Science.gov

Sample records for 8-4-4 power mechanics

  1. Mechanical jumping power in athletes.

    PubMed

    Kirkendall, D T; Street, G M

    1986-12-01

    The Wingate cycle ergometer test is a widely used test of sustained muscular power. A limitation of the test is the lack of development and retrieval of stored elastic energy due to a lack of an eccentric phase. To measure mechanical power output of the entire stretch-shortening cycle, the test of Bosco et al (1983) was administered to 119 male athletes in 7 different activities during their pre-participation evaluations. The sports tested were indoor soccer, American football and ballet (professionals), outdoor soccer, basketball and wrestling (collegiate) and amateur bobsled. Results showed the overall average power output to be 20.37 W.kg-1 for the 60s reciprocal jumping test. Ballet dancers generated significantly less mechanical power than indoor soccer, basketball and bobsled athletes, while wrestlers generated significantly less power than indoor soccer and basketball athletes (all p less than 0.05). No other between-sport differences were seen. A subset of indoor soccer players (n = 10) were retested after 4 months of training. Power improved from 20.8 to 24.3 W.kg-1 (p less than 0.05). While between sport differences were limited, training differences in one subset of athletes were readily identified.

  2. How Power Mechanism Influence Channel Bilateral Opportunism

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Chen, Shaodan

    In the background of marketing channel power asymmetry structure, this article discuss the relation between power dominant member’s use of power mechanism and the opportunism behavior of both Power disadvantage member and the power dominant member itself, and test whether distributive fairness perception and procedural fairness perception have moderate effects on this relation. The result shows that, the power dominant member’s use of coercive power will increase the opportunistic tendency of both sides; in contrast, the power dominant member’s use of noncorecive power will inhibit such tendency. Distributive fairness perception and procedural fairness perception negatively moderate the relation between power dominant member’s use of noncorecive power and power disadvantage member’s opportunism. Procedural fairness perception also negatively moderates the relation between power dominant member’s use of coercive power and the other side’s opportunism.

  3. Mechanical jumping power in young athletes.

    PubMed

    Viitasalo, J T; Osterback, L; Alen, M; Rahkila, P; Havas, E

    1987-09-01

    Mechanical jumping power was determined for 286 young male athletes representing six sports events and ranging in calendar and skeletal ages from 8.8 to 17.1 and from 7.8 to 18.1 years, respectively. The subjects performed successive maximal vertical jumps on a contact mat for 30 s. The number of jumps and their cumulative flight time after 15 and 30 s were used for calculations of mechanical power. The jumping performances of the young athletes were found to be reproducible from the age of 10-12 years in respect to the angular displacement of the knee and duration of contact. Absolute mechanical power, as well as power related to body weight, increased with calendar and skeletal ages. Of the anthropometric characteristics, the circumference of the thigh and body weight showed the highest correlation with mechanical power; subjects with the greatest thigh circumference and body weight having the lowest mechanical power. The subjects were divided into 'power' (track and field, gymnastics) and 'endurance' (skiing, orienteering) groups. The former reached higher mechanical power values than the latter. Mechanical power for the second 15-s jumping period was on average 4.7% lower than for the first. The events did not differ from each other in respect of the decrease in power.

  4. Instructional Guide for Vocational Power Mechanics. V & TECC Curriculum Guide.

    ERIC Educational Resources Information Center

    Virginia Polytechnic Inst. and State Univ., Blacksburg. Div. of Vocational-Technical Education.

    This trade and industrial curriculum guide for power mechanics is designed for vocational power mechanics programs that provide 960 hours of instruction. The introductory section provides a statement of philosophy, block time schedule, and the objectives for power mechanics. Following the introductory section, fourteen blocks of instruction are…

  5. Industrial Arts Power Mechanics. Applying Scientific Principles to Power, Energy, Force. Instructional Units.

    ERIC Educational Resources Information Center

    Woodward, Robert L.; Myers, Norman L.

    The instructional units and related materials in this guide are designed to assist in the preparation of courses of study/instruction in (1) power mechanics specifically, (2) power mechanics which serve as introductory courses in other areas of industrial arts, and (3) automotive mechanics which also cover the broader aspects of power mechanics.…

  6. Maximum speed and mechanical power output in lizards.

    PubMed

    Farley, C T

    1997-08-01

    The goal of the present study was to test the hypothesis that maximum running speed is limited by how much mechanical power the muscular system can produce. To test this hypothesis, two species of lizards, Coleonyx variegatus and Eumeces skiltonianus, sprinted on hills of different slopes. According to the hypothesis, maximum speed should decrease on steeper uphill slopes but mechanical power output at maximum speed should be independent of slope. For level sprinting, the external mechanical power output was determined from force platform data. For uphill sprinting, the mechanical power output was approximated as the power required to lift the center of mass vertically. When the slope increased from level to 40 degrees uphill, maximum speed decreased by 28% in C. variegatus and by 16% in E. skiltonianus. At maximum speed on a 40 degrees uphill slope in both species, the mechanical power required to lift the body vertically was approximately 3.9 times greater than the external mechanical power output at maximum speed on the level. Because total limb mass is small in both species (6-16% of body mass) and stride frequency is similar at maximum speed on all slopes, the internal mechanical power output is likely to be small and similar in magnitude on all slopes. I conclude that the muscular system is capable of producing substantially more power during locomotion than it actually produces during level sprinting. Thus, the capacity of the muscular system to produce power does not limit maximum running speed.

  7. Generation mechanism of power line harmonic radiation

    NASA Astrophysics Data System (ADS)

    Kostrov, Alexander; Gushchin, Mikhail; Korobkov, Sergei

    The questions concerning the generation of power line harmonic radiation (PLHR) and magne-tospheric line radiation (MLR) are discussed, including the effective source of high harmonics of 50/60 Hz, and fine dynamic structure of the frequency spectrum of PLHR and MLR. It is shown, that thyristor-based power regulators used by large electrical power consumers produce the periodic sequences of current pulses with duration of about 10 microseconds in a power line. The repetition rate of these pulses is typically 100/120 Hz; the bandwidth is as broad as 100 kHz. For high harmonics of 50/60 Hz, the power line represents an effective traveling-wave (or Beverage) antenna, especially in a frequency range of several kHz corresponding to VLF whistler band in Earth ionosphere and magnetosphere. For the fixed length of the power line, which acts as antenna, radiation directivity diagram in relation to horizon depends of frequency. Hence the spatial separation of whistlers emitted at various frequencies (1-10 kHz in a consid-ered case) is possible, with subsequent propagation of whistlers with different frequencies along different L-shells. Estimations show that the efficiency of power line as travelling-wave antenna can be changed by variations of its load, but not more than twice ("weekend effect"). Since the PLHR can represent the sequence of short electromagnetic bursts, then careful se-lection of frequency-time resolution of the data acquisition equipment is needed. Typically, the time constant of the data recording and processing is too large, and the spectra of PLHR or MLR are characterized by a well-known line structure. At the same time, original bursty structure of PLHR can not be defined. Fine structure of MLR is also discussed. Frequency drift of MLR can be explained by the perturbations of the magnetospheric plasma by intense ULF waves and particle flows affecting the propagation of PLHR. Hence the physical nature of PLHR and MLR is the same, excepting the

  8. 29 CFR 1910.217 - Mechanical power presses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.217 Mechanical power presses. (a... this section. (5) Excluded machines. Press brakes, hydraulic and pneumatic power presses, bulldozers, hot bending and hot metal presses, forging presses and hammers, riveting machines and similar types...

  9. 29 CFR 1910.217 - Mechanical power presses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.217 Mechanical power presses. (a... this section. (5) Excluded machines. Press brakes, hydraulic and pneumatic power presses, bulldozers, hot bending and hot metal presses, forging presses and hammers, riveting machines and similar types...

  10. 29 CFR 1910.217 - Mechanical power presses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.217 Mechanical power presses. (a... this section. (5) Excluded machines. Press brakes, hydraulic and pneumatic power presses, bulldozers, hot bending and hot metal presses, forging presses and hammers, riveting machines and similar types...

  11. 29 CFR 1910.217 - Mechanical power presses.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.217 Mechanical power presses. (a... this section. (5) Excluded machines. Press brakes, hydraulic and pneumatic power presses, bulldozers, hot bending and hot metal presses, forging presses and hammers, riveting machines and similar types...

  12. Power Mechanics Curriculum Guide. Curriculum Development. Bulletin 1813.

    ERIC Educational Resources Information Center

    Territo, Peter A., Jr.; McMurry, James G.

    This model instructional unit was developed to aid trade and industrial education teachers in Louisiana in preparing students for careers in the field of power mechanics. Students are provided experiences related to the design, theory, construction, and appropriate uses of the power systems, as well as the maintenance and repair of the more common…

  13. Flow lasers. [fluid mechanics of high power continuous output operations

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.; Russell, D. A.; Hertzberg, A.

    1975-01-01

    The present work reviews the fluid-mechanical aspects of high-power continuous-wave (CW) lasers. The flow characteristics of these devices appear as classical fluid-mechanical phenomena recast in a complicated interactive environment. The fundamentals of high-power lasers are reviewed, followed by a discussion of the N2-CO2 gas dynamic laser. Next, the HF/DF supersonic diffusion laser is described, and finally the CO electrical-discharge laser is discussed.

  14. Turning goals into results: the power of catalytic mechanisms.

    PubMed

    Collins, J

    1999-01-01

    Most executives have a big, hairy, audacious goal. They write vision statements, formalize procedures, and develop complicated incentive programs--all in pursuit of that goal. In other words, with the best of intentions, they install layers of stultifying bureaucracy. But it doesn't have to be that way. In this article, Jim Collins introduces the catalytic mechanism, a simple yet powerful managerial tool that helps translate lofty aspirations into concrete reality. Catalytic mechanisms are the crucial link between objectives and performance; they are a galvanizing, nonbureaucratic means to turn one into the other. What's the difference between catalytic mechanisms and most traditional managerial controls? Catalytic mechanisms share five characteristics. First, they produce desired results in unpredictable ways. Second, they distribute power for the benefit of the overall system, often to the discomfort of those who traditionally hold power. Third, catalytic mechanisms have teeth. Fourth, they eject "viruses"--those people who don't share the company's core values. Finally, they produce an ongoing effect. Catalytic mechanisms are just as effective for reaching individual goals as they are for corporate ones. To illustrate how catalytic mechanisms work, the author draws on examples of individuals and organizations that have relied on such mechanisms to achieve their goals. The same catalytic mechanism that works in one organization, however, will not necessarily work in another. Catalytic mechanisms must be tailored to specific goals and situations. To help readers get started, the author offers some general principles that support the process of building catalytic mechanisms effectively.

  15. Rate-Controlling Mechanisms in Five-Power-Law Creep

    SciTech Connect

    Michael E. Kassner

    2004-04-20

    OAK-B135 Rate-Controlling Mechanisms in Five-Power-Law Creep. The initial grant emphasized the rate-controlling processes for five power-law creep. The effort has six aspects: (1) Theory of Taylor hardening from the Frank dislocation network in five power law substructures. (2) The dual dynamical and hardening nature of dislocations in five power law substructures. (3) Determination of the existence of long-range internal stress in five-power law creep dislocation substructures. (4) Dynamic recovery mechanisms associated with dislocation heterogeneities during five power law creep. (5) Versatility of five power law creep concept to other (hcp) crystal structures. (6) Writing of a book on ''Fundamental of Creep in Metals and Alloys'' by M.E. Kassner and Maria-Teresa Perez-Frado (postdoctoral scholar, funded by this project) Elsevier Press, 2004, in press. These areas are consistent with the original goals of this project as delineated in the original proposal to Basic Energy Sciences. The progress in each of these areas will be discussed separately and there will be an attempt to tie each aspect together so as to allow a summary regarding the conclusions with respect to the rate-controlling mechanisms of five power-law creep.

  16. Mechanical Power Flow Changes during Multijoint Movement Acquisition

    ERIC Educational Resources Information Center

    Kadota, Koji; Matsuo, Tomoyuki; Hashizume, Ken; Tezuka, Kazushi

    2006-01-01

    We investigated the differences in mechanical power flow in early and late practice stages during a cyclic movement consisting of upper arm circumduction to clarify the change in mechanical energy use with skill acquisition. Seven participants practiced the task every other day until their joint angular movements conformed to those of an expert.…

  17. Mechanical power output during running accelerations in wild turkeys.

    PubMed

    Roberts, Thomas J; Scales, Jeffrey A

    2002-05-01

    We tested the hypothesis that the hindlimb muscles of wild turkeys (Meleagris gallopavo) can produce maximal power during running accelerations. The mechanical power developed during single running steps was calculated from force-plate and high-speed video measurements as turkeys accelerated over a trackway. Steady-speed running steps and accelerations were compared to determine how turkeys alter their running mechanics from a low-power to a high-power gait. During maximal accelerations, turkeys eliminated two features of running mechanics that are characteristic of steady-speed running: (i) they produced purely propulsive horizontal ground reaction forces, with no braking forces, and (ii) they produced purely positive work during stance, with no decrease in the mechanical energy of the body during the step. The braking and propulsive forces ordinarily developed during steady-speed running are important for balance because they align the ground reaction force vector with the center of mass. Increases in acceleration in turkeys correlated with decreases in the angle of limb protraction at toe-down and increases in the angle of limb retraction at toe-off. These kinematic changes allow turkeys to maintain the alignment of the center of mass and ground reaction force vector during accelerations when large propulsive forces result in a forward-directed ground reaction force. During the highest accelerations, turkeys produced exclusively positive mechanical power. The measured power output during acceleration divided by the total hindlimb muscle mass yielded estimates of peak instantaneous power output in excess of 400 W kg(-1) hindlimb muscle mass. This value exceeds estimates of peak instantaneous power output of turkey muscle fibers. The mean power developed during the entire stance phase increased from approximately zero during steady-speed runs to more than 150 W kg(-1) muscle during the highest accelerations. The high power outputs observed during accelerations

  18. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  19. Adaptive Power Saving Mechanism for 10 Gigabit Class PON Systems

    NASA Astrophysics Data System (ADS)

    Kubo, Ryogo; Kani, Jun-Ichi; Fujimoto, Yukihiro; Yoshimoto, Naoto; Kumozaki, Kiyomi

    This paper proposes a power saving mechanism with variable sleep period to reduce the power consumed by optical network units (ONUs) in passive optical network (PON) systems. In the PON systems based on time division multiplexing (TDM), sleep and periodic wake-up (SPW) control is an effective ONU power saving technique. However, the effectiveness of SPW control is fully realized only if the sleep period changes in accordance with the traffic conditions. This paper proposes an SPW control mechanism with variable sleep period. The proposed mechanism sets the sleep period according to traffic conditions, which greatly improves the power saving effect. In addition, the protocols needed between an optical line terminal (OLT) and ONUs are described on the assumption that the proposed mechanism is applied to 10 Gigabit (10G) class PON systems, i.e. IEEE 802.3av 10G-EPON and FSAN/ITU-T 10G-PON systems. The validity of the proposed mechanism is confirmed by numerical simulations.

  20. Linkage mechanics and power amplification of the mantis shrimp's strike.

    PubMed

    Patek, S N; Nowroozi, B N; Baio, J E; Caldwell, R L; Summers, A P

    2007-10-01

    Mantis shrimp (Stomatopoda) generate extremely rapid and forceful predatory strikes through a suite of structural modifications of their raptorial appendages. Here we examine the key morphological and kinematic components of the raptorial strike that amplify the power output of the underlying muscle contractions. Morphological analyses of joint mechanics are integrated with CT scans of mineralization patterns and kinematic analyses toward the goal of understanding the mechanical basis of linkage dynamics and strike performance. We test whether a four-bar linkage mechanism amplifies rotation in this system and find that the rotational amplification is approximately two times the input rotation, thereby amplifying the velocity and acceleration of the strike. The four-bar model is generally supported, although the observed kinematic transmission is lower than predicted by the four-bar model. The results of the morphological, kinematic and mechanical analyses suggest a multi-faceted mechanical system that integrates latches, linkages and lever arms and is powered by multiple sites of cuticular energy storage. Through reorganization of joint architecture and asymmetric distribution of mineralized cuticle, the mantis shrimp's raptorial appendage offers a remarkable example of how structural and mechanical modifications can yield power amplification sufficient to produce speeds and forces at the outer known limits of biological systems.

  1. Faculty and Online Education as a Mechanism of Power

    ERIC Educational Resources Information Center

    Peach, Harold G., Jr.; Bieber, Jeffery P.

    2015-01-01

    This study uses a critical perspective to examine how online education is used in brick-and-mortar institutions as a mechanism through which power is exercised by and against professors who teach online. Based on a larger study of 25 professors and administrators at four institutions, this work focuses on the experiences of 12 professors.…

  2. Mechanical design of submarine power cables for floating platforms

    SciTech Connect

    Bisplinghoff, R. L.; Libby, D. O.; Costantino, R. W.

    1980-01-01

    The process of mechanical design of submarine power cables employed by the Simplex Wire and Cable Company is described. The process commences with design criteria and proceeds through preliminary design, load and stress analyses and culminates in extreme value reliability and lifetime predictions. The analytical methods employed are emphasized and some representative numerical results are presented.

  3. Essentials of low-power electrocution: established and speculated mechanisms.

    PubMed

    Kroll, Mark W; Fish, Raymond M; Lakkireddy, Dhanunjaya; Luceri, Richard M; Panescu, Dorin

    2012-01-01

    Even though electrocution has been recognized--and studied--for over a century, there remain several common misconceptions among medical professional as well as lay persons. This review focuses on "low-power" electrocutions rather than on the "high-power" electrocutions such as from lightning and power lines. Low-power electrocution induces ventricular fibrillation (VF). We review the 3 established mechanisms for electrocution: (1) shock on cardiac T-wave, (2) direct induction of VF, and (3) long-term high-rate cardiac capture reducing the VF threshold until VF is induced. There are several electrocution myths addressed, including the concept--often taught in medical school--that direct current causes asystole instead of VF and that electrical exposure can lead to a delayed cardiac arrest by inducing a subclinical ventricular tachycardia (VT). Other misunderstandings are also discussed.

  4. Solar Power Satellite Development: Advances in Modularity and Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.

    2010-01-01

    Space solar power satellites require innovative concepts in order to achieve economically and technically feasible designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment will be enabling design attributes. This paper reviews the current challenges of launching and building very large space systems. A building block approach is proposed in order to achieve near-term solar power satellite risk reduction while promoting the necessary long-term technology advances. Promising mechanical systems technologies anticipated in the coming decades including modularity, material systems, structural concepts, and in-space operations are described

  5. Self-powered In-plane Accelerometer Using Triboelectric Mechanism

    NASA Astrophysics Data System (ADS)

    Gupta, Rahul Kumar; Dhakar, Lokesh; Lee, Chengkuo

    2016-11-01

    This paper presents a self-powered triboelectric based accelerometer to detect wide range of in-plane acceleration utilizing the triboelectric mechanism. The freestanding sliding mode was utilized to realize the in-plane sensing. The fabricated device consists of soft polymer spring which displays wide detection range from ±1g to ±6g (g = 9.8m/s2) in x and y directions with sensitivity of 21mV/(g). The proposed device can be utilized for self-powered shock sensing in various future applications.

  6. Improved mechanism for capturing muscle power for circulatory support.

    PubMed

    Trumble, Dennis R; Melvin, David B; Byrne, Mark T; Magovern, James A

    2005-09-01

    Although it is now understood that trained skeletal muscle can generate enough steady-state power to provide significant circulatory support, there are currently no means by which to tap this endogenous energy source to aid the failing heart. To that end, an implantable muscle energy converter (MEC) has been constructed and its function has been improved to optimize durability, anatomic fit, and mechanical efficiency. Bench tests show that MEC transmission losses average less than 10% of total work input and that about 85% of this muscle power is successfully transferred to the working fluid of the pump. Results from canine implant trials confirm excellent biocompatibility and demonstrate that contractile work of the latissimus dorsi muscle-measured to 290 mJ/stroke in one dog-can be transmitted within the body at levels consistent with cardiac assist requirements. These findings suggest that muscle-powered cardiac assist devices are feasible and that efforts to further develop this technology are warranted.

  7. Power transfer mechanism for four-wheel drive

    SciTech Connect

    Hiraiwa, K.

    1989-02-21

    A power transfer mechanism is described comprising: an input member; an first output member; a second output member; a planetary gear assembly including a ring gear, a carrier, a plurality of first planet gears in mesh with aid ring gear and journalled on the carrier, a plurality of second planet gears, each in mesh with one of the first planet gears, journalled on the carrier, and a sun gear in mesh with the second planet gears; the ring gear being drivingly connected to the input member; the carrier being drivingly connected to the first output member; and means for shifting the power transfer mechanism to a plurality of operating modes, aid shifting means including first clutch means for selectively engaging the first output member with the second output member and second clutch means for selectively engaging the second output member with the sun gear.

  8. Electrical Power Generation by Mechanically Modulating Electrical Double Layers

    NASA Astrophysics Data System (ADS)

    Pak, Hyuk Kyu; Moon, Jong Kyun

    2014-11-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system and for understanding the interfacial charge distribution in solid-liquid interfaces in the near future. This work was supported by Center for Soft and Living Matter through IBS prgram in Korea.

  9. Passive mechanical behavior of human neutrophils: power-law fluid.

    PubMed Central

    Tsai, M A; Frank, R S; Waugh, R E

    1993-01-01

    The mechanical behavior of the neutrophil plays an important role in both the microcirculation and the immune system. Several laboratories in the past have developed mechanical models to describe different aspects of neutrophil deformability. In this study, the passive mechanical properties of normal human neutrophils have been further characterized. The cellular mechanical properties were assessed by single cell micropipette aspiration at fixed aspiration pressures. A numerical simulation was developed to interpret the experiments in terms of cell mechanical properties based on the Newtonian liquid drop model (Yeung and Evans, Biophys. J., 56: 139-149, 1989). The cytoplasmic viscosity was determined as a function of the ratio of the initial cell size to the pipette radius, the cortical tension, aspiration pressure, and the whole cell aspiration time. The cortical tension of passive neutrophils was measured to be about 2.7 x 10(-5) N/m. The apparent viscosity of neutrophil cytoplasm was found to depend on aspiration pressure, and ranged from approximately 500 Pa.s at an aspiration pressure of 98 Pa (1.0 cm H2O) to approximately 50 Pa.s at 882 Pa (9.0 cm H2O) when tested with a 4.0-micron pipette. These data provide the first documentation that the neutrophil cytoplasm exhibits non-Newtonian behavior. To further characterize the non-Newtonian behavior of human neutrophils, a mean shear rate gamma m was estimated based on the numerical simulation. The apparent cytoplasmic viscosity appears to decrease as the mean shear rate increases. The dependence of cytoplasmic viscosity on the mean shear rate can be approximated as a power-law relationship described by mu = mu c(gamma m/gamma c)-b, where mu is the cytoplasmic viscosity, gamma m is the mean shear rate, mu c is the characteristic viscosity at characteristic shear rate gamma c, and b is a material coefficient. When gamma c was set to 1 s-1, the material coefficients for passive neutrophils were determined to be mu c

  10. Mechanical Extraction of Power From Ocean Currents and Tides

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Chao, Yi

    2010-01-01

    A proposed scheme for generating electric power from rivers and from ocean currents, tides, and waves is intended to offer economic and environmental advantages over prior such schemes, some of which are at various stages of implementation, others of which have not yet advanced beyond the concept stage. This scheme would be less environmentally objectionable than are prior schemes that involve the use of dams to block rivers and tidal flows. This scheme would also not entail the high maintenance costs of other proposed schemes that call for submerged electric generators and cables, which would be subject to degradation by marine growth and corrosion. A basic power-generation system according to the scheme now proposed would not include any submerged electrical equipment. The submerged portion of the system would include an all-mechanical turbine/pump unit that would superficially resemble a large land-based wind turbine (see figure). The turbine axis would turn slowly as it captured energy from the local river flow, ocean current, tidal flow, or flow from an ocean-wave device. The turbine axis would drive a pump through a gearbox to generate an enclosed flow of water, hydraulic fluid, or other suitable fluid at a relatively high pressure [typically approx.500 psi (approx.3.4 MPa)]. The pressurized fluid could be piped to an onshore or offshore facility, above the ocean surface, where it would be used to drive a turbine that, in turn, would drive an electric generator. The fluid could be recirculated between the submerged unit and the power-generation facility in a closed flow system; alternatively, if the fluid were seawater, it could be taken in from the ocean at the submerged turbine/pump unit and discharged back into the ocean from the power-generation facility. Another alternative would be to use the pressurized flow to charge an elevated reservoir or other pumped-storage facility, from whence fluid could later be released to drive a turbine/generator unit at a

  11. Lubrication mechanism in power transfer device for four wheel drive

    SciTech Connect

    Hamano, H.; Funato, Y.; Ida, S.

    1989-06-27

    A power transfer device for automotive vehicles is described, comprising: a housing, an input shaft rotatably mounted within the housing; an output shaft rotatably mounted with the housing and arranged coaxially with the input shaft for relative rotation thereto; an ancillary change-speed mechanism arranged within the housing and mounted on the input shaft, the change-speed mechanism having an input element mounted on the input shaft for rotation therewith and an output element connectable to the output shaft; a clutch sleeve axially slidably mounted on the output shaft and shiftable between a first position in which it is retained to effect a drive connection between the input and output shafts and a second position in which it is retained to effect a drive connection between the output element of the change-speed mechanism and the output shaft; and an oil pump assembly arranged within the housing to pump lubricating oil stored in the housing and supply it into an axial bore in the input shaft for lubrication of components of the change-speed mechanism.

  12. Improved Mechanism for Capturing Muscle Power for Circulatory Support

    PubMed Central

    Trumble, Dennis R.; Melvin, David B.; Byrne, Mark T.; Magovern, James A.

    2016-01-01

    Although it is now understood that trained skeletal muscle can generate enough steady-state power to provide significant circulatory support, there are currently no means by which to tap this endogenous energy source to aid the failing heart. To that end, an implantable muscle energy converter (MEC) has been constructed and its function has been improved to optimize durability, anatomic fit, and mechanical efficiency. Bench tests show that MEC transmission losses average less than 10% of total work input and that about 85% of this muscle power is successfully transferred to the working fluid of the pump. Results from canine implant trials confirm excellent biocompatibility and demonstrate that contractile work of the latissimus dorsi muscle—measured to 290 mJ/stroke in one dog—can be transmitted within the body at levels consistent with cardiac assist requirements. These findings suggest that muscle-powered cardiac assist devices are feasible and that efforts to further develop this technology are warranted. PMID:16143010

  13. Power transmission mechanism equipped with fluid and centrifugal clutch

    SciTech Connect

    Tamura, K.; Takeshita, S.; Fukunaga, T.

    1986-12-30

    This patent describes a power transmission mechanism equipped with a fluid coupling, an input shaft thereof interconnected to a power source being interconnected through the fluid coupling to an output shaft, and the output shaft being interconnected to a forward-rearward changeover mechanism including a speed changer. It is characterized in that the fluid coupling includes a shell, an impeller in the shell and a centrifugal clutch means in the shell for engaging the impeller and for driving the impeller when the shell is rotated by the input shaft at a speed above idle speed and for disengaging the impeller and the driving of the impeller when the shell is rotated by the input shaft at the idle speed. A turbine is included in the shell for standing idle in the shell when the centrifugal clutch means is disengaged and for drive by the impeller when the centrifugal clutch means is engaged and for driving the output shaft. The centrifugal clutch means comprises a support member fixed to the shell, a centrifugal shoe mounted on the support member for radial movement outwardly of the support member by centrifugal force and radial movement inwardly toward the support member. It also comprises spring means for moving the shoe inwardly toward the support member when the shell is rotated at idle speed, a cylindrical casing fixed to the impeller radially outward from the shoe and having an engaging surface for engagement by the centrifugal shoe when the shell is rotated at a speed above idle speed and the centrifugal shoe is moved radially outward by centrifugal force. The forward-rearward changeover mechanism, including the speed changer, is driven by the turbine when the centrifugal clutch means is engaged with the engaging surface and standing idle when the centrifugal clutch means is disengaged from the engaging surface and the turbine is standing idle.

  14. 29 CFR 1918.65 - Mechanically powered vehicles used aboard vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) “Approved power-operated industrial truck” means one listed as approved for the intended use or location by... designated as safe for such repairs. (5) Batteries on all mechanically powered vehicles shall be disconnected... equipped with power steering. (5) When mechanically powered vehicles use cargo lifting devices that have...

  15. 49 CFR 176.905 - Motor vehicles or mechanical equipment powered by internal combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Motor vehicles or mechanical equipment powered by... Vehicles, and Asbestos § 176.905 Motor vehicles or mechanical equipment powered by internal combustion engines. (a) A motor vehicle or any mechanized equipment powered by an internal combustion engine...

  16. 75 FR 48726 - Mechanical Power Presses Standard; Extension of the Office of Management and Budget's (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... Occupational Safety and Health Administration Mechanical Power Presses Standard; Extension of the Office of...) approval of the information collection requirements contained in the Mechanical Power Presses Standard for... Mechanical Power Presses Standard for General Industry are necessary to reduce workers' risk of death...

  17. Statistical learning: a powerful mechanism that operates by mere exposure.

    PubMed

    Aslin, Richard N

    2017-01-01

    How do infants learn so rapidly and with little apparent effort? In 1996, Saffran, Aslin, and Newport reported that 8-month-old human infants could learn the underlying temporal structure of a stream of speech syllables after only 2 min of passive listening. This demonstration of what was called statistical learning, involving no instruction, reinforcement, or feedback, led to dozens of confirmations of this powerful mechanism of implicit learning in a variety of modalities, domains, and species. These findings reveal that infants are not nearly as dependent on explicit forms of instruction as we might have assumed from studies of learning in which children or adults are taught facts such as math or problem solving skills. Instead, at least in some domains, infants soak up the information around them by mere exposure. Learning and development in these domains thus appear to occur automatically and with little active involvement by an instructor (parent or teacher). The details of this statistical learning mechanism are discussed, including how exposure to specific types of information can, under some circumstances, generalize to never-before-observed information, thereby enabling transfer of learning. WIREs Cogn Sci 2017, 8:e1373. doi: 10.1002/wcs.1373 For further resources related to this article, please visit the WIREs website.

  18. Design of an Adaptive Power Regulation Mechanism and a Nozzle for a Hydroelectric Power Plant Turbine Test Rig

    NASA Astrophysics Data System (ADS)

    Mert, Burak; Aytac, Zeynep; Tascioglu, Yigit; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team

    2014-11-01

    This study deals with the design of a power regulation mechanism for a Hydroelectric Power Plant (HEPP) model turbine test system which is designed to test Francis type hydroturbines up to 2 MW power with varying head and flow(discharge) values. Unlike the tailor made regulation mechanisms of full-sized, functional HEPPs; the design for the test system must be easily adapted to various turbines that are to be tested. In order to achieve this adaptability, a dynamic simulation model is constructed in MATLAB/Simulink SimMechanics. This model acquires geometric data and hydraulic loading data of the regulation system from Autodesk Inventor CAD models and Computational Fluid Dynamics (CFD) analysis respectively. The dynamic model is explained and case studies of two different HEPPs are performed for validation. CFD aided design of the turbine guide vanes, which is used as input for the dynamic model, is also presented. This research is financially supported by Turkish Ministry of Development.

  19. Automotive Power Flow System; Auto Mechanics I: 9043.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This automotive power flow system course sets the foundation in the theory of operation of the standard and automatic transmission, clutch assemblies, drive-line and rear axle assemblies. This is a one or two quinmester credit course covering 45 clock hours. In the fourth quinmester course in the tenth year, instruction consists of lectures,…

  20. Plasma relaxation mechanics of pulsed high power microwave surface flashover

    SciTech Connect

    Beeson, S.; Dickens, J.; Neuber, A.

    2013-09-15

    Microwave transmission and reflection characteristics of pulsed radio frequency field generated plasmas are elucidated for air, N{sub 2}, and He environments under pressure conditions ranging from 10 to 600 torr. The pulsed, low temperature plasma is generated along the atmospheric side of the dielectric boundary between the source (under vacuum) and the radiating environment with a thickness on the order of 5 mm and a cross sectional area just smaller than that of the waveguide. Utilizing custom multi-standard waveguide couplers and a continuous low power probing source, the scattering parameters were measured before, during, and after the high power microwave pulse with emphasis on the latter. From these scattering parameters, temporal electron density estimations (specifically the longitudinal integral of the density) were calculated using a 1D plane wave-excited model for analysis of the relaxation processes associated. These relaxation characteristics ultimately determine the maximum repetition rate for many pulsed electric field applications and thus are applicable to a much larger scope in the plasma community than just those related to high power microwaves. This manuscript discusses the diagnostic setup for acquiring the power measurements along with a detailed description of the kinematic and chemical behavior of the plasma as it decays down to its undisturbed state under various gas type and pressure conditions.

  1. Truthful Mechanisms for Combinatorial AC Electric Power Allocation

    DTIC Science & Technology

    2014-05-01

    unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 In mechanism design setting...axis and c2 on the imaginary axis. This table can be filled-up by standard dynamic programming; we de- note such a program by Multi-2DKP-Exact[·]. For...REFERENCES [1] National Electrical Code (NEC) NFPA 70-2005. [2] P. Briest, P. Krysta, and B. Vocking. Approximation techniques for utilitarian mechanism

  2. High power laser-mechanical drilling bit and methods of use

    DOEpatents

    Grubb, Daryl L.; Kolachalam, Sharath K.; Faircloth, Brian O.; Rinzler, Charles C.; Allen, Erik C.; Underwood, Lance D.; Zediker, Mark S.

    2017-02-07

    An apparatus with a high power laser-mechanical bit for use with a laser drilling system and a method for advancing a borehole. The laser-mechanical bit has a beam path and mechanical removal devices that provide for the removal of laser-affected rock to advance a borehole.

  3. MECHANICAL POWER TRANSFER SYSTEMS. AGRICULTURAL MACHINERY-SERVICE OCCUPATIONS, MODULE NUMBER 8.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED TO HELP TEACHERS PREPARE POSTSECONDARY-LEVEL STUDENTS FOR THE AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, AND SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT COMPETENCY IN UNDERSTANDING AND APPLYING THE PRINCIPLES OF MECHANICAL POWER TRANSMISSION IN AGRICULTURAL…

  4. Zero-power shock sensors using bistable compliant mechanisms

    NASA Astrophysics Data System (ADS)

    Hansen, Brett J.; Carron, Christopher J.; Hawkins, Aaron R.; Schultz, Stephen M.

    2007-04-01

    This paper demonstrates the design, fabrication, and analysis of a small plastic latching accelerometer, or shock sensor, that is bi-stable and functions without the use of electricity. The sensor has two stable mechanical states. When force above a certain threshold limit is applied, the sensor changes states and remains in the changed state indicating the amount of force that has been applied to the sensor. The devices were laser-cut from ABS and Delrin plastics, and the surface area of the free-moving section was varied to produce sensors with a range of force sensitivities. The switching action of the devices was analyzed with the use of a centrifuge, which supplied the necessary force to switch the accelerometers from one mechanical state to another. The surface area of the sensors varied from 100 mm2 to 500 mm2 and the G-force sensitivity range varied between 10 and 800 g.

  5. Diagnosis of power fade mechanisms in high-power lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Abraham, D. P.; Liu, J.; Chen, C. H.; Hyung, Y. E.; Stoll, M.; Elsen, N.; MacLaren, S.; Twesten, R.; Haasch, R.; Sammann, E.; Petrov, I.; Amine, K.; Henriksen, G.

    Hybrid electric vehicles (HEV) need long-lived high-power batteries as energy storage devices. Batteries based on lithium-ion technology can meet the high-power goals but have been unable to meet HEV calendar-life requirements. As part of the US Department of Energy's Advanced Technology Development (ATD) Program, diagnostic studies are being conducted on 18650-type lithium-ion cells that were subjected to accelerated aging tests at temperatures ranging from 40 to 70 °C. This article summarizes data obtained by gas chromatography, liquid chromatography, electron microscopy, X-ray spectroscopy and electrochemical techniques, and identifies cell components that are responsible for the observed impedance rise and power fade.

  6. Mechanical beam isolator for high-power laser systems

    DOEpatents

    Post, Richard F.; Vann, Charles S.

    1998-01-01

    A mechanical beam isolator uses rod-shaped elements having a Gaussian configuration to interrupt the path of a beam of photons or particles when the time-scale of the needed interruption is of the order of a microsecond or less. One or more of these rods is mounted transversely to, and penetrates through, a rotating shaft supported by bearings. Owing to the Gaussian geometry of the rods, they are able to withstand much higher rotation speeds, without tensile failure, than rods having any other geometrical shape.

  7. Mechanical beam isolator for high-power laser systems

    DOEpatents

    Post, R.F.; Vann, C.S.

    1998-07-07

    A mechanical beam isolator uses rod-shaped elements having a Gaussian configuration to interrupt the path of a beam of photons or particles when the time-scale of the needed interruption is of the order of a microsecond or less. One or more of these rods is mounted transversely to, and penetrates through, a rotating shaft supported by bearings. Owing to the Gaussian geometry of the rods, they are able to withstand much higher rotation speeds, without tensile failure, than rods having any other geometrical shape. 3 figs.

  8. Strong relationships exist between muscle volume, joint power and whole-body external mechanical power in adults and children.

    PubMed

    O'Brien, Thomas D; Reeves, Neil D; Baltzopoulos, Vasilios; Jones, David A; Maganaris, Constantinos N

    2009-06-01

    The present study investigated whether differences between adults and children in mechanical power during single-joint knee extension tasks and the complex multijoint task of jumping could be explained by differences in the quadriceps femoris muscle volume. Peak power was calculated during squat jumps, from the integral of the vertical force measured by a force plate, and during concentric knee extensions at 30, 90, 120, 180 and 240 deg s(-1), and muscle volume was measured from magnetic resonance images for 10 men, 10 women, 10 prepubertal boys and 10 prepubertal girls. Peak power during jumping and isokinetic knee extension was significantly higher in men than in women, and in both adult groups compared with children (P < 0.01), although there were no differences between boys and girls. When power was normalized to muscle volume, the intergroup differences ceased to exist for both tasks. Peak power correlated significantly with quadriceps volume (P < 0.01), with r(2) values of 0.8, 0.86, 0.81, 0.78 and 0.81 from isokinetic knee extension at angular velocities of 30, 90, 120, 180 and 240 deg s(-1), respectively, and with an r(2) value of 0.9 from squat jumps. These results indicate that the quadriceps femoris muscle volume accounts largely for the increase in power that occurs with maturation in the two genders not only in kinematically constrained knee extensions but also in multijoint tasks. Future studies should examine the role of other factors relating to the generation and transmission of contractile power, such as muscle architecture, tendon stiffness and external mechanical leverage.

  9. Determination of The Mechanical Power in Belt Conveyor's Drive System in Industrial Conditions

    NASA Astrophysics Data System (ADS)

    Król, Robert; Kaszuba, Damian; Kisielewski, Waldemar

    2016-10-01

    Mechanical power is a value which carries a significant amount of information on the properties of the operating status of the machine analysed. The value of mechanical power reflects the degree of load of the drive system and of the entire machine. It is essential to determine the actual efficiency of the drive system η [%], which is the key parameter of the energy efficiency of the drive system. In the case of a single drive of a belt conveyor the actual efficiency is expressed as the ratio of mechanical output power Pm [W] at the drive pulley shaft to active electrical power drawn by the motor Pe [W]. Furthermore, the knowledge about the mechanical power from all drives of the multiple driven belt conveyor allows for the analysis of load distribution between the drives. In case of belt conveyor, the mechanical power Pm [W] generated by the drive at the drive pulley's shaft is equal to its angular velocity ω [rad / s] multiplied by the torque T [Nm]. The measurement of angular velocity is relatively easy and can be realized with the use of a tachometer or can be determined on the basis of linear velocity of the conveyor belt during belt conveyor's steady state operation. Significantly more difficult to perform in industrial conditions is the measurement of the torque. This is due to the operational conditions of belt conveyors (e.g. dustiness, high humidity, high temperature) and tight assembly of the drive components without the possibility of their disassembly. It makes it difficult or even impossible to measure the torque using a number of the techniques available, causing an individual approach to each object of research. The paper proposes a measurement methodology allowing to determine the mechanical power in belt conveyors drives which are commonly used in underground and surface mining. The paper presents result of the research into mechanical power in belt conveyor's drive carried out in underground mine conditions.

  10. Automatic power transmission mechanism for a four wheel drive vehicle

    SciTech Connect

    Garrett, R.J.

    1987-11-17

    In a transmission for a vehicle having two forward traction wheels and two rear traction wheels, this patent describes a multiple ratio transaxle having an input shaft adapted to be connected to an engine and arranged on a first axis and planetary gearing coaxially disposed relative to the input shaft and an output shaft; a first differential gear mechanism forming a part of the transaxle and having a torque output gear and side gears adapted to be connected to axle shafts for the forward wheels; a torque transfer drive means connecting the output shaft with the torque output gear including a first drive gear coaxially mounted relative to the torque output gear; an interaxle geared differential having a differential carrier and a pair of side gears, an interaxle torque input shaft having a third axis parallel to the second axis; a rear axle drive means connected to one of the interaxle differential side gears; a second drive gear and a third drive gear coaxially mounted with respect to the interaxle differential side gears; and first, second, third and fourth clutch means coaxially arranged with respect to the interaxle torque input shaft and independently actuatable for selectively connecting respectively (i) the third drive gear with the second drive gear, (ii) the second drive gear with the intermediate shaft, (iii) the third drive gear with the other side gear of the interaxle differential and (iv) the rear axle drive means with the carrier of the interaxle differential.

  11. 77 FR 31396 - Reports of Injuries to Employees Operating Mechanical Power Presses; Extension of the Office of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Occupational Safety and Health Administration Reports of Injuries to Employees Operating Mechanical Power... Employees Operating Mechanical Power Presses (29 CFR 1910.217(g)). DATES: Comments must be submitted... information (29 U.S.C. 657). In the event a worker is injured while operating a mechanical power press, 29...

  12. Mechanical energy and power flow analysis of wheelchair use with different camber settings.

    PubMed

    Huang, Yueh-Chu; Guo, Lan-Yuen; Tsai, Chung-Ying; Su, Fong-Chin

    2013-04-01

    It has been suggested that minimisation of energy cost is one of the primary determinants of wheelchair designs. Wheel camber is one important parameter related to wheelchair design and its angle may affect usability during manual propulsion. However, there is little available literature addressing the effect of wheel camber on the mechanical energy or power flow involved in manual wheelchair propulsion. Twelve normal subjects (mean age, 22.3 years; SD, 1.6 years) participated in this study. A video-tracking system and an instrumented wheel were used to collect 3D kinematic and kinetic data. Wheel camber of 0° and 15° was chosen to examine the difference between mechanical power and power flow of the upper extremity during manual wheelchair propulsion. The work calculated from power flow and the discrepancy between the mechanical work and power flow work of upper extremity had significantly greater values with increased camber. The upper arm had a larger active muscle power compared with that in the forearm and hand segments. While propelling the increased camber, the magnitude of both the proximal and distal joint power and proximal muscle power was increased in all three segments. While the propelling wheel with camber not only needs a greater energy cost but also there is greater energy loss.

  13. Design of a 7kW power transfer solar array drive mechanism

    NASA Technical Reports Server (NTRS)

    Sheppard, J. G.

    1982-01-01

    With the availability of the Shuttle and the European launcher, Ariane, there will be a continuing trend towards large payload satellite missions requiring high-power, high-inertia, flexible solar arrays. The need arises for a solar array drive with a large power transfer capability which can rotate these solar arrays without disturbing the satellite body pointing. The modular design of such a Solar Array Drive Mechanism (SADM) which is capable of transferring 7kW of power or more is described. Total design flexibility has been achieved, enabling different spacecraft power requirements to be accommodated within the SADM design.

  14. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability.

    PubMed

    Wang, Jake X; Smith, Joshua R; Bonde, Pramod

    2014-04-01

    Left ventricular assist device therapy has radically improved congestive heart failure survival with smaller rotary pumps. The driveline used to power today's left ventricular assist devices, however, continues to be a source of infection, traumatic damage, and rehospitalization. Previous attempts to wirelessly power left ventricular assist devices using transcutaneous energy transfer systems have been limited by restrictions on separation distance and alignment between the transmit and receive coils. Resonant electrical energy transfer allows power delivery at larger distances without compromising safety and efficiency. This review covers the efforts to wirelessly power mechanical circulatory assist devices and the progress made in enhancing their energy sources.

  15. Vertical jumping in Galago senegalensis: the quest for an obligate mechanical power amplifier

    PubMed Central

    Aerts, P.

    1998-01-01

    Bushbabies (Galago senegalensis) are renowned for their phenomenal jumping capacity. It was postulated that mechanical power amplification must be involved. Dynamic analysis of the vertical jumps performed by two bushbabies confirms the need for a power amplifier. Inverse dynamics coupled to a geometric musculo-skeletal model were used to elucidate the precise nature of the mechanism powering maximal vertical jumps. Most of the power required for jumping is delivered by the vastus muscle-tendon systems (knee extensor). Comparison with the external joint-powers revealed, however, an important power transport from this extensor (about 65%) to the ankle and the midfoot via the bi-articular calf muscles. Peak power output likely implies elastic recoil of the complex aponeurotic system of the vastus muscle. Patterns of changes in length and tension of the muscle-tendon complex during different phases of the jump were found which provide strong evidence for substantial power amplification (times 15). It is argued here that the multiple internal connective tissue sheets and attachment structures of the well-developed bundles of the vastus muscle become increasingly stretched during preparatory crouching and throughout the extension phase, except for the last 13 ms of the push-off (i.e. when power requirements peak). Then, tension in the knee extensors abruptly falls from its maximum, allowing the necessary fast recoil of the tensed tendon structures to occur.

  16. Mechanisms of anode power deposition in a low pressure free burning arc

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Myers, Roger M.

    1994-01-01

    Anode power deposition is a dominant power loss mechanism for arc jets and MPD thrusters. In this study, a free burning arc experiment was operated at pressures and current densities similar to those in arc jets and MPD thrusters in an attempt to identify the physics controlling this loss mechanism. Use of a free burning arc allowed for the isolation of independent variables controlling anode power deposition and provided a convenient and flexible way to cover a broad range of currents, anode surface pressures, and applied magnetic field strengths and orientations using an argon gas. Test results showed that anode power deposition decreased with increasing anode surface pressure up to 6.7 Pa (0.05 torr) and then became insensitive to pressure. Anode power increased with increasing arc current while the electron number density near the anode surface increased linearity. Anode power also increased with increasing applied magnetic field strength due to an increasing anode fall voltage. Applied magnetic field orientation had an effect only at high currents and low anode surface pressures, where anode power decreased when applied field lines intercepted the anode surface. The results demonstrated that anode power deposition was dominated by the current carrying electrons and that the anode fall voltage was the largest contributor. Furthermore, the results showed that anode power deposition can be reduced by operating at increased anode pressures, reduced arc currents, and applied magnetic field strengths and with magnetic field lines intercepting the anode.

  17. Mechanically braked Wingate powers: agreement between SRM, corrected and conventional methods of measurement.

    PubMed

    Balmer, James; Bird, Steve; Davison, R C Richard; Doherty, Mike; Smith, Paul

    2004-07-01

    In this study, we assessed the agreement between the powers recorded during a 30 s upper-body Wingate test using three different methods. Fifty-six men completed a single test on a Monark 814E mechanically braked ergometer fitted with a Schoberer Rad Messtechnik (SRM) powermeter. A commercial software package (Wingate test kit version 2.21, Cranlea, UK) was used to calculate conventional and corrected (with accelerative forces) values of power based on a resistive load (5% body mass) and flywheel velocity. The SRM calculated powers based on torque (measured at the crank arm) and crank rate. Values for peak 1 and 5 s power and mean 30 s power were measured. No significant differences (P >0.05) were found between the three methods for 30 s power values. However, the corrected values for peak 1 and 5 s power were 36 and 23% higher (P <0.05) respectively than those for the conventional method, and 27 and 16% higher (P <0.05) respectively than those for the SRM method. The conventional and SRM values for peak 1 and 5 s power were similar (P >0.05). Power values recorded using each method were influenced by sample time (P <0.05). Our results suggest that these three measures of power are similar when sampled over 30 s, but discrepancies occur when the sample time is reduced to either 1 or 5 s.

  18. Self-starting power management circuits for piezoelectric and electret-based electrostatic mechanical energy harvesters

    NASA Astrophysics Data System (ADS)

    Boisseau, S.; Gasnier, P.; Gallardo, M.; Despesse, G.

    2013-12-01

    This paper reports on an innovative power management circuit for piezoelectric and electret-based mechanical energy harvesters able to self-start and to power battery-free Wireless Sensor Nodes (WSN) from scratch without any initial energy. The key elements of this circuit are a depletion-mode MOSFET combined with self-powered Schmitt triggers that enable to switch between (i) a non-optimized passive diode-bridge-capacitor configuration to start the system and (ii) an active power conversion path to maximize the energy extraction from mechanical energy harvesters. A discrete circuit implementing this architecture is presented and its operation is validated on simple piezoelectric and electret-based devices. An ASIC, based on the same architecture, has finally been designed, fabricated and validated.

  19. Novel representation of exponential functions of power series which arise in statistical mechanics and population genetics

    NASA Astrophysics Data System (ADS)

    Ma, W. T.; Sandri, G. vH.; Sarkar, S.

    1991-05-01

    We use the convolution power of infinite sequences to obtain a novel representation of exponential functions of power series which often arise in statistical mechanics. We thus obtain new formulas for the configuration and cluster integrals of pairwise interacting systems of molecules in an imperfect gas. We prove that the asymptotic behaviour of the Luria-Delbrück distribution is pn∼ cn-2. We derive a new, simple and computationally efficient recursion relation for pn.

  20. Designing power system simulators for the smart grid: combining controls, communications, and electro-mechanical dynamics

    SciTech Connect

    Nutaro, James J

    2011-01-01

    Open source software has a leading role in research on simulation technology for electrical power systems. Research simulators demonstrate new features for which there is nascent but growing demand not yet provided for by commercial simulators. Of particular interest is the inclusion of models of software-intensive and communication-intensive controls in simulations of power system transients. This paper describes two features of the ORNL power system simulator that help it meet this need. First is its use of discrete event simulation for all aspects of the model: control, communication, and electro-mechanical dynamics. Second is an interoperability interface that enables the ORNL power system simulator to be integrated with existing, discrete event simulators of digital communication systems. The paper concludes with a brief discussion of how these aspects of the ORNL power system simulator might be inserted into production-grade simulation tools.

