Science.gov

Sample records for 8-bit dynamic range

  1. NSC 800, 8-bit CMOS microprocessor

    NASA Technical Reports Server (NTRS)

    Suszko, S. F.

    1984-01-01

    The NSC 800 is an 8-bit CMOS microprocessor manufactured by National Semiconductor Corp., Santa Clara, California. The 8-bit microprocessor chip with 40-pad pin-terminals has eight address buffers (A8-A15), eight data address -- I/O buffers (AD(sub 0)-AD(sub 7)), six interrupt controls and sixteen timing controls with a chip clock generator and an 8-bit dynamic RAM refresh circuit. The 22 internal registers have the capability of addressing 64K bytes of memory and 256 I/O devices. The chip is fabricated on N-type (100) silicon using self-aligned polysilicon gates and local oxidation process technology. The chip interconnect consists of four levels: Aluminum, Polysi 2, Polysi 1, and P(+) and N(+) diffusions. The four levels, except for contact interface, are isolated by interlevel oxide. The chip is packaged in a 40-pin dual-in-line (DIP), side brazed, hermetically sealed, ceramic package with a metal lid. The operating voltage for the device is 5 V. It is available in three operating temperature ranges: 0 to +70 C, -40 to +85 C, and -55 to +125 C. Two devices were submitted for product evaluation by F. Stott, MTS, JPL Microprocessor Specialist. The devices were pencil-marked and photographed for identification.

  2. 8-Bit Gray Scale Images of Fingerprint Image Groups

    National Institute of Standards and Technology Data Gateway

    NIST 8-Bit Gray Scale Images of Fingerprint Image Groups (PC database for purchase)   The NIST database of fingerprint images contains 2000 8-bit gray scale fingerprint image pairs. A newer version of the compression/decompression software on the CDROM can be found at the website http://www.nist.gov/itl/iad/ig/nigos.cfm as part of the NBIS package.

  3. Backwards compatible high dynamic range video compression

    NASA Astrophysics Data System (ADS)

    Dolzhenko, Vladimir; Chesnokov, Vyacheslav; Edirisinghe, Eran A.

    2014-02-01

    This paper presents a two layer CODEC architecture for high dynamic range video compression. The base layer contains the tone mapped video stream encoded with 8 bits per component which can be decoded using conventional equipment. The base layer content is optimized for rendering on low dynamic range displays. The enhancement layer contains the image difference, in perceptually uniform color space, between the result of inverse tone mapped base layer content and the original video stream. Prediction of the high dynamic range content reduces the redundancy in the transmitted data while still preserves highlights and out-of-gamut colors. Perceptually uniform colorspace enables using standard ratedistortion optimization algorithms. We present techniques for efficient implementation and encoding of non-uniform tone mapping operators with low overhead in terms of bitstream size and number of operations. The transform representation is based on human vision system model and suitable for global and local tone mapping operators. The compression techniques include predicting the transform parameters from previously decoded frames and from already decoded data for current frame. Different video compression techniques are compared: backwards compatible and non-backwards compatible using AVC and HEVC codecs.

  4. Temperature-compensated 8-bit column driver for AMLCD

    NASA Astrophysics Data System (ADS)

    Dingwall, Andrew G. F.; Lin, Mark L.

    1995-06-01

    An all-digital, 5 V input, 50 Mhz bandwidth, 10-bit resolution, 128- column, AMLCD column driver IC has been designed and tested. The 10-bit design can enhance display definition over 6-bit nd 8-bit column drivers. Precision is realized with on-chip, switched-capacitor DACs plus transparently auto-offset-calibrated, opamp outputs. Increased resolution permits multiple 10-bit digital gamma remappings in EPROMs over temperature. Driver IC features include externally programmable number of output column, bi-directional digital data shifting, user- defined row/column/pixel/frame inversion, power management, timing control for daisy-chained column drivers, and digital bit inversion. The architecture uses fewer reference power supplies.

  5. Managing Dynamic Range for Visualization of Astronomical Data

    NASA Astrophysics Data System (ADS)

    Hurt, R. L.

    2005-12-01

    The steps involved in transforming one or more astronomical FITS datasets into a print-friendly picture are similar to the photographer's role in taking a photograph. For many images, a key step is compressing dynamic range so that it can be viewed in print or onscreen. Since astronomical datasets can span many magnitudes of dynamic range, they must generally be transformed by the application of a stretch function to render into viewable 8-bit graphics. Many tools for this exist, including the Photoshop FITS LIberator which has a flexible system for stretching data. The quality of the final product can be improved by a proper understanding the characteristics of common stretch functions and how to renormalize the datasets through background subtraction and scaling. This paper will present a practical overview of these topics and show how stretch functions can be used most effectively.

  6. Low Temperature Testing of a Radiation Hardened CMOS 8-Bit Flash Analog-to-Digital (A/D) Converter

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.; Hammond, Ahmad; Elbuluk, Malik E.; Patterson, Richard L.; Overton, Eric; Ghaffarian, Reza; Ramesham, Rajeshuni; Agarwal, Shri G.

    2001-01-01

    Power processing electronic systems, data acquiring probes, and signal conditioning circuits are required to operate reliably under harsh environments in many of NASA:s missions. The environment of the space mission as well as the operational requirements of some of the electronic systems, such as infrared-based satellite or telescopic observation stations where cryogenics are involved, dictate the utilization of electronics that can operate efficiently and reliably at low temperatures. In this work, radiation-hard CMOS 8-bit flash A/D converters were characterized in terms of voltage conversion and offset in the temperature range of +25 to -190 C. Static and dynamic supply currents, ladder resistance, and gain and offset errors were also obtained in the temperature range of +125 to -190 C. The effect of thermal cycling on these properties for a total of ten cycles between +80 and - 150 C was also determined. The experimental procedure along with the data obtained are reported and discussed in this paper.

  7. Influence of 8-bit versus 11-bit digital displays on observer performance and visual search: a multi-center evaluation

    NASA Astrophysics Data System (ADS)

    Krupinski, Elizabeth A.; Siddiqui, Khan; Siegel, Eliot; Shrestha, Rasu; Grant, Edward; Roehrig, Hans; Fan, Jiahua

    2007-03-01

    Monochrome monitors typically display 8 bits of data (256 shades of gray) at one time. This study determined if monitors that can display a wider range of grayscale information (11-bit) can improve observer performance and decrease the use of window/level in detecting pulmonary nodules. Three sites participated using 8 and 11-bit displays from three manufacturers. At each site, six radiologists reviewed 100 DR chest images on both displays. There was no significant difference in ROC Az (F = 0.0374, p = 0.8491) as a function of 8 vs 11 bit-depth. Average Az across all observers with 8-bits was 0.8284 and with 11-bits was 0.8253. There was a significant difference in overall viewing time (F = 10.209, p = 0.0014) favoring the 11-bit displays. Window/level use did not differ significantly for the two types of displays. Eye position recording on a subset of images at one site showed that cumulative dwell times for each decision category were lower with the 11-bit than with the 8-bit display. T-tests for paired observations showed that the TP (t = 1.452, p = 0.1507), FN (t = 0.050, p = 0.9609) and FP (t = 0.042, p = 0.9676) were not statistically significant. The difference for the TN decisions was statistically significant (t = 1.926, p = 0.05). 8-bit displays will not impact negatively diagnostic accuracy, but using 11-bit displays may improve workflow efficiency.

  8. Temporal image stacking for noise reduction and dynamic range improvement

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Nash, James; Goma, Sergio; Ramachandra, Vikas; Siddiqui, Hasib

    2013-03-01

    The dynamic range of an imager is determined by the ratio of the pixel well capacity to the noise floor. As the scene dynamic range becomes larger than the imager dynamic range, the choices are to saturate some parts of the scene or "bury" others in noise. In this paper we propose an algorithm that produces high dynamic range images by "stacking" sequentially captured frames which reduces the noise and creates additional bits. The frame stacking is done by frame alignment subject to a projective transform and temporal anisotropic diffusion. The noise sources contributing to the noise floor are the sensor heat noise, the quantization noise, and the sensor fixed pattern noise. We demonstrate that by stacking images the quantization and heat noise are reduced and the decrease is limited only by the fixed pattern noise. As the noise is reduced, the resulting cleaner image enables the use of adaptive tone mapping algorithms which render HDR images in an 8-bit container without significant noise increase.

  9. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    SciTech Connect

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T.; Lindgren, M.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time.

  10. High dynamic range subjective testing

    NASA Astrophysics Data System (ADS)

    Allan, Brahim; Nilsson, Mike

    2016-09-01

    This paper describes of a set of subjective tests that the authors have carried out to assess the end user perception of video encoded with High Dynamic Range technology when viewed in a typical home environment. Viewers scored individual single clips of content, presented in High Definition (HD) and Ultra High Definition (UHD), in Standard Dynamic Range (SDR), and in High Dynamic Range (HDR) using both the Perceptual Quantizer (PQ) and Hybrid Log Gamma (HLG) transfer characteristics, and presented in SDR as the backwards compatible rendering of the HLG representation. The quality of SDR HD was improved by approximately equal amounts by either increasing the dynamic range or increasing the resolution to UHD. A further smaller increase in quality was observed in the Mean Opinion Scores of the viewers by increasing both the dynamic range and the resolution, but this was not quite statistically significant.

  11. Identification of canonical neural events during continuous gameplay of an 8-bit style video game.

    PubMed

    Cavanagh, James F; Castellanos, Joel

    2016-06-01

    Cognitive neuroscience suffers from a unique and pervasive problem of generalizability. Since neural findings are often interpreted in the context of a specific manipulation during a carefully controlled task, it is hard to transfer knowledge from one task to another. In this report we address problems of generalizability with two methodological advancements. First, we aimed to transcend status quo experimental procedures with a continuous, engaging task environment. To this end, we created a novel 8-bit style continuous space shooter video game that elicits a multitude of goal-oriented events, such as crashing into a wall or blowing up an enemy with a missile. Second, we aimed to objectively define the psychological significance of these events. To achieve this aim, we used pattern classification of EEG data to derive predictive weights from carefully controlled pre-game exemplar events (oddball target detection and gambling wins and losses) and transferred those weights to EEG activities during video game events. All major goal-oriented events (crashes into the wall, crashes into an enemy, missile hit on an enemy) had a significant between-task transfer bias towards oddball target weights in the time range of the canonical P3, indicating the presence of similar salience detection processes. Missile hits on an enemy were specifically identified as gambling wins, confirming the hypothesis that this goal-oriented event was appetitive. These findings suggest that it is possible to identify the contribution of canonical neural activities during otherwise ambiguous and uncontrolled task performance.

  12. Dual lookup table algorithm: an enhanced method of displaying 16-bit gray-scale images on 8-bit RGB graphic systems.

    PubMed

    Gillespy, T; Rowberg, A H

    1994-02-01

    Most digital radiologic images have an extended contrast range of 9 to 13 bits, and are stored in memory and disk as 16-bit integers. Consequently, it is difficult to view such images on computers with 8-bit red-green-blue (RGB) graphic systems. Two approaches have traditionally been used: (1) perform a one-time conversion of the 16-bit image data to 8-bit gray-scale data, and then adjust the brightness and contrast of the image by manipulating the color palette (palette animation); and (2) use a software lookup table to interactively convert the 16-bit image data to 8-bit gray-scale values with different window width and window level parameters. The first method can adjust image appearance in real time, but some image features may not be visible because of the lack of access to the full contrast range of the image and any region of interest measurements may be inaccurate. The second method allows "windowing" and "leveling" through the full contrast range of the image, but there is a delay after each adjustment that some users may find objectionable. We describe a method that combines palette animation and the software lookup table conversion method that optimizes the changes in image contrast and brightness on computers with standard 8-bit RGB graphic hardware--the dual lookup table algorithm. This algorithm links changes in the window/level control to changes in image contrast and brightness via palette animation.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Streak camera dynamic range optimization

    SciTech Connect

    Wiedwald, J.D.; Lerche, R.A.

    1987-09-01

    The LLNL optical streak camera is used by the Laser Fusion Program in a wide range of applications. Many of these applications require a large recorded dynamic range. Recent work has focused on maximizing the dynamic range of the streak camera recording system. For our streak cameras, image intensifier saturation limits the upper end of the dynamic range. We have developed procedures to set the image intensifier gain such that the system dynamic range is maximized. Specifically, the gain is set such that a single streak tube photoelectron is recorded with an exposure of about five times the recording system noise. This ensures detection of single photoelectrons, while not consuming intensifier or recording system dynamic range through excessive intensifier gain. The optimum intensifier gain has been determined for two types of film and for a lens-coupled CCD camera. We have determined that by recording the streak camera image with a CCD camera, the system is shot-noise limited up to the onset of image intensifier nonlinearity. When recording on film, the film determines the noise at high exposure levels. There is discussion of the effects of slit width and image intensifier saturation on dynamic range. 8 refs.

  14. RF-MEMS for future mobile applications: experimental verification of a reconfigurable 8-bit power attenuator up to 110 GHz

    NASA Astrophysics Data System (ADS)

    Iannacci, J.; Tschoban, C.

    2017-04-01

    RF-MEMS technology is proposed as a key enabling solution for realising the high-performance and highly reconfigurable passive components that future communication standards will demand. In this work, we present, test and discuss a novel design concept for an 8-bit reconfigurable power attenuator, manufactured using the RF-MEMS technology available at the CMM-FBK, in Italy. The device features electrostatically controlled MEMS ohmic switches in order to select/deselect the resistive loads (both in series and shunt configuration) that attenuate the RF signal, and comprises eight cascaded stages (i.e. 8-bit), thus implementing 256 different network configurations. The fabricated samples are measured (S-parameters) from 10 MHz to 110 GHz in a wide range of different configurations, and modelled/simulated with Ansys HFSS. The device exhibits attenuation levels (S21) in the range from  ‑10 dB to  ‑60 dB, up to 110 GHz. In particular, S21 shows flatness from 15 dB down to 3–5 dB and from 10 MHz to 50 GHz, as well as fewer linear traces up to 110 GHz. A comprehensive discussion is developed regarding the voltage standing wave ratio, which is employed as a quality indicator for the attenuation levels. The margins of improvement at design level which are needed to overcome the limitations of the presented RF-MEMS device are also discussed.

  15. The dynamic range of LZ

    NASA Astrophysics Data System (ADS)

    Yin, J.

    2016-02-01

    The electronics of the LZ experiment, the 7-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to permit studies of physics where the energies deposited range from 1 keV of nuclear-recoil energy up to 3,000 keV of electron-recoil energy. The system is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in multi-tonne time-projection chambers, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined to accommodate the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines.

  16. Phase Preserving Dynamic Range Compression of Aeromagnetic Images

    NASA Astrophysics Data System (ADS)

    Kovesi, Peter

    2014-05-01

    Geoscientific images with a high dynamic range, such as aeromagnetic images, are difficult to present in a manner that facilitates interpretation. The data values may range over 20000 nanoteslas or more but a computer monitor is typically designed to present input data constrained to 8 bit values. Standard photographic high dynamic range tonemapping algorithms may be unsuitable, or inapplicable to such data because they are have been developed on the basis of statistics of natural images, feature types found in natural images, and models of the human visual system. These algorithms may also require image segmentation and/or decomposition of the image into base and detail layers but these operations may have no meaning for geoscientific images. For geological and geophysical data high dynamic range images are often dealt with via histogram equalization. The problem with this approach is that the contrast stretch or compression applied to data values depends on how frequently the data values occur in the image and not on the magnitude of any data features themselves. This can lead to inappropriate distortions in the output. Other approaches include use of the Automatic Gain Control algorithm developed by Rajagopalan, or the tilt derivative. A difficulty with these approaches is that the signal can be over-normalized and perception of the overall variations in the signal can be lost. To overcome these problems a method is presented that compresses the dynamic range of an image while preserving local features. It makes no assumptions about the formation of the image, the feature types it contains, or its range of values. Thus, unlike algorithms designed for photographic images, this algorithm can be applied to a wide range of scientific images. The method is based on extracting local phase and amplitude values across the image using monogenic filters. The dynamic range of the image can then be reduced by applying a range reducing function to the amplitude values, for

  17. Research on temperature distribution of combustion flames based on high dynamic range imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Feng, Huajun; Xu, Zhihai; Li, Qi

    2007-10-01

    The imaging-based three-color method is widely used in the field of non-contact temperature measurement of combustion flames. In this paper, by analyzing the imaging process of a combustion flame in detail, we re-derivate the three-color method by adopting a theory of high dynamic range imaging. Instead of using white balanced, gamma calibrated or other algorithms applied 8-bit pixel values, we use irradiance values on the image plane; these values are obtained by combining two differently exposed raw images into one high dynamic range irradiance map with the help of the imaging system's response function. An instrumentation system is presented and a series of experiments have been carried out, the results of which are satisfactory.

  18. High dynamic range compression and detail enhancement of infrared images in the gradient domain

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Xie, Wei; Ma, Guorui; Qin, Qianqing

    2014-11-01

    To find the trade-off between providing an accurate perception of the global scene and improving the visibility of details without excessively distorting radiometric infrared information, a novel gradient-domain-based visualization method for high dynamic range infrared images is proposed in this study. The proposed method adopts an energy function which includes a data constraint term and a gradient constraint term. In the data constraint term, the classical histogram projection method is used to perform the initial dynamic range compression to obtain the desired pixel values and preserve the global contrast. In the gradient constraint term, the moment matching method is adopted to obtain the normalized image; then a gradient gain factor function is designed to adjust the magnitudes of the normalized image gradients and obtain the desired gradient field. Lastly, the low dynamic range image is solved from the proposed energy function. The final image is obtained by linearly mapping the low dynamic range image to the 8-bit display range. The effectiveness and robustness of the proposed method are analyzed using the infrared images obtained from different operating conditions. Compared with other well-established methods, our method shows a significant performance in terms of dynamic range compression, while enhancing the details and avoiding the common artifacts, such as halo, gradient reversal, hazy or saturation.

  19. Wind dynamic range video camera

    NASA Technical Reports Server (NTRS)

    Craig, G. D. (Inventor)

    1985-01-01

    A television camera apparatus is disclosed in which bright objects are attenuated to fit within the dynamic range of the system, while dim objects are not. The apparatus receives linearly polarized light from an object scene, the light being passed by a beam splitter and focused on the output plane of a liquid crystal light valve. The light valve is oriented such that, with no excitation from the cathode ray tube, all light is rotated 90 deg and focused on the input plane of the video sensor. The light is then converted to an electrical signal, which is amplified and used to excite the CRT. The resulting image is collected and focused by a lens onto the light valve which rotates the polarization vector of the light to an extent proportional to the light intensity from the CRT. The overall effect is to selectively attenuate the image pattern focused on the sensor.

  20. 24-bit color image quantization for 8-bits color display based on Y-Cr-Cb

    NASA Astrophysics Data System (ADS)

    Chang, Long-Wen; Liu, Tsann-Shyong

    1993-10-01

    A new fast algorithm that can display true 24-bits color images of JPEG and MPEG on a 8 bits color display is described. Instead of generating a colormap in the R-G-B color space conventionally, we perform analysis of color images based on the Y-Cr-Cb color space. By using Bayes decision rule, the representative values for Y component are selected based on its histogram. Then, the representative values for Cr and Cb components are determined by their conditional histogram assuming Y. Finally, a fast lookup table that can generate R-G-B outputs for Y-Cr-Cb inputs without matrix transformation is addressed. The experimental results show that good-looking quality color quantization images can be achieved by our proposed algorithm.

  1. A 10 MS/s 8-bit charge-redistribution ADC for hybrid pixel applications in 65 m CMOS

    NASA Astrophysics Data System (ADS)

    Kishishita, Tetsuichi; Hemperek, Tomasz; Krüger, Hans; Koch, Manuel; Germic, Leonard; Wermes, Norbert

    2013-12-01

    The design and measurement results of an 8-bit SAR ADC, based on a charge-redistribution DAC, are presented. This ADC is characterized by superior power efficiency and small area, realized by employing a lateral metal-metal capacitor array and a dynamic two-stage comparator. To avoid the need for a high-speed clock and its associated power consumption, an asynchronous logic was implemented in a logic control cell. A test chip has been developed in a 65 nm CMOS technology, including eight ADC channels with different layout flavors of the capacitor array, a transimpedance amplifier as a signal input structure, a serializer, and a custom-made LVDS driver for data transmission. The integral (INL) and differential (DNL) nonlinearities are measured below 0.5 LSB and 0.8 LSB, respectively, for the best channel operating at a sampling frequency of 10 MS/s. The area occupies 40 μm×70 μm for one ADC channel. The power consumption is estimated as 4 μW at 1 MS/s and 38 μW at 10 MS/s with a supply rail of 1.2 V. These excellent performance features and the natural radiation hardness of the design, due to the thin gate oxide thickness of transistors, are very interesting for front-end electronics ICs of future hybrid-pixel detector systems.

  2. Dynamic-Range Compression For Infrared Imagery

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Liu, Hua-Kuang

    1989-01-01

    Photorefractive crystals covering detectors prevent saturation. To make full use of information in image, desirable to compress dynamic range of input intensity to within region of approximately linear response of detector. Dynamic-range compression exhibited by measurements of attenuation in photorefractive GaAs. Effective dynamic-range-compressor plate, film, or coating reduces apparent contrast of scene imaged on detector plane to within dynamic range of detectors; original image contrast or intensity data recovered subsequently in electronic image processing because range-compression function and inverse known.

  3. Performance comparison of HEVC reference SW, x265 and VPX on 8-bit 1080p content

    NASA Astrophysics Data System (ADS)

    Topiwala, Pankaj; Dai, Wei; Krishnan, Madhu

    2016-09-01

    This paper presents a study comparing the coding efficiency performance of three software codecs: (a) the HEVC Main Profile Reference Software; (b) the x265 codec; and (c) VP10. Note here that we are specifically testing only 8-bit performance. Performance is tabulated for 1-pass encoding on two fronts: (1) objective performance (PSNR), (2) informal subjective assessment. Finally, two approaches to coding were used: (i) constant quality; and (ii) fixed bit rate. Constant quality encoding is performed with all the three codecs for an unbiased comparison of the core coding tools. Whereas target bitrate coding is done to study the compression efficiency achieved with rate control, which can and does have a significant impact. Our general conclusion is that under constant quality coding, the HEVC reference software appears to be superior to the other two, whereas with rate control and fixed rate coding, these codecs are more on an equal footing. We remark that this latter result may be partly or mainly due to the maturity of the various rate control mechanisms in these codecs.

  4. Active Dendrites Enhance Neuronal Dynamic Range

    PubMed Central

    Gollo, Leonardo L.; Kinouchi, Osame; Copelli, Mauro

    2009-01-01

    Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range. PMID:19521531

  5. Interrupt Driven RS-232, Pulse Width Modulation, and Control Processing on a Single 8-bit PIC Chip

    DTIC Science & Technology

    2009-03-01

    generate pulse-width modulation ( PWM ) signals for four servos, and process a control algorithm on a single 8-bit PIC chip. The GPS sensor received data...any new interrupts that may have occurred during the servicing of the current interrupt. Both PWM and RS-232 generate pulses many times per second... Generate a PWM signal for 20ms low and (0.5-2.5ms) high * using an integer [0..100] */ if (io.pwm_cycle == -1) { 10

  6. Dynamic range tuning of graphene nanoresonators

    NASA Astrophysics Data System (ADS)

    Parmar, Marsha M.; Gangavarapu, P. R. Yasasvi; Naik, A. K.

    2015-09-01

    From sensing perspective, smaller electromechanical devices, in general, are expected to be more responsive to the stimuli. This enhanced performance, however, is contingent upon the noise sources remaining unchanged and the onset of nonlinear behavior not being precipitated by miniaturization. In this paper, we study the effect of strain on the nonlinearities and dynamic range in graphene nanoresonators. The dynamic response and the onset of nonlinearity in these devices are sensitive both to the electrostatic field used to actuate the device and the strain. By tuning the strain of the device by two orders of magnitude, we observe an enhancement of 25 dB in the dynamic range leading to a mass resolution of 100 yoctogram. The increase in dynamic range in our devices is modeled as a combined effect of strain and partial cancellation of elastic and electrostatic nonlinearities.

  7. High dynamic range infrared radiometry and imaging

    NASA Technical Reports Server (NTRS)

    Coon, Darryl D.; Karunasiri, R. P. G.; Bandara, K. M. S. V.

    1988-01-01

    The use is described of cryogenically cooled, extrinsic silicon infrared detectors in an unconventional mode of operation which offers an unusually large dynamic range. The system performs intensity-to-frequency conversion at the focal plane via simple circuits with very low power consumption. The incident IR intensity controls the repetition rate of short duration output pulses over a pulse rate dynamic range of about 10(6). Theory indicates the possibility of monotonic and approx. linear response over the full dynamic range. A comparison between the theoretical and the experimental results shows that the model provides a reasonably good description of experimental data. Some measurements of survivability with a very intense IR source were made on these devices and found to be very encouraging. Evidence continues to indicate that some variations in interpulse time intervals are deterministic rather than probabilistic.

  8. High dynamic range holographic data storage media

    NASA Astrophysics Data System (ADS)

    Askham, Fred; Ayres, Mark R.; Urness, Adam C.

    2015-08-01

    Holographic data storage (HDS) employs the physics of holography to record digital data in three dimensions in a highly stable photopolymer medium. The photopolymer medium must provide the essential characteristics of low scatter and high dynamic range while maintaining low recording induced physical shrinkage and long archival lifetimes. In this article, we report on media advancements employing Akonia's DREDTM technology which provide a 5x increase in media dynamic range with unchanged media shrinkage. We also discuss the implications of these results for photopolymer media mechanistic models.

  9. Measurements of the perceived dynamic range of a medical imaging workstation

    NASA Astrophysics Data System (ADS)

    Kenney, Robert S.; Channin, David S.; Prior, Fred W.

    1996-03-01

    Murch and Weiman have demonstrated that greater than 11 bits of contrast information are perceivable by a human observer. Digital display controllers with 10 or 12 bit digital to analog converters are becoming available. Before attempting to determine if these technologies improve the clinical effectiveness of medical imaging workstations it is first necessary to determine if measurable differences can be produced in the perceived dynamic range (PDR) of the displays. A set of experiments have been performed to determine a baseline PDR for an 8- bit per pixel display. This data will be used as the control for future measurements at 10 bits per pixel. The experimental design includes all psychovisual factors that affect an observer's perception of contrast. Stimulus display duration, physical size of the stimulus and training factors were all studied and controlled in the experiments. Simple images are used to avoid complicating the observer's task and display time is kept short to prevent adaptation and boredom effects. Data was collected using four non-radiologists and four radiologists. Each subject had at least normal corrected vision and wore his corrective lenses during each session. All experiments were conducted on a SUN SPARC workstation using an Image Systems (M21P-47SO1-2KHB) portrait monitor driven by a modified DOME Imaging Systems (Md2/SUN) 10-bit, grayscale, video board initially configured to run in 8-bit mode. Specially developed software was used to control the experiments and to gather and analyze the data. Pizer and Chan's methodology for computing PDR was adapted for the above hardware and software environment. A rating experiment was used to determine the just noticeable difference in contrast for a given reference intensity. Integration over the range of the monitor provides the PDR for that display for one observer. This data is then averaged with all other observations to determine a baseline PDR. These experiments allow for the determination

  10. High Dynamic Range Digital Imaging of Spacecraft

    NASA Technical Reports Server (NTRS)

    Karr, Brian A.; Chalmers, Alan; Debattista, Kurt

    2014-01-01

    The ability to capture engineering imagery with a wide degree of dynamic range during rocket launches is critical for post launch processing and analysis [USC03, NNC86]. Rocket launches often present an extreme range of lightness, particularly during night launches. Night launches present a two-fold problem: capturing detail of the vehicle and scene that is masked by darkness, while also capturing detail in the engine plume.

  11. Nonperturbative short-range dynamics in TMDs

    SciTech Connect

    Weiss, Christian

    2013-05-01

    This presentation covers: deep inelastic processes and transverse momentum distributions; chiral symmetry breaking, including the physical picture, the dynamical model, and parton distributions; partonic structures, including transverse momentum distributions, coordinate space correlator, and short range correlations; and measurements of semi-inclusive deep inelastic scattering, correlations, and multi-parton processes in pp interactions.

  12. The Dynamic Range of Human Lightness Perception

    PubMed Central

    Radonjić, Ana; Allred, Sarah R.; Gilchrist, Alan L.; Brainard, David H.

    2011-01-01

    Summary Natural viewing challenges the visual system with images that have a dynamic range of light intensity (luminance) that can approach 1,000,000:1 and that often exceeds 10,000:1 [1, 2]. The range of perceived surface reflectance (lightness), however, can be well-approximated by the Munsell matte neutral scale (N 2.0/ to N 9.5/), consisting of surfaces whose reflectance varies by about 30:1. Thus, the visual system, must map a large range of surface luminance onto a much smaller range of surface lightness. We measured this mapping in images with a dynamic range close to that of natural images. We studied simple images that lacked segmentation cues that would indicate multiple regions of illumination. We found a remarkable degree of compression: at a single image location, a stimulus luminance range of 5905:1 can be mapped onto an extended lightness scale that has a reflectance range of 100:1. We characterized how the luminance-to-lightness mapping changes with stimulus context. Our data rule out theories that predict perceived lightness from luminance ratios or Weber contrast. A mechanistic model connects our data to theories of adaptation and provides insight about how the underlying visual response varies with context. PMID:22079116

  13. Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Whyte, Wayne A., Jr.

    1989-01-01

    Advances in very large-scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible and potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for a DPCM-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the CODEC are described, and performance results are provided.

  14. Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Whyte, Wayne A.

    1991-01-01

    Advances in very large scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible an potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for DPCM (differential pulse code midulation)-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the codec are described, and performance results are provided.

  15. SEMICONDUCTOR INTEGRATED CIRCUITS: A low power 8-bit successive approximation register A/D for a wireless body sensor node

    NASA Astrophysics Data System (ADS)

    Liyuan, Liu; Dongmei, Li; Liangdong, Chen; Chun, Zhang; Shaojun, Wei; Zhihua, Wang

    2010-06-01

    A power efficient 8-bit successive approximation register (SAR) A/D for the vital sign monitoring of a wireless body sensor network (WBSN) is presented. A charge redistribution architecture is employed. The prototype A/D is fabricated in 0.18 μm CMOS. The A/D achieves 7.5 ENOB with sampling rate varying from 64 kHz to 1.5 MHz. The power consumption varies from 10.8 to 225.7 μW.

  16. Integration of Dynamic Models in Range Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.

  17. Dynamic range of hypercubic stochastic excitable media

    NASA Astrophysics Data System (ADS)

    Assis, Vladimir R. V.; Copelli, Mauro

    2008-01-01

    We study the response properties of d -dimensional hypercubic excitable networks to a stochastic stimulus. Each site, modeled either by a three-state stochastic susceptible-infected-recovered-susceptible system or by the probabilistic Greenberg-Hastings cellular automaton, is continuously and independently stimulated by an external Poisson rate h . The response function (mean density of active sites ρ versus h ) is obtained via simulations (for d=1,2,3,4 ) and mean-field approximations at the single-site and pair levels (∀d) . In any dimension, the dynamic range and sensitivity of the response function are maximized precisely at the nonequilibrium phase transition to self-sustained activity, in agreement with a reasoning recently proposed. Moreover, the maximum dynamic range attained at a given dimension d is a decreasing function of d .

  18. Coarsening dynamics of zero-range processes

    NASA Astrophysics Data System (ADS)

    Godrèche, Claude; Drouffe, Jean-Michel

    2017-01-01

    We consider a class of zero-range processes exhibiting a condensation transition in the stationary state, with a critical single-site distribution decaying faster than a power law. We present the analytical study of the coarsening dynamics of the system on the complete graph, both at criticality and in the condensed phase. In contrast with the class of zero-range processes with critical single-site distribution decaying as a power law, in the present case the role of finite-time corrections is essential for the understanding of the approach to scaling.

  19. An 8-Bit 600-MSps Flash ADC Using Interpolating and Background Self-Calibrating Techniques

    NASA Astrophysics Data System (ADS)

    Paik, Daehwa; Asada, Yusuke; Miyahara, Masaya; Matsuzawa, Akira

    This paper describes a flash ADC using interpolation (IP) and cyclic background self-calibrating techniques. The proposed IP technique that is cascade of capacitor IP and gate IP with dynamic double-tail latched comparator reduces non-linearity, power consumption, and occupied area. The cyclic background self-calibrating technique periodically suppresses offset mismatch voltages caused by static fluctuation and dynamic fluctuation due to temperature and supply voltage changes. The ADC has been fabricated in 90-nm 1P10M CMOS technology. Experimental results show that the ADC achieves SNDR of 6.07bits without calibration and 6.74bits with calibration up to 500MHz input signal at sampling rate of 600MSps. It dissipates 98.5mW on 1.2-V supply. FoM is 1.54pJ/conv.

  20. Wide dynamic range beam profile monitor

    SciTech Connect

    Lee, D.M.; Brown, D.; Hardekopf, R.; Bilskie, J.R.; van Dyck, O.B.V.

    1985-01-01

    An economical harp multiplexer system has been developed to achieve a wide dynamic range. The harp system incorporates a pneumatically actuated harp detector with ceramic boards and carbon wires; a high-sensitivity multiplexer packaged in a double-wide NIM module; and flat, shielded ribbon cable consisting of individual twisted pairs. The system multiplexes 30 wires in each of the x and y planes simultaneously and operates with or without computer control. The system has operated in beams of 100 nA to 1 mA, 1- to 120-Hz repetition rate, with a signal-to-noise ratio of greater than 10/1.

  1. Wide dynamic range beam profile monitor

    SciTech Connect

    Lee, D.M.; van Dyck, O.B.; Bilskie, J.R.; Brown, D.; Hardekopf, R.

    1985-10-01

    An economical harp multiplexer system has been developed to achieve a wide dynamic range. The harp system incorporates a pneumatically actuated harp detector with ceramic boards and carbon wires; a high-sensitivity multiplexer packaged in a double-wide NIM module; and flat, shielded ribbon cable consisting of individual twisted pairs. The system multiplexes 30 wires in each of the x and y planes simultaneously and operates with or without computer control. The system has operated in beams of 100 nA to 1 mA, 1- to 120-Hz repetition rate, with a signal-to-noise ratio of greater than 10/1.

  2. Enhanced dynamic range x-ray imaging.

    PubMed

    Haidekker, Mark A; Morrison, Logan Dain-Kelley; Sharma, Ajay; Burke, Emily

    2017-03-01

    X-ray images can suffer from excess contrast. Often, image exposure is chosen to visually optimize the region of interest, but at the expense of over- and underexposed regions elsewhere in the image. When image values are interpreted quantitatively as projected absorption, both over- and underexposure leads to the loss of quantitative information. We propose to combine multiple exposures into a composite that uses only pixels from those exposures in which they are neither under- nor overexposed. The composite image is created in analogy to visible-light high dynamic range photography. We present the mathematical framework for the recovery of absorbance from such composite images and demonstrate the method with biological and non-biological samples. We also show with an aluminum step-wedge that accurate recovery of step thickness from the absorbance values is possible, thereby highlighting the quantitative nature of the presented method. Due to the higher amount of detail encoded in an enhanced dynamic range x-ray image, we expect that the number of retaken images can be reduced, and patient exposure overall reduced. We also envision that the method can improve dual energy absorptiometry and even computed tomography by reducing the number of low-exposure ("photon-starved") projections.

  3. Large dynamic range relative B1+ mapping

    PubMed Central

    Hess, Aaron T.; Aljabar, Paul; Malik, Shaihan J.; Jezzard, Peter; Robson, Matthew D.; Hajnal, Joseph V.; Koopmans, Peter J.

    2015-01-01

    Purpose Parallel transmission (PTx) requires knowledge of the B1+ produced by each element. However, B1+ mapping can be challenging when transmit fields exhibit large dynamic range. This study presents a method to produce high quality relative B1+ maps when this is the case. Theory and Methods The proposed technique involves the acquisition of spoiled gradient echo (SPGR) images at multiple radiofrequency drive levels for each transmitter. The images are combined using knowledge of the SPGR signal equation using maximum likelihood estimation, yielding an image for each channel whose signal is proportional to the B1+ field strength. Relative B1+ maps are then obtained by taking image ratios. The method was tested using numerical simulations, phantom imaging, and through in vivo experiments. Results The numerical simulations demonstrated that the proposed method can reconstruct relative transmit sensitivities over a wide range of B1+ amplitudes and at several SNR levels. The method was validated at 3 Tesla (T) by comparing it with an alternative B1+ mapping method, and demonstrated in vivo at 7T. Conclusion Relative B1+ mapping in the presence of large dynamic range has been demonstrated through numerical simulations, phantom imaging at 3T and experimentally at 7T. The method will enable PTx to be applied in challenging imaging scenarios at ultrahigh field. Magn Reson Med 76:490–499, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26308375

  4. A comparison between 8-bit and 10-bit luminance resolution when generating low-contrast sinusoidal test pattern on an LCD

    NASA Astrophysics Data System (ADS)

    Sund, Patrik; Båth, Magnus; Ungsten, Linda; Månsson, Lars Gunnar

    2007-03-01

    Radiological images are today mostly displayed on monitors, but much is still unknown regarding the interaction between monitor and viewer. Issues like monitor luminance range, calibration, contrast resolution and luminance distribution need to be addressed further. To perform vision research of high validity to the radiologists, test images should be presented on medical displays. One of the problems has been how to display low contrast patterns in a strictly controlled way. This paper demonstrates how to generate test patterns close to the detection limit on a medical grade display using subpixel modulation. Patterns are generated with both 8-bit and 10-bit monitor input. With this technique, up to 7162 luminance levels can be displayed and the average separation is approximately 0.08 of a JND (Just Noticeable Difference) on a display with a luminance range between 1 and 400 cd/m2. These patterns were used in a 2AFC detection task and the detection threshold was found to be 0.75 +/- 0.02 of a JND when the adaptation level was the same as the target luminance (20 cd/m2). This is a reasonable result considering that the magnitude of a JND is based on the method of adjustment rather than on a detection task. When test patterns with a different luminance than the adaptation level (20 cd/m2) were displayed, the detection thresholds were 1.11 and 1.06 of a JND for target luminance values 1.8 and 350 cd/m2, respectively.

  5. Conductance measurement circuit with wide dynamic range

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Von Esch, Myron (Inventor)

    1994-01-01

    A conductance measurement circuit to measure conductance of a solution under test with an output voltage proportional to conductance over a 5-decade range, i.e., 0.01 uS to 1000 uS or from 0.1 uS to 10,000 uS. An increase in conductance indicates growth, or multiplication, of the bacteria in the test solution. Two circuits are used each for an alternate half-cycle time periods of an alternate squarewave in order to cause alternate and opposite currents to be applied to the test solution. The output of one of the two circuits may be scaled for a different range optimum switching frequency dependent upon the solution conductance and to enable uninterrupted measurement over the complete 5-decade range. This circuitry provides two overlapping ranges of conductance which can be read simultaneously without discontinuity thereby eliminating range switching within the basic circuitry. A VCO is used to automatically change the operating frequency according to the particular value of the conductance being measured, and comparators indicate which range is valid and also facilitate computer-controlled data acquisition. A multiplexer may be used to monitor any number of solutions under test continuously.

  6. Servomotor and Controller Having Large Dynamic Range

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Howard, David E.; Smith, Dennis A.; Dutton, Ken; Paulson, M. Scott

    2007-01-01

    A recently developed micro-commanding rotational-position-control system offers advantages of less mechanical complexity, less susceptibility to mechanical resonances, less power demand, less bulk, less weight, and lower cost, relative to prior rotational-position-control systems based on stepping motors and gear drives. This system includes a digital-signal- processor (DSP)-based electronic controller, plus a shaft-angle resolver and a servomotor mounted on the same shaft. Heretofore, micro-stepping has usually been associated with stepping motors, but in this system, the servomotor is micro-commanded in response to rotational-position feedback from the shaft-angle resolver. The shaft-angle resolver is of a four-speed type chosen because it affords four times the resolution of a single-speed resolver. A key innovative aspect of this system is its position-feedback signal- conditioning circuits, which condition the resolver output signal for multiple ranges of rotational speed. In the preferred version of the system, two rotational- speed ranges are included, but any number of ranges could be added to expand the speed range or increase resolution in particular ranges. In the preferred version, the resolver output is conditioned with two resolver-to-digital converters (RDCs). One RDC is used for speeds from 0.00012 to 2.5 rpm; the other RDC is used for speeds of 2.5 to 6,000 rpm. For the lower speed range, the number of discrete steps of RDC output per revolution was set at 262,144 (4 quadrants at 16 bits per quadrant). For the higher speed range, the number of discrete steps per revolution was set at 4,096 (4 quadrants at 10 bits per quadrant).

  7. Inertial Range Dynamics in Boussinesq Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    1996-01-01

    L'vov and Falkovich have shown that the dimensionally possible inertial range scaling laws for Boussinesq turbulence, Kolmogorov and Bolgiano scaling, describe steady states with constant flux of kinetic energy and of entropy respectively. These scaling laws are treated as similarity solutions of the direct interaction approximation for Boussinesq turbulence. The Kolmogorov scaling solution corresponds to a weak perturbation by gravity of a state in which the temperature is a passive scalar but in which a source of temperature fluctuations exists. Using standard inertial range balances, the renormalized viscosity and conductivity, turbulent Prandtl number, and spectral scaling law constants are computed for Bolgiano scaling.

  8. A range extender hybrid electric vehicle dynamic model

    SciTech Connect

    Powell, B.K.; Pilutti, T.E.

    1994-12-31

    This paper describes a dynamic model possessing the key system components of a Range Extender Hybrid Electric Vehicle. The model is suitable for dynamic analysis, control law synthesis, and prototype simulation.

  9. Research on high dynamic range information capture of GEO camera

    NASA Astrophysics Data System (ADS)

    Huang, Sijie; Chen, Fansheng; Gong, Xueyi

    2014-07-01

    A high dynamic range imaging method of GEO staring imaging is proposed based on radiance simulation of GEO remote sensing targets and analysis of foreign and domestic remote sensing payload characteristics. Due to the high temporal resolution of GEO staring imaging, multiple exposure method is used and image sequences are captured with different integration times; Then a high dynamic range image is obtained after fusion with the contrast of neighborhood pixel values being the weighting factor. Finally experiments are done in lab with visible plane array 2048*2048 imaging system for verifying multiple exposure test. It can be proved that using multiple exposure capture fusion method can obtain an 11 bit high dynamic range image. The essence of the method is that it sacrifices time resolution in exchange for high dynamic range, which overcomes the defect of small dynamic range of single exposure and is of practical significance in terms of GEO high dynamic range information capture.

