions of entangled states by auxiliary varieties

    SciTech Connect

    Holweck, Frederic; Luque, Jean-Gabriel; Thibon, Jean-Yves

    2012-10-15

    The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 Multiplication-Sign 2 Multiplication-Sign (n+ 1), for n Greater-Than-Or-Slanted-Equal-To 1, quantum systems and a new description with the 2 Multiplication-Sign 3 Multiplication-Sign 3 quantum system. Our results complete the approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.

  16. Universal freezing of quantum correlations within the geometric approach

    PubMed Central

    Cianciaruso, Marco; Bromley, Thomas R.; Roga, Wojciech; Lo Franco, Rosario; Adesso, Gerardo

    2015-01-01

    Quantum correlations in a composite system can be measured by resorting to a geometric approach, according to which the distance from the state of the system to a suitable set of classically correlated states is considered. Here we show that all distance functions, which respect natural assumptions of invariance under transposition, convexity, and contractivity under quantum channels, give rise to geometric quantifiers of quantum correlations which exhibit the peculiar freezing phenomenon, i.e., remain constant during the evolution of a paradigmatic class of states of two qubits each independently interacting with a non-dissipative decohering environment. Our results demonstrate from first principles that freezing of geometric quantum correlations is independent of the adopted distance and therefore universal. This finding paves the way to a deeper physical interpretation and future practical exploitation of the phenomenon for noisy quantum technologies. PMID:26053239

  17. Optical Mode Control by Geometric Phase in Quasicrystal Metasurface

    NASA Astrophysics Data System (ADS)

    Yulevich, Igor; Maguid, Elhanan; Shitrit, Nir; Veksler, Dekel; Kleiner, Vladimir; Hasman, Erez

    2015-11-01

    We report on the observation of optical spin-controlled modes from a quasicrystalline metasurface as a result of an aperiodic geometric phase induced by anisotropic subwavelength structure. When geometric phase defects are introduced in the aperiodic structured surface, the modes exhibit polarization helicity dependence resulting in the optical spin-Hall effect. The radiative thermal dispersion bands from a quasicrystal structure are studied where the observed bands arise from the optical spin-orbit interaction induced by the aperiodic space-variant orientations of anisotropic antennas. The optical spin-flip behavior of the revealed modes that arise from the geometric phase pickup is experimentally observed within the visible spectrum by measuring the spin-projected diffraction patterns. The introduced ability to manipulate the light-matter interaction of quasicrystals in a spin-dependent manner provides the route for molding light via spin-optical aperiodic artificial planar surfaces.

  18. Geometric and Topological Methods for Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Cardona, Alexander; Contreras, Iván.; Reyes-Lega, Andrés. F.

    2013-05-01

    Introduction; 1. A brief introduction to Dirac manifolds Henrique Bursztyn; 2. Differential geometry of holomorphic vector bundles on a curve Florent Schaffhauser; 3. Paths towards an extension of Chern-Weil calculus to a class of infinite dimensional vector bundles Sylvie Paycha; 4. Introduction to Feynman integrals Stefan Weinzierl; 5. Iterated integrals in quantum field theory Francis Brown; 6. Geometric issues in quantum field theory and string theory Luis J. Boya; 7. Geometric aspects of the standard model and the mysteries of matter Florian Scheck; 8. Absence of singular continuous spectrum for some geometric Laplacians Leonardo A. Cano García; 9. Models for formal groupoids Iván Contreras; 10. Elliptic PDEs and smoothness of weakly Einstein metrics of Hölder regularity Andrés Vargas; 11. Regularized traces and the index formula for manifolds with boundary Alexander Cardona and César Del Corral; Index.

  19. Dietary Ecology of Murinae (Muridae, Rodentia): A Geometric Morphometric Approach

    PubMed Central

    Gómez Cano, Ana Rosa; Hernández Fernández, Manuel; Álvarez-Sierra, M. Ángeles

    2013-01-01

    Murine rodents represent a highly diverse group, which displays great ecological versatility. In the present paper we analyse the relationship between dental morphology, on one hand, using geometric morphometrics based upon the outline of first upper molar and the dietary preference of extant murine genera, on the other. This ecomorphological study of extant murine rodents demonstrates that dietary groups can be distinguished with the use of a quantitative geometric morphometric approach based on first upper molar outline. A discriminant analysis of the geometric morphometric variables of the first upper molars enables us to infer the dietary preferences of extinct murine genera from the Iberian Peninsula. Most of the extinct genera were omnivore; only Stephanomys showed a pattern of dental morphology alike that of the herbivore genera. PMID:24236090

  20. Gaussian geometric discord in terms of Hellinger distance

    SciTech Connect

    Suciu, Serban Isar, Aurelian

    2015-12-07

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we address the quantification of general non-classical correlations in Gaussian states of continuous variable systems from a geometric perspective. We give a description of the Gaussian geometric discord by using the Hellinger distance as a measure for quantum correlations between two non-interacting non-resonant bosonic modes embedded in a thermal environment. We evaluate the Gaussian geometric discord by taking two-mode squeezed thermal states as initial states of the system and show that it has finite values between 0 and 1 and that it decays asymptotically to zero in time under the effect of the thermal bath.

  1. Geometrical pumping with a Bose-Einstein condensate

    PubMed Central

    Lu, H.-I; Schemmer, M.; Aycock, L. M.; Genkina, D.; Sugawa, S.