  1. A reliable data delivery mechanism for grid power quality using neural networks in wireless sensor networks.

    PubMed

    Lim, Yujin; Kim, Hak-Man; Kang, Sanggil

    2010-01-01

    Power grids deal with the business of generation, transmission, and distribution of electric power. Current systems monitor basic electrical quantities such as voltage and current from major pole transformers using their temperature. We improve the current systems in order to gather and deliver the information of power qualities such as harmonics, voltage sags, and voltage swells. In the system, data delivery is not guaranteed for the case that a node is lost or the network is congested, because the system has in-line and multi-hop architecture. In this paper, we propose a reliable data delivery mechanism by modeling an optimal data delivery function by employing the neural network concept.

  2. Mechanically flexible nanoscale silicon integrated circuits powered by photovoltaic energy harvesters

    NASA Astrophysics Data System (ADS)

    Shahrjerdi, D.; Bedell, S. W.; Khakifirooz, A.; Cheng, K.

    2016-03-01

    In this work, we demonstrate mechanically flexible extremely thin silicon on insulator (ETSOI) ring oscillators with a stage delay of ∼16 ps at a power supply voltage of 0.9 V. Extensive electrical analyses of the flexible ETSOI devices reveal the unchanged properties of the devices during the layer transfer process. Furthermore, we discuss the use of flexible silicon and gallium arsenide photovoltaic energy harvesters for powering flexible ETSOI ring oscillators under different illumination conditions. Our results illustrate innovative pathways for the implementation of optically powered flexible ETSOI technology in future flexible hybrid electronics.

  3. Energy cost and mechanical efficiency of riding a human-powered recumbent bicycle.

    PubMed

    Capelli, Carlo; Ardigo, Luca Paolo; Schena, Federico; Zamparo, Paola

    2008-10-01

    When dealing with human-powered vehicles, it is important to quantify the capability of converting metabolic energy in useful mechanical work by measuring mechanical efficiency. In this study, net mechanical efficiency (eta) of riding a recumbent bicycle on flat terrain and at constant speeds (v, 5.1-10.0 m/s) was calculated dividing mechanical work (w, J/m) by the corresponding energy cost (C(c), J/m). w and C(c) increased linearly with the speed squared: w = 9.41 + 0.156 . v(2); C(c) = 39.40 + 0.563 . v(2). eta was equal to 0.257 +/- 0.0245, i.e. identical to that of concentric muscular contraction. Hence, i) eta seems unaffected by the biomechanical arrangement of the human-vehicle system; ii) the efficiency of transmission seems to be close to 100%, suggesting that the particular biomechanical arrangement does not impair the transformation of metabolic energy in mechanical work. When dealing with human-powered vehicles, it is important to quantify mechanical efficiency (eta) of locomotion. eta of riding a recumbent bicycle was calculated dividing the mechanical work to the corresponding energy cost of locomotion; it was practically identical to that of concentric muscular contraction (0.257 +/- 0.0245), suggesting that the power transmission from muscles to pedals is unaffected by the biomechanical arrangement of the vehicle.

  4. Halbach array generator/motor having mechanically regulated output voltage and mechanical power output

    SciTech Connect

    Post, Richard F.

    2005-06-14

    A motor/generator has its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along the axis of rotation of the rotor. The rotor includes a Halbach array of magnets. The voltage and power outputs are regulated by varying the radial gap in between the stator windings and the rotating Halbach array. The gap is varied by extensible and retractable supports attached to the stator windings that can move the windings in a radial direction.

  5. A pneumatically powered mechanical translator-rotator for the direct laser vaporization of solid materials

    NASA Astrophysics Data System (ADS)

    Stone, Earle G.; Bach, Stephan B. H.

    1997-03-01

    A pneumatically powered mechanical translator-rotator system has been designed and constructed for use in the direct laser vaporization (DLV) of materials. This translator-rotator was initially developed for the reproducible DLV production of refractory metal atoms to be reacted with small molecules and characterized in matrix isolation experiments, but has applications wherever a reproducible DLV stream of a material is required, such as matrix assisted laser desorption ionization. Key features of the new translator-rotator design are the employment of an inexpensive air ratchet to provide power for the translator-rotator mechanism, the elimination of magnetic relays and electrical limit switches through the use of an all mechanical gear and slot mechanism, and a triple O-ring gland capable of maintaining high vacuum, 10-7 Torr, while the translator-rotator is in operation.

  6. A Low Power Cryogenic Shutter Mechanism for Use in Infrared Imagers

    NASA Technical Reports Server (NTRS)

    Schwinger, D. Scott; Hakun, Claef F.

    2000-01-01

    This paper discusses the requirements, design, operation, and testing of the shutter mechanism for the Infrared Array Camera (IRAC). The shutter moves a mirror panel into or out of the incoming light path transitioning IRAC between data acquisition and calibration modes. The mechanism features a torsion flexure suspension system, two low-power rotary actuators, a balanced shaft, and a variable reluctance position sensor. Each of these items is discussed along with problems encountered during development and the implemented solutions.

  7. A Low Power Cryogenic Shutter Mechanism for use in Infrared Images

    NASA Technical Reports Server (NTRS)

    Schwinger, D. Scott; Hakun, Claef F.

    2000-01-01

    This paper discusses the requirements, design, operation, and testing of the shutter mechanism for the Infrared Array Camera (IRAC). The shutter moves a mirror panel into or out of the incoming light path transitioning IRAC between data acquisition and calibration modes. The mechanism features a torsion flexure suspension system, two low-power rotary actuators, a balanced shaft, and a variable reluctance position sensor. Each of these items is discussed along with problems encountered during development and the implemented solutions.

  8. Mechanical power of ankle plantar flexion and subjective pain by monophasic electrical stimulation.

    PubMed

    Suzuki, Tatsuto; Watanabe, Takashi; Saura, Ryuichi; Uchiyama, Hironobu

    2011-01-01

    The aim of this study was to investigate the mechanical power of the ankle plantar flexion. The investigated power of the ankle plantar flexion would help to improve effectively the FES walking system using the ankle plantar flexion for patients and aged people in slow walking. The subjective pain by electrical stimulation sometimes becomes the burden to use the FES system. We also investigated the relationship between the mechanical power in ankle plantar flexion by electrical stimulation and the subjective pain. We developed the device to measure the ankle movement by electrical stimulation against load resistance torque. The device consisted of pads to support a single lower leg, a rotational footplate with a large pulley and a vertical weight to generate the load resistance torque, and a monophasic electrical stimulator via surface electrodes. Our results showed the proportional relationship between the mechanical power of the ankle plantar flexion and the subjective pain by electrical stimulation. To generate the same level in the ankle plantar flexor power 2.75 W under the maximum voluntary exertion, the subjective pain by electrical stimulation exceeded 70, which means the feeling of crying at the Face Pain Scale. This result would help the better design of the FES walking system using the ankle plantar flexion for patients and aged people.

  9. Stretch-induced enhancement of mechanical power output in human multijoint exercise with countermovement.

    PubMed

    Takarada, Y; Hirano, Y; Ishige, Y; Ishii, N

    1997-11-01

    The relation between the eccentric force developed during a countermovement and the mechanical power output was studied in squatting exercises under nominally isotonic load (50% of 1-repetition maximum). The subjects (n = 5) performed squatting exercises with a countermovement at varied deceleration rates before lifting the load. The ground reaction force and video images were recorded to obtain the power output of the body. Net muscle moments acting at hip, knee, and ankle joints were calculated from video recordings by using inverse dynamics. When an intense deceleration was taken at the end of downward movement, large eccentric force was developed, and the mechanical power subsequently produced during the lifting movement was consistently larger than that produced without the countermovement. Both maximal and mean power outputs during concentric actions increased initially with the eccentric force, whereas they began to decline when the eccentric force exceeded approximately 1.4 times the sum of load and body weight. Video-image analysis showed that this characteristic relation was predominantly determined by the torque around the knee joint. Electromyographic analyses showed no consistent increase in time-averaged integrated electromyograph from vastus lateralis with the power output, suggesting that the enhancement of power output is primarily caused by the prestretch-induced improvement of an intrinsic force-generating capability of the agonist muscle.

  10. LPT. Low power test (TAN641) interior of mechanical equipment room. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Low power test (TAN-641) interior of mechanical equipment room. Air compressors in left foreground. Evaporate condenser in right background. Construction 93% complete. Photographer: Jack L. Anderson. Date: October 23, 1957. INEEL negative no. 57-5340 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running.

    PubMed

    Samozino, P; Rabita, G; Dorel, S; Slawinski, J; Peyrot, N; Saez de Villarreal, E; Morin, J-B

    2016-06-01

    This study aimed to validate a simple field method for determining force- and power-velocity relationships and mechanical effectiveness of force application during sprint running. The proposed method, based on an inverse dynamic approach applied to the body center of mass, estimates the step-averaged ground reaction forces in runner's sagittal plane of motion during overground sprint acceleration from only anthropometric and spatiotemporal data. Force- and power-velocity relationships, the associated variables, and mechanical effectiveness were determined (a) on nine sprinters using both the proposed method and force plate measurements and (b) on six other sprinters using the proposed method during several consecutive trials to assess the inter-trial reliability. The low bias (<5%) and narrow limits of agreement between both methods for maximal horizontal force (638 ± 84 N), velocity (10.5 ± 0.74 m/s), and power output (1680 ± 280 W); for the slope of the force-velocity relationships; and for the mechanical effectiveness of force application showed high concurrent validity of the proposed method. The low standard errors of measurements between trials (<5%) highlighted the high reliability of the method. These findings support the validity of the proposed simple method, convenient for field use, to determine power, force, velocity properties, and mechanical effectiveness in sprint running.

  12. T & I, Power Mechanics. Kit No. 35. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Underwood, Earl

    An instructor's manual and student activity guide on power mechanics are provided in this set of prevocational education materials which focuses on the vocational area of trade and industry. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings: agriculture, home economics,…

  13. A power-cycling-induced failure mechanism in IGBT multichip modules

    SciTech Connect

    Malberti, P.; Ciappa, M.; Cattomio, R.

    1995-12-31

    Catastrophic burn-out occurring during power-cycling of Insulated Gate Bipolar Transistors (IGBT) multichip modules have been observed to arise as a secondary failure mechanism caused by the lifting of the emitter aluminum bonding wires. In effect, the successive lift-off of the aluminum wires results in a current crowding through few IGBT cells with consequent triggering of the internal parasitic thyristor-structure. Basing on failure analysis data, this paper presents a simple qualitative model for the time dependent lift-off of aluminum bondwires in IGBT modules occurring during either field operation, or accelerated tests. This power-cycling induced failure mechanism is described in terms of the reconstruction of the aluminum interconnection as consequence of plastic deformation. Some practical conclusions are finally drawn for power cycle testing and for optimal thermal design.

  14. Optimal control of wave energy devices with various power-take-off mechanisms

    SciTech Connect

    Nichols, N.K.; Crossley, A.

    1996-12-31

    The aims of this research are to develop and test methods for analyzing and computing optimal control strategies for maximizing the useful power generated from wave energy converters incorporating realistic power-take-off and control mechanisms. Previously, strategies for maximizing energy absorbed by wave devices have been investigated, but these studies have assumed an ideal conversion rate using perfectly efficient turbomachinery with no constraints imposed by the generator capacity. In this paper various turbine characteristics and control mechanisms incorporating nonlinear losses are modelled, the qualitative properties of the optimal control strategy for maximizing average power delivered at the turbine shaft are analyzed, computational techniques for determining numerical solutions to the optimal control problem are established and the results are tested on a fully developed hydrodynamic model of a wave energy device.

  15. An Efficient Power Saving Mechanism for Delay-Guaranteed Services in IEEE 802.16e

    NASA Astrophysics Data System (ADS)

    Park, Yunju; Hwang, Gang Uk

    As the IEEE 802.16e Wireless Metropolitan Access Network (WMAN) supports the mobility of a mobile station (MS), increasing MS power efficiency has become an important issue. In this paper, we analyze the sleep-mode operation for an efficient power saving mechanism for delay-guaranteed services in the IEEE 802.16e WMAN and observe the effects of the operating parameters related to this operation. For the analysis we use the M/GI/1/K queueing system with multiple vacations, exhaustive services and setup times. In the analysis, we consider the power consumption during the wake-mode period as well as the sleep-mode period. As a performance measure for the power consumption, we propose the power consumption per unit time per effective arrival which considers the power consumption and the packet blocking probability simultaneously. In addition, since we consider delay-guaranteed services, the average packet response delay is also considered as a performance measure. Based on the performance measures, we obtain the optimal sleep-mode operation which minimizes the power consumption per unit time per effective arrival with a given delay requirement. Numerical studies are also provided to investigate the system performance and to show how to achieve our objective.

  16. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses

    NASA Astrophysics Data System (ADS)

    Young, A. J.; Kuiken, T. A.; Hargrove, L. J.

    2014-10-01

    Objective. The purpose of this study was to determine the contribution of electromyography (EMG) data, in combination with a diverse array of mechanical sensors, to locomotion mode intent recognition in transfemoral amputees using powered prostheses. Additionally, we determined the effect of adding time history information using a dynamic Bayesian network (DBN) for both the mechanical and EMG sensors. Approach. EMG signals from the residual limbs of amputees have been proposed to enhance pattern recognition-based intent recognition systems for powered lower limb prostheses, but mechanical sensors on the prosthesis—such as inertial measurement units, position and velocity sensors, and load cells—may be just as useful. EMG and mechanical sensor data were collected from 8 transfemoral amputees using a powered knee/ankle prosthesis over basic locomotion modes such as walking, slopes and stairs. An offline study was conducted to determine the benefit of different sensor sets for predicting intent. Main results. EMG information was not as accurate alone as mechanical sensor information (p < 0.05) for any classification strategy. However, EMG in combination with the mechanical sensor data did significantly reduce intent recognition errors (p < 0.05) both for transitions between locomotion modes and steady-state locomotion. The sensor time history (DBN) classifier significantly reduced error rates compared to a linear discriminant classifier for steady-state steps, without increasing the transitional error, for both EMG and mechanical sensors. Combining EMG and mechanical sensor data with sensor time history reduced the average transitional error from 18.4% to 12.2% and the average steady-state error from 3.8% to 1.0% when classifying level-ground walking, ramps, and stairs in eight transfemoral amputee subjects. Significance. These results suggest that a neural interface in combination with time history methods for locomotion mode classification can enhance intent

  17. Mobility power flow analysis of coupled plate structure subjected to mechanical and acoustic excitation

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1992-01-01

    The mobility power flow approach that was previously applied in the derivation of expressions for the vibrational power flow between coupled plate substructures forming an L configuration and subjected to mechanical loading is generalized. Using the generalized expressions, both point and distributed mechanical loads on one or both of the plates can be considered. The generalized approach is extended to deal with acoustic excitation of one of the plate substructures. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the plate structure and the acoustic fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure. For a number of coupled plate substrates, the acoustic pressure generated by one substructure will interact with the motion of another substructure. That is, in the case of the L-shaped plate, acoustic interaction exists between the two plate substructures due to the generation of the acoustic waves by each of the substructures. An approach to deal with this phenomena is described.

  18. Triggering Mechanism for Neutron Induced Single-Event Burnout in Power Devices

    NASA Astrophysics Data System (ADS)

    Shoji, Tomoyuki; Nishida, Shuichi; Hamada, Kimimori

    2013-04-01

    Cosmic ray neutrons can trigger catastrophic failures in power devices. It has been reported that parasitic transistor action causes single-event burnout (SEB) in power metal-oxide-semiconductor field-effect transistors (MOSFETs) and insulated gate bipolar transistors (IGBTs). However, power diodes do not have an inherent parasitic transistor. In this paper, we describe the mechanism triggering SEB in power diodes for the first time using transient device simulation. Initially, generated electron-hole pairs created by incident recoil ions generate transient current, which increases the electron density in the vicinity of the n-/n+ boundary. The space charge effect of the carriers leads to an increase in the strength of the electric field at the n-/n+ boundary. Finally, the onset of impact ionization at the n-/n+ boundary can trigger SEB. Furthermore, this failure is closely related to diode secondary breakdown. It was clarified that the impact ionization at the n-/n+ boundary is a key point of the mechanism triggering SEB in power devices.

  19. Suppressing Chaos of Warship Power System Based on the Quantum Mechanics Theory

    NASA Astrophysics Data System (ADS)

    Cong, Xinrong; Li, Longsuo

    2014-08-01

    Chaos control of marine power system is investigated by adding the Gaussian white noise to the system. The top Lyapunov exponent is computed to detect whether the classical system chaos or not, also the phase portraits are plotted to further verify the obtained results. The classical control of chaos and its quantum counterpart of the marine power system are investigated. The Hamiltonian of the controlled system is given to analyze the quantum counterpart of the classical system, which is based on the quantum mechanics theory.

  20. Design and application research of implantable wireless power transmission micro electro mechanical system

    NASA Astrophysics Data System (ADS)

    Liu, Longbin; Shao, Xiaotao; Wu, Fan; Huo, Xingying; Li, Weiyuan; Mo, Ling

    2011-05-01

    With the rapid development of medical technology currently, the types of medical micro system which can be embedded to human body and satisfied with different purposes of treatment and diagnosis are in increasing numbers, and how to provide long-term, stable and effective electric energy is a key problem. The research illustrates the design and realization of Micro Electro Mechanical System (MEMS) planar inductor; method of design and manufacture of planar and circular spiral inductor of printed board with high quality factor is introduced; a set of MEMS which is suitable for implantable wireless power transmission is developed in order to realize the conversion from magnetic energy to electric energy. With theoretical analysis and experimental data, the scheme is confirmed to be suitable for the wireless power transmission to the implantable micro parts, which provides important reference value for the research of implantable wireless power transmission in the future.

  1. Design and application research of implantable wireless power transmission micro electro mechanical system

    NASA Astrophysics Data System (ADS)

    Liu, Longbin; Shao, Xiaotao; Wu, Fan; Huo, Xingying; Li, Weiyuan; Mo, Ling

    2010-12-01

    With the rapid development of medical technology currently, the types of medical micro system which can be embedded to human body and satisfied with different purposes of treatment and diagnosis are in increasing numbers, and how to provide long-term, stable and effective electric energy is a key problem. The research illustrates the design and realization of Micro Electro Mechanical System (MEMS) planar inductor; method of design and manufacture of planar and circular spiral inductor of printed board with high quality factor is introduced; a set of MEMS which is suitable for implantable wireless power transmission is developed in order to realize the conversion from magnetic energy to electric energy. With theoretical analysis and experimental data, the scheme is confirmed to be suitable for the wireless power transmission to the implantable micro parts, which provides important reference value for the research of implantable wireless power transmission in the future.

  2. A Reliable Data Delivery Mechanism for Grid Power Quality Using Neural Networks in Wireless Sensor Networks

    PubMed Central

    Lim, Yujin; Kim, Hak-Man; Kang, Sanggil

    2010-01-01

    Power grids deal with the business of generation, transmission, and distribution of electric power. Current systems monitor basic electrical quantities such as voltage and current from major pole transformers using their temperature. We improve the current systems in order to gather and deliver the information of power qualities such as harmonics, voltage sags, and voltage swells. In the system, data delivery is not guaranteed for the case that a node is lost or the network is congested, because the system has in-line and multi-hop architecture. In this paper, we propose a reliable data delivery mechanism by modeling an optimal data delivery function by employing the neural network concept. PMID:22163411

  3. Soft-start mechanism with coefficients Ki optimization for DC-DC power converters

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Hu, Jiajun; Chen, Houpeng; Li, Xi; Fan, Xi; Miao, Jie; Song, Zhitang

    2016-10-01

    This paper presents a fully digital-control soft start mechanism with coefficients Ki optimization for DC-DC power converters. During the soft start phase, a ladder reference voltage steps up gradually to make inductor current ramp up smoothly and overshoot voltage is minimized with the proposed coefficients Ki distribution. Simulation results show that massive inductor current can be well avoided during the soft start process with the proposed soft start mechanism, which only occupies a chip area of 300um×120um.

  4. Characterization of mechanical shock waves in aluminum 6061-T6 using a high power laser pulse

    NASA Astrophysics Data System (ADS)

    Gonzalez Romero, J. R.; García-Torales, G.; Gómez Rosas, G.; Ocaña, J. L.; Flores, Jorge L.

    2016-09-01

    Strengthening techniques allows enhance metal physical properties. Laser shock peening (LSP) technique consist in a surface treatment which a high power laser pulse induces a compressive residual stress field through mechanical shock waves, increasing hardness, corrosion resistance, fatigue resistance. In comparison with the shot peening technique, LSP is a method that allows precision controlling the laser incidence on the surface under treatment increasing the surface quality in the surface under treatment. In this work, mechanical shock waves are induced in aluminum and measure using two different experimental approaches. First, using a PVDZ sensors and secondly, strain gauges are used. Experimental results are presented.

  5. Comparison of different mechanisms of low-frequency radio wave ionospheric generation by powerful RF facilities

    NASA Astrophysics Data System (ADS)

    Ryabov, A.; Kotik, D.

    2011-12-01

    Generation of ELF/VLF waves in the ionosphere using powerful RF facilities were studied both theoretically and experimentally since the 70th. During this time, it was suggested a several different physical mechanisms for explaining the processes occurring in the plasma, which caused the low-frequency radiation from the ionosphere. The firstly discovered phenomena of generation the VLF signals in experiments with 100kW facility in Russia (Radiophysical Research Institute) was attribute to modulation of ionospheric currents based on thermal nonlinearity. This mechanism was confirmed by numerous experiments at powerful instruments like SURA, Arecibo, EISCAT/Tromso heater, HAARP. It was shown in experiments at SURA facility in the end of 80th the possibility of generation the VLF signals at frequency bands 10-20 kHz which was caused by cubic nonlinearity and possibility of formation of the ionospheric traveling VLF wave antenna. The last experiments at HAARP displayed the effectiveness of ponderomotive mechanisms for generation both VLF and ELF signals (Popadopoulos, Kuo). The results of numerical simulation of nonlinear currents caused by different mechanisms of ULF/VLF ionospheric generations are presented in this report. The comparison of different mechanisms in low and upper ionosphere under daytime and night conditions is presented. This work was supported by a RFBR grant 11-02-00419-a.

  6. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  7. A mechanical connector design for high-current, high-coulomb pulsed power systems

    SciTech Connect

    Susoeff, A.R.; Hawke, R.S.; Leighton, K.S.

    1992-02-25

    A technique to make reliable high-current, high-coulomb electrical contact was developed for transmitting power into railguns. The method uses spring loaded removable connectors that are installed independently from the launcher. The simple rod-type design and absence of fastener holes allow maximum utilization of material mechanical properties. Repeated experiments with 9.5-mm diameter connectors demonstrated reliable pulsed charge transfer of 200 coulombs at currents of over 400kA. 20 refs.

  8. Patch Clamp: A Powerful Technique for Studying the Mechanism of Acupuncture

    PubMed Central

    Zhang, D.

    2012-01-01

    Cellular and molecular events can be investigated using electrophysiological techniques. In particular, the patch-clamp method provides detailed information. In addition, the patch-clamp technique has become a powerful method for investigating the mechanisms underlying the effects of acupuncture. In this paper, recent researches on how acupuncture might modulate electrophysiological responses in the central nervous system (CNS) and affect peripheral structures are reviewed. PMID:23133497

  9. Mechanical Differences between Barbell and Body Optimum Power Loads in the Jump Squat Exercise

    PubMed Central

    Pereira, Lucas A.; Zanetti, Vinicius; Kitamura, Katia; Abad, César C. Cal; Kobal, Ronaldo; Nakamura, Fabio Y.

    2016-01-01

    Abstract This study compared the values of bar-peak force (PFBar) and power (PPBar), body-peak force (PFBody) and power (PPBody) and bar-mean propulsive power (MPPBar) in different jump-squat (JS) conditions: unloaded condition (UC); bar-loaded condition (BLC) and optimum bar-MPP condition (OBC). Twenty-five soccer players performed the JS using a bar with negligible mass (UC), using the Smith-machine bar (BLC) and using the load capable of maximizing the bar-MPP (OBC). The PFBody was significantly higher in the UC (2847.9 ± 489.1 N) than in the OBC (2655.4 ± 444.3 N). The UC presented greater PPBody (3775.9 ± 631.5 W) than the BLC (3359.7 ± 664.3 W) and OBC (3357.8 ± 625.3 W). The OBC presented higher values of PFBar, PPBar and MPPBar (676.2 ± 109.4 W) than the BLC (MPPBar = 425.8 ± 53.7 W) (all p < 0.05). In the OBC (compared to the UC), the body peak-power presented a reduction of ≈ 11%, while generating bar-power output from ≈ 59 to 73% higher than the BLC. While the fact that the body-peak power is maximized in the UC denotes a mechanical phenomenon, the bar-optimum load represents an intensity at which both components of the power equation (force and velocity) are optimized. This has important implications for sports training. PMID:28031767

  10. Towards identifying the mechanisms underlying field-aligned edge-loss of HHFW power on NSTX

    SciTech Connect

    Perkins, R. J.; Ahn, Joonwook; Bell, R. E.; Bertelli, Nicola; Diallo, A.; Gerhardt, S.; Gray, T. K.; Green, David L; Jaeger, E. F.; Hosea, J.; Jaworski, M. A.; LeBlanc, B; Kramer, G.; McLean, Adam G; Maingi, Rajesh; Phillips, C. K.; Podesta, M.; Ryan, Philip Michael; Sabbagh, S. A.; Scotti, F.; Taylor, G.; Wilson, J. R.

    2013-01-01

    Fast-wave heating will be a major heating scheme on ITER, as it can heat ions directly and is relatively unaffected by the large machine size unlike neutral beams. However, fast-wave interactions with the plasma edge can lead to deleterious effects such as, in the case of the high-harmonic fast-wave (HHFW) system on NSTX, large losses of fast-wave power in the scrape off layer (SOL) under certain conditions. In such scenarios, a large fraction of the lost HHFW power is deposited on the upper and lower divertors in bright spiral shapes. The responsible mechanism(s) has not yet been identified but may include fast-wave propagation in the scrape off layer, parametric decay instability, and RF currents driven by the antenna reactive fields. Understanding and mitigating these losses is important not only for improving the heating and current-drive on NSTX-Upgrade but also for understanding fast-wave propagation across the SOL in any fast-wave system. This talk summarizes experimental results demonstrating that the flow of lost HHFW power to the divertor regions largely follows the open SOL magnetic field lines. This lost power flux is relatively large close to both the antenna and the last closed flux surface with a reduced level in between, so the loss mechanism cannot be localized to the antenna. At the same time, significant losses also occur along field lines connected to the inboard edge of the bottom antenna plate. The power lost within the spirals is roughly estimated, showing that these field-aligned losses to the divertor are significant but may not account for the total HHFW loss. To elucidate the role of the onset layer for perpendicular fast-wave propagation with regards to fast-wave propagation in the SOL, a cylindrical cold-plasma model is being developed. This model, in addition to advanced RF codes such as TORIC and AORSA, is aimed at identifying the underlying mechanism(s) behind these SOL losses, to minimize their effects in NSTX-U, and to predict

  11. Towards identifying the mechanisms underlying field-aligned edge-loss of HHFW power on NSTX

    SciTech Connect

    Perkins, R. J.; Bell, R. E.; Bertelli, N.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; LeBlanc, B. P.; Kramer, G. J.; Maingi, R.; Phillips, C. K.; Podestà, M.; Roquemore, L.; Scotti, F.; Taylor, G.; Wilson, J. R.; Ahn, J-W.; Gray, T. K.; Green, D. L.; McLean, A.; and others

    2014-02-12

    Fast-wave heating will be a major heating scheme on ITER, as it can heat ions directly and is relatively unaffected by the large machine size unlike neutral beams. However, fast-wave interactions with the plasma edge can lead to deleterious effects such as, in the case of the high-harmonic fast-wave (HHFW) system on NSTX, large losses of fast-wave power in the scrape off layer (SOL) under certain conditions. In such scenarios, a large fraction of the lost HHFW power is deposited on the upper and lower divertors in bright spiral shapes. The responsible mechanism(s) has not yet been identified but may include fast-wave propagation in the scrape off layer, parametric decay instability, and RF currents driven by the antenna reactive fields. Understanding and mitigating these losses is important not only for improving the heating and current-drive on NSTX-Upgrade but also for understanding fast-wave propagation across the SOL in any fast-wave system. This talk summarizes experimental results demonstrating that the flow of lost HHFW power to the divertor regions largely follows the open SOL magnetic field lines. This lost power flux is relatively large close to both the antenna and the last closed flux surface with a reduced level in between, so the loss mechanism cannot be localized to the antenna. At the same time, significant losses also occur along field lines connected to the inboard edge of the bottom antenna plate. The power lost within the spirals is roughly estimated, showing that these field-aligned losses to the divertor are significant but may not account for the total HHFW loss. To elucidate the role of the onset layer for perpendicular fast-wave propagation with regards to fast-wave propagation in the SOL, a cylindrical cold-plasma model is being developed. This model, in addition to advanced RF codes such as TORIC and AORSA, is aimed at identifying the underlying mechanism(s) behind these SOL losses, to minimize their effects in NSTX-U, and to predict

  12. Design of a Mechanical NaK Pump for Fission Space Power

    NASA Technical Reports Server (NTRS)

    Mireles, Omar R.; Bradley, David E.; Godfroy, Thomas

    2011-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid, which has specific pumping requirements. Traditionally, electromagnetic linear induction pumps have been used to provide the required flow and pressure head conditions for NaK systems but they can be limited in performance, efficiency, and number of available vendors. The objective of the project was to develop a mechanical NaK centrifugal pump that takes advantages of technology advances not available in previous liquid metal mechanical pump designs. This paper details the design, build, and performance test of a mechanical NaK pump developed at NASA Marshall Space Flight Center. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  13. Distributed power and control actuation in the thoracic mechanics of a robotic insect.

    PubMed

    Finio, Benjamin M; Wood, Robert J

    2010-12-01

    Recent advances in the understanding of biological flight have inspired roboticists to create flapping-wing vehicles on the scale of insects and small birds. While our understanding of the wing kinematics, flight musculature and neuromotor control systems of insects has expanded, in practice it has proven quite difficult to construct an at-scale mechanical device capable of similar flight performance. One of the key challenges is the development of an effective and efficient transmission mechanism to control wing motions. Here we present multiple insect-scale robotic thorax designs capable of producing asymmetric wing kinematics similar to those observed in nature and utilized by dipteran insects to maneuver. Inspired by the thoracic mechanics of dipteran insects, which entail a morphological separation of power and control muscles, these designs show that such distributed actuation can also modulate wing motion in a robotic design.

  14. Microminiaturized minimally invasive intravascular micro-mechanical systems powered and controlled via fiber-optic cable

    DOEpatents

    Fitch, J.P.; Hagans, K.; Clough, R.; Matthews, D.L.; Lee, A.P.; Krulevitch, P.A.; Benett, W.J.; Silva, L. Da; Celliers, P.M.

    1998-03-03

    A micro-mechanical system for medical procedures is constructed in the basic form of a catheter having a distal end for insertion into and manipulation within a body and a near end providing for a user to control the manipulation of the distal end within the body. A fiber-optic cable is disposed within the catheter and having a distal end proximate to the distal end of the catheter and a near end for external coupling of laser light energy. A microgripper is attached to the distal end of the catheter and providing for the gripping or releasing of an object within the body. A laser-light-to-mechanical-power converter is connected to receive laser light from the distal end of the fiber-optic cable and connected to mechanically actuate the microgripper. 22 figs.

  15. Microminiaturized minimally invasive intravascular micro-mechanical systems powered and controlled via fiber-optic cable

    DOEpatents

    Fitch, Joseph P.; Hagans, Karla; Clough, Robert; Matthews, Dennis L.; Lee, Abraham P.; Krulevitch, Peter A.; Benett, William J.; Da Silva, Luiz; Celliers, Peter M.

    1998-01-01

    A micro-mechanical system for medical procedures is constructed in the basic form of a catheter having a distal end for insertion into and manipulation within a body and a near end providing for a user to control the manipulation of the distal end within the body. A fiberoptic cable is disposed within the catheter and having a distal end proximate to the distal end of the catheter and a near end for external coupling of laser light energy. A microgripper is attached to the distal end of the catheter and providing for the gripping or releasing of an object within the body. A laser-light-to-mechanical-power converter is connected to receive laser light from the distal end of the fiberoptic cable and connected to mechanically actuate the microgripper.

  16. Aircraft panel with sensorless active sound power reduction capabilities through virtual mechanical impedances

    NASA Astrophysics Data System (ADS)

    Boulandet, R.; Michau, M.; Micheau, P.; Berry, A.

    2016-01-01

    This paper deals with an active structural acoustic control approach to reduce the transmission of tonal noise in aircraft cabins. The focus is on the practical implementation of the virtual mechanical impedances method by using sensoriactuators instead of conventional control units composed of separate sensors and actuators. The experimental setup includes two sensoriactuators developed from the electrodynamic inertial exciter and distributed over an aircraft trim panel which is subject to a time-harmonic diffuse sound field. The target mechanical impedances are first defined by solving a linear optimization problem from sound power measurements before being applied to the test panel using a complex envelope controller. Measured data are compared to results obtained with sensor-actuator pairs consisting of an accelerometer and an inertial exciter, particularly as regards sound power reduction. It is shown that the two types of control unit provide similar performance, and that here virtual impedance control stands apart from conventional active damping. In particular, it is clear from this study that extra vibrational energy must be provided by the actuators for optimal sound power reduction, mainly due to the high structural damping in the aircraft trim panel. Concluding remarks on the benefits of using these electrodynamic sensoriactuators to control tonal disturbances are also provided.

  17. Delivering organisational adaptation through legislative mechanisms: Evidence from the Adaptation Reporting Power (Climate Change Act 2008).

    PubMed

    Jude, S R; Drew, G H; Pollard, S J T; Rocks, S A; Jenkinson, K; Lamb, R

    2017-01-01

    There is increasing recognition that organisations, particularly in key infrastructure sectors, are potentially vulnerable to climate change and extreme weather events, and require organisational responses to ensure they are resilient and adaptive. However, detailed evidence of how adaptation is facilitated, implemented and reported, particularly through legislative mechanisms is lacking. The United Kingdom Climate Change Act (2008), introduced the Adaptation Reporting Power, enabling the Government to direct so-called reporting authorities to report their climate change risks and adaptation plans. We describe the authors' unique role and experience supporting the Department for Environment, Food and Rural Affairs (Defra) during the Adaptation Reporting Power's first round. An evaluation framework, used to review the adaptation reports, is presented alongside evidence on how the process provides new insights into adaptation activities and triggered organisational change in 78% of reporting authorities, including the embedding of climate risk and adaptation issues. The role of legislative mechanisms and risk-based approaches in driving and delivering adaptation is discussed alongside future research needs, including the development of organisational maturity models to determine resilient and well adapting organisations. The Adaptation Reporting Power process provides a basis for similar initiatives in other countries, although a clear engagement strategy to ensure buy-in to the process and research on its long-term legacy, including the potential merits of voluntary approaches, is required.

  18. Mechanical Design and Fabrication of a New RF Power Amplifier for LANSCE

    SciTech Connect

    Chen, Zukun

    2011-01-01

    A Full-scale prototype of a new 201.25 MHz RF Final Power Amplifier (FPA) for Los Alamos Neutron Science Center (LANSCE) has been designed, fabricated, assembled and installed in the test facility. This prototype was successfully tested and met the physics and electronics design criteria. The team faced design and manufacturing challenges, having a goal to produce 2 MW peak power at 13% duty factor, at the elevation of over 2 km in Los Alamos. The mechanical design of the final power amplifier was built around a Thales TH628 Diacrode{sup R}, a state-of-art tetrode power tube. The main structure includes Input circuit, Output circuit, Grid decoupling circuit, Output coupler, Tuning pistons, and a cooling system. Many types of material were utilized to make this new RF amplifier. The fabrication processes of the key components were completed in the Prototype Fabrication Division shop at Los Alamos National Laboratory. The critical plating procedures were achieved by private industry. The FPA mass is nearly 600 kg and installed in a beam structural support stand. In this paper, we summarize the FPA design basis and fabrication, plating, and assembly process steps with necessary lifting and handling fixtures. In addition, to ensure the quality of the FPA support structure a finite element analysis with seismic design forces has also been carried out.

  19. Development of in situ test procedures for TMI-2 axial power shaping rod-drive mechanisms

    SciTech Connect

    Gannon, J A

    1982-11-01

    General Public Utilities Nuclear Corporation (GPUNC), Babcock and Wilcox (B and W), and EG and G Idaho participated jointly in tests at Diamond Power Specialty Corporation, Lancaster, Ohio, to develop an in-situ dynamic test procedure for application to the TMI-2 Axial Power Shaping Rods (APSRs). An APSR drive mechanism was set up with operating controls and instrumentation. Testing took place on an air stand installation and on an autoclave which simulated conditions of a stator in a water-filled reactor. Dynamic tests established mechanism electrical transient and acoustic signature characteristics associated with mechanism response to energizing and running various modes. Static tests determined characteristics unrelated to actual motion. Analysis of data from the controlled experiments resulted in development of a set of baseline characteristics to be used as a reference for evaluating the condition and response of installed APSRs. A test was devised for use at TMI-2 to verify APSR operability, to drive the APSRs to their lower limits, and to acquire data for potential clues to condition of the reactor core.

  20. Towards aging mechanisms of cross-linked polyethylene (XLPE) cable insulation materials in nuclear power plants

    SciTech Connect

    Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola

    2016-12-19

    Cross-linked polyethylene (XLPE) cable insulation material undergoes simultaneous, accelerated thermal and gamma-radiation aging to simulate the long-term aging environment within nuclear power plants (NPPs). A variety of materials characterization tests, including scanning electron microscopy, thermo-gravimetric analysis, differential scanning calorimetry, oxidation induction time, gel-fraction and dielectric properties measurement, are conducted on pristine and differently aged XLPE samples. A preliminary model of one possible aging mechanism of XLPE cable insulation material under gamma radiation at elevated temperature of 115 °C is suggested.

  1. Design of a Mechanical NaK Pump for Fission Space Power Systems

    NASA Technical Reports Server (NTRS)

    Mireles, Omar R.; Bradley, David; Godfroy, Thomas

    2010-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for mid-range spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid. Traditionally, linear induction pumps have been used to provide the required flow and head conditions for liquid metal systems but can be limited in performance. This paper details the design, build, and check-out test of a mechanical NaK pump. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  2. Potential of wind power projects under the Clean Development Mechanism in India

    PubMed Central

    Purohit, Pallav; Michaelowa, Axel

    2007-01-01

    Background So far, the cumulative installed capacity of wind power projects in India is far below their gross potential (≤ 15%) despite very high level of policy support, tax benefits, long term financing schemes etc., for more than 10 years etc. One of the major barriers is the high costs of investments in these systems. The Clean Development Mechanism (CDM) of the Kyoto Protocol provides industrialized countries with an incentive to invest in emission reduction projects in developing countries to achieve a reduction in CO2 emissions at lowest cost that also promotes sustainable development in the host country. Wind power projects could be of interest under the CDM because they directly displace greenhouse gas emissions while contributing to sustainable rural development, if developed correctly. Results Our estimates indicate that there is a vast theoretical potential of CO2 mitigation by the use of wind energy in India. The annual potential Certified Emissions Reductions (CERs) of wind power projects in India could theoretically reach 86 million. Under more realistic assumptions about diffusion of wind power projects based on past experiences with the government-run programmes, annual CER volumes by 2012 could reach 41 to 67 million and 78 to 83 million by 2020. Conclusion The projections based on the past diffusion trend indicate that in India, even with highly favorable assumptions, the dissemination of wind power projects is not likely to reach its maximum estimated potential in another 15 years. CDM could help to achieve the maximum utilization potential more rapidly as compared to the current diffusion trend if supportive policies are introduced. PMID:17663772

  3. Holding Mechanism Using a Resonance System for a High-Power Ultrasonic Linear Motor

    NASA Astrophysics Data System (ADS)

    Yun, Cheol-Ho; Ishii, Takaaki; Nakamura, Kentaro; Ueha, Sadayuki; Akashi, Koji

    2002-05-01

    To improve the operating stability and controllability of a high-power ultrasonic linear motor, the authors propose a mechanism to hold the vibrator using the resonance of stepped horns. The new holding system can support the motor firmly, without affecting the longitudinal and bending vibration modes. The resonance frequency of the supporting system is designed to be very near to that of the motor. By using the proposed system, the residual vibrations and the settling time in the transient state have been reduced markedly. When supported by the resonance support mechanism, the no-load speed and the maximum thrust force of the motor were not changed even after 8000 complete back-and-forth cycles, while with the one-point support system, the no-load speed fell rapidly and the motor failed after 20 to 30 cycles.

  4. Unraveling the mechanisms of synapse formation and axon regeneration: the awesome power of C. elegans genetics

    PubMed Central

    YiShi, JIN

    2015-01-01

    Since Caenorhabditis elegans was chosen as a model organism by Sydney Brenner in 1960’s, genetic studies in this organism have been instrumental in discovering the function of genes and in deciphering molecular signaling network. The small size of the organism and the simple nervous system enable the complete reconstruction of the first connectome. The stereotypic developmental program and the anatomical reproducibility of synaptic connections provide a blueprint to dissect the mechanisms underlying synapse formation. Recent technological innovation using laser surgery of single axons and in vivo imaging has also made C. elegans a new model for axon regeneration. Importantly, genes regulating synaptogenesis and axon regeneration are highly conserved in function across animal phyla. This mini-review will summarize the main approaches and the key findings in understanding the mechanisms underlying the development and maintenance of the nervous system. The impact of such findings underscores the awesome power of C. elegans genetics. PMID:26563175

  5. On-line mechanical tube cleaning for steam electric power plants. Final report

    SciTech Connect

    Not Available

    1994-02-18

    In July 1991, Superior I.D. Tube Cleaners, Inc. (SIDTEC{trademark}) received a grant through the Department of Energy and the Energy Related Invention Program to conduct a long term demonstration of a proprietary technology for on-line mechanical condenser tube cleaning in thermal Power plants on open or once-through cooling water systems where the warmed condenser cooling water is discharged through a canal. The purpose of the demonstration was to confirm and establish the use of this mechanical method as an alternative to the application of chemical biocides in condenser cooling water for the control of biofouling, the growth of micro-organisms which can reduce a unit`s operating efficiency. The SIDTEC on-line mechanical tube cleaner, the Rocket{trademark}, is used to physically remove accumulated deposits on the water side of the main steam condenser, and the non-intrusive tube cleaner recovery system, the Skimmer{trademark}, is used to recover and recirculate tube cleaners. The periodic circulation of tube cleaners can maintain optimum condenser cleanliness and improve unit heat rate. Thermal power plants which discharge condenser cooling water through a canal now have a viable alternative to the chemical treatment of condenser cooling water, whether the principal foulant is biofouling, chemical scaling, silting, or a combination of the three. At prices competitive with scale inhibitors, and a fraction of competing mechanical systems, this technology is provided as a service requiring no capital investment; minimal retrofit modifications to plant structures or equipment; can be installed and maintained without a unit shutdown; does not add any restrictions in the cooling water system; and is environmentally benign.

  6. Simultaneously Harvesting Thermal and Mechanical Energies based on Flexible Hybrid Nanogenerator for Self-Powered Cathodic Protection.

    PubMed

    Zhang, Hulin; Zhang, Shangjie; Yao, Guang; Huang, Zhenlong; Xie, Yuhang; Su, Yuanjie; Yang, Weiqing; Zheng, Chunhua; Lin, Yuan

    2015-12-30

    Metal corrosion occurs anytime and anywhere in nature and the corrosion prevention has a great significance everywhere in national economic development and daily life. Here, we demonstrate a flexible hybrid nanogenerator (NG) that is capable of simultaneously or individually harvesting ambient thermal and mechanical energies and used for a self-powered cathodic protection (CP) system without using an external power source. Because of its double peculiarities of both pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based NG was constructed to scavenge both thermal and mechanical energies. As a supplementary, a triboelectric NG was constructed below the pyro/piezoelectric NG to grab ambient mechanical energy. The output power of the fabricated hybrid NG can be directly used to protect the metal surface from the chemical corrosion. Our results not only verify the feasibility of self-powered CP-based NGs, but also expand potential self-powered applications.

  7. Thermal, mechanical and fluid flow aspects of the high power beam dump for FRIB

    NASA Astrophysics Data System (ADS)

    Avilov, Mikhail; Aaron, Adam; Amroussia, Aida; Bergez, Wladimir; Boehlert, Carl; Burgess, Thomas; Carroll, Adam; Colin, Catherine; Durantel, Florent; Ferrante, Paride; Fourmeau, Tiffany; Graves, Van; Grygiel, Clara; Kramer, Jacob; Mittig, Wolfgang; Monnet, Isabelle; Patel, Harsh; Pellemoine, Frederique; Ronningen, Reginald; Schein, Mike

    2016-06-01

    The Facility for Rare Isotope Beams (FRIB) under construction at Michigan State University is based on a 400 kW heavy ion accelerator and uses in-flight production and separation to generate rare isotope beams. The first section of the fragment separator houses the rare isotope production target, and the primary beam dump to stop the unreacted primary beam. The experimental program will use 400 kW ion beams from 16O to 238U. After interaction with the production target, over 300 kW in remaining beam power must be absorbed by the beam dump. A rotating water-cooled thin-shell metal drum was chosen as the basic concept for the beam dump. Extensive thermal, mechanical and fluid flow analyses were performed to evaluate the effects of the high power density in the beam dump shell and in the water. Many properties were optimized simultaneously, such as shell temperature, mechanical strength, fatigue strength, and radiation resistance. Results of the analyses of the beam dump performance with different design options will be discussed. For example, it was found that a design modification to the initial water flow pattern resulted in a substantial increase in the wall heat transfer coefficient. A detailed evaluation of materials for the shell is in progress. The widely used titanium alloy, Ti-6Al-4V (wt%), is presently considered as the best candidate, and is the subject of specific tests, such as studies of performance under heavy ion irradiation.

  8. Design process of the nanofluid injection mechanism in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kang, Myoung-Suk; Jee, Changhyun; Park, Sangjun; Bang, In Choel; Heo, Gyunyoung

    2011-04-01

    Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner.

  9. Design process of the nanofluid injection mechanism in nuclear power plants

    PubMed Central

    2011-01-01

    Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner. PMID:21711896

  10. Design process of the nanofluid injection mechanism in nuclear power plants.

    PubMed

    Kang, Myoung-Suk; Jee, Changhyun; Park, Sangjun; Bang, In Choel; Heo, Gyunyoung

    2011-04-27

    Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner.

  11. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis.

    PubMed

    Gordon, Keith E; Sawicki, Gregory S; Ferris, Daniel P

    2006-01-01

    We developed a powered ankle-foot orthosis that uses artificial pneumatic muscles to produce active plantar flexor torque. The purpose of this study was to quantify the mechanical performance of the orthosis during human walking. Three subjects walked at a range of speeds wearing ankle-foot orthoses with either one or two artificial muscles working in parallel. The orthosis produced similar total peak plantar flexor torque and network across speeds independent of the number of muscles used. The orthosis generated approximately 57% of the peak ankle plantar flexor torque during stance and performed approximately 70% of the positive plantar flexor work done during normal walking. Artificial muscle bandwidth and force-length properties were the two primary factors limiting torque production. The lack of peak force and work differences between single and double muscle conditions can be explained by force-length properties. Subjects altered their ankle kinematics between conditions resulting in changes in artificial muscle length. In the double muscle condition greater plantar flexion yielded shorter artificial muscles lengths and decreased muscle forces. This finding emphasizes the importance of human testing in the design and development of robotic exoskeleton devices for assisting human movement. The results of this study outline the mechanical performance limitations of an ankle-foot orthosis powered by artificial pneumatic muscles. This orthosis could be valuable for gait rehabilitation and for studies investigating neuromechanical control of human walking.

  12. Fertility heterogeneity as a mechanism for power law distributions of recurrence times

    NASA Astrophysics Data System (ADS)

    Saichev, A.; Sornette, D.

    2013-02-01

    We study the statistical properties of recurrence times in the self-excited Hawkes conditional Poisson process, the simplest extension of the Poisson process that takes into account how the past events influence the occurrence of future events. Specifically, we analyze the impact of the power law distribution of fertilities with exponent α, where the fertility of an event is the number of triggered events of first generation, on the probability distribution function (PDF) f(τ) of the recurrence times τ between successive events. The other input of the model is an exponential law quantifying the PDF of waiting times between an event and its first generation triggered events, whose characteristic time scale is taken as our time unit. At short-time scales, we discover two intermediate power law asymptotics, f(τ)˜τ-(2-α) for τ≪τc and f(τ)˜τ-α for τc≪τ≪1, where τc is associated with the self-excited cascades of triggered events. For 1≪τ≪1/ν, we find a constant plateau f(τ)≃const, while at long times, 1/ν≲τ, f(τ)≃e-ντ has an exponential tail controlled by the arrival rate ν of exogenous events. These results demonstrate a novel mechanism for the generation of power laws in the distribution of recurrence times, which results from a power law distribution of fertilities in the presence of self-excitation and cascades of triggering.

  13. Mechanism behind the high thermoelectric power factor of SrTiO3 by calculating the transport coefficients

    NASA Astrophysics Data System (ADS)

    Shirai, Koun; Yamanaka, Kazunori

    2013-02-01

    The thermoelectric power factor of SrTiO3 is unusually high with respect to its mobility and band gap. Good thermoelectrics usually have high mobility and a narrow band gap, but such properties are not found in SrTiO3. We have determined the mechanism behind the high power factor by calculating the transport coefficients. The key to understanding the power factor is that different effective masses contribute to different transport phenomena. The discrepancy between the effective mass for the conductivity and the thermoelectric power showed that the conductivity and thermoelectric power are conveyed by electrons with different effective masses in the Brillouin zone. Light electrons were responsible for the high conductivity, whereas heavy electrons were responsible for the high thermoelectric power. The high carrier concentrations of more than 1020 cm-3 did not reduce the thermoelectric power of SrTiO3 above the classical limit. This indicates that the electrons carrying the thermoelectric power were not degenerate. This is achieved by a decrease in the Fermi energy and the contribution of the heavy electrons to the Seebeck coefficient. The strong dielectric screening also contributed to the high power factor. The Coulomb scattering by ionized impurities, which would usually reduce the carrier mobility, was effectively screened. These results clarify the mechanism behind the contribution of different types of electrons, and show that high thermoelectric power does not necessarily reduce conductivity. Our findings provide a new direction for the band engineering of thermoelectric materials.