  10. Logarithmic circuit with wide dynamic range

    NASA Technical Reports Server (NTRS)

    Wiley, P. H.; Manus, E. A. (Inventor)

    1978-01-01

    A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.

  11. Dynamic range studies and improvements for multiplexed photonic Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Miller, Edward Kirk; Lee, Kevin; Larson, Eric; Daykin, Edward

    2017-01-01

    We present studies of the dynamic range achievable with multiplexed photonic Doppler velocimetry (MPDV) measurements, and we demonstrate some techniques to extend the dynamic range. Improved dynamic range for MPDV measurements is needed in order to track the velocity of the free surface behind a cloud of ejecta, so we have undertaken theoretical and experimental studies of factors affecting dynamic range, particularly in cases where the large number of MPDV probe points precludes high illumination power on each channel. To quantify the potential dynamic range of a given MPDV configuration, we introduce a metric called the frequency-domain number of bits, FNOB, which is less stringent than the formally defined equivalent number of bits (ENOB). This new metric is simple to compute in the lab, and it is well suited to conventional PDV analysis, which does not require digitizer phase coherence beyond tens of nanoseconds.

  12. A wide dynamic range x-ray streak camera system

    SciTech Connect

    Niu Lihong; Yang Qinlao; Niu Hanben; Liao Hua; Zhou Junlan; Ding Yunkun

    2008-02-15

    An x-ray streak camera with wide dynamic range and a large slit photocathode of 30 mm length has been developed and calibrated. In order to achieve wide dynamic range, a conventional streak tube has been improved and the camera system has been designed without microchannel plate electron amplifier. As a result, a dynamic range of 922 is achieved in a single shot mode with laser pulse of 30 ps (full width at half maximum) at time resolution of better than 31 ps.

  13. Dynamics of Quantum Matter with Long-Range Entanglement

    DTIC Science & Technology

    2013-06-07

    REPORT Final Report: Dynamics of quantum matter with long-range entanglement. 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Recent experiments on...ultracold atoms in optical lattices have opened a remarkable new window on the dynamics of quantum matter with long-range entanglement. The simplest...paradigm of this is the boson superfluid-insulator quantum phase transition in two spatial dimensions. This project will study the theoretical

  14. HIGH DYNAMIC-RANGE HIGH SPEED LINAC CURRENT MEASUREMENTS

    SciTech Connect

    Deibele, Craig Edmond; Curry, Douglas E; Dickson, Richard W

    2012-01-01

    It is desired to measure the linac current of a charged particle beam with a consistent accuracy over a dynamic range of over 120 dB. Conventional current transformers suffer from droop, can be susceptible to electromagnetic interference (EMI), and can be bandwidth limited. A novel detector and electronics were designed to maximize dynamic range of about 120 dB and measure rise-times on the order of 10 nanoseconds.

  15. Need for liquid-crystal display monitors having the capability of rendering higher than 8 bits in display-bit depth.

    PubMed

    Hiwasa, Takeshi; Morishita, Junji; Hatanaka, Shiro; Ohki, Masafumi; Toyofuku, Fukai; Higashida, Yoshiharu

    2009-01-01

    Our purpose in this study was to examine the potential usefulness of liquid-crystal display (LCD) monitors having the capability of rendering higher than 8 bits in display-bit depth. An LCD monitor having the capability of rendering 8, 10, and 12 bits was used. It was calibrated to the grayscale standard display function with a maximum luminance of 450 cd/m(2) and a minimum of 0.75 cd/m(2). For examining the grayscale resolution reported by ten observers, various simple test patterns having two different combinations of luminance in 8, 10, and 12 bits were randomly displayed on the LCD monitor. These patterns were placed on different uniform background luminance levels, such as 0, 50, and 100%, for maximum luminance. All observers participating in this study distinguished a smaller difference in luminance than one gray level in 8 bits irrespective of background luminance levels. As a result of the adaptation processes of the human visual system, observers distinguished a smaller difference in luminance as the luminance level of the test pattern was closer to the background. The smallest difference in luminance that observers distinguished was four gray levels in 12 bits, i.e., one gray level in 10 bits. Considering the results obtained by use of simple test patterns, medical images should ideally be displayed on LCD monitors having 10 bits or greater so that low-contrast objects with small differences in luminance can be detected and for providing a smooth gradation of grayscale.

  16. A Wide Dynamic Range Tapped Linear Array Image Sensor

    NASA Astrophysics Data System (ADS)

    Washkurak, William D.; Chamberlain, Savvas G.; Prince, N. Daryl

    1988-08-01

    Detectors for acousto-optic signal processing applications require fast transient response as well as wide dynamic range. There are two major choices of detectors: conductive or integration mode. Conductive mode detectors have an initial transient period before they reach then' i equilibrium state. The duration of 1 his period is dependent on light level as well as detector capacitance. At low light levels a conductive mode detector is very slow; response time is typically on the order of milliseconds. Generally. to obtain fast transient response an integrating mode detector is preferred. With integrating mode detectors. the dynamic range is determined by the charge storage capability of the tran-sport shift registers and the noise level of the image sensor. The conventional net hod used to improve dynamic range is to increase the shift register charge storage capability. To achieve a dynamic range of fifty thousand assuming two hundred noise equivalent electrons, a charge storage capability of ten million electrons would be required. In order to accommodate this amount of charge. unrealistic shift registers widths would be required. Therefore, with an integrating mode detector it is difficult to achieve a dynamic range of over four orders of magnitude of input light intensity. Another alternative is to solve the problem at the photodetector aml not the shift, register. DALSA's wide dynamic range detector utilizes an optimized, ion implant doped, profiled MOSFET photodetector specifically designed for wide dynamic range. When this new detector operates at high speed and at low light levels the photons are collected and stored in an integrating fashion. However. at bright light levels where transient periods are short, the detector switches into a conductive mode. The light intensity is logarithmically compressed into small charge packets, easily carried by the CCD shift register. As a result of the logarithmic conversion, dynamic ranges of over six orders of

  17. Real-time high dynamic range laser scanning microscopy

    PubMed Central

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-01-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging. PMID:27032979

  18. Real-time high dynamic range laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  19. High-dynamic-range pixel architectures for diagnostic medical imaging

    NASA Astrophysics Data System (ADS)

    Karim, Karim S.; Yin, Sherman; Nathan, Arokia; Rowlands, John A.

    2004-05-01

    One approach to increase pixel signal-to-noise ratio (SNR) in low noise digital fluoroscopy is to employ in-situ pixel amplification via current-mediated active pixel sensors (C-APS). Experiments reveal a reduction in readout noise and indicate that an a-Si C-APS, coupled together with an established X-ray detection technology such as amorphous selenium (a-Se), can meet the stringent requirements (of < 1000 noise electrons) for digital X-ray fluoroscopy. A challenge with the C-APS circuit is the presence of a small-signal input linearity constraint. While using such a pixel amplifier for real-time fluoroscopy (where the exposure level is small) is feasible, the voltage change at the amplifier input is much higher in chest radiography or mammography due to the larger X-ray exposure levels. The larger input voltage causes the C-APS output to be non-linear thus reducing the pixel dynamic range. In addition, the resulting larger pixel output current causes the external column amplifier to saturate further reducing the pixel dynamic range. In this research, we investigate two alternate amplified pixel architectures that exhibit higher dynamic range. The test pixels are designed and simulated using an a-Si TFT model implemented in Verilog-A and results indicate a linear performance, high dynamic range, and a programmable circuit gain via choice of supply voltage and sampling time. These high dynamic range pixel architectures have the potential to enable a large area, active matrix flat panel imager (AMFPI) to switch instantly between low exposure, fluoroscopic imaging and higher exposure radiographic imaging modes. Lastly, the high dynamic range pixel circuits are suitable for integration with on-panel multiplexers for both gate and data lines, which can further reduce circuit complexity.

  20. Real-time extended dynamic range imaging in shearography

    SciTech Connect

    Groves, Roger M.; Pedrini, Giancarlo; Osten, Wolfgang

    2008-10-20

    Extended dynamic range (EDR) imaging is a postprocessing technique commonly associated with photography. Multiple images of a scene are recorded by the camera using different shutter settings and are merged into a single higher dynamic range image. Speckle interferometry and holography techniques require a well-modulated intensity signal to extract the phase information, and of these techniques shearography is most sensitive to different object surface reflectivities as it uses self-referencing from a sheared image. In this paper the authors demonstrate real-time EDR imaging in shearography and present experimental results from a difficult surface reflectivity sample: a wooden panel painting containing gold and dark earth color paint.

  1. Real-Time Local Range On-Demand and Dynamic Regional Range Images

    SciTech Connect

    Tsap, L.V.

    2000-02-22

    This paper presents a new approach to a gesture tracking system using real-time range on-demand. The system represents a gesture-controlled interface for interactive visual exploration of large data sets. The paper describes a method performing range processing only when necessary and where necessary. Range data is processed only for non-static regions of interest. This is accomplished by a set of filters on the color, motion, and range data. The speedup achieved is between 41% and 54%. The algorithm also includes a robust skin color segmentation insensitive to illumination changes. Selective range processing results in dynamic regional range images (DRRIs). This development is also placed in a broader context of a biological visual system emulation, specifically redundancies and attention mechanisms.

  2. Real-Time Local Range On-Demand for Tracking Gestures and Dynamic Regional Range Images

    SciTech Connect

    Tsap, L.V.

    2000-05-30

    This paper presents a new approach to a gesture-tracking system using real-time range on-demand. The system represents a gesture-controlled interface for interactive visual exploration of large data sets. The paper describes a method performing range processing only when necessary and where necessary. Range data is processed only for non-static regions of interest. This is accomplished by a set of filters on the color, motion, and range data. The speedup achieved is between 41% and 54%. The algorithm also includes a robust skin-color segmentation insensitive to illumination changes. Selective range processing results in dynamic regional range images (DRRIs). This development is also placed in a broader context of a biological visual system emulation, specifically redundancies and attention mechanisms.

  3. Adaptive optimal spectral range for dynamically changing scene

    NASA Astrophysics Data System (ADS)

    Pinsky, Ephi; Siman-tov, Avihay; Peles, David

    2012-06-01

    A novel multispectral video system that continuously optimizes both its spectral range channels and the exposure time of each channel autonomously, under dynamic scenes, varying from short range-clear scene to long range-poor visibility, is currently being developed. Transparency and contrast of high scattering medium of channels with spectral ranges in the near infrared is superior to the visible channels, particularly to the blue range. Longer wavelength spectral ranges that induce higher contrast are therefore favored. Images of 3 spectral channels are fused and displayed for (pseudo) color visualization, as an integrated high contrast video stream. In addition to the dynamic optimization of the spectral channels, optimal real-time exposure time is adjusted simultaneously and autonomously for each channel. A criterion of maximum average signal, derived dynamically from previous frames of the video stream is used (Patent Application - International Publication Number: WO2009/093110 A2, 30.07.2009). This configuration enables dynamic compatibility with the optimal exposure time of a dynamically changing scene. It also maximizes the signal to noise ratio and compensates each channel for the specified value of daylight reflections and sensors response for each spectral range. A possible implementation is a color video camera based on 4 synchronized, highly responsive, CCD imaging detectors, attached to a 4CCD dichroic prism and combined with a common, color corrected, lens. Principal Components Analysis (PCA) technique is then applied for real time "dimensional collapse" in color space, in order to select and fuse, for clear color visualization, the 3 most significant principal channels out of at least 4 characterized by high contrast and rich details in the image data.

  4. High speed high dynamic range high accuracy measurement system

    SciTech Connect

    Deibele, Craig E.; Curry, Douglas E.; Dickson, Richard W.; Xie, Zaipeng

    2016-11-29

    A measuring system includes an input that emulates a bandpass filter with no signal reflections. A directional coupler connected to the input passes the filtered input to electrically isolated measuring circuits. Each of the measuring circuits includes an amplifier that amplifies the signal through logarithmic functions. The output of the measuring system is an accurate high dynamic range measurement.

  5. Log amplifier instrument measures physiological biopotentials over wide dynamic range

    NASA Technical Reports Server (NTRS)

    Kado, R. T.

    1970-01-01

    To record biopotentials with extreme dynamic ranges, biopotential inputs are capacitatively coupled to a miniature, low power, solid-state signal conditioner consisting of a two-stage differential preamplifier that has a low noise figure. The ouput of the preamplifier uses diodes to provide an overall gain which is nearly logarithmic.

  6. Dynamic Range Across Music Genres and the Perception of Dynamic Compression in Hearing-Impaired Listeners.

    PubMed

    Kirchberger, Martin; Russo, Frank A

    2016-02-10

    Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings.

  7. Dynamic Range Across Music Genres and the Perception of Dynamic Compression in Hearing-Impaired Listeners

    PubMed Central

    Kirchberger, Martin

    2016-01-01

    Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings. PMID:26868955

  8. High-dynamic-range scene compression in humans

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    2006-02-01

    Single pixel dynamic-range compression alters a particular input value to a unique output value - a look-up table. It is used in chemical and most digital photographic systems having S-shaped transforms to render high-range scenes onto low-range media. Post-receptor neural processing is spatial, as shown by the physiological experiments of Dowling, Barlow, Kuffler, and Hubel & Wiesel. Human vision does not render a particular receptor-quanta catch as a unique response. Instead, because of spatial processing, the response to a particular quanta catch can be any color. Visual response is scene dependent. Stockham proposed an approach to model human range compression using low-spatial frequency filters. Campbell, Ginsberg, Wilson, Watson, Daly and many others have developed spatial-frequency channel models. This paper describes experiments measuring the properties of desirable spatial-frequency filters for a variety of scenes. Given the radiances of each pixel in the scene and the observed appearances of objects in the image, one can calculate the visual mask for that individual image. Here, visual mask is the spatial pattern of changes made by the visual system in processing the input image. It is the spatial signature of human vision. Low-dynamic range images with many white areas need no spatial filtering. High-dynamic-range images with many blacks, or deep shadows, require strong spatial filtering. Sun on the right and shade on the left requires directional filters. These experiments show that variable scene- scenedependent filters are necessary to mimic human vision. Although spatial-frequency filters can model human dependent appearances, the problem still remains that an analysis of the scene is still needed to calculate the scene-dependent strengths of each of the filters for each frequency.

  9. Fluorescence-based Broad Dynamic Range Viscosity Probes.

    PubMed

    Dragan, Anatoliy; Graham, August E; Geddes, Chris D

    2014-03-01

    We introduce two new fluorescent viscosity probes, SYBR Green (SG) and PicoGreen (PG), that we have studied over a broad range of viscosity and in collagen solutions. In water, both dyes have low quantum yields and excited state lifetimes, while in viscous solvents or in complex with DNA both parameters dramatically (300-1000-fold) increase. We show that in log-log scale the dependence of the dyes' quantum yield vs. viscosity is linear, the slope of which is sensitive to temperature. Application of SG and PG, as a fluorescence-based broad dynamic range viscosity probes, to the life sciences is discussed.

  10. Linear dynamic range enhancement in a CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2008-01-01

    A CMOS imager with increased linear dynamic range but without degradation in noise, responsivity, linearity, fixed-pattern noise, or photometric calibration comprises a linear calibrated dual gain pixel in which the gain is reduced after a pre-defined threshold level by switching in an additional capacitance. The pixel may include a novel on-pixel latch circuit that is used to switch in the additional capacitance.

  11. Infrared predetection dynamic range compression via photorefractive crystals

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Cheng, Li-Jen

    1988-01-01

    The theoretical basis and practical implementation of a predetection dynamic-range compression technique for IR sensor systems are discussed. The approach takes advantage of the nonlinear intensity dependence of the gain coefficient in photorefractive crystals. Its feasibility is demonstrated in numerical computations using the experimental data of Cheng and Partovi (1986) on two-wave mixing in GaAs at 1.15 micron wavelength.

  12. High Dynamic Range Characterization of the Trauma Patient Plasma Proteome

    PubMed Central

    Liu, Tao; Qian, Wei-Jun; Gritsenko, Marina A.; Xiao, Wenzhong; Moldawer, Lyle L.; Kaushal, Amit; Monroe, Matthew E.; Varnum, Susan M.; Moore, Ronald J.; Purvine, Samuel O.; Maier, Ronald V.; Davis, Ronald W.; Tompkins, Ronald G.; Camp II, David G.; Smith, Richard D.

    2007-01-01

    SUMMARY While human plasma represents an attractive sample for disease biomarker discovery, the extreme complexity and large dynamic range in protein concentrations present significant challenges for characterization, candidate biomarker discovery, and validation. Herein, we describe a strategy that combines immunoaffinity subtraction and subsequent chemical fractionation based on cysteinyl peptide and N-glycopeptide captures with 2D-LC-MS/MS to increase the dynamic range of analysis for plasma. Application of this “divide-and-conquer” strategy to trauma patient plasma significantly improved the overall dynamic range of detection and resulted in confident identification of 22,267 unique peptides from four different peptide populations (cysteinyl peptides, non-cysteinyl peptides, N-glycopeptides, and non-glycopeptides) that covered 3654 different proteins with 1494 proteins identified by multiple peptides. Numerous low-abundance proteins were identified, exemplified by 78 “classic” cytokines and cytokine receptors and by 136 human cell differentiation molecules. Additionally, a total of 2910 different N-glycopeptides that correspond to 662 N-glycoproteins and 1553 N-glycosylation sites were identified. A panel of the proteins identified in this study is known to be involved in inflammation and immune responses. This study established an extensive reference protein database for trauma patients, which provides a foundation for future high-throughput quantitative plasma proteomic studies designed to elucidate the mechanisms that underlie systemic inflammatory responses. PMID:16684767

  13. High Dynamic Range Characterization of the Trauma Patient Plasma Proteome

    SciTech Connect

    Liu, Tao; Qian, Weijun; Gritsenko, Marina A.; Xiao, Wenzhong; Moldawer, Lyle L.; Kaushal, Amit; Monroe, Matthew E.; Varnum, Susan M.; Moore, Ronald J.; Purvine, Samuel O.; Maier, Ronald V.; Davis, Ronald W.; Tompkins, Ronald G.; Camp, David G.; Smith, Richard D.

    2006-06-08

    While human plasma represents an attractive sample for disease biomarker discovery, the extreme complexity and large dynamic range in protein concentrations present significant challenges for characterization, candidate biomarker discovery, and validation. Herein, we describe a strategy that combines immunoaffinity subtraction and chemical fractionation based on cysteinyl peptide and N-glycopeptide captures with 2D-LC-MS/MS to increase the dynamic range of analysis for plasma. Application of this ''divide-and-conquer'' strategy to trauma patient plasma significantly improved the overall dynamic range of detection and resulted in confident identification of 22,267 unique peptides from four different peptide populations (cysteinyl peptides, non-cysteinyl peptides, N-glycopeptides, and non-glycopeptides) that covered 3654 nonredundant proteins. Numerous low-abundance proteins were identified, exemplified by 78 ''classic'' cytokines and cytokine receptors and by 136 human cell differentiation molecules. Additionally, a total of 2910 different N-glycopeptides that correspond to 662 N-glycoproteins and 1553 N-glycosylation sites were identified. A panel of the proteins identified in this study is known to be involved in inflammation and immune responses. This study established an extensive reference protein database for trauma patients, which provides a foundation for future high-throughput quantitative plasma proteomic studies designed to elucidate the mechanisms that underlie systemic inflammatory responses.

  14. A method for the evaluation of wide dynamic range cameras

    NASA Astrophysics Data System (ADS)

    Wong, Ping Wah; Lu, Yu Hua

    2012-01-01

    We propose a multi-component metric for the evaluation of digital or video cameras under wide dynamic range (WDR) scenes. The method is based on a single image capture using a specifically designed WDR test chart and light box. Test patterns on the WDR test chart include gray ramps, color patches, arrays of gray patches, white bars, and a relatively dark gray background. The WDR test chart is professionally made using 3 layers of transparencies to produce a contrast ratio of approximately 110 dB for WDR testing. A light box is designed to provide a uniform surface with light level at about 80K to 100K lux, which is typical of a sunny outdoor scene. From a captured image, 9 image quality component scores are calculated. The components include number of resolvable gray steps, dynamic range, linearity of tone response, grayness of gray ramp, number of distinguishable color patches, smearing resistance, edge contrast, grid clarity, and weighted signal-to-noise ratio. A composite score is calculated from the 9 component scores to reflect the comprehensive image quality in cameras under WDR scenes. Experimental results have demonstrated that the multi-component metric corresponds very well to subjective evaluation of wide dynamic range behavior of cameras.

  15. Highly mobile laser ranging facilities of the Crustal Dynamics Project

    NASA Technical Reports Server (NTRS)

    Coates, R. J.

    1984-01-01

    Technical specifications, performance, and applications of the NASA transportable laser ranging systems (TLRS-1 and -2) for use in the Crustal Dynamics Program are described. TLRS-1 is truck-mounted, with the laser deployed through the roof. Interacting with the LAGEOS satellite, TLRS has a photoelectric receiver for gathering data on the roundtrip time of the laser beam for calculations of the range gate. The laser has a 0.1 nsec pulse at 3.5 mJ/pulse. Range is measured to within an error of 9 cm. The TLRS-2 version is configured for ease of air transport and modular breakdown and assembly. It has been activated on Easter Island. TLRS-3 and -4 are in development to serve as mobile units in South America and the Mediterranean area.

  16. Fast parallel algorithms for short-range molecular dynamics

    SciTech Connect

    Plimpton, S.

    1993-05-01

    Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a subset of atoms; the second assigns each a subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently -- those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 10,000,000 atoms on three parallel supercomputers, the nCUBE 2, Intel iPSC/860, and Intel Delta. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and the Intel Delta performs about 30 times faster than a single Y-MP processor and 12 times faster than a single C90 processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

  17. Dual Transition Edge Sensor Bolometer for Enhanced Dynamic Range

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Benford, D. J.; Moseley, S. H.; Irwin, K. D.

    2004-01-01

    Broadband surveys at the millimeter and submillimeter wavelengths will require bolometers that can reach new limits of sensitivity and also operate under high background conditions. To address this need, we present results on a dual transition edge sensor (TES) device with two operating modes: one for low background, ultrasensitive detection and one for high background, enhanced dynamic range detection. The device consists of a detector element with two transition temperatures (T(sub c)) of 0.25 and 0.51 K located on the same micromachined, thermally isolated membrane structure. It can be biased on either transition, and features phonon-limited noise performance at the lower T(sub c). We measure noise performance on the lower transition 7 x 10(exp -18) W/rt(Hz) and the bias power on the upper transition of 12.5 pW, giving a factor of 10 enhancement of the dynamic range for the device. We discuss the biasable range of this type of device and present a design concept to optimize utility of the device.

  18. Nonlinear tuning of microresonators for dynamic range enhancement.

    PubMed

    Saghafi, M; Dankowicz, H; Lacarbonara, W

    2015-07-08

    This paper investigates the development of a novel framework and its implementation for the nonlinear tuning of nano/microresonators. Using geometrically exact mechanical formulations, a nonlinear model is obtained that governs the transverse and longitudinal dynamics of multilayer microbeams, and also takes into account rotary inertia effects. The partial differential equations of motion are discretized, according to the Galerkin method, after being reformulated into a mixed form. A zeroth-order shift as well as a hardening effect are observed in the frequency response of the beam. These results are confirmed by a higher order perturbation analysis using the method of multiple scales. An inverse problem is then proposed for the continuation of the critical amplitude at which the transition to nonlinear response characteristics occurs. Path-following techniques are employed to explore the dependence on the system parameters, as well as on the geometry of bilayer microbeams, of the magnitude of the dynamic range in nano/microresonators.

  19. Nonlinear tuning of microresonators for dynamic range enhancement

    PubMed Central

    Saghafi, M.; Dankowicz, H.; Lacarbonara, W.

    2015-01-01

    This paper investigates the development of a novel framework and its implementation for the nonlinear tuning of nano/microresonators. Using geometrically exact mechanical formulations, a nonlinear model is obtained that governs the transverse and longitudinal dynamics of multilayer microbeams, and also takes into account rotary inertia effects. The partial differential equations of motion are discretized, according to the Galerkin method, after being reformulated into a mixed form. A zeroth-order shift as well as a hardening effect are observed in the frequency response of the beam. These results are confirmed by a higher order perturbation analysis using the method of multiple scales. An inverse problem is then proposed for the continuation of the critical amplitude at which the transition to nonlinear response characteristics occurs. Path-following techniques are employed to explore the dependence on the system parameters, as well as on the geometry of bilayer microbeams, of the magnitude of the dynamic range in nano/microresonators. PMID:26345078

  20. Generation of high-dynamic range image from digital photo

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Potemin, Igor S.; Zhdanov, Dmitry D.; Wang, Xu-yang; Cheng, Han

    2016-10-01

    A number of the modern applications such as medical imaging, remote sensing satellites imaging, virtual prototyping etc use the High Dynamic Range Image (HDRI). Generally to obtain HDRI from ordinary digital image the camera is calibrated. The article proposes the camera calibration method based on the clear sky as the standard light source and takes sky luminance from CIE sky model for the corresponding geographical coordinates and time. The article considers base algorithms for getting real luminance values from ordinary digital image and corresponding programmed implementation of the algorithms. Moreover, examples of HDRI reconstructed from ordinary images illustrate the article.

  1. Low Power, Wide Dynamic Range Carbon Nanotube Vacuum Gauges

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Manohara, Harish M.

    2008-01-01

    This slide presentation presents carbon nanotube vacuum pressure sensor gauges that operate at low power and exhibit a wide-dynamic range based on microelectromechanical systems (MEMS) technology. The fabrication facility, and the formation process are shown. Pressure sensitivity was found to increase rapidly as the bias power was increased. In addition, by etching part of the thermal SiO2 beneath the tubes and minimizing heat conduction through the substrate, pressure sensitivity was extended toward lower pressures. Results are compared to a conventional thin film meander resistor, which was fabricated and whose pressure response was also measured for comparative purposes.

  2. The MOLDY short-range molecular dynamics package

    NASA Astrophysics Data System (ADS)

    Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.

    2011-12-01

    We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy. Program summaryProgram title: MOLDY Catalogue identifier: AEJU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 382 881 No. of bytes in distributed program, including test data, etc.: 6 705 242 Distribution format: tar.gz Programming language: Fortran 95/OpenMP Computer: Any Operating system: Any Has the code been vectorised or parallelized?: Yes. OpenMP is required for parallel execution RAM: 100 MB or more Classification: 7.7 Nature of problem: Moldy addresses the problem of many atoms (of order 10 6) interacting via a classical interatomic potential on a timescale of microseconds. It is designed for problems where statistics must be gathered over a number of equivalent runs, such as

  3. Enhanced dynamic range fringe projection for micro-structure characterization

    NASA Astrophysics Data System (ADS)

    Samara, Ayman Mohammad

    We present a solution for one of the main limitations in classical interferometry and fringe projection, which is the dynamic range limitation. The technique is based on real time inverse fringe projection to enhance the dynamic range and increase the vertical resolution without the need of prior information about the test object or the system parameters. The object's form optical path difference map is first measured, and then used to generate inverse fringes to optically filter the low spatial frequency form. The surface finish can then be measured without the impact of the form. A stereo microscope-based fringe projection system was designed, constructed, and used to illustrate the technique. The system was also used to characterize solder bumps with an uncertainty of approximately 10%. Individual solder bumps were also characterized using Zygo's NewView(TM) scanning white light interferometer (SWLI), and the results were compared to measurements on Intel's bump metrology tool. The results show that the SWLI has the lowest uncertainty and maximum repeatability but the lowest measurement speed. Intel's tool has a repeatability of approximately 1% and a measurement speed of about 10 minutes per 100,000 bumps, making it suitable for high volume process control.

  4. Assessment of resolution and dynamic range for digital cinema

    NASA Astrophysics Data System (ADS)

    Fenimore, Charles P.; Nikolaev, A. I.

    2003-05-01

    The proponents of digital cinema seek picture quality exceeding that of the best film-based presentation. Quantifying the performance of systems for the presentation of high quality imagery presents several challenges. One is that the dynamic range and the resolution may not be simply related to the nominal characteristics of bit-depth and pixel counts. We review some of the measurement methods that have been applied to determining these characteristics. One of the presumed advantages of high bit depth systems is to reduce the visibility of image banding. Non-uniformity of the display can be compensated in test pattern design to enable the measurement of banding contrast. The subjective assessment of banding is compared to a contrast-weighted model of just noticeable image differences. Applied to a class of image banding test patterns, the metric relates dynamic range to contouring. The model produces an estimate of the visibility threshold for image contouring in a 10-bit system, superior to a simple Weber model. These measurement issues will continue to be challenges as d-cinema systems improve.

  5. Flicker reduction in tone mapped high dynamic range video

    NASA Astrophysics Data System (ADS)

    Guthier, Benjamin; Kopf, Stephan; Eble, Marc; Effelsberg, Wolfgang

    2011-01-01

    In order to display a high dynamic range (HDR) video on a regular low dynamic range (LDR) screen, it needs to be tone mapped. A great number of tone mapping (TM) operators exist - most of them designed to tone map one image at a time. Using them on each frame of an HDR video individually leads to flicker in the resulting sequence. In our work, we analyze three tone mapping operators with respect to flicker. We propose a criterion for the automatic detection of image flicker by analyzing the log average pixel brightness of the tone mapped frame. Flicker is detected if the difference between the averages of two consecutive frames is larger than a threshold derived from Stevens' power law. Fine-tuning of the threshold is done in a subjective study. Additionally, we propose a generic method to reduce flicker as a post processing step. It is applicable to all tone mapping operators. We begin by tone mapping a frame with the chosen operator. If the flicker detection reports a visible variation in the frame's brightness, its brightness is adjusted. As a result, the brightness variation is smoothed over several frames, becoming less disturbing.

  6. Increasing Linear Dynamic Range of a CMOS Image Sensor

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2007-01-01

    A generic design and a corresponding operating sequence have been developed for increasing the linear-response dynamic range of a complementary metal oxide/semiconductor (CMOS) image sensor. The design provides for linear calibrated dual-gain pixels that operate at high gain at a low signal level and at low gain at a signal level above a preset threshold. Unlike most prior designs for increasing dynamic range of an image sensor, this design does not entail any increase in noise (including fixed-pattern noise), decrease in responsivity or linearity, or degradation of photometric calibration. The figure is a simplified schematic diagram showing the circuit of one pixel and pertinent parts of its column readout circuitry. The conventional part of the pixel circuit includes a photodiode having a small capacitance, CD. The unconventional part includes an additional larger capacitance, CL, that can be connected to the photodiode via a transfer gate controlled in part by a latch. In the high-gain mode, the signal labeled TSR in the figure is held low through the latch, which also helps to adapt the gain on a pixel-by-pixel basis. Light must be coupled to the pixel through a microlens or by back illumination in order to obtain a high effective fill factor; this is necessary to ensure high quantum efficiency, a loss of which would minimize the efficacy of the dynamic- range-enhancement scheme. Once the level of illumination of the pixel exceeds the threshold, TSR is turned on, causing the transfer gate to conduct, thereby adding CL to the pixel capacitance. The added capacitance reduces the conversion gain, and increases the pixel electron-handling capacity, thereby providing an extension of the dynamic range. By use of an array of comparators also at the bottom of the column, photocharge voltages on sampling capacitors in each column are compared with a reference voltage to determine whether it is necessary to switch from the high-gain to the low-gain mode. Depending upon

  7. Dynamic range of safe electrical stimulation of the retina

    NASA Astrophysics Data System (ADS)

    Butterwick, Alexander F.; Vankov, Alexander; Huie, Phil; Palanker, Daniel V.

    2006-02-01

    Electronic retinal prostheses represent a potentially effective approach for restoring some degree of sight in blind patients with retinal degeneration. However, levels of safe electrical stimulation and the underlying mechanisms of cellular damage are largely unknown. We measured the threshold of cellular damage as a function of pulse duration, electrode size, and number of pulses to determine the safe range of stimulation. Measurements were performed in-vitro on embryonic chicken retina with saline-filled glass pipettes for stimulation electrodes. Cellular damage was detected using Propidium Iodide fluorescent staining. Electrode size varied from 115μm to 1mm, pulse duration from 6μs to 6ms, and number of pulses from 1 to 7,500. The threshold current density was independent of electrode sizes exceeding 400μm. With smaller electrodes the current density was scaling reciprocal to the square of the pipette diameter, i.e. acting as a point source so that the damage threshold was determined by the total current in this regime. The damage threshold current measured with large electrodes (1mm) scaled with pulse duration as t -0.5, which is characteristic of electroporation. For repeated electrical pulsed exposure on the retina the threshold current density varied between 0.059 A/cm2 at 6ms to 1.3 A/cm2 at 6μs. The dynamic range of safe stimulation, i.e. the ratio of damage threshold to stimulation threshold was found to be duration-dependent, and varied from 10 to 100 at pulse durations varying between 10μs to 10ms. Maximal dynamic range of 100 was observed near 1ms pulse durations.

  8. High dynamic range infrared thermography by pixelwise radiometric self calibration

    NASA Astrophysics Data System (ADS)

    Ochs, M.; Schulz, A.; Bauer, H.-J.

    2010-03-01

    A procedure is described where the response function of each pixel of an InSb detector is determined by radiometric self-calibration. With the present approach no knowledge of the spectral characteristics of the IR system is required to recover a quantity which is linear with the incident irradiance of the object. The inherent detector non-uniformity is corrected on the basis of self-calibrated scaled irradiance. Compared to the standard two-point non-uniformity correction procedure - performed with the detector signal - only two NUC-tables are required for arbitrary integration times. Images obtained at various exposures are fused to a single high dynamic range image. The procedure is validated with synthetic data and its performance is demonstrated by measurements performed with a high resolution InSb FPA.

  9. Image sensor with high dynamic range linear output

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Fossum, Eric R. (Inventor)

    2007-01-01

    Designs and operational methods to increase the dynamic range of image sensors and APS devices in particular by achieving more than one integration times for each pixel thereof. An APS system with more than one column-parallel signal chains for readout are described for maintaining a high frame rate in readout. Each active pixel is sampled for multiple times during a single frame readout, thus resulting in multiple integration times. The operation methods can also be used to obtain multiple integration times for each pixel with an APS design having a single column-parallel signal chain for readout. Furthermore, analog-to-digital conversion of high speed and high resolution can be implemented.

  10. High dynamic range imaging for the detection of motion

    NASA Astrophysics Data System (ADS)

    Hay, Jeffrey Robert

    High dynamic range imaging involves imaging at a bit depth higher than the typical 8-12 bits offered by standard video equipment. We propose a method of imaging a scene at high dynamic range, 14+ bits, to detect motion correlated with changes in the measured optical signal. Features within a scene, namely edges, can be tracked through a time sequence and produce a modulation in light levels associated with the edge moving across a region being sampled by the detector. The modulation in the signal is analyzed and a model is proposed that allows for an absolute measurement of the displacement of an edge. In addition, turbulence present in the received optical path produces a modulation in the received signal that can be directly related to the various turbulent eddy sizes. These features, present in the low frequency portion of the spectrum, are correlated to specific values for a relative measurement of the turbulence intensity. In some cases a single element sensor is used for a measurement at a single point. Video technology is also utilized to produce simultaneous measurements across the entire scene. Several applications are explored and the results discussed. Key applications include: the use of this technique to analyze the motions of bridges for the assessment of structural health, non-contact methods of measuring the blood pulse waveform and respiration rate of an individual(s), and the imaging of turbulence, including clear air turbulence, for relative values of intensity. Resonant frequencies of bridges can be measured with this technique as well as eddies formed from turbulent flow.

  11. Dynamic range in the C. elegans brain network

    NASA Astrophysics Data System (ADS)

    Antonopoulos, Chris G.

    2016-01-01

    We study external electrical perturbations and their responses in the brain dynamic network of the Caenorhabditis elegans soil worm, given by the connectome of its large somatic nervous system. Our analysis is inspired by a realistic experiment where one stimulates externally specific parts of the brain and studies the persistent neural activity triggered in other cortical regions. In this work, we perturb groups of neurons that form communities, identified by the walktrap community detection method, by trains of stereotypical electrical Poissonian impulses and study the propagation of neural activity to other communities by measuring the corresponding dynamic ranges and Steven law exponents. We show that when one perturbs specific communities, keeping the rest unperturbed, the external stimulations are able to propagate to some of them but not to all. There are also perturbations that do not trigger any response. We found that this depends on the initially perturbed community. Finally, we relate our findings for the former cases with low neural synchronization, self-criticality, and large information flow capacity, and interpret them as the ability of the brain network to respond to external perturbations when it works at criticality and its information flow capacity becomes maximal.

  12. Impact of Infrared Lunar Laser Ranging on Lunar Dynamics

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vishnu; Fienga, Agnès; Manche, Hervé; Gastineau, Mickael; Courde, Clément; Torre, Jean-Marie; Exertier, Pierre; Laskar, Jacques; LLR Observers : Astrogeo-OCA, Apache Point, McDonald Laser Ranging Station, Haleakala Observatory, Matera Laser Ranging Observatory

    2016-10-01

    Since 2015, in addition to the traditional green (532nm), infrared (1064nm) has been the preferred wavelength for lunar laser ranging at the Calern lunar laser ranging (LLR) site in France. Due to the better atmospheric transmission of IR with respect to Green, nearly 3 times the number of normal points have been obtained in IR than in Green [ C.Courde et al 2016 ]. In our study, in addition to the historical data obtained from various other LLR sites, we include the recent IR normal points obtained from Calern over the 1 year time span (2015-2016), constituting about 4.2% of data spread over 46 years of LLR. Near even distribution of data provided by IR on both the spatial and temporal domain, helps us to improve constraints on the internal structure of the Moon modeled within the planetary ephemeris : INPOP [ Fienga et al 2015 ]. IERS recommended models have been used in the data reduction software GINS (GRGS,CNES) [ V.Viswanathan et al 2015 ]. Constraints provided by GRAIL, on the Lunar gravitational potential and Love numbers have been taken into account in the least-square fit procedure. New estimates on the dynamical parameters of the lunar core will be presented.

  13. Effect of competing short-range attraction and long-range repulsion on the dynamics of globular particle suspensions

    NASA Astrophysics Data System (ADS)

    Riest, Jonas; Naegele, Gerhard

    2015-03-01

    The dynamic clustering of globular particle suspensions exhibiting competing short-range attraction and long-range repulsion such as protein solutions has gained a lot of interest in the last years. We investigate the influence of clustering on the phase behavior, and in particular on the dynamics of globular particle systems. To this end, we explore various pair potential models by a combination of static and dynamic analytic calculation methods in conjunction with Molecular Dynamics and Monte Carlo simulations. Our results show that the cluster peak (intermediate-range-order peak) is present also in the hydrodynamic function characterizing the short-time dynamics. Moreover, an enhanced short-range attraction leads to a larger sedimentation velocity and a smaller self-diffusion coefficient. Our results are useful also for technical applications, such as in the ultrafiltration of proteins.

  14. Automatic dynamic range adjustment for ultrasound B-mode imaging.

    PubMed

    Lee, Yeonhwa; Kang, Jinbum; Yoo, Yangmo

    2015-02-01

    In medical ultrasound imaging, dynamic range (DR) is defined as the difference between the maximum and minimum values of the displayed signal to display and it is one of the most essential parameters that determine its image quality. Typically, DR is given with a fixed value and adjusted manually by operators, which leads to low clinical productivity and high user dependency. Furthermore, in 3D ultrasound imaging, DR values are unable to be adjusted during 3D data acquisition. A histogram matching method, which equalizes the histogram of an input image based on that from a reference image, can be applied to determine the DR value. However, it could be lead to an over contrasted image. In this paper, a new Automatic Dynamic Range Adjustment (ADRA) method is presented that adaptively adjusts the DR value by manipulating input images similar to a reference image. The proposed ADRA method uses the distance ratio between the log average and each extreme value of a reference image. To evaluate the performance of the ADRA method, the similarity between the reference and input images was measured by computing a correlation coefficient (CC). In in vivo experiments, the CC values were increased by applying the ADRA method from 0.6872 to 0.9870 and from 0.9274 to 0.9939 for kidney and liver data, respectively, compared to the fixed DR case. In addition, the proposed ADRA method showed to outperform the histogram matching method with in vivo liver and kidney data. When using 3D abdominal data with 70 frames, while the CC value from the ADRA method is slightly increased (i.e., 0.6%), the proposed method showed improved image quality in the c-plane compared to its fixed counterpart, which suffered from a shadow artifact. These results indicate that the proposed method can enhance image quality in 2D and 3D ultrasound B-mode imaging by improving the similarity between the reference and input images while eliminating unnecessary manual interaction by the user.

  15. Dynamic range measurement and calibration of SiPMs

    NASA Astrophysics Data System (ADS)

    Bretz, T.; Hebbeker, T.; Lauscher, M.; Middendorf, L.; Niggemann, T.; Schumacher, J.; Stephan, M.; Bueno, A.; Navas, S.; Ruiz, A. G.

    2016-03-01

    Photosensors have played and will continue to play an important role in high-energy and Astroparticle cutting-edge experiments. As of today, the most common photon detection device in use is the photomultiplier tube (PMT). However, we are witnessing rapid progress in the field and new devices now show very competitive features when compared to PMTs. Among those state-of-the-art photo detectors, silicon photomultipliers (SiPMs) are a relatively new kind of semiconductor whose potential is presently studied by many laboratories. Their characteristics make them a very attractive candidate for future Astroparticle physics experiments recording fluorescence and Cherenkov light, both in the atmosphere and on the ground. Such applications may require the measurement of the light flux on the sensor for the purpose of energy reconstruction. This is a complex task due to the limited dynamic range of SiPMs and the presence of thermal and correlated noise. In this work we study the response of three SiPM types in terms of delivered charge when exposed to light pulses in a broad range of intensities: from single photon to saturation. The influence of the pulse time duration and the SiPM over-voltage on the response are also quantified. Based on the observed behaviour, a method is presented to reconstruct the real number of photons impinging on the SiPM surface directly from the measured SiPM charge. A special emphasis is placed on the description of the methodology and experimental design used to perform the measurements.