    2016-01-01

    We realized a quantum geometric “charge” pump for a Bose-Einstein condensate (BEC) in the lowest Bloch band of a novel bipartite magnetic lattice. Topological charge pumps in filled bands yield quantized pumping set by the global – topological – properties of the bands. In contrast, our geometric charge pump for a BEC occupying just a single crystal momentum state exibits non-quantized charge pumping set by local – geometrical – properties of the band structure. Like topological charge pumps, for each pump cycle we observed an overall displacement (here, not quantized) and a temporal modulation of the atomic wavepacket’s position in each unit cell, i.e., the polarization. PMID:27258857

  2. Geometric model from microscopic theory for nuclear absorption

    NASA Technical Reports Server (NTRS)

    John, Sarah; Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.

    1993-01-01

    A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained.

  3. Comparative Geometrical Investigations of Hand-Held Scanning Systems

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Przybilla, H.-J.; Lindstaedt, M.; Tschirschwitz, F.; Misgaiski-Hass, M.

    2016-06-01

    An increasing number of hand-held scanning systems by different manufacturers are becoming available on the market. However, their geometrical performance is little-known to many users. Therefore the Laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has carried out geometrical accuracy tests with the following systems in co-operation with the Bochum University of Applied Sciences (Laboratory for Photogrammetry) as well as the Humboldt University in Berlin (Institute for Computer Science): DOTProduct DPI-7, Artec Spider, Mantis Vision F5 SR, Kinect v1 + v2, Structure Sensor and Google's Project Tango. In the framework of these comparative investigations geometrically stable reference bodies were used. The appropriate reference data were acquired by measurement with two structured light projection systems (AICON smartSCAN and GOM ATOS I 2M). The comprehensive test results of the different test scenarios are presented and critically discussed in this contribution.

  4. Fused Traditional and Geometric Morphometrics Demonstrate Pinniped Whisker Diversity

    PubMed Central

    Ginter, Carly C.; DeWitt, Thomas J.; Fish, Frank E.; Marshall, Christopher D.

    2012-01-01

    Vibrissae (whiskers) are important components of the mammalian tactile sensory system, and primarily function as detectors of vibrotactile information from the environment. Pinnipeds possess the largest vibrissae among mammals and their vibrissal hair shafts demonstrate a diversity of shapes. The vibrissae of most phocid seals exhibit a beaded morphology with repeating sequences of crests and troughs along their length. However, there are few detailed analyses of pinniped vibrissal morphology, and these are limited to a few species. Therefore, we comparatively characterized differences in vibrissal hair shaft morphologies among phocid species with a beaded profile, phocid species with a smooth profile, and otariids with a smooth profile using traditional and geometric morphometric methods. Traditional morphometric measurements (peak-to-peak distance, crest width, trough width and total length) were collected using digital photographs. Elliptic Fourier analysis (geometric morphometrics) was used to quantify the outlines of whole vibrissae. The traditional and geometric morphometric datasets were subsequently combined by mathematically scaling each to true rank, followed by a single eigendecomposition. Quadratic discriminant function analysis demonstrated that 79.3, 97.8 and 100% of individuals could be correctly classified to their species based on vibrissal shape variables in the traditional, geometric and combined morphometric analyses, respectively. Phocids with beaded vibrissae, phocids with smooth vibrissae, and otariids each occupied distinct morphospace in the geometric morphometric and combined data analyses. Otariids split into two groups in the geometric morphometric analysis and gray seals appeared intermediate between beaded- and smooth-whiskered species in the traditional and combined analyses. Vibrissal hair shafts modulate the transduction of environmental stimuli to the mechanoreceptors in the follicle-sinus complex (F-SC), which results in

  5. Multiscale geometric modeling of macromolecules I: Cartesian representation

    NASA Astrophysics Data System (ADS)

    Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2014-01-01

    This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the

  6. Calibration and verification of thermographic cameras for geometric measurements

    NASA Astrophysics Data System (ADS)

    Lagüela, S.; González-Jorge, H.; Armesto, J.; Arias, P.

    2011-03-01

    Infrared thermography is a technique with an increasing degree of development and applications. Quality assessment in the measurements performed with the thermal cameras should be achieved through metrology calibration and verification. Infrared cameras acquire temperature and geometric information, although calibration and verification procedures are only usual for thermal data. Black bodies are used for these purposes. Moreover, the geometric information is important for many fields as architecture, civil engineering and industry. This work presents a calibration procedure that allows the photogrammetric restitution and a portable artefact to verify the geometric accuracy, repeatability and drift of thermographic cameras. These results allow the incorporation of this information into the quality control processes of the companies. A grid based on burning lamps is used for the geometric calibration of thermographic cameras. The artefact designed for the geometric verification consists of five delrin spheres and seven cubes of different sizes. Metrology traceability for the artefact is obtained from a coordinate measuring machine. Two sets of targets with different reflectivity are fixed to the spheres and cubes to make data processing and photogrammetric restitution possible. Reflectivity was the chosen material propriety due to the thermographic and visual cameras ability to detect it. Two thermographic cameras from Flir and Nec manufacturers, and one visible camera from Jai are calibrated, verified and compared using calibration grids and the standard artefact. The calibration system based on burning lamps shows its capability to perform the internal orientation of the thermal cameras. Verification results show repeatability better than 1 mm for all cases, being better than 0.5 mm for the visible one. As it must be expected, also accuracy appears higher in the visible camera, and the geometric comparison between thermographic cameras shows slightly better

  7. Multiscale geometric modeling of macromolecules I: Cartesian representation

    PubMed Central

    Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo Wei

    2013-01-01

    This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the

  8. Geometrical Pumping with a Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Lu, H.-I.; Schemmer, M.; Aycock, L. M.; Genkina, D.; Sugawa, S.; Spielman, I. B.