  14. Differences in muscle mechanical properties between elite power and endurance athletes: a comparative study.

    PubMed

    Loturco, Irineu; Gil, Saulo; Laurino, Cristiano Frota de Souza; Roschel, Hamilton; Kobal, Ronaldo; Cal Abad, Cesar C; Nakamura, Fabio Y

    2015-06-01

    The aim of this study was to compare muscle mechanical properties (using tensiomyography-TMG) and jumping performance of endurance and power athletes and to quantify the associations between TMG parameters and jumping performance indices. Forty-one high-level track and field athletes from power (n = 22; mean ± SD age, height, and weight were 27.2 ± 3.6 years; 180.2 ± 5.4 cm; and 79.4 ± 8.6 kg, respectively) and endurance (endurance runners and triathletes; n = 19; mean ± SD age, height, and weight were 27.1 ± 6.9 years; 169.6 ± 9.8 cm; 62.2 ± 13.1 kg, respectively) specialties had the mechanical properties of their rectus femoris (RF) and biceps femoris (BF) assessed by TMG. Muscle displacement (Dm), contraction time (Tc), and delay time (Td) were retained for analyses. Furthermore, they performed squat jumps (SJs), countermovement jumps (CMJs), and drop jumps to assess reactive strength index (RSI), using a contact platform. Comparisons between groups were performed using differences based on magnitudes, and associations were quantified by the Spearman's ρ correlation. Power athletes showed almost certain higher performance in all jumping performance indices when compared with endurance athletes (SJ = 44.9 ± 4.1 vs. 30.7 ± 6.8 cm; CMJ = 48.9 ± 4.5 vs. 33.6 ± 7.2 cm; RSI = 2.19 ± 0.58 vs. 0.84 ± 0.39, for power and endurance athletes, mean ± SD, respectively; 00/00/100, almost certain, p ≤ 0.05), along with better contractile indices reflected by lower Dm, Tc, and Td (Tc BF = 14.3 ± 2.3 vs. 19.4 ± 3.3 milliseconds; Dm BF = 1.67 ± 1.05 vs. 4.23 ± 1.75 mm; Td BF = 16.8 ± 1.6 vs. 19.6 ± 1.3 milliseconds; Tc RF = 18.3 ± 2.8 vs. 22.9 ± 4.0 milliseconds; Dm RF = 4.98 ± 3.71 vs. 8.88 ± 3.45 mm; Td RF = 17.5 ± 1.0 vs. 20.9 ± 1.6 milliseconds, for power and endurance athletes, mean ± SD, respectively; 00/00/100, almost certain, p ≤ 0.05). Moderate correlations (Spearman's ρ between -0.61 and -0.72) were found between TMG and jumping

  15. Stress Induced Mechano-electrical Writing-Reading of Polymer Film Powered by Contact Electrification Mechanism

    NASA Astrophysics Data System (ADS)

    Goswami, Sumita; Nandy, Suman; Calmeiro, Tomás R.; Igreja, Rui; Martins, Rodrigo; Fortunato, Elvira

    2016-01-01

    Mechano-electrical writing and reading in polyaniline (PANI) thin film are demonstrated via metal-polymer contact electrification mechanism (CEM). An innovative conception for a non-destructive self-powered writable-readable data sheet is presented which can pave the way towards new type of stress induced current harvesting devices. A localized forced deformation of the interface has been enacted by pressing the atomic force microscopic probe against the polymer surface, allowing charge transfer between materials interfaces. The process yields a well-defined charge pattern by transmuting mechanical stress in to readable information. The average of output current increment has been influenced from 0.5 nA to 15 nA for the applied force of 2 nN to 14 nN instead of electrical bias. These results underscore the importance of stress-induced current harvesting mechanism and could be scaled up for charge patterning of polymer surface to writable-readable data sheet. Time evolutional current distribution (TECD) study of the stress-induced patterned PANI surface shows the response of readability of the recorded data with time.

  16. Stress Induced Mechano-electrical Writing-Reading of Polymer Film Powered by Contact Electrification Mechanism

    PubMed Central

    Goswami, Sumita; Nandy, Suman; Calmeiro, Tomás R.; Igreja, Rui; Martins, Rodrigo; Fortunato, Elvira

    2016-01-01

    Mechano-electrical writing and reading in polyaniline (PANI) thin film are demonstrated via metal-polymer contact electrification mechanism (CEM). An innovative conception for a non-destructive self-powered writable-readable data sheet is presented which can pave the way towards new type of stress induced current harvesting devices. A localized forced deformation of the interface has been enacted by pressing the atomic force microscopic probe against the polymer surface, allowing charge transfer between materials interfaces. The process yields a well-defined charge pattern by transmuting mechanical stress in to readable information. The average of output current increment has been influenced from 0.5 nA to 15 nA for the applied force of 2 nN to 14 nN instead of electrical bias. These results underscore the importance of stress-induced current harvesting mechanism and could be scaled up for charge patterning of polymer surface to writable-readable data sheet. Time evolutional current distribution (TECD) study of the stress-induced patterned PANI surface shows the response of readability of the recorded data with time. PMID:26786701

  17. `PROBABILISTIC Knowledge' as `OBJECTIVE Knowledge' in Quantum Mechanics: Potential Immanent Powers Instead of Actual Properties

    NASA Astrophysics Data System (ADS)

    Ronde, Christian De

    In classical physics, probabilistic or statistical knowledge has been always related to ignorance or inaccurate subjective knowledge about an actual state of affairs. This idea has been extended to quantum mechanics through a completely incoherent interpretation of the Fermi-Dirac and Bose-Einstein statistics in terms of "strange" quantum particles. This interpretation, naturalized through a widespread "way of speaking" in the physics community, contradicts Born's physical account of Ψ as a "probability wave" which provides statistical information about outcomes that, in fact, cannot be interpreted in terms of `ignorance about an actual state of affairs'. In the present paper we discuss how the metaphysics of actuality has played an essential role in limiting the possibilities of understating things differently. We propose instead a metaphysical scheme in terms of immanent powers with definite potentia which allows us to consider quantum probability in a new light, namely, as providing objective knowledge about a potential state of affairs.

  18. An experimental study of energy loss mechanisms and efficiency considerations in the low power dc arcjet

    NASA Technical Reports Server (NTRS)

    Curran, F. M.

    1985-01-01

    The potential utility of the low power dc arcjet in auxiliary propulsion was investigated. It was indicated that improvements in the areas of stability, energy efficiency, reliability, and electrode erosion are necessary to obtain a useful device. A water-cooled arcjet simulator was tested to investigate both the energy loss mechanisms at the electrodes and the stability of different conventional arcjet configurations in the presence of a vortex flow field. It is shown that in certain configurations only 25 to 30 percent of the input energy is lost to the electrodes. It is also shown that vortex stabilization is not difficult to obtain in many cases at the flow rates used and that a careful starting procedure is effective in minimizing electrode damage.

  19. An experimental study of energy loss mechanisms and efficiency consideration in the low power dc arcjet

    NASA Technical Reports Server (NTRS)

    Curran, F. M.

    1985-01-01

    The potential utility of the low power dc arcjet in auxiliary propulsion was investigated. It was indicated that improvements in the areas of stability, energy efficiency, reliability, and electrode erosion are necessary to obtain a useful device. A water-cooled arcjet simulator was tested to investigate both the energy loss mechanisms at the electrodes and the stability of different conventional arcjet configurations in the presence of a vortex flow field. It is shown that in certain configurations only 25 to 30% of the input energy is lost to the electrodes. It is also shown that vortex stabilization is not difficult to obtain in many cases at the flow rates used and that a careful starting procedure is effective in minimizing electrode damage.

  20. Misuse of "Power" and Other Mechanical Terms in Sport and Exercise Science Research.

    PubMed

    Winter, Edward M; Abt, Grant; Brookes, F B Carl; Challis, John H; Fowler, Neil E; Knudson, Duane V; Knuttgen, Howard G; Kraemer, William J; Lane, Andrew M; van Mechelen, Willem; Morton, R Hugh; Newton, Robert U; Williams, Clyde; Yeadon, M R

    2016-01-01

    Despite the Système International d'Unitès (SI) that was published in 1960, there continues to be widespread misuse of the terms and nomenclature of mechanics in descriptions of exercise performance. Misuse applies principally to failure to distinguish between mass and weight, velocity and speed, and especially the terms "work" and "power." These terms are incorrectly applied across the spectrum from high-intensity short-duration to long-duration endurance exercise. This review identifies these misapplications and proposes solutions. Solutions include adoption of the term "intensity" in descriptions and categorizations of challenge imposed on an individual as they perform exercise, followed by correct use of SI terms and units appropriate to the specific kind of exercise performed. Such adoption must occur by authors and reviewers of sport and exercise research reports to satisfy the principles and practices of science and for the field to advance.

  1. Practical application of the benchmarking technique to increase reliability and efficiency of power installations and main heat-mechanic equipment of thermal power plants

    NASA Astrophysics Data System (ADS)

    Rimov, A. A.; Chukanova, T. I.; Trofimov, Yu. V.

    2016-12-01

    facilitating the analysis of the benchmarking results permitting to represent the quality loss of this power installation in the form of the difference between the actual value of the key indicator or comparison indicator and the best quartile of the existing distribution. The uncertainty of the obtained values of the quality loss indicators was evaluated by transforming the standard uncertainties of the input values into the expanded uncertainties of the output values with the confidence level of 95%. The efficiency of the technique is demonstrated in terms of benchmarking of the main thermal and mechanical equipment of the extraction power-generating units T-250 and power installations of the thermal power plants with the main steam pressure 130 atm.

  2. [Analysis on Mechanism of Rainout Carried by Wet Stack of Thermal Power Plant].

    PubMed

    Ouyang, Li-hua; Zhuang, Ye; Liu, Ke-wei; Chen, Zhen-yu; Gu, Peng

    2015-06-01

    Rainout from wet-stack took placed in many thermal power plants with WFGD system. Research on causes of the rainout is important to solve the problem. The objective of this research is to analyze the mechanism of rainout. Field study was performed to collect experimental data in one thermal power plant, including the amount of desulfurization slurry carried by wet flue gas, liquor condensate from wet duct, and droplets from the wet stack. Source apportionment analysis was carried out based on physical and chemical data of liquid sample and solid sample. The result showed that mist eliminator operated well, which met the performance guarantee value. But the total amount of desulfurization slurry in flue gas and the sulfate concentration in liquid condensate discharge from the wet duct/stack increased. The liquid condensate accumulated in the wet duct/stack led to liquid re-entrainment. In conclusion, the rainout in this power plant was caused by the short of wet ductwork or liquid discharge system, the droplets caused by re-entrainment carried by the saturated gas released from the stack. The main undissolved components of the rainout were composite carbonate and aluminosilicate. Although ash concentration in this WFGD met the regulation criteria, source apportionment analysis showed that fly ash contributed to rainout was accounted for 60%. This percentage value was same as the data of solid particles in the condensate. It is important to optimize the wet ductwork, wet stack liner, liquid collectors and drainage. Avoiding the accumulation from saturated vapor thermal condensation is an effective way to solve the wet stack rainout.

  3. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    SciTech Connect

    McDermott, K.A.; Bailey, K.A.; South, D.W.

    1993-08-01

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  4. Structure and mechanism of the ATPase that powers viral genome packaging

    PubMed Central

    Hilbert, Brendan J.; Hayes, Janelle A.; Stone, Nicholas P.; Duffy, Caroline M.; Sankaran, Banumathi; Kelch, Brian A.

    2015-01-01

    Many viruses package their genomes into procapsids using an ATPase machine that is among the most powerful known biological motors. However, how this motor couples ATP hydrolysis to DNA translocation is still unknown. Here, we introduce a model system with unique properties for studying motor structure and mechanism. We describe crystal structures of the packaging motor ATPase domain that exhibit nucleotide-dependent conformational changes involving a large rotation of an entire subdomain. We also identify the arginine finger residue that catalyzes ATP hydrolysis in a neighboring motor subunit, illustrating that previous models for motor structure need revision. Our findings allow us to derive a structural model for the motor ring, which we validate using small-angle X-ray scattering and comparisons with previously published data. We illustrate the model’s predictive power by identifying the motor’s DNA-binding and assembly motifs. Finally, we integrate our results to propose a mechanistic model for DNA translocation by this molecular machine. PMID:26150523

  5. Anisotropic power spectrum and bispectrum in the f(ϕ)F2 mechanism

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Matarrese, Sabino; Peloso, Marco; Ricciardone, Angelo

    2013-01-01

    A suitable coupling of the inflaton φ to a vector kinetic term F2 gives frozen and scale invariant vector perturbations. We compute the cosmological perturbations ζ that result from such coupling by taking into account the classical vector field that unavoidably gets generated at large scales during inflation. This generically results in a too-anisotropic power spectrum of ζ. Specifically, the anisotropy exceeds the 1% level (10% level) if inflation lasts ˜5 e-folds (˜50 e-folds) more than the minimal amount required to produce the cosmic microwave background modes. This conclusion applies, among others, to the application of this mechanism for magnetogenesis, for anisotropic inflation, and for the generation of anisotropic perturbations at the end of inflation through a waterfall field coupled to the vector (in this case, the unavoidable contribution that we obtain is effective all throughout inflation, and it is independent of the waterfall field). For a tuned duration of inflation, a 1% (10%) anisotropy in the power spectrum corresponds to an anisotropic bispectrum which is enhanced like the local one in the squeezed limit, and with an effective local fNL˜3(˜30). More in general, a significant anisotropy of the perturbations may be a natural outcome of all models that sustain higher than 0 spin fields during inflation.

  6. Anisotropic power spectrum and bispectrum in the f(Φ)F² mechanism

    DOE PAGES

    Bartolo, Nicola; Matarrese, Sabino; Peloso, Marco; ...

    2013-01-04

    A suitable coupling of the inflaton φ to a vector kinetic term F² gives frozen and scale invariant vector perturbations. We compute the cosmological perturbations ζ that result from such coupling by taking into account the classical vector field that unavoidably gets generated at large scales during inflation. This generically results in a too-anisotropic power spectrum of ζ. Specifically, the anisotropy exceeds the 1% level (10% level) if inflation lasts ~5 e-folds (~50 e-folds) more than the minimal amount required to produce the cosmic microwave background modes. This conclusion applies, among others, to the application of this mechanism for magnetogenesis,more » for anisotropic inflation, and for the generation of anisotropic perturbations at the end of inflation through a waterfall field coupled to the vector (in this case, the unavoidable contribution that we obtain is effective all throughout inflation, and it is independent of the waterfall field). For a tuned duration of inflation, a 1% (10%) anisotropy in the power spectrum corresponds to an anisotropic bispectrum which is enhanced like the local one in the squeezed limit, and with an effective local fNL~3(~30). More in general, a significant anisotropy of the perturbations may be a natural outcome of all models that sustain higher than 0 spin fields during inflation.« less

  7. Anisotropic power spectrum and bispectrum in the f(Φ)F² mechanism

    SciTech Connect

    Bartolo, Nicola; Matarrese, Sabino; Peloso, Marco; Ricciardone, Angelo

    2013-01-04

    A suitable coupling of the inflaton φ to a vector kinetic term F² gives frozen and scale invariant vector perturbations. We compute the cosmological perturbations ζ that result from such coupling by taking into account the classical vector field that unavoidably gets generated at large scales during inflation. This generically results in a too-anisotropic power spectrum of ζ. Specifically, the anisotropy exceeds the 1% level (10% level) if inflation lasts ~5 e-folds (~50 e-folds) more than the minimal amount required to produce the cosmic microwave background modes. This conclusion applies, among others, to the application of this mechanism for magnetogenesis, for anisotropic inflation, and for the generation of anisotropic perturbations at the end of inflation through a waterfall field coupled to the vector (in this case, the unavoidable contribution that we obtain is effective all throughout inflation, and it is independent of the waterfall field). For a tuned duration of inflation, a 1% (10%) anisotropy in the power spectrum corresponds to an anisotropic bispectrum which is enhanced like the local one in the squeezed limit, and with an effective local fNL~3(~30). More in general, a significant anisotropy of the perturbations may be a natural outcome of all models that sustain higher than 0 spin fields during inflation.

  8. Mechanism for generating power from wave motion on a body of water

    SciTech Connect

    Sachs, G.A.; Sachs, H.K.

    1982-09-28

    A mechanism for generating power from wave motion on a body of water is described. The mechanism includes a buoyant body which is adapted to float on a body of water and to roll and pitch in response to the wave motion of the water. A gyro-wave energy transducer is mounted on the buoyant body for translating the pendulum-like motions of the buoyant body into rotational motion. The gyro-wave energy transducer includes a gimbal comprised of first and second frames, with the first frame being pivotally mounted to the second frame and the second frame being pivotally mounted to the buoyant body. A gyroscope is mounted to the first frame for rotation about an axis perpendicular to the axes of rotation of the first and second frames. A motor/generator is coupled to the gyroscope for maintaining a controlled rotational velocity for the gyroscope. Transferring members are associated with one of the first and second frames for transferring torque of one of the first and second frames to the gyroscope about an axis that is perpendicular to that of the gyroscope which results in rotation of the other of the first and second frames. An electrical generator is responsive to the relative rotational movement of the first and second frames for generating electrical energy. A storage battery is mounted on the buoyant body for storing and releasing electrical energy and is operatively coupled to the motor/generator and the electrical generator. A control circuit is associated with the generator and the motor/generator unit of the gyroscope and is responsive to the time rate of change of current produced by the generator for controlling the rotational velocity of the gyroscope in order to maintain maximum power output from the electrical generator.

  9. Investigation of switching mechanism in HfOx-ReRAM under low power and conventional operation modes

    PubMed Central

    Feng, Wei; Shima, Hisashi; Ohmori, Kenji; Akinaga, Hiroyuki

    2016-01-01

    Low-power resistive random access memory (LP-ReRAM) devices have attracted increasing attention owing to their advantages of low operation power. In this study, a vertical-type LP-ReRAM consisting of TiN/Ti/HfO2/TiN structure was fabricated. The switching mechanism for LP-ReRAM was elucidated as the conductive filament mechanism for conventional mode, and an interface-type switching mechanism for low power mode was proposed. The analysis of low frequency noise shows that power spectral density (PSD) is approximately proportional to 1/f for conventional operation mode. Nevertheless, for low power mode, the PSD of low resistance state (LRS) is proportional to 1/f, while that of high resistance state (HRS) is clear proportional to 1/f2. The envelope of multiple Lorentzian spectra of 1/f2 characteristics due to different traps reveals the characteristics of 1/f. For HRS of low power mode, a limited number of traps results in a characteristic of 1/f2. During the set process, the number of oxygen vacancies increases for LRS. Therefore, the PSD value is proportional to 1/f. Owing to the increase in the number of traps when the operation mode changes to conventional mode, the PSD value is proportional to 1/f. To the best of our knowledge, this is the first study that reveals the different noise characteristics in the low power operation mode from that in the conventional operation mode. PMID:28000741

  10. Investigation of switching mechanism in HfOx-ReRAM under low power and conventional operation modes

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Shima, Hisashi; Ohmori, Kenji; Akinaga, Hiroyuki

    2016-12-01

    Low-power resistive random access memory (LP-ReRAM) devices have attracted increasing attention owing to their advantages of low operation power. In this study, a vertical-type LP-ReRAM consisting of TiN/Ti/HfO2/TiN structure was fabricated. The switching mechanism for LP-ReRAM was elucidated as the conductive filament mechanism for conventional mode, and an interface-type switching mechanism for low power mode was proposed. The analysis of low frequency noise shows that power spectral density (PSD) is approximately proportional to 1/f for conventional operation mode. Nevertheless, for low power mode, the PSD of low resistance state (LRS) is proportional to 1/f, while that of high resistance state (HRS) is clear proportional to 1/f2. The envelope of multiple Lorentzian spectra of 1/f2 characteristics due to different traps reveals the characteristics of 1/f. For HRS of low power mode, a limited number of traps results in a characteristic of 1/f2. During the set process, the number of oxygen vacancies increases for LRS. Therefore, the PSD value is proportional to 1/f. Owing to the increase in the number of traps when the operation mode changes to conventional mode, the PSD value is proportional to 1/f. To the best of our knowledge, this is the first study that reveals the different noise characteristics in the low power operation mode from that in the conventional operation mode.

  11. Investigation of switching mechanism in HfOx-ReRAM under low power and conventional operation modes.

    PubMed

    Feng, Wei; Shima, Hisashi; Ohmori, Kenji; Akinaga, Hiroyuki

    2016-12-21

    Low-power resistive random access memory (LP-ReRAM) devices have attracted increasing attention owing to their advantages of low operation power. In this study, a vertical-type LP-ReRAM consisting of TiN/Ti/HfO2/TiN structure was fabricated. The switching mechanism for LP-ReRAM was elucidated as the conductive filament mechanism for conventional mode, and an interface-type switching mechanism for low power mode was proposed. The analysis of low frequency noise shows that power spectral density (PSD) is approximately proportional to 1/f for conventional operation mode. Nevertheless, for low power mode, the PSD of low resistance state (LRS) is proportional to 1/f, while that of high resistance state (HRS) is clear proportional to 1/f(2). The envelope of multiple Lorentzian spectra of 1/f(2) characteristics due to different traps reveals the characteristics of 1/f. For HRS of low power mode, a limited number of traps results in a characteristic of 1/f(2). During the set process, the number of oxygen vacancies increases for LRS. Therefore, the PSD value is proportional to 1/f. Owing to the increase in the number of traps when the operation mode changes to conventional mode, the PSD value is proportional to 1/f. To the best of our knowledge, this is the first study that reveals the different noise characteristics in the low power operation mode from that in the conventional operation mode.

  12. Muscle coordination limits efficiency and power output of human limb movement under a wide range of mechanical demands

    PubMed Central

    Wakeling, James M.

    2015-01-01

    This study investigated the influence of cycle frequency and workload on muscle coordination and the ensuing relationship with mechanical efficiency and power output of human limb movement. Eleven trained cyclists completed an array of cycle frequency (cadence)-power output conditions while excitation from 10 leg muscles and power output were recorded. Mechanical efficiency was maximized at increasing cadences for increasing power outputs and corresponded to muscle coordination and muscle fiber type recruitment that minimized both the total muscle excitation across all muscles and the ineffective pedal forces. Also, maximum efficiency was characterized by muscle coordination at the top and bottom of the pedal cycle and progressive excitation through the uniarticulate knee, hip, and ankle muscles. Inefficiencies were characterized by excessive excitation of biarticulate muscles and larger duty cycles. Power output and efficiency were limited by the duration of muscle excitation beyond a critical cadence (120–140 rpm), with larger duty cycles and disproportionate increases in muscle excitation suggesting deteriorating muscle coordination and limitations of the activation-deactivation capabilities. Most muscles displayed systematic phase shifts of the muscle excitation relative to the pedal cycle that were dependent on cadence and, to a lesser extent, power output. Phase shifts were different for each muscle, thereby altering their mechanical contribution to the pedaling action. This study shows that muscle coordination is a key determinant of mechanical efficiency and power output of limb movement across a wide range of mechanical demands and that the excitation and coordination of the muscles is limited at very high cycle frequencies. PMID:26445873

  13. Mechanically Alloyed-Oxide Dispersion Strengthened Steels for Use in Space Nuclear Power Systems

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2004-02-01

    The mechanical and thermo-physical properties of Mechanically Alloyed (MA)-Oxide Dispersion Strengthened (ODS) steels are reviewed and their potential for use in space nuclear reactor power systems is examined. The three MA-ODS alloys examined are Inconel MA-ODS754 (77.55Ni, 20Cr, 1Fe, 0.5Ti, 0.3Al, 0.05C, and 0.6Y2O3), Incoloy MA-ODS956 (74.45Fe, 20Cr, 4.5Al, 0.5Ti, 0.05C, 0.5Y2O3), and Incoloy MA-ODS957 (84.55Fe, 14Cr, 0.3Mo, 0.9Ti, 0.25Y2O3). The major advantages of these alloys are: (a) their strength at high temperatures (>1000 K) is relatively higher and decreases slower with temperature than niobium (Nb) and molybdenum (Mo) refractory alloys; (b) they are relatively lightweight and less expensive; (c) they have been shown to experience low swelling and embrittlement with exposure to high-energy neutrons (> 0.1 MeV) up to a fluence of 1023 n/cm2; and (d) their high resistance to oxidation and nitration at high temperatures, which simplifies handling and assembly. These MS-ODS alloys are also lighter and much stronger than 316-stainless steel and super-alloys such as Inconel 601, Haynes 25, and Hastalloy-X at moderately high temperatures (688-1000 K). The little data available on the compatibility of the MA-ODS alloys with alkali liquid metals up to 1100 K are encouraging, however, additional tests at typical operation temperatures (1000-1400 K) in liquid metal cooled and alkali metal heat pipe-cooled space nuclear reactors are needed. The anisotropy of the MA-ODS alloys when cold worked, and in particularly when rolled into tubes, should not hinder their use in space nuclear power systems, in which the operation pressure is either near atmospheric or as high as 2 MPa.

  14. Comparison of Electro-Myo Stimulation to lsokinetic Training in Increasing -Power of the Knee Extensor Mechanism *.

    PubMed

    Halback, J; Straus, D

    1980-01-01

    A clinical study of six individuals was set up to compare an Electro-Myo stimulation protocol to an isokinetic protocol. The objective of the study was to see which was more effective in increasing power in the knee extensor mechanism. Results of the study showed that isokinetics were superior to Electro-Myo stimulation in increasing power. One question that remained unanswered in the testing was whether a higher faradic current, if tolerated, would be more efficient in increasing the power of a muscle group than would isokinetics. J Orthop Sports Phys Ther 1980;2(1):20-24.

  15. Characteristics and mechanism of cell apoptosis induced by high fluence low-power laser irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Shengnan; Xing, Da

    2008-02-01

    High fluence low-power laser irradiation (LPLI) can induce cell apoptosis which is mediated by a high level of mitochondrial reactive oxygen species (ROS) production; however the mechanism is still unclear. Here, we further studied the mitochondrial signaling pathways involved in the apoptotic process. Activation of caspase-9 indicated an apoptotic process occurred under the high fluence LPLI treatment. Increasing of dichlorodihydrofluorescein diacetate (H IIDCFDA) fluorescence products showed a high level of mitochondrial ROS generation after irradiation. Cyclosporine A (CsA) has been reported to inhibit some kinds of apoptosis, which are especially mediated by ROS. The question is whether CsA has some effect on high fluence LPLI induced apoptosis. Results showed that CsA significantly delayed mitochondria depolarization, observably delayed cell death in response to high fluence LPLI treatment demonstrating a significant protective role of CsA on the apoptotic process. These results suggest that high fluence LPLI induced cell apoptosis via some CsA-sensitive mitochondrial signal pathways.

  16. Measurement of mechanical quality factors of polymers in flexural vibration for high-power ultrasonic application.

    PubMed

    Wu, Jiang; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-07-01

    A method for measuring the mechanical quality factor (Q factor) of materials in large-amplitude flexural vibrations was devised on the basis of the original definition of the Q factor. The Q factor, the ratio of the reactive energy to the dissipated energy, was calculated from the vibration velocity distribution. The bar thickness was selected considering the effect of the thickness on the estimation error. In the experimental setup, a 1-mm-thick polymer-based bar was used as a sample and fixed on the top of a longitudinal transducer. Using transducers of different lengths, flexural waves in the frequency range of 20-90kHz were generated on the bar. The vibration strain in the experiment reached 0.06%. According to the Bernoulli-Euler model, the reactive energy and dissipated energy were estimated from the vertical velocity distribution on the bar, and the Q factors were measured as the driving frequency and strain were varied. The experimental results showed that the Q factors decrease as the driving frequencies and strains increase. At a frequency of 28.30kHz, the Q factor of poly(phenylene sulfide) (PPS) reached approximately 460 when the strain was smaller than 0.005%. PPS exhibited a much higher Q factor than the other tested polymers, which implies that it is a potentially applicable material as the elastomer for high-power ultrasonic devices.

  17. Operation Dominic Phase I Final Report JTU 8.4.4

    DTIC Science & Technology

    1962-08-01

    of the advance party from Kirtland Air Force Base, New Mexico . Two B-52 aircraft instrumented specifically for research, development and test work...r r iva l of the advance party from Kirtland Air Force Base, New Mexico . Two B-52 a i rcraf t ins t rumented specifically for research...LIi:C CHETCO TANANA 14 ’ [ c.c I-, .L AL:9, TRUCKEE YES 0 %?L 2.: RINCONADA DULCE P E T I T OTTAWI BIGHORN E.l,’LzsmE SUNSET

  18. The Effect of Instructional Objectives and General Objectives on Student Self-Evaluation of Psychomotor Performance in Power Mechanics.

    ERIC Educational Resources Information Center

    Janeczko, Robert John

    The major purpose of this study was to ascertain the relative effects of student exposure to instructional objectives upon student self-evaluation of psychomotor activities in a college-level power mechanics course. A randomized posttest-only control group design was used with two different approaches to the statement of the objectives. Four…

  19. Synthesis of strontium substituted barium titanate nanoparticles by mechanical alloying and high power ultrasonication destruction

    NASA Astrophysics Data System (ADS)

    Yustanti, Erlina; Hafizah, Mas Ayu Elita; Manaf, Azwar

    2016-04-01

    This paper reports the particle and crystallite size characterizations of mechanically alloyed Ba(1-x)SrxTiO3 (BST) with x = 0.3 and 0.7 prepared with the assistance of a high-power sonicator. Analytical grade BaCO3, TiO2 and SrCO3 precursors with a purity of greater than 99 wt.% were mixed and milled using a planetary ball mill to a powder weight ratio of 10:1. Powders obtained after 20 hours of milling time were then sintered at 1200°C for 4 hours to form crystalline powders.These powders were further treated ultrasonically under a fixed 6.7 gr/l particle concentration in demineralized water for 1, 3, 5, 7 hours and a fixed ultrasonic irradiation time of 1 hour to the dispersion of 6.7; 20; 33.3 gr/l concentrations. As to the results of crystallite size characterization, it is demonstrated that the mean crystallite size of BST with x = 0.3 and 0.7 undergo a slight change after the first 1 hour irradiation time and then remain almost unchanged. This was in contrary to the particle size in which the mean particle size of BST with x = 0.3 increased from 765 nm to 1405 nm after 7 hours irradiation time, while that of x = 0.7 increased from 505 nm to 1298 nm after 3 hours and then reduced back to the initial size after 7 hours ultra sonication time. The increase in particle size was due to large of cohesive forces among fine particles. It is also demonstrated that the concentration of particles in a dispersion with anionic surfactant do not effective to reduce the particle sizes ultrasonically. Nanoparticles with the mean size respectively 40 and 10 times larger than their respective crystallite size were successfully obtained respectively in x = 0.3 and x = 0.7.

  20. Contributions of knee swing initiation and ankle plantar flexion to the walking mechanics of amputees using a powered prosthesis.

    PubMed

    Ingraham, Kimberly A; Fey, Nicholas P; Simon, Ann M; Hargrove, Levi J

    2014-01-01

    Recently developed powered prostheses are capable of producing near-physiological joint torque at the knee and/or ankle joints. Based on previous studies of biological joint impedance and the mechanics of able-bodied gait, an impedance-based controller has been developed for a powered knee and ankle prosthesis that integrates knee swing initiation and powered plantar flexion in late stance with increasing ankle stiffness throughout stance. In this study, five prosthesis configuration conditions were tested to investigate the individual contributions of each sub-strategy to the overall walking mechanics of four unilateral transfemoral amputees as they completed a clinical 10-m walk test using a powered knee and ankle prosthesis. The baseline condition featured constant ankle stiffness and no swing initiation or powered plantar flexion. The four remaining conditions featured knee swing initiation alone (SI) or in combination with powered plantar flexion (SI+PF), increasing ankle stiffness (SI+IK), or both (SI+PF+IK). Self-selected walking speed did not significantly change between conditions, although subjects tended to walk the slowest in the baseline condition compared to conditions with swing initiation. The addition of powered plantar flexion resulted in significantly higher ankle power generation in late stance irrespective of ankle stiffness. The inclusion of swing initiation resulted in a significantly more flexed knee at toe off and a significantly higher average extensor knee torque following toe off. Identifying individual contributions of intrinsic control strategies to prosthesis biomechanics could help inform the refinement of impedance-based prosthesis controllers and simplify future designs of prostheses and lower-limb assistive devices alike.

  1. Low power consumption and continuously tunable all-optical microwave filter based on an opto-mechanical microring resonator.

    PubMed

    Liu, Li; Yang, Yue; Li, Zhihua; Jin, Xing; Mo, Wenqin; Liu, Xing

    2017-01-23

    We propose and experimentally demonstrate a continuously tunable all-optical microwave filter using a silicon opto-mechanical microring resonator (MRR). By finely adjusting the pump light with submilliwatt power level, transmission spectrum of the MRR could be continuously shifted based on the nonlinear effects, including the opto-mechanical effect and thermo-optic effect. Therefore, in the case of optical single sideband (OSSB) modulation, the frequency intervals between the optical carrier (near one MRR resonance) and the corresponding resonance could be flexibly manipulated, which is the critical factor to achieve continuously tunable microwave photonic filter (MPF). In the experiment, the central frequency of the MPF could be continuously tuned from 6 GHz to 19 GHz with the pump power lower than -2.5 dBm. The proposed opto-mechanical device is competent to process microwave signals with dominant advantages, such as compact footprint, all-optical control and low power consumption. In the future, using light to control light, the opto-mechanical structure on silicon platforms might have many other potential applications in microwave systems, such as microwave switch.

  2. Portable power supply for continuous mechanical ventilation during intrahospital transport of critically ill patients with ARDS.

    PubMed

    Barton, A C; Tuttle-Newhall, J E; Szalados, J E

    1997-08-01

    Patients with respiratory failure and poor pulmonary compliance requiring high levels of positive pressure ventilation are at high risk during intrahospital transportation. Most ICU ventilators currently do not have a built-in power supply. Manual bag-valve ventilation frequently is used but often without optimum mean airway pressures or minute ventilation guarantees. Transport ventilators also are limited in their ability to provide high positive end-expiratory pressure, variable inspiratory-expiratory ratios, or pressure-controlled ventilation. The 3M SARNS HELP (Hospital Emergency Limited Power) 115, a portable battery, provides continuous power to ICU ventilators and eliminates ventilator circuit interruption for the critical period of patient transportation.

  3. 78 FR 69543 - Record Requirements in the Mechanical Power Presses Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... of this rulemaking furthers the objectives of Executive Order (EO) 13563 (76 FR 3821, Jan. 21, 2011... clutch/brake mechanism, antirepeat feature, and single-stroke mechanism delineated in existing paragraph... weekly inspections and tests on the clutch/brake mechanism, antirepeat feature, and...

  4. Effects of longitudinal body position and swimming speed on mechanical power of deep red muscle from skipjack tuna (Katsuwonus pelamis).

    PubMed

    Syme, Douglas A; Shadwick, Robert E

    2002-01-01

    The mechanical power output of deep, red muscle from skipjack tuna (Katsuwonus pelamis) was studied to investigate (i) whether this muscle generates maximum power during cruise swimming, (ii) how the differences in strain experienced by red muscle at different axial body locations affect its performance and (iii) how swimming speed affects muscle work and power output. Red muscle was isolated from approximately mid-way through the deep wedge that lies next to the backbone; anterior (0.44 fork lengths, ANT) and posterior (0.70 fork lengths, POST) samples were studied. Work and power were measured at 25 degrees C using the work loop technique. Stimulus phases and durations and muscle strains (+/- 5.5 % in ANT and +/- 8 % in POST locations) experienced during cruise swimming at different speeds were obtained from previous studies and used during work loop recordings. In addition, stimulus conditions that maximized work were determined. The stimulus durations and phases yielding maximum work decreased with increasing cycle frequency (analogous to tail-beat frequency), were the same at both axial locations and were almost identical to those used by the fish during swimming, indicating that the muscle produces near-maximal work under most conditions in swimming fish. While muscle in the posterior region undergoes larger strain and thus produces more mass-specific power than muscle in the anterior region, when the longitudinal distribution of red muscle mass is considered, the anterior muscles appear to contribute approximately 40% more total power. Mechanical work per length cycle was maximal at a cycle frequency of 2-3 Hz, dropping to near zero at 15 Hz and by 20-50% at 1 Hz. Mechanical power was maximal at a cycle frequency of 5 Hz, dropping to near zero at 15 Hz. These fish typically cruise with tail-beat frequencies of 2.8-5.2 Hz, frequencies at which power from cyclic contractions of deep red muscles was 75-100% maximal. At any given frequency over this range, power

  5. Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems.

    PubMed

    Hinchet, Ronan; Kim, Sang-Woo

    2015-08-25

    In this issue of ACS Nano, Tang et al. investigate the ability of a triboelectric nanogenerator (TENG) to self-power a low-level laser cure system for osteogenesis by studying the efficiency of a bone remodeling laser treatment that is powered by a skin-patch-like TENG instead of a battery. We outline this field by highlighting the motivations for self-powered biomedical systems and by discussing recent progress in nanogenerators. We note the overlap between biomedical devices and TENGs and their dawning synergy, and we highlight key prospects for future developments. Biomedical systems should be more autonomous. This advance could improve their body integration and fields of action, leading to new medical diagnostics and treatments. However, future self-powered biomedical systems will need to be more flexible, biocompatible, and biodegradable. These advances hold the promise of enabling new smart autonomous biomedical systems and contributing significantly to the Internet of Things.

  6. Biophysical mechanisms: a component in the weight of evidence for health effects of power-frequency electric and magnetic fields.

    PubMed

    Swanson, John; Kheifets, Leeka

    2006-04-01

    Comparatively high exposures to power-frequency electric and magnetic fields produce established biological effects that are explained by accepted mechanisms and that form the basis of exposure guidelines. Lower exposures to magnetic fields (< 1 microT average in the home) are classified as "possibly carcinogenic" on the basis of epidemiological studies of childhood leukemia. This classification takes into consideration largely negative laboratory data. Lack of biophysical mechanisms operating at such low levels also argues against causality. We survey around 20 biophysical mechanisms that have been proposed to explain effects at such low levels, with particular emphasis on plausibility: the principle that to produce biological effects, a mechanism must produce a "signal" larger than the "noise" that exists naturally. Some of the mechanisms are impossible, and some require specific conditions for which there is limited or no evidence as to their existence in a way that would make them relevant to human exposure. Others are predicted to become plausible above some level of field. We conclude that effects below 5 microT are implausible. At about 50 microT, no specific mechanism has been identified, but the basic problem of implausibility is removed. Above about 500 microT, there are established or likely effects from accepted mechanisms. The absence of a plausible biophysical mechanism at lower fields cannot be taken as proof that health effects of environmental electric and magnetic fields are impossible. Nevertheless, it is a relevant consideration in assessing the overall evidence on these fields.

  7. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing: Preprint

    SciTech Connect

    Spataru, Sergiu; Hacke, Pater; Sera, Dezso

    2015-09-15

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. From the analysis we determine three main categories of failure modes associated with the module degradation consisting of: shunting, recombination losses, increased series resistance losses, and current mismatch losses associated with a decrease in photo-current generation by removal of some cell areas due to cell fractures. Based on the analysis, we propose an in-situ module power loss monitoring procedure that relies on dark current-voltage measurements taken during the stress test, and initial and final module flash testing, to determine the power degradation characteristic of the module.

  8. Microfabricated microengine for use as a mechanical drive and power source in the microdomain and fabrication process

    SciTech Connect

    Garcia, E.J.; Sniegowski, J.J.

    1994-12-31

    A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque to a micromechanism. The microengine can be operated at varying speeds and its motion can be reversed. Linear actuators are synchronized in order to provide linear oscillatory motion to the linkage means in the X and Y directions according to a desired position, rotational direction and speed of said mechanical output means. The output gear has gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.

  9. Microfabricated microengine for use as a mechanical drive and power source in the microdomain and fabrication process

    DOEpatents

    Garcia, E.J.; Sniegowski, J.J.

    1997-05-20

    A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque to a micromechanism. The microengine can be operated at varying speeds and its motion can be reversed. Linear actuators are synchronized in order to provide linear oscillatory motion to the linkage means in the X and Y directions according to a desired position, rotational direction and speed of said mechanical output means. The output gear has gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication. 30 figs.

  10. Microfabricated microengine for use as a mechanical drive and power source in the microdomain and fabrication process

    DOEpatents

    Garcia, Ernest J.; Sniegowski, Jeffry J.

    1997-01-01

    A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque to a micromechanism. The microengine can be operated at varying speeds and its motion can be reversed. Linear actuators are synchronized in order to provide linear oscillatory motion to the linkage means in the X and Y directions according to a desired position, rotational direction and speed of said mechanical output means. The output gear has gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.

  11. A supervisor for the successive 3D computations of magnetic, mechanical and acoustic quantities in power oil inductors and transformers

    SciTech Connect

    Reyne, G.; Magnin, H.; Berliat, G.; Clerc, C.

    1994-09-01

    A supervisor has been developed so as to allow successive 3D computations of different quantities by different softwares on the same physical problem. Noise of a given power oil transformer can be deduced from the surface vibrations of the tank. These vibrations are obtained through a mechanic computation whose Inputs are the electromagnetic forces provided . by an electromagnetic computation. Magnetic, mechanic and acoustic experimental data are compared with the results of the 3D computations. Stress Is put on the main characteristics of the supervisor such as the transfer of a given quantity from one mesh to the other.

  12. Take-off speed in jumping mantises depends on body size and a power-limited mechanism.

    PubMed

    Sutton, G P; Doroshenko, M; Cullen, D A; Burrows, M

    2016-07-15

    Many insects such as fleas, froghoppers and grasshoppers use a catapult mechanism to jump, and a direct consequence of this is that their take-off velocities are independent of their mass. In contrast, insects such as mantises, caddis flies and bush crickets propel their jumps by direct muscle contractions. What constrains the jumping performance of insects that use this second mechanism? To answer this question, the jumping performance of the mantis Stagmomantis theophila was measured through all its developmental stages, from 5 mg first instar nymphs to 1200 mg adults. Older and heavier mantises have longer hind and middle legs and higher take-off velocities than younger and lighter mantises. The length of the propulsive hind and middle legs scaled approximately isometrically with body mass (exponent=0.29 and 0.32, respectively). The front legs, which do not contribute to propulsion, scaled with an exponent of 0.37. Take-off velocity increased with increasing body mass (exponent=0.12). Time to accelerate increased and maximum acceleration decreased, but the measured power that a given mass of jumping muscle produced remained constant throughout all stages. Mathematical models were used to distinguish between three possible limitations to the scaling relationships: first, an energy-limited model (which explains catapult jumpers); second, a power-limited model; and third, an acceleration -: limited model. Only the model limited by muscle power explained the experimental data. Therefore, the two biomechanical mechanisms impose different limitations on jumping: those involving direct muscle contractions (mantises) are constrained by muscle power, whereas those involving catapult mechanisms are constrained by muscle energy.

  13. Take-off speed in jumping mantises depends on body size and a power-limited mechanism

    PubMed Central

    Doroshenko, M.; Cullen, D. A.; Burrows, M.

    2016-01-01

    ABSTRACT Many insects such as fleas, froghoppers and grasshoppers use a catapult mechanism to jump, and a direct consequence of this is that their take-off velocities are independent of their mass. In contrast, insects such as mantises, caddis flies and bush crickets propel their jumps by direct muscle contractions. What constrains the jumping performance of insects that use this second mechanism? To answer this question, the jumping performance of the mantis Stagmomantis theophila was measured through all its developmental stages, from 5 mg first instar nymphs to 1200 mg adults. Older and heavier mantises have longer hind and middle legs and higher take-off velocities than younger and lighter mantises. The length of the propulsive hind and middle legs scaled approximately isometrically with body mass (exponent=0.29 and 0.32, respectively). The front legs, which do not contribute to propulsion, scaled with an exponent of 0.37. Take-off velocity increased with increasing body mass (exponent=0.12). Time to accelerate increased and maximum acceleration decreased, but the measured power that a given mass of jumping muscle produced remained constant throughout all stages. Mathematical models were used to distinguish between three possible limitations to the scaling relationships: first, an energy-limited model (which explains catapult jumpers); second, a power-limited model; and third, an acceleration-limited model. Only the model limited by muscle power explained the experimental data. Therefore, the two biomechanical mechanisms impose different limitations on jumping: those involving direct muscle contractions (mantises) are constrained by muscle power, whereas those involving catapult mechanisms are constrained by muscle energy. PMID:27284067

  14. Subspace inverse power method and polynomial chaos representation for the modal frequency responses of random mechanical systems

    NASA Astrophysics Data System (ADS)

    Pagnacco, E.; de Cursi, E. Souza; Sampaio, R.

    2016-07-01

    This study concerns the computation of frequency responses of linear stochastic mechanical systems through a modal analysis. A new strategy, based on transposing standards deterministic deflated and subspace inverse power methods into stochastic framework, is introduced via polynomial chaos representation. Applicability and effectiveness of the proposed schemes is demonstrated through three simple application examples and one realistic application example. It is shown that null and repeated-eigenvalue situations are addressed successfully.

  15. Levers and linkages: mechanical trade-offs in a power-amplified system.

    PubMed

    Anderson, Philip S L; Claverie, Thomas; Patek, S N

    2014-07-01

    Mechanical redundancy within a biomechanical system (e.g., many-to-one mapping) allows morphologically divergent organisms to maintain equivalent mechanical outputs. However, most organisms depend on the integration of more than one biomechanical system. Here, we test whether coupled mechanical systems follow a pattern of amplification (mechanical changes are congruent and evolve toward the same functional extreme) or independence (mechanisms evolve independently). We examined the correlated evolution and evolutionary pathways of the coupled four-bar linkage and lever systems in mantis shrimp (Stomatopoda) ultrafast raptorial appendages. We examined models of character evolution in the framework of two divergent groups of stomatopods-"smashers" (hammer-shaped appendages) and "spearers" (bladed appendages). Smashers tended to evolve toward force amplification, whereas spearers evolved toward displacement amplification. These findings show that coupled biomechanical systems can evolve synergistically, thereby resulting in functional amplification rather than mechanical redundancy.

  16. Optical, electrical and mechanical properties of Ga-doped ZnO thin films under different sputtering powers

    NASA Astrophysics Data System (ADS)

    Chang, Sheng Hsiung; Cheng, Hsin-Ming; Tien, Chuen-Lin; Lin, Shih-Chin; Chuang, Kie-Pin

    2014-12-01

    We present the optical, electrical and mechanical properties of Ga-doped zinc oxide (GZO) thin films prepared by radio-frequency (RF) magnetron sputtering at room temperature under different RF powers (80-180 W). The thickness, electron concentration, and electron mobility of the GZO thin film were determined by fitting the visible-to-near-infrared transmittance spectrum of GZO film/glass using the transfer matrix method. The bending force per unit width was measured by a home-made Twyman-Green interferometer with the fast Fourier transform method. The obtained results show that the optical, electrical and mechanical properties of GZO thin film are subject to the RF power. At an RF power of 140 W, the local minimum of bending force per unit width corresponds to the highest electron mobility in GZO thin film. This study demonstrates that the optical, electrical and mechanical properties of GZO thin film can be fully resolved by non-contact optical methods.

  17. Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor.

    PubMed

    Lin, Long; Wang, Sihong; Niu, Simiao; Liu, Chang; Xie, Yannan; Wang, Zhong Lin

    2014-02-26

    In this work, we introduced an innovative noncontact, free-rotating disk triboelectric nanogenerator (FRD-TENG) for sustainably scavenging the mechanical energy from rotary motions. Its working principle was clarified through numerical calculations of the relative-rotation-induced potential difference, which serves as the driving force for the electricity generation. The unique characteristic of the FRD-TENG enables its high output performance compared to its working at the contact mode, with an effective output power density of 1.22 W/m(2) for continuously driving 100 light-emitting diodes. Ultrahigh stability of the output and exceptional durability of the device structure were achieved, and the reliable output was utilized for fast/effective charging of a lithium ion battery. Based on the relationship between its output performance and the parameters of the mechanical stimuli, the FRD-TENG could be employed as a self-powered mechanical sensor, for simultaneously detecting the vertical displacement and rotation speed. The FRD-TENG has superior advantages over the existing disk triboelectric nanogenerator, and exhibits significant progress toward practical applications of nanogenerators for both energy harvesting and self-powered sensor networks.

  18. Size dependence of the radio-luminosity-mechanical-power correlation in radio galaxies

    SciTech Connect

    Shabala, S. S.; Godfrey, L. E. H.

    2013-06-01

    We examine the relationship between source radio luminosity and kinetic power in active galactic nucleus jets. We show that neglecting various loss processes can introduce a systematic bias in the jet powers inferred from radio luminosities for a sample of radio galaxies. This bias can be corrected for by considering source size as well as radio luminosity; effectively the source size acts as a proxy for source age. Based on a sample of Fanaroff-Riley Type II radio sources with jet powers derived from the measured hotspot parameters, we empirically determine a new expression for jet power that accounts for the source size, (Q{sub jet}/10{sup 36} W)=1.5{sub −0.8}{sup +1.8}(L{sub 151}/10{sup 27} W Hz{sup −1}){sup 0.8}(1+z){sup 1.0}(D/kpc){sup 0.58±0.17}, where D is source size and L {sub 151} the 151 MHz radio luminosity. By comparing a flux-limited and volume-limited sample, we show that any derived radio-luminosity-jet-power relation depends sensitively on sample properties, in particular the source size distribution and the size-luminosity correlation inherent in the sample. Such bias will affect the accuracy of the kinetic luminosity function derived from lobe radio luminosities and should be treated with caution.

  19. Super-Eddington mechanical power of an accreting black hole in M83.

    PubMed

    Soria, R; Long, K S; Blair, W P; Godfrey, L; Kuntz, K D; Lenc, E; Stockdale, C; Winkler, P F

    2014-03-21

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(40) erg second(-1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  20. Super-Eddington Mechanical Power of an Accreting Black Hole in M83

    NASA Technical Reports Server (NTRS)

    Soria, R.; Long, K. S.; Blair, W. P.; Godfrey, L.; Kuntz, K. D.; Lenc, E.; Stockdale, C.; Winkler, P. F.

    2014-01-01

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(exp 40) erg second(exp -1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  1. [Mechanisms of power in disease: the case of the novel "The Plague" by Albert Camus].

    PubMed

    Hernández-Mansilla, José Miguel

    2009-01-01

    This paper explores the elements of power that can be found in an epidemic like the plague. To undertake this task we first studied, the form of containment of the plague from a historical perspective and then, compare them with those described by Camus in his novel The Plague. We also studied the experience of sin among humans in an effort to determine divine power. This last point explores the fear of being touched during an epidemic and how this is overcome by the innate feeling of love among men. Finally in the novel, this is illustrated by the love of Orpheus for Eurydice.

  2. Suppressing magneto-mechanical vibrations and noise in magnetostriction variation for three-phase power transformers

    NASA Astrophysics Data System (ADS)

    Hsu, Chang-Hung; Liu, Jui-Jung; Fu, Chao-Ming; Huang, Yi-Mei; Chang, Chia-Wen; Cheng, Shan-Jen

    2015-05-01

    This study investigated the effect of magnetostriction-induced core magnetomechanical vibrations and noise on the magnetic properties of power transformers. The magnetostriction of grain-oriented Si steels was found to be extremely sensitive to compressive stress applied along the rolling direction and to tensile stress applied along the transverse direction. The compressive stress increased the variation in the magnitude of magnetostriction, which is correlated with core vibration and noise. A 2D model of the power transformer was used to simulate the noise and vibration variables through a finite element analysis.