  16. New fabrication techniques for high dynamic range tunneling sensors

    NASA Astrophysics Data System (ADS)

    Chang, David T.; Stratton, Fred P.; Kubena, Randall L.; Vickers-Kirby, Deborah J.; Joyce, Richard J.; Schimert, Thomas R.; Gooch, Roland W.

    2000-08-01

    We have developed high dynamic range (105-106 g's) tunneling accelerometers1,2 that may be ideal for smart munitions applications by employing both surface and bulk micromachining processing techniques. The highly miniaturized surface-micromachined devices can be manufactured at very low cost and integrated on chip with the control electronics. Bulk-micromachined devices with Si as the cantilever material should have reduced long-term bias drift as well as better stability at higher temperatures. Fully integrated sensors may provide advantages in minimizing microphonics for high-g applications. Previously, we described initial test results using electrostatic forces generated by a self-test electrode located under a Au cantilever3. In this paper, we describe more recent testing of Ni and Au cantilever devices on a shaker table using a novel, low input voltage (5 V) servo controller on both printed wiring board and surface-mount control circuitry. In addition, we report our initial test results for devices packaged using a low-temperature wafer-level vacuum packaging technique for low-cost manufacturing.

  17. High dynamic range coherent imaging using compressed sensing.

    PubMed

    He, Kuan; Sharma, Manoj Kumar; Cossairt, Oliver

    2015-11-30

    In both lensless Fourier transform holography (FTH) and coherent diffraction imaging (CDI), a beamstop is used to block strong intensities which exceed the limited dynamic range of the sensor, causing a loss in low-frequency information, making high quality reconstructions difficult or even impossible. In this paper, we show that an image can be recovered from high-frequencies alone, thereby overcoming the beamstop problem in both FTH and CDI. The only requirement is that the object is sparse in a known basis, a common property of most natural and manmade signals. The reconstruction method relies on compressed sensing (CS) techniques, which ensure signal recovery from incomplete measurements. Specifically, in FTH, we perform compressed sensing (CS) reconstruction of captured holograms and show that this method is applicable not only to standard FTH, but also multiple or extended reference FTH. For CDI, we propose a new phase retrieval procedure, which combines Fienup's hybrid input-output (HIO) method and CS. Both numerical simulations and proof-of-principle experiments are shown to demonstrate the effectiveness and robustness of the proposed CS-based reconstructions in dealing with missing data in both FTH and CDI.

  18. Method for increasing the dynamic range of mass spectrometers

    DOEpatents

    Belov, Mikhail; Smith, Richard D.; Udseth, Harold R.

    2004-09-07

    A method for enhancing the dynamic range of a mass spectrometer by first passing a sample of ions through the mass spectrometer having a quadrupole ion filter, whereupon the intensities of the mass spectrum of the sample are measured. From the mass spectrum, ions within this sample are then identified for subsequent ejection. As further sampling introduces more ions into the mass spectrometer, the appropriate rf voltages are applied to a quadrupole ion filter, thereby selectively ejecting the undesired ions previously identified. In this manner, the desired ions may be collected for longer periods of time in an ion trap, thus allowing better collection and subsequent analysis of the desired ions. The ion trap used for accumulation may be the same ion trap used for mass analysis, in which case the mass analysis is performed directly, or it may be an intermediate trap. In the case where collection is an intermediate trap, the desired ions are accumulated in the intermediate trap, and then transferred to a separate mass analyzer. The present invention finds particular utility where the mass analysis is performed in an ion trap mass spectrometer or a Fourier transform ion cyclotron resonance mass spectrometer.

  19. Quantitative high dynamic range beam profiling for fluorescence microscopy

    SciTech Connect

    Mitchell, T. J. Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D.

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.

  20. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    SciTech Connect

    Evtushenko, Pavel E.; Douglas, David R.

    2013-06-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  1. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    SciTech Connect

    Evtushenko, Pavel; Douglas, David R.; Legg, Robert A.; Tennant, Christopher D.

    2013-05-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  2. Dynamic range of atomically thin vibrating nanomechanical resonators

    SciTech Connect

    Wang, Zenghui; Feng, Philip X.-L.

    2014-03-10

    Atomically thin two-dimensional (2D) crystals offer attractive properties for making resonant nanoelectromechanical systems (NEMS) operating at high frequencies. While the fundamental limits of linear operation in such systems are important, currently there is very little quantitative knowledge of the linear dynamic range (DR) and onset of nonlinearity in these devices, which are different than in conventional 1D NEMS such as nanotubes and nanowires. Here, we present theoretical analysis and quantitative models that can be directly used to predict the DR of vibrating 2D circular drumhead NEMS resonators. We show that DR has a strong dependence ∝10log(E{sub Y}{sup 3/2}ρ{sub 3D}{sup -1/2}rtε{sup 5/2}) on device parameters, in which strain ε plays a particularly important role in these 2D systems, dominating over dimensions (radius r, thickness t). This study formulizes the effects from device physical parameters upon DR and sheds light on device design rules toward achieving high DR in 2D NEMS vibrating at radio and microwave frequencies.

  3. Multiple-gain-ranging readout method to extend the dynamic range of amorphous silicon flat-panel imagers

    NASA Astrophysics Data System (ADS)

    Roos, Pieter G.; Colbeth, Richard E.; Mollov, Ivan; Munro, Peter; Pavkovich, John; Seppi, Edward J.; Shapiro, Edward G.; Tognina, Carlo A.; Virshup, Gary F.; Yu, J. Micheal; Zentai, George; Kaissl, Wolfgang; Matsinos, Evangelos; Richters, Jeroen; Riem, Heinrich

    2004-05-01

    The dynamic range of many flat panel imaging systems are fundamentally limited by the dynamic range of the charge amplifier and readout signal processing. We developed two new flat panel readout methods that achieve extended dynamic range by changing the read out charge amplifier feedback capacitance dynamically and on a real-time basis. In one method, the feedback capacitor is selected automatically by a level sensing circuit, pixel-by-pixel, based on its exposure level. Alternatively, capacitor selection is driven externally, such that each pixel is read out two (or more) times, each time with increased feedback capacitance. Both methods allow the acquisition of X-ray image data with a dynamic range approaching the fundamental limits of flat panel pixels. Data with an equivalent bit depth of better than 16 bits are made available for further image processing. Successful implementation of these methods requires careful matching of selectable capacitor values and switching thresholds, with the imager noise and sensitivity characteristics, to insure X-ray quantum limited operation over the whole extended dynamic range. Successful implementation also depends on the use of new calibration methods and image reconstruction algorithms, to insure artifact free rebuilding of linear image data by the downstream image processing systems. The multiple gain ranging flat panel readout method extends the utility of flat panel imagers and paves the way to new flat panel applications, such as cone beam CT. We believe that this method will provide a valuable extension to the clinical application of flat panel imagers.

  4. Cortical dynamics of visual motion perception: short-range and long-range apparent motion.

    PubMed

    Grossberg, S; Rudd, M E

    1992-01-01

    This article describes further evidence for a new neural network theory of biological motion perception. The theory clarifies why parallel streams V1----V2, V1----MT, and V1----V2----MT exist for static form and motion form processing among the areas V1, V2, and MT of visual cortex. The theory suggests that the static form system (Static BCS) generates emergent boundary segmentations whose outputs are insensitive to direction-of-contrast and to direction-of-motion, whereas the motion form system (Motion BCS) generates emergent boundary segmentations whose outputs are insensitive to direction-of-contrast but sensitive to direction-of-motion. The theory is used to explain classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include beta motion, split motion, gamma motion and reverse-contrast gamma motion, delta motion, and visual inertia. Also included are the transition from group motion to element motion in response to a Ternus display as the interstimulus interval (ISI) decreases; group motion in response to a reverse-contrast Ternus display even at short ISIs; speed-up of motion velocity as interflash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size, various classical dependencies between flash duration, spatial separation, ISI, and motion threshold known as Korte's laws; dependence of motion strength on stimulus orientation and spatial frequency; short-range and long-range form-color interactions; and binocular interactions of flashes to different eyes.

  5. Home range dynamics, habitat selection, and survival of Greater Roadrunners

    USGS Publications Warehouse

    Kelley, S.W.; Ransom, D.; Butcher, J.A.; Schulz, G.G.; Surber, B.W.; Pinchak, W.E.; Santamaria, C.A.; Hurtado, L.A.

    2011-01-01

    Greater Roadrunners (Geococcyx californianus) are common, poorly studied birds of arid and semi-arid ecosystems in the southwestern United States. Conservation of this avian predator requires a detailed understanding of their movements and spatial requirements that is currently lacking. From 2006 to 2009, we quantified home-range and core area sizes and overlap, habitat selection, and survival of roadrunners (N= 14 males and 20 females) in north-central Texas using radio-telemetry and fixed kernel estimators. Median home-range and core-area sizes were 90.4 ha and 19.2 ha for males and 80.1 ha and 16.7 ha for females, respectively. The size of home range and core areas did not differ significantly by either sex or season. Our home range estimates were twice as large (x??= 108.9 ha) as earlier published estimates based on visual observations (x??= 28-50 ha). Mean percent overlap was 38.4% for home ranges and 13.7% for core areas. Male roadrunners preferred mesquite woodland and mesquite savanna cover types, and avoided the grass-forb cover type. Female roadrunners preferred mesquite savanna and riparian woodland cover types, and avoided grass-forb habitat. Kaplan-Meier annual survival probabilities for females (0.452 ?? 0.118[SE]) were twice that estimated for males (0.210 ?? 0.108), but this difference was not significant. Mortality rates of male roadrunners were higher than those of females during the spring when males call from elevated perches, court females, and chase competing males. Current land use practices that target woody-shrub removal to enhance livestock forage production could be detrimental to roadrunner populations by reducing availability of mesquite woodland and mesquite savanna habitat required for nesting and roosting and increasing the amount of grass-forb habitat that roadrunners avoid. ??2011 The Authors. Journal of Field Ornithology ??2011 Association of Field Ornithologists.

  6. The dynamics of biogeographic ranges in the deep sea.

    PubMed

    McClain, Craig R; Hardy, Sarah Mincks

    2010-12-07

    Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography.

  7. High Dynamic Range Complex Impedance Measurement System for Petrophysical Usage

    NASA Astrophysics Data System (ADS)

    Chen, R.; He, X.; Yao, H.; Tan, S.; Shi, H.; Shen, R.; Yan, C.; Zeng, P.; He, L.; Qiao, N.; Xi, F.; Zhang, H.; Xie, J.

    2015-12-01

    Spectral induced polarization method (SIP) or complex resistivity method is increasing its application in metalliferous ore exploration, hydrocarbon exploration, underground water exploration, monitoring of environment pollution, and the evaluation of environment remediation. And the measurement of complex resistivity or complex impedance of rock/ore sample and polluted water plays a fundamental role in improving the application effect of SIP and the application scope of SIP. However, current instruments can't guaranty the accuracy of measurement when the resistance of sample is less than 10Ω or great than 100kΩ. A lot of samples, such as liquid, polluted sea water, igneous rock, limestone, and sandstone, can't be measured with reliable complex resistivity result. Therefore, this problem projects a shadow in the basic research and application research of SIP. We design a high precision measurement system from the study of measurement principle, sample holder, and measurement instrument. We design input buffers in a single board. We adopt operation amplifier AD549 in this system because of its ultra-high input impedance and ultra-low current noise. This buffer is good in acquiring potential signal across high impedance sample. By analyzing the sources of measurement error and errors generated by the measurement system, we propose a correction method to remove the error in order to achieve high quality complex impedance measurement for rock and ore samples. This measurement system can improve the measurement range of the complex impedance to 0.1 Ω ~ 10 GΩ with amplitude error less than 0.1% and phase error less than 0.1mrad when frequency ranges as 0.01 Hz ~ 1 kHz. We tested our system on resistors with resistance as 0.1Ω ~ 10 GΩ in frequency range as 1 Hz ~ 1000 Hz, and the measurement error is less than 0.1 mrad. We also compared the result with LCR bridge and SCIP, we can find that the bridge's measuring range only reaches 100 MΩ, SCIP's measuring range

  8. Dynamic range compression with ProteoMiner™: principles and examples.

    PubMed

    Li, Lei

    2015-01-01

    One of the main challenges in proteomics investigation, protein biomarker research, and protein purity and contamination analysis is how to efficiently enrich and detect low-abundance proteins in biological samples. One approach that makes the detection of rare species possible is the treatment of biological samples with solid-phase combinatorial peptide ligand libraries, ProteoMiner. This method utilizes hexapeptide bead library with huge diversity to bind and enrich low-abundance proteins but remove most of the high-abundance proteins, therefore compresses the protein abundance range in the samples. This work describes optimized protocols and highlights on the successful application of ProteoMiner to protein identification and analysis.

  9. Dynamic range in small-world networks of Hodgkin-Huxley neurons with chemical synapses

    NASA Astrophysics Data System (ADS)

    Batista, C. A. S.; Viana, R. L.; Lopes, S. R.; Batista, A. M.

    2014-09-01

    According to Stevens' law the relationship between stimulus and response is a power-law within an interval called the dynamic range. The dynamic range of sensory organs is found to be larger than that of a single neuron, suggesting that the network structure plays a key role in the behavior of both the scaling exponent and the dynamic range of neuron assemblies. In order to verify computationally the relationships between stimulus and response for spiking neurons, we investigate small-world networks of neurons described by the Hodgkin-Huxley equations connected by chemical synapses. We found that the dynamic range increases with the network size, suggesting that the enhancement of the dynamic range observed in sensory organs, with respect to single neurons, is an emergent property of complex network dynamics.

  10. Protein dynamics in a broad frequency range: Dielectric spectroscopy studies

    SciTech Connect

    Nakanishi, Masahiro; Sokolov, Alexei P.

    2014-09-17

    We present detailed dielectric spectroscopy studies of dynamics in two hydrated proteins, lysozyme and myoglobin. We emphasize the importance of explicit account for possible Maxwell-Wagner (MW) polarization effects in protein powder samples. Combining our data with earlier literature results, we demonstrate the existence of three major relaxation processes in globular proteins. To understand the mechanisms of these relaxations we involve literature data on neutron scattering, simulations and NMR studies. The faster process is ascribed to coupled protein-hydration water motions and has relaxation time similar to 10-50 Ps at room temperature. The intermediate process is similar to 10(2)-10(3) times slower than the faster process and might be strongly affected by MW polarizations. Based on the analysis of data obtained by different experimental techniques and simulations, we ascribe this process to large scale domain-like motions of proteins. The slowest observed process is similar to 10(6)-10(7) times slower than the faster process and has anomalously large dielectric amplitude Delta epsilon similar to 10(2)-10(4). The microscopic nature of this process is not clear, but it seems to be related to the glass transition of hydrated proteins. The presentedresults suggest a general classification of the relaxation processes in hydrated proteins. (c) 2014 Elsevier B.V. All rights reserved.

  11. Protein dynamics in a broad frequency range: Dielectric spectroscopy studies

    DOE PAGES

    Nakanishi, Masahiro; Sokolov, Alexei P.

    2014-09-17

    We present detailed dielectric spectroscopy studies of dynamics in two hydrated proteins, lysozyme and myoglobin. We emphasize the importance of explicit account for possible Maxwell-Wagner (MW) polarization effects in protein powder samples. Combining our data with earlier literature results, we demonstrate the existence of three major relaxation processes in globular proteins. To understand the mechanisms of these relaxations we involve literature data on neutron scattering, simulations and NMR studies. The faster process is ascribed to coupled protein-hydration water motions and has relaxation time similar to 10-50 Ps at room temperature. The intermediate process is similar to 10(2)-10(3) times slower thanmore » the faster process and might be strongly affected by MW polarizations. Based on the analysis of data obtained by different experimental techniques and simulations, we ascribe this process to large scale domain-like motions of proteins. The slowest observed process is similar to 10(6)-10(7) times slower than the faster process and has anomalously large dielectric amplitude Delta epsilon similar to 10(2)-10(4). The microscopic nature of this process is not clear, but it seems to be related to the glass transition of hydrated proteins. The presentedresults suggest a general classification of the relaxation processes in hydrated proteins. (c) 2014 Elsevier B.V. All rights reserved.« less

  12. Ecological change, range fluctuations and population dynamics during the Pleistocene.

    PubMed

    Hofreiter, Michael; Stewart, John

    2009-07-28

    Apart from the current human-induced climate change, the Holocene is notable for its stable climate. In contrast, the preceding age, the Pleistocene, was a time of intensive climatic fluctuations, with temperature changes of up to 15 degrees C occurring within a few decades. These climatic changes have substantially influenced both animal and plant populations. Until recently, the prevailing opinion about the effect of these climatic fluctuations on species in Europe was that populations survived glacial maxima in southern refugia and that populations died out outside these refugia. However, some of the latest studies of modern population genetics, the fossil record and especially ancient DNA reveal a more complex picture. There is now strong evidence for additional local northern refugia for a large number of species, including both plants and animals. Furthermore, population genetic analyses using ancient DNA have shown that genetic diversity and its geographical structure changed more often and in more unpredictable ways during the Pleistocene than had been inferred. Taken together, the Pleistocene is now seen as an extremely dynamic era, with rapid and large climatic fluctuations and correspondingly variable ecology. These changes were accompanied by similarly fast and sometimes dramatic changes in population size and extensive gene flow mediated by population movements. Thus, the Pleistocene is an excellent model case for the effects of rapid climate change, as we experience at the moment, on the ecology of plants and animals.

  13. Holarctic genetic structure and range dynamics in the woolly mammoth.

    PubMed

    Palkopoulou, Eleftheria; Dalén, Love; Lister, Adrian M; Vartanyan, Sergey; Sablin, Mikhail; Sher, Andrei; Edmark, Veronica Nyström; Brandström, Mikael D; Germonpré, Mietje; Barnes, Ian; Thomas, Jessica A

    2013-11-07

    Ancient DNA analyses have provided enhanced resolution of population histories in many Pleistocene taxa. However, most studies are spatially restricted, making inference of species-level biogeographic histories difficult. Here, we analyse mitochondrial DNA (mtDNA) variation in the woolly mammoth from across its Holarctic range to reconstruct its history over the last 200 thousand years (kyr). We identify a previously undocumented major mtDNA lineage in Europe, which was replaced by another major mtDNA lineage 32-34 kyr before present (BP). Coalescent simulations provide support for demographic expansions at approximately 121 kyr BP, suggesting that the previous interglacial was an important driver for demography and intraspecific genetic divergence. Furthermore, our results suggest an expansion into Eurasia from America around 66 kyr BP, coinciding with the first exposure of the Bering Land Bridge during the Late Pleistocene. Bayesian inference indicates Late Pleistocene demographic stability until 20-15 kyr BP, when a severe population size decline occurred.

  14. Modeling diverse range of potassium channels with Brownian dynamics.

    PubMed Central

    Chung, Shin-Ho; Allen, Toby W; Kuyucak, Serdar

    2002-01-01

    Using the experimentally determined KcsA structure as a template, we propose a plausible explanation for the diversity of potassium channels seen in nature. A simplified model of KcsA is constructed from its atomic resolution structure by smoothing out the protein-water boundary and representing the atoms forming the channel protein as a homogeneous, low dielectric medium. The properties of the simplified and atomic-detail models, deduced from electrostatic calculations and Brownian dynamics simulations, are shown to be qualitatively similar. We then study how the current flowing across the simplified model channel changes as the shape of the intrapore region is modified. This is achieved by increasing the radius of the intracellular pore systematically from 1.5 to 5 A while leaving the dimensions of the selectivity filter and inner chamber unaltered. The strengths of the dipoles located near the entrances of the channel, the carbonyl groups lining the selectivity filter, and the helix macrodipoles are kept constant. The channel conductance increases steadily as the radius of the intracellular pore is increased. The rate-limiting step for both the outward and inward current is the time it takes for an ion to cross the residual energy barrier located in the intrapore region. The current-voltage relationship obtained with symmetrical solutions is linear when the applied potential is less than approximately 100 mV but deviates slightly from Ohm's law at higher applied potentials. The nonlinearity in the current-voltage curve becomes less pronounced as the radius of the intracellular pore is increased. When the strengths of the dipoles near the intracellular entrance are reduced, the channel shows a pronounced inward rectification. Finally, the conductance exhibits the saturation property observed experimentally. We discuss the implications of these findings on the transport of ions across the potassium channels and membrane channels in general. PMID:12080118

  15. Holarctic genetic structure and range dynamics in the woolly mammoth

    PubMed Central

    Palkopoulou, Eleftheria; Dalén, Love; Lister, Adrian M.; Vartanyan, Sergey; Sablin, Mikhail; Sher, Andrei; Edmark, Veronica Nyström; Brandström, Mikael D.; Germonpré, Mietje; Barnes, Ian; Thomas, Jessica A.

    2013-01-01

    Ancient DNA analyses have provided enhanced resolution of population histories in many Pleistocene taxa. However, most studies are spatially restricted, making inference of species-level biogeographic histories difficult. Here, we analyse mitochondrial DNA (mtDNA) variation in the woolly mammoth from across its Holarctic range to reconstruct its history over the last 200 thousand years (kyr). We identify a previously undocumented major mtDNA lineage in Europe, which was replaced by another major mtDNA lineage 32–34 kyr before present (BP). Coalescent simulations provide support for demographic expansions at approximately 121 kyr BP, suggesting that the previous interglacial was an important driver for demography and intraspecific genetic divergence. Furthermore, our results suggest an expansion into Eurasia from America around 66 kyr BP, coinciding with the first exposure of the Bering Land Bridge during the Late Pleistocene. Bayesian inference indicates Late Pleistocene demographic stability until 20–15 kyr BP, when a severe population size decline occurred. PMID:24026825

  16. Estimability and simple dynamical analyses of range (range-rate range-difference) observations to artificial satellites. [laser range observations to LAGEOS using non-Bayesian statistics

    NASA Technical Reports Server (NTRS)

    Vangelder, B. H. W.

    1978-01-01

    Non-Bayesian statistics were used in simulation studies centered around laser range observations to LAGEOS. The capabilities of satellite laser ranging especially in connection with relative station positioning are evaluated. The satellite measurement system under investigation may fall short in precise determinations of the earth's orientation (precession and nutation) and earth's rotation as opposed to systems as very long baseline interferometry (VLBI) and lunar laser ranging (LLR). Relative station positioning, determination of (differential) polar motion, positioning of stations with respect to the earth's center of mass and determination of the earth's gravity field should be easily realized by satellite laser ranging (SLR). The last two features should be considered as best (or solely) determinable by SLR in contrast to VLBI and LLR.

  17. NASA’s new High Dynamic Range Camera Records Rocket Test

    NASA Video Gallery

    This is footage of Orbital ATK’s QM-2 solid rocket booster test taken by NASA’s High Dynamic Range Stereo X (HiDyRS-X) camera. HiDyRS-X records high speed, high dynamic range footage in multiple ex...

  18. A large dynamic range readout design for the plastic scintillator detector of DAMPE

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Sun, Zhiyu; Yu, Yuhong; Zhang, Yongjie; Fang, Fang; Chen, Junling; Hu, Bitao

    2016-08-01

    A large dynamic range is required by the Plastic Scintillator Detector (PSD) of DArk Matter Particle Explorer (DAMPE) to detect particles from electron to heavy ions with Z ≤ 20. To expand the dynamic range, the readout design based on the double-dynodes signal extraction from the photomultiplier tube has been proposed and adopted by PSD. To verify this design, a prototype detector module has been constructed and tested with cosmic ray and relativistic ion beam. The results match with the estimation and the readout unit could easily cover the required dynamic range of about 4 orders of magnitude.

  19. Evidence for an unusual dynamical-arrest scenario in short-ranged colloidal systems

    NASA Astrophysics Data System (ADS)

    Foffi, G.; Dawson, K. A.; Buldyrev, S. V.; Sciortino, F.; Zaccarelli, E.; Tartaglia, P.

    2002-05-01

    Extensive molecular dynamics simulation studies of particles interacting via a short-ranged attractive square-well potential are reported. The calculated loci of constant diffusion coefficient D in the temperature-packing fraction plane show a reentrant behavior, i.e., an increase of diffusivity on cooling, confirming an important part of the high volume-fraction dynamical-arrest scenario earlier predicted by theory for particles with short-ranged potentials. The more efficient localization mechanism induced by the short-range bonding provides, on average, additional free volume as compared to the hard-sphere case and results in faster dynamics.

  20. Ultrafast Optical Beam Deflection in a Planar Waveguide for High Dynamic Range Recording at Picosecond Resolution

    SciTech Connect

    Sarantos, C H; Heebner, J E

    2008-07-02

    We report the latest performance of an ultrafast, all-optical beam deflector based on a prism array imprinted in a planar waveguide. The deflector enables single-shot, high dynamic range optical recording with picosecond resolution.

  1. How interactions between animal movement and landscape processes modify range dynamics and extinction risk

    EPA Science Inventory

    Range dynamics models now incorporate many of the mechanisms and interactions that drive species distributions. However, connectivity continues to be studied using overly simple distance-based dispersal models with little consideration of how the individual behavior of dispersin...

  2. Dynamic Range of Vertical Cavity Surface Emitting Lasers in Multimode Links

    SciTech Connect

    Lee, H.L.T.; Dalal, R.V.; Ram, R.J.; Choquette, K.D.

    1999-07-07

    The authors report spurious free dynamic range measurements of 850nm vertical cavity surface emitting lasers in short multimode links for radio frequency communication. For a 27m fiber link, the dynamic range at optimal bias was greater than 95dB-Hz{sup 2/3} for modulation frequencies between 1 and 5.5 GHz, which exceeds the requirements for antenna remoting in microcellular networks. In a free space link, they have measured the highest dynamic range in an 850nm vertical cavity surface emitting laser of 113dB-Hz{sup 2/3} at 900MHz. We have also investigated the effects of modal noise and differential mode delay on the dynamic range for longer lengths of fiber.

  3. Linking traits to energetics and population dynamics to predict lizard ranges in changing environments.

    PubMed

    Buckley, Lauren B

    2008-01-01

    I present a dynamic bioenergetic model that couples individual energetics and population dynamics to predict current lizard ranges and those following climate warming. The model predictions are uniquely based on first principles of morphology, life history, and thermal physiology. I apply the model to five populations of a widespread North American lizard, Sceloporus undulatus, to examine how geographic variation in traits and life histories influences ranges. This geographic variation reflects the potential for species to adapt to environmental change. I then consider the range dynamics of the closely related Sceloporus graciosus. Comparing predicted ranges and actual current ranges reveals how dispersal limitations, species interactions, and habitat requirements influence the occupied portions of thermally suitable ranges. The dynamic model predicts individualistic responses to a uniform 3 degrees C warming but a northward shift in the northern range boundary for all populations and species. In contrast to standard correlative climate envelope models, the extent of the predicted northward shift depends on organism traits and life histories. The results highlight the limitations of correlative models and the need for more dynamic models of species' ranges.

  4. Wide-Dynamic-Range Analog-to-Digital Conversion for HFDF.

    DTIC Science & Technology

    1986-11-01

    FIELD GROUP SUB-GROUP High-frequency direction finder (HFDF), lasers , fiber optics, switches, a. ,~esed~cea~ ad .Ab4 digitization, noise/jammer...dynamic-range digitization of wideband HFDF data, using a synchronously driven laser /fiber-optic system. Development activity reported is in the areas...dynamic- range digitization of wideband HFDF data, using a synchronously driven laser /fiber-optic system. The background of the concept and previous work

  5. Investigation of the dynamic range of calorimeter scintillation detector for space gamma-ray telescope

    NASA Astrophysics Data System (ADS)

    Runtso, M. F.; Naumov, P. Yu; Naumov, P. P.; Solodovnikov, A. A.

    2016-02-01

    An arrangement of the GAMMA-400 space gamma-ray telescope that currently is under the ground testing, suggests implementation of fast two-layer calorimeter scintillation detector system S3 with large dynamic range for electromagnetic showers detection in the main operation mode of the device. The S3 constructive features are demonstrated. The experimental method and basic diagram of the ground prototype dynamic range investigation are described.

  6. Dynamical phase transitions and Loschmidt echo in the infinite-range XY model.

    PubMed

    Žunkovič, Bojan; Silva, Alessandro; Fabrizio, Michele

    2016-06-13

    We compare two different notions of dynamical phase transitions in closed quantum systems. The first is identified through the time-averaged value of the equilibrium-order parameter, whereas the second corresponds to non-analyticities in the time behaviour of the Loschmidt echo. By exactly solving the dynamics of the infinite-range XY model, we show that in this model non-analyticities of the Loschmidt echo are not connected to standard dynamical phase transitions and are not robust against quantum fluctuations. Furthermore, we show that the existence of either of the two dynamical transitions is not necessarily connected to the equilibrium quantum phase transition.

  7. Dynamic Range for Speech Materials in Korean, English, and Mandarin: A Cross-Language Comparison

    ERIC Educational Resources Information Center

    Jin, In-Ki; Kates, James M.; Arehart, Kathryn H.

    2014-01-01

    Purpose: The purpose of this study was to identify whether differences in dynamic range (DR) are evident across the spoken languages of Korean, English, and Mandarin. Method: Recorded sentence-level speech materials were used as stimuli. DR was quantified using different definitions of DR (defined as the range in decibels from the highest to the…

  8. Displacement response, detection limit, and dynamic range of fiber-optic lever sensors

    NASA Technical Reports Server (NTRS)

    He, Gang; Cuomo, Frank W.

    1991-01-01

    The authors present the evaluation of the displacement response, detection limit, and dynamic range of fiber-optic lever sensors in a general format to establish their dependence on fiber sizes, optoelectronic detector specifications, input power, and other relevant parameters. The formations for the normalized reflected optical power change are derived for the evaluation of the optimal sensor response, the linearity range, and the minimum detectable displacement. The theoretical models are verified by an experiment which determines sensor response, modulation index, reflected optical power change, and linear response range through dynamic measurement. The application of this theoretical model to the study of a fiber-optic microphone for acoustic pressure detection is considered.

  9. High dynamic range imaging pipeline: perception-motivated representation of visual content

    NASA Astrophysics Data System (ADS)

    Mantiuk, Rafal; Krawczyk, Grzegorz; Mantiuk, Radoslaw; Seidel, Hans-Peter

    2007-02-01

    The advances in high dynamic range (HDR) imaging, especially in the display and camera technology, have a significant impact on the existing imaging systems. The assumptions of the traditional low-dynamic range imaging, designed for paper print as a major output medium, are ill suited for the range of visual material that is shown on modern displays. For example, the common assumption that the brightest color in an image is white can be hardly justified for high contrast LCD displays, not to mention next generation HDR displays, that can easily create bright highlights and the impression of self-luminous colors. We argue that high dynamic range representation can encode images regardless of the technology used to create and display them, with the accuracy that is only constrained by the limitations of the human eye and not a particular output medium. To facilitate the research on high dynamic range imaging, we have created a software package (http://pfstools.sourceforge.net/) capable of handling HDR data on all stages of image and video processing. The software package is available as open source under the General Public License and includes solutions for high quality image acquisition from multiple exposures, a range of tone mapping algorithms and a visual difference predictor for HDR images. Examples of shell scripts demonstrate how the software can be used for processing single images as well as video sequences.

  10. Impacts of Land Cover Data Selection and Trait Parameterisation on Dynamic Modelling of Species’ Range Expansion

    PubMed Central

    Heikkinen, Risto K.; Bocedi, Greta; Kuussaari, Mikko; Heliölä, Janne; Leikola, Niko; Pöyry, Juha; Travis, Justin M. J.

    2014-01-01

    Dynamic models for range expansion provide a promising tool for assessing species’ capacity to respond to climate change by shifting their ranges to new areas. However, these models include a number of uncertainties which may affect how successfully they can be applied to climate change oriented conservation planning. We used RangeShifter, a novel dynamic and individual-based modelling platform, to study two potential sources of such uncertainties: the selection of land cover data and the parameterization of key life-history traits. As an example, we modelled the range expansion dynamics of two butterfly species, one habitat specialist (Maniola jurtina) and one generalist (Issoria lathonia). Our results show that projections of total population size, number of occupied grid cells and the mean maximal latitudinal range shift were all clearly dependent on the choice made between using CORINE land cover data vs. using more detailed grassland data from three alternative national databases. Range expansion was also sensitive to the parameterization of the four considered life-history traits (magnitude and probability of long-distance dispersal events, population growth rate and carrying capacity), with carrying capacity and magnitude of long-distance dispersal showing the strongest effect. Our results highlight the sensitivity of dynamic species population models to the selection of existing land cover data and to uncertainty in the model parameters and indicate that these need to be carefully evaluated before the models are applied to conservation planning. PMID:25265281

  11. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics

    PubMed Central

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-01-01

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends. PMID:27256904

  12. Wide dynamic range wavefront sensor using sub-wavelength grating array

    NASA Astrophysics Data System (ADS)

    Liang, Xiaobin; Li, Yanqiu; Liu, Ke

    2015-07-01

    We propose a new zonal wavefront sensor with a very wide dynamic range. The proposed sensor uses a sub-wavelength grating array to subdivide the input wavefront and produce transmitted light spots on CCD. The wavefront tilts are calculated from the transmissions of a sub-wavelength grating array. The dynamic range and resolution of the proposed sensor are respectively decided by the grating parameters and the sub-unit size of the array. So these two performances of the sensor are independent of one another, which enables the realization of wide dynamic range and high resolution simultaneously. We introduce the principle of the sensor by both Rigorous Coupled Wave Analysis and Finite-Difference Time-Domain methods. A simulation is designed to validate our proposed method, and the measurement errors are analyzed. The sensor performs good sensitivity for wide incident angles, which is particularly suitable for spherical input wavefront.

  13. Sorting method to extend the dynamic range of the Shack-Hartmann wave-front sensor

    SciTech Connect

    Lee, Junwon; Shack, Roland V.; Descour, Michael R

    2005-08-10

    We propose a simple and powerful algorithm to extend the dynamic range of a Shack-Hartmann wave-front sensor. In a conventional Shack-Hartmann wave-front sensor the dynamic range is limited by the f-number of a lenslet, because the focal spot is required to remain in the area confined by the single lenslet. The sorting method proposed here eliminates such a limitation and extends the dynamic range by tagging each spot in a special sequence. Since the sorting method is a simple algorithm that does not change the measurement configuration, there is no requirement for extra hardware, multiple measurements, or complicated algorithms. We not only present the theory and a calculation example of the sorting method but also actually implement measurement of a highly aberrated wave front from nonrotational symmetric optics.

  14. Note: All-digital pulse-shrinking time-to-digital converter with improved dynamic range.

    PubMed

    Chen, Chun-Chi; Hwang, Chorng-Sii; Lin, Yi; Chen, Guan-Hong

    2016-04-01

    This paper proposes an all-digital pulse-shrinking time-to-digital converter (TDC) using the offset error cancellation circuitry to widen its dynamic range and to improve its accuracy. Although the TDC based on a pulse-shrinking mechanism can achieve a sub-gate resolution without circuit complexity, it possesses an undesired offset error that results in a nonzero lower bound appeared in its dynamic range and then affects its accuracy. The proposed cancellation circuitry for eliminating the offset error consists of a time adder with a delay line and a time subtractor with an identical delay line. The experimental TDC is implemented on Xilinx field programmable gate arrays and it also functions successfully in improving its dynamic range.

  15. Uncertainty-based Estimation of the Secure Range for ISO New England Dynamic Interchange Adjustment

    SciTech Connect

    Etingov, Pavel V.; Makarov, Yuri V.; Wu, Di; Hou, Zhangshuan; Sun, Yannan; Maslennikov, S.; Luo, Xiaochuan; Zheng, T.; George, S.; Knowland, T.; Litvinov, E.; Weaver, S.; Sanchez, E.

    2014-04-14

    The paper proposes an approach to estimate the secure range for dynamic interchange adjustment, which assists system operators in scheduling the interchange with neighboring control areas. Uncertainties associated with various sources are incorporated. The proposed method is implemented in the dynamic interchange adjustment (DINA) tool developed by Pacific Northwest National Laboratory (PNNL) for ISO New England. Simulation results are used to validate the effectiveness of the proposed method.

  16. Spin segregation via dynamically induced long-range interactions in a system of ultracold fermions

    SciTech Connect

    Ebling, Ulrich; Eckardt, Andre; Lewenstein, Maciej

    2011-12-15

    We investigate theoretically the time evolution of a one-dimensional system of spin-1/2 fermions in a harmonic trap after, initially, a spiral spin configuration far from equilibrium is created. We predict a spin segregation building up in time already for weak interaction under realistic experimental conditions. The effect relies on the interplay between exchange interaction and the harmonic trap, and it is found for a wide range of parameters. It can be understood as a consequence of an effective, dynamically induced long-range interaction that is derived by integrating out the rapid oscillatory dynamics in the trap.

  17. Cost-effective multi-camera array for high quality video with very high dynamic range

    NASA Astrophysics Data System (ADS)

    Keinert, Joachim; Wetzel, Marcus; Schöberl, Michael; Schäfer, Peter; Zilly, Frederik; Bätz, Michel; Fößel, Siegfried; Kaup, André

    2014-03-01

    Temporal bracketing can create images with higher dynamic range than the underlying sensor. Unfortunately, moving objects cause disturbing artifacts. Moreover, the combination with high frame rates is almost unachiev­ able since a single video frame requires multiple sensor readouts. The combination of multiple synchronized side-by-side cameras equipped with different attenuation filters promises a remedy, since all exposures can be performed at the same time with the same duration using the playout video frame rate. However, a disparity correction is needed to compensate the spatial displacement of the cameras. Unfortunately, the requirements for a high quality disparity correction contradict the goal to increase dynamic range. When using two cameras, disparity correction needs objects to be properly exposed in both cameras. In contrast, a dynamic range in­crease needs the cameras to capture different luminance ranges. As this contradiction has not been addressed in literature so far, this paper proposes a novel solution based on a three camera setup. It enables accurate de­ termination of the disparities and an increase of the dynamic range by nearly a factor of two while still limiting costs. Compared to a two camera solution, the mean opinion score (MOS) is improved by 13.47 units in average for the Middleburry images.

  18. Echo-acoustic flow dynamically modifies the cortical map of target range in bats

    NASA Astrophysics Data System (ADS)

    Bartenstein, Sophia K.; Gerstenberg, Nadine; Vanderelst, Dieter; Peremans, Herbert; Firzlaff, Uwe

    2014-08-01

    Echolocating bats use the delay between their sonar emissions and the reflected echoes to measure target range, a crucial parameter for avoiding collisions or capturing prey. In many bat species, target range is represented as an orderly organized map of echo delay in the auditory cortex. Here we show that the map of target range in bats is dynamically modified by the continuously changing flow of acoustic information perceived during flight (‘echo-acoustic flow’). Combining dynamic acoustic stimulation in virtual space with extracellular recordings, we found that neurons in the auditory cortex of the bat Phyllostomus discolor encode echo-acoustic flow information on the geometric relation between targets and the bat’s flight trajectory, rather than echo delay per se. Specifically, the cortical representation of close-range targets is enlarged when the lateral passing distance of the target decreases. This flow-dependent enlargement of target representation may trigger adaptive behaviours such as vocal control or flight manoeuvres.

  19. The Contribution of Matched Envelope Dynamic Range to the Binaural Benefits in Simulated Bilateral Electric Hearing

    ERIC Educational Resources Information Center

    Chen, Fei; Wong, Lena L. N.; Qiu, Jianxin; Liu, Yehai; Azimi, Behnam; Hu, Yi

    2013-01-01

    Purpose: This study examined the effects of envelope dynamic-range mismatch on the intelligibility of Mandarin speech in noise by simulated bilateral electric hearing. Method: Noise-vocoded Mandarin speech, corrupted by speech-shaped noise at 5 and 0 dB signal-to-noise ratios, was presented unilaterally or bilaterally to 10 normal-hearing…

  20. Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals.

    PubMed

    Vallaitis, T; Bonk, R; Guetlein, J; Hillerkuss, D; Li, J; Brenot, R; Lelarge, F; Duan, G H; Freude, W; Leuthold, J

    2010-03-15

    Experimentally we find a 10 dB input power dynamic range advantage for amplification of phase encoded signals with quantum dot SOA as compared to low-confinement bulk SOA. An analysis of amplitude and phase effects shows that this improvement can be attributed to the lower alpha-factor found in QD SOA.

  1. Method and apparatus of high dynamic range image sensor with individual pixel reset

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric R. (Inventor)

    2001-01-01

    A wide dynamic range image sensor provides individual pixel reset to vary the integration time of individual pixels. The integration time of each pixel is controlled by column and row reset control signals which activate a logical reset transistor only when both signals coincide for a given pixel.

  2. Density matrix renormalization group with efficient dynamical electron correlation through range separation

    SciTech Connect

    Hedegård, Erik Donovan Knecht, Stefan; Reiher, Markus; Kielberg, Jesper Skau; Jensen, Hans Jørgen Aagaard

    2015-06-14

    We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.

  3. Control and dynamic range extension of linear photodiode arrays by a single board computer

    NASA Astrophysics Data System (ADS)

    McGeorge, Scott W.; Salin, Eric D.

    A complete interface for data acquisition and control of Reticon Series arrays utilizing an inexpensive microcomputer (Rockwell AIM-65) is described and with specific application to atomic spectra (ICP), data collection techniques are illustrated that provide a dynamic range extension for intense signals.

  4. Fractional quantum mechanics on networks: Long-range dynamics and quantum transport.

    PubMed

    Riascos, A P; Mateos, José L

    2015-11-01

    In this paper we study the quantum transport on networks with a temporal evolution governed by the fractional Schrödinger equation. We generalize the dynamics based on continuous-time quantum walks, with transitions to nearest neighbors on the network, to the fractional case that allows long-range displacements. By using the fractional Laplacian matrix of a network, we establish a formalism that combines a long-range dynamics with the quantum superposition of states; this general approach applies to any type of connected undirected networks, including regular, random, and complex networks, and can be implemented from the spectral properties of the Laplacian matrix. We study the fractional dynamics and its capacity to explore the network by means of the transition probability, the average probability of return, and global quantities that characterize the efficiency of this quantum process. As a particular case, we explore analytically these quantities for circulant networks such as rings, interacting cycles, and complete graphs.