    2016-05-01

    We realized a quantum geometric "charge" pump for a Bose-Einstein condensate (BEC) in the lowest Bloch band of a novel bipartite magnetic lattice. Topological charge pumps in filled bands yield quantized pumping set by the global—topological—properties of the bands. In contrast, our geometric charge pump for a BEC occupying just a single crystal momentum state exhibits nonquantized charge pumping set by local—geometrical—properties of the band structure. Like topological charge pumps, for each pump cycle we observed an overall displacement (here, not quantized) and a temporal modulation of the atomic wave packet's position in each unit cell, i.e., the polarization.

  9. Geometric derivations of minimal sets of sufficient multiview constraints

    USGS Publications Warehouse

    Thomas, Orrin H.; Oshel, Edward R.

    2012-01-01

    Geometric interpretations of four of the most common determinant formulations of multiview constraints are given, showing that they all enforce the same geometry and that all of the forms commonly in use in the machine vision community are a subset of a more general form. Generalising the work of Yi Ma yields a new general 2 x 2 determinant trilinear and 3 x 3 determinant quadlinear. Geometric descriptions of degenerate multiview constraints are given, showing that it is necessary, but insufficient, that the determinant equals zero. Understanding the degeneracies leads naturally into proofs for minimum sufficient sets of bilinear, trilinear and quadlinear constraints for arbitrary numbers of conjugate observations.

  10. One step geometrical calibration method for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Díaz Díaz, Jesús; Stritzel, Jenny; Rahlves, Maik; Majdani, Omid; Reithmeier, Eduard; Ortmaier, Tobias; Roth, Bernhard

    2016-01-01

    We present a novel one-step calibration methodology for geometrical distortion correction for optical coherence tomography (OCT). A calibration standard especially designed for OCT is introduced, which consists of an array of inverse pyramidal structures. The use of multiple landmarks situated on four different height levels on the pyramids allow performing a 3D geometrical calibration. The calibration procedure itself is based on a parametric model of the OCT beam propagation. It is validated by experimental results and enables the reduction of systematic errors by more than one order of magnitude. In future, our results can improve OCT image reconstruction and interpretation for medical applications such as real time monitoring of surgery.

  11. Geometric phase gradient and spin Hall effect of light

    NASA Astrophysics Data System (ADS)

    Ling, Xiaohui; Zhou, Xinxing; Qiu, Cheng-Wei

    2016-10-01

    The spin Hall effect (SHE) of light originates from the spin-orbit interaction, which can be explained in terms of two geometric phases: the Rytov-Vladimirskii-Berry phase and the Pancharatnam-Berry phase. Here we present a unified theoretical description of the SHE based on the two types of geometric phase gradients, and observe experimentally the SHE in structured dielectric metasurfaces induced by the PB phase. Unlike the weak real-space spin-Hall shift induced by the SRB phase occurring at interfacial reflection/refraction, the observed SHE occurs in momentum space is large enough to be measured directly.

  12. Methods and apparatuses for signaling with geometric constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2012-01-01

    Communication systems are described that use signal constellations, which have unequally spaced (i.e. geometrically shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d.sub.min, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.

  13. Geometrical frustration in an element solid: (beta)-rhombohedral boron

    SciTech Connect

    Ogitsu, T; Gygi, F; Reed, J; Udagawa, M; Motome, Y; Schwegler, E; Galli, G

    2009-05-19

    Although a comprehensive understanding of the basic properties of most elemental solids has been achieved, there are still fundamental, open questions regarding simple substances, e.g. boron. Based on an Ising model that describes the intrinsic defect states in elemental boron, we show that this system is the only known element to exhibit geometrical frustration in its solid form. Interestingly, we find that the peculiar transport properties of boron that have been reported over the past forty years originate from the presence of geometrical frustration.

  14. A Geometrical Version of the Maxwell-Vlasov Hamiltonian Structure

    NASA Astrophysics Data System (ADS)

    Vittot, Michel; Morrison, Philip

    2014-10-01

    We present a geometrization of the Hamiltonian approach of classical electrodynamics, via (non-canonical) Poisson structures. This relativistic Hamiltonian framework (introduced by Morrison, Marsden, Weinstein) is a field theory written in terms of differential forms, independently of the gauge potentials. This algebraic and geometric description of the Vlasov kinetics is well suited for a perturbation theory, in a strong inhomogeneous magnetic field (expansion in 1/B, with all the curvature terms...), like in magnetically confined plasmas, and in any coordinates, for instance adapted to a Tokamak (toroidal coordinates, or else...).

  15. Geometric phase of atoms in a magnetic storage ring

    SciTech Connect

    Zhang, P.; You, L.

    2006-12-15

    A magnetically trapped atom experiences an adiabatic geometric (Berry's) phase due to changing field direction. We investigate theoretically such an Aharonov-Bohm-like geometric phase for atoms adiabatically moving inside a storage ring as demonstrated in several recent experiments. Our result shows that this phase shift is easily observable in a closed-loop interference experiment, and thus the shift has to be accounted for in the proposed inertial sensing applications. The spread in phase shift due to the atom transverse distribution is quantified through numerical simulations.

  16. Exploiting geometric degrees of freedom in topological quantum computing

    SciTech Connect

    Xu Haitan; Wan Xin

    2009-07-15

    In a topological quantum computer, braids of non-Abelian anyons in a (2+1)-dimensional space time form quantum gates, whose fault tolerance relies on the topological, rather than geometric, properties of the braids. Here we propose to create and exploit redundant geometric degrees of freedom to improve the theoretical accuracy of topological single- and two-qubit quantum gates. We demonstrate the power of the idea using explicit constructions in the Fibonacci model. We compare its efficiency with that of the Solovay-Kitaev algorithm and explain its connection to the leakage errors reduction in an earlier construction [H. Xu and X. Wan, Phys. Rev. A 78, 042325 (2008)].