  3. Mechanism of emergence of intense vibrations of turbines on the Sayano-Shushensk hydro power plant

    NASA Astrophysics Data System (ADS)

    Kurzin, V. B.; Seleznev, V. S.

    2010-07-01

    It is demonstrated that the level of vibrations of turbines on the Sayano-Shushensk hydro power plant is enhanced by the capability of a compressible fluid to perform its own hydroacoustic oscillations (which can be unstable) in the turbine duct. Based on the previously obtained results of solving the problem of natural hydroacoustic oscillations in the turbine duct and some ideas about turbine interaction with an unsteady compressible fluid flow, results of full-scale studies of turbine vibrations and seismic monitoring of the dam of the Sayano-Shushensk hydro power plant before and during the accident are analyzed.

  4. Children and adults minimise activated muscle volume by selecting gait parameters that balance gross mechanical power and work demands

    PubMed Central

    Hubel, Tatjana Y.; Usherwood, James R.

    2015-01-01

    ABSTRACT Terrestrial locomotion on legs is energetically expensive. Compared with cycling, or with locomotion in swimming or flying animals, walking and running are highly uneconomical. Legged gaits that minimise mechanical work have previously been identified and broadly match walking and running at appropriate speeds. Furthermore, the ‘cost of muscle force’ approaches are effective in relating locomotion kinetics to metabolic cost. However, few accounts have been made for why animals deviate from either work-minimising or muscle-force-minimising strategies. Also, there is no current mechanistic account for the scaling of locomotion kinetics with animal size and speed. Here, we report measurements of ground reaction forces in walking children and adult humans, and their stance durations during running. We find that many aspects of gait kinetics and kinematics scale with speed and size in a manner that is consistent with minimising muscle activation required for the more demanding between mechanical work and power: spreading the duration of muscle action reduces activation requirements for power, at the cost of greater work demands. Mechanical work is relatively more demanding for larger bipeds – adult humans – accounting for their symmetrical M-shaped vertical force traces in walking, and relatively brief stance durations in running compared with smaller bipeds – children. The gaits of small children, and the greater deviation of their mechanics from work-minimising strategies, may be understood as appropriate for their scale, not merely as immature, incompletely developed and energetically sub-optimal versions of adult gaits. PMID:26400978

  5. Automotive Power Flow System II; Automotive Mechanics--Advanced: 9047.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to provide the student with all the skills, technical knowledge, safety practices, and general information that is required to understand the theory of operation, to diagnose, and to service the units that make up the power flow system of the automobile. The course of study includes…

  6. Investigations into the Power MOSFET SEGR Phenomenon and its Physical Mechanism

    NASA Technical Reports Server (NTRS)

    Swift, G. M.; Edmonds, L. E.; Miyahira, T.; Nichols, D. K.; Johnston, A. H.

    1997-01-01

    The state of understanding of the destructive SEGR event in power MOSFETs is relatively mature with large published efforts, both experimental and theoretical. However, gasps remain in the uderstanding of the phenomenon, including unexplained anomalies, emperical-only dependencies on some important device and incident ion physical parameters, and limited insight into latent effets.

  7. Studies of basic mechanisms in high pressure gases: Applications to high efficiency high power lasers

    NASA Technical Reports Server (NTRS)

    Verdeyen, J. T.; Cherrington, B. E.; Leslie, S. G.; Millar, W. S.; Edwards, B. E.

    1976-01-01

    A high power pulsed dye laser was used to optically excite high pressure cesium-xenon mixtures and the resulting measurements are presented. A microwave discharge in rubidium at relatively high xenon pressure was achieved. Preliminary studies of cadium-rare gas mixtures are discussed and a detailed description of the entire experimental apparatus is given.

  8. Mechanisms of Power within a Community-Based Food Security Planning Process

    ERIC Educational Resources Information Center

    McCullum, Christine; Pelletier, David; Barr, Donald; Wilkins, Jennifer; Habicht, Jean-Pierre

    2004-01-01

    A community food security movement has begun to address problems of hunger and food insecurity by utilizing a community-based approach. Although various models have been implemented, little empirical research has assessed how power operates within community-based food security initiatives. The purpose of this research was to determine how power…

  9. Improvement of wireless power transmission efficiency of implantable subcutaneous devices by closed magnetic circuit mechanism.

    PubMed

    Jo, Sung-Eun; Joung, Sanghoon; Suh, Jun-Kyo Francis; Kim, Yong-Jun

    2012-09-01

    Induction coils were fabricated based on flexible printed circuit board for inductive transcutaneous power transmission. The coil had closed magnetic circuit (CMC) structure consisting of inner and outer magnetic core. The power transmission efficiency of the fabricated device was measured in the air and in vivo condition. It was confirmed that the CMC coil had higher transmission efficiency than typical air-core coil. The power transmission efficiency during a misalignment between primary coil and implanted secondary coil was also evaluated. The decrease of mutual inductance between the two coils caused by the misalignment led to a low efficiency of the inductive link. Therefore, it is important to properly align the primary coil and implanted secondary coil for effective power transmission. To align the coils, a feedback coil was proposed. This was integrated on the backside of the primary coil and enabled the detection of a misalignment of the primary and secondary coils. As a result of using the feedback coil, the primary and secondary coils could be aligned without knowledge of the position of the implanted secondary coil.

  10. Prolonged mechanical and physiological changes in the upper extremity following short-term simulated power hand tool use.

    PubMed

    Chourasia, Amrish O; Sesto, Mary E; Block, Walter F; Radwin, Robert G

    2009-01-01

    This study investigated in-vivo changes in upper limb dynamic mechanical properties and magnetic resonance imaging (MRI) parameters following short-term power hand tool operation. Previous studies have found reduction in mechanical properties following short-term power tool usage at long build-up times. This study advances that work by having participants operate a simulated pistol grip power hand tool and evaluating changes in mechanical properties, strength, discomfort level and MRI prior to tool operation and daily for 3 d after tool operation. Twenty-four participants were randomly assigned to operate a simulated power hand tool for either a high peak reaction force of 123 N (peak torque=8 Nm, build-up time=250 ms) or at a low peak reaction force of 5 N (peak torque=2 Nm, build-up time=50 ms). Subjects operated the tool for 60 min at the rate of six times per min. A reduction in stiffness (27%, p<0.05) was observed 24 h after tool operation for the high force group and this change persisted (26%, p<0.05) up to 72 h after tool operation. Similar changes were not observed for the low force group. No changes were observed in mass moment of inertia, damping, isometric strength and damping for either group (p>0.05). There was a signal intensity increase (12%, CI 19%, 5.06%) in the supinator muscle MRI for both groups 24 h after tool operation but only the high force group remained elevated (10%, CI 13.7%, 0.06%) 72 h after tool operation. Persistent short-term changes in mechanical and MRI parameters at high force levels could indicate increased strain on the upper limb and may negatively affect ability to react during rapid forceful loading of the upper limb. This research can ultimately lead to better ergonomic interventions through quantitative power hand tool design guidelines and work practices based on understanding the damaging effects of exposure to specific levels of reaction force, build-up time and repetition, as well as providing new outcome measures for

  11. Nonlinear optics at low powers: Alternative mechanism of on-chip optical frequency comb generation

    NASA Astrophysics Data System (ADS)

    Rogov, Andrei S.; Narimanov, Evgenii E.

    2016-12-01

    Nonlinear optical effects provide a natural way of light manipulation and interaction and form the foundation of applied photonics, from high-speed signal processing and telecommunication to ultrahigh-bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers or boosting efficiency of nonlinear parametric processes by enhancing local-field intensity with high-quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multiphoton absorption. We present an alternative to this conventional approach, with strong nonlinear optical effects at low local intensities, based on period-doubling bifurcations near nonlinear cavity antiresonance and apply it to low-power optical frequency comb generation in a silicon chip.

  12. A six-axis hybrid vibration isolation system using active zero-power control supported by passive weight support mechanism

    NASA Astrophysics Data System (ADS)

    Emdadul Hoque, Md.; Mizuno, Takeshi; Ishino, Yuji; Takasaki, Masaya

    2010-08-01

    This paper presents a six-degree-of-freedom hybrid vibration isolation system integrated with an active negative suspension, an active-passive positive suspension and a passive weight support mechanism. The aim of the research consists in maximizing the system and control performances, and minimizing the system development and maintenance costs. The vibration isolation system is, fundamentally, developed by connecting an active negative suspension realized by zero-power control in series with an active-passive positive suspension. The system could effectively isolate ground vibrations in addition to suppress the effect of on-board generated direct disturbances of the six-axis motions, associated with vertical and horizontal directions. The system is further reinforced by introducing a passive weight support mechanism in parallel with the basic system. The modified system with zero-power control allows simplified design of the isolation table without power consumption. It also offers enhanced performance on direct disturbance suppression and large payload supporting capabilities, without degrading transmissibility characteristics. A mathematical model of the system is presented and, therefore, analyzed to demonstrate that zero-compliance to direct disturbance could be generated by the developed system. Experimental demonstrations validate the proposed concept that exhibits high stiffness of the isolation table to static and dynamic direct disturbances, and good transmissibility characteristics against ground vibration. Further improvements of the vibration isolation system and the control system are discussed as well.

  13. What is the mechanism of power-law distributed Poincaré recurrences in higher-dimensional systems?

    NASA Astrophysics Data System (ADS)

    Lange, Steffen; Bäcker, Arnd; Ketzmerick, Roland

    2016-11-01

    The statistics of Poincaré recurrence times in Hamiltonian systems typically shows a power-law decay with chaotic trajectories sticking to some phase-space regions for long times. For higher-dimensional systems the mechanism of this power-law trapping is still unknown. We investigate trapped orbits of a generic 4D symplectic map in phase space and frequency space and find that, in contrast to 2D maps, the trapping is i) not due to a hierarchy in phase space. Instead, it occurs at the surface of the regular region, ii) outside of the Arnold web. The chaotic dynamics in this sticky region is iii) dominated by resonance channels which reach far into the chaotic region: We observe iii.a) clear signatures of some kind of partial transport barriers and conjecture iii.b) a stochastic process with an effective drift along resonance channels. These two processes lay the basis for a future understanding of the mechanism of power-law trapping in higher-dimensional systems.

  14. Mechanism of pain relief by low-power infrared irradiation: ATP is an IR-target molecule in nociceptive neurons.

    PubMed

    Yachnev, Igor L; Plakhova, Vera B; Podzorova, Svetlana A; Shelykh, Tatiana N; Rogachevsky, Ilya V; Krylov, Boris V

    2012-01-01

    Effects of infrared (IR) radiation generated by a low-power CO2-laser on the membrane of cultured dissociated nociceptive neurons of newborn rat spinal ganglia were investigated using the whole-cell patch-clamp method. Low-power IR radiation diminished the voltage sensitivity of activation gating machinery of slow sodium channels (Na(v)1.8). Ouabain known to block both transducer and pumping functions of Na+,K+-ATPase eliminated IR irradiation effects. The molecular mechanism of interaction of CO2-laser radiation with sensory membrane was proposed. The primary event of this interaction is the process of energy absorption by ATP molecules. The transfer of vibrational energy from Na+,K+- ATPase-bound and vibrationally excited ATP molecules to Na+,K+-ATPase activates this enzyme and converts it into a signal transducer. This effect leads to a decrease in the voltage sensitivity of Na(v)1.8 channels. The effect of IR-radiation was elucidated by the combined application of a very sensitive patch-clamp method and an optical facility with a controlled CO2-laser. As a result, the mechanism of interaction of non-thermal low-power IR radiation with the nociceptive neuron membrane is suggested.

  15. Experimental study on thrust and power of flapping-wing system based on rack-pinion mechanism.

    PubMed

    Nguyen, Tuan Anh; Vu Phan, Hoang; Au, Thi Kim Loan; Park, Hoon Cheol

    2016-06-20

    This experimental study investigates the effect of three parameters: wing aspect ratio (AR), wing offset, and flapping frequency, on thrust generation and power consumption of a flapping-wing system based on a rack-pinion mechanism. The new flapping-wing system is simple but robust, and is able to create a large flapping amplitude. The thrust measured by a load cell reveals that for a given power, the flapping-wing system using a higher wing AR produces larger thrust and higher flapping frequency at the wing offset of 0.15[Formula: see text] or 0.20[Formula: see text] ([Formula: see text] is the mean chord) than other wing offsets. Of the three parameters, the flapping frequency plays a more significant role on thrust generation than either the wing AR or the wing offset. Based on the measured thrusts, an empirical equation for thrust prediction is suggested, as a function of wing area, flapping frequency, flapping angle, and wing AR. The difference between the predicted and measured thrusts was less than 7%, which proved that the empirical equation for thrust prediction is reasonable. On average, the measured power consumption to flap the wings shows that 46.5% of the input power is spent to produce aerodynamic forces, 14.0% to overcome inertia force, 9.5% to drive the rack-pinion-based flapping mechanism, and 30.0% is wasted as the power loss of the installed motor. From the power analysis, it is found that the wing with an AR of 2.25 using a wing offset of 0.20[Formula: see text] showed the optimal power loading in the flapping-wing system. In addition, the flapping frequency of 25 Hz is recommended as the optimal frequency of the current flapping-wing system for high efficiency, which was 48.3%, using a wing with an AR of 2.25 and a wing offset of 0.20[Formula: see text] in the proposed design.

  16. Case Study on Incentive Mechanism of Energy Efficiency Retrofit in Coal-Fueled Power Plant in China

    PubMed Central

    Yuan, Donghai; Guo, Xujing; Cao, Yuan; He, Liansheng; Wang, Jinggang; Xi, Beidou; Li, Junqi; Ma, Wenlin; Zhang, Mingshun

    2012-01-01

    An ordinary steam turbine retrofit project is selected as a case study; through the retrofit, the project activities will generate emission reductions within the power grid for about 92,463 tCO2e per annum. The internal rate of return (IRR) of the project is only −0.41% without the revenue of carbon credits, for example, CERs, which is much lower than the benchmark value of 8%. Only when the unit price of carbon credit reaches 125 CNY/tCO2, the IRR could reach the benchmark and an effective carbon tax needs to increase the price of carbon to 243 CNY/tce in order to make the project financially feasible. Design of incentive mechanism will help these low efficiency enterprises improve efficiency and reduce CO2 emissions, which can provide the power plants sufficient incentive to implement energy efficiency retrofit project in existing coal-fuel power generation-units, and we hope it will make a good demonstration for the other low efficiency coal-fueled power generation units in China. PMID:23365532

  17. Influence of laser power on microstructure and mechanical properties of laser welded-brazed Mg to Ni coated Ti alloys

    NASA Astrophysics Data System (ADS)

    Tan, Caiwang; Lu, Qingshuang; Chen, Bo; Song, Xiaoguo; Li, Liqun; Feng, Jicai; Wang, Yang

    2017-03-01

    AZ31B Magnesium (Mg) and Ti-6Al-4V titanium (Ti) alloys with Ni coating were joined by laser welding-brazing process using AZ92 Mg based filler. The influence of laser power on microstructure and mechanical properties were investigated. Ni coating was found to significantly promote good wetting-spreading ability of molten filler on the Ti sheet. Acceptable joints without obvious defects were obtained within a relatively wide processing window. In the process metallurgical bonding was achieved by the formation of Ti3Al phase at direct irradiation zone and Al-Ni phase followed by a layer of Mg-Al-Ni ternary compound adjacent to the fusion zone at the intermediate zone. The thickness of reaction layers increased slowly with the increasing laser power. The tensile-shear test indicated that joints produced at the laser power of 1300 W reached 2387 N fracture load, representing 88.5% joint efficiency with respect to the Mg base metal. The corresponding failure occurred in the fusion zone of the Mg base metal, while joints fractured at the interface at lower/higher laser power due to the crack or excessive intermetallic compound (IMC) formation along the interface.

  18. Case study on incentive mechanism of energy efficiency retrofit in coal-fueled power plant in China.

    PubMed

    Yuan, Donghai; Guo, Xujing; Cao, Yuan; He, Liansheng; Wang, Jinggang; Xi, Beidou; Li, Junqi; Ma, Wenlin; Zhang, Mingshun

    2012-01-01

    An ordinary steam turbine retrofit project is selected as a case study; through the retrofit, the project activities will generate emission reductions within the power grid for about 92,463 tCO(2)e per annum. The internal rate of return (IRR) of the project is only -0.41% without the revenue of carbon credits, for example, CERs, which is much lower than the benchmark value of 8%. Only when the unit price of carbon credit reaches 125 CNY/tCO(2), the IRR could reach the benchmark and an effective carbon tax needs to increase the price of carbon to 243 CNY/tce in order to make the project financially feasible. Design of incentive mechanism will help these low efficiency enterprises improve efficiency and reduce CO(2) emissions, which can provide the power plants sufficient incentive to implement energy efficiency retrofit project in existing coal-fuel power generation-units, and we hope it will make a good demonstration for the other low efficiency coal-fueled power generation units in China.

  19. Electrical and mechanical H(max)-to-M(max) ratio in power- and endurance-trained athletes.

    PubMed

    Maffiuletti, N A; Martin, A; Babault, N; Pensini, M; Lucas, B; Schieppati, M

    2001-01-01

    The aim of this study was to compare the mechanical and electromyographic (EMG) characteristics of soleus motor units activated during maximal H reflex and direct M response among subjects with different histories of physical activity. Power-trained athletes produced stronger twitches, with a higher rate of twitch tension buildup and relaxation, than their endurance counterparts for both maximal H-reflex and maximal M-wave responses. The maximal H-reflex-to-maximal M-wave ratios for both force output (twitch) and EMG wave amplitude were significantly lower in power-trained than endurance-trained athletes. However, power-trained athletes exhibited a significantly greater twitch-to-EMG ratio for the reflexly activated motor units with respect to the entire motor pool, whereas endurance-trained athletes had comparable twitch-to-EMG ratios for both reflexly and directly activated units. Power training increases the force output of the whole ensemble of the motor units, thereby compensating for the lower efficacy of the reflex transmission between Ia spindle afferent input and soleus alpha-motoneuron. On the other hand, the lower level of force evoked by the reflexly activated units in endurance-trained athletes is associated with a greater motor pool reflex excitability. Therefore, endurance-trained athletes produce the necessary force by recruitment of more slow-twitch units than do other subjects for comparable levels of force and type of task.

  20. Influence of duty cycle on the power-duration relationship: observations and potential mechanisms.

    PubMed

    Broxterman, R M; Ade, C J; Wilcox, S L; Schlup, S J; Craig, J C; Barstow, T J

    2014-02-01

    The highest sustainable rate of aerobic metabolism [critical power (CP)] and the finite amount of work that can be performed above CP (W' [curvature constant]) were determined under two muscle contraction duty cycles. Eight men completed at least three constant-power handgrip tests to exhaustion to determine CP and W' for 50% and 20% duty cycles, while brachial artery blood flow (Q̇BA) and deoxygenated-[hemoglobin + myoglobin] (deoxy-[Hb+Mb]) were measured. CP was lower for the 50% duty cycle (3.9 ± 0.9 W) than the 20% duty cycle (5.1 ± 0.8 W; p < 0.001), while W' was not significantly different (50% duty cycle: 452 ± 141 J vs. 20% duty cycle: 432 ± 130 J; p > 0.05). At the same power output, Q̇BA and deoxy-[Hb + Mb] achieved higher end-exercise values for the 20% duty cycle (9.87 ± 1.73 ml·s(-1); 51.7 ± 4.7 μM) than the 50% duty cycle (7.37 ± 1.76 ml·s(-1), p < 0.001; 44.3 ± 2.4 μM, p < 0.03). These findings indicate that blood flow influences CP, but not W'.

  1. The maximal mechanical capabilities of leg extensors muscles to generate velocity and power improve at altitude.

    PubMed

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2016-08-16

    This study aimed (a) to analyze the effect of an acute exposure to terrestrial altitude on the force-velocity relationship parameters (maximum force [F0)], maximum velocity [V0)], and maximum power [P0)]) during a loaded squat jump (SJ), and (b) to compare unloaded SJ and countermovement jump (CMJ) performance between sea level and altitude conditions. Seventeen international swimmers were tested at sea level (295 m asl) and 7 days later at terrestrial altitude (2320 m asl) during their first 24 hours of altitude exposure. The maximum values of force and velocity were recorded during a loaded SJ (25-100% of body weight) to determine F0, V0, and P0 parameters. Inconsequential differences between environmental conditions were found for F0 (P = 0.993, 0.02%). However, V0 (P = 0.038, 7.6%) and P0 (P = 0.004, 6.8%) were higher at altitude. Peak values of force (SJ: P = 0.420, 1.19%; CMJ: P = 0.010, 3.6%), power (SJ: P = 0.028, 3.5%; CMJ: P = 0.005, 3.82%), and take-off velocity (SJ: P = 0.071, 1.6%; CMJ: P = 0.009, 1.9%) recorded during the SJ and CMJ were also higher at altitude. These results highlight the potential effect of an acute exposure to terrestrial altitude on enhancing vertical jump performance. The increase in maximal power of the leg muscles at altitude is caused by an improvement in the theoretical maximal velocity at which lower limbs can extend with no significant changes for the theoretical maximal force.

  2. Halbach array generator/motor having an automatically regulated output voltage and mechanical power output

    DOEpatents

    Post, Richard F.

    2005-02-22

    A motor/generator having its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along its axis of rotation. The rotor includes a Halbach array. The stator windings are switched or commutated to provide a DC motor/generator much the same as in a conventional DC motor/generator. The voltage and power are automatically regulated by using centrifugal force to change the diameter of the rotor, and thereby vary the radial gap in between the stator and the rotating Halbach array, as a function of the angular velocity of the rotor.

  3. 29 CFR 1918.65 - Mechanically powered vehicles used aboard vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... permitted in this section. Vehicles with a fuel system leak or any other safety defect shall not be operated. (2) Braking systems or other mechanisms used for braking shall be operable and in safe condition. (3... performance capability to the original parts that they replace. (4) Repairs to the fuel and ignition...

  4. 29 CFR 1918.65 - Mechanically powered vehicles used aboard vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... permitted in this section. Vehicles with a fuel system leak or any other safety defect shall not be operated. (2) Braking systems or other mechanisms used for braking shall be operable and in safe condition. (3... performance capability to the original parts that they replace. (4) Repairs to the fuel and ignition...

  5. 29 CFR 1918.65 - Mechanically powered vehicles used aboard vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permitted in this section. Vehicles with a fuel system leak or any other safety defect shall not be operated. (2) Braking systems or other mechanisms used for braking shall be operable and in safe condition. (3... performance capability to the original parts that they replace. (4) Repairs to the fuel and ignition...

  6. 29 CFR 1918.65 - Mechanically powered vehicles used aboard vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... permitted in this section. Vehicles with a fuel system leak or any other safety defect shall not be operated. (2) Braking systems or other mechanisms used for braking shall be operable and in safe condition. (3... performance capability to the original parts that they replace. (4) Repairs to the fuel and ignition...

  7. The mechanism of formation of the droplets on the electrodes under the impact of the high power density streams

    NASA Astrophysics Data System (ADS)

    Goncharov, V. D.; Sorokin, K. S.; Yashkardin, R. V.; Fiskin, E. M.

    2016-07-01

    The article contains a brief description of functioning principles of the device for creating ultradispersive powders of metals under the impact of electrically charged streams with power density about 108 W/cm2. The results of atomic forced microscopy (AFM) measurements of surfaces of the electrodes exposed to dispergate the microdroplets, which allowed to study the droplets formation steps are presented. The results of AFM surfaces of the substrate surfaces to be inflicted by the dispergated droplets are presented. The dependency of the particles sizes on the distance between the electrode and substrate allows to consider the main mechanism of division the dispergated from the electrode surface droplets the Rayleigh instability.

  8. On the Exploration of Adaptive Mechanisms Providing Reliability in Clustered WSNs for Power Plant Monitoring

    PubMed Central

    Rathinavel, Sathiyaseelan; Pandi, Vijayakumar; Sivaraman, Audithan

    2016-01-01

    Wireless Sensor Networks (WSNs) are used in almost every sensing and detection environment instead of wired devices in the current world, all the more in power plant monitoring applications. In such a kind of environment, providing reliability is a challenging task, since WSN makes use of low powered sensors. There are many existing works that provide reliable transmission in WSN (predominantly via multipath routing). However, most of the existing works take additional delay, excessive packet loss, and energy consumption, and hence they provide less packet delivery and throughput. Adaptive Priority Routing (APR) is first proposed during the initial design to provide efficiency in next hop selection. APR computes the priority value for selecting the intermediate nodes during the data transmission in order to improve the packet delivery, throughput, and energy efficiency. In addition to this, APR is developed into QAPR protocol to provide reliability which can operate in two modes, D representing distance mode and Q representing quality of service (QoS) mode. The proposed work is simulated in both flat topology and hierarchical topologies and the simulation analysis shows that the reliability is increased significantly in comparison with existing works. PMID:26885548

  9. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.

    PubMed

    Wang, Zhong Lin

    2013-11-26

    Triboelectrification is an effect that is known to each and every one probably since ancient Greek time, but it is usually taken as a negative effect and is avoided in many technologies. We have recently invented a triboelectric nanogenerator (TENG) that is used to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. As for this power generation unit, in the inner circuit, a potential is created by the triboelectric effect due to the charge transfer between two thin organic/inorganic films that exhibit opposite tribo-polarity; in the outer circuit, electrons are driven to flow between two electrodes attached on the back sides of the films in order to balance the potential. Since the most useful materials for TENG are organic, it is also named organic nanogenerator, which is the first using organic materials for harvesting mechanical energy. In this paper, we review the fundamentals of the TENG in the three basic operation modes: vertical contact-separation mode, in-plane sliding mode, and single-electrode mode. Ever since the first report of the TENG in January 2012, the output power density of TENG has been improved 5 orders of magnitude within 12 months. The area power density reaches 313 W/m(2), volume density reaches 490 kW/m(3), and a conversion efficiency of ∼60% has been demonstrated. The TENG can be applied to harvest all kinds of mechanical energy that is available but wasted in our daily life, such as human motion, walking, vibration, mechanical triggering, rotating tire, wind, flowing water, and more. Alternatively, TENG can also be used as a self-powered sensor for actively detecting the static and dynamic processes arising from mechanical agitation using the voltage and current output signals of the TENG, respectively, with potential applications for touch pad and smart skin technologies. To enhance the performance of the TENG, besides the vast choices of materials in the triboelectric

  10. Analysis of the working process and mechanical losses in a Stirling engine for a solar power unit

    SciTech Connect

    Makhkamov, K.K.; Ingham, D.B.

    1999-05-01

    In this paper a second level mathematical model for the computational simulation of the working process of a 1-kW Stirling engine has been used and the results obtained are presented. The internal circuit of the engine in the calculation scheme was divided into five chambers, namely, the expansion space, heater, regenerator, cooler and the compression space, and the governing system of ordinary differential equations for the energy and mass conservation were solved in each chamber by Euler`s method. In addition, mechanical losses in the construction of the engine have been determined and the computational results show that the mechanical losses for this particular design of the Stirling engine may be up to 50% of the indicated power of the engine.

  11. Review of power operation and maintenance program. Mechanical features. Review report. Upper Colorado region

    SciTech Connect

    Cline, R.

    1997-02-01

    Fontenell Powerplant - The mechanical equipment here is generally in good condition and well maintained. During the review machine vibration signatures were taken at various loads. No significant problems were found during these tests, although a bearing rub was noted at the upper and lower generator guide bearings. Flaming Gorge - The mechanical equipment here is in good condition and well maintained. Machine vibration signatures were taken on units 1 and 2. Unit 3 was down for annual maintenace. The data from Unit 1 indicated no problems. The data from Unit 2 indicated a bearing rub on the upper and lower generator guide bearings. The bearing temperatures at both of these bearings are not excessive but they should be monitored for any unusal increases.

  12. Performance of reduced wall EPR insulated medium voltage power cables. Part 2: Mechanical characteristics

    SciTech Connect

    Wen, Y.; Cinquemani, P.L.

    1997-04-01

    For the replacement of paper insulated lead covered cables (PILC) reduced insulation wall designs have been developed. They provide a reliable lower diameter cable design for installation in existing PILC conduits. Representing Part 2 of the investigation, this paper presents the results of mechanical testing conducted on both reduced and full wall EPR insulated cables. Both jacketed and non-jacketed cable designs have been subjected to mechanical pulling forces which greatly exceed recommended industry limitations, followed by electrical testing to ascertain cable performance. The results of this study conclude that reduced wall EPR insulated cables can safely withstand the same pulling forces as recommended for conventional walls and can be designed for installation under the same pulling limitations.

  13. Electric power emergency management mechanism considering the access of new energy and renewable energy

    NASA Astrophysics Data System (ADS)

    Zhang, Baoqun; Ma, Longfei; Gong, Cheng; Jiao, Ran; Shi, Rui; Chi, Zhongjun; Ding, Yifeng

    2017-01-01

    Scholars at home and abroad have had a thorough research about the theory system and the frame of emergency management on the background of traditional grid, but for the improvement of the emergency mechanism when new energy and renewable energy access the grid, more work should be done. This paper will summarize the predecessors' work on emergency management, discuss the impact of emergency management while new energy and renewable energy access the grid and some suggestions are given.

  14. Exposure damage mechanisms for KCl windows in high power laser systems

    NASA Technical Reports Server (NTRS)

    Blaszuk, P. R.; Woody, B. A.; Hulse, C. O.; Davis, J. W.; Waters, J. P.

    1976-01-01

    An experimental study of the 10.6 micrometer and 0.6328 micrometer optical properties of single crystal and europium doped polycrystal is described. Significant variations in the optical properties are observed over periods of exposure up to 100 hours. Models are proposed to predict the 10.6 micrometer absorptivity for long exposure periods. Mechanical creep has been detected in both materials at high temperature.

  15. The mechanism of reducing scale during magnetic water treatment in heat-power devices

    NASA Astrophysics Data System (ADS)

    Koshoridze, S. I.; Levin, Yu. K.

    2013-03-01

    A model describing the mechanism of the magnetic treatment of the water flow based on the Deryagin-Landau-Ferway-Overbeck theory is refined. The effect of homogeneous generation of new nuclei during the coagulation of critical-size particles in the colloid solution that lost stability is taken into account. This allowed us to approach the qualitative evaluations of efficiency of the scale-proof treatment of the water flow to the actual experimental data.

  16. Microwave power transmission system studies. Volume 3, section 8: Mechanical systems and flight operations

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.

    1975-01-01

    The efforts and recommendations associated with preliminary design and concept definition for mechanical systems and flight operations are presented. Technical discussion in the areas of mission analysis, antenna structural concept, configuration analysis, assembly and packaging with associated costs are presented. Technology issues for the control system, structural system, thermal system and assembly including cost and man's role in assembly and maintenance are identified. Background and desired outputs for future efforts are discussed.

  17. Deterioration Mechanism of Paper Base Phenolic Insulators for Power Distribution Equipment

    NASA Astrophysics Data System (ADS)

    Miki, Shinsuke; Umemura, Sonoko; Okazawa, Hiroshi; Otsuka, Yasushi; Matsuki, Hisao

    We verified by analyses of new and used paper base phenolic insulators and an acceleration test that the main reason for surface resistivity reduction in paper base phenolic insulators was the permeation of deliquescent ion compounds into the insulators. The main elements were Na and Cl, which were detected by element mapping analysis both on the cross section and surface of insulators, though Al and Si were detected only on the insulators' surface. The mechanism was presumed from the results of these analyses as follows. (1) Deliquescent ion compounds such as sodium chloride, calcium sulfurate, etc. adhere to the insulators' surface. (2) They absorb water in the air. (3) Aqueous solutions of sodium chloride, calcium sulfurate, etc. permeate into the insulators. (4) Though the deliquescent ion compounds adhering to insulators can be removed by cleaning, it is difficult to remove the permeated compounds. Therefore, the insulators deteriorate progressively over time. To verify this mechanism, a deliquescent ion compound (ex. sodium bromide) was put on the used insulators and a composite temperature/humidity cyclic test was executed. The above mechanism could be verified because Na and Br elements were detected by element mapping analyses on the cross section of the accelerated test samples and the permeated Na and Br elements could not be removed by cleaning.

  18. Capacity and power fading mechanism identification from a commercial cell evaluation

    NASA Astrophysics Data System (ADS)

    Dubarry, Matthieu; Svoboda, Vojtech; Hwu, Ruey; Liaw, Bor Yann

    An 18650 lithium ion cell was evaluated using dynamic stress test (DST) protocol for cycle life study. Reference performance tests were applied every 60 DST cycles to quantify capacity fade and peak power capability (PPC) degradation with cycles to the end of life. A quantitative incremental capacity analysis (ICA) was applied to identify extrinsic and intrinsic contributions to capacity fading, whereas the open circuit voltage (OCV) measurements were utilized to determine the correct state of charge (SOC) in order to accurately correlate the capacity fade with SOC. The analysis also helps us identify that cell polarization resistance change in the cycles is the primary culprit that bifurcates to both extrinsic and intrinsic origins in capacity fade and PPC degradation. This analysis allows us to develop better understanding in predicting battery performance and life in the rechargeable lithium batteries.

  19. Effects and mechanism of dual-frequency power ultrasound on the molecular weight distribution of corn gluten meal hydrolysates.

    PubMed

    Jin, Jian; Ma, Haile; Wang, Bei; Yagoub, Abu El-Gasim A; Wang, Kai; He, Ronghai; Zhou, Cunshan

    2016-05-01

    The impact of dual-frequency power ultrasound (DPU) on the molecular weight distribution (MWD) of corn gluten meal (CGM) hydrolysates and its mechanism were investigated in the present study. The mechanism was studied from aspects of structural and nano-mechanical characteristics of the major protein fractions of CGM, viz. zein and glutelin. The results of molecular weight distribution indicated that DPU pretreatment of CGM was beneficial to the preparation of peptides with molecular weights of 200-1000Da. Moreover, FTIR spectral analysis and atomic force microscopy characterization showed that the DPU pretreatment changed the contents of secondary structure of proteins, decreased the particle height and surface roughness of glutelin, reduced the Young's modulus and stiffness of zein while increased its adhesion force. In conclusion, DPU pretreatment of proteins before proteolysis is an efficient alternative method to produce short-chain peptides because of its positive effects originating from acoustic cavitation on the molecular conformation, nano-structures and nano-mechanical properties of proteins as well.

  20. Runaway of electrons in dense gases and mechanism of generation of high-power subnanosecond beams

    NASA Astrophysics Data System (ADS)

    Tkachev, Alexey; Yakovlenko, Sergei

    2004-12-01

    New understanding of mechanism of the runaway electrons beam generation in gases is presented. It is shown that the Townsend mechanism of the avalanche electron multiplication is valid even for the strong electric fields when the electron ionization friction on gas may be neglected. A non-local criterion for a runaway electron generation is proposed. This criterion results in the universal two-valued dependence of critical voltage U cr on pd for a certain gas (p is a pressure, d is an interelectrode distance). This dependence subdivides a plane (U cr, pd) onto the area of the efficient electron multiplication and the area where the electrons leave the gas gap without multiplication. On the basis of this dependence analogs of Paschen's curves are constructed, which contain an additional new upper branch. This brunch demarcates the area of discharge and the area of e-beam. The mechanism of the formation of the recently created atomospheric pressure subnanosecond e-beams is discussed. It is shown that the beam of the runaway electrons is formed at an instant when the plasma of the discharge gap approaches to the runaway electrons is formed at an instant when the plasma of the discharge gap approaches to the anode. In this case a basic pulse of the electron beam is formed according to the non-local criterion of the runaway electrons generation. The role of the discharge gap preionization by the fast electrons, emitted from the plasma non-uniformities on the cathode, as well as a propagation of an electron multiplication wave from cathode to anode in a dense gas are considered.

  1. Biomechanical aspects of segmented arch mechanics combined with power arm for controlled anterior tooth movement: A three-dimensional finite element study.

    PubMed

    Ozaki, Hiroya; Tominaga, Jun-Ya; Hamanaka, Ryo; Sumi, Mayumi; Chiang, Pao-Chang; Tanaka, Motohiro; Koga, Yoshiyuki; Yoshida, Noriaki

    2015-01-01

    The porpose of this study was to determine the optimal length of power arms for achieving controlled anterior tooth movement in segmented arch mechanics combined with power arm. A three-dimensional finite element method was applied for the simulation of en masse anterior tooth retraction in segmented power arm mechanics. The type of tooth movement, namely, the location of center of rotation of the maxillary central incisor in association with power arm length, was calculated after the retraction force was applied. When a 0.017 × 0.022-in archwire was inserted into the 0.018-in slot bracket, bodily movement was obtained at 9.1 mm length of power arm, namely, at the level of 1.8 mm above the center of resistance. In case a 0.018 × 0.025-in full-size archwire was used, bodily movement of the tooth was produced at the power arm length of 7.0 mm, namely, at the level of 0.3 mm below the center of resistance. Segmented arch mechanics required shorter length of power arms for achieving any type of controlled anterior tooth movement as compared to sliding mechanics. Therefore, this space closing mechanics could be widely applied even for the patients whose gingivobuccal fold is shallow. The segmented arch mechanics combined with power arm could provide higher amount of moment-to-force ratio sufficient for controlled anterior tooth movement without generating friction, and vertical forces when applying retraction force parallel to the occlusal plane. It is, therefore, considered that the segmented power arm mechanics has a simple appliance design and allows more efficient and controllable tooth movement.

  2. Using Statistical Mechanics and Entropy Principles to Interpret Variability in Power Law Models of the Streamflow Recession

    NASA Astrophysics Data System (ADS)

    Dralle, D.; Karst, N.; Thompson, S. E.

    2015-12-01

    Multiple competing theories suggest that power law behavior governs the observed first-order dynamics of streamflow recessions - the important process by which catchments dry-out via the stream network, altering the availability of surface water resources and in-stream habitat. Frequently modeled as: dq/dt = -aqb, recessions typically exhibit a high degree of variability, even within a single catchment, as revealed by significant shifts in the values of "a" and "b" across recession events. One potential source of this variability lies in underlying, hard-to-observe fluctuations in how catchment water storage is partitioned amongst distinct storage elements, each having different discharge behaviors. Testing this and competing hypotheses with widely available streamflow timeseries, however, has been hindered by a power law scaling artifact that obscures meaningful covariation between the recession parameters, "a" and "b". Here we briefly outline a technique that removes this artifact, revealing intriguing new patterns in the joint distribution of recession parameters. Using long-term flow data from catchments in Northern California, we explore temporal variations, and find that the "a" parameter varies strongly with catchment wetness. Then we explore how the "b" parameter changes with "a", and find that measures of its variation are maximized at intermediate "a" values. We propose an interpretation of this pattern based on statistical mechanics, meaning "b" can be viewed as an indicator of the catchment "microstate" - i.e. the partitioning of storage - and "a" as a measure of the catchment macrostate (i.e. the total storage). In statistical mechanics, entropy (i.e. microstate variance, that is the variance of "b") is maximized for intermediate values of extensive variables (i.e. wetness, "a"), as observed in the recession data. This interpretation of "a" and "b" was supported by model runs using a multiple-reservoir catchment toy model, and lends support to the

  3. The power of being positive: Robust state estimation made possible by quantum mechanics

    NASA Astrophysics Data System (ADS)

    Kalev, Amir; Baldwin, Charles

    Quantum-state tomography (QST) is generally expensive to implement experimentally. Nevertheless, in state-of-the-art experiments in quantum information science the goal is not to produce arbitrary states but states that have very high purity. Including this prior information in QST results in more manageable tomography protocols. In the context of pure-state tomography, and more generally, of bounded-rank states (states with rank <= r) tomography, a natural notion of informational completeness emerges, rank- r completeness. The purpose of this contribution is two fold. First, to prove and emphasize the significance of a less intuitive, yet more powerful, notion of completeness for practical QST, rank- r strict-completeness. This notion is made possible due to the positive semidefinite property of density matrices. Strictly-complete quantum measurements ensure a robust estimation of the state of the system, regardless of the convex estimator we use. Thus, pragmatically, quantum state tomography should be done using these kind of measurements. Second, to argue, based on strong numerical indication, that it is fairly straightforward to experimentally implement such measurements by measuring only few random orthonormal bases. For example, in our numerical experi This work was supported by NSF Grants PHY-1212445, PHY-1521016, and PHY-1521431.

  4. Degradation mechanism beyond device self-heating in high power light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yung, K. C.; Liem, H.; Choy, H. S.; Lun, W. K.

    2011-05-01

    A unique degradation property of high power InGaN/GaN multiple quantum well (MQW) white light-emitting diodes (LEDs) was identified. The LEDs were stressed under different forward-currents. The various ageing characteristics were analyzed for both the electrical response and electro-luminescence (EL) spectra. The Raman spectroscopy allowed noninvasive probing of LED junction temperature profiles which correlated well with the EL characteristics, showing a junction temperature drop during degradation at certain current levels. In addition to the common observations: (1) a broadening of the light intensity-current (L-I) characteristic in the nonlinear regime, and (2) a shift of the current-voltage (I-V) dependence to higher current levels, the EL spectra showed different temperature responses of the two blue emission peaks, 440 and 463 nm. The former was temperature sensitive and thus related to shallow defect levels, while the latter was thermally stable and deeper defect states were involved in the degradation process. This unique selection rule resulted in the enhancement of the blue emission peak at 463 nm after degrading the LEDs. This study suggests that LED device heating is not directly linked to the degradation process.

  5. Vacuum chamber translation/positioning mechanism and welding power supply controller

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Welding in the vacuum of space represents an important and fundamental problem for space exploration. Repairs or connection of metal components on orbit or during travel to the moon or distant planets may be required. Cracks or holes in spacecraft skin or supporting structures external to the pressurized section will require some type of repair that must be permanently made to the skin or support by welding. The development of a translation/positioning system that will permit research into welding of metal samples in a small vacuum chamber located at Marshall Space Flight Center (MSFC) is addressed. The system and associated software was tested to the extent possible without the availability of the welder power supply or control computer that must be supplied by MSFC. Software has been developed for straight line welding. More extensive and varied translations are possible with simple alterations to the operating software to use the full capabilities of this three axes system. The source code 'VW.BAS' has been provided to serve as an example for further development of the vacuum welder translation system.

  6. The left ventricle as a mechanical engine: from Leonardo da Vinci to the echocardiographic assessment of peak power output-to-left ventricular mass.

    PubMed

    Dini, Frank L; Guarini, Giacinta; Ballo, Piercarlo; Carluccio, Erberto; Maiello, Maria; Capozza, Paola; Innelli, Pasquale; Rosa, Gian M; Palmiero, Pasquale; Galderisi, Maurizio; Razzolini, Renato; Nodari, Savina

    2013-03-01

    The interpretation of the heart as a mechanical engine dates back to the teachings of Leonardo da Vinci, who was the first to apply the laws of mechanics to the function of the heart. Similar to any mechanical engine, whose performance is proportional to the power generated with respect to weight, the left ventricle can be viewed as a power generator whose performance can be related to left ventricular mass. Stress echocardiography may provide valuable information on the relationship between cardiac performance and recruited left ventricular mass that may be used in distinguishing between adaptive and maladaptive left ventricular remodeling. Peak power output-to-mass, obtained during exercise or pharmacological stress echocardiography, is a measure that reflects the number of watts that are developed by 100 g of left ventricular mass under maximal stimulation. Power output-to-mass may be calculated as left ventricular power output per 100 g of left ventricular mass: 100× left ventricular power output divided by left ventricular mass (W/100 g). A simplified formula to calculate power output-to-mass is as follows: 0.222 × cardiac output (l/min) × mean blood pressure (mmHg)/left ventricular mass (g). When the integrity of myocardial structure is compromised, a mismatch becomes apparent between maximal cardiac power output and left ventricular mass; when this occurs, a reduction of the peak power output-to-mass index is observed.

  7. Myosin IC generates power over a range of loads via a new tension-sensing mechanism.

    PubMed

    Greenberg, Michael J; Lin, Tianming; Goldman, Yale E; Shuman, Henry; Ostap, E Michael

    2012-09-11

    Myosin IC (myo1c), a widely expressed motor protein that links the actin cytoskeleton to cell membranes, has been associated with numerous cellular processes, including insulin-stimulated transport of GLUT4, mechanosensation in sensory hair cells, endocytosis, transcription of DNA in the nucleus, exocytosis, and membrane trafficking. The molecular role of myo1c in these processes has not been defined, so to better understand myo1c function, we utilized ensemble kinetic and single-molecule techniques to probe myo1c's biochemical and mechanical properties. Utilizing a myo1c construct containing the motor and regulatory domains, we found the force dependence of the actin-attachment lifetime to have two distinct regimes: a force-independent regime at forces < 1 pN, and a highly force-dependent regime at higher loads. In this force-dependent regime, forces that resist the working stroke increase the actin-attachment lifetime. Unexpectedly, the primary force-sensitive transition is the isomerization that follows ATP binding, not ADP release as in other slow myosins. This force-sensing behavior is unique amongst characterized myosins and clearly demonstrates mechanochemical diversity within the myosin family. Based on these results, we propose that myo1c functions as a slow transporter rather than a tension-sensitive anchor.

  8. Emerging molecular mechanisms that power and regulate the anastral mitotic spindle of flowering plants.

    PubMed

    Bannigan, Alex; Lizotte-Waniewski, Michelle; Riley, Margaret; Baskin, Tobias I

    2008-01-01

    Flowering plants, lacking centrosomes as well as dynein, assemble their mitotic spindle via a pathway that is distinct visually and molecularly from that of animals and yeast. The molecular components underlying mitotic spindle assembly and function in plants are beginning to be discovered. Here, we review recent evidence suggesting the preprophase band in plants functions analogously to the centrosome in animals in establishing spindle bipolarity, and we review recent progress characterizing the roles of specific motor proteins in plant mitosis. Loss of function of certain minus-end-directed KIN-14 motor proteins causes a broadening of the spindle pole; whereas, loss of function of a KIN-5 causes the formation of monopolar spindles, resembling those formed when the homologous motor protein (e.g., Eg5) is knocked out in animal cells. We present a phylogeny of the kinesin-5 motor domain, which shows deep divergence among plant sequences, highlighting possibilities for specialization. Finally, we review information concerning the roles of selected structural proteins at mitosis as well as recent findings concerning regulation of M-phase in plants. Insight into the mitotic spindle will be obtained through continued comparison of mitotic mechanisms in a diversity of cells.

  9. Surface treatment comparison by application of diamond bur and Er,Cr:YSGG at different powers: morphological and mechanical evaluation

    PubMed Central

    Mirzaie, Mansoreh; Yassini, Esmael; Etemadi, Ardavan; Tavakoli, Atefeh

    2016-01-01

    Purpose: This study evaluated the micro-tensile bond strength of new and previous composite resin restorations after surface treatment with diamond bur and Er,Cr:YSGG laser at different power settings (2,3 and 4 W). Materials and methods: Micro-hybride composite resin was inserted in metallic mold 5 ×5 ×15 mm and cured for 40 sec according to manufacturer's instruction.12 blocks were made. The bonded surfaces of the 12 blocks so obtained were subsequently ground using Silicon Carbide papers 1200 grit, for 15 seconds under running water. Then the samples randomly were divided into 4 groups: (G1) Bur-treated, (G2) Er,Cr:YSGG laser with power of 2 W and energy of 100 mJ, (G3) Er,Cr:YSGG laser with power of 3 W and energy of 150 mJ, (G4) Er,Cr:YSGG laser with power of 4 W and energy of 200 mJ. One sample of each group was analyzed by SEM while, after cutting the blocks to 1 mm2 of area samples, the others samples were mechanically tested by Universal testing machine with the speed of 0.5 mm per minute till fracture point. Data were analysed using One-Way ANOVA and Tukey Test. Results: T-test showed no significantly differences between G2 and G4(P=0.064) while G3 demonstrated significant differences than G2 (P=0.001) and G4(P=0.000) and also between samples treated with bur (G1) and G2 (P=0.242) ,G3 (P=0.000) ,G4 (P=0.829); G1 didn't significantly differ to G2 and G4(P>0.05), while G1 and G3(P<0.05). Conclusion: On surface treatment of repaired composite, samples treated by laser at 3W power showed better condition of micro-tensile bond strength. PMID:27853347

  10. Familiarization Effects of an Elliptical All-out Test and the Wingate Test Based on Mechanical Power Indices.

    PubMed

    Ozkaya, Ozgur

    2013-01-01

    The Wingate all-out test (WAT) is commonly used to estimate anaerobic capabilities of athletes by using an upper or lower body cycle ergometer, however, a new test modality called elliptical all-out test (EAT) which measures activated whole-body locomotor tasks has recently been proposed. The purpose of this study was to evaluate the familiarization effects of a 30-s EAT versus WAT. Twenty male trained athletes performed pre-familiarization (Trial- I), post-familiarization (Trial-II) and retest of Trial-II (Trial-III) sessions on both cycle ergometer and elliptical trainer. Peak power (PP), average power (AP), power drop (PD) and fatigue index ratio (FI%) were analyzed using student's t-test for paired samples and correlated by intra-class correlation coefficients (ICC). Moreover, an error detection procedure was administered using data attained from illogical interrelations among 5-s segments of 30-s tests. The main results showed that there were significant familiarization effects in all mechanical power outputs obtained from Trial-I and Trial-II in both EAT (ICC = 0.49-0.55) and WAT (ICC = 0.50-0.57) performances (p ≤ 0.01). Significant segmental disorders were detected in power production during Trial-I of EAT, however, none existed in any of test trails in the WAT (p ≤ 0.001). After familiarization sessions, reliability coefficients between Trial-II and Trial-III showed moderate to strong-level agreements for both EAT (ICC = 0.74-0.91) and the WAT (ICC=0.76-0.93). Our results suggested that prior to the performance tests, combination of a well designed familiarization session with one full all-out test administration is necessary to estimate the least moderately reliable and accurate test indices for both WAT and EAT. Key PointsA well designed familiarization session, and then, one additional all-out test administration, several days prior to main test, is suggested to estimate more accurate and reliable retest correlations for both cycling and elliptical

  11. A bio-robotic platform for integrating internal and external mechanics during muscle-powered swimming.

    PubMed

    Richards, Christopher T; Clemente, Christofer J

    2012-03-01

    To explore the interplay between muscle function and propulsor shape in swimming animals, we built a robotic foot to mimic the morphology and hind limb kinematics of Xenopus laevis frogs. Four foot shapes ranging from low aspect ratio (AR = 0.74) to high (AR = 5) were compared to test whether low-AR feet produce higher propulsive drag force resulting in faster swimming. Using feedback loops, two complementary control modes were used to rotate the foot: force was transmitted to the foot either from (1) a living plantaris longus (PL) muscle stimulated in vitro or (2) an in silico mathematical model of the PL. To mimic forward swimming, foot translation was calculated in real time from fluid force measured at the foot. Therefore, bio-robot swimming emerged from muscle-fluid interactions via the feedback loop. Among in vitro-robotic trials, muscle impulse ranged from 0.12 ± 0.002 to 0.18 ± 0.007 N s and swimming velocities from 0.41 ± 0.01 to 0.43 ± 0.00 m s(-1), similar to in vivo values from prior studies. Trends in in silico-robotic data mirrored in vitro-robotic observations. Increasing AR caused a small (∼10%) increase in peak bio-robot swimming velocity. In contrast, muscle force-velocity effects were strongly dependent on foot shape. Between low- and high-AR feet, muscle impulse increased ∼50%, while peak shortening velocity decreased ∼50% resulting in a ∼20% increase in net work. However, muscle-propulsion efficiency (body center of mass work/muscle work) remained independent of AR. Thus, we demonstrate how our experimental technique is useful for quantifying the complex interplay among limb morphology, muscle mechanics and hydrodynamics.