  5. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    NASA Astrophysics Data System (ADS)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  6. Fractional quantum mechanics on networks: Long-range dynamics and quantum transport

    NASA Astrophysics Data System (ADS)

    Riascos, A. P.; Mateos, José L.

    2015-11-01

    In this paper we study the quantum transport on networks with a temporal evolution governed by the fractional Schrödinger equation. We generalize the dynamics based on continuous-time quantum walks, with transitions to nearest neighbors on the network, to the fractional case that allows long-range displacements. By using the fractional Laplacian matrix of a network, we establish a formalism that combines a long-range dynamics with the quantum superposition of states; this general approach applies to any type of connected undirected networks, including regular, random, and complex networks, and can be implemented from the spectral properties of the Laplacian matrix. We study the fractional dynamics and its capacity to explore the network by means of the transition probability, the average probability of return, and global quantities that characterize the efficiency of this quantum process. As a particular case, we explore analytically these quantities for circulant networks such as rings, interacting cycles, and complete graphs.

  7. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems.

    PubMed

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  8. Effects of ADC Nonlinearity on the Spurious Dynamic Range Performance of Compressed Sensing

    PubMed Central

    Tian, Pengwu; Yu, Hongyi

    2014-01-01

    Analog-to-information converter (AIC) plays an important role in the compressed sensing system; it has the potential to significantly extend the capabilities of conventional analog-to-digital converter. This paper evaluates the impact of AIC nonlinearity on the dynamic performance in practical compressed sensing system, which included the nonlinearity introduced by quantization as well as the circuit non-ideality. It presents intuitive yet quantitative insights into the harmonics of quantization output of AIC, and the effect of other AIC nonlinearity on the spurious dynamic range (SFDR) performance is also analyzed. The analysis and simulation results demonstrated that, compared with conventional ADC-based system, the measurement process decorrelates the input signal and the quantization error and alleviate the effect of other decorrelates of AIC, which results in a dramatic increase in spurious free dynamic range (SFDR). PMID:24895645

  9. Nonlinear Dynamics of Bose-Einstein Condensates with Long-Range Interactions

    SciTech Connect

    Wunner, G.; Cartarius, H.; Fabcic, T.; Koeberle, P.; Main, J.; Schwidder, T.

    2008-11-13

    The motto of this paper is: Let's face Bose-Einstein condensation through nonlinear dynamics. We do this by choosing variational forms of the condensate wave functions (of given symmetry classes), which convert the Bose-Einstein condensates via the time-dependent Gross-Pitaevskii equation into Hamiltonian systems that can be studied using the methods of nonlinear dynamics. We consider in particular cold quantum gases where long-range interactions between the neutral atoms are present, in addition to the conventional short-range contact interaction, viz. gravity-like interactions, and dipole-dipole interactions. The results obtained serve as a useful guide in the search for nonlinear dynamics effects in numerically exact quantum calculations for Bose-Einstein condensates. A main result is the prediction of the existence of stable islands as well as chaotic regions for excited states of dipolar condensates, which could be checked experimentally.

  10. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    SciTech Connect

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-15

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  11. A reduction for spiking integrate-and-fire network dynamics ranging from homogeneity to synchrony.

    PubMed

    Zhang, J W; Rangan, A V

    2015-04-01

    In this paper we provide a general methodology for systematically reducing the dynamics of a class of integrate-and-fire networks down to an augmented 4-dimensional system of ordinary-differential-equations. The class of integrate-and-fire networks we focus on are homogeneously-structured, strongly coupled, and fluctuation-driven. Our reduction succeeds where most current firing-rate and population-dynamics models fail because we account for the emergence of 'multiple-firing-events' involving the semi-synchronous firing of many neurons. These multiple-firing-events are largely responsible for the fluctuations generated by the network and, as a result, our reduction faithfully describes many dynamic regimes ranging from homogeneous to synchronous. Our reduction is based on first principles, and provides an analyzable link between the integrate-and-fire network parameters and the relatively low-dimensional dynamics underlying the 4-dimensional augmented ODE.

  12. Dual-exposure technique for extending the dynamic range of x-ray flat panel detectors.

    PubMed

    Sisniega, A; Abella, M; Desco, M; Vaquero, J J

    2014-01-20

    This work presents an approach to extend the dynamic range of x-ray flat panel detectors by combining two acquisitions of the same sample taken with two different x-ray photon flux levels and the same beam spectral configuration. In order to combine both datasets, the response of detector pixels was modelled in terms of mean and variance using a linear model. The model was extended to take into account the effect of pixel saturation. We estimated a joint probability density function (j-pdf) of the pixel values by assuming that each dataset follows an independent Gaussian distribution. This j-pdf was used for estimating the final pixel value of the high-dynamic-range dataset using a maximum likelihood method. The suitability of the pixel model for the representation of the detector signal was assessed using experimental data from a small-animal cone-beam micro-CT scanner equipped with a flat panel detector. The potential extension in dynamic range offered by our method was investigated for generic flat panel detectors using analytical expressions and simulations. The performance of the proposed dual-exposure approach in realistic imaging environments was compared with that of a regular single-exposure technique using experimental data from two different phantoms. Image quality was assessed in terms of signal-to-noise ratio, contrast, and analysis of profiles drawn on the images. The dynamic range, measured as the ratio between the exposure for saturation and the exposure equivalent to instrumentation noise, was increased from 76.9 to 166.7 when using our method. Dual-exposure results showed higher contrast-to-noise ratio and contrast resolution than the single-exposure acquisitions for the same x-ray dose. In addition, image artifacts were reduced in the combined dataset. This technique to extend the dynamic range of the detector without increasing the dose is particularly suited to image samples that contain both low and high attenuation regions.

  13. Dual-exposure technique for extending the dynamic range of x-ray flat panel detectors

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Abella, M.; Desco, M.; Vaquero, J. J.

    2014-01-01

    This work presents an approach to extend the dynamic range of x-ray flat panel detectors by combining two acquisitions of the same sample taken with two different x-ray photon flux levels and the same beam spectral configuration. In order to combine both datasets, the response of detector pixels was modelled in terms of mean and variance using a linear model. The model was extended to take into account the effect of pixel saturation. We estimated a joint probability density function (j-pdf) of the pixel values by assuming that each dataset follows an independent Gaussian distribution. This j-pdf was used for estimating the final pixel value of the high-dynamic-range dataset using a maximum likelihood method. The suitability of the pixel model for the representation of the detector signal was assessed using experimental data from a small-animal cone-beam micro-CT scanner equipped with a flat panel detector. The potential extension in dynamic range offered by our method was investigated for generic flat panel detectors using analytical expressions and simulations. The performance of the proposed dual-exposure approach in realistic imaging environments was compared with that of a regular single-exposure technique using experimental data from two different phantoms. Image quality was assessed in terms of signal-to-noise ratio, contrast, and analysis of profiles drawn on the images. The dynamic range, measured as the ratio between the exposure for saturation and the exposure equivalent to instrumentation noise, was increased from 76.9 to 166.7 when using our method. Dual-exposure results showed higher contrast-to-noise ratio and contrast resolution than the single-exposure acquisitions for the same x-ray dose. In addition, image artifacts were reduced in the combined dataset. This technique to extend the dynamic range of the detector without increasing the dose is particularly suited to image samples that contain both low and high attenuation regions.

  14. Determining the dynamic range of MCPs based on pore size and strip current

    NASA Astrophysics Data System (ADS)

    Hunt, C.; Adrian, M. L.; Herrero, F.; James, P.; Jones, H. H.; Rodriguez, M.; Roman, P.; Shappirio, M.

    2010-12-01

    Micro-Channel Plates (MCPs) are used as detectors for almost all detectors measuring particles (both ions, electrons and neutrals) below 30 keV. Recent advances in the manufacturing technology of the MCPs have increased the number of options one has when selecting plates for an instrument. But it is not clear how many of these options affect the performance of the MCPs. In particular the dynamic range is not a clear cut calculation to make from the strip current. There is also some evidence that pore size and coating play a role. We measured the dynamic range and pulse height distribution of MCPs detector chevron stacks with a wide variety of strip currents from the low “normal” range in the EDR range. We also looked at the effects of varying the pore size from 25 microns to 10 microns, partial plating of the MCP surface and coating one surface on each MCP with gold rather than the standard zinc chromium. We will show how the dynamic range and pulse height distributions vary vs. strip current, pore size, and surface plating configurations.

  15. High-resolution, large dynamic range fiber-optic thermometer with cascaded Fabry-Perot cavities.

    PubMed

    Liu, Guigen; Sheng, Qiwen; Hou, Weilin; Han, Ming

    2016-11-01

    The paradox between a large dynamic range and a high resolution commonly exists in nearly all kinds of sensors. Here, we propose a fiber-optic thermometer based on dual Fabry-Perot interferometers (FPIs) made from the same material (silicon), but with different cavity lengths, which enables unambiguous recognition of the dense fringes associated with the thick FPI over the free-spectral range determined by the thin FPI. Therefore, the sensor combines the large dynamic range of the thin FPI and the high resolution of the thick FPI. To verify this new concept, a sensor with one 200 μm thick silicon FPI cascaded by another 10 μm thick silicon FPI was fabricated. A temperature range of -50°C to 130°C and a resolution of 6.8×10-3°C were demonstrated using a simple average wavelength tracking demodulation. Compared to a sensor with only the thick silicon FPI, the dynamic range of the hybrid sensor was more than 10 times larger. Compared to a sensor with only the thin silicon FPI, the resolution of the hybrid sensor was more than 18 times higher.

  16. Acute effect of static and dynamic stretching on hip dynamic range of motion during instep kicking in professional soccer players.

    PubMed

    Amiri-Khorasani, Mohammadtaghi; Abu Osman, Noor A; Yusof, Ashril

    2011-06-01

    The purpose of this study was to examine the effects of static and dynamic stretching within a pre-exercise warm-up on hip dynamic range of motion (DROM) during instep kicking in professional soccer players. The kicking motions of dominant legs were captured from 18 professional adult male soccer players (height: 180.38 ± 7.34 cm; mass: 69.77 ± 9.73 kg; age: 19.22 ± 1.83 years) using 4 3-dimensional digital video cameras at 50 Hz. Hip DROM at backward, forward, and follow-through phases (instep kick phases) after different warm-up protocols consisting of static, dynamic, and no-stretching on 3 nonconsecutive test days were captured for analysis. During the backswing phase, there was no difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method. There was a significant difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method during (a) the forward phase with p < 0.03, (b) the follow-through phase with p < 0.01, and (c) all phases with p < 0.01. We concluded that professional soccer players can perform a higher DROM of the hip joint during the instep kick after dynamic stretching incorporated in warm-ups, hence increasing the chances of scoring and injury prevention during soccer games.

  17. Dynamic Tensile Properties of Iron and Steels for a Wide Range of Strain Rates and Strain

    NASA Astrophysics Data System (ADS)

    Kojima, Nobusato; Hayashi, Hiroyuki; Yamamoto, Terumi; Mimura, Koji; Tanimura, Shinji

    The tensile stress-strain curves of iron and a variety of steels, covering a wide range of strength level, over a wide strain rate range on the order of 10-3 ~ 103 s-1, were obtained systematically by using the Sensing Block Type High Speed Material Testing System (SBTS, Saginomiya). Through intensive analysis of these results, the strain rate sensitivity of the flow stress for the large strain region, including the viscous term at high strain rates, the true fracture strength and the true fracture strain were cleared for the material group of the ferrous metals. These systematical data may be useful to develop a practical constitutive model for computer codes, including a fracture criterion for simulations of the dynamic behavior in crash worthiness studies and of work-pieces subjected to dynamic plastic working for a wide strain rate range.

  18. A low-noise large dynamic-range readout suitable for laser spectroscopy with photodiodes

    NASA Astrophysics Data System (ADS)

    Pullia, A.; Sanvito, T.; Potenza, M. A.; Zocca, F.

    2012-10-01

    An original low-noise large dynamic-range readout system for optical light spectroscopy with PIN diodes is presented. The front-end circuit is equipped with a smart device for automatic cancellation of the large dc offset brought about by the photodiode current. This device sinks away the exact amount of dc current from the preamplifier input, yielding auto zeroing of the output-voltage offset, while introducing the minimum electronic noise possible. As a result the measurement dynamic-range is maximized. Moreover, an auxiliary inspection point is provided which precisely tracks the dc component of the photodiode current. This output allows for precise beam alignment and may also be used for diagnostic purposes. The excellent gain stability and linearity make the circuit perfectly suited for optical-light pulse spectroscopy. Applications include particle sizing in the 100 nm range, two-dimensional characterization of semiconductor detectors, ultra-precise characterization of laser beam stability, confocal microscopy.

  19. Implication of high dynamic range and wide color gamut content distribution

    NASA Astrophysics Data System (ADS)

    Lu, Taoran; Pu, Fangjun; Yin, Peng; Chen, Tao; Husak, Walt

    2015-09-01

    High Dynamic Range (HDR) and Wider Color Gamut (WCG) content represents a greater range of luminance levels and a more complete reproduction of colors found in real-world scenes. The current video distribution environments deliver Standard Dynamic Range (SDR) signal. Therefore, there might be some significant implication on today's end-to-end ecosystem from content creation to distribution and finally to consumption. For SDR content, the common practice is to apply compression on Y'CbCr 4:2:0 using gamma transfer function and non-constant luminance 4:2:0 chroma subsampling. For HDR and WCG content, it is desirable to examine if such signal format still works well for compression, and it is interesting to know if the overall system performance can be further improved by exploring different signal formats and processing workflows. In this paper, we will provide some of our insight into those problems.

  20. UMER: An analog computer for dynamics of swarms interacting via long-range forces

    NASA Astrophysics Data System (ADS)

    Kishek, R. A.; Bai, G.; Bernal, S.; Feldman, D.; Godlove, T. F.; Haber, I.; O'Shea, P. G.; Quinn, B.; Papadopoulos, C.; Reiser, M.; Stratakis, D.; Tian, K.; Tobin, C. J.; Walter, M.

    2006-06-01

    Some of the most challenging and interesting problems in nature involve large numbers of objects or particles mutually interacting through long-range forces. Examples range from galaxies and plasmas to flocks of birds and traffic flow on a highway. Even in cases where the form of the interacting force is precisely known, such as the 1/ r2-dependent Coulomb and gravitational forces, such problems present a formidable theoretical and modeling challenge for large numbers of interacting bodies. This paper reports on a newly constructed, scaled particle accelerator that will serve as an experimental testbed for the dynamics of swarms interacting through long-range forces. Primarily designed for intense beam dynamics studies for advanced accelerators, the University of Maryland Electron Ring (UMER) design is described in detail and an update on commissioning is provided. An example application to a system other than a charged particle beam is discussed.

  1. Twenty-year home-range dynamics of a white-tailed deer matriline

    USGS Publications Warehouse

    Nelson, Michael E.; Mech, L. David

    1999-01-01

    We examined the seasonal migration and home-range dynamics of a multigeneration white-tailed deer (Odocoileus virginianus) matriline comprising six females from four generations spanning a 20-year period in northeastern Minnesota. All, from the matriarch to her great-granddaughter, migrated to the same summer and winter ranges, the longest individual record being 14.5 years. Three maternal females concurrently occupied exclusive fawning sites within their ancestral matriarch's summer range, while two nonmaternal females explored new areas and ranged near their mothers. One great-granddaughter expanded her summer range 1 km beyond the matriarch's summer range while essentially vacating half of her ancestors' range and becoming nonmigratory the last 4 years of her life. These data indicate that individual movements of matriline members can potentially expand their ranges beyond the areas occupied by their ancestors through a slow process of small incremental changes. This suggests that the rapid extension of deer range in eastern North America resulted from natal dispersal by yearling deer rather than from the type of home-range expansion reported here.

  2. Spatial-temporal population dynamics across species range: From centre to margin

    USGS Publications Warehouse

    Guo, Q.; Taper, M.; Schoenberger, M.; Brandle, J.

    2005-01-01

    Understanding the boundaries of species' ranges and the variations in population dynamics from the centre to margin of a species' range is critical. This study simulated spatial-temporal patterns of birth and death rates and migration across a species' range in different seasons. Our results demonstrated the importance of dispersal and migration in altering birth and death rates, balancing source and sink habitats, and governing expansion or contraction of species' ranges in changing environments. We also showed that the multiple equilibria of metapopulations across a species' range could be easily broken following climatic changes or physical disturbances either local or regional. Although we refer to our models as describing the population dynamics across whole species' range, they should also apply to small-scale habitats (metapopulations) in which species abundance follows a humped pattern or to any ecosystem or landscape where strong central-marginal (C-M) environmental gradients exist. Conservation of both central and marginal populations would therefore be equally important considerations in making management decisions.

  3. Spatial-temporal population dynamics across species range: from center to margin

    USGS Publications Warehouse

    Guo, Q.; Taper, M.L.; Schoenberger, M.; Brandl, J.

    2005-01-01

    Understanding the boundaries of species' ranges and the variations in population dynamics from the centre to margin of a species' range is critical. This study simulated spatial-temporal patterns of birth and death rates and migration across a species' range in different seasons. Our results demonstrated the importance of dispersal and migration in altering birth and death rates, balancing source and sink habitats, and governing expansion or contraction of species' ranges in changing environments. We also showed that the multiple equilibria of metapopulations across a species' range could be easily broken following climatic changes or physical disturbances either or local or regional. Although we refer to our models as describing the population dynamics across whole species' range, they should also apply to small-scale habitats (metapopulations) in which species abundance follows a humped pattern or to any ecosystem or landscape where strong central-marginal (C-M) environmental gradients exist. Conservation of both central and marginal populations would therefore be equally important considerations in making management decisions.

  4. Long-Range Correlations in Stride Intervals May Emerge from Non-Chaotic Walking Dynamics

    PubMed Central

    Ahn, Jooeun; Hogan, Neville

    2013-01-01

    Stride intervals of normal human walking exhibit long-range temporal correlations. Similar to the fractal-like behaviors observed in brain and heart activity, long-range correlations in walking have commonly been interpreted to result from chaotic dynamics and be a signature of health. Several mathematical models have reproduced this behavior by assuming a dominant role of neural central pattern generators (CPGs) and/or nonlinear biomechanics to evoke chaos. In this study, we show that a simple walking model without a CPG or biomechanics capable of chaos can reproduce long-range correlations. Stride intervals of the model revealed long-range correlations observed in human walking when the model had moderate orbital stability, which enabled the current stride to affect a future stride even after many steps. This provides a clear counterexample to the common hypothesis that a CPG and/or chaotic dynamics is required to explain the long-range correlations in healthy human walking. Instead, our results suggest that the long-range correlation may result from a combination of noise that is ubiquitous in biological systems and orbital stability that is essential in general rhythmic movements. PMID:24086274

  5. CMOS Amperometric ADC With High Sensitivity, Dynamic Range and Power Efficiency for Air Quality Monitoring.

    PubMed

    Li, Haitao; Boling, C Sam; Mason, Andrew J

    2016-08-01

    Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations.

  6. Saturation and Dynamic Range of Microchannel Plate-Based X-Ray Imagers

    SciTech Connect

    ,

    2012-05-04

    This paper describes recent advances in Monte Carlo simulations of microchannel plate (MCP)–based x-ray detectors, a continuation of ongoing work in this area. A Monte Carlo simulation model has been developed over the past several years by National Security Technologies, LLC (NSTec). The model simulates the secondary electron emission process in an MCP pore and includes the effects of gain saturation. In this work we focus on MCP gain saturation and dynamic range. We have performed modeling and experimental characterizations of L/D = 46, 10-micron diameter, MCP-based detectors. The detectors are typically operated by applying a subnanosecond voltage pulse, which gates the detector on. Agreement between the simulations and experiment is very good for a variety of voltage pulse waveforms ranging in width from 150 to 300 ps. The results indicate that such an MCP begins to show nonlinear gain around 5 × 10^4 electrons per pore and hard saturation around 105 electrons per pore. The simulations show a difference in MCP sensitivity vs voltage for high flux of photons producing large numbers of photoelectrons on a subpicosecond timescale. Simulations and experiments both indicate an MCP dynamic range of 1 to 10,000, and the dynamic range depends on how the voltage is applied.

  7. Extended dynamical mean-field study of the Hubbard model with long-range interactions

    NASA Astrophysics Data System (ADS)

    Huang, Li; Ayral, Thomas; Biermann, Silke; Werner, Philipp

    2014-11-01

    Using extended dynamical mean-field theory and its combination with the G W approximation, we compute the phase diagrams and local spectral functions of the single-band extended Hubbard model on the square and simple cubic lattices, considering long-range interactions up to the third nearest neighbors. The longer-range interactions shift the boundaries between the metallic, charge-ordered insulating, and Mott insulating phases, and lead to characteristic changes in the screening modes and local spectral functions. Momentum-dependent self-energy contributions enhance the correlation effects and thus compete with the additional screening effect from longer-range Coulomb interactions. Our results suggest that the influence of longer-range intersite interactions is significant, and that these effects deserve attention in realistic studies of correlated materials.

  8. Singular dynamics and emergence of nonlocality in long-range quantum models

    NASA Astrophysics Data System (ADS)

    Lepori, L.; Trombettoni, A.; Vodola, D.

    2017-03-01

    We discuss how nonlocality originates in long-range quantum systems and how it affects their dynamics at and out of equilibrium. We focus in particular on the Kitaev chains with long-range pairings and on the quantum Ising chain with long-range antiferromagnetic coupling (both having a power-law decay with exponent α). By studying the dynamic correlation functions, we find that for every finite α two different behaviours can be identified, one typical of short-range systems and the other connected with locality violation. The latter behaviour is shown related also with the known power-law decay tails previously observed in the static correlation functions, and originated by modes—having in general energies far from the minima of the spectrum—where particular singularities develop as a consequence of the long-rangedness of the system. We refer to these modes as to ‘singular’ modes, and as to ‘singular dynamics’ to their dynamics. For the Kitaev model they are manifest, at finite α, in derivatives of the quasiparticle energy, the order of the derivatives at which the singularity occurs is increasing with α. The features of the singular modes and their physical consequences are clarified by studying an effective theory for them and by a critical comparison of the results from this theory with the lattice ones. Moreover, a numerical study of the effects of the singular modes on the time evolution after various types of global quenches is performed. We finally present and discuss the presence of singular modes and their consequences in interacting long-range systems by investigating in the long-range Ising quantum chain, both in the deep paramagnetic regime and at criticality, where they also play a central role for the breakdown of conformal invariance.

  9. Territorial Dynamics and Stable Home Range Formation for Central Place Foragers

    PubMed Central

    Potts, Jonathan R.; Harris, Stephen; Giuggioli, Luca

    2012-01-01

    Uncovering the mechanisms behind territory formation is a fundamental problem in behavioural ecology. The broad nature of the underlying conspecific avoidance processes are well documented across a wide range of taxa. Scent marking in particular is common to a large range of terrestrial mammals and is known to be fundamental for communication. However, despite its importance, exact quantification of the time-scales over which scent cues and messages persist remains elusive. Recent work by the present authors has begun to shed light on this problem by modelling animals as random walkers with scent-mediated interaction processes. Territories emerge as dynamic objects that continually change shape and slowly move without settling to a fixed location. As a consequence, the utilisation distribution of such an animal results in a slowly increasing home range, as shown for urban foxes (Vulpes vulpes). For certain other species, however, home ranges reach a stable state. The present work shows that stable home ranges arise when, in addition to scent-mediated conspecific avoidance, each animal moves as a central place forager. That is, the animal's movement has a random aspect but is also biased towards a fixed location, such as a den or nest site. Dynamic territories emerge but the probability distribution of the territory border locations reaches a steady state, causing stable home ranges to emerge from the territorial dynamics. Approximate analytic expressions for the animal's probability density function are derived. A programme is given for using these expressions to quantify both the strength of the animal's movement bias towards the central place and the time-scale over which scent messages persist. Comparisons are made with previous theoretical work modelling central place foragers with conspecific avoidance. Some insights into the mechanisms behind allometric scaling laws of animal space use are also given. PMID:22479510

  10. High dynamic range infrared images detail enhancement based on local edge preserving filter

    NASA Astrophysics Data System (ADS)

    Song, Qiong; Wang, Yuehuan; Bai, Kun

    2016-07-01

    In the field of infrared (IR) image processing, displaying a high dynamic range (HDR) image on a low dynamic range display equipment with a natural visual effect, clear details on local areas and less artifacts is an important issue. In this paper, we present a new approach to display HDR IR images with contrast enhancement. First, the local edge-preserving filter (LEPF) is utilized to separate the image into a base layer and detail layer(s). After the filtering procedure, we use an adaptive Gamma transformation to adjust the gray distribution of the base layer, and stretch the detail layer based on a human visual effect principle. Then, we recombine the detail layer and base layer to obtain the enhance output. Finally, we adjust the luminance of output by applying multiple exposure fusion method. The experimental results demonstrate that our proposed method can provide a significant performance in terms of enhancing details and less artifacts than the state of the arts.

  11. 32-channel pyrometer with high dynamic range for studies of shocked nanothermites

    NASA Astrophysics Data System (ADS)

    Bassett, Will P.; Dlott, Dana D.

    2017-01-01

    A 32-channel optical pyrometer has been developed for studying temperature dynamics of shock-initiated reactive materials with one nanosecond time resolution and high dynamic range. The pyrometer consists of a prism spectrograph which directs the spectrally-resolved emission to 32 fiber optics and 32 photomultiplier tubes and digitizers. Preliminary results show shock-initiated reactions of a nanothermite composite, nano CuO/Al in nitrocellulose binder, consists of three stages. The first stage occurred at 30 ns, right after the shock unloaded, the second stage at 100 ns and the third at 1 μs, and the temperatures ranged from 2100K to 3000K. Time-resolved emission spectra suggest hot spots formed during shock unloading, which initiated the bulk thermite/nitrocellulose reaction.

  12. Introducing a Public Stereoscopic 3D High Dynamic Range (SHDR) Video Database

    NASA Astrophysics Data System (ADS)

    Banitalebi-Dehkordi, Amin

    2017-03-01

    High dynamic range (HDR) displays and cameras are paving their ways through the consumer market at a rapid growth rate. Thanks to TV and camera manufacturers, HDR systems are now becoming available commercially to end users. This is taking place only a few years after the blooming of 3D video technologies. MPEG/ITU are also actively working towards the standardization of these technologies. However, preliminary research efforts in these video technologies are hammered by the lack of sufficient experimental data. In this paper, we introduce a Stereoscopic 3D HDR database of videos that is made publicly available to the research community. We explain the procedure taken to capture, calibrate, and post-process the videos. In addition, we provide insights on potential use-cases, challenges, and research opportunities, implied by the combination of higher dynamic range of the HDR aspect, and depth impression of the 3D aspect.

  13. Note: Increasing dynamic range of digital-to-analog converter using a superconducting quantum interference device

    SciTech Connect

    Nakanishi, Masakazu

    2014-10-15

    Responses of a superconducting quantum interference device (SQUID) are periodically dependent on magnetic flux coupling to its superconducting ring and the period is a flux quantum (Φ{sub o} = h/2e, where h and e, respectively, express Planck's constant and elementary charge). Using this periodicity, we had proposed a digital to analog converter using a SQUID (SQUID DAC) of first generation with linear current output, interval of which corresponded to Φ{sub o}. Modification for increasing dynamic range by interpolating within each interval is reported. Linearity of the interpolation was also based on the quantum periodicity. A SQUID DAC with dynamic range of about 1.4 × 10{sup 7} was created as a demonstration.

  14. Noise-induced dynamical phase transitions in long-range systems.

    PubMed

    Chavanis, Pierre-Henri; Baldovin, Fulvio; Orlandini, Enzo

    2011-04-01

    In the thermodynamic limit, the time evolution of isolated long-range interacting systems is properly described by the Vlasov equation. This equation admits nonequilibrium dynamically stable stationary solutions characterized by a zero order parameter. We show that the presence of external noise sources, such as a heat bath, can reduce their lifetime and induce at a specific time a dynamical phase transition marked by a nonzero order parameter. This transition may be used as a distinctive experimental signature of the temporary existence of nonequilibrium Vlasov-stable states. In particular, we present evidence of a regime characterized by an order parameter pulse. Our analytical results are corroborated by numerical simulations of a paradigmatic long-range model.

  15. A Kalman-filtering approach to high dynamic range imaging for measurement applications.

    PubMed

    Dedrick, Eric; Lau, Daniel

    2012-02-01

    High dynamic range imaging (HDRI) methods in computational photography address situations where the dynamic range of a scene exceeds what can be captured by an image sensor in a single exposure. HDRI techniques have also been used to construct radiance maps in measurement applications; unfortunately, the design and evaluation of HDRI algorithms for use in these applications have received little attention. In this paper, we develop a novel HDRI technique based on pixel-by-pixel Kalman filtering and evaluate its performance using objective metrics that this paper also introduces. In the presented experiments, this new technique achieves as much as 9.4-dB improvement in signal-to-noise ratio and can achieve as much as a 29% improvement in radiometric accuracy over a classic method.

  16. Improvement of dynamic range of filter-less fluorescence sensor with body-biasing technique

    NASA Astrophysics Data System (ADS)

    Moriwaki, Yu; Takahashi, Kazuhiro; Akita, Ippei; Ishida, Makoto; Sawada, Kazuaki

    2015-04-01

    Although fluorescence microscopy is an important technique in biomedical fields, the bulky equipment is disadvantageous in some situations. We have previously proposed a filter-less fluorescence sensor whose operation is based on the light absorption coefficient, which depends on the wavelength in a silicon substrate. In this sensor, the ratio of the excitation light intensity to the fluorescence intensity is as high as 400:1 upon optimizing the impurity concentration and the depth of the p-well region. To improve the dynamic range, herein we use a body-biasing technique to optimize the potential distribution of the sensing area to acquire sufficient photocurrent. Consequently, the dynamic range of the filter-less fluorescence sensor is improved to 800:1 with an 8 V substrate voltage.

  17. Enhanced Dynamic Range in N-SQUID Lumped Josephson Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Eddins, A.; Levenson-Falk, E. M.; Toyli, D. M.; Vijay, R.; Minev, Z.; Siddiqi, I.

    2014-03-01

    Simultaneously providing high gain and nearly quantum-limited noise performance, superconducting parametric amplifiers (paramps) have been used successfully for high fidelity qubit readout, quantum feedback, and microwave quantum optics experiments. The Lumped Josephson Parametric Amplifier (LJPA) consists of a capacitively shunted SQUID coupled to a transmission line to form a nonlinear resonator. Like other paramps employing a resonant circuit, the LJPA's dynamic range-a potentially key ingredient for multiplexing-is limited. Simple theory predicts that the dynamic range can be increased without any reduction in bandwidth or gain by distributing the resonator nonlinearity over a series array of SQUIDs. We fabricated such array devices with up to 5 SQUIDs and observed a clear increase in the critical power for bifurcation about which parametric gain occurs. We discuss in detail amplifier performance as a function of the number of SQUIDs in the array. This research was supported by the Army Research Office under a QCT grant.

  18. Analysis of quantum Monte Carlo dynamics for quantum adiabatic evolution in infinite-range spin systems

    NASA Astrophysics Data System (ADS)

    Inoue, Jun-Ichi

    2011-03-01

    We analytically derive deterministic equations of order parameters such as spontaneous magnetization in infinite-range quantum spin systems obeying quantum Monte Carlo dynamics. By means of the Trotter decomposition, we consider the transition probability of Glauber-type dynamics of microscopic states for the corresponding classical system. Under the static approximation, differential equations with respect to macroscopic order parameters are explicitly obtained from the master equation that describes the microscopic-law. We discuss several possible applications of our approach to disordered spin systems for statistical-mechanical informatics. Especially, we argue the ground state searching for infinite-range random spin systems via quantum adiabatic evolution. We were financially supported by Grant-in-Aid for Scientific Research (C) of Japan Society for the Promotion of Science, No. 22500195.

  19. Research of time discrimination circuits for PMT signal readout over large dynamic range in LHAASO WCDA

    NASA Astrophysics Data System (ADS)

    Ma, C.; Zhao, L.; Dong, R.; Jiang, Z.; Chu, S.; Gao, X.; Liu, S.; An, Q.

    2016-11-01

    In the readout electronics of the Water Cerenkov Detector Array (WCDA) in the Large High Altitude Air Shower Observatory (LHAASO), both high-resolution charge and time measurement are required over a dynamic range from 1 photoelectron (P.E.) to 4000 P.E. for the PMT signal readout. In this paper, we present our work on the design of time discrimination circuits in LHAASO WCDA, especially on improvement to reduce the circuit dead time. Several approaches were studied through analysis and simulations, and actual circuits were designed and tested in the laboratory to evaluate the performance. Test results indicate that a time resolution better than 500 ps RMS is achieved in the whole large dynamic range, and the circuit dead time is successfully reduced to less than 200 ns.

  20. Note: Increasing dynamic range of digital-to-analog converter using a superconducting quantum interference device.

    PubMed

    Nakanishi, Masakazu

    2014-10-01

    Responses of a superconducting quantum interference device (SQUID) are periodically dependent on magnetic flux coupling to its superconducting ring and the period is a flux quantum (Φo = h/2e, where h and e, respectively, express Planck's constant and elementary charge). Using this periodicity, we had proposed a digital to analog converter using a SQUID (SQUID DAC) of first generation with linear current output, interval of which corresponded to Φo. Modification for increasing dynamic range by interpolating within each interval is reported. Linearity of the interpolation was also based on the quantum periodicity. A SQUID DAC with dynamic range of about 1.4 × 10(7) was created as a demonstration.

  1. Incongruent range dynamics between co-occurring Asian temperate tree species facilitated by life history traits.

    PubMed

    Zhao, Yun-Peng; Yan, Xiao-Ling; Muir, Graham; Dai, Qiong-Yan; Koch, Marcus A; Fu, Cheng-Xin

    2016-04-01

    Postglacial expansion to former range limits varies substantially among species of temperate deciduous forests in eastern Asia. Isolation hypotheses (with or without gene flow) have been proposed to explain this variance, but they ignore detailed population dynamics spanning geological time and neglect the role of life history traits. Using population genetics to uncover these dynamics across their Asian range, we infer processes that formed the disjunct distributions of Ginkgo biloba and the co-occurring Cercidiphyllum japonicum (published data). Phylogenetic, coalescent, and comparative data suggest that Ginkgo population structure is regional, dichotomous (to west-east refugia), and formed ˜51 kya, resulting from random genetic drift during the last glaciation. This split is far younger than the north-south population structure of Cercidiphyllum (~1.89 Mya). Significant (recent) unidirectional gene flow has not homogenized the two Ginkgo refugia, despite 2Nm > 1. Prior to this split, gene flow was potentially higher, resulting in conflicting support for a priori hypotheses that view isolation as an explanation for the variation in postglacial range limits. Isolation hypotheses (with or without gene flow) are thus not necessarily mutually exclusive due to temporal variation of gene flow and genetic drift. In comparison with Cercidiphyllum, the restricted range of Ginkgo has been facilitated by uncompetitive life history traits associated with seed ecology, highlighting the importance of both demography and lifetime reproductive success when interpreting range shifts.

  2. Human tissue color as viewed in high dynamic range optical spectral transmission measurements.

    PubMed

    Petrov, Georgi I; Doronin, Alexander; Whelan, Harry T; Meglinski, Igor; Yakovlev, Vladislav V

    2012-09-01

    High dynamic range optical-to-near-infrared transmission measurements for different parts of human body in the spectral range from 650 to 950 nm have been performed. Experimentally measured spectra are correlated with Monte Carlo simulations using chromaticity coordinates in CIE 1976 L*a*b* color space. Both a qualitative and a quantitative agreement have been found, paving a new way of characterizing human tissues in vivo. The newly developed experimental and computational platform for assessing tissue transmission spectra is anticipated to have a considerable impact on identifying favorable conditions for laser surgery and optical diagnostics, while providing supplementary information about tissue properties.

  3. Determination of metal ions by fluorescence anisotropy exhibits a broad dynamic range

    NASA Astrophysics Data System (ADS)

    Thompson, Richard B.; Maliwal, Badri P.; Fierke, Carol A.

    1998-05-01

    Recently, we have shown that metal ions free in solution may be determined at low levels by fluorescence anisotropy (polarization) measurements. Anisotropy measurements enjoy the advantages of wavelength ratiometric techniques for determining metal ions such as calcium, because anisotropy measurements are ratiometric as well. Furthermore, fluorescence anisotropy may be imaged in the microscope. An advantage of anisotropy not demonstrated for wavelength ratiometric approaches using indicators such as Fura-2 and Indo-1 is that under favorable circumstances anisotropy-based determinations exhibit a much broader dynamic range in metal ion concentration. Determinations of free Zn(II) in the picomolar range are demonstrated.

  4. Face recognition based on matching of local features on 3D dynamic range sequences

    NASA Astrophysics Data System (ADS)

    Echeagaray-Patrón, B. A.; Kober, Vitaly

    2016-09-01

    3D face recognition has attracted attention in the last decade due to improvement of technology of 3D image acquisition and its wide range of applications such as access control, surveillance, human-computer interaction and biometric identification systems. Most research on 3D face recognition has focused on analysis of 3D still data. In this work, a new method for face recognition using dynamic 3D range sequences is proposed. Experimental results are presented and discussed using 3D sequences in the presence of pose variation. The performance of the proposed method is compared with that of conventional face recognition algorithms based on descriptors.

  5. Dynamic range extension of SiPM detectors with the time-gated operation.

    PubMed

    Vilella, Eva; Diéguez, Angel

    2014-05-19

    The silicon photomultiplier (SiPM) is a novel detector technology that has undergone a fast development in the last few years, owing to its single-photon resolution and ultra-fast response time. However, the typical high dark count rates of the sensor may prevent the detection of low intensity radiation fluxes. In this article, the time-gated operation with short active periods in the nanosecond range is proposed as a solution to reduce the number of cells fired due to noise and thus increase the dynamic range. The technique is aimed at application fields that function under a trigger command, such as gated fluorescence lifetime imaging microscopy.

  6. A convection-driven long-range linear gradient generator with dynamic control.

    PubMed

    Wang, Hao; Chen, Chia-Hung; Xiang, Zhuolin; Wang, Ming; Lee, Chengkuo

    2015-03-21

    We developed a novel gradient generator to achieve long range and linear chemical gradients with a dynamic control function. The length of the gradient can be on the centimetre scale. The gradient profile can be tuned by changing the flow rates. The device can work in both high flow rate regimes with large shear stress and low flow rate regimes with minimum shear stress. The drug screening function was demonstrated by the viability test of PC-9 cancer cells.

  7. Roles of Long-Range Tertiary Interactions in Limiting Dynamics of the Tetrahymena Group I Ribozyme

    PubMed Central

    2015-01-01

    We determined the effects of mutating the long-range tertiary contacts of the Tetrahymena group I ribozyme on the dynamics of its substrate helix (referred to as P1) and on catalytic activity. Dynamics were assayed by fluorescence anisotropy of the fluorescent base analogue, 6-methyl isoxanthopterin, incorporated into the P1 helix, and fluorescence anisotropy and catalytic activity were measured for wild type and mutant ribozymes over a range of conditions. Remarkably, catalytic activity correlated with P1 anisotropy over 5 orders of magnitude of activity, with a correlation coefficient of 0.94. The functional and dynamic effects from simultaneous mutation of the two long-range contacts that weaken P1 docking are cumulative and, based on this RNA’s topology, suggest distinct underlying origins for the mutant effects. Tests of mechanistic predictions via single molecule FRET measurements of rate constants for P1 docking and undocking suggest that ablation of the P14 tertiary interaction frees P2 and thereby enhances the conformational space explored by the undocked attached P1 helix. In contrast, mutation of the metal core tertiary interaction disrupts the conserved core into which the P1 helix docks. Thus, despite following a single correlation, the two long-range tertiary contacts facilitate P1 helix docking by distinct mechanisms. These results also demonstrate that a fluorescence anisotropy probe incorporated into a specific helix within a larger RNA can report on changes in local helical motions as well as differences in more global dynamics. This ability will help uncover the physical properties and behaviors that underlie the function of RNAs and RNA/protein complexes. PMID:24738560

  8. Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression

    NASA Technical Reports Server (NTRS)

    Laun, Matthew C. (Inventor)

    2016-01-01

    Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.

  9. Proposed satellite laser ranging and very long baseline interferometry sites for crustal dynamics investigations

    NASA Technical Reports Server (NTRS)

    Lowman, P. D.; Allenby, R. J.; Frey, H. V.

    1979-01-01

    Recommendations are presented for a global network of 125 sites for geodetic measurements by satellite laser ranging and very long baseline interferometry. The sites were proposed on the basis of existing facilities and scientific value for investigation of crustal dynamics as related to earthquake hazards. Tectonic problems are discussed for North America peripheral regions and for the world. The sites are presented in tables and maps, with bibliographic references.

  10. A visibility matching tone reproduction operator for high dynamic range scenes

    SciTech Connect

    Larson, G.W.; Rushmeier, H.; Piatko, C.

    1997-01-15

    The authors present a tone reproduction operator that preserves visibility in high dynamic range scenes. The method introduces a new histogram adjustment technique, based on the population of local adaptation luminances in a scene. To match subjective viewing experience, the method incorporates models for human contrast sensitivity, glare, spatial acuity and color sensitivity. They compare the results to previous work and present examples the techniques applied to lighting simulation and electronic photography.

  11. High sensitive/wide dynamic range, field emission pressure sensor based on fully embedded CNTs

    NASA Astrophysics Data System (ADS)

    Taak, S.; Rajabali, S.; Darbari, S.; Mohajerzadeh, S.

    2014-01-01

    The formation of high sensitivity-wide dynamic range field emission pressure sensors based on carbon nanotubes (CNTs) is reported. In this work, CNTs are grown inside an array of micromachined holes in order to ensure a high sensitivity and a wide dynamic range by allowing anode-cathode proximity while preventing anode-cathode direct contact simultaneously. External pressure is applied to a Si-based flexible anode, which results in consequent variations in emission current, due to electric field changes. Microcavities in this structure have been formed by a Si deep vertical etching process, while the CNTs have been grown by direct current plasma-enhanced chemical vapour deposition. Also, it is demonstrated that a similar fabrication process can be applied to implement a device with an electrically controllable emission current. A high sensitivity of 1.5-13.7 µA kPa-1 (with Vanode/cathode < 100 V) within a dynamic range from around 0.1 to 1 GPa, is measured in this experiment.