  17. Detection and description of geometrically transformed digital images

    NASA Astrophysics Data System (ADS)

    Mahdian, Babak; Saic, Stanislav

    2009-02-01

    Geometric transformations such as scaling or rotation are common tools employed by forgery creators. These procedures are typically based on a resampling and interpolation step. The interpolation process brings specific periodic properties into the image. In this paper, we show how to detect these properties. Our aim is to detect all possible geometric transformations in the image being investigated. Furthermore, as the proposed method, as well as other existing detectors, is sensitive to noise, we also briefly show a simple method capable of detecting image noise inconsistencies. Noise is a common tool used to conceal the traces of tampering.

  18. Geometric modeling and analysis of large latticed surfaces

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Hefzy, M. S.

    1980-01-01

    The application of geometrical schemes, similar to geodesic domes, to large spherical antenna reflectors was investigated. The shape and size of flat segmented latticed surfaces which approximate general shells of revolution, and in particular spherical and paraboloidal reflective surfaces, were determined. The extensive mathematical and computational geometric analyses of the reflector resulted in the development of a general purpose computer program capable of generating the complete design parameters of the dish. The program also includes a graphical self contained subroutine for graphic display of the required design.

  19. Optimal control of underactuated mechanical systems: A geometric approach

    NASA Astrophysics Data System (ADS)

    Colombo, Leonardo; Martín De Diego, David; Zuccalli, Marcela

    2010-08-01

    In this paper, we consider a geometric formalism for optimal control of underactuated mechanical systems. Our techniques are an adaptation of the classical Skinner and Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics of the optimal control problem. These developments will allow us to develop a new class of geometric integrators based on discrete variational calculus.

  20. Control of the spin geometric phase in semiconductor quantum rings

    NASA Astrophysics Data System (ADS)

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-09-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.

  1. Control of the spin geometric phase in semiconductor quantum rings

    PubMed Central

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-01-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov–Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations. PMID:24067870

  2. Control of the spin geometric phase in semiconductor quantum rings.

    PubMed

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-01-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.

  3. Students' Performance in Geometrical Reflection Using GeoGebra

    ERIC Educational Resources Information Center

    Seloraji, Pavethira; Eu, Leong Kwan

    2017-01-01

    Students in this era need to grasp the concept of geometry instead of memorizing formulae. This is important for them to further their knowledge in geometry. The purpose of the research was to determine whether GeoGebra software influences year one students' performance in geometrical reflection. The research utilized an experimental research…

  4. Geometric characterization and simulation of planar layered elastomeric fibrous biomaterials

    SciTech Connect

    Carleton, James B.; D’Amore, Antonio; Feaver, Kristen R.; Rodin, Gregory J.; Sacks, Michael S.

    2014-10-13

    Many important biomaterials are composed of multiple layers of networked fibers. While there is a growing interest in modeling and simulation of the mechanical response of these biomaterials, a theoretical foundation for such simulations has yet to be firmly established. Moreover, correctly identifying and matching key geometric features is a critically important first step for performing reliable mechanical simulations. This paper addresses these issues in two ways. First, using methods of geometric probability, we develop theoretical estimates for the mean linear and areal fiber intersection densities for 2-D fibrous networks. These densities are expressed in terms of the fiber density and the orientation distribution function, both of which are relatively easy-to-measure properties. Secondly, we develop a random walk algorithm for geometric simulation of 2-D fibrous networks which can accurately reproduce the prescribed fiber density and orientation distribution function. Furthermore, the linear and areal fiber intersection densities obtained with the algorithm are in agreement with the theoretical estimates. Both theoretical and computational results are compared with those obtained by post-processing of scanning electron microscope images of actual scaffolds. These comparisons reveal difficulties inherent to resolving fine details of multilayered fibrous networks. Finally, the methods provided herein can provide a rational means to define and generate key geometric features from experimentally measured or prescribed scaffold structural data.

  5. Emergent geometric frustration of artificial magnetic skyrmion crystals

    SciTech Connect

    Ma, Fusheng; Reichhardt, Charles; Gan, Weiliang; Reichhardt, Cynthia Jane Olson; Lew, Wen Siang

    2016-10-05

    Magnetic skyrmions have been receiving growing attention as potential information storage and magnetic logic devices since an increasing number of materials have been identified that support skyrmion phases. Explorations of artificial frustrated systems have led to new insights into controlling and engineering new emergent frustration phenomena in frustrated and disordered systems. Here, we propose a skyrmion spin ice, giving a unifying framework for the study of geometric frustration of skyrmion crystals (SCs) in a nonfrustrated artificial geometrical lattice as a consequence of the structural confinement of skyrmions in magnetic potential wells. The emergent ice rules from the geometrically frustrated SCs highlight a novel phenomenon in this skyrmion system: emergent geometrical frustration. We demonstrate how SC topology transitions between a nonfrustrated periodic configuration and a frustrated icelike ordering can also be realized reversibly. The proposed artificial frustrated skyrmion systems can be annealed into different ice phases with an applied current-induced spin-transfer torque, including a long-range ordered ice rule obeying ground state, as-relaxed random state, biased state, and monopole state. In conclusion, the spin-torque reconfigurability of the artificial skyrmion ice states, difficult to achieve in other artificial spin ice systems, is compatible with standard spintronic device fabrication technology, which makes the semiconductor industrial integration straightforward.

  6. A geometric deformable model for echocardiographic image segmentation

    NASA Technical Reports Server (NTRS)

    Hang, X.; Greenberg, N. L.; Thomas, J. D.

    2002-01-01

    Gradient vector flow (GVF), an elegant external force for parametric deformable models, can capture object boundaries from both sides. A new geometric deformable model is proposed that combines GVF and the geodesic active contour model. The level set method is used as the numerical method of this model. The model is applied for echocardiographic image segmentation.