  12. Mechanism study on mitochondrial fragmentation under oxidative stress caused by high-fluence low-power laser irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Shengnan; Zhou, Feifan; Xing, Da

    2012-03-01

    Mitochondria are dynamic organelles that undergo continual fusion and fission to maintain their morphology and functions, but the mechanism involved is still not clear. Here, we investigated the effect of mitochondrial oxidative stress triggered by high-fluence low-power laser irradiation (HF-LPLI) on mitochondrial dynamics in human lung adenocarcinoma cells (ASTC-a-1). Upon HF-LPLI-triggered oxidative stress, mitochondria displayed a fragmented structure, which was abolished by exposure to dehydroascorbic acid (DHA), a reactive oxygen species scavenger, indicating that oxidative stress can induce mitochondrial fragmentation. Mitochondrial translocation of the profission protein dynamin-related protein 1 (Drp1) was observed following HF-LPLI, demonstrating apoptosis-related activation of Drp1. Notably, DHA pre-treatment prevented HF-LPLI-induced Drp1 activation. We conclude that mitochondrial oxidative stress through activation of Drp1 causes mitochondrial fragmentation.

  13. Testing quantum mechanics in non-Minkowski space-time with high power lasers and 4th generation light sources

    PubMed Central

    Crowley, B. J. B.; Bingham, R.; Evans, R. G.; Gericke, D. O.; Landen, O. L.; Murphy, C. D.; Norreys, P. A.; Rose, S. J.; Tschentscher, Th; Wang, C. H.-T; Wark, J. S.; Gregori, G.

    2012-01-01

    A common misperception of quantum gravity is that it requires accessing energies up to the Planck scale of 1019 GeV, which is unattainable from any conceivable particle collider. Thanks to the development of ultra-high intensity optical lasers, very large accelerations can be now the reached at their focal spot, thus mimicking, by virtue of the equivalence principle, a non Minkowski space-time. Here we derive a semiclassical extension of quantum mechanics that applies to different metrics, but under the assumption of weak gravity. We use our results to show that Thomson scattering of photons by uniformly accelerated electrons predicts an observable effect depending upon acceleration and local metric. In the laboratory frame, a broadening of the Thomson scattered x ray light from a fourth generation light source can be used to detect the modification of the metric associated to electrons accelerated in the field of a high power optical laser. PMID:22768381

  14. Characteristics of plasma plume and effect mechanism of lateral restraint during high power CO2 laser welding process

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Cai, Yan; Sun, Dawei; Zhu, Junjie; Wu, Yixiong

    2014-12-01

    A novel lateral restraint method was proposed to suppress plasma plume of high power CO2 laser welding using a pair of copper blocks with cooling water. The plasma plume was observed with a high-speed camera, and its core zone and periphery zone were investigated based on the specific processing algorithm. With the specially designed shifting unit, the spectrum of plasma plume was scanned both in 1-D and 2-D mode. Based on the selected spectral lines, electron temperature and electron number density of plasma plume were calculated. The characteristics of plasma plume, as well as the restraint mechanism, were discussed both in 1-D and 2-D mode. Results showed that the cooling effect, blowing effect and the static pressure were enhanced by the lateral restraint, and the restraint effect of the near-wall low-temperature area limited the expansion of plasma plume greatly.

  15. Analysis and minimization of power flow in a mechanical vibration isolation system using a hybrid (active/passive) approach

    NASA Astrophysics Data System (ADS)

    Herdic, Peter C.; Houston, Brian H.; Corsaro, Robert D.; Judge, John A.

    2002-11-01

    Implementation of active control techniques in mechanical vibration isolation systems has been a challenging problem for a number of years where numerous physical control laws have been explored. An energy-based approach to the problem involving the energy transfer or power flow through the mount into the base structure is a first-principles approach to developing control laws and evaluating the system performance. A lumped-parameter model of a passive-active hybrid isolation mount has been developed and validated with experimental data. The mount device has a conventional passive compliant spring, embedded force and velocity sensors, and a piezoceramic actuation layer. This study investigates a complete set of possible layer configurations, that is, the optimal placement of sensors and actuator relative to the passive compliant isolator element. A number of different local physical control laws are examined and the level of power flow through the mount is used to evaluate the performance for the matrix of possible implementations. These results will be discussed with particular emphasis placed on the optimal control configuration and laws, and the related physics. a)Also with SFA, Inc., Largo, MD 20774.

  16. Ankle mechanics during sidestep cutting implicates need for 2-degrees of freedom powered ankle-foot prostheses.

    PubMed

    Ficanha, Evandro M; Rastgaar, Mohammad; Kaufman, Kenton R

    2015-01-01

    The ankle joint of currently available powered prostheses is capable of controlling one degree of freedom (DOF), focusing on improved mobility in the sagittal plane. To increase agility, the requirements of turning in prosthesis design need to be considered. Ankle kinematics and kinetics were studied during sidestep cutting and straight walking. There were no significant differences between the ankle sagittal plane mechanics when comparing sidestep cutting and straight walking; however, significant differences were observed in ankle frontal plane mechanics. During straight walking, the inversion-eversion (IE) angles were smaller than with sidestep cutting. The ankle that initiated the sidestep cutting showed progressively increasing inversion from 2 to 13 degrees while the following contralateral step showed progressively decreasing inversion from 8 to -4 degrees during normal walking speed. The changes in IE kinematics were the most significant during sidestep cutting compared with straight walking. The IE moments of the step that initiated the sidestep cutting were always in eversion, acting as a braking moment opposing the inverting motion. This suggests that an ankle-foot prosthesis with active DOFs in the sagittal and frontal planes will increase the agility of gait for patients with limb loss.

  17. Large scale simulations of the mechanical properties of layered transition metal ternary compounds for fossil energy power system applications

    SciTech Connect

    Ching, Wai-Yim

    2014-12-31

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  18. Unraveling the fundamental mechanisms of solvent-additive-induced optimization of power conversion efficiencies in organic photovoltaic devices

    SciTech Connect

    Herath, Nuradhika; Das, Sanjib; Zhu, Jiahua; Kumar, Rajeev; Chen, Jihua; Xiao, Kai; Gu, Gong; Browning, James F.; Sumpter, Bobby G.; Ivanov, Ilia N.; Lauter, Valeria

    2016-07-12

    The realization of controllable morphologies of bulk heterojunction (BHJ) in organic photovoltics (OPVs) is one of the key factors in obtaining high-efficiency devices. Here via simultaneous monitoring of the three-dimensional nanostructural modifications in BHJ correlated with the optical analysis and theoretical modeling of charge transport, we provide new insights into the fundamental mechanisms essential for the optimization of (power conversion efficiency) PCEs with additive processing. Our results demonstrate how a trace amount of diiodooctane (DIO) remarkably changes the vertical phase morphology of the active layers resulting in formation of a well-mixed donor-acceptor compact film, augments charge transfer and PCEs. In contrast, excess amount of DIO promotes a massive reordering and results loosely packed mixed phase vertical phase morphology with large clusters leading to deterioration in PCEs. Theoretical modeling of charge transport reveals that DIO increases the mobility of electrons and holes (the charge carriers) by affecting the energetic disorder and electric field dependence of the mobility. Our results show the significant of phase separation and carrier transport pathways to achieve optimal device performances.

  19. Unraveling the fundamental mechanisms of solvent-additive-induced optimization of power conversion efficiencies in organic photovoltaic devices

    DOE PAGES

    Herath, Nuradhika; Das, Sanjib; Zhu, Jiahua; ...

    2016-07-12

    The realization of controllable morphologies of bulk heterojunction (BHJ) in organic photovoltics (OPVs) is one of the key factors in obtaining high-efficiency devices. Here via simultaneous monitoring of the three-dimensional nanostructural modifications in BHJ correlated with the optical analysis and theoretical modeling of charge transport, we provide new insights into the fundamental mechanisms essential for the optimization of (power conversion efficiency) PCEs with additive processing. Our results demonstrate how a trace amount of diiodooctane (DIO) remarkably changes the vertical phase morphology of the active layers resulting in formation of a well-mixed donor-acceptor compact film, augments charge transfer and PCEs. Inmore » contrast, excess amount of DIO promotes a massive reordering and results loosely packed mixed phase vertical phase morphology with large clusters leading to deterioration in PCEs. Theoretical modeling of charge transport reveals that DIO increases the mobility of electrons and holes (the charge carriers) by affecting the energetic disorder and electric field dependence of the mobility. Our results show the significant of phase separation and carrier transport pathways to achieve optimal device performances.« less

  20. Electric Eel-Skin-Inspired Mechanically Durable and Super-Stretchable Nanogenerator for Deformable Power Source and Fully Autonomous Conformable Electronic-Skin Applications.

    PubMed

    Lai, Ying-Chih; Deng, Jianan; Niu, Simiao; Peng, Wenbo; Wu, Changsheng; Liu, Ruiyuan; Wen, Zhen; Wang, Zhong Lin

    2016-12-01

    Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator is demonstrated for the first time by using triboelectric effect. This newly designed nanogenerator can produce electricity by touch or tapping despite under various extreme mechanical deformations or even after experiencing damage. This device can be used not only as deformable and wearable power source but also as fully autonomous and self-sufficient adaptive electronic skin system.

  1. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis

    PubMed Central

    Simon, Ann M.; Hargrove, Levi J.

    2016-01-01

    Powered knee-ankle prostheses are capable of providing net-positive mechanical energy to amputees. Yet, there are limitless ways to deliver this energy throughout the gait cycle. It remains largely unknown how different combinations of active knee and ankle assistance affect the walking mechanics of transfemoral amputees. This study assessed the relative contributions of stance phase knee swing initiation, increasing ankle stiffness and powered plantarflexion as three unilateral transfemoral amputees walked overground at their self-selected walking speed. Five combinations of knee and ankle conditions were evaluated regarding the kinematics and kinetics of the amputated and intact legs using repeated measures analyses of variance. We found eliminating active knee swing initiation or powered plantarflexion was linked to increased compensations of the ipsilateral hip joint during the subsequent swing phase. The elimination of knee swing initiation or powered plantarflexion also led to reduced braking ground reaction forces of the amputated and intact legs, and influenced both sagittal and frontal plane loading of the intact knee joint. Gradually increasing prosthetic ankle stiffness influenced the shape of the prosthetic ankle plantarflexion moment, more closely mirroring the intact ankle moment. Increasing ankle stiffness also corresponded to increased prosthetic ankle power generation (despite a similar maximum stiffness value across conditions) and increased braking ground reaction forces of the amputated leg. These findings further our understanding of how to deliver assistance with powered knee-ankle prostheses and the compensations that occur when specific aspects of assistance are added/removed. PMID:26807889

  2. Effects of Creatine and Sodium Bicarbonate Coingestion on Multiple Indices of Mechanical Power Output During Repeated Wingate Tests in Trained Men.

    PubMed

    Griffen, Corbin; Rogerson, David; Ranchordas, Mayur; Ruddock, Alan

    2015-06-01

    This study investigated the effects of creatine and sodium bicarbonate coingestion on mechanical power during repeated sprints. Nine well-trained men (age = 21.6 ± 0.9 yr, stature = 1.82 ± 0.05 m, body mass = 80.1 ±12.8 kg) participated in a double-blind, placebo-controlled, counterbalanced, crossover study using six 10-s repeated Wingate tests. Participants ingested either a placebo (0.5 g·kg(-1) of maltodextrin), 20 g·d(-1) of creatine monohydrate + placebo, 0.3 g·kg(-1) of sodium bicarbonate + placebo, or coingestion + placebo for 7 days, with a 7-day washout between conditions. Participants were randomized into two groups with a differential counterbalanced order. Creatine conditions were ordered first and last. Indices of mechanical power output (W), total work (J) and fatigue index (W·s(-1)) were measured during each test and analyzed using the magnitude of differences between groups in relation to the smallest worthwhile change in performance. Compared with placebo, both creatine (effect size (ES) = 0.37-0.83) and sodium bicarbonate (ES = 0.22-0.46) reported meaningful improvements on indices of mechanical power output. Coingestion provided small meaningful improvements on indices of mechanical power output (W) compared with sodium bicarbonate (ES = 0.28-0.41), but not when compared with creatine (ES = -0.21-0.14). Coingestion provided a small meaningful improvement in total work (J; ES = 0.24) compared with creatine. Fatigue index (W·s(-1)) was impaired in all conditions compared with placebo. In conclusion, there was no meaningful additive effect of creatine and sodium bicarbonate coingestion on mechanical power during repeated sprints.

  3. Effect of RF power on the optical, electrical, mechanical and structural properties of sputtering Ga-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Tien, Chuen-Lin; Yu, Kuo-Chang; Tsai, Tsung-Yo; Liu, Ming-Chung

    2015-11-01

    We present the influences of radio-frequency (RF) power on the optical, electrical, mechanical, and structural properties of Ga-doped zinc oxide (GZO) thin films by RF magnetron sputtering at room temperature. GZO thin films were grown on unheated glass and silicon substrates using radio-frequency (RF) magnetron sputtering method with different RF powers (from 60 W to 160 W). The optical properties of the GZO thin film were determined by a UV-vis spectrophotometer. The residual stress in GZO films were measured by a home-made Twyman-Green interferometer with the fast Fourier transform (FFT) method. The surface roughness of GZO films were measured by a microscopic interferometry. The microstructure, composition and crystal orientation of the GZO films were determined by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). This paper revealed that the optical, electrical, mechanical, and structural properties of GZO thin film are subject to the RF power. For the optical spectrum measurement, an average optical transmittance in the visible region of the spectra of 85% was obtained. For the characteristic measurements, all the GZO thin films deposited by RF magnetron sputtering have compressive stress at different RF powers. A minimum residual stress of 0.24 GPa is found at the RF power of 140 W. A four-point probe method was used to measure the resistivity of the GZO thin films with different powers, the results indicate that the resistivity increases with increasing of RF power. In addition, the root-mean-square (RMS) surface roughness of GZO thin films slightly increases as the RF power is increasing. We have also compared the results with the relevant literatures.

  4. An Effective Power Saving Mechanism for IEEE 802.11 PSM in Double-Layered Mobile P2P Systems

    NASA Astrophysics Data System (ADS)

    Lee, Ju-Hee; Kim, Taek-Hun; Song, Jin-Woo; Lee, Kwang-Jo; Yang, Sung-Bong

    In this paper, we propose a scheme for double-layered mobile P2P systems that enhances energy efficiency by modifying PSM(Power Saving Mode) defined in 802.11. The proposed scheme lengthens the beacon interval adaptively and adopts a known power saving scheme for more power saving. The experimental results showed that the proposed scheme improved 58.3% in terms of the average energy saving and 10% in terms of the average success ratio for file searches over the system with the standard PSM.

  5. Effects of load type (pollen or nectar) and load mass on hovering metabolic rate and mechanical power output in the honey bee Apis mellifera.

    PubMed

    Feuerbacher, Erica; Fewell, Jennifer H; Roberts, Stephen P; Smith, Elizabeth F; Harrison, Jon F

    2003-06-01

    In this study we tested the effect of pollen and nectar loading on metabolic rate (in mW) and wingbeat frequency during hovering, and also examined the effect of pollen loading on wing kinematics and mechanical power output. Pollen foragers had hovering metabolic rates approximately 10% higher than nectar foragers, regardless of the amount of load carried. Pollen foragers also had a more horizontal body position and higher inclination of stroke plane than measured previously for honey bees (probably nectar foragers). Thorax temperatures ranked pollen > nectar > water foragers, and higher flight metabolic rate could explain the higher thorax temperature of pollen foragers. Load mass did not affect hovering metabolic rate or wingbeat frequency in a regression-model experiment. However, using an analysis of variance (ANOVA) design, loaded pollen and nectar foragers (mean loads 27% and 40% of body mass, respectively) significantly increased metabolic rate by 6%. Mean pollen loads of 18% of body mass had no effect on wingbeat frequency, stroke amplitude, body angle or inclination of stroke plane, but increased the calculated mechanical power output by 16-18% (depending on the method of estimating drag). A rise in lift coefficient as bees carry loads without increasing wingbeat frequency or stroke amplitude (and only minimal increases in metabolic rate) suggests an increased use of unsteady power-generating mechanisms.

  6. A general formula for Rayleigh-Schroedinger perturbation energy utilizing a power series expansion of the quantum mechanical Hamiltonian

    SciTech Connect

    Herbert, J.M.

    1997-02-01

    Perturbation theory has long been utilized by quantum chemists as a method for approximating solutions to the Schroedinger equation. Perturbation treatments represent a system`s energy as a power series in which each additional term further corrects the total energy; it is therefore convenient to have an explicit formula for the nth-order energy correction term. If all perturbations are collected into a single Hamiltonian operator, such a closed-form expression for the nth-order energy correction is well known; however, use of a single perturbed Hamiltonian often leads to divergent energy series, while superior convergence behavior is obtained by expanding the perturbed Hamiltonian in a power series. This report presents a closed-form expression for the nth-order energy correction obtained using Rayleigh-Schroedinger perturbation theory and a power series expansion of the Hamiltonian.

  7. [Responding to patients with home mechanical ventilation after the Great East Japan Earthquake and during the planned power outages. How should we be prepared for a future disaster ?].

    PubMed

    Takechi, Yukako

    2011-12-01

    The unprecedented earthquake(magnitude-9 in the Japanese seismic intensity scale)hit off the east coast of Japan on March 11, 2011. Consequently, there were planned power outages in the area nearby Tokyo to avoid massive blackouts caused by a stoppage of Fukushima nuclear plants.Our clinic located in Kawasaki city was also hit by the earthquake(magnitude- 5).During the period of two months(March and April 2011), we had a total of 52 patients with home respiratory care (5-TPPV, 11-NPPV and 36-HOT)at that time.Two out of three 24 hour-TPPV users had no external battery.After the earthquake, there was a 7-hour electricity failure in some areas, and a patient with ASV(adaptive servo ventilator)was living there.Moreover, 3-hour/day power outages were carried out from March 14 to March 28, affecting people's everyday lives. However, the patient had no harmful influences from the power failure because a ventilation company lent us an external battery(4-9 hour life capacity)for the patients, and we were able to avoid an emergency situation caused by the power failure.In conclusion, we ought to be prepared for patients with home mechanical ventilation in the future toward unforeseen large scale power outages.

  8. Electronic and mechanical improvement of the receiving terminal of a free-space microwave power transmission system

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1977-01-01

    Significant advancements were made in a number of areas: improved efficiency of basic receiving element at low power density levels, improved resolution and confidence in efficiency measurements mathematical modelling and computer simulation of the receiving element and the design, construction, and testing of an environmentally protected two-plane construction suitable for low cost, highly automated construction of large receiving arrays.

  9. Performance Analysis of Power Saving Mechanism Employing Both Sleep Mode and Idle Mode in IEEE 802.16e

    NASA Astrophysics Data System (ADS)

    Hwang, Eunju; Lee, Yong Hyun; Kim, Kyung Jae; Son, Jung Je; Choi, Bong Dae

    The IEEE 802.16e standard specifies the sleep mode and the idle mode of a mobile station (MS) for power saving. In this paper, to reduce the energy consumption of the MS, we employ the sleep mode while the MS is on-session, and the idle mode while it is off-session. Under the assumption that the time duration from the end of a session to the arrival of a new downlink session request follows an exponential distribution of the mean 1/ν and that arrivals of messages during an on-session follow a Poisson process with rate λ, we analyze the awake mode period and the sleep mode period by using the busy period analysis of the M/G/1 queue, and then we derive the total mean length of an on-session which consists of a geometric number of awake mode periods and sleep mode periods. Since the sum of an on-session and an off-session constitutes a cycle, we can express the average power consumption in terms of the mean lengths of an awake mode period, a sleep mode period and an idle mode period. The average power consumption indicates how much the MS can save energy by employing the sleep mode and the idle mode. We also derive the Laplace Stieltjes transform (and the mean) of the queueing delay of messages to examine a tradeoff between the power consumption and the delay of messages. Analytical results, which are shown to be well-matched by simulations, address that our employment of the sleep mode and the idle mode provides a considerable reduction in the energy consumption of the MS.

  10. Laser power and Scanning Speed Influence on the Mechanical Property of Laser Metal Deposited Titanium-Alloy

    NASA Astrophysics Data System (ADS)

    Mahamood, Rasheedat M.; Akinlabi, Esther T.; Akinlabi, Stephen

    2015-03-01

    The influence of the laser power and the scanning speed on the microhardness of the Laser Metal Deposited Ti6Al4V, an aerospace Titanium-alloy, was studied. Ti6Al4V powder was deposited on the Ti6Al4V substrate using the Laser Metal Deposition (LMD) process, an Additive Manufacturing (AM) manufacturing technology. The laser power was varied between 1.8 kW 3 kW and the scanning speed was varied between 0.05 m/s and 0.1 m/s. The powder flow rate and the gas flow rate were kept at constant values of 2 g/min and 2 l/min respectively. The full factorial design of experiment was used to design the experiment and to also analyze the results in the Design Expert 9 software environment. The microhardness profiling was studied using Microhardness indenter performed at a load of 500 g and at a dwelling time of 15 s. The distance between indentations was maintained at a distance of 15 μm. The study revealed that as the laser power was increased, the microhardness was found to decrease and as the scanning speed was increased, the microhardness was found to also increase. The results are presented and fully discussed.

  11. [The electroporation effects of high power pulse microwave and electromagnetic pulse irradiation on the membranes of cardiomyocyte cells and the mechanism therein involved].

    PubMed

    Deng, Hua; Wang, Dewen; Peng, Ruiyun; Wang, Shuiming; Chen, Jiankui; Zhang, Sa; Dong, Bo; Wang, Xiaomin

    2005-08-01

    Though there is ongoing public concern on potential hazards and risk of electromagnetic radiation, the bioeffects mechanism of electromagnetic fields remains obscure. Heart is one of the organs susceptive to electromagnetic fields (EMF). This study was designed to assess the influence of high power pulse microwave and electromagnetic pulse irradiation on cardiomyocytes, to explore the critical mechanism of electromagnetic fields, and to explain the regular course of injury caused by exposure to pulse EMF. Cultured cardiomyocytes were irradiated by high power pulse microwave and electromagnetic pulse first, then a series of apparatus including atom force microscope, laser scanning confocal microscope and flow cytometer were used to examine the changes of cell membrane conformation, structure and function. After irradiation, the cardiomyocytes pulsated slower or stop, the cells conformation was abnormal, the cells viability declined, and the percentage of apoptosis and necrosis increased significantly (P< 0.01). The cell membrane had pores unequal in size, and lost its penetration character. The concentration of Na+, K+, Ca2+, Cl-, Mg2+, Ca2+ and P3+ in cell culture medium increased significantly (P< 0.01). and the concentration of Ca2+ in cells ([Ca2+]i) decreased significantly (P<0.01). The results indicated that cardiomyocytes are susceptible to non-ionizing radiation. Pulse electromagnetic field can induce cardiomyocytes electroporation, and can do great damage to cells conformation, structure and function. Electroporation is one of the most critical mechanisms to explain the athermal effects of electromagnetic radiation.

  12. SrxBa1-xNb2O6-δ Ferroelectric-thermoelectrics: Crystal anisotropy, conduction mechanism, and power factor

    NASA Astrophysics Data System (ADS)

    Lee, Soonil; Wilke, Rudeger H. T.; Trolier-McKinstry, Susan; Zhang, Shujun; Randall, Clive A.

    2010-01-01

    Nonstoichiometric tungsten bronze-structured ferroelectric SrxBa1-xNb2O6-δ (SBN) single crystals were found to be a promising n-type thermoelectric oxide. Thermopower anomalies were observed at the phase transition temperatures, depending on the degree of reduction as well as crystal anisotropy. Above 500 K, heavily reduced SBN crystals show high thermoelectric power factors (˜20 μW/cm K2 at 516 K) with both thermopower and electrical conductivity higher parallel to the c-axis. It is noted that the power factor increases with temperature due to the semiconducting behavior with high carrier concentration. The carrier transport mechanism also varies with the degree of reduction and temperature.

  13. The Power of Positional Competition and Market Mechanism: A Case Study of Recent Parental Choice Development in China

    ERIC Educational Resources Information Center

    Wu, Xiaoxin

    2008-01-01

    The positional competition reflected in the current parental choice fever in China is highlighted by the introduction of market mechanisms: buying houses near preferred schools, paying choice fees or co-founding fees, giving donations and spending money on spare time training classes, etc. All of these work effectively together with the…

  14. Aircraft Fuel, Fuel Metering, Induction and Exhaust Systems (Course Outline), Aviation Mechanics (Power Plant): 9057.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to help the trainee gain the skills and knowledge necessary to become an aviation powerplant mechanic. The course outlines the theory of operation of various fuel systems, fuel metering, induction, and exhaust system components with an emphasis on troubleshooting, maintenance, and…

  15. Mechanism of power consumption inhibitive multi-layer Zn:SiO{sub 2}/SiO{sub 2} structure resistance random access memory

    SciTech Connect

    Zhang, Rui; Lou, Jen-Chung; Tsai, Tsung-Ming E-mail: tcchang@mail.phys.nsysu.edu.tw; Chang, Kuan-Chang; Huang, Syuan-Yong; Shih, Chih-Cheng; Pan, Jhih-Hong; Tung, Cheng-Wei; Chang, Ting-Chang E-mail: tcchang@mail.phys.nsysu.edu.tw; Chen, Kai-Huang; Young, Tai-Fa; Chen, Hsin-Lu; Chen, Jung-Hui; Chen, Min-Chen; Syu, Yong-En; Sze, Simon M.

    2013-12-21

    In this paper, multi-layer Zn:SiO{sub 2}/SiO{sub 2} structure is introduced to reduce the operation power consumption of resistive random access memory (RRAM) device by modifying the filament formation process. And the configuration of multi-layer Zn:SiO{sub 2}/SiO{sub 2} structure is confirmed and demonstrated by auger electron spectrum. Material analysis together with conduction current fitting is applied to qualitatively evaluate the carrier conduction mechanism on both low resistance state and high resistance state. Finally, single layer and multilayer conduction models are proposed, respectively, to clarify the corresponding conduction characteristics of two types of RRAM devices.

  16. A theoretical and experimental investigation of power harvesting using the NiMnGa martensite reorientation mechanism

    NASA Astrophysics Data System (ADS)

    Bruno, Nickolaus M.; Ciocanel, Constantin; Feigenbaum, Heidi P.; Waldauer, Alex

    2012-09-01

    Magnetic shape memory alloys (MSMAs) can exhibit the shape memory effect when there is a magnetic field in the vicinity of a material point. The microstructure of the MSMAs is comprised of tetragonal martensite variants, each with their preferred internal magnetization orientation. Starting from a random variant orientation, the application of a large enough magnetic field will cause the variants to reorient so that the internal magnetization vectors align with the external field. Then, keeping the magnetic field constant and adding a variable compressive stress in a direction normal to that of the magnetic field, some or all of the martensitic variants may rotate into a stress preferred state. As the variants reorient, the internal magnetization vectors rotate, and the material’s magnetization changes. For power harvesting and sensing applications, the change in magnetization induces a current in a pickup coil placed around the MSMA specimen, resulting in an output voltage at its terminals according to Faraday’s law of inductance. This paper focuses on the evaluation of the voltage output, both experimentally and numerically, in an attempt to assess the ability of a MSMA thermodynamic based constitutive model, used in conjunction with Faraday’s law of induction, to predict the variant reorientation induced voltage output. Assessing the accuracy of the predicted voltage is beneficial for the design of both MSMA based power harvesting devices and MSMA based displacement sensors.

  17. Laccase Inhibition by Arsenite/Arsenate: Determination of Inhibition Mechanism and Preliminary Application to a Self-Powered Biosensor.

    PubMed

    Wang, Tao; Milton, Ross D; Abdellaoui, Sofiene; Hickey, David P; Minteer, Shelley D

    2016-03-15

    The reversible inhibition of laccase by arsenite (As(3+)) and arsenate (As(5+)) is reported for the first time. Oxygen-reducing laccase bioelectrodes were found to be inhibited by both arsenic species for direct electron-transfer bioelectrodes (using anthracene functionalities for enzymatic orientation) and for mediated electron-transfer bioelectrodes [using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as an electron mediator]. Both arsenic species were determined to behave via a mixed inhibition model (behaving closely to that of uncompetitive inhibitors) when evaluated spectrophotometrically using ABTS as the electron donor. Finally, laccase bioelectrodes were employed within an enzymatic fuel cell, yielding a self-powered biosensor for arsenite and arsenate. This conceptual self-powered arsenic biosensor demonstrated limits of detection (LODs) of 13 μM for arsenite and 132 μM for arsenate. Further, this device possessed sensitivities of 0.91 ± 0.07 mV/mM for arsenite and 0.98 ± 0.02 mV/mM for arsenate.

  18. Studies of the generation mechanisms of steady vortex formations in the channels of nuclear-power installations for purposes of improving the reliability and safety of their work

    NASA Astrophysics Data System (ADS)

    Mitrofanova, O.

    2017-01-01

    The analysis of the results of experimental researches on revealing the mechanisms of vortex formation in channels of complex geometry in the neutral and conductive media is carried out. The directions of researches related to the study of mechanisms of vortex generation and accumulation of energy by large-scale vortex structures are considered for the possibility of predictions of the man-made accidents and catastrophic natural phenomena. The main goal of ongoing investigations is the solution of the task aimed at improving the safety of nuclear power installations and, in particular, of the fast neutron reactors with liquid-metal coolants, and the prevention of emergency modes arising from acoustic, magnetic and hydrodynamic resonance effects.

  19. Damage Detection Based on Power Dissipation Measured with PZT Sensors through the Combination of Electro-Mechanical Impedances and Guided Waves

    PubMed Central

    Sevillano, Enrique; Sun, Rui; Perera, Ricardo

    2016-01-01

    The use of piezoelectric ceramic transducers (such as Lead-Zirconate-Titanate—PZT) has become more and more widespread for Structural Health Monitoring (SHM) applications. Among all the techniques that are based on this smart sensing solution, guided waves and electro-mechanical impedance techniques have found wider acceptance, and so more studies and experimental works can be found containing these applications. However, even though these two techniques can be considered as complementary to each other, little work can be found focused on the combination of them in order to define a new and integrated damage detection procedure. In this work, this combination of techniques has been studied by proposing a new integrated damage indicator based on Electro-Mechanical Power Dissipation (EMPD). The applicability of this proposed technique has been tested through different experimental tests, with both lab-scale and real-scale structures. PMID:27164104

  20. Assessment of duration of the drive operation in the mode of kinetic energy recovery under power supply voltage sags in electrical grids of mechanical engineering enterprises

    NASA Astrophysics Data System (ADS)

    Shonin, O. B.; Novozhilov, N. G.

    2017-02-01

    Voltage sags in electric grids of mechanical engineering enterprises may lead to disconnection of important power consumers with variable frequency drives from the power grid and further interruption of the production process. The paper considers a sensorless V/f control system of еру induction motor drive under normal conditions and under voltage sags on the basis of a computer model of the drive and derivation of a formula for assessment of possible duration of the drive operation in the mode of controlled recovery of kinetic energy accumulated in rotating mass of the drive. Results of simulations have been used to validate results of calculations of the rotor velocity deceleration made in a closed form obtained from the equation reflecting the balance of torques. It is shown that results of calculations practically coincide with results of simulations in the range up to 5% of the velocity initial value. The proposed formula may be useful for estimation of the duration of the drive operation in the mode of recovery of kinetic energy depending on parameters of the motor and driven mechanisms.

  1. Mechanical Stimulus-Induced Wthdrawal Behavior Increases Subsequent Pre-Stimulus Local Field Potential Power in the Rostral Anterior Cingulate Cortex in Unanesthetized Rats.

    PubMed

    Shen, Zui; Sun, Jing; Liu, Boyi; Jiang, Yongliang; Wu, Yuanyuan; Wang, Jialing; Shao, Xiaomei; Fang, Jianqiao

    2017-03-02

    BACKGROUND The rostral anterior cingulate cortex (rACC) is important in pain expectation. Previous studies demonstrated that mechanical stimulus-induced withdrawal behaviors are spinally-mediated nocifensive reflexes in rats, but it is not known whether pain expectation is influenced by withdrawal behaviors. MATERIAL AND METHODS We reanalyzed previous mechanosensitivity measurements of 244 rats measured 5 times in succession. To study neural oscillation in the rACC, 1 recording microwire array was surgically implanted. Then, we simultaneously recorded the local field potential (LFP) of the rACC over the course of multiple withdrawal behaviors in unanesthetized rats. RESULTS From our previous withdrawal behavioral data in 244 rats, we observed that the distributions of paw withdrawal thresholds (PWTs) were denser and more concentrated after the first withdrawal behavior. Compared to the first mechanical stimulus, increased neuronal synchrony and a stronger delta band component existed in each pre-stimulus LFP in the rACC during subsequent stimuli. CONCLUSIONS Pain expectation could be involved in withdrawal behaviors, which is related to increased total power and delta band power of the subsequent pre-stimulus LFPs in the rACC.

  2. Mechanical Stimulus-Induced Withdrawal Behavior Increases Subsequent Pre-Stimulus Local Field Potential Power in the Rostral Anterior Cingulate Cortex in Unanesthetized Rats

    PubMed Central

    Shen, Zui; Sun, Jing; Liu, Boyi; Jiang, Yongliang; Wu, Yuanyuan; Wang, Jialing; Shao, Xiaomei; Fang, Jianqiao

    2017-01-01

    Background The rostral anterior cingulate cortex (rACC) is important in pain expectation. Previous studies demonstrated that mechanical stimulus-induced withdrawal behaviors are spinally-mediated nocifensive reflexes in rats, but it is not known whether pain expectation is influenced by withdrawal behaviors. Material/Methods We reanalyzed previous mechanosensitivity measurements of 244 rats measured 5 times in succession. To study neural oscillation in the rACC, 1 recording microwire array was surgically implanted. Then, we simultaneously recorded the local field potential (LFP) of the rACC over the course of multiple withdrawal behaviors in unanesthetized rats. Results From our previous withdrawal behavioral data in 244 rats, we observed that the distributions of paw withdrawal thresholds (PWTs) were denser and more concentrated after the first withdrawal behavior. Compared to the first mechanical stimulus, increased neuronal synchrony and a stronger delta band component existed in each pre-stimulus LFP in the rACC during subsequent stimuli. Conclusions Pain expectation could be involved in withdrawal behaviors, which is related to increased total power and delta band power of the subsequent pre-stimulus LFPs in the rACC. PMID:28250407

  3. Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β2-adrenergic stimulation in men.

    PubMed

    Hostrup, Morten; Kalsen, Anders; Onslev, Johan; Jessen, Søren; Haase, Christoffer; Habib, Sajad; Ørtenblad, Niels; Backer, Vibeke; Bangsbo, Jens

    2015-09-01

    The study was a randomized placebo-controlled trial investigating mechanisms by which chronic β2-adrenergic stimulation enhances muscle force and power output during maximal cycle ergometer exercise in young men. Eighteen trained men were assigned to an experimental group [oral terbutaline 5 mg/30 kg body weight (bw) twice daily (TER); n = 9] or a control group [placebo (PLA); n = 9] for a 4-wk intervention. No changes were observed with the intervention in PLA. Isometric muscle force of the quadriceps increased (P ≤ 0.01) by 97 ± 29 N (means ± SE) with the intervention in TER compared with PLA. Peak and mean power output during 30 s of maximal cycling increased (P ≤ 0.01) by 32 ± 8 and 25 ± 9 W, respectively, with the intervention in TER compared with PLA. Maximal oxygen consumption (V̇o2max) and time to fatigue during incremental cycling did not change with the intervention. Lean body mass increased by 1.95 ± 0.8 kg (P ≤ 0.05) with the intervention in TER compared with PLA. Change in single fiber cross-sectional area of myosin heavy chain (MHC) I (1,205 ± 558 μm(2); P ≤ 0.01) and MHC II fibers (1,277 ± 595 μm(2); P ≤ 0.05) of the vastus lateralis muscle was higher for TER than PLA with the intervention, whereas no changes were observed in MHC isoform distribution. Expression of muscle proteins involved in growth, ion handling, lactate production, and clearance increased (P ≤ 0.05) with the intervention in TER compared with PLA, with no change in oxidative enzymes. Our observations suggest that muscle hypertrophy is the primary mechanism underlying enhancements in muscle force and peak power during maximal cycling induced by chronic β2-adrenergic stimulation in humans.

  4. Verification of a 2 kWe Closed-Brayton-Cycle Power Conversion System Mechanical Dynamics Model

    NASA Technical Reports Server (NTRS)

    Ludwiczak, Damian R.; Le, Dzu K.; McNelis, Anne M.; Yu, Albert C.; Samorezov, Sergey; Hervol, Dave S.

    2005-01-01

    Vibration test data from an operating 2 kWe closed-Brayton-cycle (CBC) power conversion system (PCS) located at the NASA Glenn Research Center was used for a comparison with a dynamic disturbance model of the same unit. This effort was performed to show that a dynamic disturbance model of a CBC PCS can be developed that can accurately predict the torque and vibration disturbance fields of such class of rotating machinery. The ability to accurately predict these disturbance fields is required before such hardware can be confidently integrated onto a spacecraft mission. Accurate predictions of CBC disturbance fields will be used for spacecraft control/structure interaction analyses and for understanding the vibration disturbances affecting the scientific instrumentation onboard. This paper discusses how test cell data measurements for the 2 kWe CBC PCS were obtained, the development of a dynamic disturbance model used to predict the transient torque and steady state vibration fields of the same unit, and a comparison of the two sets of data.

  5. Time-frequency methods and voluntary ramped-frequency breathing: a powerful combination for exploration of human neurophysiological mechanisms

    PubMed Central

    Stankovski, Tomislav; Cooke, William H.; Rudas, László; Stefanovska, Aneta

    2013-01-01

    We experimentally altered the timing of respiratory motoneuron activity as a means to modulate and better understand otherwise hidden human central neural and hemodynamic oscillatory mechanisms. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, tidal carbon dioxide concentrations, and muscle sympathetic nerve activity in 13 healthy supine young men who gradually increased or decreased their breathing frequencies between 0.05 and 0.25 Hz over 9-min periods. We analyzed results with traditional time- and frequency-domain methods, and also with time-frequency methods (wavelet transform, wavelet phase coherence, and directional coupling). We determined statistical significance and identified frequency boundaries by comparing measurements with randomly generated surrogates. Our results support several major conclusions. First, respiration causally modulates both sympathetic (weakly) and vagal motoneuron (strongly) oscillations over a wide frequency range—one that extends well below the frequency of actual breaths. Second, breathing frequency broadly modulates vagal baroreflex gain, with peak gains registered in the low frequency range. Third, breathing frequency does not influence median levels of sympathetic or vagal activity over time. Fourth, phase relations between arterial pressure and sympathetic and vagal motoneurons are unaffected by breathing, and are therefore likely secondary to intrinsic responsiveness of these motoneurons to other synaptic inputs. Finally, breathing frequency does not affect phase coherence between diastolic pressure and muscle sympathetic oscillations, but it augments phase coherence between systolic pressure and R-R interval oscillations over a limited portion of the usual breathing frequency range. These results refine understanding of autonomic oscillatory processes and those physiological mechanisms known as the human respiratory gate. PMID:24114700

  6. Mechanical Deformation of Sintered Porous Ag Die Attach at High Temperature and Its Size Effect for Wide-Bandgap Power Device Design

    NASA Astrophysics Data System (ADS)

    Chen, Chuantong; Nagao, Shijo; Zhang, Hao; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki; Iwashige, Tomohito; Sugiura, Kazuhiko; Tsuruta, Kazuhiro

    2016-12-01

    The mechanical properties of sintered Ag paste with microporous structure have been investigated by tensile and shear tests, focusing on the temperature-dependent plastic deformation at various temperatures from 25°C to 300°C, corresponding to the target operating temperature range of emerging wide-bandgap semiconductor devices. Specimens were prepared by sintering hybrid Ag paste consisting of microflake and submicron spherical Ag particles, simulating a typical bonding process for power semiconductor die attach. Mechanical tests revealed that the unique microstructure caused a brittle-to-ductile transition at temperature of around 160°C, remarkably lower than that of bulk Ag. The obtained Young's modulus and shear modulus values indicate obvious softening with increasing temperature, together with a remarkable decrease in Poisson's ratio. These plastic behaviors at elevated temperature can be explained based on Coble creep in the microporous network structure. Fracture surfaces after tensile and shear tests indicated unique features on scanning electron microscopy, reflecting the variation in the ductile behavior with the test temperature. Furthermore, these temperature-dependent mechanical parameters were employed in three-dimensional finite-element analysis of the thermomechanical stress distribution in wide-bandgap semiconductor module structures including Ag paste die attach of different sizes. Detailed thermal stress analysis enabled precise evaluation of the packaging design for wide-bandgap semiconductor modules for use in high-temperature applications.

  7. Mechanical Deformation of Sintered Porous Ag Die Attach at High Temperature and Its Size Effect for Wide-Bandgap Power Device Design

    NASA Astrophysics Data System (ADS)

    Chen, Chuantong; Nagao, Shijo; Zhang, Hao; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki; Iwashige, Tomohito; Sugiura, Kazuhiko; Tsuruta, Kazuhiro

    2017-03-01

    The mechanical properties of sintered Ag paste with microporous structure have been investigated by tensile and shear tests, focusing on the temperature-dependent plastic deformation at various temperatures from 25°C to 300°C, corresponding to the target operating temperature range of emerging wide-bandgap semiconductor devices. Specimens were prepared by sintering hybrid Ag paste consisting of microflake and submicron spherical Ag particles, simulating a typical bonding process for power semiconductor die attach. Mechanical tests revealed that the unique microstructure caused a brittle-to-ductile transition at temperature of around 160°C, remarkably lower than that of bulk Ag. The obtained Young's modulus and shear modulus values indicate obvious softening with increasing temperature, together with a remarkable decrease in Poisson's ratio. These plastic behaviors at elevated temperature can be explained based on Coble creep in the microporous network structure. Fracture surfaces after tensile and shear tests indicated unique features on scanning electron microscopy, reflecting the variation in the ductile behavior with the test temperature. Furthermore, these temperature-dependent mechanical parameters were employed in three-dimensional finite-element analysis of the thermomechanical stress distribution in wide-bandgap semiconductor module structures including Ag paste die attach of different sizes. Detailed thermal stress analysis enabled precise evaluation of the packaging design for wide-bandgap semiconductor modules for use in high-temperature applications.

  8. Maximal oxygen uptake, ventilatory thresholds and mechanical power during cycling in tropical climate in Guadeloupean elite cyclists.

    PubMed

    Hue, O; Antoine-Jonville, S; Galy, O; Blonc, S

    2010-11-01

    The Tropical climate imposes a high level of physiological stress, which could modify the target heart rate in training load prescription, as the recommendations are often determined by maximal oxygen uptake testing in temperature-neutral laboratories. To test this hypothesis, 7 high-level cyclists performed two randomised maximal tests in neutral (19.2±0.9°C; 51.7±1.3% RH) and Tropical environment (25.8±1.1°C; 63.7±2.3% RH). Neither maximal oxygen uptake nor ventilatory threshold was influenced by the environmental conditions. However, ventilation (p<0.005) and the respiratory equivalent in O(2) (p<0.05) were significantly higher in the Tropical environment, whereas maximal power output and the time to attain maximal oxygen uptake were significantly lower (p<0.05 for both). Moreover, the ventilatory cost of cycling (expressed in LW(-1)) was significantly greater in the Tropical condition (0.40±0.03LW(-1) vs. 0.32±0.05LW(-1), in Tropical vs. Neutral; condition effect: p<0.005; condition × time: p<0.001). Rectal temperature was influenced by neither the environmental conditions nor exercise (36.7±0.1 and 37.0±0.1°C vs. 36.8±0.1 and 37.1±0.2°C, in Tropical vs. Neutral, before and after exercise) but was influenced by condition × time (p<0.05). The heart rate (HR) values usually used for training prescription were not significantly different (154±5bpm vs. 156±4bpm and 172±4bpm vs. 167±4bpm in Tropical vs. Neutral climate, for the first and second thresholds, respectively). We concluded that the usual parameters measured during maximal exercise to establish training programs are not impaired in moderate Tropical environment. Nevertheless, the thermal stress attested by the increased ventilatory cost of cycling could have prevented the cyclists from performing a true maximal test in Tropical conditions.

  9. On the mechanism of deep craters formation under the action of high power ytterbium-fiber laser

    NASA Astrophysics Data System (ADS)

    Kochurin, E. A.; Lisenkov, V. V.; Osipov, V. V.; Platonov, V. V.; Zubarev, N. M.

    2016-11-01

    Stability of a liquid crater wall formed under the action of an ytterbium-fiber laser in the course of the Nd3+:Y2O3 nanopowder production is studied theoretically. It has been shown that hydrodynamic instability can develop on the melt-vapor interface as a result of the tangential discontinuity of the velocity between the vapor stream and molten crater wall. The characteristic spatial and temporal scales are estimated in the framework of the proposed qualitative model, they are found to be 20-90 μm and 20-50 μs, respectively, that is in good agreement with experimental data. Thus, the droplet formation time (during which the amplitude of the boundary perturbation reaches the wavelength order) is much smaller than a pulse duration of the ytterbium-fiber laser (1360 μs). This means that a significant amount of material can be removed from the crater due to formation of microscale droplets during the irradiation. This mechanism can explain the much greater crater depth for the fiber laser than for CO2 laser (a pulse duration for which is 370 μs).

  10. Human Powered Centrifuge

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M. (Inventor); Vernikos, Joan (Inventor)

    1997-01-01

    A human powered centrifuge has independently established turntable angular velocity and human power input. A control system allows excess input power to be stored as electric energy in a battery or dissipated as heat through a resistors. In a mechanical embodiment, the excess power is dissipated in a friction brake.

  11. Effect of Acoustic Power on In Vivo Molecular Imaging with Targeted Microbubbles: Implications for Low-Mechanical Index Real-Time Imaging

    PubMed Central

    Kaufmann, Beat A.; Carr, Chad L.; Belcik, Todd; Xie, Aris; Kron, Benjamin; Yue, Qi; Lindner, Jonathan R.

    2009-01-01

    The aim of this study was to evaluate the influence of acoustic power on ultrasound molecular imaging data with targeted microbubbles. Imaging was performed with a contrast-specific multipulse method at a mechanical index (MI) of 0.18 and 0.97. In vitro imaging was used to measure concentration-intensity relationships and to assess whether damping from microbubble attachment to cultured endothelial cells affects signal enhancement. Power-related differences in signal enhancement were evaluated in vivo by P-selectin-targeted and control microbubble imaging in a murine model of hindlimb ischemia-reperfusion injury. During in vitro experiments there was minimal acoustic damping from microbubble-cell attachment at either MI. Signal enhancement in the in vitro and in vivo experiments was 2-3-fold higher for high-MI compared with low-MI imaging which was due to greater pixel intensity, detection of a greater number of retained microbubbles, and increased point-spread function. Yet, there was a linear relationship between high- and low-MI data indicating that the relative degree of enhancement was similar. We conclude that during molecular imaging high-MI protocols produce more robust targeted signal enhancement than low-MI, although differences in relative enhancement caused by condition or agent are similar. PMID:19910159

  12. Effect of laser power on the microstructure and mechanical properties of TiN/Ti3Al composite coatings on Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Liu, Zhengdao; Zhang, Xiancheng; Xuan, Fuzhen; Wang, Zhengdong; Tu, Shandong

    2013-07-01

    Laser nitriding is one of the effective techniques to improve the surface properties of titanium alloys and has potential application in the life extension of last-stage steam turbine blades. However, cracking of surface coating is a common problem due to heat concentration in laser nitriding process. Conventionally, the cracks can be avoided through heat treatment, which may have an important influence on the mechanical properties of coating. Crack-free TiN/Ti3Al IMC coatings on Ti6Al4V are prepared by plasma spraying and laser nitriding. The microstructures, phase constitutes and compositions of the coating are observed and analyzed with scanning electron microscopy(SEM), X-ray diffraction(XRD) and X-ray energy-dispersive spectroscopy(EDS). Microhardness, elastic modulus, fracture toughness of the coating are measured. The results show that the crack- and pore-free IMC coatings can be made through the proposed method; with increasing laser power, the amount and density of TiN phase in the coating first increased and then decreased, leading to the similar trend of microhardness and elastic modulus and the reverse trend of fracture toughness of the coating. Both the average microhardness and elastic modulus of the coating increase three times higher than those of the substrate. The volume fraction of the TiN reinforced phase in composite can be controlled by varying the laser power and the cracking problem in laser nitriding process is successfully solved.

  13. Emission mechanisms in Al-rich AlGaN/AlN quantum wells assessed by excitation power dependent photoluminescence spectroscopy

    SciTech Connect

    Iwata, Yoshiya; Banal, Ryan G.; Ichikawa, Shuhei; Funato, Mitsuru; Kawakami, Yoichi

    2015-02-21

    The optical properties of Al-rich AlGaN/AlN quantum wells are assessed by excitation-power-dependent time-integrated (TI) and time-resolved (TR) photoluminescence (PL) measurements. Two excitation sources, an optical parametric oscillator and the 4th harmonics of a Ti:sapphire laser, realize a wide range of excited carrier densities between 10{sup 12} and 10{sup 21 }cm{sup −3}. The emission mechanisms change from an exciton to an electron-hole plasma as the excitation power increases. Accordingly, the PL decay time is drastically reduced, and the integrated PL intensities increase in the following order: linearly, super-linearly, linearly again, and sub-linearly. The observed results are well accounted for by rate equations that consider the saturation effect of non-radiative recombination processes. Using both TIPL and TRPL measurements allows the density of non-radiative recombination centers, the internal quantum efficiency, and the radiative recombination coefficient to be reliably extracted.

  14. Design of a low-power nonvolatile flip-flop using three-terminal magnetic-tunnel-junction-based self-terminated mechanism

    NASA Astrophysics Data System (ADS)

    Suzuki, Daisuke; Hanyu, Takahiro

    2017-04-01

    A nonvolatile flip-flop (NV-FF) using a three-terminal magnetic tunnel junction (3T-MTJ)-based self-terminated mechanism is proposed for a low-power logic LSI while maintaining almost the same performance as a conventional CMOS-based logic LSI. The use of a self-terminated mechanism, which continuously monitors the change in MTJ resistance, makes it possible not only to minimize the write energy consumption for the 3T-MTJ device but also to ensure a reliable write. Moreover, since the write current path is separated from the read current path in the 3T-MTJ device, the sensing circuit and the write driver are individually optimized, which makes it possible to minimize the performance overhead due to additional components. As a result, the write energy of the proposed NV-FF is reduced by 69% with a small performance overhead compared with that of a conventional NV-FF using a worst-case-oriented writing scheme.