  12. Fluorescent Protein Based FRET Pairs with Improved Dynamic Range for Fluorescence Lifetime Measurements

    PubMed Central

    George Abraham, Bobin; Sarkisyan, Karen S.; Mishin, Alexander S.; Santala, Ville; Tkachenko, Nikolai V.; Karp, Matti

    2015-01-01

    Fluorescence Resonance Energy Transfer (FRET) using fluorescent protein variants is widely used to study biochemical processes in living cells. FRET detection by fluorescence lifetime measurements is the most direct and robust method to measure FRET. The traditional cyan-yellow fluorescent protein based FRET pairs are getting replaced by green-red fluorescent protein variants. The green-red pair enables excitation at a longer wavelength which reduces cellular autofluorescence and phototoxicity while monitoring FRET. Despite the advances in FRET based sensors, the low FRET efficiency and dynamic range still complicates their use in cell biology and high throughput screening. In this paper, we utilized the higher lifetime of NowGFP and screened red fluorescent protein variants to develop FRET pairs with high dynamic range and FRET efficiency. The FRET variations were analyzed by proteolytic activity and detected by steady-state and time-resolved measurements. Based on the results, NowGFP-tdTomato and NowGFP-mRuby2 have shown high potentials as FRET pairs with large fluorescence lifetime dynamic range. The in vitro measurements revealed that the NowGFP-tdTomato has the highest Förster radius for any fluorescent protein based FRET pairs yet used in biological studies. The developed FRET pairs will be useful for designing FRET based sensors and studies employing Fluorescence Lifetime Imaging Microscopy (FLIM). PMID:26237400

  13. High dynamic range hyperspectral imaging for camouflage performance test and evaluation

    NASA Astrophysics Data System (ADS)

    Pearce, D.; Feenan, J.

    2016-10-01

    This paper demonstrates the use of high dynamic range processing applied to the specific technique of hyper-spectral imaging with linescan spectrometers. The technique provides an improvement in signal to noise for reflectance estimation. This is demonstrated for field measurements of rural imagery collected from a ground-based linescan spectrometer of rural scenes. Once fully developed, the specific application is expected to improve the colour estimation approaches and consequently the test and evaluation accuracy of camouflage performance tests. Data are presented on both field and laboratory experiments that have been used to evaluate the improvements granted by the adoption of high dynamic range data acquisition in the field of hyperspectral imaging. High dynamic ranging imaging is well suited to the hyperspectral domain due to the large variation in solar irradiance across the visible and short wave infra-red (SWIR) spectrum coupled with the wavelength dependence of the nominal silicon detector response. Under field measurement conditions it is generally impractical to provide artificial illumination; consequently, an adaptation of the hyperspectral imaging and re ectance estimation process has been developed to accommodate the solar spectrum. This is shown to improve the signal to noise ratio for the re ectance estimation process of scene materials in the 400-500 nm and 700-900 nm regions.

  14. Seasonal source-sink dynamics at the edge of a species' range

    USGS Publications Warehouse

    Kanda, L.L.; Fuller, T.K.; Sievert, P.R.; Kellogg, R.L.

    2009-01-01

    The roles of dispersal and population dynamics in determining species' range boundaries recently have received theoretical attention but little empirical work. Here we provide data on survival, reproduction, and movement for a Virginia opossum (Didelphis virginiana) population at a local distributional edge in central Massachusetts (USA). Most juvenile females that apparently exploited anthropogenic resources survived their first winter, whereas those using adjacent natural resources died of starvation. In spring, adult females recolonized natural areas. A life-table model suggests that a population exploiting anthropogenic resources may grow, acting as source to a geographically interlaced sink of opossums using only natural resources, and also providing emigrants for further range expansion to new human-dominated landscapes. In a geographical model, this source-sink dynamic is consistent with the local distribution identified through road-kill surveys. The Virginia opossum's exploitation of human resources likely ameliorates energetically restrictive winters and may explain both their local distribution and their northward expansion in unsuitable natural climatic regimes. Landscape heterogeneity, such as created by urbanization, may result in source-sink dynamics at highly localized scales. Differential fitness and individual dispersal movements within local populations are key to generating regional distributions, and thus species ranges, that exceed expectations. ?? 2009 by the Ecological Society of America.

  15. Digital PCR modeling for maximal sensitivity, dynamic range and measurement precision.

    PubMed

    Majumdar, Nivedita; Wessel, Thomas; Marks, Jeffrey

    2015-01-01

    The great promise of digital PCR is the potential for unparalleled precision enabling accurate measurements for genetic quantification. A challenge associated with digital PCR experiments, when testing unknown samples, is to perform experiments at dilutions allowing the detection of one or more targets of interest at a desired level of precision. While theory states that optimal precision (Po) is achieved by targeting ~1.59 mean copies per partition (λ), and that dynamic range (R) includes the space spanning one positive (λL) to one negative (λU) result from the total number of partitions (n), these results are tempered for the practitioner seeking to construct digital PCR experiments in the laboratory. A mathematical framework is presented elucidating the relationships between precision, dynamic range, number of partitions, interrogated volume, and sensitivity in digital PCR. The impact that false reaction calls and volumetric variation have on sensitivity and precision is next considered. The resultant effects on sensitivity and precision are established via Monte Carlo simulations reflecting the real-world likelihood of encountering such scenarios in the laboratory. The simulations provide insight to the practitioner on how to adapt experimental loading concentrations to counteract any one of these conditions. The framework is augmented with a method of extending the dynamic range of digital PCR, with and without increasing n, via the use of dilutions. An example experiment demonstrating the capabilities of the framework is presented enabling detection across 3.33 logs of starting copy concentration.

  16. Long-range correlations improve understanding of the influence of network structure on contact dynamics.

    PubMed

    Peyrard, N; Dieckmann, U; Franc, A

    2008-05-01

    Models of infectious diseases are characterized by a phase transition between extinction and persistence. A challenge in contemporary epidemiology is to understand how the geometry of a host's interaction network influences disease dynamics close to the critical point of such a transition. Here we address this challenge with the help of moment closures. Traditional moment closures, however, do not provide satisfactory predictions close to such critical points. We therefore introduce a new method for incorporating longer-range correlations into existing closures. Our method is technically simple, remains computationally tractable and significantly improves the approximation's performance. Our extended closures thus provide an innovative tool for quantifying the influence of interaction networks on spatially or socially structured disease dynamics. In particular, we examine the effects of a network's clustering coefficient, as well as of new geometrical measures, such as a network's square clustering coefficients. We compare the relative performance of different closures from the literature, with or without our long-range extension. In this way, we demonstrate that the normalized version of the Bethe approximation-extended to incorporate long-range correlations according to our method-is an especially good candidate for studying influences of network structure. Our numerical results highlight the importance of the clustering coefficient and the square clustering coefficient for predicting disease dynamics at low and intermediate values of transmission rate, and demonstrate the significance of path redundancy for disease persistence.

  17. Chroma sampling and modulation techniques in high dynamic range video coding

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Krishnan, Madhu; Topiwala, Pankaj

    2015-09-01

    High Dynamic Range and Wide Color Gamut (HDR/WCG) Video Coding is an area of intense research interest in the engineering community, for potential near-term deployment in the marketplace. HDR greatly enhances the dynamic range of video content (up to 10,000 nits), as well as broadens the chroma representation (BT.2020). The resulting content offers new challenges in its coding and transmission. The Moving Picture Experts Group (MPEG) of the International Standards Organization (ISO) is currently exploring coding efficiency and/or the functionality enhancements of the recently developed HEVC video standard for HDR and WCG content. FastVDO has developed an advanced approach to coding HDR video, based on splitting the HDR signal into a smoothed luminance (SL) signal, and an associated base signal (B). Both signals are then chroma downsampled to YFbFr 4:2:0 signals, using advanced resampling filters, and coded using the Main10 High Efficiency Video Coding (HEVC) standard, which has been developed jointly by ISO/IEC MPEG and ITU-T WP3/16 (VCEG). Our proposal offers both efficient coding, and backwards compatibility with the existing HEVC Main10 Profile. That is, an existing Main10 decoder can produce a viewable standard dynamic range video, suitable for existing screens. Subjective tests show visible improvement over the anchors. Objective tests show a sizable gain of over 25% in PSNR (RGB domain) on average, for a key set of test clips selected by the ISO/MPEG committee.

  18. Dynamics and thermodynamics of systems with long-range dipole-type interactions

    NASA Astrophysics Data System (ADS)

    Atenas, Boris; Curilef, Sergio

    2017-02-01

    A Hamiltonian mean field model, where the potential is inspired by dipole-dipole interactions, is proposed to characterize the behavior of systems with long-range interactions. The dynamics of the system remains in quasistationary states before arriving at equilibrium. The equilibrium is analytically derived from the canonical ensemble and coincides with that obtained from molecular dynamics simulations (microcanonical ensemble) at only long time scales. The dynamics of the system is characterized by the behavior of the mean value of the kinetic energy. The significance of the results, compared to others in the recent literature, is that two plateaus sequentially emerge in the evolution of the model under the special considerations of the initial conditions and systems of finite size. The first plateau decays to a different second one before the system reaches equilibrium, but the dynamics of the system is expected to have only one plateau when the thermodynamics limit is reached because the difference between them tends to disappear as N tends to infinity. Hence, the first plateau is a type of quasistationary state the lifetime of which depends on a power law of N and the second seems to be a true quasistationary state as reported in the literature. We characterize the general behavior of the model according to its dynamics and thermodynamics.

  19. Long-range protein–water dynamics in hyperactive insect antifreeze proteins

    PubMed Central

    Meister, Konrad; Ebbinghaus, Simon; Xu, Yao; Duman, John G.; DeVries, Arthur; Gruebele, Martin; Leitner, David M.; Havenith, Martina

    2013-01-01

    Antifreeze proteins (AFPs) are specific proteins that are able to lower the freezing point of aqueous solutions relative to the melting point. Hyperactive AFPs, identified in insects, have an especially high ability to depress the freezing point by far exceeding the abilities of other AFPs. In previous studies, we postulated that the activity of AFPs can be attributed to two distinct molecular mechanisms: (i) short-range direct interaction of the protein surface with the growing ice face and (ii) long-range interaction by protein-induced water dynamics extending up to 20 Å from the protein surface. In the present paper, we combine terahertz spectroscopy and molecular simulations to prove that long-range protein–water interactions make essential contributions to the high antifreeze activity of insect AFPs from the beetle Dendroides canadensis. We also support our hypothesis by studying the effect of the addition of the osmolyte sodium citrate. PMID:23277543

  20. Optimizing the dynamic range extension of a radiochromic film dosimetry system

    SciTech Connect

    Devic, Slobodan; Tomic, Nada; Soares, Christopher G.; Podgorsak, Ervin B.

    2009-02-15

    The authors present a radiochromic film dosimetry protocol for a multicolor channel radiochromic film dosimetry system consisting of the external beam therapy (EBT) model GAFCHROMIC film and the Epson Expression 1680 flat-bed document scanner. Instead of extracting only the red color channel, the authors are using all three color channels in the absorption spectrum of the EBT film to extend the dynamic dose range of the radiochromic film dosimetry system. By optimizing the dose range for each color channel, they obtained a system that has both precision and accuracy below 1.5%, and the optimized ranges are 0-4 Gy for the red channel, 4-50 Gy for the green channel, and above 50 Gy for the blue channel.

  1. Effect of long-range hopping and interactions on entanglement dynamics and many-body localization

    NASA Astrophysics Data System (ADS)

    Singh, Rajeev; Moessner, Roderich; Roy, Dibyendu

    2017-03-01

    We numerically investigate the dynamics of entanglement in a chain of spinless fermions with nonrandom but long-range hopping and interactions, and with random on-site energies. For moderate disorder in the absence of interactions, the chain hosts delocalized states at the top of the band which undergo a delocalization-localization transition with increasing disorder. We find an interesting regime in this noninteracting disordered chain where the long-time entanglement entropy scales as S (t )˜lnt and the saturated entanglement entropy scales with system size L as S (L ,t →∞ )˜lnL . We further study the interplay of long-range hopping and interactions on the growth of entanglement and the many-body localization (MBL) transition in this system. We develop an analogy to higher-dimensional short-range systems to compare and contrast such behavior with the physics of MBL in a higher dimension.

  2. Small high-speed dynamic target at close range laser active imaging system

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Wang, Du-yue; Zhang, Zheng; Zhang, Yue; Dai, Qin

    2016-11-01

    In the shooting range measuring, all-weather, high speed, unattended, the new concepts such as the remote control is gradually applied. In this paper, a new type of low cost range measurement system, using FPGA + MCU as electronic control system of laser active illumination and high-speed CMOS camera, data to the rear zone by using optical fiber communications, transmission and realizes the remote control of unmanned, due to the low cost of front-end equipment, can be used as consumables replacement at any time, combined with distributed layout principle, can maximum limit close to the measured with mutilate ability goal, thus to achieve the goal of small high-speed dynamic imaging from close range.

  3. Universal threshold for the dynamical behavior of lattice systems with long-range interactions.

    PubMed

    Bachelard, Romain; Kastner, Michael

    2013-04-26

    Dynamical properties of lattice systems with long-range pair interactions, decaying like 1/r(α) with the distance r, are investigated, in particular the time scales governing the relaxation to equilibrium. Upon varying the interaction range α, we find evidence for the existence of a threshold at α=d/2, dependent on the spatial dimension d, at which the relaxation behavior changes qualitatively and the corresponding scaling exponents switch to a different regime. Based on analytical as well as numerical observations in systems of vastly differing nature, ranging from quantum to classical, from ferromagnetic to antiferromagnetic, and including a variety of lattice structures, we conjecture this threshold and some of its characteristic properties to be universal.

  4. Long-range protein-water dynamics in hyperactive insect antifreeze proteins.

    PubMed

    Meister, Konrad; Ebbinghaus, Simon; Xu, Yao; Duman, John G; DeVries, Arthur; Gruebele, Martin; Leitner, David M; Havenith, Martina

    2013-01-29

    Antifreeze proteins (AFPs) are specific proteins that are able to lower the freezing point of aqueous solutions relative to the melting point. Hyperactive AFPs, identified in insects, have an especially high ability to depress the freezing point by far exceeding the abilities of other AFPs. In previous studies, we postulated that the activity of AFPs can be attributed to two distinct molecular mechanisms: (i) short-range direct interaction of the protein surface with the growing ice face and (ii) long-range interaction by protein-induced water dynamics extending up to 20 Å from the protein surface. In the present paper, we combine terahertz spectroscopy and molecular simulations to prove that long-range protein-water interactions make essential contributions to the high antifreeze activity of insect AFPs from the beetle Dendroides canadensis. We also support our hypothesis by studying the effect of the addition of the osmolyte sodium citrate.

  5. Slow dynamics in many-body quantum systems with long range interactions

    NASA Astrophysics Data System (ADS)

    Santos, Lea; Perez-Bernal, Francisco

    2016-05-01

    In recent experiments with ion traps the range of the interactions between spins-1/2 can be controlled. In the limit of infinite-range interaction the system may be described by the Lipkin model, which exhibits an excited state quantum phase transition (ESQPT). The latter corresponds to a singularity in the spectrum that occurs at the ground state and propagates to higher energies as the control parameter increases beyond the ground state critical point. We show that the evolution of an initial state with energy close to the ESQPT critical point may be extremely slow. This result is surprising, since the dynamics is usually expected to be very fast in systems with long-range interactions. This behavior is justified with the analysis of the structures of the eigenstates. This work was supported by the NSF Grant No. DMR-1147430.

  6. Three dimensional atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters

    NASA Astrophysics Data System (ADS)

    Kaspi, Y.; Showman, A. P.

    2014-04-01

    The recent discoveries of terrestrial exoplanets and super Earths extending over a broad range of orbital and physical parameters, suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone-including transitions to Snowballlike states and runaway-greenhouse feedbacks-depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, planetary mass, surface gravity, heat flux from a parent star and atmospheric mass affect the atmospheric circulation and temperature distribution on such planets. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley cells, and the equator-to-pole temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global-scale climate feedbacks that control the width of the habitable zone.

  7. Atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Showman, Adam

    2014-05-01

    The recent discoveries of terrestrial exoplanets and super Earths extending over a broad range of orbital and physical parameters, suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone--including transitions to Snowball-like states and runaway-greenhouse feedbacks--depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, planetary mass, surface gravity, heat flux from a parent star, atmospheric mass and optical thickness affect the atmospheric circulation and temperature distribution on such planets. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley cells, and the equator-to-pole temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global-scale climate feedbacks that control the width of the habitable zone.

  8. Acute Effects of Different Agonist and Antagonist Stretching Arrangements on Static and Dynamic Range of Motion

    PubMed Central

    Amiri-Khorasani, Mohammadtaghi; Kellis, Eleftherios

    2015-01-01

    Background: Traditionally, stretching exercises are considered as basic components of warm up aiming to prepare the musculoskeletal system for performance and to prevent injuries. Objectives: The purpose of this study was to examine the effects of different agonist and antagonist stretching arrangements within a pre-exercise warm-up on hip static (SROM) and dynamic range of motion (DROM). Materials and Methods: Sixty trained male subjects (Mean ± SD: height, 177.38 ± 6.92 cm; body mass, 68.4 ± 10.22 kg; age, 21.52 ± 1.17 years) volunteered to participate in this study. SROM was measured by V-sit test and DROM captured by a motion analysis system before and after (i) static stretching for both hip flexor and extensor muscles (SFSE), (ii) dynamic stretching for both hip flexor and extensor muscles (DFDE), (iii) static stretching for the hip flexors and dynamic stretching for hip extensors (SFDE), and (iv) dynamic stretching for the hip flexors and static stretching for hip extensors (DFSE). Results: DFSE showed a significantly higher increase in DROM and SROM than the remainder of the stretching protocols (P < 0.05). There were significant differences between DFDE with SFSE and SFDE (P < 0.05) and SFSE showed significant increase as compared to SFDE (P < 0.05). Conclusions: In conclusion, DFSE is probably the best stretching arrangement due to producing more post activation potentiation on agonist muscles and less muscle stiffness in antagonist muscles. PMID:26715975

  9. Territoriality and home-range dynamics in meerkats, Suricata suricatta: a mechanistic modelling approach.

    PubMed

    Bateman, Andrew W; Lewis, Mark A; Gall, Gabriella; Manser, Marta B; Clutton-Brock, Tim H

    2015-01-01

    Multiple approaches exist to model patterns of space use across species, among them resource selection analysis, statistical home-range modelling and mechanistic movement modelling. Mechanistic home-range models combine the benefits of these approaches, describing emergent territorial patterns based on fine-scale individual- or group-movement rules and incorporating interactions with neighbours and the environment. These models have not, to date, been extended to dynamic contexts. Using mechanistic home-range models, we explore meerkat (Suricata suricatta) territorial patterns, considering scent marking, direct group interactions and habitat selection. We also extend the models to accommodate dynamic aspects of meerkat territoriality (territory development and territory shift). We fit models, representing multiple working hypotheses, to data from a long-term meerkat study in South Africa, and we compare models using Akaike's and Bayesian Information Criteria. Our results identify important features of meerkat territorial patterns. Notably, larger groups do not seem to control larger territories, and groups apparently prefer dune edges along a dry river bed. Our model extensions capture instances in which 1) a newly formed group interacts more strongly with its parent groups over time and 2) a group moves its territory core out of aversive habitat. This extends our mechanistic modelling framework in previously unexplored directions.

  10. On metrics for objective and subjective evaluation of high dynamic range video

    NASA Astrophysics Data System (ADS)

    Minoo, Koohyar; Gu, Zhouye; Baylon, David; Luthra, Ajay

    2015-09-01

    In high dynamic range (HDR) video, it is possible to represent a wider range of intensities and contrasts compared to the current standard dynamic range (SDR) video. HDR video can simultaneously preserve details in very bright and very dark areas of a scene whereas these details become lost or washed out in SDR video. Because the perceived quality due to this increased fidelity may not fit the same model of perceived quality in the SDR video, it is not clear whether the objective metrics that have been widely used and studied for SDR visual experience are reasonably accurate for HDR cases, in terms of correlation with subjective measurement for HDR video quality. This paper investigates several objective metrics and their correlation to subjective quality for a variety of HDR video content. Results are given for the case of HDR content compressed at different bit rates. In addition to rating the relevance of each objective metric in terms of its correlation to the subjective measurements, comparisons are also presented to show how closely different objective metrics can predict the results obtained by subjective quality assessment in terms of coding efficiency provided by different coding processes.

  11. An Analog Gamma Correction Scheme for High Dynamic Range CMOS Logarithmic Image Sensors

    PubMed Central

    Cao, Yuan; Pan, Xiaofang; Zhao, Xiaojin; Wu, Huisi

    2014-01-01

    In this paper, a novel analog gamma correction scheme with a logarithmic image sensor dedicated to minimize the quantization noise of the high dynamic applications is presented. The proposed implementation exploits a non-linear voltage-controlled-oscillator (VCO) based analog-to-digital converter (ADC) to perform the gamma correction during the analog-to-digital conversion. As a result, the quantization noise does not increase while the same high dynamic range of logarithmic image sensor is preserved. Moreover, by combining the gamma correction with the analog-to-digital conversion, the silicon area and overall power consumption can be greatly reduced. The proposed gamma correction scheme is validated by the reported simulation results and the experimental results measured for our designed test structure, which is fabricated with 0.35 μm standard complementary-metal-oxide-semiconductor (CMOS) process. PMID:25517692

  12. Numerical study of the dynamics of some long range spin glass models

    NASA Astrophysics Data System (ADS)

    Billoire, Alain

    2015-07-01

    We present results of a Monte Carlo study of the equilibrium dynamics of the one dimensional long-range Ising spin glass model. By tuning a parameter σ , this model interpolates between the mean field Sherrington-Kirkpatrick model and a proxy of the finite dimensional Edward-Anderson model. Activated scaling fits for the behavior of the relaxation time τ as a function of the number of spins N (Namely \\ln (τ )\\propto {{N}\\psi} ) give values of \\psi that are not stable against inclusion of subleading corrections. Critical scaling (τ \\propto {{N}ρ} ) gives more stable fits, at least in the non mean field region. We also present results on the scaling of the time decay of the critical remanent magnetization of the Sherrington-Kirkpatrick model, a case where the simulation can be done with quite large systems and that shows the difficulties in obtaining precise values for dynamical exponents in spin glass models.

  13. Digital camera workflow for high dynamic range images using a model of retinal processing

    NASA Astrophysics Data System (ADS)

    Tamburrino, Daniel; Alleysson, David; Meylan, Laurence; Süsstrunk, Sabine

    2008-02-01

    We propose a complete digital camera workflow to capture and render high dynamic range (HDR) static scenes, from RAW sensor data to an output-referred encoded image. In traditional digital camera processing, demosaicing is one of the first operations done after scene analysis. It is followed by rendering operations, such as color correction and tone mapping. In our workflow, which is based on a model of retinal processing, most of the rendering steps are performed before demosaicing. This reduces the complexity of the computation, as only one third of the pixels are processed. This is especially important as our tone mapping operator applies local and global tone corrections, which is usually needed to well render high dynamic scenes. Our algorithms efficiently process HDR images with different keys and different content.

  14. Simulation of Heavy Lift Airship dynamics over large ranges of incidence and speed

    NASA Technical Reports Server (NTRS)

    Tischler, M. B.; Jex, H. R.; Ringland, R. F.

    1981-01-01

    A nonlinear, multibody, six-degrees-of-freedom digital simulation has been developed to study generic Heavy Lift Airship (HLA) dynamics and control. The basic aerodynamic functions developed to model the hull, tail, and rotor loads continuously over all incidence ranges are reviewed and applied to a Quadrotor HLA with a low fineness ratio hull and a small vee-tail. Trim calculations for a test vehicle suggest control power deficiencies in crosswind stationkeeping for the unloaded vehicle. Gust responses show the importance of correctly calculating loads due to accelerated relative motion of air and hull. Numerically linearized dynamics for the test vehicle show the existence of a divergent yaw mode, and an oscillatory pitch mode whose stability characteristics are sensitive to flight speed. A considerable improvement in the vehicle's stability and response results from a simple multi-axis closed-loop control system operating on the rotors and propeller blades.

  15. An analog gamma correction scheme for high dynamic range CMOS logarithmic image sensors.

    PubMed

    Cao, Yuan; Pan, Xiaofang; Zhao, Xiaojin; Wu, Huisi

    2014-12-15

    In this paper, a novel analog gamma correction scheme with a logarithmic image sensor dedicated to minimize the quantization noise of the high dynamic applications is presented. The proposed implementation exploits a non-linear voltage-controlled-oscillator (VCO) based analog-to-digital converter (ADC) to perform the gamma correction during the analog-to-digital conversion. As a result, the quantization noise does not increase while the same high dynamic range of logarithmic image sensor is preserved. Moreover, by combining the gamma correction with the analog-to-digital conversion, the silicon area and overall power consumption can be greatly reduced. The proposed gamma correction scheme is validated by the reported simulation results and the experimental results measured for our designed test structure, which is fabricated with 0.35 μm standard complementary-metal-oxide-semiconductor (CMOS) process.

  16. Atmospheric Dynamics of Terrestrial Exoplanets Over a Wide Range of Orbital and Atmospheric Parameters

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Showman, Adam P.

    2014-11-01

    Since the mid-1990s, nearly 1800 exoplanets have been discovered around other stars. Exoplanet discovery and characterization began with giant planets, but as the observational techniques are advancing the emphasis is gradually shifting to smaller worlds. The recent discoveries of terrestrial exoplanets and super Earths extending over a broad range of orbital and physical parameters suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone---including transitions to Snowball-like states and runaway-greenhouse feedbacks---depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we discuss the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, planetary mass, surface gravity, heat flux from a parent star, optical thickness and atmospheric mass affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet stream, Hadley and Ferrel cells and latitudinal temperature differences. Finally, we will

  17. High dynamic range CMOS-based mammography detector for FFDM and DBT

    NASA Astrophysics Data System (ADS)

    Peters, Inge M.; Smit, Chiel; Miller, James J.; Lomako, Andrey

    2016-03-01

    Digital Breast Tomosynthesis (DBT) requires excellent image quality in a dynamic mode at very low dose levels while Full Field Digital Mammography (FFDM) is a static imaging modality that requires high saturation dose levels. These opposing requirements can only be met by a dynamic detector with a high dynamic range. This paper will discuss a wafer-scale CMOS-based mammography detector with 49.5 μm pixels and a CsI scintillator. Excellent image quality is obtained for FFDM as well as DBT applications, comparing favorably with a-Se detectors that dominate the X-ray mammography market today. The typical dynamic range of a mammography detector is not high enough to accommodate both the low noise and the high saturation dose requirements for DBT and FFDM applications, respectively. An approach based on gain switching does not provide the signal-to-noise benefits in the low-dose DBT conditions. The solution to this is to add frame summing functionality to the detector. In one X-ray pulse several image frames will be acquired and summed. The requirements to implement this into a detector are low noise levels, high frame rates and low lag performance, all of which are unique characteristics of CMOS detectors. Results are presented to prove that excellent image quality is achieved, using a single detector for both DBT as well as FFDM dose conditions. This method of frame summing gave the opportunity to optimize the detector noise and saturation level for DBT applications, to achieve high DQE level at low dose, without compromising the FFDM performance.

  18. A single-element, thermal, flow-velocity sensor with wide dynamic range

    NASA Astrophysics Data System (ADS)

    Al-Salaymeh, A.; Durst, F.; Gad-El-Hak, M.

    2001-11-01

    Thermal flow sensors with a wide dynamic range approaching 1:1000 are presently not available in spite of the large demand for such sensors in practical fluid flow measurements. During the last meeting (paper JG4, Bul. Am. Phys. Soc. 45, no. 9, p. 141, 2000), we described such a probe consisting of a minute wire heated using sinusoidal alternating current and two sensing wires acting as resistance thermometers and set parallel to, and at a small distance on either side of, the pulsed wire. Herein we detail the development of a single wire heated using square waves of electrical current. The elimination of the sensing wires reduces the complexity as well as the cost of the sensor and improves its spatial resolution. Unlike time-of-flight sensors, however, the present single-element sensor is sensitive to the physical properties and temperature of the ambient fluid. The present device is suited for measuring slowly-varying unidirectional flows over a very wide dynamic range. For a given current amplitude and frequency, the nominal output of the single sensor is the increase in wire temperature (or resistance) between times just before the leading edge of the current pulse and just after the trailing edge of the pulse. In practice, an integral of the resistance over the pulse duration is computed and averaged over several pulses. This output is a function of the wire’s time constant or thermal inertia and thus of the flow speed as well as the heat convected from the heated wire to the flow. We exploit the fact that the time constant decreases as the flow speed increases while the rate of heat transfer increases. At very low flow speeds, the response is determined almost entirely by the time constant whereas at high speeds the device acts almost like a constant-current hot-wire anemometer. At low speeds, therefore, the wire thermal inertia augments the output signal of the basic hot wire increasing its speed range and sensitivity above that of a conventional hot

  19. Macular SD-OCT Outcome Measures: Comparison of Local Structure-Function Relationships and Dynamic Range

    PubMed Central

    Miraftabi, Arezoo; Amini, Navid; Morales, Esteban; Henry, Sharon; Yu, Fei; Afifi, Abdolmonem; Coleman, Anne L.; Caprioli, Joseph; Nouri-Mahdavi, Kouros

    2016-01-01

    Purpose We tested the hypothesis that the macular ganglion cell layer (GCL) thickness demonstrates a stronger structure-function (SF) relationship and extends the useful range of macular measurements compared with combined macular inner layer or full thickness. Methods Ninety-eight glaucomatous eyes and eight normal eyes with macular spectral domain optical coherence tomography (SD-OCT) volume scans and 10-2 visual fields were enrolled. Inner plexiform layer (IPL), GCL, macular retinal nerve fiber layer (mRNFL), ganglion cell-inner plexiform layer (GCIPL), ganglion cell complex (GCC), and full thickness (FT) measurements were calculated for 8 × 8 arrays of 3° superpixels. Main outcome measures were local structure-function relationships between macular superpixels and corresponding sensitivities on 10-2 fields after adjusting for ganglion cell displacement, dynamic range of measurements, and the change point (total deviation value where macular parameters reached measurement floor). Results Median (interquartile range [IQR]) mean deviation was −7.2 (−11.6 to −3.2) dB in glaucoma eyes. Strength of SF relationships was highest for GCIPL, GCL, GCC, and IPL (ρ = 0.635, 0.627, 0.621, and 0.577, respectively; P ≤ 0.046 for comparisons against GCIPL). Highest SF correlations coincided with the peak of GCL thickness, where the dynamic range was widest for FT (81.1 μm), followed by GCC (65.7 μm), GCIPL (54.9 μm), GCL (35.2 μm), mRNFL (27.5 μm), and IPL (20.9 μm). Change points were similar for all macular parameters (−7.8 to −8.9 dB). Conclusions GCIPL, GCL, and GCC demonstrated comparable SF relationships while FT, GCC, and GCIPL had the widest dynamic range. Measurement of GCL did not extend the range of useful structural measurements. Measuring GCL does not provide any advantage for detection of progression with current SD-OCT technology. PMID:27623336

  20. Bayer patterned high dynamic range image reconstruction using adaptive weighting function

    NASA Astrophysics Data System (ADS)

    Kang, Hee; Lee, Suk Ho; Song, Ki Sun; Kang, Moon Gi

    2014-12-01

    It is not easy to acquire a desired high dynamic range (HDR) image directly from a camera due to the limited dynamic range of most image sensors. Therefore, generally, a post-process called HDR image reconstruction is used, which reconstructs an HDR image from a set of differently exposed images to overcome the limited dynamic range. However, conventional HDR image reconstruction methods suffer from noise factors and ghost artifacts. This is due to the fact that the input images taken with a short exposure time contain much noise in the dark regions, which contributes to increased noise in the corresponding dark regions of the reconstructed HDR image. Furthermore, since input images are acquired at different times, the images contain different motion information, which results in ghost artifacts. In this paper, we propose an HDR image reconstruction method which reduces the impact of the noise factors and prevents ghost artifacts. To reduce the influence of the noise factors, the weighting function, which determines the contribution of a certain input image to the reconstructed HDR image, is designed to adapt to the exposure time and local motions. Furthermore, the weighting function is designed to exclude ghosting regions by considering the differences of the luminance and the chrominance values between several input images. Unlike conventional methods, which generally work on a color image processed by the image processing module (IPM), the proposed method works directly on the Bayer raw image. This allows for a linear camera response function and also improves the efficiency in hardware implementation. Experimental results show that the proposed method can reconstruct high-quality Bayer patterned HDR images while being robust against ghost artifacts and noise factors.

  1. Adaptive uniform grayscale coded aperture design for high dynamic range compressive spectral imaging

    NASA Astrophysics Data System (ADS)

    Diaz, Nelson; Rueda, Hoover; Arguello, Henry

    2016-05-01

    Imaging spectroscopy is an important area with many applications in surveillance, agriculture and medicine. The disadvantage of conventional spectroscopy techniques is that they collect the whole datacube. In contrast, compressive spectral imaging systems capture snapshot compressive projections, which are the input of reconstruction algorithms to yield the underlying datacube. Common compressive spectral imagers use coded apertures to perform the coded projections. The coded apertures are the key elements in these imagers since they define the sensing matrix of the system. The proper design of the coded aperture entries leads to a good quality in the reconstruction. In addition, the compressive measurements are prone to saturation due to the limited dynamic range of the sensor, hence the design of coded apertures must consider saturation. The saturation errors in compressive measurements are unbounded and compressive sensing recovery algorithms only provide solutions for bounded noise or bounded with high probability. In this paper it is proposed the design of uniform adaptive grayscale coded apertures (UAGCA) to improve the dynamic range of the estimated spectral images by reducing the saturation levels. The saturation is attenuated between snapshots using an adaptive filter which updates the entries of the grayscale coded aperture based on the previous snapshots. The coded apertures are optimized in terms of transmittance and number of grayscale levels. The advantage of the proposed method is the efficient use of the dynamic range of the image sensor. Extensive simulations show improvements in the image reconstruction of the proposed method compared with grayscale coded apertures (UGCA) and adaptive block-unblock coded apertures (ABCA) in up to 10 dB.

  2. Method of Improving a Digital Image as a Function of its Dynamic Range

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn (Inventor); Jobson, Daniel J. (Inventor); Rahman, Zia-ur (Inventor)

    2004-01-01

    The present invention is a method of processing a digital image that is initially represented by digital data indexed to represent position on a display. The digital data is indicative of an intensity value I(sub i)(x,y) for each position (x,y) in each i-th spectral band. A classification of the image based on its dynamic range is then defined in each of the image's S spectral bands. The intensity value for each position in each i-th spectral band is adjusted to generate an adjusted intensity value for each position in each i-th spectral band in accordance with SIGMA (sup n)(sub n=1) W(sub n)(log I (sub i)(x,y) - log[I(sub i)(x,y)*F(sub n)(x,y)]), i=1,...,S where W(sub n) is a weighting factor, "*" is the convolution operator and S is the total number of unique spectral bands. For each n, the function F(sub n)(x,y) is a unique surround function applied to each position (x,y) and N is the total number of unique surround functions. Each unique surround function is scaled to improve some aspect of the digital image, e.g., dynamic range compression, color constancy, and lightness rendition. The adjusted intensity value to each position in each i-th spectral band of the image is then filtered with a filter function that is based on the dynamic range classification of the image.

  3. Deeply trapped electrons in imaging plates and their utilization for extending the dynamic range

    NASA Astrophysics Data System (ADS)

    Ohuchi, Hiroko; Kondo, Yasuhiro

    2010-09-01

    The absorption spectra of deep centers in an imaging plate (IP) made of BaFBr 0:85I 0:15:Eu 2+ have been studied in the ultraviolet region. Electrons trapped in deep centers are considered to be the cause of unerasable and reappearing latent images in IPs over-irradiated with X-rays. Deep centers showed a dominant peak at around 320 nm, followed by two small peaks at around 345 and 380 nm. By utilizing deeply trapped electrons, we have attempted to extend the dynamic range of an IP. The IP was irradiated by 150-kV X-rays with doses from 8.07 mGy to 80.7 Gy. Reading out the latent image by the stimulation of Eu 2+ luminescence with a 633-nm He-Ne laser light from a conventional Fuji reader showed a linear relationship with irradiated dose up to 0.8 Gy, but then becoming non-linear. After fully erasing with visible light, unerasable latent images were read out using 635-nm semi-conductor laser light combined with a photon-counting detection system. The dose-response curve so obtained gave a further two orders of magnitude extending the dynamic range up to 80.7 Gy. Comprehensive results indicate that electrons supplied from deep centers to the F centers provided the extended dynamic range after the F centers became saturated. Based on these facts, a model of the excitation of deeply trapped electrons and PSL processes is proposed.

  4. Short-range order and dynamics of atoms in liquid gallium

    SciTech Connect

    Mokshin, A. V. Khusnutdinoff, R. M.; Novikov, A. G.; Blagoveshchenskii, N. M.; Puchkov, A. V.

    2015-11-15

    The features of the microscopic structure, as well as one-particle and collective dynamics of liquid gallium in the temperature range from T = 313 to 1273 K, are studied on the p = 1.0 atm isobar. Detailed analysis of the data on diffraction of neutrons and X-rays, as well as the results of atomic dynamics simulation, lead to some conclusions about the structure. In particular, for preset conditions, gallium is in the equilibrium liquid phase showing no features of any stable local crystalline clusters. The pronounced asymmetry of the principle peak of the static structure factor and the characteristic “shoulder” in its right-hand part appearing at temperatures close to the melting point, which are clearly observed in the diffraction data, are due to the fact that the arrangement of the nearest neighbors of an arbitrary atom in the system is estimated statistically from the range of correlation length values and not by a single value as in the case of simple liquids. Compactly located dimers with a very short bond make a significant contribution to the statistics of nearest neighbors. The temperature dependence of the self-diffusion coefficient calculated from atomic dynamics simulation agrees well with the results obtained from experimental spectra of the incoherent scattering function. Interpolation of the temperature dependence of the self-diffusion coefficient on a logarithmic scale reveals two linear regions with a transition temperature of about 600 K. The spectra of the dynamic structure factor and spectral densities of the local current calculated by simulating the atomic dynamics indicate the existence of acoustic vibrations with longitudinal and transverse polarizations in liquid gallium, which is confirmed by experimental data on inelastic scattering of neutrons and X-rays. It is found that the vibrational density of states is completely reproduced by the generalized Debye model, which makes it possible to decompose the total vibrational motion into

  5. Development of a precision, wide-dynamic-range actuator for use in active optical systems

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Aubrun, J-N.; Zacharie, D. F.; Perez, E. O.

    1989-01-01

    The design, operation, and performance of a wide-dynamic-range optical-quality actuator are discussed. The actuator uses a closed-loop control system to maintain accurate positioning and has an rms noise performance of 20 nm. A unique force offloading mechanism allows the actuator coil to dissipate less than 3 mW under quiescent conditions. The operation of an experimental segmented optical system that uses 18 of the actuators is examined to show how they are integrated into an actual system.

  6. An atomic magnetometer with autonomous frequency stabilization and large dynamic range

    SciTech Connect

    Pradhan, S. E-mail: pradhans75@gmail.com; Poornima,; Dasgupta, K.; Mishra, S.; Behera, R.

    2015-06-15

    The operation of a highly sensitive atomic magnetometer using elliptically polarized resonant light is demonstrated. It is based on measurement of zero magnetic field resonance in degenerate two level systems using polarimetric detection. The transmitted light through the polarimeter is used for laser frequency stabilization, whereas reflected light is used for magnetic field measurement. Thus, the experimental geometry allows autonomous frequency stabilization of the laser frequency leading to compact operation of the overall device and has a preliminary sensitivity of <10 pT/Hz{sup 1/2} @ 1 Hz. Additionally, the dynamic range of the device is improved by feedback controlling the bias magnetic field without compromising on its sensitivity.

  7. Design and testing of magnetorheological valve with fast force response time and great dynamic force range

    NASA Astrophysics Data System (ADS)

    Kubík, M.; Macháček, O.; Strecker, Z.; Roupec, J.; Mazůrek, I.

    2017-04-01

    The paper deals with design, simulation and experimental testing of a magnetorheological (MR) valve with short response time. The short response time is achieved by a suitable design of an active zone in combination with use of a ferrite material for magnetic circuit. The magneto-static model and the simplified hydraulic model of the MR valve are examined and experimentally verified. The development the MR valve achieves an average response time 4.1 ms and the maximum dynamic force range of eight.

  8. The Dynamic Range of Ultra-High Resolution Cryogenic Gamma-ray Spectrometers

    SciTech Connect

    Ali, S; Terracol, S F; Drury, O B; Friedrich, S

    2005-08-10

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to multilayer Mo/Cu transition-edge sensors (TES). The energy resolution achieved with a 1 x 1 x 0.25 mm{sup 3} Sn absorber is 50 -90eV for {gamma}-rays up to 100 keV and it decreases for large absorber sizes. We discuss the trade-offs between energy resolution and dynamic range, as well as development of TES arrays for higher count rates and better sensitivity.

  9. An atomic magnetometer with autonomous frequency stabilization and large dynamic range.

    PubMed

    Pradhan, S; Mishra, S; Behera, R; Poornima; Dasgupta, K

    2015-06-01

    The operation of a highly sensitive atomic magnetometer using elliptically polarized resonant light is demonstrated. It is based on measurement of zero magnetic field resonance in degenerate two level systems using polarimetric detection. The transmitted light through the polarimeter is used for laser frequency stabilization, whereas reflected light is used for magnetic field measurement. Thus, the experimental geometry allows autonomous frequency stabilization of the laser frequency leading to compact operation of the overall device and has a preliminary sensitivity of <10 pT/Hz(1/2) @ 1 Hz. Additionally, the dynamic range of the device is improved by feedback controlling the bias magnetic field without compromising on its sensitivity.