  7. Synthesis of general polarization transformers. A geometric phase approach

    NASA Astrophysics Data System (ADS)

    Bhandari, Rajendra

    1989-07-01

    Using a generalized form of Jordan's formulation of the geometric phase problem it is shown that a single gadget capable of realising an arbitrary element of the polarization transformation group SU (2) can be constructed using two half-wave plates and two quarter-wave plates. For special transformations, simpler, practical gadgets are proposed.

  8. Emergent geometric frustration of artificial magnetic skyrmion crystals

    NASA Astrophysics Data System (ADS)

    Ma, Fusheng; Reichhardt, C.; Gan, Weiliang; Reichhardt, C. J. Olson; Lew, Wen Siang

    2016-10-01

    Magnetic skyrmions have been receiving growing attention as potential information storage and magnetic logic devices since an increasing number of materials have been identified that support skyrmion phases. Explorations of artificial frustrated systems have led to new insights into controlling and engineering new emergent frustration phenomena in frustrated and disordered systems. Here, we propose a skyrmion spin ice, giving a unifying framework for the study of geometric frustration of skyrmion crystals (SCs) in a nonfrustrated artificial geometrical lattice as a consequence of the structural confinement of skyrmions in magnetic potential wells. The emergent ice rules from the geometrically frustrated SCs highlight a novel phenomenon in this skyrmion system: emergent geometrical frustration. We demonstrate how SC topology transitions between a nonfrustrated periodic configuration and a frustrated icelike ordering can also be realized reversibly. The proposed artificial frustrated skyrmion systems can be annealed into different ice phases with an applied current-induced spin-transfer torque, including a long-range ordered ice rule obeying ground state, as-relaxed random state, biased state, and monopole state. The spin-torque reconfigurability of the artificial skyrmion ice states, difficult to achieve in other artificial spin ice systems, is compatible with standard spintronic device fabrication technology, which makes the semiconductor industrial integration straightforward.

  9. Geometrical Similarity Transformations in Dynamic Geometry Environment Geogebra

    ERIC Educational Resources Information Center

    Andraphanova, Natalia V.

    2015-01-01

    The subject of the article is usage of modern computer technologies through the example of interactive geometry environment Geogebra as an innovative technology of representing and studying of geometrical material which involves such didactical opportunities as vizualisation, simulation and dynamics. There is shown a classification of geometric…

  10. 3-D Geometric Modeling for the 21st Century.

    ERIC Educational Resources Information Center

    Ault, Holly K.

    1999-01-01

    Describes new geometric computer models used in contemporary computer-aided design (CAD) software including wire frame, surface, solid, and parametric models. Reviews their use in engineering design and discusses the impact of these new technologies on the engineering design graphics curriculum. (Author/CCM)

  11. Geometric House: A Beginning Lesson for First-Graders

    ERIC Educational Resources Information Center

    Joyce, Teri Dexheimer

    2009-01-01

    This article describes a lesson for first-grade art students. The lesson introduces geometric shapes in a fun and unique way. Students will learn the art elements of shape, texture, pattern, and space. They will also develop their skills in cutting and gluing.

  12. Geometric tree kernels: classification of COPD from airway tree geometry.

    PubMed

    Feragen, Aasa; Petersen, Jens; Grimm, Dominik; Dirksen, Asger; Pedersen, Jesper Holst; Borgwardt, Karsten; de Bruijne, Marleen

    2013-01-01

    Methodological contributions: This paper introduces a family of kernels for analyzing (anatomical) trees endowed with vector valued measurements made along the tree. While state-of-the-art graph and tree kernels use combinatorial tree/graph structure with discrete node and edge labels, the kernels presented in this paper can include geometric information such as branch shape, branch radius or other vector valued properties. In addition to being flexible in their ability to model different types of attributes, the presented kernels are computationally efficient and some of them can easily be computed for large datasets (N - 10.000) of trees with 30 - 600 branches. Combining the kernels with standard machine learning tools enables us to analyze the relation between disease and anatomical tree structure and geometry. Experimental results: The kernels are used to compare airway trees segmented from low-dose CT, endowed with branch shape descriptors and airway wall area percentage measurements made along the tree. Using kernelized hypothesis testing we show that the geometric airway trees are significantly differently distributed in patients with Chronic Obstructive Pulmonary Disease (COPD) than in healthy individuals. The geometric tree kernels also give a significant increase in the classification accuracy of COPD from geometric tree structure endowed with airway wall thickness measurements in comparison with state-of-the-art methods, giving further insight into the relationship between airway wall thickness and COPD. Software: Software for computing kernels and statistical tests is available at http://image.diku.dk/aasa/software.php.

  13. Geometric characterization and simulation of planar layered elastomeric fibrous biomaterials

    PubMed Central

    Carleton, James B.; D'Amore, Antonio; Feaver, Kristen R.; Rodin, Gregory J.; Sacks, Michael S.