  15. Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism

    PubMed Central

    Heiss, Egon; Natchev, Nikolay; Gumpenberger, Michaela; Weissenbacher, Anton; Van Wassenbergh, Sam

    2013-01-01

    During the evolutionary transition from fish to tetrapods, a shift from uni- to bidirectional suction feeding systems followed a reduction in the gill apparatus. Such a shift can still be observed during metamorphosis of salamanders, although many adult salamanders retain their aquatic lifestyle and feed by high-performance suction. Unfortunately, little is known about the interplay between jaws and hyobranchial motions to generate bidirectional suction flows. Here, we study the cranial morphology, as well as kinematic and hydrodynamic aspects related to prey capture in the Chinese giant salamander (Andrias davidianus). Compared with fish and previously studied amphibians, A. davidianus uses an alternative suction mechanism that mainly relies on accelerating water by separating the ‘plates’ formed by the long and broad upper and lower jaw surfaces. Computational fluid dynamics simulations, based on three-dimensional morphology and kinematical data from high-speed videos, indicate that the viscerocranial elements mainly serve to accommodate the water that was given a sufficient anterior-to-posterior impulse beforehand by powerful jaw separation. We hypothesize that this modified way of generating suction is primitive for salamanders, and that this behaviour could have played an important role in the evolution of terrestrial life in vertebrates by releasing mechanical constraints on the hyobranchial system. PMID:23466557

  16. Is non-insulin dependent glucose uptake a therapeutic alternative? Part 2: Do such mechanisms fulfil the required combination of power and tolerability?

    PubMed

    Wiernsperger, N F

    2005-12-01

    The worldwide burden of diabetes, the unavoidable worsening which is observed in long-term clinical trials despite treatment and the close link between glycaemia and microangiopathy appeal for much stronger treatment strategies. This, in turn, either requires polypharmacy (with new risks) or new, more powerful drugs to be invented. The first part of this review dealt with a thorough analysis of pros and cons for some selected pathways which could potentially increase glucose uptake without necessitating insulin. The choice of such targets for developing completely new drugs, however, requires a favourable background from existing tentatives with either drugs or cell biology approaches. Moreover, because vascular complications are what must ultimately be avoided when treating diabetic patients, we must be sure that increasing glucose uptake in a fashion which is no more controlled by normal physiology is compatible with the physiology of vascular cells (long-term tolerance). The aspect of drug side-effects must therefore be considered systematically. For reasons which are individually developed, it appears that each of the potential pathways analyzed either lacks sufficient power and/or is likely to induce side effects which are not acceptable for long-term application. The fact that GLUT-1 transporters are ubiquitously distributed even extends this cardinal question to the general principle of increasing glucose uptake. In conclusion a precise evaluation suggests that, although non-insulin dependent glucose uptake represents (3/4) of whole body glucose transport, it is difficult to consider such mechanisms able to generate a new treatment fulfilling the unavoidable request of combined efficacy and tolerability.

  17. Inverse Compton X-Ray Halos Around High-z Radio Galaxies: A Feedback Mechanism Powered by Far-Infrared Starbursts or the Cosmic Microwave Background?

    NASA Technical Reports Server (NTRS)

    Small, Ian; Blundell, Katherine M.; Lehmer, B. D.; Alexander, D. M.

    2012-01-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z approx. 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L(sub X) approx. 3 x 10(exp 44) erg/s and sizes of approx.60 kpc. Their morphologies are broadly similar to the approx.60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z approx. 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z approx. 3.6 radio galaxies, which are 4 fainter in the far-infrared than those at z 3.8, also have approx.4x fainter X-ray IC emission. Including data for a further six z > or approx. 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes < or approx.100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on approx.100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly(alpha) emission line halos found around some of these systems. The starburst and active galactic nucleus

  18. The “Perivascular Pump” Driven by Arterial Pulsation is a Powerful Mechanism for the Distribution of Therapeutic Molecules within the Brain

    PubMed Central

    Hadaczek, Piotr; Yamashita, Yoji; Mirek, Hanna; Tamas, Laszlo; Bohn, Martha C.; Noble, Charles; Park, John W.; Bankiewicz, Krystof

    2009-01-01

    We investigated the movement of interstitially infused macromolecules within the central nervous system (CNS) in rats with high and low blood pressure (BP)/heart rate and in rats euthanized immediately before infusion (no heart action). Adeno-associated virus 2 (AAV2), fluorescent liposomes, or bovine serum albumin was infused into rat striatum (six hemispheres per group) by convection-enhanced delivery (CED). After infusion, distribution volumes were evaluated. The rats with high BP/heart rate displayed a significantly larger distribution of the infused molecules within the injected site and more extensive transport of those molecules to the globus pallidus. This difference was particularly apparent for AAV2, for which a 16.5-fold greater distribution of viral capsids was observed in the rats with high BP/heart rate than in the rats with no heartbeat. Similar results were observed for liposomes, despite their larger diameter. The distribution of all infused molecules in all rats that had low or no blood flow was confined to the space around brain blood vessels. These findings show that fluid circulation within the CNS through the perivascular space is the primary mechanism by which viral particles and other therapeutic agents administered by CED are spread within the brain and that cardiac contractions power this process. PMID:16650807

  19. From Cycling Between Coupled Reactions to the Cross-Bridge Cycle: Mechanical Power Output as an Integral Part of Energy Metabolism

    PubMed Central

    Diederichs, Frank

    2012-01-01

    ATP delivery and its usage are achieved by cycling of respective intermediates through interconnected coupled reactions. At steady state, cycling between coupled reactions always occurs at zero resistance of the whole cycle without dissipation of free energy. The cross-bridge cycle can also be described by a system of coupled reactions: one energising reaction, which energises myosin heads by coupled ATP splitting, and one de-energising reaction, which transduces free energy from myosin heads to coupled actin movement. The whole cycle of myosin heads via cross-bridge formation and dissociation proceeds at zero resistance. Dissipation of free energy from coupled reactions occurs whenever the input potential overcomes the counteracting output potential. In addition, dissipation is produced by uncoupling. This is brought about by a load dependent shortening of the cross-bridge stroke to zero, which allows isometric force generation without mechanical power output. The occurrence of maximal efficiency is caused by uncoupling. Under coupled conditions, Hill’s equation (velocity as a function of load) is fulfilled. In addition, force and shortening velocity both depend on [Ca2+]. Muscular fatigue is triggered when ATP consumption overcomes ATP delivery. As a result, the substrate of the cycle, [MgATP2−], is reduced. This leads to a switch off of cycling and ATP consumption, so that a recovery of [ATP] is possible. In this way a potentially harmful, persistent low energy state of the cell can be avoided. PMID:24957757

  20. Degradation mechanisms in high-power multi-mode InGaAs-AlGaAs strained quantum well lasers for high-reliability applications

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Brodie, Miles; Lingley, Zachary; Foran, Brendan; Moss, Steven C.

    2015-03-01

    Laser diode manufacturers perform accelerated multi-cell lifetests to estimate lifetimes of lasers using an empirical model. Since state-of-the-art laser diodes typically require a long period of latency before they degrade, significant amount of stress is applied to the lasers to generate failures in relatively short test durations. A drawback of this approach is the lack of mean-time-to-failure data under intermediate and low stress conditions, leading to uncertainty in model parameters (especially optical power and current exponent) and potential overestimation of lifetimes at usage conditions. This approach is a concern especially for satellite communication systems where high reliability is required of lasers for long-term duration in the space environment. A number of groups have studied reliability and degradation processes in GaAs-based lasers, but none of these studies have yielded a reliability model based on the physics of failure. The lack of such a model is also a concern for space applications where complete understanding of degradation mechanisms is necessary. Our present study addresses the aforementioned issues by performing long-term lifetests under low stress conditions followed by failure mode analysis (FMA) and physics of failure investigation. We performed low-stress lifetests on both MBE- and MOCVD-grown broad-area InGaAs- AlGaAs strained QW lasers under ACC (automatic current control) mode to study low-stress degradation mechanisms. Our lifetests have accumulated over 36,000 test hours and FMA is performed on failures using our angle polishing technique followed by EL. This technique allows us to identify failure types by observing dark line defects through a window introduced in backside metal contacts. We also investigated degradation mechanisms in MOCVD-grown broad-area InGaAs-AlGaAs strained QW lasers using various FMA techniques. Since it is a challenge to control defect densities during the growth of laser structures, we chose to

  1. Effect of impeller type and mechanical agitation on the mass transfer and power consumption aspects of ASBR operation treating synthetic wastewater.

    PubMed

    Michelan, Rogério; Zimmer, Thiago R; Rodrigues, José A D; Ratusznei, Suzana M; de Moraes, Deovaldo; Zaiat, Marcelo; Foresti, Eugenio

    2009-03-01

    The effect of flow type and rotor speed was investigated in a round-bottom reactor with 5 L useful volume containing 2.0 L of granular biomass. The reactor treated 2.0 L of synthetic wastewater with a concentration of 800 mgCOD/L in 8-h cycles at 30 degrees C. Five impellers, commonly used in biological processes, have been employed to this end, namely: a turbine and a paddle impeller with six-vertical-flat-blades, a turbine and a paddle impeller with six-45 degrees -inclined-flat-blades and a three-blade-helix impeller. Results showed that altering impeller type and rotor speed did not significantly affect system stability and performance. Average organic matter removal efficiency was about 84% for filtered samples, total volatile acids concentration was below 20 mgHAc/L and bicarbonate alkalinity a little less than 400 mgCaCO3/L for most of the investigated conditions. However, analysis of the first-order kinetic model constants showed that alteration in rotor speed resulted in an increase in the values of the kinetic constants (for instance, from 0.57 h(-1) at 50 rpm to 0.84 h(-1) at 75 rpm when the paddle impeller with six-45 degrees -inclined-flat-blades was used) and that axial flow in mechanically stirred reactors is preferable over radial-flow when the vertical-flat-blade impeller is compared to the inclined-flat-blade impeller (for instance at 75 rpm, from 0.52 h(-1) with the six-flat-blade-paddle impeller to 0.84 h(-1) with the six-45 degrees -inclined-flat-blade-paddle impeller), demonstrating that there is a rotor speed and an impeller type that maximize solid-liquid mass transfer in the reaction medium. Furthermore, power consumption studies in this reduced reactor volume showed that no high power transfer is required to improve mass transfer (less than 0.6 kW/10(3)m3).

  2. Reliability, failure modes, and degradation mechanisms in high power single- and multi-mode InGaAs-AlGaAs strained quantum well lasers

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Lingley, Zachary; Brodie, Miles; Foran, Brendan; Moss, Steven C.

    2016-03-01

    High power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both telecommunications and potential space satellite communications systems. However, little has been reported on failure modes of state-of-the-art SM InGaAs-AlGaAs strained QW lasers although it is crucial to understand failure modes and underlying degradation mechanisms in developing these lasers that meet lifetime requirements for space satellite systems, where extremely high reliability of these lasers is required. Our present study addresses the aforementioned issues by performing long-term life tests under different test conditions followed by failure mode analysis (FMA) and physics of failure investigation. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs-AlGaAs strained QW lasers under ACC (automatic current control) mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. FMA was performed on failed SM lasers using electron beam induced current (EBIC). This technique allowed us to identify failure types by observing dark line defects. All the SM failures we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Our group previously reported that bulk failure or COBD (catastrophic optical bulk damage) is the dominant failure mode of MM InGaAs-AlGaAs strained QW lasers. To the best of our knowledge, this is the first report demonstrating that the dominant failure mode of both SM and MM InGaAs-AlGaAs strained QW lasers is the bulk failure. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) processing and high-resolution TEM to further study dark line defects and dislocations in post-aged SM and MM lasers. Our long-term life test results and FMA results are reported.

  3. Influencing Mechanism of the Selenization Temperature and Time on the Power Conversion Efficiency of Cu2ZnSn(S,Se)4-Based Solar Cells.

    PubMed

    Xiao, Zhen-Yu; Yao, Bin; Li, Yong-Feng; Ding, Zhan-Hui; Gao, Zhong-Min; Zhao, Hai-Feng; Zhang, Li-Gong; Zhang, Zhen-Zhong; Sui, Ying-Rui; Wang, Gang

    2016-07-13

    Cu2ZnSn(S,Se)4 (CZTSSe) films were deposited on the Mo-coated glass substrates, and the CZTSSe-based solar cells were successfully fabricated by a facile solution method and postselenization technique. The influencing mechanisms of the selenization temperature and time on the power conversion efficiency (PCE), short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) of the solar cell are systematically investigated by studying the change of the shunt conductance (Gsh), series resistance (Rs), diode ideal factor (n), and reversion saturation current density (J0) with structure and crystal quality of the CZTSSe film and CZTSSe/Mo interface selenized at various temperatures and times. It is found that a Mo(S1-x,Sex)2 (MSSe) layer with hexagonal structure exists at the CZTSSe/Mo interface at the temperature of 500 °C, and its thickness increases with increasing selenization temperature and time. The MSSe has a smaller effect on the Rs, but it has a larger influence on the Gsh, n, and J0. The PCE, Voc, and FF change dominantly with Gsh, n, and J0, while Jsc changes with Rs and Gsh, but not Rs. These results suggest that the effect of the selenization temperature and time on the PCE is dominantly contributed to the change of the CZTSSe/CdS p-n junction and CZTSSe/MSSe interface induced by variation of the quality of the CZTSSe film and thickness of MSSe in the selenization process. By optimizing the selenization temperature and time, the highest PCE of 7.48% is obtained.

  4. Submerged Medium Voltage Cable Systems at Nuclear Power Plants. A Review of Research Efforts Relevant to Aging Mechanisms and Condition Monitoring

    SciTech Connect

    Brown, Jason; Bernstein, Robert; White, II, Gregory Von; Glover, Steven F.; Neely, Jason C.; Pena, Gary; Williamson, Kenneth Martin; Zutavern, Fred J.; Gelbard, Fred

    2015-03-01

    In a submerged environment, power cables may experience accelerated insulation degradation due to water - related aging mechanisms . Direct contact with water or moisture intrusion in the cable insulation s ystem has been identified in the literature as a significant aging stressor that can affect performance and lifetime of electric cables . Progressive reduction of the dielectric strength is commonly a result of water treeing which involves the development of permanent hydrophilic structures in the insulation coinciding with the absorption of water into the cable . Water treeing is a phenomenon in which dendritic microvoids are formed in electric cable insulation due to electrochemic al reactions , electromechanical forces , and diffusion of contaminants over time . These reactions are caused by the combined effect s of water presence and high electrical stress es in the material . Water tree growth follow s a tree - like branching pattern , i ncreasing in volume and length over time . Although these cables can be "dried out," water tree degradation , specifically the growth of hydrophilic regions, is believed to be permanent and typically worsens over time. Based on established research , water treeing or water induced damage can occur in a variety of electric cables including XLPE, TR - XLPE and other insulating materials, such as EPR and butyl rubber . Once water trees or water induced damage form, the dielectric strength of an insulation materia l will decrease gradually with time as the water trees grow in length, which could eventually result in failure of the insulating material . Under wet conditions or i n submerged environments , several environmental and operational parameters can influence w ater tree initiation and affect water tree growth . These parameters include voltage cycling, field frequency, temperature, ion concentration and chemistry, type of insula tion material , and the characteristics of its defects. In this effort, a review of academic

  5. Strain powered antennas

    NASA Astrophysics Data System (ADS)

    Domann, John P.; Carman, Greg P.

    2017-01-01

    This paper proposes the creation of strain powered antennas that radiate electromagnetic energy by mechanically vibrating a piezoelectric or piezomagnetic material. A closed form analytic model of electromagnetic radiation from a strain powered electrically small antenna is derived and analyzed. Fundamental scaling laws and the frequency dependence of strain powered antennas are discussed. The radiation efficiency of strain powered electrically small antennas is contrasted with a conventional electric dipole. Analytical results show that operating at the first mechanical resonance produces the most efficient strain powered radiation relative to electric dipole antennas. A resonant analysis is exploited to determine the material property space that produces efficient strain powered antennas. These results show how a properly designed strain powered antenna can radiate more efficiently than an equally sized electric dipole antenna.

  6. Power generation systems and methods

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  7. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype Electric Power Management and Thruster Control System for a 30 cm ion thruster has been built and is ready to support a first mission application. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The Power Management and Control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is designed to be easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete Power Management and Control system measures 45.7 cm x 15.2 cm x 114.8 cm and weighs 36.2 kg. At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  8. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype electric power management and thruster control system for a 30 cm ion thruster is described. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The power management and control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete power management and control system measures 45.7 cm (18 in.) x 15.2 cm (6 in.) x 114.8 cm (45.2 in.) and weighs 36.2 kg (79.7 lb). At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  9. Power Transfer in Physical Systems.

    ERIC Educational Resources Information Center

    Kaeck, Jack A.

    1990-01-01

    Explores the power transfer using (1) a simple electric circuit consisting of a power source with internal resistance; (2) two different mechanical systems (gravity driven and constant force driven); (3) ecological examples; and (4) a linear motor. (YP)

  10. Power Harvesting from Rotation?

    ERIC Educational Resources Information Center

    Chicone, Carmen; Feng, Z. C.

    2008-01-01

    We show the impossibility of harvesting power from rotational motions by devices attached to the rotating object. The presentation is suitable for students who have studied Lagrangian mechanics. (Contains 2 figures.)

  11. Laser power transmission

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1992-01-01

    An overview of previous studies related to laser power transmission is presented. Particular attention is given to the use of solar pumped lasers for space power applications. Three general laser mechanisms are addressed: photodissociation lasing driven by sunlight, photoexcitation lasing driven directly by sunlight, and photoexcitation lasing driven by thermal radiation.

  12. Automotive Power Trains.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide mechanics with an understanding of the operation, maintenance, and troubleshooting of automotive power trains and certain auxiliary equipment. The course contains six study units covering basic power trains; clutch principles and operations; conventional…

  13. Space tug point design study. Volume 3: Design definition. Part 1: Propulsion and mechanical, avionics, thermal control and electrical power subsystems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the configuration and performance of a space tug. Details of the space tug systems are presented to include: (1) propulsion systems, (2) avionics, (3) thermal control, and (4) electric power subsystems. The data generated include engineering drawings, schematics, subsystem operation, and component description. Various options investigated and the rational for the point design selection are analyzed.

  14. Experimental Investigation of the Mechanical Behavior of a Filled Elastomer at Pressures Below 10 to the -6th Power Torr. Ph.D. Thesis - Va. Polytechnic Inst.

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.

    1972-01-01

    The mechanical behavior of a filled elastomer was studied with emphasis on understanding the vacuum-material interactions occurring, and to develop analytical techniques for predicting the vacuum behavior. The test results indicate that two separate mechanisms are involved in the observed property changes: the first controls the time response to applied stress; the second determines the initial internal state of the materials as the result of stresses. It is concluded that the mechanical property changes are attributable to changes in the relaxation processes occurring in the material. These changes are brought about by outgassing of water. Recommendations for future investigations are included.

  15. Ex-situ tensile fatigue-creep testing: A powerful tool to simulate in-situ mechanical degradation in fuel cells

    NASA Astrophysics Data System (ADS)

    Sadeghi Alavijeh, A.; Venkatesan, S. V.; Khorasany, R. M. H.; Kim, W. H. J.; Kjeang, E.

    2016-04-01

    An ex-situ tensile fatigue and creep based accelerated stress test (TFC-AST) is proposed to evaluate the mechanical stability of catalyst coated membranes (CCMs) used in fuel cells. The fatigue-creep action of the TFC test is analyzed by tensile and hygrothermal expansion measurements on partially degraded specimens supplemented by microstructural characterization using transmission electron microscopy, revealing significant decay in mechanical properties as well as morphological rearrangement due to the combined fatigue and creep loading. Through comparison with in-situ hygrothermally degraded CCMs, the TFC-AST protocol is demonstrated to be an economical alternative to the costly in-situ mechanical accelerated stress tests that can reduce the test duration by more than 99%.

  16. Relationships among growth mechanism, structure and morphology of PEALD TiO2 films: the influence of O2 plasma power, precursor chemistry and plasma exposure mode

    NASA Astrophysics Data System (ADS)

    Chiappim, W.; Testoni, G. E.; Doria, A. C. O. C.; Pessoa, R. S.; Fraga, M. A.; Galvão, N. K. A. M.; Grigorov, K. G.; Vieira, L.; Maciel, H. S.

    2016-07-01

    Titanium dioxide (TiO2) thin films have generated considerable interest over recent years, because they are functional materials suitable for a wide range of applications. The efficient use of the outstanding functional properties of these films relies strongly on their basic characteristics, such as structure and morphology, which are affected by deposition parameters. Here, we report on the influence of plasma power and precursor chemistry on the growth kinetics, structure and morphology of TiO2 thin films grown on Si(100) by plasma-enhanced atomic layer deposition (PEALD). For this, remote capacitively coupled 13.56 MHz oxygen plasma was used to act as a co-reactant during the ALD process using two different metal precursors: titanium tetrachloride (TiCl4) and titanium tetraisopropoxide (TTIP). Furthermore, we investigate the effect of direct plasma exposure during the co-reactant pulse on the aforementioned material properties. The extensive characterization of TiO2 films using Rutherford backscattering spectroscopy, ellipsometry, x-ray diffraction (XRD), field-emission scanning electron microscopy, and atomic force microscopy (AFM) have revealed how the investigated process parameters affect their growth per cycle (GPC), crystallization and morphology. The GPC tends to increase with plasma power for both precursors, however, for the TTIP precursor, it starts decreasing when the plasma power is greater than 100 W. From XRD analysis, we found a good correlation between film crystallinity and GPC behavior, mainly for the TTIP process. The AFM images indicated the formation of films with grain size higher than film thickness (grain size/film thickness ratio ≈20) for both precursors, and plasma power analysis allows us to infer that this phenomenon can be directly related to the increase of the flux of energetic oxygen species on the substrate/growing film surface. Finally, the effect of direct plasma exposure on film structure and morphology was evidenced

  17. Relationships among growth mechanism, structure and morphology of PEALD TiO2 films: the influence of O2 plasma power, precursor chemistry and plasma exposure mode.

    PubMed

    Chiappim, W; Testoni, G E; Doria, A C O C; Pessoa, R S; Fraga, M A; Galvão, N K A M; Grigorov, K G; Vieira, L; Maciel, H S

    2016-07-29

    Titanium dioxide (TiO2) thin films have generated considerable interest over recent years, because they are functional materials suitable for a wide range of applications. The efficient use of the outstanding functional properties of these films relies strongly on their basic characteristics, such as structure and morphology, which are affected by deposition parameters. Here, we report on the influence of plasma power and precursor chemistry on the growth kinetics, structure and morphology of TiO2 thin films grown on Si(100) by plasma-enhanced atomic layer deposition (PEALD). For this, remote capacitively coupled 13.56 MHz oxygen plasma was used to act as a co-reactant during the ALD process using two different metal precursors: titanium tetrachloride (TiCl4) and titanium tetraisopropoxide (TTIP). Furthermore, we investigate the effect of direct plasma exposure during the co-reactant pulse on the aforementioned material properties. The extensive characterization of TiO2 films using Rutherford backscattering spectroscopy, ellipsometry, x-ray diffraction (XRD), field-emission scanning electron microscopy, and atomic force microscopy (AFM) have revealed how the investigated process parameters affect their growth per cycle (GPC), crystallization and morphology. The GPC tends to increase with plasma power for both precursors, however, for the TTIP precursor, it starts decreasing when the plasma power is greater than 100 W. From XRD analysis, we found a good correlation between film crystallinity and GPC behavior, mainly for the TTIP process. The AFM images indicated the formation of films with grain size higher than film thickness (grain size/film thickness ratio ≈20) for both precursors, and plasma power analysis allows us to infer that this phenomenon can be directly related to the increase of the flux of energetic oxygen species on the substrate/growing film surface. Finally, the effect of direct plasma exposure on film structure and morphology was evidenced

  18. The Heisenberg Microscope: A Powerful Instructional Tool for Promoting Meta-Cognitive and Meta-Scientific Thinking on Quantum Mechanics and the "Nature of Science"

    ERIC Educational Resources Information Center

    Hadzidaki, Pandora

    2008-01-01

    In this paper, we present a multi-dimensional study concerning Heisenberg's "gamma ray microscope", a thought experiment, which is intimately connected with the historical development of quantum mechanics (QM), and also with the most disputed interpretations of quantum theory. In this study: (a) we investigate how philosophers of science read and…

  19. In situ muscle power differs without varying in vitro mechanical properties in two insect leg muscles innervated by the same motor neuron.

    PubMed

    Ahn, A N; Meijer, K; Full, R J

    2006-09-01

    The mechanical behavior of muscle during locomotion is often predicted by its anatomy, kinematics, activation pattern and contractile properties. The neuromuscular design of the cockroach leg provides a model system to examine these assumptions, because a single motor neuron innervates two extensor muscles operating at a single joint. Comparisons of the in situ measurements under in vivo running conditions of muscle 178 to a previously examined muscle (179) demonstrate that the same inputs (e.g. neural signal and kinematics) can result in different mechanical outputs. The same neural signal and kinematics, as determined during running, can result in different mechanical functions, even when the two anatomically similar muscles possess the same contraction kinetics, force-velocity properties and tetanic force-length properties. Although active shortening greatly depressed force under in vivo-like strain and stimulation conditions, force depression was similarly proportional to strain, similarly inversely proportional to stimulation level, and similarly independent of initial length and shortening velocity between the two muscles. Lastly, passive pre-stretch enhanced force similarly between the two muscles. The forces generated by the two muscles when stimulated with their in vivo pattern at lengths equal to or shorter than rest length differed, however. Overall, differences between the two muscles in their submaximal force-length relationships can account for up to 75% of the difference between the two muscles in peak force generated at short lengths observed during oscillatory contractions. Despite the fact that these muscles act at the same joint, are stimulated by the same motor neuron with an identical pattern, and possess many of the same in vitro mechanical properties, the mechanical outputs of two leg extensor muscles can be vastly different.

  20. Experimental study of loss mechanisms of AgAu/PbBi-2223 tapes with twisted filaments under perpendicular AC magnetic fields at power frequencies

    NASA Astrophysics Data System (ADS)

    Martínez, E.; Yang, Y.; Beduz, C.; Huang, Y. B.

    2000-05-01

    AC losses under perpendicular AC fields have been measured at 77 K and power frequencies for multifilamentary AgAu (10 wt.%)/Bi-2223 tapes with filaments twisted at different pitches. Using simultaneous measurements of the first and higher harmonics of the voltage induced in the pick-up coil, the main loss contributions (superconductor and coupling current losses) have been obtained separately. At power frequencies, twisting produces the desired uncoupling of the filaments at fields lower than the coupling field, which has also been determined experimentally. In the uncoupled-filament regime, the superconductor losses are reduced strongly with respect to the untwisted tapes. The reduction of the total loss with twisting is also observed. However, due to the important contribution of the coupling current losses for this field orientation, a very small pitch (<5 mm) is necessary for a considerably lower loss than that of untwisted tapes. The dependence of the coupling field and coupling current losses on the twist pitch has been analysed and compared with the theoretical predictions.

  1. Effect of pristine graphene incorporation on charge storage mechanism of three-dimensional graphene oxide: superior energy and power density retention

    PubMed Central

    Singh, Kiran Pal; Bhattacharjya, Dhrubajyoti; Razmjooei, Fatemeh; Yu, Jong-Sung

    2016-01-01

    In the race of gaining higher energy density, carbon’s capacity to retain power density is generally lost due to defect incorporation and resistance increment in carbon electrode. Herein, a relationship between charge carrier density/charge movement and supercapacitance performance is established. For this purpose we have incorporated the most defect-free pristine graphene into defective/sacrificial graphene oxide. A unique co-solvent-based technique is applied to get a homogeneous suspension of single to bi-layer graphene and graphene oxide. This suspension is then transformed into a 3D composite structure of pristine graphene sheets (GSs) and defective N-doped reduced graphene oxide (N-RGO), which is the first stable and homogenous 3D composite between GS and RGO to the best of our knowledge. It is found that incorporation of pristine graphene can drastically decrease defect density and thus decrease relaxation time due to improved associations between electrons in GS and ions in electrolyte. Furthermore, N doping is implemented selectively only on RGO and such doping is shown to improve the charge carrier density of the composite, which eventually improves the energy density. After all, the novel 3D composite structure of N-RGO and GS greatly improves energy and power density even at high current density (20 A/g). PMID:27530441

  2. Microstructural characterization and mechanical properties of high power ultrasonic spot welded aluminum alloy AA6111–TiAl6V4 dissimilar joints

    SciTech Connect

    Zhang, C.Q. Robson, J.D.; Ciuca, O.; Prangnell, P.B.

    2014-11-15

    Aluminum alloy AA6111 and TiAl6V4 dissimilar alloys were successfully welded by high power ultrasonic spot welding. No visible intermetallic reaction layer was detected in as-welded AA6111/TiAl6V4 welds, even when transmission electron microscopy was used. The effects of welding time and natural aging on peak load and fracture energy were investigated. The peak load and fracture energy of welds increased with an increase in welding time and then reached a plateau. The lap shear strength (peak load) can reach the same level as that of similar Al–Al joints. After natural aging, the fracture mode of welds transferred from ductile fracture of the softened aluminum to interfacial failure due to the strength recovery of AA6111. - Highlights: • Dissimilar Al/Ti welds were produced by high power ultrasonic spot welding. • No visible intermetallic reaction layer was detected on weld interface. • The lap shear strength can reach the same level as that of similar Al–Al joints. • The fracture mode becomes interfacial failure after natural aging.

  3. Effect of pristine graphene incorporation on charge storage mechanism of three-dimensional graphene oxide: superior energy and power density retention

    NASA Astrophysics Data System (ADS)

    Singh, Kiran Pal; Bhattacharjya, Dhrubajyoti; Razmjooei, Fatemeh; Yu, Jong-Sung

    2016-08-01

    In the race of gaining higher energy density, carbon’s capacity to retain power density is generally lost due to defect incorporation and resistance increment in carbon electrode. Herein, a relationship between charge carrier density/charge movement and supercapacitance performance is established. For this purpose we have incorporated the most defect-free pristine graphene into defective/sacrificial graphene oxide. A unique co-solvent-based technique is applied to get a homogeneous suspension of single to bi-layer graphene and graphene oxide. This suspension is then transformed into a 3D composite structure of pristine graphene sheets (GSs) and defective N-doped reduced graphene oxide (N-RGO), which is the first stable and homogenous 3D composite between GS and RGO to the best of our knowledge. It is found that incorporation of pristine graphene can drastically decrease defect density and thus decrease relaxation time due to improved associations between electrons in GS and ions in electrolyte. Furthermore, N doping is implemented selectively only on RGO and such doping is shown to improve the charge carrier density of the composite, which eventually improves the energy density. After all, the novel 3D composite structure of N-RGO and GS greatly improves energy and power density even at high current density (20 A/g).

  4. Aircraft Ground Operation, Servicing, Fluid Lines and Fittings, Mechanics Privileges and Limitations, and Maintenance Publications, Forms and Records (Course Outline), Aviation Mechanics 1 (Power and Frame): 9073.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outline consists of five instructional blocks of several units each: (1) Aircraft Ground Operation and Servicing; (2) Fluid Lines and Fittings; (3) Mechanics Requirements, Privileges and Limitations; (4) Maintenance Publications; and, (5) Maintenance forms and Records. It is a basic course of knowledge and skills necessary to any…

  5. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure

    PubMed Central

    Christophersen, Olav Albert

    2012-01-01

    There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs), but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: (1) during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, (2) after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, (3) by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged

  6. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies. [various hybrid/electric power train configurations and electrical and mechanical drive-line components

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The relative attractiveness of various hybrid/electric power train configurations and electrical and mechanical drive-line components was studied. The initial screening was concerned primarily with total vehicle weight and economic factors and identified the hybrid power train combinations which warranted detailed evaluation over various driving cycles. This was done using a second-by-second vehicle simulation program which permitted the calculations of fuel economy, electricity usage, and emissions as a function of distance traveled in urban and highway driving. Power train arrangement possibilities were examined in terms of their effect on vehicle handling, safety, serviceability, and passenger comfort. A dc electric drive system utilizing a separately excited motor with field control and battery switching was selected for the near term hybrid vehicle. Hybrid vehicle simulations showed that for the first 30 mi (the electric range of the vehicle) in urban driving, the fuel economy was 80 mpg using a gasoline engine and 100 mpg using a diesel engine. In urban driving the hybrid would save about 75% of the fuel used by the conventional vehicle and in combined urban/highway driving the fuel saving is about 50%.

  7. Power Play.

    ERIC Educational Resources Information Center

    Aho, Timothy A.

    1998-01-01

    Describes how to integrate technology into old buildings beginning with an evaluation of the electric power systems. A case study is highlighted showing the process in determining existing conditions, assessing electric power needs, and designing upgrades. (GR)

  8. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... mechanical system. The power portion includes the power source (such as hydraulic pumps), and such items as valves, lines, and actuators. (c) The failure of mechanical parts (such as piston rods and links),...

  9. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... mechanical system. The power portion includes the power source (such as hydraulic pumps), and such items as valves, lines, and actuators. (c) The failure of mechanical parts (such as piston rods and links),...

  10. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... mechanical system. The power portion includes the power source (such as hydrualic pumps), and such items as valves, lines, and actuators. (c) The failure of mechanical parts (such as piston rods and links),...

  11. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... mechanical system. The power portion includes the power source (such as hydrualic pumps), and such items as valves, lines, and actuators. (c) The failure of mechanical parts (such as piston rods and links),...

  12. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... mechanical system. The power portion includes the power source (such as hydraulic pumps), and such items as valves, lines, and actuators. (c) The failure of mechanical parts (such as piston rods and links),...

  13. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... mechanical system. The power portion includes the power source (such as hydrualic pumps), and such items as valves, lines, and actuators. (c) The failure of mechanical parts (such as piston rods and links),...

  14. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... mechanical system. The power portion includes the power source (such as hydrualic pumps), and such items as valves, lines, and actuators. (c) The failure of mechanical parts (such as piston rods and links),...

  15. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... mechanical system. The power portion includes the power source (such as hydraulic pumps), and such items as valves, lines, and actuators. (c) The failure of mechanical parts (such as piston rods and links),...

  16. Pulsed power

    NASA Astrophysics Data System (ADS)

    Stone, David H.

    Pulsed power systems are critical elements for such prospective weapons technologies as high-power microwaves, electrothermal and electromagnetic projectile launchers, neutral particle beams, space-based FELs, ground-based lasers, and charged particle beams. Pulsed power will also be essential for the development of nonweapon military systems such as lidars and ultrawideband radars, and could serve as the bases for nuclear weapon effect simulators. The pulsed power generation requirements for each of these systems is considered.

  17. Power processing

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C.

    1971-01-01

    Processing of electric power has been presented as a discipline that draws on almost every field of electrical engineering, including system and control theory, communications theory, electronic network design, and power component technology. The cost of power processing equipment, which often equals that of expensive, sophisticated, and unconventional sources of electrical energy, such as solar batteries, is a significant consideration in the choice of electric power systems.

  18. The Heisenberg Microscope: A Powerful Instructional Tool for Promoting Meta-Cognitive and Meta-Scientific Thinking on Quantum Mechanics and the ‚Nature of Science'

    NASA Astrophysics Data System (ADS)

    Hadzidaki, Pandora

    2008-06-01

    In this paper, we present a multi-dimensional study concerning Heisenberg’s ‚gamma ray microscope’, a thought experiment, which is intimately connected with the historical development of quantum mechanics (QM), and also with the most disputed interpretations of quantum theory. In this study: (a) we investigate how philosophers of science read and explicate the function of thought experimentation in physical science; (b) in the light of relevant philosophical theories, we examine the complicated epistemological questions raised by the ‚gamma-ray microscope’ during the birth-process of QM and the contribution of this thought experiment to the clarification of the physical meaning of Heisenberg’s indeterminacy relations; (c) on the basis of the preceding analysis, we propose an instructional intervention, which aims at leading learners not only to an essential understanding of QM worldview, but to a deep insight into the Nature of Science as well.

  19. The Stimulation of HSD17B7 Expression by Estradiol Provides a Powerful Feed-Forward Mechanism for Estradiol Biosynthesis in Breast Cancer Cells

    PubMed Central

    Shehu, Aurora; Albarracin, Constance; Devi, Y. Sangeeta; Luther, Kristin; Halperin, Julia; Le, Jamie; Mao, Jifang; Duan, Rachel W.; Frasor, Jonna

    2011-01-01

    Our laboratory has previously cloned and purified an ovarian protein found to be a novel 17β-hydroxysteroid dehydrogenase type 7 enzyme (HSD17B7) (formerly prolactin receptor-associated protein) that converts the weak estrogen, estrone, to the highly potent estradiol. The regulation of this enzyme has not yet been explored. In this report, we show high expression of HSD17B7 in human ductal carcinoma and breast cancer cell lines and present evidence for a strong up-regulation of this enzyme by estradiol at the level of mRNA, protein expression, and promoter activity in MCF-7 cells. The effect of estradiol is mediated by estrogen receptor (ER)α, whereas ERβ prevents this stimulation. ER antagonists, ICI 182,780 and 4-hydroxytamoxifen, prevent estradiol-induced stimulation of the endogenously expressed HSD17B7, suggesting that these inhibitors not only block estradiol action but also its production. We have identified a −185-bp region of the hsd17b7 promoter that is highly conserved among rat, mouse, and human and confers regulation by estradiol in MCF-7 cells. This region is devoid of a classical estradiol-response element but contains a nuclear factor 1 (NF1) site that is essential for estradiol action. We found that estradiol stimulates the recruitment and DNA binding of NF1 to this region of the hsd17b7 promoter. Furthermore, knockdown of NF1 family members, NF1B, NF1A, and NF1X, completely prevents induction of this gene by estradiol. In summary, our findings demonstrate that estradiol stimulates HSD17B7 transcriptional activity in breast cancer cells through a novel mechanism requiring NF1 and strongly suggest a positive feedback mechanism to increase local estradiol synthesis causing growth of estrogen-dependent breast cancers. PMID:21372145

  20. Multinuclear diffusion NMR spectroscopy and DFT modeling: a powerful combination for unraveling the mechanism of phosphoester bond hydrolysis catalyzed by metal-substituted polyoxometalates.

    PubMed

    Luong, Thi Kim Nga; Shestakova, Pavletta; Mihaylov, Tzvetan T; Absillis, Gregory; Pierloot, Kristine; Parac-Vogt, Tatjana N

    2015-03-09

    A detailed reaction mechanism is proposed for the hydrolysis of the phosphoester bonds in the DNA model substrate bis(4-nitrophenyl) phosphate (BNPP) in the presence of the Zr(IV)-substituted Keggin type polyoxometalate (Et2NH2)8[{α-PW11O39Zr(μ-OH)(H2O)}2]⋅7 H2O (ZrK 2:2) at pD 6.4. Low-temperature (31)P DOSY spectra at pD 6.4 gave the first experimental evidence for the presence of ZrK 1:1 in fast equilibrium with ZrK 2:2 in purely aqueous solution. Moreover, theoretical calculations identified the ZrK 1:1 form as the potentially active species in solution. The reaction intermediates involved in the hydrolysis were identified by means of (1)H/(31)P NMR studies, including EXSY and DOSY NMR spectroscopy, which were supported by DFT calculations. This experimental/theoretical approach enabled the determination of the structures of four intermediate species in which the starting compound BNPP, nitrophenyl phosphate (NPP), or the end product phosphate (P) is coordinated to ZrK 1:1. In the proposed reaction mechanism, BNPP initially coordinates to ZrK 1:1 in a monodentate fashion, which results in hydrolysis of the first phosphoester bond in BNPP and formation of NPP. EXSY NMR studies showed that the bidentate complex between NPP and ZrK 1:1 is in equilibrium with monobound and free NPP. Subsequently, hydrolysis of NPP results in P, which is in equilibrium with its monobound form.

  1. Space Power

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Appropriate directions for the applied research and technology programs that will develop space power systems for U.S. future space missions beyond 1995 are explored. Spacecraft power supplies; space stations, space power reactors, solar arrays, thermoelectric generators, energy storage, and communication satellites are among the topics discussed.

  2. Power supply

    DOEpatents

    Yakymyshyn, Christopher Paul; Hamilton, Pamela Jane; Brubaker, Michael Allen

    2007-12-04

    A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

  3. Impact of Different Vein Catheter Sizes for Mechanical Power Injection in CT: In Vitro Evaluation with Use of a Circulation Phantom

    SciTech Connect

    Behrendt, Florian F. Bruners, Philipp; Keil, Sebastian; Plumhans, Cedric; Mahnken, Andreas H.; Stanzel, Sven; Das, Marco; Guenther, Rolf W.; Muehlenbruch, Georg

    2009-01-15

    The purpose of this study was to evaluate the influence of different peripheral vein catheter sizes on the injection pressure, flow rate, injection duration, and intravascular contrast enhancement. A flow phantom with a low-pressure venous compartment and a high-pressure arterial compartment simulating physiological circulation parameters was used. High-iodine-concentration contrast medium (370 mg iodine/ml; Ultravist 370) was administered in the venous compartment through peripheral vein catheters of different sizes (14, 16, 18, 20, 22, and 24 G) using a double-head power injector with a pressure limit of 325 psi. The flow rate was set to 5 ml/s, with a total iodine load of 36 g for all protocols. Serial CT scans at the level of the pulmonary artery and the ascending and the descending aorta replica were obtained. The true injection flow rate, injection pressure, injection duration, true contrast material volume, and pressure in the phantom during and after injection were continuously monitored. Time enhancement curves were computed and both pulmonary and aortic peak time and peak enhancement were determined. Using peripheral vein catheters with sizes of 14-20 G, flow rates of approximately 5 ml/s were obtained. During injection through a 22-G catheter the pressure limit was reached and the flow rate was decreased, with a consecutive decreased pulmonary and aortic contrast enhancement compared to the 14- to 20-G catheters. Injection through a 24-G peripheral vein catheter was not possible because of disconnection of the canula due to the high flow rate and pressure. In summary, intravenous catheters with sizes of 14-20 G are suitable for CT angiography using an injection protocol with a high flow rate and a high-iodine-concentration contrast medium.

  4. Hands-On Activities: A New Instructional Method for a Fluid Mechanics Course---Never Underestimate the Teaching Power of Jell-O RTM

    NASA Astrophysics Data System (ADS)

    Albers, Lynn Alwine

    Background In order to eliminate the fear-factor associated with learning FluidMechanics, a new instructional method was created. The new method is neatly packaged into hands-on activities (as defined in this dissertation) in order to ease implementation and dissemination into an engineering class. Because of variations in learning and teaching styles of students and lecturers [34], the hands-on activities are designed to help the lecturer communicate key concepts to a wider spectrum of students. Typically engineering lectures are biased towards intuitive, verbal, reflective and sequential learners whereas few engineering students fall into these categories. [35] The hands-on activities are meant to bridge the communication gap resulting in a positive educational experience. Purpose In order to assess the impact of the new instructional method, a new engineering education experimental design was created. Engineering Education research is very interdisciplinary in nature and therefore requires cooperation from multiple Colleges including, but not limited to, Engineering, Education, and Science (Statistics). Design/Method Two groups of engineering students were allocated to test the hypothesis, "Does being exposed to hands-on activities (a new instructional method) in a section of MAE 308 - Fluid Mechanics result in higher student achievement?" Comparison of the quiz results between the control group and experimental group assessed the effectiveness of the hands-on activities. The problems within each quiz correlated to a level of Bloom's Taxonomy. A comparison of the results on the problems assessed which level of Bloom's were impacted. NHST was performed to determine statistical significance while the effect size was calculated to determine practical significance. Results The hands-on activities have a positive effect on learning. 3.30% more students per class perform better on each problem on each quiz. The hands-on activity, Rainbow Layer Cake, was a superstar

  5. When power shapes interpersonal behavior: Low relationship power predicts men's aggressive responses to low situational power.

    PubMed

    Overall, Nickola C; Hammond, Matthew D; McNulty, James K; Finkel, Eli J

    2016-08-01

    When does power in intimate relationships shape important interpersonal behaviors, such as psychological aggression? Five studies tested whether possessing low relationship power was associated with aggressive responses, but (a) only within power-relevant relationship interactions when situational power was low, and (b) only by men because masculinity (but not femininity) involves the possession and demonstration of power. In Studies 1 and 2, men lower in relationship power exhibited greater aggressive communication during couples' observed conflict discussions, but only when they experienced low situational power because they were unable to influence their partner. In Study 3, men lower in relationship power reported greater daily aggressive responses toward their partner, but only on days when they experienced low situational power because they were either (a) unable to influence their partner or (b) dependent on their partner for support. In Study 4, men who possessed lower relationship power exhibited greater aggressive responses during couples' support-relevant discussions, but only when they had low situational power because they needed high levels of support. Study 5 provided evidence for the theoretical mechanism underlying men's aggressive responses to low relationship power. Men who possessed lower relationship power felt less manly on days they faced low situational power because their partner was unwilling to change to resolve relationship problems, which in turn predicted greater aggressive behavior toward their partner. These results demonstrate that fully understanding when and why power is associated with interpersonal behavior requires differentiating between relationship and situational power. (PsycINFO Database Record

  6. Technical Letter Report - Analysis of Ultrasonic Data on Piping Cracks at Ignalina Nuclear Power Plant Before and After Applying a Mechanical Stress Improvement Process, JCN-N6319, Task 2

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Crawford, Susan L.

    2008-02-26

    Pacific Northwest National Laboratory (PNNL) is assisting the United States Nuclear Regulatory Commission (NRC) in developing a position on the management of primary water stress corrosion cracking (PWSCC) in piping systems previously analyzed for leak-before-break (LBB). Part of this work involves determining whether inspections alone are sufficient or if inspections plus mitigation techniques are needed. The work described in this report addresses the reliability of ultrasonic phased-array (PA) examinations for inspection of cracks that have been subjected to the mitigation method of mechanical stress improvement process (MSIP). It is believed that stresses imparted during MSIP may make ultrasonic crack responses in piping welds more difficult to detect and accurately characterize. To explore this issue, data were acquired, both before and after applying MSIP, and analyzed from cracked areas in piping at the Ignalina Nuclear Power Plant (INPP) in Lithuania. This work was performed under NRC Project JCN-N6319, PWSCC in Leak-Before-Break Systems.

  7. Electric power

    SciTech Connect

    Chase, M.

    1988-01-01

    This text examines the critical problems faced by the electric power industry, shown in the context of a detailed description of the history and development of the industry. A new industry initiative is proposed that will allow for a more effective response to industry fluctuations. Topics covered include developments in power technology federal nuclear power regulation and legislation, environmentalism and conservationism, industry financial problems, capital minimization, and responses to utility responsibility.

  8. Multistage Planetary Power Transmissions

    NASA Technical Reports Server (NTRS)

    Hadden, G. B.; Dyba, G. J.; Ragen, M. A.; Kleckner, R. J.; Sheynin, L.

    1986-01-01

    PLANETSYS simulates thermomechanical performance of multistage planetary performance of multistage planetary power transmission. Two versions of code developed, SKF version and NASA version. Major function of program: compute performance characteristics of planet bearing for any of six kinematic inversions. PLANETSYS solves heat-balance equations for either steadystate or transient thermal conditions, and produces temperature maps for mechanical system.

  9. Power inverter with optical isolation

    DOEpatents

    Duncan, Paul G.; Schroeder, John Alan

    2005-12-06

    An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.

  10. Water-Powered Astronomical Clock Tower

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    The construction of water-powered astronomical instruments was a long tradition of instrument making that started in the second century AD with Zhang Heng's water-powered celestial globe. The technology reached a peak when, in the eleventh century, Su Song and his team constructed the Water-Powered Astronomical Clock Tower which combined the armillary sphere, the celestial globe, and the time-keeping mechanism into a large automatic structure. Su Song's instrument contained a mechanism for controlling the water-powered movements of its wheels that amounts to an "escapement mechanism" for a mechanical clock. A new reconstruction of the mechanism is introduced in this chapter.

  11. Computational mechanics

    SciTech Connect

    Goudreau, G.L.

    1993-03-01

    The Computational Mechanics thrust area sponsors research into the underlying solid, structural and fluid mechanics and heat transfer necessary for the development of state-of-the-art general purpose computational software. The scale of computational capability spans office workstations, departmental computer servers, and Cray-class supercomputers. The DYNA, NIKE, and TOPAZ codes have achieved world fame through our broad collaborators program, in addition to their strong support of on-going Lawrence Livermore National Laboratory (LLNL) programs. Several technology transfer initiatives have been based on these established codes, teaming LLNL analysts and researchers with counterparts in industry, extending code capability to specific industrial interests of casting, metalforming, and automobile crash dynamics. The next-generation solid/structural mechanics code, ParaDyn, is targeted toward massively parallel computers, which will extend performance from gigaflop to teraflop power. Our work for FY-92 is described in the following eight articles: (1) Solution Strategies: New Approaches for Strongly Nonlinear Quasistatic Problems Using DYNA3D; (2) Enhanced Enforcement of Mechanical Contact: The Method of Augmented Lagrangians; (3) ParaDyn: New Generation Solid/Structural Mechanics Codes for Massively Parallel Processors; (4) Composite Damage Modeling; (5) HYDRA: A Parallel/Vector Flow Solver for Three-Dimensional, Transient, Incompressible Viscous How; (6) Development and Testing of the TRIM3D Radiation Heat Transfer Code; (7) A Methodology for Calculating the Seismic Response of Critical Structures; and (8) Reinforced Concrete Damage Modeling.

  12. Diastatic power

    Technology Transfer Automated Retrieval System (TEKTRAN)

    diastatic power: Diastatic power, abbreviated DP, is the total activity of malt starch degrading enzymes that hydrolyze starch to fermentable sugars. The starch degrading enzymes contributing to this process are a-amylase, ß-amylase, limit dextrinase, and a-glucosidase. The driving force for DP a...

  13. Power Teaching

    ERIC Educational Resources Information Center

    Fluellen, Jerry E., Jr.

    2007-01-01

    Power Teaching weaves four factors into a seamless whole: standards, teaching thinking, research based strategies, and critical inquiry. As a prototype in its first year of development with an urban fifth grade class, the power teaching model connects selected district standards, thinking routines from Harvard University Project Zero Research…

  14. Powerful Literacies.

    ERIC Educational Resources Information Center

    Crowther, Jim, Ed.; Hamilton, Mary, Ed.; Tett, Lyn, Ed.