  10. A portable surface plasmon resonance biosensor capable of phase interrogation in a large dynamic range

    NASA Astrophysics Data System (ADS)

    Chen, How-Foo; Chuang, Hsin-Yuan; Chen, Chih-Hang; Chang, Yun-Hsiang

    2014-08-01

    With the development of a point of care (POC) biosensor in mind, a polymer-molding prism with double parabolic surfaces is invented and developed to implement an ultra-compact SPR biosensor with extremely high sensitivity. The polymer molded parabolic prism is cost effective and disposable, thus cross contamination between biological samples can be avoided. A highly sensitive biosensor with a form factor less than 15cm*15cm*5cm was received with a tunable excitation angle of light beam for a large dynamic range. A highly sensitive optical phase interrogation was demonstrated. The biosensor is also compatible to a modern microscopy platform.

  11. Evaluation of High Dynamic Range Photography as a Luminance Mapping Technique

    SciTech Connect

    Inanici, Mehlika; Galvin, Jim

    2004-12-30

    The potential, limitations, and applicability of the High Dynamic Range (HDR) photography technique is evaluated as a luminance mapping tool. Multiple exposure photographs of static scenes are taken with a Nikon 5400 digital camera to capture the wide luminance variation within the scenes. The camera response function is computationally derived using the Photosphere software, and is used to fuse the multiple photographs into HDR images. The vignetting effect and point spread function of the camera and lens system is determined. Laboratory and field studies have shown that the pixel values in the HDR photographs can correspond to the physical quantity of luminance with reasonable precision and repeatability.

  12. Stretching and bending dynamics in triatomic ultralong-range Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Fey, Christian; Kurz, Markus; Schmelcher, Peter

    2016-07-01

    We investigate polyatomic ultralong-range Rydberg molecules consisting of three ground-state atoms bound to a Rydberg atom via s - and p -wave interactions. By employing the finite basis set representation of the unperturbed Rydberg electron Green's function we reduce the computational effort to solve the electronic problem substantially. This method is subsequently applied to determine the potential energy surfaces of triatomic systems in electronic s - and p -Rydberg states. Their molecular geometry and resulting vibrational structure are analyzed within an adiabatic approach that separates the vibrational bending and stretching dynamics. This procedure yields information on the radial and angular arrangement of the nuclei and indicates in particular that kinetic couplings between bending and stretching modes induce a linear structure in triatomic l =0 ultralong-range Rydberg molecules.

  13. Single cluster dynamics for the infinite range O(n) model

    NASA Astrophysics Data System (ADS)

    Brower, R. C.; Gross, N. A.; Moriarty, K. J. M.; Tamayo, P.

    1994-03-01

    This paper presents a study of Wolff's single cluster acceleration algorithm for O( n) models in the infinite range or mean-field limit. Numerical results for n = 2, 3 and 4 are consistent with the complete elimination of critical slowing down. Also a heuristic argument is advanced to support the value of z = 0 for the dynamic critical exponent. A new cluster growth algorithm is formulated for the infinite range model that has optimal efficiency of O(inN) in the system size N for the Swendsen-Wang update scheme. Using an asymptotically correct version of this cluster method, we are able to perform simulations for the Wolff update scheme up to 262,144 spins for 10 5 time steps for the O( N) models.

  14. Quercus suber range dynamics by ecological niche modelling: from the Last Interglacial to present time

    NASA Astrophysics Data System (ADS)

    Vessella, Federico; Simeone, Marco Cosimo; Schirone, Bartolomeo

    2015-07-01

    Ecological Niche Modelling (ENM) is widely used to depict species potential occurrence according to environmental variables under different climatic scenarios. We tested the ENM approach to infer past range dynamics of cork oak, a keystone species of the Mediterranean Biome, from 130 ka to the present time. Hindcasting implications would deal with a better species risk assessment and conservation management for the future. We modelled present and past occurrence of cork oak using seven ENM algorithms, starting from 63,733 spatially unique presence points at 30 arc-second resolution. Fourteen environmental variables were used and four time slices were considered (Last Interglacial, Last Glacial Maximum, mid-Holocene and present time). A threshold-independent evaluation of the goodness-of-fit of the models was evaluated by means of ROC curve and fossil or historical evidences were used to validate the results. Four weighted average maps depicted the dynamics of area suitability for cork oak in the last 130 ka. The derived species autoecology allowed its long-term occurrence in the Mediterranean without striking range reduction or shifting. Fossil and historical post-processing validation support the modelled past spatial extension and a neglected species presence at Levantine until the recent time. Despite the severe climatic oscillation since the Last Glacial Maximum, cork oak potential distribution area experienced limited range changes, confirming its strong link with the Mediterranean Basin. The ecological amplitude of Quercus suber could be therefore adopted as a reference to trace the Mediterranean bioclimate area. A better knowledge of the past events of Mediterranean vegetation, a wider range of study species and environmental determinants are essential to inform us about its current state, its sensitivity to human impact and the potential responses to future changes.

  15. Dynamic techniques for studies of secular variations in position from ranging to satellites. [using laser range measurements

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Kolenkiewicz, R.; Agreen, R. W.; Dunn, P. J.

    1974-01-01

    Satellite laser range measurements were applied to the study of latitude variation arising from polar motion, and the solid-earth and ocean tidal distortion of the earth's gravity field. Experiments involving two laser tracking stations were conducted. The relative location of one station with respect to the other was determined by performing simultaneous range measurements to a satellite from two stations several hundred kilometers apart. The application of this technique to the San Andreas Fault Experiment in California is discussed. Future capabilities of spacecraft equipped with laser retroreflectors include: (1) determination of the product of the earth's mass and gravitational constant; (2) measurement of crustal and tectonic motions; (3) determination of the elastic response of the solid-earth tidal forces; (4) measurement of the amplitudes and phase of certain components of the ocean tides; and (5) self-monitoring of the latitude and height variations of the tracking station.

  16. Coarsening dynamics in condensing zero-range processes and size-biased birth death chains

    NASA Astrophysics Data System (ADS)

    Jatuviriyapornchai, Watthanan; Grosskinsky, Stefan

    2016-05-01

    Zero-range processes with decreasing jump rates are well known to exhibit a condensation transition under certain conditions on the jump rates, and the dynamics of this transition continues to be a subject of current research interest. Starting from homogeneous initial conditions, the time evolution of the condensed phase exhibits an interesting coarsening phenomenon of mass transport between cluster sites characterized by a power law. We revisit the approach in Godrèche (2003 J. Phys. A: Math. Gen. 36 6313) to derive effective single site dynamics which form a nonlinear birth death chain describing the coarsening behavior. We extend these results to a larger class of parameter values, and introduce a size-biased version of the single site process, which provides an effective tool to analyze the dynamics of the condensed phase without finite size effects and is the main novelty of this paper. Our results are based on a few heuristic assumptions and exact computations, and are corroborated by detailed simulation data.

  17. Quantum spin dynamics and entanglement in systems with long-range interactions

    NASA Astrophysics Data System (ADS)

    Rey, Ana M.

    One of the fundamental goals of modern quantum sciences is to learn how to control and manipulate non-equilibrium many-body systems and use them to make powerful and improved quantum devices, materials and technologies. However, out-of-equilibrium systems are complex, typically strongly correlated and entangled, and thus to model them we are in an urgent need of new methodologies. In this talk I will discuss new theoretical methods that we have developed to investigate emergent non-equilibrium phenomena in driven-dissipative spin systems interacting via long-range interactions. I will show we can capture the dynamics of correlations and entanglement in close systems and the interplay between dissipation and entanglement in open quantum systems including spin-boson models. As a specific application I will discuss the use of our methods to model the spin dynamics exhibited by arrays of trapped ions with controllable long-range interactions. I will show that our predictions are consistent with recent experimental measurements. I will also discuss new protocols to diagnostic and characterize entanglement based on well-established NMR protocols This work is supported by NSF, ARO, AFOSR-MURI, and NIST.

  18. Design of a full-dynamic-range balanced detection heterodyne gyroscope with common-path configuration.

    PubMed

    Lin, Chu-En; Yu, Chih-Jen; Chen, Chii-Chang

    2013-04-22

    In this article, we propose an optical heterodyne common-path gyroscope which has common-path configuration and full-dynamic range. Different from traditional non-common-path optical heterodyne technique such as Mach-Zehnder or Michelson interferometers, we use a two-frequency laser light source (TFLS) which can generate two orthogonally polarized light with a beat frequency has a common-path configuration. By use of phase measurement, this optical heterodyne gyroscope not only has the capability to overcome the drawback of the traditional interferometric fiber optic gyro: lack for full-dynamic range, but also eliminate the total polarization rotation caused by SMFs. Moreover, we also demonstrate the potential of miniaturizing this gyroscope as a chip device. Theoretically, if we assume that the wavelength of the laser light is 1550nm, the SMFs are 250m in length, and the radius of the fiber ring is 3.5cm, the bias stability is 0.872 deg/hr.

  19. Host-Range Dynamics of Cochliobolus lunatus: From a Biocontrol Agent to a Severe Environmental Threat

    PubMed Central

    Louis, Bengyella; Waikhom, Sayanika Devi; Roy, Pranab; Bhardwaj, Pardeep Kumar; Sharma, Chandradev K.; Singh, Mohendro Wakambam; Talukdar, Narayan Chandra

    2014-01-01

    We undertook an investigation to advance understanding of the host-range dynamics and biocontrol implications of Cochliobolus lunatus in the past decade. Potato (Solanum tuberosum L) farms were routinely surveyed for brown-to-black leaf spot disease caused by C. lunatus. A biphasic gene data set was assembled and databases were mined for reported hosts of C. lunatus in the last decade. The placement of five virulent strains of C. lunatus causing foliar necrosis of potato was studied with microscopic and phylogenetic tools. Analysis of morphology showed intraspecific variations in stromatic tissues among the virulent strains causing foliar necrosis of potato. A maximum likelihood inference based on GPDH locus separated C. lunatus strains into subclusters and revealed the emergence of unclustered strains. The evolving nutritional requirement of C. lunatus in the last decade is exhibited by the invasion of vertebrates, invertebrates, dicots, and monocots. Our results contribute towards a better understanding of the host-range dynamics of C. lunatus and provide useful implications on the threat posed to the environment when C. lunatus is used as a mycoherbicide. PMID:24987680

  20. Dynamics of mtDNA introgression during species range expansion: insights from an experimental longitudinal study

    PubMed Central

    Mastrantonio, V.; Porretta, D.; Urbanelli, S.; Crasta, G.; Nascetti, G.

    2016-01-01

    Introgressive hybridization represents one of the long-lasting debated genetic consequences of species range expansion. Mitochondrial DNA has been shown to heavily introgress between interbreeding animal species that meet in new sympatric areas and, often, asymmetric introgression from local to the colonizing populations has been observed. Disentangling among the evolutionary and ecological processes that might shape this pattern remains difficult, because they continuously act across time and space. In this context, long-term studies can be of paramount importance. Here, we investigated the dynamics of mitochondrial introgression between two mosquito species (Aedes mariae and Ae. zammitii ) during a colonization event that started in 1986 after a translocation experiment. By analyzing 1,659 individuals across 25 years, we showed that introgression occurred earlier and at a higher frequency in the introduced than in the local species, showing a pattern of asymmetric introgression. Throughout time, introgression increased slowly in the local species, becoming reciprocal at most sites. The rare opportunity to investigate the pattern of introgression across time during a range expansion along with the characteristics of our study-system allowed us to support a role of demographic dynamics in determining the observed introgression pattern. PMID:27460445

  1. A Maximum a Posteriori Estimation Framework for Robust High Dynamic Range Video Synthesis

    NASA Astrophysics Data System (ADS)

    Li, Yuelong; Lee, Chul; Monga, Vishal

    2017-03-01

    High dynamic range (HDR) image synthesis from multiple low dynamic range (LDR) exposures continues to be actively researched. The extension to HDR video synthesis is a topic of significant current interest due to potential cost benefits. For HDR video, a stiff practical challenge presents itself in the form of accurate correspondence estimation of objects between video frames. In particular, loss of data resulting from poor exposures and varying intensity make conventional optical flow methods highly inaccurate. We avoid exact correspondence estimation by proposing a statistical approach via maximum a posterior (MAP) estimation, and under appropriate statistical assumptions and choice of priors and models, we reduce it to an optimization problem of solving for the foreground and background of the target frame. We obtain the background through rank minimization and estimate the foreground via a novel multiscale adaptive kernel regression technique, which implicitly captures local structure and temporal motion by solving an unconstrained optimization problem. Extensive experimental results on both real and synthetic datasets demonstrate that our algorithm is more capable of delivering high-quality HDR videos than current state-of-the-art methods, under both subjective and objective assessments. Furthermore, a thorough complexity analysis reveals that our algorithm achieves better complexity-performance trade-off than conventional methods.

  2. Analog Filtering of Large Solvent Signals for Improved Dynamic Range in High-Resolution NMR

    NASA Astrophysics Data System (ADS)

    Redfield, A. G.; Kunz, S. D.

    1998-01-01

    The large solvent signal from samples in H2O solvent still challenges the dynamic range capability of any spectrometer. The solvent signal can be largely removed with a pair of simple resistor-capacitor (RC) high-pass filters when the solvent frequency is set at center band (zero frequency) using quadrature detection, withRC∼ 0.5 ms. However, an ∼0.5-ms transient remains at initial time, which we reduce fourfold for a short time only, just before the A/D converter, by means of a variable-gain amplifier, and later restore with software. This modification can result in a nearly fourfold increase in dynamic range. When we converted to a frequency-shifted mode (A. G. Redfield and S. D. Kunz, 1994,J. Magn. Reson. A108, 234-237) we replaced theRChigh-pass filter with a quadrature feedback notch filter tuned to the solvent frequency (5.06 kHz). This filter is an example of a class of two-input/two-output filters which maintain the spectral integrity (image-free character) of quadrature signals. Digital filters of the same type are also considered briefly. We discuss the implications of these ideas for spectrometer input design, including schemes for elimination of radiation damping, and effects of probe bandwidth on extreme oversampling.

  3. Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments

    SciTech Connect

    La Lone, B. M. Marshall, B. R.; Miller, E. K.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.

    2015-02-15

    A diagnostic was developed to simultaneously measure both the distance and velocity of rapidly moving surfaces in dynamic compression experiments, specifically non-planar experiments where integrating the velocity in one direction does not always give the material position accurately. The diagnostic is constructed mainly from fiber-optic telecommunications components. The distance measurement is based on a technique described by Xia and Zhang [Opt. Express 18, 4118 (2010)], which determines the target distance every 20 ns and is independent of the target speed. We have extended the full range of the diagnostic to several centimeters to allow its use in dynamic experiments, and we multiplexed it with a photonic Doppler velocimetry (PDV) system so that distance and velocity histories can be measured simultaneously using one fiber-optic probe. The diagnostic was demonstrated on a spinning square cylinder to show how integrating a PDV record can give an incorrect surface position and how the ranging diagnostic described here obtains it directly. The diagnostic was also tested on an explosive experiment where copper fragments and surface ejecta were identified in both the distance and velocity signals. We show how the distance measurements complement the velocity data. Potential applications are discussed.

  4. High dynamic range image compression by optimizing tone mapped image quality index.

    PubMed

    Ma, Kede; Yeganeh, Hojatollah; Zeng, Kai; Wang, Zhou

    2015-10-01

    Tone mapping operators (TMOs) aim to compress high dynamic range (HDR) images to low dynamic range (LDR) ones so as to visualize HDR images on standard displays. Most existing TMOs were demonstrated on specific examples without being thoroughly evaluated using well-designed and subject-validated image quality assessment models. A recently proposed tone mapped image quality index (TMQI) made one of the first attempts on objective quality assessment of tone mapped images. Here, we propose a substantially different approach to design TMO. Instead of using any predefined systematic computational structure for tone mapping (such as analytic image transformations and/or explicit contrast/edge enhancement), we directly navigate in the space of all images, searching for the image that optimizes an improved TMQI. In particular, we first improve the two building blocks in TMQI—structural fidelity and statistical naturalness components—leading to a TMQI-II metric. We then propose an iterative algorithm that alternatively improves the structural fidelity and statistical naturalness of the resulting image. Numerical and subjective experiments demonstrate that the proposed algorithm consistently produces better quality tone mapped images even when the initial images of the iteration are created by the most competitive TMOs. Meanwhile, these results also validate the superiority of TMQI-II over TMQI.

  5. Analog filtering of large solvent signals for improved dynamic range in high-resolution NMR.

    PubMed

    Redfield, A G; Kunz, S D

    1998-01-01

    The large solvent signal from samples in H2O solvent still challenges the dynamic range capability of any spectrometer. The solvent signal can be largely removed with a pair of simple resistor-capacitor (RC) high-pass filters when the solvent frequency is set at center band (zero frequency) using quadrature detection, with RC approximately 0.5 ms. However, an approximately 0.5-ms transient remains at initial time, which we reduce fourfold for a short time only, just before the A/D converter, by means of a variable-gain amplifier, and later restore with software. This modification can result in a nearly fourfold increase in dynamic range. When we converted to a frequency-shifted mode (A. G. Redfield and S. D. Kunz, 1994, J. Magn. Reson. A 108, 234-237) we replaced the RC high-pass filter with a quadrature feedback notch filter tuned to the solvent frequency (5.06 kHz). This filter is an example of a class of two-input/two-output filters which maintain the spectral integrity (image-free character) of quadrature signals. Digital filters of the same type are also considered briefly. We discuss the implications of these ideas for spectrometer input design, including schemes for elimination of radiation damping, and effects of probe bandwidth on extreme oversampling.

  6. Charge-integrating organic heterojunction phototransistors for wide-dynamic-range image sensors

    NASA Astrophysics Data System (ADS)

    Pierre, Adrien; Gaikwad, Abhinav; Arias, Ana Claudia

    2017-02-01

    Solution-processed phototransistors can substantially advance the performance of image sensors. Phototransistors exhibit large photoconductive gain and a sublinear responsivity to irradiance, which enables a logarithmic sensing of irradiance that is akin to the human eye and has a wider dynamic range than photodiode-based image sensors. Here, we present a novel solution-processed phototransistor composed of a heterostructure between a high-mobility organic semiconductor and an organic bulk heterojunction. The device efficiently integrates photogenerated charge during the period of a video frame then quickly discharges it, which significantly increases the signal-to-noise ratio compared with sampling photocurrent during readout. Phototransistor-based image sensors processed without photolithography on plastic substrates integrate charge with external quantum efficiencies above 100% at 100 frames per second. In addition, the sublinear responsivity to irradiance of these devices enables a wide dynamic range of 103 dB at 30 frames per second, which is competitive with state-of-the-art image sensors.

  7. Polarization mosaicing: high dynamic range and polarization imaging in a wide field of view

    NASA Astrophysics Data System (ADS)

    Schechner, Yoav Y.; Nayar, Shree K.

    2003-12-01

    We present an approach for imaging the polarization state of scene points in a wide field of view, while enhancing the radiometric dynamic range of imaging systems. This is achieved by a simple modification of image mosaicking, which is a common technique in remote sensing. In traditional image mosaics, images taken in varying directions or positions are stitched to obtain a larger image. Yet, as the camera moves, it senses each scene point multiple times in overlapping regions of the raw frames. We rigidly attach to the camera a fixed, spatially varying polarization and attenuation filter. This way, the camera motion-induced multiple measurements per scene point are taken under different optical settings. This is in contrast to the redundant measurements of traditional mosaics. Computational algorithms then analyze the data to extract polarization imaging with high dynamic range across the mosaic field of view. We developed a Maximum Likelihood method to automatically register the images, in spite of the challenging spatially varying effects. Then, we use Maximum Likelihood to handle, in a single framework, variable exposures (due to transmittance variations), saturation, and partial polarization filtering. As a by product, these results enable polarization settings of cameras to change while the camera moves, alleviating the need for camera stability. This work demonstrates the modularity of the Generalized Mosaicing approach, which we recently introduced for multispectral image mosaics. The results are useful for the wealth of polarization imaging applications, in addition to mosaicking applications, particularly remote sensing. We demonstrate experimental results obtained using a system we built.

  8. Context-dependent JPEG backward-compatible high-dynamic range image compression

    NASA Astrophysics Data System (ADS)

    Korshunov, Pavel; Ebrahimi, Touradj

    2013-10-01

    High-dynamic range (HDR) imaging is expected, together with ultrahigh definition and high-frame rate video, to become a technology that may change photo, TV, and film industries. Many cameras and displays capable of capturing and rendering both HDR images and video are already available in the market. The popularity and full-public adoption of HDR content is, however, hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of low-dynamic range (LDR) displays that are unable to render HDR. To facilitate the wide spread of HDR usage, the backward compatibility of HDR with commonly used legacy technologies for storage, rendering, and compression of video and images are necessary. Although many tone-mapping algorithms are developed for generating viewable LDR content from HDR, there is no consensus of which algorithm to use and under which conditions. We, via a series of subjective evaluations, demonstrate the dependency of the perceptual quality of the tone-mapped LDR images on the context: environmental factors, display parameters, and image content itself. Based on the results of subjective tests, it proposes to extend JPEG file format, the most popular image format, in a backward compatible manner to deal with HDR images also. An architecture to achieve such backward compatibility with JPEG is proposed. A simple implementation of lossy compression demonstrates the efficiency of the proposed architecture compared with the state-of-the-art HDR image compression.

  9. Wide Dynamic Range Front-end Electronics for Beam Current and Position Measurement

    SciTech Connect

    Rawnsley, W. R.; Potter, R. J.; Verzilov, V. A.; Root, L.

    2006-11-20

    An Analog Devices log detector, AD8306, and a Digital Signal Processor (DSP), ADSP-21992, have been found useful for building wide dynamic range, accurate and inexpensive front-end electronics to measure and process the RF signals from TRIUMF's beam monitors. The high-precision log detector has a useful dynamic range of over 100 dB. The 160 MHz mixed-signal DSP is used to digitize the log detector output, linearize it via a lookup table, perform temperature compensation, and remove the variable duty cycle 1 kHz pulse structure of the beam. This approach has been applied to two types of devices in a 500 MeV proton beamline. The 0.1% DC to CW total current monitor is based on a capacitive pickup resonant at 46.11 MHz, the second harmonic of the bunch frequency. The DSP software provides low pass filtering, calculates the antilog of the data and passes the output to a CAMAC input register. The BPM electronics process data from inductive pickup loops. The DSP controls a GaAs switch which multiplexes signals from four adjacent pickups to a single log detector. The DSP performs difference-over-sum or log-ratio data analysis along with averaging over an arbitrary number of samples.

  10. Reversible dimerization of Aequorea victoria fluorescent proteins increases the dynamic range of FRET-based indicators.

    PubMed

    Kotera, Ippei; Iwasaki, Takuya; Imamura, Hiromi; Noji, Hiroyuki; Nagai, Takeharu

    2010-02-19

    Fluorescent protein (FP)-based Forster resonance energy transfer (FRET) technology is useful for development of functional indicators to visualize second messenger molecules and activation of signaling components in living cells. However, the design and construction of the functional indicators require careful optimization of their structure at the atomic level. Therefore, routine procedures for constructing FRET-based indicators currently include the adjustment of the linker length between the FPs and the sensor domain and relative dipole orientation of the FP chromophore. Here we report that, in addition to these techniques, optimization of the dimerization interface of Aequorea FPs is essential to achieve the highest possible dynamic range of signal change by FRET-based indicators. We performed spectroscopic analyses of various indicators (cameleon, TN-XL, and ATeam) and their variants. We chose variants containing mutant FPs with different dimerization properties, i.e., no, weak, or enhanced dimerization of the donor or acceptor FP. Our findings revealed that the FPs that dimerized weakly yielded high-performance FRET-based indicators with the greatest dynamic range.

  11. Field instrument for simultaneous large dynamic range measurement of atmospheric hydrogen sulfide, methanethiol, and sulfur dioxide.

    PubMed

    Toda, Kei; Ohira, Shin-Ichi; Tanaka, Takayoshi; Nishimura, Tomohiko; Dasgupta, Purnendu K

    2004-03-01

    We describe a membrane-based collection/analysis system that differentially monitors H2S and CH3SH, and to which a conductometric SO2 analyzer using the same collector was coupled. A diffusion scrubber (DS) comprised of a Nafion tube collects H2S selectively while a porous polytetrafluoroethylene (pPTFE) DS collects both H2S and CH3SH. Both gases are measured via their ability to react with fluorescein mercuric acetate (FMA) which results in decreased fluorescence. The limited dynamic range of a negative signal procedure was overcome by using dual DS units comprised of short and long scrubbers, placed serially in the liquid flow line. Different DS designs and membrane materials were investigated. H2S, CH3SH, and SO2 from a biogenic point source were continuously measured, and the H2S/CH3SH data compared well with a standard procedure involving Tedlar bag collection, preconcentration and thermal desorption from a Tenax trap, and measurement by gas chromatography/flame photometric detection. Walkaround portability of the instrument and very large dynamic range measurement of H2S and SO2 were demonstrated around the Mt. Aso volcano.

  12. The Effects of Dynamic Range of Motion Exercises and Static Stretching on Strength and Range of Motion of the Hip Joint.

    ERIC Educational Resources Information Center

    Kanetzke, Carol A.

    The effects of Dynamic Range of Motion (D'ROM) exercises and static stretch on hip flexibility and hip strength were examined. One hundred one male and female college students were divided into three groups: D'ROM, static stretch (ST), and control (C). All subjects were measured before and after treatment for hip flexibility and strength. Two…

  13. Atmospheric Dynamics of Terrestrial Exoplanets over a Wide Range of Orbital and Atmospheric Parameters

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Showman, Adam P.

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  14. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    SciTech Connect

    Kaspi, Yohai; Showman, Adam P.

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  15. Estimating indices of range shifts in birds using dynamic models when detection is imperfect

    USGS Publications Warehouse

    Clement, Matthew J.; Hines, James E.; Nichols, James D.; Pardieck, Keith L.; Ziolkowski, David J.

    2016-01-01

    There is intense interest in basic and applied ecology about the effect of global change on current and future species distributions. Projections based on widely used static modeling methods implicitly assume that species are in equilibrium with the environment and that detection during surveys is perfect. We used multiseason correlated detection occupancy models, which avoid these assumptions, to relate climate data to distributional shifts of Louisiana Waterthrush in the North American Breeding Bird Survey (BBS) data. We summarized these shifts with indices of range size and position and compared them to the same indices obtained using more basic modeling approaches. Detection rates during point counts in BBS surveys were low, and models that ignored imperfect detection severely underestimated the proportion of area occupied and slightly overestimated mean latitude. Static models indicated Louisiana Waterthrush distribution was most closely associated with moderate temperatures, while dynamic occupancy models indicated that initial occupancy was associated with diurnal temperature ranges and colonization of sites was associated with moderate precipitation. Overall, the proportion of area occupied and mean latitude changed little during the 1997–2013 study period. Near-term forecasts of species distribution generated by dynamic models were more similar to subsequently observed distributions than forecasts from static models. Occupancy models incorporating a finite mixture model on detection – a new extension to correlated detection occupancy models – were better supported and may reduce bias associated with detection heterogeneity. We argue that replacing phenomenological static models with more mechanistic dynamic models can improve projections of future species distributions. In turn, better projections can improve biodiversity forecasts, management decisions, and understanding of global change biology.

  16. Estimating indices of range shifts in birds using dynamic models when detection is imperfect.

    PubMed

    Clement, Matthew J; Hines, James E; Nichols, James D; Pardieck, Keith L; Ziolkowski, David J

    2016-10-01

    There is intense interest in basic and applied ecology about the effect of global change on current and future species distributions. Projections based on widely used static modeling methods implicitly assume that species are in equilibrium with the environment and that detection during surveys is perfect. We used multiseason correlated detection occupancy models, which avoid these assumptions, to relate climate data to distributional shifts of Louisiana Waterthrush in the North American Breeding Bird Survey (BBS) data. We summarized these shifts with indices of range size and position and compared them to the same indices obtained using more basic modeling approaches. Detection rates during point counts in BBS surveys were low, and models that ignored imperfect detection severely underestimated the proportion of area occupied and slightly overestimated mean latitude. Static models indicated Louisiana Waterthrush distribution was most closely associated with moderate temperatures, while dynamic occupancy models indicated that initial occupancy was associated with diurnal temperature ranges and colonization of sites was associated with moderate precipitation. Overall, the proportion of area occupied and mean latitude changed little during the 1997-2013 study period. Near-term forecasts of species distribution generated by dynamic models were more similar to subsequently observed distributions than forecasts from static models. Occupancy models incorporating a finite mixture model on detection - a new extension to correlated detection occupancy models - were better supported and may reduce bias associated with detection heterogeneity. We argue that replacing phenomenological static models with more mechanistic dynamic models can improve projections of future species distributions. In turn, better projections can improve biodiversity forecasts, management decisions, and understanding of global change biology.

  17. Long range dynamics of shallow water: renormalization, modulation and long cycles.

    NASA Astrophysics Data System (ADS)

    Gurarie, David

    2000-11-01

    Long-range dynamics of rotating shallow water (RSW) in the low Rossby-Froude regime, Ro = Fr ll1, exhibits multiscale structure with oscillations on different scales, from fast (gravity), to slower ``eddy turnover" , and yet slower ``long weather cycles". We search for an effective theory, that would ``average" fast oscillations on each scale, to produce higher level ``slow evolution". The principal source of fast gravity waves - dominant linear dispersion, could be eliminated by passing to the amplitude equations. In nonlinear systems, however, it does not remove oscillations completely, but transplants them to nonlinear terms. We implement the Bogoliubov-Mitropolskii averaging (BM) to produce renormalized system (RN-RSW), made of the resonant quadratic part of RSW, plus order(Ro) - cubic, and O(Ro^2) - quartic corrections. Renormalized system evolves on the first slow scale. Next we conduct the detailed analysis of RN-RSW for a single 9D-Lorenz-type triad. The triad system allows to implement second renormalization (from ``first slow" to ``second slow" time), based on its 5 adiabatic invariants: two conserved integrals of QGS-oscillator (a 3D subsystem, solvable in Jacobi elliptic functions), and three wave-intensities. The adiabatic invariants evolve on the second slow scale, and describe slow modulation of the basic QGS (Jacobi) parameters: modulus, period, magnitude. The off-shot of our two-step renormalization (BM followed by ``adiabatic averaging") are ``modulated oscillations" of the vortical and gravity modes. We verify the modulation phenomena by numeric simulations of (i) complete RSW-triad, vs. (ii) renormalized system (RN-RSW), vs. (iii) its ``modulated (adiabatic) approximation". All three show good qualitative agreement in their gross features. The analysis of adiabatic system explains some long range phases of the RSW-dynamics, like nonlinear ``relaxation", and ``intensification" regimes, and pinpoints ``modulation" as the principal long-range

  18. A high dynamic range method for the direct readout of a dynamic phase change in homodyne interferometers

    NASA Astrophysics Data System (ADS)

    Marçal, L. A. P.; Kitano, C.; Higuti, R. T.; Nader, G.; Silva, E. C. N.

    2012-12-01

    Piezoelectric flextensional actuators (PFAs) are an efficient alternative to systems that demand nano-positioning of devices, such as in nanotechnology. Optical techniques constitute an excellent choice for contactless measurement of nano-displacements. In particular, optical interferometry constitutes an adequate choice for characterizing PFAs. There are several types of interferometers, as well as optical phase demodulation methods, used in practice. One interesting class of demodulation methods uses the spectrum of the photo-detected signal and its intrinsic properties when there is a harmonically varying time-domain modulating signal. In this work, a low cost homodyne Michelson interferometer, associated with simple electronic circuits for signal conditioning and acquisition, is used. A novel dynamic phase demodulation method, named Jm&Jm + 2, is proposed, which uses only the magnitude spectrum of the photo-detected signal, without the need to know its phase spectrum. The method is passive, direct, self-consistent, without problems of phase ambiguity and immune to fading, and presents a dynamic range from 0.45 to 100 rad displacements (between 22.6 nm and 5 µm, for λ = 632.8 nm). When applied to the measurement of half-wave voltage in a proof-of-concept Pockels cell, it presents errors smaller than 0.9% when compared to theory. For the estimation of PFA displacement, it allows the measurement of linearity and frequency response curves, with excellent results.

  19. New approach of financial volatility duration dynamics by stochastic finite-range interacting voter system

    NASA Astrophysics Data System (ADS)

    Wang, Guochao; Wang, Jun

    2017-01-01

    We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.

  20. Acidic range titration of HEWL using a constant-pH molecular dynamics method.

    PubMed

    Machuqueiro, Miguel; Baptista, António M

    2008-07-01

    In this work, we present the first application to a protein of the stochastic constant-pH molecular dynamics (MD) method with the inclusion of proton tautomerism. The acidic titration of HEWL was performed under different conditions. Both generalized reaction field (GRF) and particle mesh Ewald (PME) methods were used in the treatment of the long range electrostatics and, even though the PME simulations revealed to be more stable, the better results were obtained using GRF (pK(a) RMSD of 0.82 for GRF and 1.13 for PME). The results using PME at different dielectric constants (2, 4, and 8) also revealed that there was no significant improvement in pK(a)'s prediction upon increasing the dielectric constant. The secondary structure analysis of HEWL revealed a remarkably stable protein in the acidic pH range. The beta-sheet strands (unlike the alpha-helices) seem to be destabilized upon pH decrease, suggesting that the beta-domain is less stable than the alpha-domain. The four principal alpha-helices were also ordered according to their stability in the acidic pH range and the results (4 < 1 < 2 approximately = 3) were consistent with the ones obtained in thermal denaturation studies.

  1. Neuronal avalanches imply maximum dynamic range in cortical networks at criticality.

    PubMed

    Shew, Woodrow L; Yang, Hongdian; Petermann, Thomas; Roy, Rajarshi; Plenz, Dietmar

    2009-12-09

    Spontaneous neuronal activity is a ubiquitous feature of cortex. Its spatiotemporal organization reflects past input and modulates future network output. Here we study whether a particular type of spontaneous activity is generated by a network that is optimized for input processing. Neuronal avalanches are a type of spontaneous activity observed in superficial cortical layers in vitro and in vivo with statistical properties expected from a network operating at "criticality." Theory predicts that criticality and, therefore, neuronal avalanches are optimal for input processing, but until now, this has not been tested in experiments. Here, we use cortex slice cultures grown on planar microelectrode arrays to demonstrate that cortical networks that generate neuronal avalanches benefit from a maximized dynamic range, i.e., the ability to respond to the greatest range of stimuli. By changing the ratio of excitation and inhibition in the cultures, we derive a network tuning curve for stimulus processing as a function of distance from criticality in agreement with predictions from our simulations. Our findings suggest that in the cortex, (1) balanced excitation and inhibition establishes criticality, which maximizes the range of inputs that can be processed, and (2) spontaneous activity and input processing are unified in the context of critical phenomena.

  2. Averaging of Replicated Pulses for Enhanced-Dynamic-Range Single-Shot Measurement of Nanosecond Optical Pulses

    SciTech Connect

    Marciante, J.R.; Donaldson, W.R.; Roides, R.G.

    2007-10-04

    Measuring optical pulse shapes beyond the dynamic range of oscilloscopes is achieved by temporal pulse stacking in a low-loss, passive, fiber-optic network. Optical pulses are averaged with their time-delayed replicas without introducing additional noise or jitter, allowing for high-contrast pulse-shape measurements of single-shot events. A dynamic-range enhancement of three bits is experimentally demonstrated and compared with conventional multi-shot averaging. This technique can be extended to yield an increase of up to seven bits of additional dynamic range over nominal oscilloscope performance.

  3. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J.

    2014-03-01

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content.

  4. Lossy compression of floating point high-dynamic range images using JPEG2000

    NASA Astrophysics Data System (ADS)

    Springer, Dominic; Kaup, Andre

    2009-01-01

    In recent years, a new technique called High Dynamic Range (HDR) has gained attention in the image processing field. By representing pixel values with floating point numbers, recorded images can hold significantly more luminance information than ordinary integer images. This paper focuses on the realization of a lossy compression scheme for HDR images. The JPEG2000 standard is used as a basic component and is efficiently integrated into the compression chain. Based on a detailed analysis of the floating point format and the human visual system, a concept for lossy compression is worked out and thoroughly optimized. Our scheme outperforms all other existing lossy HDR compression schemes and shows superior performance both at low and high bitrates.

  5. Low-frequency predictability of the Dynamical Extended-Range Forecast Experiment

    NASA Technical Reports Server (NTRS)

    Nogues-Peagle, Julia; Rodgers, Dennis A.; Mo, Kingtse C.

    1992-01-01

    The objective of the study was to analyze data from the Dynamical Extended-Range Forecast Experiment conducted from January 1986 to March 1987, and to evaluate differences between analysis and forecasts with emphasis on the tropical 30-50-day oscillation. The diagnostic toll used is the projection of analysis and forecast data onto the normal modes of a primitive equation model. Examination of zonal-wind anomalies in the tropics shows that the forecast model predicts propagation of intraseasonal variations more accurately for slow propagation rates. The forecast amplitude is generally weaker than the analyzed amplitude. Analyzed kinetic energy and error fields exhibit similar horizontal scales for internal and external modes. External Rossby-mode components maximize in the extratropics while Rossby internal modes exhibit patterns that extend over the entire globe.

  6. Activation of Lumbar Spinal Wide-Dynamic Range Neurons by a Sanshool Derivative

    PubMed Central

    Sawyer, Carolyn M.; Carstens, Mirela Iodi; Simons, Christopher T.; Slack, Jay; McCluskey, T. Scott; Furrer, Stefan; Carstens, E.

    2009-01-01

    The enigmatic sensation of tingle involves the activation of primary sensory neurons by hydroxy-α-sanshool, a tingly agent in Szechuan peppers, by inhibiting two-pore potassium channels. Central mechanisms mediating tingle sensation are unknown. We investigated whether a stable derivative of sanshool—isobutylalkenyl amide (IBA)—excites wide-dynamic range (WDR) spinal neurons that participate in transmission of chemesthetic information from the skin. In anesthetized rats, the majority of WDR and low-threshold units responded to intradermal injection of IBA in a dose-related manner over a >5-min time course and exhibited tachyphylaxis at higher concentrations (1 and 10%). Almost all WDR and low-threshold units additionally responded to the pungent agents mustard oil (allyl isothiocyanate) and/or capsaicin, prompting reclassification of the low-threshold cells as WDR. The results are discussed in terms of the functional role of WDR neurons in mediating tingle sensation. PMID:19164099

  7. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range

    PubMed Central

    Jin, Wei; Cao, Yingchun; Yang, Fan; Ho, Hoi Lut

    2015-01-01

    Photothermal interferometry is an ultra-sensitive spectroscopic means for trace chemical detection in gas- and liquid-phase materials. Previous photothermal interferometry systems used free-space optics and have limitations in efficiency of light–matter interaction, size and optical alignment, and integration into photonic circuits. Here we exploit photothermal-induced phase change in a gas-filled hollow-core photonic bandgap fibre, and demonstrate an all-fibre acetylene gas sensor with a noise equivalent concentration of 2 p.p.b. (2.3 × 10−9 cm−1 in absorption coefficient) and an unprecedented dynamic range of nearly six orders of magnitude. The realization of photothermal interferometry with low-cost near infrared semiconductor lasers and fibre-based technology allows a class of optical sensors with compact size, ultra sensitivity and selectivity, applicability to harsh environment, and capability for remote and multiplexed multi-point detection and distributed sensing. PMID:25866015

  8. Protein and water dynamics in bovine serum albumin-water mixtures over wide ranges of composition.

    PubMed

    Panagopoulou, A; Kyritsis, A; Shinyashiki, N; Pissis, P

    2012-04-19

    Dielectric dynamic behavior of bovine serum albumin (BSA)-water mixtures over wide ranges of water fractions, from dry protein until 40 wt % in water, was studied through dielectric relaxation spectroscopy (DRS). The α relaxation associated with the glass transition of the hydrated system was identified. The evolution of the low temperature dielectric relaxation of small polar groups of the protein surface with hydration level results in the enhancement of dielectric response and the decrease of relaxation times, until a critical water fraction, which corresponds to the percolation threshold for protonic conductivity. For water fractions higher than the critical one, the position of the secondary ν relaxation of water saturates in the Arrhenius diagram, while contributions originating from water molecules in excess (uncrystallized water or ice) follow separate relaxation modes slower than the ν relaxation.

  9. Activation of lumbar spinal wide-dynamic range neurons by a sanshool derivative.

    PubMed

    Sawyer, Carolyn M; Carstens, Mirela Iodi; Simons, Christopher T; Slack, Jay; McCluskey, T Scott; Furrer, Stefan; Carstens, E

    2009-04-01

    The enigmatic sensation of tingle involves the activation of primary sensory neurons by hydroxy-alpha-sanshool, a tingly agent in Szechuan peppers, by inhibiting two-pore potassium channels. Central mechanisms mediating tingle sensation are unknown. We investigated whether a stable derivative of sanshool-isobutylalkenyl amide (IBA)-excites wide-dynamic range (WDR) spinal neurons that participate in transmission of chemesthetic information from the skin. In anesthetized rats, the majority of WDR and low-threshold units responded to intradermal injection of IBA in a dose-related manner over a >5-min time course and exhibited tachyphylaxis at higher concentrations (1 and 10%). Almost all WDR and low-threshold units additionally responded to the pungent agents mustard oil (allyl isothiocyanate) and/or capsaicin, prompting reclassification of the low-threshold cells as WDR. The results are discussed in terms of the functional role of WDR neurons in mediating tingle sensation.

  10. Endoscopic system for automated high dynamic range inspection of moving periodic structures

    NASA Astrophysics Data System (ADS)

    Hahlweg, Cornelius; Rothe, Hendrik

    2015-09-01

    In the current paper an advanced endoscopic system for high resolution and high dynamic range inspection of periodic structures in rotating machines is presented. We address the system architecture, short time illumination, special optical problems, such as excluding the specular reflex, image processing, forward velocity prediction and metrological image processing. There are several special requirements to be met, such as the thermal stability above 100°C, robustness of the image field, illumination in view direction and the separation of metallic surface diffuse scatter. To find a compromise between image resolution and frame rate, an external sensor system was applied for synchronization with the moving target. The system originally was intended for inspection of thermal engines, but turned out to be of a more general use. Beside the theoretical part and dimensioning issues, practical examples and measurement results are included.