    2014-01-01

    Many important biomaterials are composed of multiple layers of networked fibers. While there is a growing interest in modeling and simulation of the mechanical response of these biomaterials, a theoretical foundation for such simulations has yet to be firmly established. Moreover, correctly identifying and matching key geometric features is a critically important first step for performing reliable mechanical simulations. The present work addresses these issues in two ways. First, using methods of geometric probability we develop theoretical estimates for the mean linear and areal fiber intersection densities for two-dimensional fibrous networks. These densities are expressed in terms of the fiber density and the orientation distribution function, both of which are relatively easy-to-measure properties. Secondly, we develop a random walk algorithm for geometric simulation of two-dimensional fibrous networks which can accurately reproduce the prescribed fiber density and orientation distribution function. Furthermore, the linear and areal fiber intersection densities obtained with the algorithm are in agreement with the theoretical estimates. Both theoretical and computational results are compared with those obtained by post-processing of SEM images of actual scaffolds. These comparisons reveal difficulties inherent to resolving fine details of multilayered fibrous networks. The methods provided herein can provide a rational means to define and generate key geometric features from experimentally measured or prescribed scaffold structural data. PMID:25311685

  14. The geometrical properties researching of surface quality by membership function

    NASA Astrophysics Data System (ADS)

    Yang, Yufen

    2008-12-01

    The main content of assessing the machined surface quality of machine components is the geometrical properties of surface quality. The geometrical properties of the two assessing parameters of identical surface quality (surface roughness and surface waviness) exist in the identical substance and there are certain blend and fuzziness, what's more, there is not the concept of the value to describe its varying blend degree, there are, so far, still not practicable methods and measuring tools to separate surface roughness and waviness completely. In contrast, the paper is based on the membership function of fuzzy mathematics to research the geometrical properties of surface roughness and waviness. This method completely broke the traditional one that only adopts numerical values to separate surface roughness and waviness. It can not only directly separate the two assessing parameters from actual surface, measure the actual values of parameters that meet the assessing quality and obtain the actual probability of the blend compositions between the two, but also entirely evaluate the geometrical properties of the actual surface quality, moreover, there will be a quantitative evaluation for the authenticity and reliability of the measured values from measuring systems and instruments.

  15. The Geometric Supposer: What Is It a Case of?

    ERIC Educational Resources Information Center

    Schwartz, Judah L., Ed.; And Others

    This volume attempts to bring together a collection of reports on the Geometric Supposer, a series of computer software environments which can be a tool for exploring particulars and generalizations in geometry. The book contains the following chapters: (1) "A Personal View of the Supposer: Reflections on Particularities and Generalities in…

  16. Geometric Characterization of Multi-Axis Multi-Pinhole SPECT

    PubMed Central

    DiFilippo, Frank P.

    2008-01-01

    A geometric model and calibration process are developed for SPECT imaging with multiple pinholes and multiple mechanical axes. Unlike the typical situation where pinhole collimators are mounted directly to rotating gamma ray detectors, this geometric model allows for independent rotation of the detectors and pinholes, for the case where the pinhole collimator is physically detached from the detectors. This geometric model is applied to a prototype small animal SPECT device with a total of 22 pinholes and which uses dual clinical SPECT detectors. All free parameters in the model are estimated from a calibration scan of point sources and without the need for a precision point source phantom. For a full calibration of this device, a scan of four point sources with 360° rotation is suitable for estimating all 95 free parameters of the geometric model. After a full calibration, a rapid calibration scan of two point sources with 180° rotation is suitable for estimating the subset of 22 parameters associated with repositioning the collimation device relative to the detectors. The high accuracy of the calibration process is validated experimentally. Residual differences between predicted and measured coordinates are normally distributed with 0.8 mm full width at half maximum and are estimated to contribute 0.12 mm root mean square to the reconstructed spatial resolution. Since this error is small compared to other contributions arising from the pinhole diameter and the detector, the accuracy of the calibration is sufficient for high resolution small animal SPECT imaging. PMID:18293574

  17. Geometric and Algebraic Approaches in the Concept of Complex Numbers

    ERIC Educational Resources Information Center

    Panaoura, A.; Elia, I.; Gagatsis, A.; Giatilis, G.-P.

    2006-01-01

    This study explores pupils' performance and processes in tasks involving equations and inequalities of complex numbers requiring conversions from a geometric representation to an algebraic representation and conversions in the reverse direction, and also in complex numbers problem solving. Data were collected from 95 pupils of the final grade from…

  18. Algebraic, geometric, and stochastic aspects of genetic operators

    NASA Technical Reports Server (NTRS)

    Foo, N. Y.; Bosworth, J. L.

    1972-01-01

    Genetic algorithms for function optimization employ genetic operators patterned after those observed in search strategies employed in natural adaptation. Two of these operators, crossover and inversion, are interpreted in terms of their algebraic and geometric properties. Stochastic models of the operators are developed which are employed in Monte Carlo simulations of their behavior.

  19. Density estimation using the trapping web design: A geometric analysis

    USGS Publications Warehouse

    Link, W.A.; Barker, R.J.

    1994-01-01

    Population densities for small mammal and arthropod populations can be estimated using capture frequencies for a web of traps. A conceptually simple geometric analysis that avoid the need to estimate a point on a density function is proposed. This analysis incorporates data from the outermost rings of traps, explaining large capture frequencies in these rings rather than truncating them from the analysis.

  20. Geometric Mechanics Reveals Optimal Complex Terrestrial Undulation Patterns

    NASA Astrophysics Data System (ADS)

    Gong, Chaohui; Astley, Henry; Schiebel, Perrin; Dai, Jin; Travers, Matthew; Goldman, Daniel; Choset, Howie; CMU Team; GT Team

    Geometric mechanics offers useful tools for intuitively analyzing biological and robotic locomotion. However, utility of these tools were previously restricted to systems that have only two internal degrees of freedom and in uniform media. We show kinematics of complex locomotors that make intermittent contacts with substrates can be approximated as a linear combination of two shape bases, and can be represented using two variables. Therefore, the tools of geometric mechanics can be used to analyze motions of locomotors with many degrees of freedom. To demonstrate the proposed technique, we present studies on two different types of snake gaits which utilize combinations of waves in the horizontal and vertical planes: sidewinding (in the sidewinder rattlesnake C. cerastes) and lateral undulation (in the desert specialist snake C. occipitalis). C. cerastes moves by generating posteriorly traveling body waves in the horizontal and vertical directions, with a relative phase offset equal to +/-π/2 while C. occipitalismaintains a π/2 offset of a frequency doubled vertical wave. Geometric analysis reveals these coordination patterns enable optimal movement in the two different styles of undulatory terrestrial locomotion. More broadly, these examples demonstrate the utility of geometric mechanics in analyzing realistic biological and robotic locomotion.