    These 15 papers share a common theme: seeking to promote literacy as a powerful tool for challenging existing inequalities and dependencies. "Powerful Literacies" (Jim Crowther et al.) is an introduction. Section 1 establishes the theoretical and policy frameworks that underpin the book and shows how literacy is situated in different…

  15. Power system

    DOEpatents

    Hickam, Christopher Dale

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  16. Power systems

    NASA Astrophysics Data System (ADS)

    Kaplan, G.

    1982-01-01

    Significant events in current, prototype, and experimental utility power generating systems in 1981 are reviewed. The acceleration of licensing and the renewal of plans for reprocessing of fuel for nuclear power plants are discussed, including the rise of French reactor-produced electricity to over 40% of the country's electrical output. A 4.5 MW fuel cell neared completion in New York City, while three 2.5 MW NASA-designed windpowered generators began producing power in the state of Washington. Static bar compensators, nonflammable-liquid cooled power transformers, and ZnO surge arrestors were used by utilities for the first time, and the integration of a coal gasifier-combined cycle power plant approached the planning phase. An MHD generator was run for 1000 hours and produced 50-60 kWe, while a 20 MVA superconducting generator was readied for testing.

  17. Power Mechanics 101, 201, 301. Industrial Arts.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg. Div. of Vocational Education.

    This curriculum guide outlines three credits of study, one credit for each of the grade levels 10, 11, and 12. Intended as an optional study area, the program provides awareness and exploration for those students who aspire to postsecondary study and introduces skills to those who wish to explore trades and technologies in employment after school.…

  18. Power performance

    SciTech Connect

    Anderson, J.

    1996-04-01

    Two power generation engineering and construction firms with international markets are briefly described in this article. Bibb and Associates and Black & Veatch, both Kansas-based companies, are discussed. Current projects and services provided by the companies are described.

  19. Fusion Power.

    ERIC Educational Resources Information Center

    Dingee, David A.

    1979-01-01

    Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)

  20. Classical Mechanics

    NASA Astrophysics Data System (ADS)

    Chow, Tai L.

    1995-05-01

    Bring Classical Mechanics To Life With a Realistic Software Simulation! You can enhance the thorough coverage of Chow's Classical Mechanics with a hands-on, real-world experience! John Wiley & Sons, Inc. is proud to announce a new computer simulation for classical mechanics. Developed by the Consortium for Upper-Level Physics Software (CUPS), this simulation offers complex, often realistic calculations of models of various physical systems. Classical Mechanics Simulations (54881-2) is the perfect complement to Chow's text. Like all of the CUPS simulations, it is remarkably easy to use, yet sophisticated enough for explorations of new ideas. Other Important Features Include: * Six powerful simulations include: The Motion Generator, Rotation of Three-Dimensional Objects, Coupled Oscillators, Anharmonic Oscillators, Gravitational Orbits, and Collisions * Pascal source code for all programs is supplied and a number of exercises suggest specific ways the programs can be modified. * Simulations usually include graphical (often animated) displays. The entire CUPS simulation series consists of nine book/software simulations which comprise most of the undergraduate physics major's curriculum.

  1. Power combiner

    DOEpatents

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  2. Prognostics of Power MOSFET

    NASA Technical Reports Server (NTRS)

    Celaya, Jose Ramon; Saxena, Abhinav; Vashchenko, Vladislay; Saha, Sankalita; Goebel, Kai Frank

    2011-01-01

    This paper demonstrates how to apply prognostics to power MOSFETs (metal oxide field effect transistor). The methodology uses thermal cycling to age devices and Gaussian process regression to perform prognostics. The approach is validated with experiments on 100V power MOSFETs. The failure mechanism for the stress conditions is determined to be die-attachment degradation. Change in ON-state resistance is used as a precursor of failure due to its dependence on junction temperature. The experimental data is augmented with a finite element analysis simulation that is based on a two-transistor model. The simulation assists in the interpretation of the degradation phenomena and SOA (safe operation area) change.

  3. Power electronics cooling apparatus

    DOEpatents

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  4. Power inverters

    SciTech Connect

    Miller, David H; Korich, Mark D; Smith, Gregory S

    2011-11-15

    Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

  5. Physics and nuclear power

    NASA Astrophysics Data System (ADS)

    Buttery, N. E.

    2008-03-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors.

  6. Power transmission

    SciTech Connect

    Yale, O.S.

    1989-12-12

    This patent describes a power transmission. It comprises: in combination, a master gear having at least one annular tooth set, means for drivingly engaging the master gear with a power source, driven shaft, a yoke member attached to the shaft and including a screw pump housing extending radially with respect to the shaft with a pair of ports in spaced relation, a pump screw rotatable in the housing and a pump gear attached to the screw and engaging the annular tooth set, and a casing for transmission fluid. The pump housing being located for immersion in the fluid.

  7. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  8. Mechanical plasticity of cells

    NASA Astrophysics Data System (ADS)

    Bonakdar, Navid; Gerum, Richard; Kuhn, Michael; Spörrer, Marina; Lippert, Anna; Schneider, Werner; Aifantis, Katerina E.; Fabry, Ben

    2016-10-01

    Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.

  9. Power Struggle.

    ERIC Educational Resources Information Center

    Cook, Glenn

    2001-01-01

    California's "power struggle" will probably not be replicated in the other 23 states that have deregulated electricity, but costs are rising everywhere. The Environmental Protection Agency/Department of Energy's new Energy Star online rating system should help school officials measure their buildings' efficiency and remove barriers to…

  10. Stigma power.

    PubMed

    Link, Bruce G; Phelan, Jo

    2014-02-01

    When people have an interest in keeping other people down, in or away, stigma is a resource that allows them to obtain ends they desire. We call this resource "stigma power" and use the term to refer to instances in which stigma processes achieve the aims of stigmatizers with respect to the exploitation, control or exclusion of others. We draw on Bourdieu (1987, 1990) who notes that power is often most effectively deployed when it is hidden or "misrecognized." To explore the utility of the stigma-power concept we examine ways in which the goals of stigmatizers are achieved but hidden in the stigma coping efforts of people with mental illnesses. We developed new self-report measures and administered them to a sample of individuals who have experienced mental illness to test whether results are consistent with the possibility that, in response to negative societal conceptions, the attitudes, beliefs and behaviors of people with psychosis lead them to be concerned with staying in, propelled to stay away and induced to feel downwardly placed - precisely the outcomes stigmatizers might desire. Our introduction of the stigma-power concept carries the possibility of seeing stigmatizing circumstances in a new light.

  11. Power, Revisited

    ERIC Educational Resources Information Center

    Roscigno, Vincent J.

    2011-01-01

    Power is a core theoretical construct in the field with amazing utility across substantive areas, levels of analysis and methodologies. Yet, its use along with associated assumptions--assumptions surrounding constraint vs. action and specifically organizational structure and rationality--remain problematic. In this article, and following an…

  12. Power Controller

    NASA Astrophysics Data System (ADS)

    1983-01-01

    The power factor controller (PFC) senses shifts in the relationship between voltage and current, and matches them with a motor's need. This prevents waste as motors do not need a high voltage when they are not operating at full load conditions. PFC is manufactured by Nordic Controls Company, among others, and has proved extremely cost effective.

  13. Perpetual Power?

    SciTech Connect

    Madison, Alison L.

    2010-02-16

    This is a submission to Innovation Magazine for its January 2010 Clean-tech issue. The article discusses PNNL's award-winning Thermoelectric Ambient Energy Harvester technology, its license to Perpetua Power Source Technologies, Perpetua's subsequent product based on the PNNL technology, and where they're headed with it.

  14. Power Trains.

    ERIC Educational Resources Information Center

    Kukuk, Marvin; Mathis, Joe

    This curriculum guide is part of a series designed to teach students about diesel engines. The materials in this power trains guide apply to both on-road and off-road vehicles and include information about chain and belt drives used in tractors and combines. These instructional materials, containing nine units, are written in terms of student…

  15. Star Power

    SciTech Connect

    2014-10-17

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  16. Star Power

    ScienceCinema

    None

    2016-07-12

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  17. Tractor Mechanics. Maintaining and Servicing the Power Train, Learning Activity Packages 49-53; Maintaining and Servicing the Clutch, Learning Activity Packages 54-59; Maintaining and Servicing the Transmission and Differential, Learning Activity Packages 60-68; Maintaining and Servicing the Final Drive, Learning Activity Packages 69-77.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    This series of learning activity packages focuses on four areas of tractor mechanics: (1) maintaining and servicing the power train, (2) maintaining and servicing the clutch, (3) maintaining and servicing the transmission and differential, and (4) maintaining and servicing the final drive. Each of the twenty-nine illustrated learning activity…

  18. Mechanical drive for blood pump

    DOEpatents

    Bifano, N.J.; Pouchot, W.D.

    1975-07-29

    This patent relates to a highly efficient blood pump to be used as a replacement for a ventricle of the human heart to restore people disabled by heart disease. The mechanical drive of the present invention is designed to operate in conjunction with a thermoelectric converter power source. The mechanical drive system essentially converts the output of a rotary power into pulsatile motion so that the power demand from the thermoelectric converter remains essentially constant while the blood pump output is pulsed. (auth)

  19. High power connection system

    DOEpatents

    Schaefer, Christopher E.; Beer, Robert C.; McCall, Mark D.

    2000-01-01

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  20. Power considerations for MAST platforms

    NASA Astrophysics Data System (ADS)

    Morgan, Brian; Bedair, Sarah; Pulskamp, Jeffrey S.; Polcawich, Ronald G.; Meyer, Christopher; Dougherty, Christopher; Lin, Xue; Arnold, David; Bashirullah, Rizwan; Miller, Ryan; Roosz, Mark

    2010-04-01

    Scaling down autonomous robotic systems introduces numerous challenges in mechanical design, electrical/sensor subsystems, and autonomous control. One particularly daunting task is the design of the power system, since this will ultimately limit all microrobot or micro-UAV's operations. Power sources like lithium polymer batteries possess sufficient power density for basic mobility (walking, fixed wing flight, flapping/hovering), but improved power sources are needed that offer increased energy density in order to extend mission lifetimes - preferably pushing from minutes to multiple hours or days. Additionally, the source power must be efficiently converted and distributed to the various microrobot subsystems. Each system may require a different voltage, current, and duty cycle. This paper will review some of the power-specific challenges related to developing small, mobile autonomous systems.

  1. Taming power: Generative historical consciousness.

    PubMed

    Winter, David G

    2016-04-01

    Power is a necessary dimension of all human enterprises. It can inspire and illuminate, but it can also corrupt, oppress, and destroy. Therefore, taming power has been a central moral and political question for most of human history. Writers, theorists, and researchers have suggested many methods and mechanisms for taming power: through affiliation and love, intellect and reason, responsibility, religion and values, democratic political structures, and separation of powers. Historical examples and social science research suggest that each has some success, but also that each is vulnerable to being hijacked by power itself. I therefore introduce generative historical consciousness (GHC) as a concept and measure that might help to secure the benefits of power while protecting against its outrages and excesses. I conclude by discussing the role that GHC may have played in the peaceful resolution of the Cuban Missile Crisis of 1962.

  2. Windmill mechanism

    SciTech Connect

    Yang, W. H.

    1985-07-23

    An improved windmill mechanism for adjusting the position of a wind responsive assembly in relation to wind is disclosed. The preferred embodiment comprises a fabric sail mounted on the end of an arm which extends from a power output shaft. A torque sensor is disposed on the arm to sense the torque contribution through that arm to the power output shaft in response to wind acting upon the fabric sail on that arm. The position of the fabric sail is adjusted on the arm by means of a control processor which controls a trim-motor and a magnetic brake. The control processor receives the torque signal provided from the sensor and provides adjustment of the fabric sail in accordance with the torque signal. The control operates to position the sail in a running mode over the semi-circular path segment of rotation of the arm which has a leeward component of motion. It is also effective to position the sail to tacking modes at the beginning and ending of the semi-circular path segment and the flutter mode in the middle of that segment which has a windward component of motion. The control is also effective to automatically adjust for changes in the prevailing wind direction. The sails are supported on flexible mast elements which provide automatic feathering of the sails in response to wind gusts and high wind velocities.

  3. Power Trains. FOS: Fundamentals of Service.

    ERIC Educational Resources Information Center

    John Deere Co., Moline, IL.

    This power trains manual is one of a series of power mechanics for training in the servicing of transmissions, etc., on farm and industrial machines. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The ten chapters focus on (1) Power Trains: How They Work; (2)…

  4. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  5. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  6. Power converter

    NASA Technical Reports Server (NTRS)

    Black, J. M. (Inventor)

    1981-01-01

    A dc-to-dc converter employs four transistor switches in a bridge to chop dc power from a source, and a voltage multiplying diode rectifying ladder network to rectify and filter the chopped dc power for delivery to a load. The bridge switches are cross coupled in order for diagonally opposite pairs to turn on and off together using RC networks for the cross coupling to achieve the mode of operation of a free running multivibrator, and the diode rectifying ladder is configured to operate in a push-pull mode driven from opposite sides of the multivibrator outputs of the ridge switches. The four transistor switches provide a square-wave output voltage which as a peak-to-peak amplitude that is twice the input dc voltage, and is thus useful as a dc-to-ac inverter.

  7. Power supply

    DOEpatents

    Hart, Edward J.; Leeman, James E.; MacDougall, Hugh R.; Marron, John J.; Smith, Calvin C.

    1976-01-01

    An electric power supply employs a striking means to initiate ferroelectric elements which provide electrical energy output which subsequently initiates an explosive charge which initiates a second ferroelectric current generator to deliver current to the coil of a magnetic field current generator, creating a magnetic field around the coil. Continued detonation effects compression of the magnetic field and subsequent generation and delivery of a large output current to appropriate output loads.

  8. Fuel-powered artificial muscles.

    PubMed

    Ebron, Von Howard; Yang, Zhiwei; Seyer, Daniel J; Kozlov, Mikhail E; Oh, Jiyoung; Xie, Hui; Razal, Joselito; Hall, Lee J; Ferraris, John P; Macdiarmid, Alan G; Baughman, Ray H

    2006-03-17

    Artificial muscles and electric motors found in autonomous robots and prosthetic limbs are typically battery-powered, which severely restricts the duration of their performance and can necessitate long inactivity during battery recharge. To help solve these problems, we demonstrated two types of artificial muscles that convert the chemical energy of high-energy-density fuels to mechanical energy. The first type stores electrical charge and uses changes in stored charge for mechanical actuation. In contrast with electrically powered electrochemical muscles, only half of the actuator cycle is electrochemical. The second type of fuel-powered muscle provides a demonstrated actuator stroke and power density comparable to those of natural skeletal muscle and generated stresses that are over a hundred times higher.

  9. ULTRA HIGH POWER TRANSMISSION LINE TECHNIQUES

    DTIC Science & Technology

    The ultra-high power transmission line techniques including both failure mechanisms and component design are discussed. Failures resulting from...a waveguide. In view of the many advantages of the low loss mode in circular waveguide for ultra-high power levels, a mode transducer and a two...percent of the peak power of a standard rectangular wave guide. Water cooling is provided for high average power operation. Analysis of mode sup pression

  10. Is power-space a continuum? Distance effect during power judgments.

    PubMed

    Jiang, Tianjiao; Zhu, Lei

    2015-12-01

    Despite the increasing evidence suggesting that power processing can activate vertical space schema, it still remains unclear whether this power-space is dichotomic or continuous. Here we tested the nature of the power-space by the distance effect, a continuous property of space cognition. In two experiments, participants were required to judge the power of one single word (Experiment 1) or compare the power of two words presented in pairs (Experiment 2). The power distance was indexed by the absolute difference of power ratings. Results demonstrated that reaction time decreased with the power distance, whereas accuracy increased with the power distance. The findings indicated that different levels of power were presented as different vertical heights, implying that there was a common mechanism underlying space and power cognition.

  11. Solid state power controllers

    NASA Technical Reports Server (NTRS)

    Gibbs, R. S.

    1973-01-01

    The rationale, analysis, design, breadboarding and testing of the incremental functional requirements are reported that led to the development of prototype 1 and 5 Amp dc and 1 Amp ac solid state power controllers (SSPC's). The SSPC's are to be considered for use as a replacement of electro-mechanical relays and circuit breakers in future spacecraft and aircraft. They satisfy the combined function of both the relay and circuit breaker and can be remotely controlled by small signals, typically 10 mA, 5 to 28 Vdc. They have the advantage over conventional relay/circuit breaker systems in that they can be located near utilization equipment and the primary ac or dc bus. The low level control, trip indication and status signals can be circuited by small guage wire for control, computer interface, logic, electrical multiplexing, unboard testing, and power management and distribution purposes. This results in increased system versatility at appreciable weight saving and increased reliability.

  12. Power optics

    SciTech Connect

    Apollonov, V V

    2014-02-28

    By using the theory we developed in the early 1970s, a broad range of phenomena is considered for an optical surface of a solid body that is exposed to radiation arbitrarily varying in time and producing temperature fields, thermoelastic stresses and thermal deformations on the surface layer. The examination is based on the relations (which are similar to Duhamel's integral formula from the theory of heat conduction) between the quantities characterising the thermal stress state in any nonstationary regimes of energy input into a solid. A peculiar feature of the analysis of the thermal stress state in this case consists in the fact that this relation comprises time as a parameter, which in turn is a consequence of incoherence of the quasi-stationary problem of thermoelasticity. This phenomenon is particularly important for the optics of high-power, high-pulse repetition rate lasers, which are being actively developed. In the review, we have recently published in Laser Physics, the thermal stress state of a solid is analysed. In this state, time is treated as an independent variable used in differentiation. Such an approach greatly reduces the applicability of the method. The review published contains data on the use of capillary porous structures made of various materials with different degrees of the surface development. Moreover, such structures can be efficiently employed to increase the heat exchange at a temperature below the boiling point of the coolant. In the present review we discuss the dependences of the limiting laser intensities on the duration of a pulse or a pulse train, corresponding to the three stages of the state of the reflecting surface and leading to unacceptable elastic deformations of the surface, to the plastic yield of the material accompanied by the formation of residual stresses and to the melting of the surface layer. We also analyse the problem of heat exchange in the surface layer with a liquid metal coolant pumped through it. The

  13. POWER REACTOR

    DOEpatents

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  14. Power oscillator

    DOEpatents

    Gitsevich, Aleksandr

    2001-01-01

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  15. Solar powered aircraft

    SciTech Connect

    Phillips, W.H.

    1983-11-15

    A cruciform wing structure for a solar powered aircraft is disclosed. Solar cells are mounted on horizontal wing surfaces. Wing surfaces with spanwise axis perpendicular to surfaces maintain these surfaces normal to the sun's rays by allowing aircraft to be flown in a controlled pattern at a large bank angle. The solar airplane may be of conventional design with respect to fuselage, propeller and tail, or may be constructed around a core and driven by propeller mechanisms attached near the tips of the airfoils.

  16. Power management system

    DOEpatents

    Algrain, Marcelo C.; Johnson, Kris W.; Akasam, Sivaprasad; Hoff, Brian D.

    2007-10-02

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  17. Green Power Partnership Videos

    EPA Pesticide Factsheets

    The Green Power Partnership develops videos on a regular basis that explore a variety of topics including, Green Power partnership, green power purchasing, Renewable energy certificates, among others.

  18. Evaluation Of Different Power Conditioning Options For Stirling Generators

    NASA Astrophysics Data System (ADS)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.

    2011-10-01

    Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.

  19. Direct current uninterruptible power supply method and system

    DOEpatents

    Sinha, Gautam

    2003-12-02

    A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.

  20. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    DOEpatents

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  1. Symbolic Power, Robotting, and Surveilling

    ERIC Educational Resources Information Center

    Skovsmose, Ole

    2012-01-01

    Symbolic power is discussed with reference to mathematics and formal languages. Two distinctions are crucial for establishing mechanical and formal perspectives: one between appearance and reality, and one between sense and reference. These distinctions include a nomination of what to consider primary and secondary. They establish the grammatical…

  2. Power turbine ventilation system

    NASA Technical Reports Server (NTRS)

    Wakeman, Thomas G. (Inventor); Brown, Richard W. (Inventor)

    1991-01-01

    Air control mechanism within a power turbine section of a gas turbine engine. The power turbine section includes a rotor and at least one variable pitch propulsor blade. The propulsor blade is coupled to and extends radially outwardly of the rotor. A first annular fairing is rotatable with the propulsor blade and interposed between the propulsor blade and the rotor. A second fairing is located longitudinally adjacent to the first fairing. The first fairing and the second fairing are differentially rotatable. The air control mechanism includes a platform fixedly coupled to a radially inner end of the propulsor blade. The platform is generally positioned in a first opening and a first fairing. The platform and the first fairing define an outer space. In a first position corresponding with a first propulsor blade pitch, the platform is substantially conformal with the first fairing. In a second position corresponding with the second propulsor blade pitch, an edge portion of the platform is displaced radially outwardly from the first fairing. When the blades are in the second position and rotating about the engine axis, the displacement of the edge portion with respect to the first fairing allows air to flow from the outer space to the annular cavity.

  3. NASA Radioisotope Power Conversion Technology NRA Overview

    NASA Technical Reports Server (NTRS)

    Anderson, David J.

    2005-01-01

    The focus of the National Aeronautics and Space Administration's (NASA) Radioisotope Power Systems (RPS) Development program is aimed at developing nuclear power and technologies that would improve the effectiveness of space science missions. The Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) is an important mechanism through which research and technology activities are supported in the Advanced Power Conversion Research and Technology project of the Advanced Radioisotope Power Systems Development program. The purpose of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide higher efficiencies and specific powers than existing systems. These advances would enable a factor of two to four decrease in the amount of fuel and a reduction of waste heat required to generate electrical power, and thus could result in more cost effective science missions for NASA. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100 W(sub e) scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, a summary of the power conversion technologies approaches being pursued, and a brief digest of first year accomplishments.

  4. NASA Radioisotope Power Conversion Technology NRA Overview

    NASA Technical Reports Server (NTRS)

    Anderson, David J.

    2005-01-01

    The focus of the National Aeronautics and Space Administration s (NASA) Radioisotope Power Systems (RPS) Development program is aimed at developing nuclear power and technologies that would improve the effectiveness of space science missions. The Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) is an important mechanism through which research and technology activities are supported in the Advanced Power Conversion Research and Technology project of the Advanced Radioisotope Power Systems Development program. The purpose of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide higher efficiencies and specific powers than existing systems. These advances would enable a factor of 2 to 4 decrease in the amount of fuel and a reduction of waste heat required to generate electrical power, and thus could result in more cost effective science missions for NASA. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100We scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, a summary of the power conversion technologies approaches being pursued, and a brief digest of first year accomplishments.

  5. Women, Power, and Libraries.

    ERIC Educational Resources Information Center

    Schuman, Patricia Glass

    1984-01-01

    Discusses the concept of power in the context of women and the library profession, citing views of power by Max Weber, John Kenneth Galbraith, Letty Cottin Pogrebin, and Rosabeth Moss Kantor. Male power and female submission, defining power, organizing for power, and sharing power are highlighted. A 12-item bibliography is included. (EJS)

  6. Puzzling Mechanisms

    ERIC Educational Resources Information Center

    van Deventer, M. Oskar

    2009-01-01

    The basis of a good mechanical puzzle is often a puzzling mechanism. This article will introduce some new puzzling mechanisms, like two knots that engage like gears, a chain whose links can be interchanged, and flat gears that do not come apart. It illustrates how puzzling mechanisms can be transformed into real mechanical puzzles, e.g., by…

  7. The social distance theory of power.

    PubMed

    Magee, Joe C; Smith, Pamela K

    2013-05-01

    We propose that asymmetric dependence between individuals (i.e., power) produces asymmetric social distance, with high-power individuals feeling more distant than low-power individuals. From this insight, we articulate predictions about how power affects (a) social comparison, (b) susceptibility to influence, (c) mental state inference and responsiveness, and (d) emotions. We then explain how high-power individuals' greater experienced social distance leads them to engage in more abstract mental representation. This mediating process of construal level generates predictions about how power affects (a) goal selection and pursuit, (b) attention to desirability and feasibility concerns, (c) subjective certainty, (d) value-behavior correspondence, (e) self-control, and (f) person perception. We also reassess the approach/inhibition theory of power, noting limitations both in what it can predict and in the evidence directly supporting its proposed mechanisms. Finally, we discuss moderators and methodological recommendations for the study of power from a social distance perspective.

  8. Status and Trends in the U.S. Voluntary Green Power Market (2015 Data)

    SciTech Connect

    O'Shaughnessy, Eric; Liu, Chang; Heeter, Jenny

    2016-10-01

    The voluntary green power market refers to the sale and procurement of renewable energy for voluntary purposes by residential and commercial customers. This report reviews seven green power procurement mechanisms: utility green pricing programs, utility green tariffs, voluntary unbundled renewable energy certificates, competitive supplier green power, community choice aggregations, voluntary power purchase agreements (PPAs), and community solar. This report details the status of trends of those seven green power procurement mechanisms in 2015. Three trends -- significant growth of the voluntary PPA project pipeline, innovative green power mechanisms developed by utilities, and geographic expansion of green power mechanisms -- suggest that the green power market is likely to continue to grow in coming years.

  9. Locational Marginal Pricing in the Campus Power System at the Power Distribution Level

    SciTech Connect

    Hao, Jun; Gu, Yi; Zhang, Yingchen; Zhang, Jun Jason; Gao, David Wenzhong

    2016-11-14

    In the development of smart grid at distribution level, the realization of real-time nodal pricing is one of the key challenges. The research work in this paper implements and studies the methodology of locational marginal pricing at distribution level based on a real-world distribution power system. The pricing mechanism utilizes optimal power flow to calculate the corresponding distributional nodal prices. Both Direct Current Optimal Power Flow and Alternate Current Optimal Power Flow are utilized to calculate and analyze the nodal prices. The University of Denver campus power grid is used as the power distribution system test bed to demonstrate the pricing methodology.

  10. Dynamic power flow controllers

    DOEpatents

    Divan, Deepakraj M.; Prasai, Anish

    2017-03-07

    Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.

  11. Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Davis, Robert E.

    2002-01-01

    The presentation provides an overview of requirement and interpretation letters, mechanical systems safety interpretation letter, design and verification provisions, and mechanical systems verification plan.

  12. 21 CFR 872.4475 - Spring-powered jet injector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... A spring-powered jet injector is a syringe device intended to administer a local anesthetic. The syringe is powered by a spring mechanism which provides the pressure to force the anesthetic out of...

  13. 21 CFR 872.4475 - Spring-powered jet injector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... A spring-powered jet injector is a syringe device intended to administer a local anesthetic. The syringe is powered by a spring mechanism which provides the pressure to force the anesthetic out of...

  14. 21 CFR 872.4475 - Spring-powered jet injector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... A spring-powered jet injector is a syringe device intended to administer a local anesthetic. The syringe is powered by a spring mechanism which provides the pressure to force the anesthetic out of...

  15. 21 CFR 872.4475 - Spring-powered jet injector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... A spring-powered jet injector is a syringe device intended to administer a local anesthetic. The syringe is powered by a spring mechanism which provides the pressure to force the anesthetic out of...

  16. 21 CFR 872.4475 - Spring-powered jet injector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... A spring-powered jet injector is a syringe device intended to administer a local anesthetic. The syringe is powered by a spring mechanism which provides the pressure to force the anesthetic out of...

  17. Power Aware Dynamic Provisioning of HPC Networks

    SciTech Connect

    Groves, Taylor; Grant, Ryan

    2015-10-01

    Future exascale systems are under increased pressure to find power savings. The network, while it consumes a considerable amount of power is often left out of the picture when discussing total system power. Even when network power is being considered, the references are frequently a decade or older and rely on models that lack validation on modern inter- connects. In this work we explore how dynamic mechanisms of an Infiniband network save power and at what granularity we can engage these features. We explore this within the context of the host controller adapter (HCA) on the node and for the fabric, i.e. switches, using three different mechanisms of dynamic link width, frequency and disabling of links for QLogic and Mellanox systems. Our results show that while there is some potential for modest power savings, real world systems need to improved responsiveness to adjustments in order to fully leverage these savings. This page intentionally left blank.

  18. The clash of mechanical and electrical size-effects in ZnO nanowires and a double power law approach to elastic strain engineering of piezoelectric and piezotronic devices.

    PubMed

    Rinaldi, Antonio; Araneo, Rodolfo; Celozzi, Salvatore; Pea, Marialilia; Notargiacomo, Andrea

    2014-09-10

    The piezoelectric performance of ultra-strength ZnO nanowires (NWs) depends on the subtle interplay between electrical and mechanical size-effects. "Size-dependent" modeling of compressed NWs illustrates why experimentally observed mechanical stiffening can indeed collide with electrical size-effects when the size shrinks, thereby lowering the actual piezoelectric function from bulk estimates. "Smaller" is not necessarily "better" in nanotechnology.

  19. Gray's paradox: A fluid mechanical perspective

    PubMed Central

    Bale, Rahul; Hao, Max; Bhalla, Amneet Pal Singh; Patel, Namrata; Patankar, Neelesh A.

    2014-01-01

    Nearly eighty years ago, Gray reported that the drag power experienced by a dolphin was larger than the estimated muscle power – this is termed as Gray's paradox. We provide a fluid mechanical perspective of this paradox. The viewpoint that swimmers necessarily spend muscle energy to overcome drag in the direction of swimming needs revision. For example, in undulatory swimming most of the muscle energy is directly expended to generate lateral undulations of the body, and the drag power is balanced not by the muscle power but by the thrust power. Depending on drag model utilized, the drag power may be greater than muscle power without being paradoxical. PMID:25082341

  20. Mechanical Design

    SciTech Connect

    Shook, Richard; /Marquette U. /SLAC

    2010-08-25

    The particle beam of the SXR (soft x-ray) beam line in the LCLS (Linac Coherent Light Source) has a high intensity in order to penetrate through samples at the atomic level. However, the intensity is so high that many experiments fail because of severe damage. To correct this issue, attenuators are put into the beam line to reduce this intensity to a level suitable for experimentation. Attenuation is defined as 'the gradual loss in intensity of any flux through a medium' by [1]. It is found that Beryllium and Boron Carbide can survive the intensity of the beam. At very thin films, both of these materials work very well as filters for reducing the beam intensity. Using a total of 12 filters, the first 9 being made of Beryllium and the rest made of Boron Carbide, the beam's energy range of photons can be attenuated between 800 eV and 9000 eV. The design of the filters allows attenuation for different beam intensities so that experiments can obtain different intensities from the beam if desired. The step of attenuation varies, but is relative to the thickness of the filter as a power function of 2. A relationship for this is f(n) = x{sub 0}2{sup n} where n is the step of attenuation desired and x{sub 0} is the initial thickness of the material. To allow for this desired variation, a mechanism must be designed within the test chamber. This is visualized using a 3D computer aided design modeling tool known as Solid Edge.

  1. Measuring Power Flow in Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Griffin, Daniel C., Jr; Wiker, G. A.

    1983-01-01

    Instrument accommodates fast rise and fall times of waveforms characteristic of modern, efficient power controllers. Power meter multiplies analog signals proportional to voltage and current, and converts resulting signal to frequency. Two mechanical counters provided: one for charging, one for discharging.

  2. Power electronics for low power arcjets

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.

    1991-01-01

    In anticipation of the needs of future light-weight low-power spacecraft, arcjet power electronics in the 100- to 400-W operating range were developed. Power topologies similar to those in the higher 2-kW and 5- to 30-kW power range were implemented, including a four-transistor bridge-switching circuit, current-mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs, allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter.

  3. Power Struggles. Beginnings Workshop.

    ERIC Educational Resources Information Center

    Neugebauer, Bonnie; Duffy, Roslyn; Garbarino, James; Gonzalez-Mena, Janet

    2001-01-01

    Presents four articles about children's power struggles: (1) "The Personal Side of Power" (Bonnie Neugebauer); (2) "Learning To Harness Human Power" (Roslyn Duffy); (3) "Power Struggles: Early Experiences Matter" (James Garbarino); and (4) "Personal Power: Creating New Realities" (Janet Gonzalez-Mena). (DLH)

  4. Wave Power Demonstration Project at Reedsport, Oregon

    SciTech Connect

    Mekhiche, Mike; Downie, Bruce

    2013-10-21

    Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.

  5. Aircraft Mechanics Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in aircraft mechanics. The guide outlines the tasks entailed in 24 different duties typically required of employees in the following occupations: airframe mechanic, power plant mechanic, aircraft mechanic, aircraft sheet metal worker, aircraft electrician,…

  6. Infrared power cells for satellite power conversion

    NASA Technical Reports Server (NTRS)

    Summers, Christopher J.

    1991-01-01

    An analytical investigation is performed to assess the feasibility of long-wavelength power converters for the direct conversion of IR radiation onto electrical power. Because theses devices need to operate between 5 and 30 um the only material system possible for this application is the HgCdTe system which is currently being developed for IR detectors. Thus solar cell and IR detector theories and technologies are combined. The following subject areas are covered: electronic and optical properties of HgCdTe alloys; optimum device geometry; junction theory; model calculation for homojunction power cell efficiency; and calculation for HgCdTe power cell and power beaming.

  7. Solar powered multipurpose remotely powered aircraft

    NASA Technical Reports Server (NTRS)

    Alexandrou, A. N.; Durgin, W. W.; Cohn, R. F.; Olinger, D. J.; Cody, Charlotte K.; Chan, Agnes; Cheung, Kwok-Hung; Conley, Kristin; Crivelli, Paul M.; Javorski, Christian T.

    1992-01-01

    Increase in energy demands coupled with rapid depletion of natural energy resources have deemed solar energy as an attractive alternative source of power. The focus was to design and construct a solar powered, remotely piloted vehicle to demonstrate the feasibility of solar energy as an effective, alternate source of power. The final design included minimizing the power requirements and maximizing the strength-to-weight and lift-to-drag ratios. Given the design constraints, Surya (the code-name given to the aircraft), is a lightweight aircraft primarily built using composite materials and capable of achieving level flight powered entirely by solar energy.

  8. Green Power Partner Resources

    EPA Pesticide Factsheets

    EPA Green Power Partners can access tools and resources to help promote their green power commitments. Partners use these tools to communicate the benefits of their green power use to their customers, stakeholders, and the general public.

  9. Green Power Community News

    EPA Pesticide Factsheets

    This page features news about EPA's Green Power Communities. GPCs are a subset of the Green Power Partnership; municipalities or tribal governments where government, businesses, and residents collectively use enough green power to meet GPP requirements.

  10. Wave action power plant

    SciTech Connect

    Lucia, L.V.

    1982-03-16

    A wave action power plant powered by the action of water waves has a drive shaft rotated by a plurality of drive units, each having a lever pivotally mounted on and extending from said shaft and carrying a weight, in the form of a float, which floats on the waves and rocks the lever up and down on the shaft. A ratchet mechanism causes said shaft to be rotated in one direction by the weight of said float after it has been raised by wave and the wave has passed, leaving said float free to move downwardly by gravity and apply its full weight to pull down on the lever and rotate the drive shaft. There being a large number of said drive units so that there are always some of the weights pulling down on their respective levers while other weights are being lifted by waves and thereby causing continuous rotation of the drive shaft in one direction. The said levers are so mounted that they may be easily raised to bring the weights into a position wherein they are readily accessible for cleaning the bottoms thereof to remove any accumulation of barnacles, mollusks and the like. There is also provided means for preventing the weights from colliding with each other as they independently move up and down on the waves.

  11. Chemically Powered Nanomotors

    NASA Astrophysics Data System (ADS)

    Kapral, Raymond

    2007-03-01

    Molecular motors play important roles in transport in biological systems. These molecular machines are powered by chemical energy and operate in the regime of low Reynolds number hydrodynamics. Recently a class of simple inorganic molecular motors has been constructed and studied experimentally [1,2]. These motors are bimetallic rods, one end of which is chemically active. The talk will describe simple mesoscopic models for the motion of such nanomotors. The motor consists of two linked spheres, one of which catalyzes the conversion between two chemical species. The chemical species interact differently with the the two spheres in the dimer. The nano-dimer motor is solvated by a molecules treated at a mesoscopic level whose evolution is governed by multi-particle collision dynamics. The dynamics conserves mass, momentum and energy so that coupling between the nanomotor and the hydrodynamic modes of the solvent is treated correctly. The simulations allow one to explore the mechanisms of the chemically powered motion and the effects of fluctuations on the motor dynamics. [1] W. F. Paxton, et al., ``Catalytic Nanomotors: Autonomous Movement of Striped Nanorods,'' J. Am. Chem. Soc. (JACS), 126 (41), 13424 (2004). [2] S. Fournier-Bidoz, et al. ``Synthetic Self-Propelled Nanorotors,'' Chem. Commun., (4), 441 (2005).

  12. Pulmonary mechanics during mechanical ventilation.

    PubMed

    Henderson, William R; Sheel, A William

    2012-03-15

    The use of mechanical ventilation has become widespread in the management of hypoxic respiratory failure. Investigations of pulmonary mechanics in this clinical scenario have demonstrated that there are significant differences in compliance, resistance and gas flow when compared with normal subjects. This paper will review the mechanisms by which pulmonary mechanics are assessed in mechanically ventilated patients and will review how the data can be used for investigative research purposes as well as to inform rational ventilator management.

  13. Power electronics for low power arcjets

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.

    1991-01-01

    In anticipation of the needs of future light-weight, low-power spacecraft, arcjet power electronics in the 100 to 400 W operating range were developed. Limited spacecraft power and thermal control capacity of these small spacecraft emphasized the need for high efficiency. Power topologies similar to those in the higher 2 kW and 5 to 30 kW power range were implemented, including a four transistor bridge switching circuit, current mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter. Electromagnetic compatibility requirements were not considered in this work, and control power for the converter was derived from AC mains. Addition of input filters and control power converters would result in an efficiency of on the order of 90 percent for a flight unit. Due to the developmental nature of arcjet systems at this power level, the exact nature of the thruster/power processor interface was not quantified. Output regulation and current ripple requirements of 1 and 20 percent respectively, as well as starting techniques, were derived from the characteristics of the 2 kW system but an open circuit voltage in excess of 175 V was specified. Arcjet integration tests were performed, resulting in successful starts and stable arcjet operation at power levels as low as 240 W with simulated hydrazine propellants.

  14. Power and Control in Kathmandu: A Comparison of Attempted Power, Actual Power, and Achieved Power.

    PubMed

    Emery, Clifton R; Thapa, Sirjana; Wu, Shali

    2016-05-05

    We argue that the concept of power has been inadvertently sidelined in recent theory and research on husband violence. Three types of relationship power may matter with respect to husband violence: attempted power, actual power, and achieved power. Analyses of a randomly selected representative sample of 270 married or partnered women in Kathmandu showed that actual power was related to husband violence prevalence, severity, and injury. Achieved power was related to husband violence prevalence and severity, and attempted power was related to husband violence injury. Implications are discussed.

  15. Venus Exploration Power Technologies

    NASA Astrophysics Data System (ADS)

    Surampudi, R.; Bugga, K.; Grandidier, J.; Cutts, J. A.; Beauchamp, P. M.

    2017-02-01

    Venus with its severe temperatures and pressures presents formidable challenges for powering in situ exploration vehicles. This paper describes possible approaches for both power generation and energy storage.

  16. ELECTROMAGNETIC RELEASE MECHANISM

    DOEpatents

    Michelson, C.

    1960-09-13

    An electromagnetic release mechanism is offered that may be used, for example, for supporting a safety rod for a nuclear reactor. The release mechanism is designed to have a large excess holding force and a rapid, uniform, and dependable release. The fast release is accomplished by providing the electromagnet with slotttd polts separated by an insulating potting resin, and by constructing the poles with a ferro-nickel alloy. The combination of these two features materially reduces the eddy current power density whenever the magnetic field changes during a release operation. In addition to these features, the design of the armature is such as to provide ready entrance of fluid into any void that might tend to form during release of the armature. This also improves the release time for the mechanism. The large holding force for the mechanism is accomplished by providing a small, selected, uniform air gap between the inner pole piece and the armature.

  17. ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS

    SciTech Connect

    ZYGARLICKE, CHRISTOPHER J; MCCOLLOR, DONALD P; KAY, JOHN P; SWANSON, MICHAEL L

    1998-09-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. Evaluate corrosion for alloys being used in supercritical combustion systems.

  18. The long-term future for civilian nuclear power generation in France: The case for breeder reactors. Breeder reactors: The physical and physical chemistry parameters, associate material thermodynamics and mechanical engineering: Novelties and issues

    NASA Astrophysics Data System (ADS)

    Dautray, Robert

    2011-06-01

    The author firstly gives a summary overview of the knowledge base acquired since the first breeder reactors became operational in the 1950s. "Neutronics", thermal phenomena, reactor core cooling, various coolants used and envisioned for this function, fuel fabrication from separated materials, main equipment (pumps, valves, taps, waste cock, safety circuits, heat exchange units, etc.) have now attained maturity, sufficient to implement sodium cooling circuits. Notwithstanding, the use of metallic sodium still raises certain severe questions in terms of safe handling (i.e. inflammability) and other important security considerations. The structural components, both inside the reactor core and outside (i.e. heat exchange devices) are undergoing in-depth research so as to last longer. The fuel cycle, notably the refabrication of fuel elements and fertile elements, the case of transuranic elements, etc., call for studies into radiation induced phenomena, chemistry separation, separate or otherwise treatments for materials that have different radioactive, physical, thermodynamical, chemical and biological properties. The concerns that surround the definitive disposal of certain radioactive wastes could be qualitatively improved with respect to the pressurized water reactors (PWRs) in service today. Lastly, the author notes that breeder reactors eliminate the need for an isotope separation facility, and this constitutes a significant contribution to contain nuclear proliferation. Among the priorities for a fully operational system (power station - the fuel cycle - operation-maintenance - the spent fuel pool and its cooling system-emergency cooling system-emergency electric power-transportation movements-equipment handling - final disposal of radioactive matter, independent safety barriers), the author includes materials (fabrication of targets, an irradiation and inspection instrument), the chemistry of all sorting processes, equipment "refabrication" or rehabilitation

  19. Task 3.0 - Advanced Power Systems Subtask 3.18 - Ash Behavior in Power Systems

    SciTech Connect

    Zygarlicke, Christopher J; McCollor, Donald P

    1997-07-01

    Ash behavior in power systems can have a significant impact on the design and performance of advanced power systems. The Energy & Environmental Research Center (EERC) has focused significant effort on ash behavior in conventional power systems that can be applied to advanced power systems. This initiative focuses on filling gaps in the understanding of fundamental mechanisms of ash behavior that has relevance to commercial application and marketable products. This program develops methods and means to better understand and mitigate adverse coal ash behavior in power systems and can act to relieve the U.S. reliance on diminishing recoverable oil resources, especially those resources that are not domestically available and are fairly uncertain.

  20. Resonant scanning mechanism

    NASA Astrophysics Data System (ADS)

    Wallace, John; Newman, Mike; Gutierrez, Homero; Hoffman, Charlie; Quakenbush, Tim; Waldeck, Dan; Leone, Christopher; Ostaszewski, Miro

    2014-10-01

    Ball Aerospace & Technologies Corp. developed a Resonant Scanning Mechanism (RSM) capable of combining a 250- Hz resonant scan about one axis with a two-hertz triangular scan about the orthogonal axis. The RSM enables a rapid, high-density scan over a significant field of regard (FOR) while minimizing size, weight, and power requirements. The azimuth scan axis is bearing mounted allowing for 30° of mechanical travel, while the resonant elevation axis is flexure and spring mounted with five degrees of mechanical travel. Pointing-knowledge error during quiescent static pointing at room temperature across the full range is better than 100 μrad RMS per axis. The compact design of the RSM, roughly the size of a soda can, makes it an ideal mechanism for use on low-altitude aircraft and unmanned aerial vehicles. Unique aspects of the opto-mechanical design include i) resonant springs which allow for a high-frequency scan axis with low power consumption; and ii) an independent lower-frequency scan axis allowing for a wide FOR. The pointing control system operates each axis independently and employs i) a position loop for the azimuth axis; and ii) a unique combination of parallel frequency and amplitude control loops for the elevation axis. All control and pointing algorithms are hosted on a 200-MHz microcontroller with 516 KB of RAM on a compact 3"×4" digital controller, also of Ball design.

  1. Military power requirements and backup power considerations

    SciTech Connect

    Botts, T.E.

    1986-01-01

    All US Air Force (USAF) facilities have certain critical power requirements that must be met in order to carry out their mission successfully. Internal USAF studies have shown that the mission can degrade precipitously as the available power decreases below the mission critical level. Now, more than ever before, the military and private industry are finding that certain functions, such as automated data processing and automated process control, respond catastrophically to power reductions. Furthermore, increased reliance on electrical power means, in the case of the Air Force, that critical power requirements are anticipated to increase by half over the next 15 yr. For these reasons and others, the USAF is investigating several means of improving the availability of electric power under adverse conditions above that which can be provided by an off-base supplier. Among the approaches to this problem being pursued at this time are a program to improve all sorts of generator sets on a service-wide basis and the Multimegawatt Terrestrial Power (MTP) Program, which is pursuing the design and testing of a small dedicated nuclear power source to provide critical mission power. The purpose of this paper is to provide some insight into some of the issues associated with USAF power programs.

  2. Multi-level Full Virtualization of Power Management

    NASA Astrophysics Data System (ADS)

    Liu, Yongpeng; Chi, Wanqing; Liu, Yongyan

    Virtual machine technique is employed to improve system utilization and energy efficiency. However, isolation effect of virtualization imposes challenges to power management. A multi-level power behavior statistic framework is introduced to support power profiling of virtual device, virtual machine and host. Power management mechanisms are virtualized to map power management operations between virtual device and physical device. The power consumption of a virtual device is virtualized according to its performance share from the physical device. The experiments demonstrated that our power management virtualization solution has negligible decline of system performance.

  3. Aerobic power and peak power of elite America's Cup sailors.

    PubMed

    Neville, Vernon; Pain, Matthew T G; Folland, Jonathan P

    2009-05-01

    Big-boat yacht racing is one of the only able bodied sporting activities where standing arm-cranking ('grinding') is the primary physical activity. However, the physiological capabilities of elite sailors for standing arm-cranking have been largely unreported. The purpose of the study was to assess aerobic parameters, VO(2peak) and onset of blood lactate (OBLA), and anaerobic performance, torque-crank velocity and power-crank velocity relationships and therefore peak power (P (max)) and optimum crank-velocity (omega(opt)), of America's Cup sailors during standing arm-cranking. Thirty-three elite professional sailors performed a step test to exhaustion, and a subset of ten grinders performed maximal 7 s isokinetic sprints at different crank velocities, using a standing arm-crank ergometer. VO(2peak) was 4.7 +/- 0.5 L/min (range 3.6-5.5 L/min) at a power output of 332 +/- 44 W (range 235-425 W). OBLA occurred at a power output of 202 +/- 31 W (61% of W(max)) and VO(2) of 3.3 +/- 0.4 L/min (71% of VO(2peak)). The torque-crank velocity relationship was linear for all participants (r = 0.9 +/- 0.1). P (max) was 1,420 +/- 37 W (range 1,192-1,617 W), and omega(opt) was 125 +/- 6 rpm. These data are among the highest upper-body anaerobic and aerobic power values reported. The unique nature of these athletes, with their high fat-free mass and specific selection and training for standing arm cranking, likely accounts for the high values. The influence of crank velocity on peak power implies that power production during on-board 'grinding' may be optimised through the use of appropriate gear-ratios and the development of efficient gear change mechanisms.

  4. Power conditioning unit for photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Beghin, G.; Nguyen Phuoc, V. T.

    Operational features and components of a power conditioning unit for interconnecting solar cell module powers with a utility grid are outlined. The two-stage unit first modifies the voltage to desired levels on an internal dc link, then inverts the current in 2 power transformers connected to a vector summation control to neutralize harmonic distortion up to the 11th harmonic. The system operates in parallel with the grid with extra inductors to absorb line-to-line voltage and phase differences, and permits peak power use from the PV array. Reactive power is gained internally, and a power system controller monitors voltages, frequencies, and currents. A booster preregulator adjusts the input voltage from the array to provide voltage regulation for the inverter, and can commutate 450 amps. A total harmonic distortion of less than 5 percent is claimed, with a rating of 5 kVA, 50/60 Hz, 3-phase, and 4-wire.

  5. Mechanical design

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design concepts for a 1000 mw thermal stationary power plant employing the UF6 fueled gas core breeder reactor are examined. Three design combinations-gaseous UF6 core with a solid matrix blanket, gaseous UF6 core with a liquid blanket, and gaseous UF6 core with a circulating blanket were considered. Results show the gaseous UF6 core with a circulating blanket was best suited to the power plant concept.

  6. Anticipatory regulation of complex power systems

    NASA Astrophysics Data System (ADS)

    Fieno, Thomas Edward

    Electric generation control is performed in a distributed manner to supply power to geographically defined control areas. The goal of generation control is to keep the inadvertent flow of power across a control area's boundary as small as possible. If a difference exists between the power supplied and the power demanded in a control area, the load deficit or surplus would be either borrowed from or stored as the kinetic energy in rotating machines on the grid. This thesis addresses the challenge of matching the power demand of a local area grid with the power delivered by a coal-fired power plant. An anticipatory controller for a model power plant is presented to prescribe the power output into the grid. The control system forecasts what the future demand of the power customers in a control area is likely to be and modifies the fuel input to the power generation facility in order to match the predicted demand. A neural network was found to be an adaptable and robust prediction mechanism for the highly nonlinear data found in the power consumption patterns in a residential area of the Commonwealth Edison grid. The corresponding control schedule of the power plant was tuned to match the anticipated demand using an iterative neural network approach. The use of neural networks and an iterative scheme allows the controller design in this research to be applied to a broad range of control problems. The control methodology presented takes into account limits in the magnitude and rate of control actions. Simulations show that this implementation of anticipatory control of electric power demand is effective and especially well suited to dynamic systems that include a dead time or control limitations. The response of the anticipatory neural network control system was shown to be more energy efficient than feedback control for a typical thermal power regulation facility and to have a much smoother, reduced control effort.

  7. Soft Power and Smart Power in Africa

    DTIC Science & Technology

    2008-12-01

    groups—are able to exercise power that was once the preserve of only states. Third, resurgent nationalism made it tougher to use military power. For...governments have been replaced.”[22] Wilson adds another factor reducing the salience of hard power—the “transformation from industrial to postindustrial...world behind a cause and set an example others want to follow. These factors , however, can also detract from soft power. In the wrong context, the same

  8. Tidal power in Argentina

    SciTech Connect

    Aisiks, E.G.

    1993-03-01

    This presentation describes the tidal power potential of Argentina and the current status of its utilization. The topics of the presentation include tidal power potential, electric production of the region and the Argentine share of production and consumption, conventional hydroelectric potential, economic feasibility of tidal power production, and the general design and feasibility of a tidal power plant planned for the San Jose Gulf.

  9. Ideological Power in Education

    ERIC Educational Resources Information Center

    Laursen, Per F.