  11. Increase of the dynamic range of catchup experiments by high-pass filtering

    SciTech Connect

    Erskine, D.J.

    1995-08-01

    The release-catchup shock experiment is an important tool for measuring the speed of sound in compressed matter. The catchup of the release wave to the leading shock is sensitively detected optically, through an indicating fluid which produces light approximately to the 4th power of the shock pressure. However, this sensitivity demands a dynamic range which exceeds the capabilities of our digitizer. The catchup signature lies at the top of a flat pulse, thus any signal clipping is a catastrophic loss of data. We have invented a simple and accurate method for recording the catchup signature that is insensitive to signal clipping. A high pass circuit prior to the digitizer is used with post experiment integration. The insensitivity to clipping allows recording the catchup signature at higher gain, and thus with an improved signal to noise ratio.

  12. Increase of the dynamic range of catchup experiments by high-pass filtering

    SciTech Connect

    Erskine, D.J.

    1996-05-01

    The release-catchup shock experiment is an important tool for measuring the speed of sound in compressed matter. The catchup of the release wave to the leading shock is sensitively detected optically, through an indicating fluid which produces light approximately to the 4th power of the shock pressure. However, this sensitivity demands a dynamic range which exceeds the capabilities of our digitizer. The catchup signature lies at the top of a flat pulse, thus any signal clipping is a catastrophic loss of data. We have invented a simple and accurate method for recording the catchup signature that is insensitive to signal clipping. A high pass circuit prior to the digitizer is used with post experiment integration. The insensitivity to clipping allows recording the catchup signature at higher gain, and thus with an improved signal to noise ratio. {copyright} {ital 1996 American Institute of Physics.}

  13. Australian SKA Pathfinder: A High-Dynamic Range Wide-Field of View Survey Telescope

    NASA Astrophysics Data System (ADS)

    DeBoer, D. R.; Gough, R. G.; Bunton, J. D.; Cornwell, T. J.; Beresford, R. J.; Johnston, S.; Feain, I. J.; Schinckel, A. E.; Jackson, C. A.; Kesteven, M. J.; Chippendale, A.; Hampson, G. A.; O'Sullivan, J. D.; Hay, S. G.; Jacka, C. E.; Sweetnam, T. W.; Storey, M. C.; Ball, L.; Boyle, B. J.

    2009-08-01

    The Australia SKA Pathfinder (ASKAP) is a new telescope under development as a world-class high-dynamic-range wide-field-of-view survey instrument. It will utilize focal plane phased array feeds on the 36 12-m antennas that will compose the array. The large amounts of data present a huge computing challenge, and ASKAP will store data products in an archive after near real-time pipeline processing. This powerful instrument will be deployed at a new radio-quiet observatory, the Murchison Radio-astronomy Observatory in the midwest region of Western Australia, to enable sensitive surveys of the entire sky to address some of the big questions in contemporary physics. As a pathfinder for the SKA, ASKAP will demonstrate field of view enhancement and computing/processing technology as well as the operation of a large-scale radio array in a remote and radio-quiet region of Australia.

  14. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy

    SciTech Connect

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J.

    2014-03-15

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content.

  15. A Noise-Robust Continuous Speech Recognition System Using Block-Based Dynamic Range Adjustment

    NASA Astrophysics Data System (ADS)

    Sun, Yiming; Miyanaga, Yoshikazu

    A new approach to speech feature estimation under noise circumstances is proposed in this paper. It is used in noise-robust continuous speech recognition (CSR). As the noise robust techniques in isolated word speech recognition, the running spectrum analysis (RSA), the running spectrum filtering (RSF) and the dynamic range adjustment (DRA) methods have been developed. Among them, only RSA has been applied to a CSR system. This paper proposes an extended DRA for a noise-robust CSR system. In the stage of speech recognition, a continuous speech waveform is automatically assigned to a block defined by a short time length. The extended DRA is applied to these estimated blocks. The average recognition rate of the proposed method has been improved under several different noise conditions. As a result, the recognition rates are improved up to 15% in various noises with 10 dB SNR.

  16. Driver steering dynamics measured in car simulator under a range of visibility and roadmaking conditions

    NASA Technical Reports Server (NTRS)

    Allen, R. W.; Mcruer, D. T.

    1977-01-01

    A simulation experiment was conducted to determine the effect of reduced visibility on driver lateral (steering) control. The simulator included a real car cab and a single lane road image projected on a screen six feet in front of the driver. Simulated equations of motion controlled apparent car lane position in response to driver steering actions, wind gusts, and road curvature. Six drivers experienced a range of visibility conditions at various speeds with assorted roadmaking configurations (mark and gap lengths). Driver describing functions were measured and detailed parametric model fits were determined. A pursuit model employing a road curvature feedforward was very effective in explaining driver behavior in following randomly curving roads. Sampled-data concepts were also effective in explaining the combined effects of reduced visibility and intermittent road markings on the driver's dynamic time delay. The results indicate the relative importance of various perceptual variables as the visual input to the driver's steering control process is changed.

  17. Electrochemical Gold(III) Sensor with High Sensitivity and Tunable Dynamic Range.

    PubMed

    Wu, Yao; Lai, Rebecca Y

    2016-02-16

    We report the design and fabrication of a sensitive, specific, and selective electrochemical ion (E-ION) sensor for detection of Au(III). The signaling mechanism is based on the interactions between Au(III) and adenine; formation of these complexes rigidifies the methylene blue (MB)-modified oligoadenine probes, resulting in a concentration-dependent reduction in the MB signal. The dynamic range of the sensor can be tuned by simply changing the length of the DNA probe (six (A6) or 12 (A12) adenines). Independent of the probe length, both sensors have demonstrated to be sensitive, with a limits of detection of 50 and 20 nM for the A6 and A12 sensors, respectively. With further optimization, this sensing strategy may offer a promising approach for analyzing Au(III).

  18. High-dynamic-range cross-correlator for shot-to-shot measurement of temporal contrast

    NASA Astrophysics Data System (ADS)

    Kon, Akira; Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Ogura, Koichi; Mori, Michiaki; Sakaki, Hironao; Kando, Masaki; Kondo, Kiminori

    2017-01-01

    The temporal contrast of an ultrahigh-intensity laser is a crucial parameter for laser plasma experiments. We have developed a multichannel cross-correlator (MCCC) for single-shot measurements of the temporal contrast in a high-power laser system. The MCCC is based on third-order cross-correlation, and has four channels and independent optical delay lines. We have experimentally demonstrated that the MCCC system achieves a high dynamic range of ˜1012 and a large temporal window of ˜1 ns. Moreover, we were able to measure the shot-to-shot fluctuations of a short-prepulse intensity at -26 ps and long-pulse (amplified spontaneous emission, ASE) intensities at -30, -450, and -950 ps before the arrival of the main pulse at the interaction point.

  19. Can ocean acidification affect population dynamics of the barnacle Semibalanus balanoides at its southern range edge?

    PubMed

    Findlay, Helen S; Burrows, Michael T; Kendall, Michael A; Spicer, John I; Widdicombe, Stephen

    2010-10-01

    The global ocean and atmosphere are warming. There is increasing evidence suggesting that, in addition to other environmental factors, climate change is affecting species distributions and local population dynamics. Additionally, as a consequence of the growing levels of atmospheric carbon dioxide (CO2), the oceans are taking up increasing amounts of this CO2, causing ocean pH to decrease (ocean acidification). The relative impacts of ocean acidification on population dynamics have yet to be investigated, despite many studies indicating that there will be at least a sublethal impact on many marine organisms, particularly key calcifying organisms. Using empirical data, we forced a barnacle (Semibalanus balanoides) population model to investigate the relative influence of sea surface temperature (SST) and ocean acidification on a population nearing the southern limit of its geographic distribution. Hindcast models were compared to observational data from Cellar Beach (southwestern United Kingdom). Results indicate that a declining pH trend (-0.0017 unit/yr), indicative of ocean acidification over the past 50 years, does not cause an observable impact on the population abundance relative to changes caused by fluctuations in temperature. Below the critical temperature (here T(crit) = 13.1 degrees C), pH has a more significant affect on population dynamics at this southern range edge. However, above this value, SST has the overriding influence. At lower SST, a decrease in pH (according to the National Bureau of Standards, pHNBs) from 8.2 to 7.8 can significantly decrease the population abundance. The lethal impacts of ocean acidification observed in experiments on early life stages reduce cumulative survival by approximately 25%, which again will significantly alter the population level at this southern limit. Furthermore, forecast predictions from this model suggest that combined acidification and warming cause this local population to die out 10 years earlier than

  20. Dynamic simulation of concentrated macromolecular solutions with screened long-range hydrodynamic interactions: Algorithm and limitations

    PubMed Central

    Ando, Tadashi; Chow, Edmond; Skolnick, Jeffrey

    2013-01-01

    Hydrodynamic interactions exert a critical effect on the dynamics of macromolecules. As the concentration of macromolecules increases, by analogy to the behavior of semidilute polymer solutions or the flow in porous media, one might expect hydrodynamic screening to occur. Hydrodynamic screening would have implications both for the understanding of macromolecular dynamics as well as practical implications for the simulation of concentrated macromolecular solutions, e.g., in cells. Stokesian dynamics (SD) is one of the most accurate methods for simulating the motions of N particles suspended in a viscous fluid at low Reynolds number, in that it considers both far-field and near-field hydrodynamic interactions. This algorithm traditionally involves an O(N3) operation to compute Brownian forces at each time step, although asymptotically faster but more complex SD methods are now available. Motivated by the idea of hydrodynamic screening, the far-field part of the hydrodynamic matrix in SD may be approximated by a diagonal matrix, which is equivalent to assuming that long range hydrodynamic interactions are completely screened. This approximation allows sparse matrix methods to be used, which can reduce the apparent computational scaling to O(N). Previously there were several simulation studies using this approximation for monodisperse suspensions. Here, we employ newly designed preconditioned iterative methods for both the computation of Brownian forces and the solution of linear systems, and consider the validity of this approximation in polydisperse suspensions. We evaluate the accuracy of the diagonal approximation method using an intracellular-like suspension. The diffusivities of particles obtained with this approximation are close to those with the original method. However, this approximation underestimates intermolecular correlated motions, which is a trade-off between accuracy and computing efficiency. The new method makes it possible to perform large-scale and

  1. Enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Minmin; Du, Guangliang; Zhou, Canlin; Zhang, Chaorui; Si, Shuchun; Li, Hui; Lei, Zhenkun; Li, YanJie

    2017-02-01

    Measuring objects with large reflectivity variations across their surface is one of the open challenges in phase measurement profilometry (PMP). Saturated or dark pixels in the deformed fringe patterns captured by the camera will lead to phase fluctuations and errors. Jiang et al. proposed a high dynamic range real-time three-dimensional (3D) shape measurement method (Jiang et al., 2016) [17] that does not require changing camera exposures. Three inverted phase-shifted fringe patterns are used to complement three regular phase-shifted fringe patterns for phase retrieval whenever any of the regular fringe patterns are saturated. Nonetheless, Jiang's method has some drawbacks: (1) the phases of saturated pixels are estimated by different formulas on a case by case basis; in other words, the method lacks a universal formula; (2) it cannot be extended to the four-step phase-shifting algorithm, because inverted fringe patterns are the repetition of regular fringe patterns; (3) for every pixel in the fringe patterns, only three unsaturated intensity values can be chosen for phase demodulation, leaving the other unsaturated ones idle. We propose a method to enhance high dynamic range 3D shape measurement based on a generalized phase-shifting algorithm, which combines the complementary techniques of inverted and regular fringe patterns with a generalized phase-shifting algorithm. Firstly, two sets of complementary phase-shifted fringe patterns, namely the regular and the inverted fringe patterns, are projected and collected. Then, all unsaturated intensity values at the same camera pixel from two sets of fringe patterns are selected and employed to retrieve the phase using a generalized phase-shifting algorithm. Finally, simulations and experiments are conducted to prove the validity of the proposed method. The results are analyzed and compared with those of Jiang's method, demonstrating that our method not only expands the scope of Jiang's method, but also improves

  2. An LC-IMS-MS Platform Providing Increased Dynamic Range for High-Throughput Proteomic Studies

    SciTech Connect

    Baker, Erin Shammel; Livesay, Eric A.; Orton, Daniel J.; Moore, Ronald J.; Danielson, William F.; Prior, David C.; Ibrahim, Yehia M.; Lamarche, Brian L.; Mayampurath, Anoop M.; Schepmoes, Athena A.; Hopkins, Derek F.; Tang, Keqi; Smith, Richard D.; Belov, Mikhail E.

    2010-02-05

    A high-throughput approach and platform using 15 minute reversed-phase capillary liquid chromatography (RPLC) separations in conjunction with ion mobility spectrometry-mass spectrometry (IMS-MS) measurements was evaluated for the rapid analysis of complex proteomics samples. To test the separation quality of the short LC gradient, a sample was prepared by spiking twenty reference peptides at varying concentrations from 1 ng/mL to 10 µg/mL into a tryptic digest of mouse blood plasma and analyzed with both a LC-Linear Ion Trap Fourier Transform (FT) MS and LC-IMS-TOF MS. The LC-FT MS detected thirteen out of the twenty spiked peptides that had concentrations ≥100 ng/mL. In contrast, the drift time selected mass spectra from the LC-IMS-TOF MS analyses yielded identifications for nineteen of the twenty peptides with all spiking level present. The greater dynamic range of the LC-IMS-TOF MS system could be attributed to two factors. First, the LC-IMS-TOF MS system enabled drift time separation of the low concentration spiked peptides from the high concentration mouse peptide matrix components, reducing signal interference and background, and allowing species to be resolved that would otherwise be obscured by other components. Second, the automatic gain control (AGC) in the linear ion trap of the hybrid FT MS instrument limits the number of ions that are accumulated to reduce space charge effects, but in turn limits the achievable dynamic range compared to the TOF detector.

  3. A high dynamic range power sensor based on GaAs MMIC process and MEMS technology

    NASA Astrophysics Data System (ADS)

    Yi, Zhenxiang; Liao, Xiaoping

    2016-01-01

    This paper reports a high dynamic range power sensor based on GaAs process and MEMS technology. The proposed sensor consisted of the terminating-type sensor and the coupling-type sensor. The former measures low power while the latter is for high power detection. This device is designed and fabricated by GaAs MMIC process. In order to optimize microwave performance, impedance compensating technology by increasing the slot width of the CPW transmission line is developed. Related calculation and simulation are also presented in this paper. The microwave performance test reveals that the return loss is close to -28 dB@8 GHz, -27 dB@10 GHz and -26 dB@12 GHz, respectively. The microwave power response experiment is investigated from 1 mW to 150 mW. For the incident power less than 100 mW, the terminating-type sensor operates and the measured sensitivity is about 0.095 mV/mW@8 GHz, 0.088 mV/mW@10 GHz and 0.084 mV/mW@12 GHz, respectively. Related lumped equivalent circuit models of the loaded resistors are developed to explain the loss induced by the frequency of the signal. For the incident power with the improved dynamic range from 100 mW to 150 mW, the coupling-type sensor is adopted and the measured sensitivity is about 9.2 μV/mW@8 GHz, 8.6 μV/mW@8 GHz and 9.0 μV/mW@12 GHz, respectively.

  4. High-resolution full-field optical coherence tomography using high dynamic range image processing

    NASA Astrophysics Data System (ADS)

    Leong-Hoï, A.; Claveau, R.; Montgomery, P. C.; Serio, B.; Uhring, W.; Anstotz, F.; Flury, M.

    2016-04-01

    Full-field optical coherence tomography (FF-OCT) based on white-light interference microscopy, is an emerging noninvasive imaging technique for characterizing biological tissue or optical scattering media with micrometer resolution. Tomographic images can be obtained by analyzing a sequence of interferograms acquired with a camera. This is achieved by scanning an interferometric microscope objectives along the optical axis and performing appropriate signal processing for fringe envelope extraction, leading to three-dimensional imaging over depth. However, noise contained in the images can hide some important details or induce errors in the size of these details. To firstly reduce temporal and spatial noise from the camera, it is possible to apply basic image post processing methods such as image averaging, dark frame subtraction or flat field division. It has been demonstrate that this can improve the quality of microscopy images by enhancing the signal to noise ratio. In addition, the dynamic range of images can be enhanced to improve the contrast by combining images acquired with different exposure times or light intensity. This can be made possible by applying a hybrid high dynamic range (HDR) technique, which is proposed in this paper. High resolution tomographic analysis is thus performed using a combination of the above-mentioned image processing techniques. As a result, the lateral resolution of the system can be improved so as to approach the diffraction limit of the microscope as well as to increase the power of detection, thus enabling new sub-diffraction sized structures contained in a transparent layer, initially hidden by the noise, to be detected.

  5. Large dynamic range 64-channel ASIC for CZT or CdTe detectors

    NASA Astrophysics Data System (ADS)

    Glasser, F.; Villard, P.; Rostaing, J. P.; Accensi, M.; Baffert, N.; Girard, J. L.

    2003-08-01

    We present a customized 64-channel ASIC, named ALIX, developed in a 0.8 μm CMOS technology. This circuit is dedicated to measure charges from semi-conductor X-ray detectors like Cadmium Zinc Telluride (CZT) or Cadmium Telluride CdTe. The specificity of ALIX is to be able to measure charges over a very large dynamic range (from 10 fC to 3 nC), and to store eight measurements in a very short time (from every 250 ns to a few ms). Up to eight images are stored inside the ASIC and each image can be read out in 64 μs. A new acquisition sequence can then be started. Two analog readouts are available, one for the X-ray signal and one for the offset and afterglow measurement in case of pulsed X-rays. The outputs are converted into digital values by two off-chip 14 bits Analog-to-Digital Converters (ADC). A first version of ALIX has been tested with CZT and CdTe detectors under high-energy pulsed X-ray photons (20 MeV, 60 ns pulses every 250 ns). We will present the different results of linearity and signal-to-noise ratio. A second version of ALIX has been designed with some corrections. Electrical tests performed on 85 ASICS showed that the corrections were successful. We are now able to integrate them behind a 64×32 pixels 1 mm pitch CZT detector. Such an ASIC could also be used for strip detectors where a large dynamic range and a fast response are necessary.

  6. An adaptive scheme for robot localization and mapping with dynamically configurable inter-beacon range measurements.

    PubMed

    Torres-González, Arturo; Martinez-de Dios, Jose Ramiro; Ollero, Anibal

    2014-04-25

    This work is motivated by robot-sensor network cooperation techniques where sensor nodes (beacons) are used as landmarks for range-only (RO) simultaneous localization and mapping (SLAM). This paper presents a RO-SLAM scheme that actuates over the measurement gathering process using mechanisms that dynamically modify the rate and variety of measurements that are integrated in the SLAM filter. It includes a measurement gathering module that can be configured to collect direct robot-beacon and inter-beacon measurements with different inter-beacon depth levels and at different rates. It also includes a supervision module that monitors the SLAM performance and dynamically selects the measurement gathering configuration balancing SLAM accuracy and resource consumption. The proposed scheme has been applied to an extended Kalman filter SLAM with auxiliary particle filters for beacon initialization (PF-EKF SLAM) and validated with experiments performed in the CONET Integrated Testbed. It achieved lower map and robot errors (34% and 14%, respectively) than traditional methods with a lower computational burden (16%) and similar beacon energy consumption.

  7. An Adaptive Scheme for Robot Localization and Mapping with Dynamically Configurable Inter-Beacon Range Measurements

    PubMed Central

    Torres-González, Arturo; Martinez-de Dios, Jose Ramiro; Ollero, Anibal

    2014-01-01

    This work is motivated by robot-sensor network cooperation techniques where sensor nodes (beacons) are used as landmarks for range-only (RO) simultaneous localization and mapping (SLAM). This paper presents a RO-SLAM scheme that actuates over the measurement gathering process using mechanisms that dynamically modify the rate and variety of measurements that are integrated in the SLAM filter. It includes a measurement gathering module that can be configured to collect direct robot-beacon and inter-beacon measurements with different inter-beacon depth levels and at different rates. It also includes a supervision module that monitors the SLAM performance and dynamically selects the measurement gathering configuration balancing SLAM accuracy and resource consumption. The proposed scheme has been applied to an extended Kalman filter SLAM with auxiliary particle filters for beacon initialization (PF-EKF SLAM) and validated with experiments performed in the CONET Integrated Testbed. It achieved lower map and robot errors (34% and 14%, respectively) than traditional methods with a lower computational burden (16%) and similar beacon energy consumption. PMID:24776938

  8. Multichannel emission spectrometer for high dynamic range optical pyrometry of shock-driven materials

    NASA Astrophysics Data System (ADS)

    Bassett, Will P.; Dlott, Dana D.

    2016-10-01

    An emission spectrometer (450-850 nm) using a high-throughput, high numerical aperture (N.A. = 0.3) prism spectrograph with stepped fiberoptic coupling, 32 fast photomultipliers and thirty-two 1.25 GHz digitizers is described. The spectrometer can capture single-shot events with a high dynamic range in amplitude and time (nanoseconds to milliseconds or longer). Methods to calibrate the spectrometer and verify its performance and accuracy are described. When a reference thermal source is used for calibration, the spectrometer can function as a fast optical pyrometer. Applications of the spectrometer are illustrated by using it to capture single-shot emission transients from energetic materials or reactive materials initiated by kmṡs-1 impacts with laser-driven flyer plates. A log (time) data analysis method is used to visualize multiple kinetic processes resulting from impact initiation of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) or a Zr/CuO nanolaminate thermite. Using a gray body algorithm to interpret the spectral radiance from shocked HMX, a time history of temperature and emissivity was obtained, which could be used to investigate HMX hot spot dynamics. Finally, two examples are presented showing how the spectrometer can avoid temperature determination errors in systems where thermal emission is accompanied by atomic or molecular emission lines.

  9. Encounter success of free-ranging marine predator movements across a dynamic prey landscape.

    PubMed

    Sims, David W; Witt, Matthew J; Richardson, Anthony J; Southall, Emily J; Metcalfe, Julian D

    2006-05-22

    Movements of wide-ranging top predators can now be studied effectively using satellite and archival telemetry. However, the motivations underlying movements remain difficult to determine because trajectories are seldom related to key biological gradients, such as changing prey distributions. Here, we use a dynamic prey landscape of zooplankton biomass in the north-east Atlantic Ocean to examine active habitat selection in the plankton-feeding basking shark Cetorhinus maximus. The relative success of shark searches across this landscape was examined by comparing prey biomass encountered by sharks with encounters by random-walk simulations of 'model' sharks. Movements of transmitter-tagged sharks monitored for 964 days (16754 km estimated minimum distance) were concentrated on the European continental shelf in areas characterized by high seasonal productivity and complex prey distributions. We show movements by adult and sub-adult sharks yielded consistently higher prey encounter rates than 90% of random-walk simulations. Behavioural patterns were consistent with basking sharks using search tactics structured across multiple scales to exploit the richest prey areas available in preferred habitats. Simple behavioural rules based on learned responses to previously encountered prey distributions may explain the high performances. This study highlights how dynamic prey landscapes enable active habitat selection in large predators to be investigated from a trophic perspective, an approach that may inform conservation by identifying critical habitat of vulnerable species.

  10. Multiple conformational states of the hammerhead ribozyme, broad time range of relaxation and topology of dynamics

    PubMed Central

    Menger, Marcus; Eckstein, Fritz; Porschke, Dietmar

    2000-01-01

    The dynamics of a hammerhead ribozyme was analyzed by measurements of fluorescence-detected temperature jump relaxation. The ribozyme was substituted at different positions by 2-aminopurine (2-AP) as fluorescence indicator; these substitutions do not inhibit catalysis. The general shape of relaxation curves reported from different positions of the ribozyme is very similar: a fast decrease of fluorescence, mainly due to physical quenching, is followed by a slower increase of fluorescence due to conformational relaxation. In most cases at least three relaxation time constants in the time range from a few microseconds to ~200 ms are required for fitting. Although the relaxation at different positions of the ribozyme is similar in general, suggesting a global type of ribozyme dynamics, a close examination reveals differences, indicating an individual local response. For example, 2-AP in a tetraloop reports mainly the local loop dynamics known from isolated loops, whereas 2-AP located at the core, e.g. at the cleavage site or its vicinity, also reports relatively large amplitudes of slower components of the ribozyme dynamics. A variant with an A→G substitution in domain II, resulting in an inactive form, leads to the appearance of a particularly slow relaxation process (τ ≈200 ms). Addition of Mg2+ ions induces a reduction of amplitudes and in most cases a general increase of time constants. Differences between the hammerhead variants are clearly demonstrated by subtraction of relaxation curves recorded under corresponding conditions. The changes induced in the relaxation response by Mg2+ are very similar to those induced by Ca2+. The relaxation data do not provide any evidence for formation of Mg2+-inner sphere complexes in hammerhead ribozymes, because a Mg2+-specific relaxation effect was not visible. However, a Mg2+-specific effect was found for a dodeca-riboadenylate substituted with 2-AP, showing that the fluorescence of 2-AP is able to indicate inner sphere

  11. Multiple conformational states of the hammerhead ribozyme, broad time range of relaxation and topology of dynamics.

    PubMed

    Menger, M; Eckstein, F; Porschke, D

    2000-11-15

    The dynamics of a hammerhead ribozyme was analyzed by measurements of fluorescence-detected temperature jump relaxation. The ribozyme was substituted at different positions by 2-aminopurine (2-AP) as fluorescence indicator; these substitutions do not inhibit catalysis. The general shape of relaxation curves reported from different positions of the ribozyme is very similar: a fast decrease of fluorescence, mainly due to physical quenching, is followed by a slower increase of fluorescence due to conformational relaxation. In most cases at least three relaxation time constants in the time range from a few microseconds to approximately 200 ms are required for fitting. Although the relaxation at different positions of the ribozyme is similar in general, suggesting a global type of ribozyme dynamics, a close examination reveals differences, indicating an individual local response. For example, 2-AP in a tetraloop reports mainly the local loop dynamics known from isolated loops, whereas 2-AP located at the core, e.g. at the cleavage site or its vicinity, also reports relatively large amplitudes of slower components of the ribozyme dynamics. A variant with an A-->G substitution in domain II, resulting in an inactive form, leads to the appearance of a particularly slow relaxation process (tau approximately 200 ms). Addition of Mg(2+) ions induces a reduction of amplitudes and in most cases a general increase of time constants. Differences between the hammerhead variants are clearly demonstrated by subtraction of relaxation curves recorded under corresponding conditions. The changes induced in the relaxation response by Mg(2+) are very similar to those induced by Ca(2+). The relaxation data do not provide any evidence for formation of Mg(2+)-inner sphere complexes in hammerhead ribozymes, because a Mg(2+)-specific relaxation effect was not visible. However, a Mg(2+)-specific effect was found for a dodeca-riboadenylate substituted with 2-AP, showing that the fluorescence of 2

  12. Nonlinear analysis and dynamic compensation of stylus scanning measurement with wide range

    NASA Astrophysics Data System (ADS)

    Hui, Heiyang; Liu, Xiaojun; Lu, Wenlong

    2011-12-01

    Surface topography is an important geometrical feature of a workpiece that influences its quality and functions such as friction, wearing, lubrication and sealing. Precision measurement of surface topography is fundamental for product quality characterizing and assurance. Stylus scanning technique is a widely used method for surface topography measurement, and it is also regarded as the international standard method for 2-D surface characterizing. Usually surface topography, including primary profile, waviness and roughness, can be measured precisely and efficiently by this method. However, by stylus scanning method to measure curved surface topography, the nonlinear error is unavoidable because of the difference of horizontal position of the actual measured point from given sampling point and the nonlinear transformation process from vertical displacement of the stylus tip to angle displacement of the stylus arm, and the error increases with the increasing of measuring range. In this paper, a wide range stylus scanning measurement system based on cylindrical grating interference principle is constructed, the originations of the nonlinear error are analyzed, the error model is established and a solution to decrease the nonlinear error is proposed, through which the error of the collected data is dynamically compensated.

  13. Nonlinear mapping of the luminance in dual-layer high dynamic range displays

    NASA Astrophysics Data System (ADS)

    Guarnieri, Gabriele; Ramponi, Giovanni; Bonfiglio, Silvio; Albani, Luigi

    2009-02-01

    It has long been known that the human visual system (HVS) has a nonlinear response to luminance. This nonlinearity can be quantified using the concept of just noticeable difference (JND), which represents the minimum amplitude of a specified test pattern an average observer can discern from a uniform background. The JND depends on the background luminance following a threshold versus intensity (TVI) function. It is possible to define a curve which maps physical luminances into a perceptually linearized domain. This mapping can be used to optimize a digital encoding, by minimizing the visibility of quantization noise. It is also commonly used in medical applications to display images adapting to the characteristics of the display device. High dynamic range (HDR) displays, which are beginning to appear on the market, can display luminance levels outside the range in which most standard mapping curves are defined. In particular, dual-layer LCD displays are able to extend the gamut of luminance offered by conventional liquid crystals towards the black region; in such areas suitable and HVS-compliant luminance transformations need to be determined. In this paper we propose a method, which is primarily targeted to the extension of the DICOM curve used in medical imaging, but also has a more general application. The method can be modified in order to compensate for the ambient light, which can be significantly greater than the black level of an HDR display and consequently reduce the visibility of the details in dark areas.

  14. Adaptive reshaper for high dynamic range and wide color gamut video compression

    NASA Astrophysics Data System (ADS)

    Lu, Taoran; Pu, Fangjun; Yin, Peng; Pytlarz, Jaclyn; Chen, Tao; Husak, Walt

    2016-09-01

    High Dynamic Range (HDR) and Wider Color Gamut (WCG) content represents a greater range of luminance levels and a more complete reproduction of colors found in real-world scenes. The characteristics of HDR/WCG content are very different from the SDR content. It poses a challenge to the compression system which is originally designed for SDR content. Recently in MPEG/VCEG, two directions have been taken to improve compression performances for HDR/WCG video using HEVC Main10 codec. The first direction is to improve HDR-10 using encoder optimization. The second direction is to modify the video signal in pre/post processing to better fit compression system. The process therefore is out of coding loop and does not involve changes to the HEVC specification. Among many proposals in the second direction, reshaper is identified to be the key component. In this paper, a novel luma reshaper is presented which re-allocates the codewords to help codec improve subjective quality. In addition, encoder optimization can be performed jointly with reshaping. Experiments are conducted with ICtCp color difference signal. Simulation results show that if both joint optimization of reshaper and encoder are carried out, there is evidence that improvement over the HDR-10 anchor can be achieved.

  15. Wide dynamic range enrichment method of semiconducting single-walled carbon nanotubes with weak field centrifugation

    PubMed Central

    Reis, Wieland G.; Tomović, Željko; Weitz, R. Thomas; Krupke, Ralph; Mikhael, Jules

    2017-01-01

    The potential of single–walled carbon nanotubes (SWCNTs) to outperform silicon in electronic application was finally enabled through selective separation of semiconducting nanotubes from the as-synthesized statistical mix with polymeric dispersants. Such separation methods provide typically high semiconducting purity samples with narrow diameter distribution, i.e. almost single chiralities. But for a wide range of applications high purity mixtures of small and large diameters are sufficient or even required. Here we proof that weak field centrifugation is a diameter independent method for enrichment of semiconducting nanotubes. We show that the non-selective and strong adsorption of polyarylether dispersants on nanostructured carbon surfaces enables simple separation of diverse raw materials with different SWCNT diameter. In addition and for the first time, we demonstrate that increased temperature enables higher purity separation. Furthermore we show that the mode of action behind this electronic enrichment is strongly connected to both colloidal stability and protonation. By giving simple access to electronically sorted SWCNTs of any diameter, the wide dynamic range of weak field centrifugation can provide economical relevance to SWCNTs. PMID:28317942

  16. Wide dynamic range enrichment method of semiconducting single-walled carbon nanotubes with weak field centrifugation

    NASA Astrophysics Data System (ADS)

    Reis, Wieland G.; Tomović, Željko; Weitz, R. Thomas; Krupke, Ralph; Mikhael, Jules

    2017-03-01

    The potential of single–walled carbon nanotubes (SWCNTs) to outperform silicon in electronic application was finally enabled through selective separation of semiconducting nanotubes from the as-synthesized statistical mix with polymeric dispersants. Such separation methods provide typically high semiconducting purity samples with narrow diameter distribution, i.e. almost single chiralities. But for a wide range of applications high purity mixtures of small and large diameters are sufficient or even required. Here we proof that weak field centrifugation is a diameter independent method for enrichment of semiconducting nanotubes. We show that the non-selective and strong adsorption of polyarylether dispersants on nanostructured carbon surfaces enables simple separation of diverse raw materials with different SWCNT diameter. In addition and for the first time, we demonstrate that increased temperature enables higher purity separation. Furthermore we show that the mode of action behind this electronic enrichment is strongly connected to both colloidal stability and protonation. By giving simple access to electronically sorted SWCNTs of any diameter, the wide dynamic range of weak field centrifugation can provide economical relevance to SWCNTs.

  17. Exploring the dynamics of phase separation in colloid-polymer mixtures with long range attraction.

    PubMed

    Sabin, Juan; Bailey, Arthur E; Frisken, Barbara J

    2016-06-28

    We have studied the kinetics of phase separation and gel formation in a low-dispersity colloid - non-adsorbing polymer system with long range attraction using small-angle light scattering. This system exhibits two-phase and three-phase coexistence of gas, liquid and crystal phases when the strength of attraction is between 2 and 4kBT and gel phases when the strength of attraction is increased. For those samples that undergo macroscopic phase separation, whether to gas-crystal, gas-liquid or gas-liquid-crystal coexistence, we observe dynamic scaling of the structure factor and growth of a characteristic length scale that behaves as expected for phase separation in fluids. In samples that gel, the power law associated with the growth of the dominant length scale is not equal to 1/3, but appears to depend mainly on the strength of attraction, decreasing from 1/3 for samples near the coexistence region to 1/27 at 8kBT, over a wide range of colloid and polymer concentrations.

  18. Calibration and assessment of channel-specific biases in microarray data with extended dynamical range

    PubMed Central

    Bengtsson, Henrik; Jönsson, Göran; Vallon-Christersson, Johan

    2004-01-01

    Background Non-linearities in observed log-ratios of gene expressions, also known as intensity dependent log-ratios, can often be accounted for by global biases in the two channels being compared. Any step in a microarray process may introduce such offsets and in this article we study the biases introduced by the microarray scanner and the image analysis software. Results By scanning the same spotted oligonucleotide microarray at different photomultiplier tube (PMT) gains, we have identified a channel-specific bias present in two-channel microarray data. For the scanners analyzed it was in the range of 15–25 (out of 65,535). The observed bias was very stable between subsequent scans of the same array although the PMT gain was greatly adjusted. This indicates that the bias does not originate from a step preceding the scanner detector parts. The bias varies slightly between arrays. When comparing estimates based on data from the same array, but from different scanners, we have found that different scanners introduce different amounts of bias. So do various image analysis methods. We propose a scanning protocol and a constrained affine model that allows us to identify and estimate the bias in each channel. Backward transformation removes the bias and brings the channels to the same scale. The result is that systematic effects such as intensity dependent log-ratios are removed, but also that signal densities become much more similar. The average scan, which has a larger dynamical range and greater signal-to-noise ratio than individual scans, can then be obtained. Conclusions The study shows that microarray scanners may introduce a significant bias in each channel. Such biases have to be calibrated for, otherwise systematic effects such as intensity dependent log-ratios will be observed. The proposed scanning protocol and calibration method is simple to use and is useful for evaluating scanner biases or for obtaining calibrated measurements with extended dynamical

  19. a Step Towards Dynamic Scene Analysis with Active Multi-View Range Imaging Systems

    NASA Astrophysics Data System (ADS)

    Weinmann, M.; Jutzi, B.

    2012-07-01

    Obtaining an appropriate 3D description of the local environment remains a challenging task in photogrammetric research. As terrestrial laser scanners (TLSs) perform a highly accurate, but time-dependent spatial scanning of the local environment, they are only suited for capturing static scenes. In contrast, new types of active sensors provide the possibility of simultaneously capturing range and intensity information by images with a single measurement, and the high frame rate also allows for capturing dynamic scenes. However, due to the limited field of view, one observation is not sufficient to obtain a full scene coverage and therefore, typically, multiple observations are collected from different locations. This can be achieved by either placing several fixed sensors at different known locations or by using a moving sensor. In the latter case, the relation between different observations has to be estimated by using information extracted from the captured data and then, a limited field of view may lead to problems if there are too many moving objects within it. Hence, a moving sensor platform with multiple and coupled sensor devices offers the advantages of an extended field of view which results in a stabilized pose estimation, an improved registration of the recorded point clouds and an improved reconstruction of the scene. In this paper, a new experimental setup for investigating the potentials of such multi-view range imaging systems is presented which consists of a moving cable car equipped with two synchronized range imaging devices. The presented setup allows for monitoring in low altitudes and it is suitable for getting dynamic observations which might arise from moving cars or from moving pedestrians. Relying on both 3D geometry and 2D imagery, a reliable and fully automatic approach for co-registration of captured point cloud data is presented which is essential for a high quality of all subsequent tasks. The approach involves using sparse point

  20. Unattended real-time re-establishment of visibility in high dynamic range video and stills

    NASA Astrophysics Data System (ADS)

    Abidi, B.

    2014-05-01

    We describe a portable unattended persistent surveillance system that corrects for harsh illumination conditions, where bright sun light creates mixed contrast effects, i.e., heavy shadows and washouts. These effects result in high dynamic range scenes, where illuminance can vary from few luxes to a 6 figure value. When using regular monitors and cameras, such wide span of illuminations can only be visualized if the actual range of values is compressed, leading to the creation of saturated and/or dark noisy areas and a loss of information in these areas. Images containing extreme mixed contrast cannot be fully enhanced from a single exposure, simply because all information is not present in the original data. The active intervention in the acquisition process is required. A software package, capable of integrating multiple types of COTS and custom cameras, ranging from Unmanned Aerial Systems (UAS) data links to digital single-lens reflex cameras (DSLR), is described. Hardware and software are integrated via a novel smart data acquisition algorithm, which communicates to the camera the parameters that would maximize information content in the final processed scene. A fusion mechanism is then applied to the smartly acquired data, resulting in an enhanced scene where information in both dark and bright areas is revealed. Multi-threading and parallel processing are exploited to produce automatic real time full motion corrected video. A novel enhancement algorithm was also devised to process data from legacy and non-controllable cameras. The software accepts and processes pre-recorded sequences and stills, enhances visible, night vision, and Infrared data, and successfully applies to night time and dark scenes. Various user options are available, integrating custom functionalities of the application into intuitive and easy to use graphical interfaces. The ensuing increase in visibility in surveillance video and intelligence imagery will expand the performance and

  1. Maternal effects and range expansion: a key factor in a dynamic process?

    PubMed Central

    Duckworth, Renée A.

    2009-01-01

    generated in newly colonized populations. More generally, these results suggest that, as a key source of variation in colonizing phenotypes, maternal effects are of crucial importance for understanding the dynamics of range expansion. PMID:19324612

  2. Color signal encoding for high dynamic range and wide color gamut based on human perception

    NASA Astrophysics Data System (ADS)

    Nezamabadi, Mahdi; Miller, Scott; Daly, Scott; Atkins, Robin

    2014-01-01

    A new EOTF based on human perception, called PQ (Perceptual Quantizer), was proposed in a previous work (SMPTE Mot. Imag. J 2013, 122:52-59) and its performance was evaluated for a wide range of luminance levels and encoding bitdepth values. This paper is an extension of that previous work to include the color aspects of the PQ signal encoding. The efficiency of the PQ encoding and bit-depth requirements were evaluated and compared for standard color gamuts of Rec 709 (SRGB), and the wide color gamuts of Rec 2020, P3, and ACES for a variety of signal representations as RGB, YCbCr, and XYZ. In a selected color space for any potential local gray level 26 color samples were simulated by deviating one quantization step from the original color in each signal dimension. The quantization step sizes were simulated based on the PQ and gamma curves for different bit-depth values and luminance ranges for each of the color gamut spaces and signal representations. Color differences between the gray field and the simulated color samples were computed using CIE DE2000 color difference equation. The maximum color difference values (quantization error) were used as a metric to evaluate the performance of the corresponding EOTF curve. Extended color gamuts were found to require more bits to maintain low quantization error. Extended dynamic range required fewer additional bits in to maintain quantization error. Regarding the visual detection thresholds, the minimum bit-depth required by the PQ and gamma encodings are evaluated and compared through visual experiments.

  3. Chaotic dynamics and thermodynamics of periodic systems with long-range forces

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj

    Gravitational and electromagnetic interactions form the backbone of our theoretical understanding of the universe. While, in general, such interactions are analytically inexpressible for three-dimensional infinite systems, one-dimensional modeling allows one to treat the long-range forces exactly. Not only are one-dimensional systems of profound intrinsic interest, physicists often rely on one-dimensional models as a starting point in the analysis of their more complicated higher-dimensional counterparts. In the analysis of large systems considered in cosmology and plasma physics, periodic boundary conditions are a natural choice and have been utilized in the study of one dimensional Coulombic and gravitational systems. Such studies often employ numerical simulations to validate the theoretical predictions, and in cases where theoretical relations have not been mathematically formulated, numerical simulations serve as a powerful method in characterizing the system's physical properties. In this dissertation, analytic techniques are formulated to express the exact phase-space dynamics of spatially-periodic one-dimensional Coulombic and gravitational systems. Closed-form versions of the Hamiltonian and the electric field are derived for single-component and two-component Coulombic systems, placing the two on the same footing as the gravitational counterpart. Furthermore, it is demonstrated that a three-body variant of the spatially-periodic Coulombic or gravitational system may be reduced isomorphically to a periodic system of a single particle in a two-dimensional rhombic potential. The analytic results are utilized for developing and implementing efficient computational tools to study the dynamical and the thermodynamic properties of the systems without resorting to numerical approximations. Event-driven algorithms are devised to obtain Lyapunov spectra, radial distribution function, pressure, caloric curve, and Poincare surface of section through an N

  4. General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Zhang, Yuzhen; Chen, Qian; Zuo, Chao; Li, Rubin; Shen, Guochen

    2014-08-01

    This paper presents a general solution for realizing high dynamic range three-dimensional (3-D) shape measurement based on fringe projection. Three concrete techniques are involved in the solution for measuring object with large range of reflectivity (LRR) or one with shiny specular surface. For the first technique, the measured surface reflectivities are sub-divided into several groups based on its histogram distribution, then the optimal exposure time for each group can be predicted adaptively so that the bright as well as dark areas on the measured surface are able to be handled without any compromise. Phase-shifted images are then captured at the calculated exposure times and a composite phase-shifted image is generated by extracting the optimally exposed pixels in the raw fringes images. For the second technique, it is proposed by introducing two orthogonal polarizers which are placed separately in front of the camera and projector into the first technique and the third one is developed by combining the second technique with the strategy of properly altering the angle between the transmission axes of the two polarizers. Experimental results show that the first technique can effectively improve the measurement accuracy of diffuse objects with LRR, the second one is capable of measuring object with weak specular reflection (WSR: e.g. shiny plastic surface) and the third can inspect surface with strong specular reflection (SSR: e.g. highlight on aluminum alloy) precisely. Further, more complex scene, such as the one with LRR and WSR, or even the one simultaneously involving LRR, WSR and SSR, can be measured accurately by the proposed solution.