  1. The Zoom Lens: A Case Study in Geometrical Optics.

    ERIC Educational Resources Information Center

    Cheville, Alan; Scepanovic, Misa

    2002-01-01

    Introduces a case study on a motion picture company considering the purchase of a newly developed zoom lens in which students act as the engineers designing the zoom lens based on the criteria of company's specifications. Focuses on geometrical optics. Includes teaching notes and classroom management strategies. (YDS)

  2. Geometric interpretations of the Discrete Fourier Transform (DFT)

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1984-01-01

    One, two, and three dimensional Discrete Fourier Transforms (DFT) and geometric interpretations of their periodicities are presented. These operators are examined for their relationship with the two sided, continuous Fourier transform. Discrete or continuous transforms of real functions have certain symmetry properties. The symmetries are examined for the one, two, and three dimensional cases. Extension to higher dimension is straight forward.

  3. Geometric phases, evolution loops and generalized oscillator potentials

    NASA Technical Reports Server (NTRS)

    Fernandez, David J.

    1995-01-01

    The geometric phases for dynamical processes where the evolution operator becomes the identity (evolution loops) are studied. The case of time-independent Hamiltonians with equally spaced energy levels is considered; special emphasis is made on the potentials having the same spectrum as the harmonic oscillator potential (the generalized oscillator potentials) and their recently found coherent states.

  4. Fast non-Abelian geometric gates via transitionless quantum driving.

    PubMed

    Zhang, J; Kyaw, Thi Ha; Tong, D M; Sjöqvist, Erik; Kwek, Leong-Chuan

    2015-12-21

    A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer.

  5. The Double Cone: A Mechanical Paradox or a Geometrical Constraint?

    ERIC Educational Resources Information Center

    Gallitto, Aurelio Agliolo; Fiordilino, Emilio

    2011-01-01

    In the framework of the Italian National Plan "Lauree Scientifiche" (PLS) in collaboration with secondary schools, we have investigated the mechanical paradox of the double cone. We have calculated the geometric condition for obtaining an upward movement. Based on this result, we have built a mechanical model with a double cone made of aluminum…

  6. Arithmetic versus Geometric Means for Environmental Concentration Data.

    ERIC Educational Resources Information Center

    Parkhurst, David F.

    1998-01-01

    Concentrations of chemical substances and microorganisms are often averaged using geometric means. Argues that the arithmetic mean is a better choice for summarizing data because arithmetic means are unbiased, easier to calculate and understand, scientifically more meaningful, and more protective of public health. Results of a simulation study…

  7. Geometric Langlands Program and Dualities in Quantum Physics

    DTIC Science & Technology

    2009-04-30

    physicists. Lectures were given by P. Aspinwall, D. Ben-Zvi, E. Frenkel, S. Gukov, A. Kapustin , and D. Morrison. We had more than 15 graduate students, about...Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, arXiv:0807.4723. [20] A. Kapustin , A Note on Quantum Geometric Langlands

  8. Gauge Theoretic Aspects of the Geometric Langlands Correspondence

    NASA Astrophysics Data System (ADS)

    Elliott, Chris

    In their revolutionary 2006 paper, Kapustin and Witten described a fascinating bridge between geometric representation theory and the quantum theory of supersymmetric gauge fields. They explained how, by performing a suitable topological twist, one can obtain categories of sheaves on moduli stacks of holomorphic and flat G-bundles as categories of boundary conditions in supersymmetric gauge theories, and why the physical phenomenon of S-duality should yield a conjectural equivalence of categories known as the geometric Langlands correspondence. In this thesis, I begin to make some of the structures introduced by Kapustin-Witten and other theoretical physicists mathematically rigorous, with the eventual aim of systematically using the huge amount of structure possessed by the panoply of supersymmetric gauge theories in the theoretical physics literature to draw new insights about geometric representation theory. The present work consists of two distinct approaches. Firstly I give a construction of a generalization of abelian gauge theories using the mathematical structure of a factorization algebra, and explain how S-duality for these theories can be described as a version of the Fourier transform. Then, I explain how to construct classical supersymmetric gauge theories using derived algebraic geometry, introduce an appropriate notion of twisting for such theories, and prove that the twists introduced by Kapustin and Witten yield the moduli stacks of interest for the geometric Langlands correspondence.

  9. SIAM Conference on Geometric Design and Computing. Final Technical Report

    SciTech Connect

    2002-03-11

    The SIAM Conference on Geometric Design and Computing attracted 164 domestic and international researchers, from academia, industry, and government. It provided a stimulating forum in which to learn about the latest developments, to discuss exciting new research directions, and to forge stronger ties between theory and applications. Final Report

  10. Some Components of Geometric Knowledge of Future Elementary School Teachers

    ERIC Educational Resources Information Center

    Debrenti, Edith

    2016-01-01

    Geometric experience, spatial representation, spatial visualization, understanding the world around us, and developing the ability of spatial reasoning are fundamental aims in the teaching of mathematics. (Freudenthal, 1972) Learning is a process which involves advancing from level to level. In primary school the focus is on the first two levels…

  11. Geometric angles in cyclic evolutions of a classical system

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, A.; Sen, Tanaji

    1988-01-01

    A perturbative method, using Lie transforms, is given for calculating the Hannay angle for slow, cyclic evolutions of a classical system, taking into account the finite rate of change of the Hamiltonian. The method is applied to the generalized harmonic oscillator. The classical Aharonov-Anandan angle is also calculated. The interpretational ambiguity in the definitions of geometrical angles is discussed.