    2006-01-01

    This article agues that ideological power plays an important role in education and that it is part of a general trend in policy and social sciences to underestimate ideological and overestimate the role of political and economic power. The article sketches a concept of power in general and especially of ideological power based primarily on the…

  10. Planning for Power.

    ERIC Educational Resources Information Center

    Failla, Victor A.; Birk, Thomas A.

    1999-01-01

    Discusses the electrical power problems that can arise when schools try to integrate educational technology components into an existing facility, and how to plan the electrical power design to avoid power failures. Examines setting objectives, evaluating current electrical conditions, and developing the technology power design. (GR)

  11. Power sector policy reforms

    SciTech Connect

    Moscote, R.A. . LAC Technical Dept.)

    1994-06-01

    This article discusses the changes in energy policy of most countries in the Latin American and the Caribbean region. The topics of the article include the new legal and regulatory frameworks being developed, investment, privatized power producers, government regulation, power distribution, power transmission, access to transmission lines, pricing regulations, and increasing capacity of the power systems.

  12. Power system restoration issues

    SciTech Connect

    Adibi, M.M. ); Kafka, R.J. )

    1991-04-01

    This article describes some of the problems encountered in the three phases of power system restoration (PSR). The three phases of PSR are: Planning for restart and reintegration of the bulk power supply; Actions during system degradation for saving and retaining critical sources of power; Restoration when the power system has stabilized at some degraded level.

  13. Wind Power Now!

    ERIC Educational Resources Information Center

    Inglis, David Rittenhouse

    1975-01-01

    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  14. Recent Power Quality Technology

    NASA Astrophysics Data System (ADS)

    Okumura, Mutsumu; Kobayashi, Naoki

    With prevalence of high-specified equipment such as power electronics applied device, power quality problems are becoming concerned for both electric utilities and customers. This paper firstly describes what power quality problem is, and then, it outlines recent power quality technologies classified into those of immunity or emission side from the viewpoint of EMC concept, which is practical approach to consider these problems.

  15. Power connect safety and connection interlock

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E. (Inventor)

    1992-01-01

    A power connect safety and connection interlock system is shown for use with inverters and other DC loads (16) which include capacitor filter banks (14) at their DC inputs. A safety circuit (20) operates a spring (26) biased, solenoid (22) driven mechanical connection interference (24) which prevents mating and therefore electrical connection between the power contactor halves (11, 13) of the main power contacts (12) until the capacitor bank is safely precharged through auxiliary contacts (18). When the DC load (16) is shut down, the capacitor bank (14) is automatically discharged through a discharging power resistor (66) by a MOSFET transistor (60) through a discharging power resistor (66) only when both the main power contacts and auxiliary contacts are disconnected.

  16. Power Plant Systems Analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Yang, Y. Y.

    1973-01-01

    Three basic thermodynamic cycles of advanced nuclear MHD power plant systems are studied. The effect of reactor exit temperature and space radiator temperature on the overall thermal efficiency of a regenerative turbine compressor power plant system is shown. The effect of MHD pressure ratio on plant efficiency is also described, along with the dependence of MHD power output, compressor power requirement, turbine power output, mass flow rate of H2, and overall plant efficiency on the reactor exit temperature for a specific configuration.

  17. Powering Future Naval Forces

    DTIC Science & Technology

    2010-11-01

    Ground Renewable Expeditionary Energy System Bulk Heterojunction Solar Cell 9  Long endurance fuel cell power (26hr flight Nov 2009)  Low noise...Near Mid Long EMRG Solid State Lights for Submarines Power Node Switching Center Perovskite - based Pyroelectrics 3 Power & Energy Technologies...Fuel Power Generation Energy Storage Distribution& Control Power Loads Fuels Chemistry Alternative Fuels Gas Turbine Generators Fuel Cells Aircraft

  18. 30 CFR 77.407 - Power-driven pulleys.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Power-driven pulleys. 77.407 Section 77.407... for Mechanical Equipment § 77.407 Power-driven pulleys. (a) Belts, chains, and ropes shall not be guided onto power-driven moving pulleys, sprockets, or drums with the hands except on slow...

  19. 30 CFR 77.407 - Power-driven pulleys.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Power-driven pulleys. 77.407 Section 77.407... for Mechanical Equipment § 77.407 Power-driven pulleys. (a) Belts, chains, and ropes shall not be guided onto power-driven moving pulleys, sprockets, or drums with the hands except on slow...

  20. 30 CFR 77.407 - Power-driven pulleys.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Power-driven pulleys. 77.407 Section 77.407... for Mechanical Equipment § 77.407 Power-driven pulleys. (a) Belts, chains, and ropes shall not be guided onto power-driven moving pulleys, sprockets, or drums with the hands except on slow...

  1. 30 CFR 77.407 - Power-driven pulleys.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Power-driven pulleys. 77.407 Section 77.407... for Mechanical Equipment § 77.407 Power-driven pulleys. (a) Belts, chains, and ropes shall not be guided onto power-driven moving pulleys, sprockets, or drums with the hands except on slow...

  2. 30 CFR 77.407 - Power-driven pulleys.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Power-driven pulleys. 77.407 Section 77.407... for Mechanical Equipment § 77.407 Power-driven pulleys. (a) Belts, chains, and ropes shall not be guided onto power-driven moving pulleys, sprockets, or drums with the hands except on slow...

  3. Power Product Equipment Technician: Equipment Systems. Teacher Edition. Student Edition.

    ERIC Educational Resources Information Center

    Hilley, Robert

    This packet contains teacher and student editions on the topic of equipment systems, intended for the preparation of power product equipment technicians. This publication contains seven units: (1) principles of power transmission; (2) mechanical drive systems; (3) principles of fluid power; (4) hydraulic and pneumatic drive systems; (5) wheel and…

  4. The power of PowerPoint.

    PubMed

    Niamtu, J

    2001-08-01

    Carousel slide presentations have been used for academic and clinical presentations since the late 1950s. However, advances in computer technology have caused a paradigm shift, and digital presentations are quickly becoming standard for clinical presentations. The advantages of digital presentations include cost savings; portability; easy updating capability; Internet access; multimedia functions, such as animation, pictures, video, and sound; and customization to augment audience interest and attention. Microsoft PowerPoint has emerged as the most popular digital presentation software and is currently used by many practitioners with and without significant computer expertise. The user-friendly platform of PowerPoint enables even the novice presenter to incorporate digital presentations into his or her profession. PowerPoint offers many advanced options that, with a minimal investment of time, can be used to create more interactive and professional presentations for lectures, patient education, and marketing. Examples of advanced PowerPoint applications are presented in a stepwise manner to unveil the full power of PowerPoint. By incorporating these techniques, medical practitioners can easily personalize, customize, and enhance their PowerPoint presentations. Complications, pitfalls, and caveats are discussed to detour and prevent misadventures in digital presentations. Relevant Web sites are listed to further update, customize, and communicate PowerPoint techniques.

  5. Green Power Partnership 100 Green Power Users

    EPA Pesticide Factsheets

    EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. Partners on this list use green power to meet 100 of their U.S. organization-wide electricity use.

  6. Photodegradation of crystal violet in TiO(2) suspensions using UV-vis irradiation from two microwave-powered electrodeless discharge lamps (EDL(-2)): products, mechanism and feasibility.

    PubMed

    Ju, Yongming; Fang, Jiande; Liu, Xiaowen; Xu, Zhencheng; Ren, Xiuwen; Sun, Cheng; Yang, Shaogui; Ren, Qian; Ding, Youchao; Yu, Kai; Wang, Lianhong; Wei, Zhongbo

    2011-01-30

    Aqueous crystal violet (CV) solutions containing P25-TiO(2) photocatalyst were irradiated with ultraviolet-visible (UV-vis) light from two microwave-powered electrodeless discharge lamps (EDL(-2)). The results demonstrated that approximately 94.4% of CV was effectively removed after 3 min of irradiation, with a pseudo-first order kinetic constant of 0.838 min(-1). According to 32 kinds of products, a five-step degradation pathway of CV was proposed. Further investigations showed that (1) three kinds of N-demethylated products and 4-dimethylaminobenzophenone (DLBP) were the main intermediates; (2) malachite green (MG) and leuco-crystal violet could not be generated by N-demethylation and phototransformation reactions, respectively; (3) bis(4-(dimethylamino)phenyl)methanone preferentially generated via decomposition of the conjugated structure of CV could be further N-demethylated into DLBP. Moreover, the unique degradation pathways of CV and MG were ascribed to the different substituents on the conjugated structures. Additionally, the cost and kinetic constant of different processes was also evaluated, and the results indicated the feasibility of this method for treatment of CV in field situations.

  7. Dielectric loss against piezoelectric power harvesting

    NASA Astrophysics Data System (ADS)

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-09-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems.

  8. Power and revenge.

    PubMed

    Strelan, Peter; Weick, Mario; Vasiljevic, Milica

    2014-09-01

    We took an individual differences approach to explain revenge tendencies in powerholders. Across four experimental studies, chronically powerless individuals sought more revenge than chronically powerful individuals following a high power episode (Studies 1 and 2), when striking a powerful pose (Study 3), and when making a powerful hand gesture (Study 4). This relationship vanished when participants were not exposed to incidental power. A meta-analysis revealed that, relative to a lack of power or a neutral context, exposure to incidental power increased vengeance among the chronically powerless and reduced vengeance among the chronically powerful. These findings add to previous research on relations between power and aggression, and underscore the role of individual differences as a determinant of powerholders' destructive responses.

  9. Photovoltaic power systems workshop

    NASA Technical Reports Server (NTRS)

    Killian, H. J.; Given, R. W.

    1978-01-01

    Discussions are presented on apparent deficiencies in NASA planning and technology development relating to a standard power module (25-35 kW) and to future photovoltaic power systems in general. Topics of discussion consider the following: (1) adequate studies on power systems; (2) whether a standard power system module should be developed from a standard spacecraft; (3) identification of proper approaches to cost reduction; (4) energy storage avoidance; (5) attitude control; (6) thermal effects of heat rejection on solar array configuration stability; (7) assembly of large power systems in space; and (8) factoring terrestrial photovoltaic work into space power systems for possible payoff.

  10. Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Commins, Eugene D.

    2014-10-01

    Preface; 1. Introduction; 2. Mathematical preliminaries; 3. The rules of quantum mechanics; 4. The connection between the fundamental rules and wave mechanics; 5. Further illustrations of the rules of quantum mechanics; 6. Further developments in one-dimensional wave mechanics; 7. The theory of angular momentum; 8. Wave mechanics in three dimensions: hydrogenic atoms; 9. Time-independent approximations for bound state problems; 10. Applications of static perturbation theory; 11. Identical particles; 12. Atomic structure; 13. Molecules; 14. The stability of matter; 15. Photons; 16. Interaction of non-relativistic charged particles and radiation; 17. Further topics in perturbation theory; 18. Scattering; 19. Special relativity and quantum mechanics: the Klein-Gordon equation; 20. The Dirac equation; 21. Interaction of a relativistic spin 1/2 particle with an external electromagnetic field; 22. The Dirac field; 23. Interaction between relativistic electrons, positrons, and photons; 24. The quantum mechanics of weak interactions; 25. The quantum measurement problem; Appendix A: useful inequalities for quantum mechanics; Appendix B: Bell's inequality; Appendix C: spin of the photon: vector spherical waves; Works cited; Bibliography; Index.

  11. Geometric Mechanics

    NASA Astrophysics Data System (ADS)

    Talman, Richard

    1999-10-01

    Mechanics for the nonmathematician-a modern approach For physicists, mechanics is quite obviously geometric, yet the classical approach typically emphasizes abstract, mathematical formalism. Setting out to make mechanics both accessible and interesting for nonmathematicians, Richard Talman uses geometric methods to reveal qualitative aspects of the theory. He introduces concepts from differential geometry, differential forms, and tensor analysis, then applies them to areas of classical mechanics as well as other areas of physics, including optics, crystal diffraction, electromagnetism, relativity, and quantum mechanics. For easy reference, Dr. Talman treats separately Lagrangian, Hamiltonian, and Newtonian mechanics-exploring their geometric structure through vector fields, symplectic geometry, and gauge invariance respectively. Practical perturbative methods of approximation are also developed. Geometric Mechanics features illustrative examples and assumes only basic knowledge of Lagrangian mechanics. Of related interest . . . APPLIED DYNAMICS With Applications to Multibody and Mechatronic Systems Francis C. Moon A contemporary look at dynamics at an intermediate level, including nonlinear and chaotic dynamics. 1998 (0-471-13828-2) 504 pp. MATHEMATICAL PHYSICS Applied Mathematics for Scientists and Engineers Bruce Kusse and Erik Westwig A comprehensive treatment of the mathematical methods used to solve practical problems in physics and engineering. 1998 (0-471-15431-8) 680 pp.

  12. Acoustic mechanical feedthroughs

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-04-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  13. Acoustic Mechanical Feedthroughs

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  14. Bionic Vision-Based Intelligent Power Line Inspection System

    PubMed Central

    Ma, Yunpeng; He, Feijia; Xu, Jinxin

    2017-01-01

    Detecting the threats of the external obstacles to the power lines can ensure the stability of the power system. Inspired by the attention mechanism and binocular vision of human visual system, an intelligent power line inspection system is presented in this paper. Human visual attention mechanism in this intelligent inspection system is used to detect and track power lines in image sequences according to the shape information of power lines, and the binocular visual model is used to calculate the 3D coordinate information of obstacles and power lines. In order to improve the real time and accuracy of the system, we propose a new matching strategy based on the traditional SURF algorithm. The experimental results show that the system is able to accurately locate the position of the obstacles around power lines automatically, and the designed power line inspection system is effective in complex backgrounds, and there are no missing detection instances under different conditions. PMID:28203269

  15. Bionic Vision-Based Intelligent Power Line Inspection System.

    PubMed

    Li, Qingwu; Ma, Yunpeng; He, Feijia; Xi, Shuya; Xu, Jinxin

    2017-01-01

    Detecting the threats of the external obstacles to the power lines can ensure the stability of the power system. Inspired by the attention mechanism and binocular vision of human visual system, an intelligent power line inspection system is presented in this paper. Human visual attention mechanism in this intelligent inspection system is used to detect and track power lines in image sequences according to the shape information of power lines, and the binocular visual model is used to calculate the 3D coordinate information of obstacles and power lines. In order to improve the real time and accuracy of the system, we propose a new matching strategy based on the traditional SURF algorithm. The experimental results show that the system is able to accurately locate the position of the obstacles around power lines automatically, and the designed power line inspection system is effective in complex backgrounds, and there are no missing detection instances under different conditions.

  16. Market Mechanism for Line Congestion Clearance

    NASA Astrophysics Data System (ADS)

    Ruiz Monroy, José Joaquín; Kita, Hiroyuki; Tanaka, Eiichi; Hasegawa, Jun

    This paper proposes a mechanism for clearance of line congestion and power flow control in a deregulated market environment. The mechanism applies penalties to the bilateral transactions that cause line congestion by increasing the prices of such transactions. The market regulates itself by redefining the transactions and checking again for violations, applying penalties if necessary and repeating the process until all the demand is satisfied without causing line congestion to the system. A bilateral transaction matrix (BTM) creation algorithm developed by the authors and a DC power flow program are integrated as parts of the market mechanism proposed in this paper. The congestion is cleared by the market participants when they reschedule their transactions. This mechanism is useful to study the effects of bilateral transactions on a power system and helps the Independent System Operator (ISO) to create rules and market mechanisms for line congestion clearance and power flow control.

  17. Thermoelectric power generation for hybrid-electric vehicle auxiliary power

    NASA Astrophysics Data System (ADS)

    Headings, Leon M.; Washington, Gregory N.; Midlam-Mohler, Shawn; Heremans, Joseph P.

    2009-03-01

    The plug-in hybrid-electric vehicle (PHEV) concept allows for a moderate driving range in electric mode but uses an onboard range extender to capitalize on the high energy density of fuels using a combustion-based generator, typically using an internal combustion engine. An alternative being developed here is a combustion-based thermoelectric generator in order to develop systems technologies which capitalize on the high power density and inherent benefits of solid-state thermoelectric power generation. This thermoelectric power unit may find application in many military, industrial, and consumer applications including range extension for PHEVs. In this research, a baseline prototype was constructed using a novel multi-fuel atomizer with diesel fuel, a conventional thermoelectric heat exchange configuration, and a commercially available bismuth telluride module (maximum 225°C). This prototype successfully demonstrated the viability of diesel fuel for thermoelectric power generation, provided a baseline performance for evaluating future improvements, provided the mechanism to develop simulation and analysis tools and methods, and highlighted areas requiring development. The improvements in heat transfer efficiency using catalytic combustion were evaluated, the system was redesigned to operate at temperatures around 500 °C, and the performance of advanced high temperature thermoelectric modules was examined.

  18. Multichannel Phase and Power Detector

    NASA Technical Reports Server (NTRS)

    Li, Samuel; Lux, James; McMaster, Robert; Boas, Amy

    2006-01-01

    An electronic signal-processing system determines the phases of input signals arriving in multiple channels, relative to the phase of a reference signal with which the input signals are known to be coherent in both phase and frequency. The system also gives an estimate of the power levels of the input signals. A prototype of the system has four input channels that handle signals at a frequency of 9.5 MHz, but the basic principles of design and operation are extensible to other signal frequencies and greater numbers of channels. The prototype system consists mostly of three parts: An analog-to-digital-converter (ADC) board, which coherently digitizes the input signals in synchronism with the reference signal and performs some simple processing; A digital signal processor (DSP) in the form of a field-programmable gate array (FPGA) board, which performs most of the phase- and power-measurement computations on the digital samples generated by the ADC board; and A carrier board, which allows a personal computer to retrieve the phase and power data. The DSP contains four independent phase-only tracking loops, each of which tracks the phase of one of the preprocessed input signals relative to that of the reference signal (see figure). The phase values computed by these loops are averaged over intervals, the length of which is chosen to obtain output from the DSP at a desired rate. In addition, a simple sum of squares is computed for each channel as an estimate of the power of the signal in that channel. The relative phases and the power level estimates computed by the DSP could be used for diverse purposes in different settings. For example, if the input signals come from different elements of a phased-array antenna, the phases could be used as indications of the direction of arrival of a received signal and/or as feedback for electronic or mechanical beam steering. The power levels could be used as feedback for automatic gain control in preprocessing of incoming signals

  19. Robotic insects: Manufacturing, actuation, and power considerations

    NASA Astrophysics Data System (ADS)

    Wood, Robert

    2015-12-01

    As the characteristic size of a flying robot decreases, the challenges for successful flight revert to basic questions of fabrication, actuation, fluid mechanics, stabilization, and power - whereas such questions have in general been answered for larger aircraft. When developing a robot on the scale of a housefly, all hardware must be developed from scratch as there is nothing "off-the-shelf" which can be used for mechanisms, sensors, or computation that would satisfy the extreme mass and power limitations. With these challenges in mind, this talk will present progress in the essential technologies for insect-like robots with an emphasis on multi-scale manufacturing methods, high power density actuation, and energy-efficient power distribution.

  20. Piezoelectric devices for generating low power

    NASA Astrophysics Data System (ADS)

    Chilibon, Irinela

    2016-12-01

    This paper reviews concepts and applications in low-power electronics and energy harvesting technologies. Various piezoelectric materials and devices for small power generators useful in renewable electricity are presented. The vibrating piezoelectric device differs from the typical electrical power source in that it has capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. In general, vibration energy could be converted into electrical energy using one of three techniques: electrostatic charge, magnetic fields and piezoelectric. A low power piezoelectric generator, having a PZT element was realised in order to supply small electronic elements, such as optoelectronic small devices, LEDs, electronic watches, small sensors, interferometry with lasers or Micro-electro-mechanical System (MEMS) array with multi-cantilevers.

  1. Integrated high power VCSEL systems

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Conrads, Ralf; Gronenborn, Stephan; Gu, Xi; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich

    2016-03-01

    High power VCSEL systems are a novel laser source used for thermal treatment in industrial manufacturing. These systems will be applied in many applications, which have not used a laser source before. This is enabled by the unique combination of efficiency, compactness and robustness. High power VCSEL system technology encompasses elements far beyond the VCSEL chip itself: i.e. heat sinks, bonding technology and integrated optics. This paper discusses the optimization of these components and processes specifically for building high-power laser systems with VCSEL arrays. New approaches help to eliminate components and process steps and make the system more robust and easier to manufacture. New cooler concepts with integrated electrical and mechanical interfaces have been investigated and offer advantages for high power system design. The bonding process of chips on sub-mounts and coolers has been studied extensively and for a variety of solder materials. High quality of the interfaces as well as good reliability under normal operation and thermal cycling have been realized. A viable alternative to soldering is silver sintering. The very positive results which have been achieved with a variety of technologies indicate the robustness of the VCSEL chips and their suitability for high power systems. Beam shaping micro-optics can be integrated on the VCSEL chip in a wafer scale process by replication of lenses in a polymer layer. The performance of VCSEL arrays with integrated collimation lenses has been positively evaluated and the integrated chips are fully compatible with all further assembly steps. The integrated high power systems make the application even easier and more robust. New examples in laser material processing and pumping of solid state lasers are presented.

  2. What Is Green Power?

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership defines Green power is a subset of renewable energy and represents those renewable energy resources and technologies that provide the highest environmental benefit.

  3. Green Power Markets

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership defines Green power is a subset of renewable energy and represents those renewable energy resources and technologies that provide the highest environmental benefit.

  4. Green Power Communities

    EPA Pesticide Factsheets

    GPCs are towns, villages, cities, counties, or tribal governments in which the local government, businesses, and residents collectively use green power in amounts that meet or exceed EPA's Green Power Community purchase requirements.

  5. Green Power Community Benefits

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. Learn more about becoming a Green Power Community, including recognition opportunities.

  6. Technologies. [space power sources

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1992-01-01

    Energy technologies to meet the power requirements of future space missions are reviewed. Photovoltaic, solar dynamic, and solar thermal technologies are discussed along with techniques for energy storage and power management and distribution.

  7. Minnesota Power Settlement

    EPA Pesticide Factsheets

    EPA and DOJ announced a Clean Air Act settlement with Minnesota Power, an ALLETE company based in Duluth, that will cover its three coal-fired power plants and one biomass-and-coal-fired steam and electricity cogeneration plan

  8. Green Power Partner List

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. There are thousands of Green Power Partners, all listed on this page.

  9. Lifetest on a high-power laser diode array transmitter

    NASA Astrophysics Data System (ADS)

    Greulich, P.; Hespeler, B.; Spatscheck, Th.

    1991-05-01

    The optical transmiter component of a free space optical communication system is critical, in that it impacts on the mechanical configuration, power requirements, mass, reliability, and transmission bit-rate of the entire system. Attention is presently given to the transmitter output power and beam quality, as well as its electrical-to-optical power conversion efficiency, in view of state-of-the-art high power transmitters for intensity modulation/direct detection and semiconductor laser transmitter systems.

  10. Effects of power on perceived and objective group variability: evidence that more powerful groups are more variable.

    PubMed

    Guinote, Ana; Judd, Charles M; Brauer, Markus

    2002-05-01

    The perception of group variability is affected by social power and status. Three different mechanisms may be responsible for these effects: (a) the power of the perceiver affects perceived group variability; (b) the power of the perceived group affects its perceived variability; and (c) the power of the group affects its actual variability. Two studies are reported to tease apart these three mechanisms and provide support for the third. In the first study, high- and low-power groups interacted and subsequently judged each other. In the second study, participants observed and rated the Study 1 groups, either knowing their power relationship or not. Results suggest that members of high-power groups manifest greater interpersonal variability than members of low-power groups.

  11. Mechanical memory

    DOEpatents

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-08-15

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  12. Mechanical memory

    DOEpatents

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-05-16

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  13. Wind power soars

    SciTech Connect

    Flavin, C.

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  14. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  15. The Administrative Power Grab

    ERIC Educational Resources Information Center

    Sorenson, Richard D.

    2007-01-01

    Administrative power for some school teachers can be an aphrodisiac that can be applied negatively, especially when a leader has devastating instinct for the weaknesses of others. A leader's intellect and heart closes shop and ceases to function when drunk on power. In this article, the author describes how the use of administrative power can be…

  16. Power in everyday life

    PubMed Central

    Hofmann, Wilhelm

    2016-01-01

    How does power manifest itself in everyday life? Using experience-sampling methodology, we investigated the prevalence, sources, and correlates of power in people’s natural environments. Participants experienced power-relevant situations regularly, though not frequently. High power was not restricted to a limited few: almost half of the sample reported experiencing high-power positions. Positional power and subjective feelings of power were strongly related but had unique relations with several individual difference measures and independent effects on participants’ affect, cognition, and interpersonal relations. Subjective feelings of power resulted more from within-participant situational fluctuation, such as the social roles participants held at different times, than from stable differences between people. Our data supported some theoretical predictions about power’s effects on affect, cognition, and interpersonal relations, but qualified others, particularly highlighting the role of responsibility in power’s effects. Although the power literature has focused on high power, we found stronger effects of low power than high power. PMID:27551069

  17. Fluid Power Technician

    ERIC Educational Resources Information Center

    Moore, Pam

    2008-01-01

    Fluid power technicians, sometimes called hydraulic and pneumatic technicians, work with equipment that utilizes the pressure of a liquid or gas in a closed container to transmit, multiply, or control power. Working under the supervision of an engineer or engineering staff, they assemble, install, maintain, and test fluid power equipment.…

  18. Solar lunar power

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1994-01-01

    Current and projected technology is assessed for photovoltaic power for a lunar base. The following topics are discussed: requirements for power during the lunar day and night; solar cell efficiencies, specific power, temperature sensitivity, and availability; storage options for the lunar night; array and system integration; the potential for in situ production of photovoltaic arrays and storage medium.

  19. The Power of Powerlessness.

    ERIC Educational Resources Information Center

    Weeks, Gerald; Johnson, Jackie

    1980-01-01

    Power and the paradox of powerlessness are defined in terms of the resource exchange theory of Foa and Foa. Power is conceptualized as the possession of resources, e.g., love, status, and money. The Karpman triangle is used to illustrate the power behind the victim's powerlessness. (Author)

  20. Green Power Communities Brochure

    EPA Pesticide Factsheets

    The Green Power Communities Brochure provides basic information about GPP's Green Power Communities (GPCs). The four-page brochure includes information about how to become a GPC, the benefits of procuring green power, and examples of how current GPCs are u

  1. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  2. Electronic and photonic power applications

    SciTech Connect

    Walko, R.J.; Ashley, C.S.; Brinker, C.J.; Reed, S.T.; Renschler, C.L. ); Shepodd, T.J. ); Ellefson, R.E.; Gill, J.T. ); Leonard, L.E. )

    1990-01-01

    Efficient conversion of radioactive decay to electrical power has been the goal of a number of past research efforts. One of these was the Elgin-Kidde nuclear battery. In this concept promethium-147 was used as a beta source which was then mixed with a phosphor to produce a radioluminescent (RL) source of light. The light source was coupled to silicon photovoltaic converters to create electricity. This photoelectric approach is being revisited using tritium based solid state compounds and advanced gas concepts to produce RL light sources being disclosed at this conference. Efficient conversion of the RL light energy to electrical energy imposes certain requirements on the semiconductor converter. These requirements will be discussed. Projections of power source electrical and physical characteristics will be presented based on reasonable design parameter assumptions. The words Power Supply'' usually evoke a vision of a rotating machine or chemical battery. However, today's technology is making increasing use of photonics, where information and even power can be moved through optical fibers. Brighter volumetric RL light sources open a whole new range of photonics-based applications, while solid state tritiated compounds provide the foundation for improved mechanical adaptability and safety. 4 refs., 6 figs., 1 tab.

  3. The development of swimming power

    PubMed Central

    Gatta, Giorgio; Leban, Bruno; Paderi, Maurizio; Padulo, Johnny; Migliaccio, Gian Mario; Pau, Massimiliano

    2014-01-01

    Summary Purpose: the aim of this study was to investigate the effects of the transfer strength training method on swimming power. Methods: twenty male swimmers “master“ were randomly allocated to strength (n= 10, ST) and swimming training (n=10, SW) groups. Both groups performed six-weeks training based on swimming training for SW and strength training which consisted in a weight training session immediately followed by the maximum swimming velocity. The performance in both groups was assessed by Maximal-Mechanical-External-Power (MMEP) before and after the six-weeks period, using a custom ergometer that provided force, velocity, and power measurement in water. Results: a significant increased MMEP in ST group (5.73% with p< 0.05) was obtained by an increased strength (11.70% with p< 0.05) and a decreased velocity (4.99% with p> 0.05). Conversely, in the SW group there was a decreased in MMEP (7.31%; p< 0.05), force and velocity (4.16%, and 3.45; respectively p> 0.05). Conclusion: this study showed that the transfer training method, based on combination of weight training (in dry condition) immediately followed by fast swim (in water) significantly improves swimming-power in master. PMID:25767781

  4. Mechanisms of peripheral fatigue.

    PubMed

    Kirkendall, D T

    1990-08-01

    Fatigue can be defined as the failure to maintain an expected power output. This is often an antecedent to some sports-related injury. It is important for those involved in physical performance to be familiar with the variety of mechanisms which can lead to fatigue. All too often, a single factor is described as the cause of fatigue when actually fatigue may be a combination of factors that contribute to the sequence of events that results in decreased performance. It may be suggested that every step in the chain of events that leads to voluntary contraction of skeletal muscle could be a culprit in fatigue. Peripheral sites and processes include the motor neuron, neuromuscular junction, sarcolemmal membrane, excitation-contraction coupling, accumulation of metabolites, or depletion of fuels. Physical training is frequently designed to delay the onset of fatigue. The actual mechanism(s) add to the specificity concept, that is, a "specificity of fatigue". To the performer, the end result is the same, the inability to maintain his or her expected level of performance or power output.

  5. Fault mechanics

    SciTech Connect

    Segall, P. )

    1991-01-01

    Recent observational, experimental, and theoretical modeling studies of fault mechanics are discussed in a critical review of U.S. research from the period 1987-1990. Topics examined include interseismic strain accumulation, coseismic deformation, postseismic deformation, and the earthquake cycle; long-term deformation; fault friction and the instability mechanism; pore pressure and normal stress effects; instability models; strain measurements prior to earthquakes; stochastic modeling of earthquakes; and deep-focus earthquakes. Maps, graphs, and a comprehensive bibliography are provided. 220 refs.

  6. Prototype Low Temperature Low Power Cryocooler,

    DTIC Science & Technology

    1982-02-01

    Zimmerman successfully operated a point-Contact Nb SQUID on a four- stage stirling cycle cryocooler with a mechanical drive power of approxi- mately 15...AD-ADL2 622 LAKE SHORE CRYOTRONICS INC WESTERVILLE OH F/6 13/1 PROTOTYPE LOW TEMPERATURE LOW POWER CRYOCOOLER ,(U) FE13 82 W G P IERC E N0001INROC...pPrototype Low Temperature Low Power Cryocooler // It by Warren G. Pierce February 1982 Prepared under Contract No. N00014-80-C-0825 by LAKE SHORE

  7. Swimming bacteria power microscopic gears.

    SciTech Connect

    Sokolov, A.; Apodaca, M. M.; Grzybowski, B. A.; Aranson, I. S.; Materials Science Division; Princeton Univ.; Northwestern Univ.

    2010-01-19

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be 'rectified' under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

  8. Swimming bacteria power microscopic gears

    SciTech Connect

    Sokolov, Andrey; Apodaca, Mario M.; Grzybowski, Bartosz A.; Aranson, Igor S.

    2010-01-19

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be “rectified” under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears’ angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

  9. Swimming bacteria power microscopic gears.

    PubMed

    Sokolov, Andrey; Apodaca, Mario M; Grzybowski, Bartosz A; Aranson, Igor S

    2010-01-19

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be "rectified" under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears' angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

  10. Swimming bacteria power microscopic gears

    PubMed Central

    Sokolov, Andrey; Apodaca, Mario M.; Grzybowski, Bartosz A.; Aranson, Igor S.

    2010-01-01

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be “rectified” under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears’ angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms. PMID:20080560

  11. Revealing power in truth

    PubMed Central

    Lee, Kelley

    2015-01-01

    Jeremy Shiffman’s editorial appropriately calls on making all forms of power more apparent and accountable, notably productive power derived from expertise and claims to moral authority. This commentary argues that relationships based on productive power can be especially difficult to reveal in global health policy because of embedded notions about the nature of power and politics. Yet, it is essential to recognize that global health is shot through with power relationships, that they can take many forms, and that their explicit acknowledgement should be part of, rather than factored out of, any reform of global health governance. PMID:25844390

  12. Multimegawatt space power reactors

    SciTech Connect

    Dearien, J.A.; Whitbeck, J.F.

    1989-01-01

    In response to the need of the Strategic Defense Initiative (SDI) and long range space exploration and extra-terrestrial basing by the National Air and Space Administration (NASA), concepts for nuclear power systems in the multi-megawatt levels are being designed and evaluated. The requirements for these power systems are being driven primarily by the need to minimize weight and maximize safety and reliability. This paper will discuss the present requirements for space based advanced power systems, technological issues associated with the development of these advanced nuclear power systems, and some of the concepts proposed for generating large amounts of power in space. 31 figs.

  13. The Spectrum of Wind Power Fluctuations

    NASA Astrophysics Data System (ADS)

    Bandi, Mahesh

    2016-11-01

    Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.

  14. An Implanted, Stimulated Muscle Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Gustafson, Kenneth; Kilgore, Kevin

    2007-01-01

    A totally implantable piezoelectric generator system able to harness power from electrically activated muscle could be used to augment the power systems of implanted medical devices, such as neural prostheses, by reducing the number of battery replacement surgeries or by allowing periods of untethered functionality. The features of our generator design are no moving parts and the use of a portion of the generated power for system operation and regulation. A software model of the system has been developed and simulations have been performed to predict the output power as the system parameters were varied within their constraints. Mechanical forces that mimic muscle forces have been experimentally applied to a piezoelectric generator to verify the accuracy of the simulations and to explore losses due to mechanical coupling. Depending on the selection of system parameters, software simulations predict that this generator concept can generate up to approximately 700 W of power, which is greater than the power necessary to drive the generator, conservatively estimated to be 50 W. These results suggest that this concept has the potential to be an implantable, self-replenishing power source and further investigation is underway.

  15. Locking mechanism

    DOEpatents

    Williams, Gary L.; Goin, Jr., Jesse L.; Kirby, Patrick G.; McKenna, John P.

    1997-01-01

    The invention is a motorized linkage for operating a door strike. A six volt power source, controlled by a security code, rotates a small electric motor when a proper security code is given. The motor rotates a shaft which engages a coil spring. This moves a locking cam. When a catch on the locking cam separates from the locking lever catch, the latch bolt keeper may be manipulated by a user.

  16. Multimode power processor

    DOEpatents

    O'Sullivan, George A.; O'Sullivan, Joseph A.

    1999-01-01

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.

  17. Multimode power processor

    DOEpatents

    O'Sullivan, G.A.; O'Sullivan, J.A.

    1999-07-27

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources. 31 figs.

  18. Nuclear Power in Space

    DOE R&D Accomplishments Database

    1994-01-01

    In the early years of the United States space program, lightweight batteries, fuel cells, and solar modules provided electric power for space missions. As missions became more ambitious and complex, power needs increased and scientists investigated various options to meet these challenging power requirements. One of the options was nuclear energy. By the mid-1950s, research had begun in earnest on ways to use nuclear power in space. These efforts resulted in the first radioisotope thermoelectric generators (RTGs), which are nuclear power generators build specifically for space and special terrestrial uses. These RTGs convert the heat generated from the natural decay of their radioactive fuel into electricity. RTGs have powered many spacecraft used for exploring the outer planets of the solar system and orbiting the sun and Earth. They have also landed on Mars and the moon. They provide the power that enables us to see and learn about even the farthermost objects in our solar system.

  19. Preliminary design development of 100 KW rotary power transfer device

    NASA Technical Reports Server (NTRS)

    Weinberger, S. M.

    1981-01-01

    Contactless power transfer devices for transferring electrical power across a rotating spacecraft interface were studied. A power level of 100 KW was of primary interest and the study was limited to alternating current devices. Rotary transformers and rotary capacitors together with the required dc to ac power conditioning electronics were examined. Microwave devices were addressed. The rotary transformer with resonant circuit power conditioning was selected as the most feasible approach. The rotary capacitor would be larger while microwave devices would be less efficient. A design analysis was made of a 100 KW, 20 kHz power transfer device consisting of a rotary transformer, power conditioning electronics, drive mechanism and heat rejection system. The size, weight and efficiency of the device were determined. The characteristics of a baseline slip ring were presented. Aspects of testing the 100 KW power transfer device were examined. The power transfer device is a feasible concept which can be implemented using presently available technologies.

  20. International Space Station Power Systems

    NASA Technical Reports Server (NTRS)

    Propp, Timothy William

    2001-01-01

    This viewgraph presentation gives a general overview of the International Space Station Power Systems. The topics include: 1) The Basics of Power; 2) Space Power Systems Design Constraints; 3) Solar Photovoltaic Power Systems; 4) Energy Storage for Space Power Systems; 5) Challenges of Operating Power Systems in Earth Orbit; 6) and International Space Station Electrical Power System.

  1. Next Generation Power and Energy

    DTIC Science & Technology

    2010-12-02

    Cells Advanced Generators Direct Conversion Photovoltaics Future Fuels Energy Storage Batteries Capacitors Flywheels Motors & Actuators Motors Actuators...Generation Power Distribution Energy Storage Power Conversion Propulsion Ship’s Power Sources Mission Systems Industry Competes for Components; ‘Submit...Chiller Technologies / HVAC ONR Maintaining Robust S&T Investment Power LoadSystem Control Power Generation Power Distribution Energy Storage Power

  2. Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    David, J.; Fernández, C.

    2010-10-01

    Supersymmetric quantum mechanics (SUSY QM) is a powerful tool for generating new potentials with known spectra departing from an initial solvable one. In these lecture notes we will present some general formulae concerning SUSY QM of first second order for one-dimensional arbitrary systems, we will illustrate the method through the trigonometric Pöschl-Teller potentials. Some intrinsically related subjects, as the algebraic structure inherited by the new Hamiltonians and the corresponding coherent states will be analyzed. The technique will be as well implemented for periodic potentials, for which the corresponding spectrum is composed of allowed bands separated by energy gaps.

  3. Structural Mechanics and Dynamics Branch

    NASA Technical Reports Server (NTRS)

    Stefko, George

    2003-01-01

    The 2002 annual report of the Structural Mechanics and Dynamics Branch reflects the majority of the work performed by the branch staff during the 2002 calendar year. Its purpose is to give a brief review of the branch s technical accomplishments. The Structural Mechanics and Dynamics Branch develops innovative computational tools, benchmark experimental data, and solutions to long-term barrier problems in the areas of propulsion aeroelasticity, active and passive damping, engine vibration control, rotor dynamics, magnetic suspension, structural mechanics, probabilistics, smart structures, engine system dynamics, and engine containment. Furthermore, the branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more electric" aircraft. An ultra-high-power-density machine that can generate projected power densities of 50 hp/lb or more, in comparison to conventional electric machines, which generate usually 0.2 hp/lb, is under development for application to electric drives for propulsive fans or propellers. In the future, propulsion and power systems will need to be lighter, to operate at higher temperatures, and to be more reliable in order to achieve higher performance and economic viability. The Structural Mechanics and Dynamics Branch is working to achieve these complex, challenging goals.

  4. Policing Mechanisms in Agricultural Contracts

    ERIC Educational Resources Information Center

    Wolf, Steven; Hueth, Brent; Ligon, Ethan

    2001-01-01

    In this paper we focus on mechanisms of coordination in agricultural contracts. Our approach is intended to advance understanding of social relations of production and distribution of power in agrofood systems. Through an analysis of contracts between farmers and intermediaries (e.g., processors, shippers, consignment agents) for California fruits…

  5. Content Priorities for Farm Mechanics

    ERIC Educational Resources Information Center

    Knotts, C. Don; Webb, Earl S.

    1974-01-01

    Fifty successful young Texas farmers evaluated agricultural mechanics skills (in the broad areas of farm power and machinery, farm shop, farm electricity, buildings and conveniences, and soil and water management) in terms of their importance. Teachers can use the findings to plan course content relevant to their students' needs. (AJ)

  6. Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Pnueli, David; Gutfinger, Chaim

    1997-01-01

    This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.

  7. On power and empowerment.

    PubMed

    Pratto, Felicia

    2016-03-01

    This study presents a conceptual analysis of social power. The most common theories of power are social-relational, an approach instantiated in a range of contemporary experiments that give participants the chance to control other people's outcomes. The relational approach is also reflected in various analyses of international relations. In comparing and contrasting relational theories of power, I identify logical inconsistencies and shortcomings in their ability to address empowerment and reductions in inequality. In turn, I propose a new ecological conceptualization of empowerment as the state of being able to achieve one's goals and of power as stemming from a combination of the capacity of the party and the affordances of the environment. I explain how this new conceptualization can describe the main kinds of power social relations, avoid logical contradictions, and moreover, distinguish power from agency and from control. This new conceptualization of power as the possibility of meeting goals, coupled with recognizing survival as the fundamental goal of all living things, implies an absolute and not relative or relational standard for power, namely well-being. It also allows us to conceive of power in ways that help address the many social concerns that have motivated research on power.

  8. Computational mechanics

    SciTech Connect

    Raboin, P J

    1998-01-01

    The Computational Mechanics thrust area is a vital and growing facet of the Mechanical Engineering Department at Lawrence Livermore National Laboratory (LLNL). This work supports the development of computational analysis tools in the areas of structural mechanics and heat transfer. Over 75 analysts depend on thrust area-supported software running on a variety of computing platforms to meet the demands of LLNL programs. Interactions with the Department of Defense (DOD) High Performance Computing and Modernization Program and the Defense Special Weapons Agency are of special importance as they support our ParaDyn project in its development of new parallel capabilities for DYNA3D. Working with DOD customers has been invaluable to driving this technology in directions mutually beneficial to the Department of Energy. Other projects associated with the Computational Mechanics thrust area include work with the Partnership for a New Generation Vehicle (PNGV) for ''Springback Predictability'' and with the Federal Aviation Administration (FAA) for the ''Development of Methodologies for Evaluating Containment and Mitigation of Uncontained Engine Debris.'' In this report for FY-97, there are five articles detailing three code development activities and two projects that synthesized new code capabilities with new analytic research in damage/failure and biomechanics. The article this year are: (1) Energy- and Momentum-Conserving Rigid-Body Contact for NIKE3D and DYNA3D; (2) Computational Modeling of Prosthetics: A New Approach to Implant Design; (3) Characterization of Laser-Induced Mechanical Failure Damage of Optical Components; (4) Parallel Algorithm Research for Solid Mechanics Applications Using Finite Element Analysis; and (5) An Accurate One-Step Elasto-Plasticity Algorithm for Shell Elements in DYNA3D.

  9. GRAB MECHANISMS

    DOEpatents

    Dent, K.H.

    1948-03-01

    This patent relates to a device for ltfting objects having specially designed arms that fit into aligned slots within concentric sleeves of the grab mechanism. Upon the application of an electric current the sleeves are rotated relative to one another to the aforesaid aligned position, aliowing the entry or removal of the arms of the lifted object. The sleeves are spring biased to an unailgned positione thus locking the arms within the grab mechanism when the current is off. This arrangement provides a device that will remotely secure, life, and release an object, wtth the assurance that the object wiil remain securely locked during the lifting operation.

  10. NUT SCREW MECHANISMS

    DOEpatents

    Glass, J.A.F.

    1958-07-01

    A reactor control mechanism is described wherein the control is achieved by the partial or total withdrawal of the fissile material which is in the form of a fuel rod. The fuel rod is designed to be raised and lowered from the reactor core area by means of two concentric ball nut and screw assemblies that may telescope one within the other. These screw mechanisms are connected through a magnetic clutch to a speed reduction gear and an accurately controllable prime motive source. With the clutch energized, the fuel rod may be moved into the reactor core area, and fine adjustments may be made through the reduction gearing. However, in the event of a power failure or an emergency signal, the magnetic clutch will become deenergized, and the fuel rod will drop out of the core area by the force of gravity, thus shutting down the operation of the reactor.

  11. Photovoltaic array loss mechanisms

    NASA Astrophysics Data System (ADS)

    Gonzalez, Charles

    1986-10-01

    Loss mechanisms which come into play when solar cell modules are mounted in arrays are identified. Losses can occur either from a reduction in the array electrical performance or with nonoptimal extraction of power from the array. Electrical performance degradation is caused by electrical mismatch, transmission losses from cell surface soiling and steep angle of reflectance, and electrical losses from field wiring resistance and the voltage drop across blocking diodes. The second type of loss, concerned with the operating points of the array, can involve nonoptimal load impedance and limiting the operating envelope of the array to specific ranges of voltage and current. Each of the loss mechanisms are discussed and average energy losses expected from soiling, steep reflectance angles and circuit losses are calculated.

  12. Power-constrained supercomputing

    NASA Astrophysics Data System (ADS)

    Bailey, Peter E.

    As we approach exascale systems, power is turning from an optimization goal to a critical operating constraint. With power bounds imposed by both stakeholders and the limitations of existing infrastructure, achieving practical exascale computing will therefore rely on optimizing performance subject to a power constraint. However, this requirement should not add to the burden of application developers; optimizing the runtime environment given restricted power will primarily be the job of high-performance system software. In this dissertation, we explore this area and develop new techniques that extract maximum performance subject to a particular power constraint. These techniques include a method to find theoretical optimal performance, a runtime system that shifts power in real time to improve performance, and a node-level prediction model for selecting power-efficient operating points. We use a linear programming (LP) formulation to optimize application schedules under various power constraints, where a schedule consists of a DVFS state and number of OpenMP threads for each section of computation between consecutive message passing events. We also provide a more flexible mixed integer-linear (ILP) formulation and show that the resulting schedules closely match schedules from the LP formulation. Across four applications, we use our LP-derived upper bounds to show that current approaches trail optimal, power-constrained performance by up to 41%. This demonstrates limitations of current systems, and our LP formulation provides future optimization approaches with a quantitative optimization target. We also introduce Conductor, a run-time system that intelligently distributes available power to nodes and cores to improve performance. The key techniques used are configuration space exploration and adaptive power balancing. Configuration exploration dynamically selects the optimal thread concurrency level and DVFS state subject to a hardware-enforced power bound

  13. Power Quality Aspects in a Wind Power Plant: Preprint

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

    2006-01-01

    Although many operational aspects affect wind power plant operation, this paper focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality.

  14. Powerful Winds in Extreme RBS quasars (POWER)

    NASA Astrophysics Data System (ADS)

    Piconcelli, Enrico

    2013-10-01

    This proposal aims at studying powerful outflows in ultra-luminous (log Lx >45) Radio-Quiet Quasars (RQQ). We propose to observe four objects extracted from a luminosity limited sample in the ROSAT Bright Survey for a full orbit (130 ks) each. Both models and observations suggest that the efficiency of driving energetic outflows increases with the AGN luminosity. Therefore, our targets are potentially the best objects to hunt for very powerful outflows expected in the AGN/galaxy feedback scenario. Our observations represent the first attempt ever to obtain deep, high-resolution-driven spectroscopy of a representative sample of RQQ in this high-luminosity regime.

  15. Mechanics of collective unfolding

    NASA Astrophysics Data System (ADS)

    Caruel, M.; Allain, J.-M.; Truskinovsky, L.

    2015-03-01

    Mechanically induced unfolding of passive crosslinkers is a fundamental biological phenomenon encountered across the scales from individual macro-molecules to cytoskeletal actin networks. In this paper we study a conceptual model of athermal load-induced unfolding and use a minimalistic setting allowing one to emphasize the role of long-range interactions while maintaining full analytical transparency. Our model can be viewed as a description of a parallel bundle of N bistable units confined between two shared rigid backbones that are loaded through a series spring. We show that the ground states in this model correspond to synchronized, single phase configurations where all individual units are either folded or unfolded. We then study the fine structure of the wiggly energy landscape along the reaction coordinate linking the two coherent states and describing the optimal mechanism of cooperative unfolding. Quite remarkably, our study shows the fundamental difference in the size and the structure of the folding-unfolding energy barriers in the hard (fixed displacements) and soft (fixed forces) loading devices which persists in the continuum limit. We argue that both, the synchronization and the non-equivalence of the mechanical responses in hard and soft devices, have their origin in the dominance of long-range interactions. We then apply our minimal model to skeletal muscles where the power-stroke in acto-myosin crossbridges can be interpreted as passive folding. A quantitative analysis of the muscle model shows that the relative rigidity of myosin backbone provides the long-range interaction mechanism allowing the system to effectively synchronize the power-stroke in individual crossbridges even in the presence of thermal fluctuations. In view of the prototypical nature of the proposed model, our general conclusions pertain to a variety of other biological systems where elastic interactions are mediated by effective backbones.

  16. High-Frequency Power Gain in the Mammalian Cochlea

    NASA Astrophysics Data System (ADS)

    Maoiléidigh, Dáibhid Ó.; Hudspeth, A. J.

    2011-11-01

    Amplification in the mammalian inner ear is thought to result from a nonlinear active process known as the cochlear amplifier. Although there is much evidence that outer hair cells (OHCs) play a central role in the cochlear amplifier, the mechanism of amplification remains uncertain. In non-mammalian ears hair bundles can perform mechanical work and account for the active process in vitro, yet in the mammalian cochlea membrane-based electromotility is required for amplification in vivo. A key issue is how OHCs conduct mechanical power amplification at high frequencies. We present a physical model of a segment of the mammalian cochlea that can amplify the power of external signals. In this representation both electromotility and active hair-bundle motility are required for mechanical power gain at high frequencies. We demonstrate how the endocochlear potential, the OHC resting potential, Ca2+ gradients, and ATP-fueled myosin motors serve as the energy sources underlying mechanical power gain in the cochlear amplifier.

  17. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  18. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  19. Power Subscription Strategy

    SciTech Connect

    None, None

    1998-12-21

    This document lays out the Bonneville Power Administration`s Power Subscription Strategy, a process that will enable the people of the Pacific Northwest to share the benefits of the Federal Columbia river Power System after 2001 while retaining those benefits within the region for future generations. The strategy also addresses how those who receive the benefits of the region`s low-cost federal power should share a corresponding measure of the risks. This strategy seeks to implement the subscription concept created by the Comprehensive Review in 1996 through contracts for the sale of power and the distribution of federal power benefits in the deregulated wholesale electricity market. The success of the subscription process is fundamental to BPA`s overall business purpose to provide public benefits to the Northwest through commercially successful businesses.

  20. Automotive Mechanics.

    ERIC Educational Resources Information Center

    Brown, Desmond

    This curriculum guide provides materials for a competency-based course in automotive mechanics at the secondary level. The curriculum design uses the curriculum infused model for the teaching of basic skills as part of vocational education and demonstrates the relationship of vocationally related skills to communication, mathematics, and science…