  12. Geometric Aspects of Force Controllability for a Swimming Model

    SciTech Connect

    Khapalov, A. Y.

    2008-02-15

    We study controllability properties (swimming capabilities) of a mathematical model of an abstract object which 'swims' in the 2-D Stokes fluid. Our goal is to investigate how the geometric shape of this object affects the forces acting upon it. Such problems are of interest in biology and engineering applications dealing with propulsion systems in fluids.

  13. Geometric Demonstration of the Fundamental Theorems of the Calculus

    ERIC Educational Resources Information Center

    Sauerheber, Richard D.

    2010-01-01

    After the monumental discovery of the fundamental theorems of the calculus nearly 350 years ago, it became possible to answer extremely complex questions regarding the natural world. Here, a straightforward yet profound demonstration, employing geometrically symmetric functions, describes the validity of the general power rules for integration and…

  14. Stereospecific Synthesis of the Geometrical Isomers of a Natural Product

    ERIC Educational Resources Information Center

    Grove, T.; DiLella, D.; Volker, E.

    2006-01-01

    Stereospecific synthesis of a geometrical isomer is not a common topic for the introductory organic chemistry laboratory. We have developed and tested an experiment for the synthesis of (Z) and (E) isomers that has been performed successfully by undergraduate students. The experiment is presented to the students as a puzzle in which they must…

  15. Edge Detection and Geometric Methods in Computer Vision,

    DTIC Science & Technology

    1985-02-01

    anid espcially Ltme differenit meanings of the 2 types of arrows. In thin notatiom,, rather thani sayinig "the funtion a f (a, y)" Ceotnetric Methods in...a generative grammar . In fact, the only possible structures are shown In ,ig. (level). .. . . . . ... , Geometric Methods in Vision Topological

  16. Importance of geometric phase effects in ultracold chemistry

    DOE PAGES

    Hazra, Jisha; Kendrick, Brian K.; Balakrishnan, Naduvalath

    2015-08-28

    Here, it is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. The effect arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. It is magnified when the two scattering amplitudes have comparable magnitude and they scatter into the same angular region which occurs in the isotropic scatteringmore » characteristic of the ultracold regime (s-wave scattering). Results are presented for the O + OH → H + O2 reaction for total angular momentum quantum number J = 0–5. Large geometric phase effects occur for collision energies below 0.1 K, but the effect vanishes at higher energies when contributions from different partial waves are included. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. In this case, the geometric phase plays the role of a “quantum switch” which can turn the reaction “on” or “off”.« less

  17. Importance of geometric phase effects in ultracold chemistry

    SciTech Connect

    Hazra, Jisha; Kendrick, Brian K.; Balakrishnan, Naduvalath

    2015-08-28

    Here, it is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. The effect arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. It is magnified when the two scattering amplitudes have comparable magnitude and they scatter into the same angular region which occurs in the isotropic scattering characteristic of the ultracold regime (s-wave scattering). Results are presented for the O + OH → H + O2 reaction for total angular momentum quantum number J = 0–5. Large geometric phase effects occur for collision energies below 0.1 K, but the effect vanishes at higher energies when contributions from different partial waves are included. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. In this case, the geometric phase plays the role of a “quantum switch” which can turn the reaction “on” or “off”.

  18. Coupled Mode Formalism: Connecting Phasor, Matrix, and Geometrical Approaches

    DTIC Science & Technology

    2014-05-30

    the map’s cyclical re-use of a fixed range of longitude co-ordinates. This is somewhat analogous to the situation in solid state physics in which the...1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 III COUPLED STATES : MATRIX FORM...4 IV COUPLED STATES : GEOMETRIC FORM . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Normal form

  19. Some Geometric Inequalities Relating to an Interior Point in Triangle

    ERIC Educational Resources Information Center

    Wu, Yu-Dong; Zhang, Zhi-Hua; Liang, Chun-Lei

    2010-01-01

    In this short note, by using one of Li and Liu's theorems [K.-H. Li, "The solution of CIQ. 39," "Commun. Stud. Inequal." 11(1) (2004), p. 162 (in Chinese)], "s-R-r" method, Cauchy's inequality and the theory of convex function, we solve some geometric inequalities conjectures relating to an interior point in triangle. (Contains 1 figure.)

  20. Geometric characterization and simulation of planar layered elastomeric fibrous biomaterials

    DOE PAGES

    Carleton, James B.; D’Amore, Antonio; Feaver, Kristen R.; ...

    2014-10-13

    Many important biomaterials are composed of multiple layers of networked fibers. While there is a growing interest in modeling and simulation of the mechanical response of these biomaterials, a theoretical foundation for such simulations has yet to be firmly established. Moreover, correctly identifying and matching key geometric features is a critically important first step for performing reliable mechanical simulations. This paper addresses these issues in two ways. First, using methods of geometric probability, we develop theoretical estimates for the mean linear and areal fiber intersection densities for 2-D fibrous networks. These densities are expressed in terms of the fiber densitymore » and the orientation distribution function, both of which are relatively easy-to-measure properties. Secondly, we develop a random walk algorithm for geometric simulation of 2-D fibrous networks which can accurately reproduce the prescribed fiber density and orientation distribution function. Furthermore, the linear and areal fiber intersection densities obtained with the algorithm are in agreement with the theoretical estimates. Both theoretical and computational results are compared with those obtained by post-processing of scanning electron microscope images of actual scaffolds. These comparisons reveal difficulties inherent to resolving fine details of multilayered fibrous networks. Finally, the methods provided herein can provide a rational means to define and generate key geometric features from experimentally measured or prescribed scaffold structural data.« less