  5. Orthostatic stress is necessary to maintain the dynamic range of cardiovascular control in space

    NASA Technical Reports Server (NTRS)

    Baisch, J. F.; Wolfram, G.; Beck, L.; Drummer, C.; Stormer, I.; Buckey, J.; Blomqvist, G.

    2000-01-01

    In the upright position, gravity fills the low-pressure systems of human circulation with blood and interstitial fluid in the sections below the diaphragm. Without gravity one pressure component in the vessels disappears and the relationship between hydrostatic pressure and oncotic pressure, which regulates fluid passage across the capillary endothelium in the terminal vascular bed, shifts constantly. The visible consequences of this are a puffy face and "bird" legs. The plasma volume shrinks in space and the range of cardiovascular control is reduced. When they stand up for the first time after landing, 30-50% of astronauts suffer from orthostatic intolerance. It remains unclear whether microgravity impairs cardiovascular reflexes, or whether it is the altered volume status that causes the cardiovascular instability following space flight. Lower body negative pressure was used in several space missions to stimulate the cardiovascular reflexes before, during and after a space flight. The results show that cardiovascular reflexes are maintained in microgravity. However, the astronauts' volume status changed in space, towards a volume-retracted state, as measurements of fluid-regulating hormones have shown. It can be hypothesized that the control of circulation and body fluid homeostasis in humans is adapted to their upright posture in the Earth's gravitational field. Autonomic control regulates fluid distribution to maintain the blood pressure in that posture, which most of us have to cope with for two-thirds of the day. A determined amount of interstitial volume is necessary to maintain the dynamic range of cardiovascular control in the upright posture; otherwise orthostatic intolerance may occur more often.

  6. Myosin-Va and dynamic actin oppose microtubules to drive long-range organelle transport.

    PubMed

    Evans, Richard D; Robinson, Christopher; Briggs, Deborah A; Tooth, David J; Ramalho, Jose S; Cantero, Marta; Montoliu, Lluis; Patel, Shyamal; Sviderskaya, Elena V; Hume, Alistair N

    2014-08-04

    In animal cells, microtubule and actin tracks and their associated motors (dynein, kinesin, and myosin) are thought to regulate long- and short-range transport, respectively. Consistent with this, microtubules extend from the perinuclear centrosome to the plasma membrane and allow bidirectional cargo transport over long distances (>1 μm). In contrast, actin often comprises a complex network of short randomly oriented filaments, suggesting that myosin motors move cargo short distances. These observations underpin the "highways and local roads" model for transport along microtubule and actin tracks. The "cooperative capture" model exemplifies this view and suggests that melanosome distribution in melanocyte dendrites is maintained by long-range transport on microtubules followed by actin/myosin-Va-dependent tethering. In this study, we used cell normalization technology to quantitatively examine the contribution of microtubules and actin/myosin-Va to organelle distribution in melanocytes. Surprisingly, our results indicate that microtubules are essential for centripetal, but not centrifugal, transport. Instead, we find that microtubules retard a centrifugal transport process that is dependent on myosin-Va and a population of dynamic F-actin. Functional analysis of mutant proteins indicates that myosin-Va works as a transporter dispersing melanosomes along actin tracks whose +/barbed ends are oriented toward the plasma membrane. Overall, our data highlight the role of myosin-Va and actin in transport, and not tethering, and suggest a new model in which organelle distribution is determined by the balance between microtubule-dependent centripetal and myosin-Va/actin-dependent centrifugal transport. These observations appear to be consistent with evidence coming from other systems showing that actin/myosin networks can drive long-distance organelle transport and positioning.

  7. Signal enhancement in optical projection tomography via virtual high dynamic range imaging of single exposure

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Dong, Di; Shi, Liangliang; Wang, Jun; Yang, Xin; Tian, Jie

    2015-03-01

    Optical projection tomography (OPT) is a mesoscopic scale optical imaging technique for specimens between 1mm and 10mm. OPT has been proven to be immensely useful in a wide variety of biological applications, such as developmental biology and pathology, but its shortcomings in imaging specimens containing widely differing contrast elements are obvious. The longer exposure for high intensity tissues may lead to over saturation of other areas, whereas a relatively short exposure may cause similarity with surrounding background. In this paper, we propose an approach to make a trade-off between capturing weak signals and revealing more details for OPT imaging. This approach consists of three steps. Firstly, the specimens are merely scanned in 360 degrees above a normal exposure but non-overexposure to acquire the projection data. This reduces the photo bleaching and pre-registration computation compared with multiple different exposures in conventional high dynamic range (HDR) imaging method. Secondly, three virtual channels are produced for each projection image based on the histogram distribution to simulate the low, normal and high exposure images used in the traditional HDR technology in photography. Finally, each virtual channel is normalized to the full gray scale range and three channels are recombined into one image using weighting coefficients optimized by a standard eigen-decomposition method. After applying our approach on the projection data, filtered back projection (FBP) algorithm is carried out for 3-dimentional reconstruction. The neonatal wild-type mouse paw has been scanned to verify this approach. Results demonstrated the effectiveness of the proposed approach.

  8. Myosin-Va and Dynamic Actin Oppose Microtubules to Drive Long-Range Organelle Transport

    PubMed Central

    Evans, Richard D.; Robinson, Christopher; Briggs, Deborah A.; Tooth, David J.; Ramalho, Jose S.; Cantero, Marta; Montoliu, Lluis; Patel, Shyamal; Sviderskaya, Elena V.; Hume, Alistair N.

    2014-01-01

    Summary In animal cells, microtubule and actin tracks and their associated motors (dynein, kinesin, and myosin) are thought to regulate long- and short-range transport, respectively [1–8]. Consistent with this, microtubules extend from the perinuclear centrosome to the plasma membrane and allow bidirectional cargo transport over long distances (>1 μm). In contrast, actin often comprises a complex network of short randomly oriented filaments, suggesting that myosin motors move cargo short distances. These observations underpin the “highways and local roads” model for transport along microtubule and actin tracks [2]. The “cooperative capture” model exemplifies this view and suggests that melanosome distribution in melanocyte dendrites is maintained by long-range transport on microtubules followed by actin/myosin-Va-dependent tethering [5, 9]. In this study, we used cell normalization technology to quantitatively examine the contribution of microtubules and actin/myosin-Va to organelle distribution in melanocytes. Surprisingly, our results indicate that microtubules are essential for centripetal, but not centrifugal, transport. Instead, we find that microtubules retard a centrifugal transport process that is dependent on myosin-Va and a population of dynamic F-actin. Functional analysis of mutant proteins indicates that myosin-Va works as a transporter dispersing melanosomes along actin tracks whose +/barbed ends are oriented toward the plasma membrane. Overall, our data highlight the role of myosin-Va and actin in transport, and not tethering, and suggest a new model in which organelle distribution is determined by the balance between microtubule-dependent centripetal and myosin-Va/actin-dependent centrifugal transport. These observations appear to be consistent with evidence coming from other systems showing that actin/myosin networks can drive long-distance organelle transport and positioning [10, 11]. PMID:25065759

  9. Using high-dynamic-range digital repeat photography to measure plant phenology in a subarctic mire.

    NASA Astrophysics Data System (ADS)

    Garnello, A.; Dye, D. G.; Bogle, R.; Vogel, J.; Saleska, S. R.; Crill, P. M.

    2015-12-01

    A novel Visual Imaging System (VIS) was designed and deployed in a subarctic mire (68° 20' N, 19° 03'E) aimed at cataloging plant biological changes (phenology) and analyzing seasonal color shifts in relation to micrometeorological data along the summer growing season: June-November, 2015. The VIS is designed as a tower-based, solar-powered, automated phenology camera (Phenocam) that collects red, green, blue (RGB) and near-infrared (NIR) landscape images in High Dynamic Range (HDR) with fully programmable temporal resolution. HDR composite images are made through combining a series of rapid-capture photos with incremental increases of exposure times and a fixed focus, minimizing the spatial and visual data lost from shadows or from the over-saturation of light. This visual record of ecosystem phenology stages (Phenophases) is being used to (1) investigate vegetation-dependent spectral indices; (2) establish a cross-year comparison record of Phenophase seasonality; (3) investigate meteorological-dependent vegetation Phenophases; (4) provide ground-truthing measurements that enhance broader spatial-scale remote sensing analyses of subarctic wetlands.

  10. High Dynamic Range Image rendering of color in chameleons' camouflage using optical thin films

    NASA Astrophysics Data System (ADS)

    Prusten, Mark

    2008-08-01

    High Dynamic Range Image (HDRI) rendering and animation of color in the camouflage of chameleons is developed utilizing thin film optics. Chameleons are a lizard species, and have the ability to change their skin color. This change in color is an expression of the physical and physiological conditions of the lizard, and plays a part in communication. The different colors that can be produced depending on the species include pink, blue, red, orange, green, black, brown and yellow. The modeling, simulation, and rendering of the color, which their skin incorporates, thin film optical stacks. The skin of a chameleon has four layers, which together produce various colors. The outside transparent layer has chromatophores cells, of two kinds of color, yellow and red. Next there are two more layers that reflect light: one blue and the other white. The innermost layer contains dark pigment granules or melanophore cells that influences the amount of reflected light. All of these pigment cells can rapidly relocate their pigments, thereby influencing the color of the chameleon. Techniques like subsurface scattering, the simulation of volumetric scattering of light underneath the objects surface, and final gathering are defined in custom shaders and material phenomena for the renderer. The workflow developed to model the chameleon's skin is also applied to simulation and rendering of hair and fur camouflage, which does not exist in nature.

  11. Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor

    SciTech Connect

    Jeong, YeonJoo; Kim, Sungho; Lu, Wei D.

    2015-10-26

    Memristors and memristive systems have been extensively studied for data storage and computing applications such as neuromorphic systems. To act as synapses in neuromorphic systems, the memristor needs to exhibit analog resistive switching (RS) behavior with incremental conductance change. In this study, we show that the dynamic range of the analog RS behavior can be significantly enhanced in a tantalum-oxide-based memristor. By controlling different state variables enabled by different physical effects during the RS process, the gradual filament expansion stage can be selectively enhanced without strongly affecting the abrupt filament length growth stage. Detailed physics-based modeling further verified the observed experimental effects and revealed the roles of oxygen vacancy drift and diffusion processes, and how the diffusion process can be selectively enhanced during the filament expansion stage. These findings lead to more desirable and reliable memristor behaviors for analog computing applications. Additionally, the ability to selectively control different internal physical processes demonstrated in the current study provides guidance for continued device optimization of memristor devices in general.

  12. Dynamic magnetic susceptibility of systems with long-range magnetic order

    SciTech Connect

    Vannette, Matthew Dano

    2009-01-01

    The utility of the TDR as an instrument in the study of magnetically ordered materials has been expanded beyond the simple demonstration purposes. Results of static applied magnetic field dependent measurements of the dynamic magnetic susceptibility, χ, of various ferromagnetic (FM) and antiferromagnetic (AFM) materials showing a range of transition temperatures (1-800 K) are presented. Data was collected primarily with a tunnel diode resonator (TDR) at different radio-frequencies (~10-30 MHz). In the vicinity of TC local moment ferromagnets show a very sharp, narrow peak in χ which is suppressed in amplitude and shifted to higher temperatures as the static bias field is increased. Unexpectedly, critical scaling analysis fails for these data. It is seen that these data are frequency dependent, however there is no simple method whereby measurement frequency can be changed in a controllable fashion. In contrast, itinerant ferromagnets show a broad maximum in χ well below TC which is suppressed and shifts to lower temperatures as the dc bias field is increased. The data on itinerant ferromagnets is fitted to a semi-phenomenological model that suggests the sample response is dominated by the uncompensated minority spins in the conduction band. Concluding remarks suggest possible scenarios to achieve frequency resolved data using the TDR as well as other fields in which the apparatus may be exploited.

  13. The relation of signal transduction to the sensitivity and dynamic range of bacterial chemotaxis.

    PubMed

    Namba, Toshinori; Nishikawa, Masatoshi; Shibata, Tatsuo

    2012-09-19

    Complex networks of interacting molecular components of living cells are responsible for many important processes, such as signal processing and transduction. An important challenge is to understand how the individual properties of these molecular interactions and biochemical transformations determine the system-level properties of biological functions. Here, we address the issue of the accuracy of signal transduction performed by a bacterial chemotaxis system. The chemotaxis sensitivity of bacteria to a chemoattractant gradient has been measured experimentally from bacterial aggregation in a chemoattractant-containing capillary. The observed precision of the chemotaxis depended on environmental conditions such as the concentration and molecular makeup of the chemoattractant. In a quantitative model, we derived the chemotactic response function, which is essential to describing the signal transduction process involved in bacterial chemotaxis. In the presence of a gradient, an analytical solution is derived that reveals connections between the chemotaxis sensitivity and the characteristics of the signaling system, such as reaction rates. These biochemical parameters are integrated into two system-level parameters: one characterizes the efficiency of gradient sensing, and the other is related to the dynamic range of chemotaxis. Thus, our approach explains how a particular signal transduction property affects the system-level performance of bacterial chemotaxis. We further show that the two parameters can be derived from published experimental data from a capillary assay, which successfully characterizes the performance of bacterial chemotaxis.

  14. Hardware-based smart camera for recovering high dynamic range video from multiple exposures

    NASA Astrophysics Data System (ADS)

    Lapray, Pierre-Jean; Heyrman, Barthélémy; Ginhac, Dominique

    2014-10-01

    In many applications such as video surveillance or defect detection, the perception of information related to a scene is limited in areas with strong contrasts. The high dynamic range (HDR) capture technique can deal with these limitations. The proposed method has the advantage of automatically selecting multiple exposure times to make outputs more visible than fixed exposure ones. A real-time hardware implementation of the HDR technique that shows more details both in dark and bright areas of a scene is an important line of research. For this purpose, we built a dedicated smart camera that performs both capturing and HDR video processing from three exposures. What is new in our work is shown through the following points: HDR video capture through multiple exposure control, HDR memory management, HDR frame generation, and representation under a hardware context. Our camera achieves a real-time HDR video output at 60 fps at 1.3 megapixels and demonstrates the efficiency of our technique through an experimental result. Applications of this HDR smart camera include the movie industry, the mass-consumer market, military, automotive industry, and surveillance.

  15. Extending the dynamic range of transcription factor action by translational regulation

    NASA Astrophysics Data System (ADS)

    Sokolowski, Thomas R.; Walczak, Aleksandra M.; Bialek, William; Tkačik, Gašper

    2016-02-01

    A crucial step in the regulation of gene expression is binding of transcription factor (TF) proteins to regulatory sites along the DNA. But transcription factors act at nanomolar concentrations, and noise due to random arrival of these molecules at their binding sites can severely limit the precision of regulation. Recent work on the optimization of information flow through regulatory networks indicates that the lower end of the dynamic range of concentrations is simply inaccessible, overwhelmed by the impact of this noise. Motivated by the behavior of homeodomain proteins, such as the maternal morphogen Bicoid in the fruit fly embryo, we suggest a scheme in which transcription factors also act as indirect translational regulators, binding to the mRNA of other regulatory proteins. Intuitively, each mRNA molecule acts as an independent sensor of the input concentration, and averaging over these multiple sensors reduces the noise. We analyze information flow through this scheme and identify conditions under which it outperforms direct transcriptional regulation. Our results suggest that the dual role of homeodomain proteins is not just a historical accident, but a solution to a crucial physics problem in the regulation of gene expression.

  16. Non-equilibrium entropy and dynamics in a system with long-range interactions

    NASA Astrophysics Data System (ADS)

    Rocha Filho, T. M.

    2016-05-01

    We extend the core-halo approach of Levin et al (2014 Phys. Rep. 535, 1) for the violent relaxation of long-range interacting system with a waterbag initial condition, in the case of a widely studied Hamiltonian mean field model. The Gibbs entropy maximization principle is considered with the constraints of energy conservation and of coarse-grained Casimir invariants of the Vlasov equation. The core-halo distribution function depends only on the one-particle mean-field energy, as is expected from the Jeans theorem, and depends on a set of parameters which in our approach is completely determined without having to solve an envelope equation for the contour of the initial state, as required in the original approach. We also show that a different ansatz can be used for the core-halo distribution with similar results. This work also reveals a link between a parametric resonance causing the non-equilibrium phase transition in the model, a dynamical property, and a discontinuity of the (non-equilibrium) entropy of the system.

  17. A Hybrid Shared-Memory Parallel Max-Tree Algorithm for Extreme Dynamic-Range Images.

    PubMed

    Moschini, Ugo; Meijster, Arnold; Wilkinson, Michael

    2017-03-30

    Max-trees, or component trees, are graph structures that represent the connected components of an image in a hierarchical way. Nowadays, many application fields rely on images with high-dynamic range or floating point values. Efficient sequential algorithms exist to build trees and compute attributes for images of any bit depth. However, we show that the current parallel algorithms perform poorly already with integers at bit depths higher than 16 bits per pixel. We propose a parallel method combining the two worlds of flooding and merging max-tree algorithms. First, a pilot max-tree of a quantized version of the image is built in parallel using a flooding method. Later, this structure is used in a parallel leaf-to-root approach to compute efficiently the final max-tree and to drive the merging of the sub-trees computed by the threads. We present an analysis of the performance both on simulated and actual 2D images and 3D volumes. Execution times are about 20 better than the fastest sequential algorithm and speed-up goes up to 30 40 on 64 threads.

  18. On the range of validity of the fluctuation theorem for stochastic Markovian dynamics

    NASA Astrophysics Data System (ADS)

    Rákos, A.; Harris, R. J.

    2008-05-01

    We consider the fluctuations of generalized currents in stochastic Markovian dynamics. The large deviations of current fluctuations are shown to obey a Gallavotti-Cohen (GC) type symmetry in systems with a finite state space. However, this symmetry is not guaranteed to hold in systems with an infinite state space. A simple example of such a case is the zero-range process (ZRP). Here we discuss in more detail the already reported (Harris et al 2006 Europhys. Lett. 75 227) breakdown of the GC symmetry in the context of the ZRP with open boundaries and we give a physical interpretation of the phases that appear. Furthermore, the earlier analytical results for the single-site case are extended to cover multiple-site systems. We also use our exact results to test an efficient numerical algorithm of Giardinà et al (2006 Phys. Rev. Lett. 96 120603), which was developed to measure the current large deviation function directly. We find that this method breaks down in some phases which we associate with the gapless spectrum of an effective Hamiltonian.

  19. Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration

    NASA Astrophysics Data System (ADS)

    Hall, Adam B.; Coy, Stephen L.; Kafle, Amol; Glick, James; Nazarov, Erkinjon; Vouros, Paul

    2013-09-01

    A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation.

  20. Acoustical correlates of performance on a dynamic range compression discrimination task.

    PubMed

    Sabin, Andrew T; Gallun, Frederick J; Souza, Pamela E

    2013-09-01

    Dynamic range compression is widely used to reduce the difference between the most and least intense portions of a signal. Such compression distorts the shape of the amplitude envelope of a signal, but it is unclear to what extent such distortions are actually perceivable by listeners. Here, the ability to distinguish between compressed and uncompressed versions of a noise vocoded sentence was initially measured in listeners with normal hearing while varying the threshold, ratio, attack, and release parameters. This narrow condition was selected in order to characterize perception under the most favorable listening conditions. The average behavioral sensitivity to compression was highly correlated to several acoustical indices of modulation depth. In particular, performance was highly correlated to the Euclidean distance between the modulation spectra of the uncompressed and compressed signals. Suggesting that this relationship is not restricted to the initial test conditions, the correlation remained largely unchanged both (1) when listeners with normal hearing were tested using a time-compressed version of the original signal, and (2) when listeners with impaired hearing were tested using the original signal. If this relationship generalizes to more ecologically valid conditions, it will provide a straightforward method for predicting the detectability of compression-induced distortions.

  1. Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding.

    PubMed

    Tantirigama, Malinda L S; Huang, Helena H-Y; Bekkers, John M

    2017-02-28

    Neurons in the neocortex exhibit spontaneous spiking activity in the absence of external stimuli, but the origin and functions of this activity remain uncertain. Here, we show that spontaneous spiking is also prominent in a sensory paleocortex, the primary olfactory (piriform) cortex of mice. In the absence of applied odors, piriform neurons exhibit spontaneous firing at mean rates that vary systematically among neuronal classes. This activity requires the participation of NMDA receptors and is entirely driven by bottom-up spontaneous input from the olfactory bulb. Odor stimulation produces two types of spatially dispersed, odor-distinctive patterns of responses in piriform cortex layer 2 principal cells: Approximately 15% of cells are excited by odor, and another approximately 15% have their spontaneous activity suppressed. Our results show that, by allowing odor-evoked suppression as well as excitation, the responsiveness of piriform neurons is at least twofold less sparse than currently believed. Hence, by enabling bidirectional changes in spiking around an elevated baseline, spontaneous activity in the piriform cortex extends the dynamic range of odor representation and enriches the coding space for the representation of complex olfactory stimuli.

  2. Extending the dynamic range of the ion trap by differential mobility filtration.

    PubMed

    Hall, Adam B; Coy, Stephen L; Kafle, Amol; Glick, James; Nazarov, Erkinjon; Vouros, Paul

    2013-09-01

    A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation.

  3. High-dynamic-range 4-Mpixel CMOS image sensor for scientific applications

    NASA Astrophysics Data System (ADS)

    Vu, Paul; Fowler, Boyd; Liu, Chiao; Mims, Steve; Bartkovjak, Peter; Do, Hung; Li, Wang; Appelbaum, Jeff; Lopez, Angel

    2012-03-01

    As bio-technology transitions from research and development to high volume production, dramatic improvements in image sensor performance will be required to support the throughput and cost requirements of this market. This includes higher resolution, higher frame rates, higher quantum efficiencies, increased system integration, lower read-noise, and lower device costs. We present the performance of a recently developed low noise 2048(H) x 2048(V) CMOS image sensor optimized for scientific applications such as life science imaging, microscopy, as well as industrial inspection applications. The sensor architecture consists of two identical halves which can be operated independently and the imaging array consists of 4T pixels with pinned photodiodes on a 6.5μm pitch with integrated micro-lens. The operation of the sensor is programmable through a SPI interface. The measured peak quantum efficiency of the sensor is 73% at 600nm, and the read noise is about 1.1e- RMS at 100 fps data rate. The sensor features dual gain column parallel ouput amplifiers with 11-bit single slope ADCs. The full well capacity is greater than 36ke-, the dark current is less than 7pA/cm2 at 20°C. The sensor achieves an intra-scene linear dynamic range of greater than 91dB (36000:1) at room temperature.

  4. Carbon nanotube vacuum gauges with wide-dynamic range and processes thereof

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Kaul, Anupama B. (Inventor)

    2013-01-01

    A miniature thermal conductivity gauge employs a carbon single-walled-nanotube. The gauge operates on the principle of thermal exchange between the voltage-biased nanotube and the surrounding gas at low levels of power and low temperatures to measure vacuum across a wide dynamic range. The gauge includes two terminals, a source of constant voltage to the terminals, a single-walled carbon nanotube between the terminals, a calibration of measured conductance of the nanotube to magnitudes of surrounding vacuum and a current meter in electrical communication with the source of constant voltage. Employment of the nanotube for measuring vacuum includes calibrating the electrical conductance of the nanotube to magnitudes of vacuum, exposing the nanotube to a vacuum, applying a constant voltage across the nanotube, measuring the electrical conductance of the nanotube in the vacuum with the constant voltage applied and converting the measured electrical conductance to the corresponding calibrated magnitude of vacuum using the calibration. The nanotube may be suspended to minimize heat dissipation through the substrate, increasing sensitivity at even tower pressures.

  5. Comparison of performance between rescaled range analysis and rescaled variance analysis in detecting abrupt dynamic change

    NASA Astrophysics Data System (ADS)

    He, Wen-Ping; Liu, Qun-Qun; Jiang, Yun-Di; Lu, Ying

    2015-04-01

    In the present paper, a comparison of the performance between moving cutting data-rescaled range analysis (MC-R/S) and moving cutting data-rescaled variance analysis (MC-V/S) is made. The results clearly indicate that the operating efficiency of the MC-R/S algorithm is higher than that of the MC-V/S algorithm. In our numerical test, the computer time consumed by MC-V/S is approximately 25 times that by MC-R/S for an identical window size in artificial data. Except for the difference in operating efficiency, there are no significant differences in performance between MC-R/S and MC-V/S for the abrupt dynamic change detection. MC-R/S and MC-V/S both display some degree of anti-noise ability. However, it is important to consider the influences of strong noise on the detection results of MC-R/S and MC-V/S in practical application processes. Project supported by the National Basic Research Program of China (Grant No. 2012CB955902) and the National Natural Science Foundation of China (Grant Nos. 41275074, 41475073, and 41175084).

  6. Low-complexity, high-speed, and high-dynamic range time-to-impact algorithm

    NASA Astrophysics Data System (ADS)

    Åström, Anders; Forchheimer, Robert

    2012-10-01

    We present a method suitable for a time-to-impact sensor. Inspired by the seemingly "low" complexity of small insects, we propose a new approach to optical flow estimation that is the key component in time-to-impact estimation. The approach is based on measuring time instead of the apparent motion of points in the image plane. The specific properties of the motion field in the time-to-impact application are used, such as measuring only along a one-dimensional (1-D) line and using simple feature points, which are tracked from frame to frame. The method lends itself readily to be implemented in a parallel processor with an analog front-end. Such a processing concept [near-sensor image processing (NSIP)] was described for the first time in 1983. In this device, an optical sensor array and a low-level processing unit are tightly integrated into a hybrid analog-digital device. The high dynamic range, which is a key feature of NSIP, is used to extract the feature points. The output from the device consists of a few parameters, which will give the time-to-impact as well as possible transversal speed for off-centered viewing. Performance and complexity aspects of the implementation are discussed, indicating that time-to-impact data can be achieved at a rate of 10 kHz with today's technology.

  7. Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration

    PubMed Central

    Hall, Adam B.; Coy, Stephen L.; Kafle, Amol; Glick, James; Nazarov, Erkinjon

    2013-01-01

    A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3-D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation. PMID:23797861

  8. Ultrananocrystalline Diamond Cantilever Wide Dynamic Range Acceleration/Vibration /Pressure Sensor

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2003-09-02

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/V2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  9. Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2002-07-23

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  10. Cooperative motion in liquids: On librational dynamics of chloroform throughout its normal liquid-phase range

    NASA Astrophysics Data System (ADS)

    Rothschild, Walter G.; Cavagnat, Raymond M.

    1994-03-01

    We have extended the Raman spectral accumulations of the ν3 mode (A1, 367 cm-1) of liquid CHCl3-Cl-35 and its simulation in terms of an orientational equilibrium renewal process [W. G. Rothschild, R. M. Cavagnat, and P. Maraval, J. Chem. Phys. 99, 8922 (1993)] to a temperature of 338 K, about the normal boiling point of the system (335 K). The values of the best-fit parameters predict that the orientational motion of liquid chloroform, even at such a relatively high kinetic energy, is described predominantly by libratory states; their lifetime (˜1 ps) is four times longer than that of the free-rotational steps. The character of the orientational motion of the system, when traversing the range of 213 to 338 K from just above its melting to near its boiling point at about atmospheric pressure, reflects the softening of the liquid-cage structure in terms of an increasing dispersion and/or a decreasing value of the mean libration frequency, a lowering of the depth of its potential well, but near-invariance of its lifetime. Simultaneously, there is an approximately twofold increase in the lifetime of the much shorter stages of free-rotational motion. In essence, the system dynamics remain that of an assembly of librators.

  11. Dynamic range considerations for EUV MAMA detectors. [Extreme UV Multianode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Illing, Rainer M. E.; Bybee, Richard L.; Timothy, J. G.

    1990-01-01

    The multianode microchannel array (MAMA) has been chosen as the detector for two instruments on the ESA/NASA Solar Heliospheric Observatory. The response of the MAMA to the two extreme types of solar spectra, disk and corona, have been modeled with a view toward evaluating dynamic range effects present. The method of MAMA operation is discussed, with emphasis given to modeling the effect of electron cloud charge spreading to several detector anodes and amplifiers (n-fold events). Representative synthetic EUV spectra have been created. The detector response to these spectra is modeled by dissecting the input photon radiation field across the detector array into contributions to the various amplifier channels. The results of this dissection are shown for spectral regions across the entire wavelength region of interest. These results are used to identify regions in which total array photon counting rate or individual amplifier rate may exceed the design limits. This allows the design or operational modes to be tailored to eliminate the problem areas.

  12. Dynamic magnetic susceptibility of systems with long-range magnetic order

    NASA Astrophysics Data System (ADS)

    Vannette, Matthew Dano

    The utility of the TDR as an instrument in the study of magnetically ordered materials has been expanded beyond the simple demonstration purposes. Results of static applied magnetic field dependent measurements of the dynamic magnetic susceptibility, chi, of various ferromagnetic (FM) and antiferromagnetic (AFM) materials showing a range of transition temperatures (1-800 K) are presented. Data was collected primarily with a tunnel diode resonator (TDR) at different radio-frequencies (~10-30 MHz). In the vicinity of TC local moment ferromagnets show a very sharp, narrow peak in chi which is suppressed in amplitude and shifted to higher temperatures as the static bias field is increased. Unexpectedly, critical scaling analysis fails for these data. It is seen that these data are frequency dependent, however there is no simple method whereby measurement frequency can be changed in a controllable fashion. In contrast, itinerant ferromagnets show a broad maximum in chi well below TC which is suppressed and shifts to lower temperatures as the dc bias field is increased. The data on itinerant ferromagnets is fitted to a semi-phenomenological model that suggests the sample response is dominated by the uncompensated minority spins in the conduction band. Concluding remarks suggest possible scenarios to achieve frequency resolved data using the TDR as well as other fields in which the apparatus may be exploited.

  13. Achieving large dynamic range control of gene expression with a compact RNA transcription-translation regulator.

    PubMed

    Westbrook, Alexandra M; Lucks, Julius B

    2017-04-06

    RNA transcriptional regulators are emerging as versatile components for genetic network construction. However, these regulators suffer from incomplete repression in their OFF state, making their dynamic range less than that of their protein counterparts. This incomplete repression causes expression leak, which impedes the construction of larger synthetic regulatory networks as leak propagation can interfere with desired network function. To address this, we demonstrate how naturally derived antisense RNA-mediated transcriptional regulators can be configured to regulate both transcription and translation in a single compact RNA mechanism that functions in Escherichia coli. Using in vivo gene expression assays, we show that a combination of transcriptional termination and ribosome binding site sequestration increases repression from 85% to 98%, or activation from 10-fold to over 900-fold, in response to cognate antisense RNAs. We also show that orthogonal repressive versions of this mechanism can be created through engineering minimal antisense RNAs. Finally, to demonstrate the utility of this mechanism, we use it to reduce network leak in an RNA-only cascade. We anticipate these regulators will find broad use as synthetic biology moves beyond parts engineering to the design and construction of more sophisticated regulatory networks.

  14. A parallel unbalanced digitization architecture to reduce the dynamic range of multiple signals

    NASA Astrophysics Data System (ADS)

    Vallérian, Mathieu; HuÅ£u, Florin; Villemaud, Guillaume; Miscopein, Benoît; Risset, Tanguy

    2016-05-01

    Technologies employed in urban sensor networks are permanently evolving, and thus the gateways employed to collect data in such kind of networks have to be very flexible in order to be compliant with the new communication standards. A convenient way to do that is to digitize all the received signals in one shot and then to digitally perform the signal processing, as it is done in software-defined radio (SDR). All signals can be emitted with very different features (bandwidth, modulation type, and power level) in order to respond to the various propagation conditions. Their difference in terms of power levels is a problem when digitizing them together, as no current commercial analog-to-digital converter (ADC) can provide a fine enough resolution to digitize this high dynamic range between the weakest possible signal in the presence of a stronger signal. This paper presents an RF front end receiver architecture capable of handling this problem by using two ADCs of lower resolutions. The architecture is validated through a set of simulations using Keysight's ADS software. The main validation criterion is the bit error rate comparison with a classical receiver.

  15. Lightness perception in high-dynamic range images: local and remote effects

    PubMed Central

    Allred, Sarah R; Radonjic, Ana; Gilchrist, Alan L; Brainard, David H

    2012-01-01

    We measured the perceived lightness of target patches embedded in high dynamic range checkerboards. We independently varied the luminance of checks immediately surrounding the test and those remote from it. The data establish context transfer functions (CTFs) that characterize perceptual matches across checkerboard contexts. Several features of the CTFs are broadly consistent with previous research: matched luminance decreases when overall context luminance decreases; matched luminance increases when overall context luminance increases; manipulating context locations near the target has a greater effect than manipulating locations far from the target patch. The measured CTFs are not well-described, however, by changes with context in multiplicative gain alone or by changes in both multiplicative and subtractive adaptation parameters. We were able to fit the data with a three-parameter model of adaptation. This allowed us to characterize the CTFs by specifying the luminances that appeared white, black, and gray (white point, black point, and gray point respectively). The white and black points depended additively on the local and remote contrasts, but accounting for the gray point required an interaction term. Analysis of this effect suggests that the target patch itself must be included in a description of the visual context. PMID:22323784

  16. Multidiagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range

    SciTech Connect

    Anoop, K. K.; Polek, M. P.; Bruzzese, R.; Amoruso, S.; Harilal, Sivanandan S.

    2015-02-28

    The ions dynamics in ultrafast laser ablation of metals is studied over a fluence range spanning from the ablation threshold up to ~75 J/cm2 by means of three established diagnostic techniques. Langmuir probe, Faraday cup and spectrally resolved ICCD imaging simultaneously monitor the laser-produced plasma ions produced during ultrafast laser ablation of a copper target. The fluence dependence of ion yield is analyzed observing the occurrence of three different regimes. Moreover, the specific ion yield shows a maximum at about 4-5 J/cm2, followed by a gradual reduction and a transition to a high-fluence regime above ~50 J/cm2. The fluence variation of the copper ions angular distribution is also analyzed, observing a gradual increase of forward peaking of Cu ions for fluences up to ~10 J/cm2. Then, a broader ion component is observed at larger angles for fluences larger than ~10 J/cm2. Finally, an experimental characterization of the ions angular distribution for several metallic targets (Mg, Al, Cr, Fe, Cu, and W) is carried out at a relatively high fluence of ~66 J/cm2. Interestingly, the ion emission from the volatile metals show a narrow forward peaked distribution and a high peak ion yield compared to the refractory metals. Moreover, the width of ion angular distributions presents a striking correlation with the peak ion yield.

  17. Extending the dynamic range of transcription factor action by translational regulation

    PubMed Central

    Sokolowski, Thomas R.; Walczak, Aleksandra M.; Bialek, William; Tkačik, Gašper

    2016-01-01

    A crucial step in the regulation of gene expression is binding of transcription factor (TF) proteins to regulatory sites along the DNA. But transcription factors act at nanomolar concentrations, and noise due to random arrival of these molecules at their binding sites can severely limit the precision of regulation. Recent work on the optimization of information flow through regulatory networks indicates that the lower end of the dynamic range of concentrations is simply inaccessible, overwhelmed by the impact of this noise. Motivated by the behavior of homeodomain proteins, such as the maternal morphogen Bicoid in the fruit fly embryo, we suggest a scheme in which transcription factors also act as indirect translational regulators, binding to the mRNA of other regulatory proteins. Intuitively, each mRNA molecule acts as an independent sensor of the input concentration, and averaging over these multiple sensors reduces the noise. We analyze information flow through this scheme and identify conditions under which it outperforms direct transcriptional regulation. Our results suggest that the dual role of homeodomain proteins is not just a historical accident, but a solution to a crucial physics problem in the regulation of gene expression. PMID:26986359

  18. Towards high dynamic range extensions of HEVC: subjective evaluation of potential coding technologies

    NASA Astrophysics Data System (ADS)

    Hanhart, Philippe; Řeřábek, Martin; Ebrahimi, Touradj

    2015-09-01

    This paper reports the details and results of the subjective evaluations conducted at EPFL to evaluate the responses to the Call for Evidence (CfE) for High Dynamic Range (HDR) and Wide Color Gamut (WCG) Video Coding issued by Moving Picture Experts Group (MPEG). The CfE on HDR/WCG Video Coding aims to explore whether the coding efficiency and/or the functionality of the current version of HEVC standard can be signi_cantly improved for HDR and WCG content. In total, nine submissions, five for Category 1 and four for Category 3a, were compared to the HEVC Main 10 Profile based Anchor. More particularly, five HDR video contents, compressed at four bit rates by each proponent responding to the CfE, were used in the subjective evaluations. Further, the side-by-side presentation methodology was used for the subjective experiment to discriminate small differences between the Anchor and proponents. Subjective results shows that the proposals provide evidence that the coding efficiency can be improved in a statistically noticeable way over MPEG CfE Anchors in terms of perceived quality within the investigated content. The paper further benchmarks the selected objective metrics based on their correlations with the subjective ratings. It is shown that PSNR-DE1000, HDRVDP- 2, and PSNR-Lx can reliably detect visible differences between the proposed encoding solutions and current HEVC standard.

  19. Extending the dynamic range of transcription factor action by translational regulation.

    PubMed

    Sokolowski, Thomas R; Walczak, Aleksandra M; Bialek, William; Tkačik, Gašper

    2016-02-01

    A crucial step in the regulation of gene expression is binding of transcription factor (TF) proteins to regulatory sites along the DNA. But transcription factors act at nanomolar concentrations, and noise due to random arrival of these molecules at their binding sites can severely limit the precision of regulation. Recent work on the optimization of information flow through regulatory networks indicates that the lower end of the dynamic range of concentrations is simply inaccessible, overwhelmed by the impact of this noise. Motivated by the behavior of homeodomain proteins, such as the maternal morphogen Bicoid in the fruit fly embryo, we suggest a scheme in which transcription factors also act as indirect translational regulators, binding to the mRNA of other regulatory proteins. Intuitively, each mRNA molecule acts as an independent sensor of the input concentration, and averaging over these multiple sensors reduces the noise. We analyze information flow through this scheme and identify conditions under which it outperforms direct transcriptional regulation. Our results suggest that the dual role of homeodomain proteins is not just a historical accident, but a solution to a crucial physics problem in the regulation of gene expression.

  20. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    PubMed

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.

  1. Dynamic dose assessment by Large Eddy Simulation of the near-range atmospheric dispersion.

    PubMed

    Vervecken, Lieven; Camps, Johan; Meyers, Johan

    2015-03-01

    In order to improve the simulation of the near-range atmospheric dispersion of radionuclides, computational fluid dynamics is becoming increasingly popular. In the current study, Large-Eddy Simulation is used to examine the time-evolution of the turbulent dispersion of radioactive gases in the atmospheric boundary layer, and it is coupled to a gamma dose rate model that is based on the point-kernel method with buildup factors. In this way, the variability of radiological dose rate from cloud shine due to instantaneous turbulent mixing processes can be evaluated. The steady release in an open field of (41)Ar and (133)Xe for 4 different release heights is studied, thus covering radionuclides that decay with a high-energy gamma and a low-energy gamma, respectively. Based on these simulations, the variability of dose rates at ground level for different averaging times in the dose measurements is analyzed. It is observed that turbulent variability in the wind field can lead to dose estimates that are underestimated by up to a factor of four when conventional long-term measurements are used to estimate the dose from short-term exposures.

  2. Bi-directional flow sensor with a wide dynamic range for medical applications.

    PubMed

    Al-Salaymeh, A; Jovanović, J; Durst, F

    2004-10-01

    This paper describes a novel three-wire thermal flow sensor for medical applications. The present innovation for low-frequency measurements involves the use of a pulsed-wire anemometer with a comparatively large wire diameter (12.5 microm and larger) together with a novel signal processing approach. A small wire is heated using a sinusoidal alternating current, and two sensing wires, acting as resistance thermometers, are set parallel to, and at a small distance on either side of, the pulsed wire. The thermal wake of the pulsed wire is convected downstream to one of the two receiving wires which detect its delayed arrival. This arrangement allows the sensing of both the direction and the flow velocity component normal to the three probes. By appropriate signal processing, the present sensor can be operated such that the phase shift between the periodic current that drives the central wire and the detected signal by either the upstream or downstream wire takes into account a combination of convection, diffusion and the finite thermal response time of both the pulsed wire and the receiving wire. Because the time constants increase as the flow velocity decreases, the time lag due to thermal inertia supplements the time lag due to the true time of flight, thus yielding an effective operating range of 0.05 m/s dynamic range of 500:1. This wide velocity range is an order of magnitude larger than that for the traditional time-of-flight pulsed-wire anemometers. An important application of the bi-directional thermal flowmeter is the measurement of human respiration, e.g. for early diagnostics of asthmatic attacks. The main advantage of the present sensor is its low sensitivity to variations in temperature and also to the composition of the flowing gas. Also, a calibration will be not needed for each density and gas used in addition to that for velocity. The resultant design work aimed at developing a sensor that can be mass

  3. The Design and Realization of Linear Calibration System of a Large Dynamic Range Readout Unit for a BGO Calorimeter

    NASA Astrophysics Data System (ADS)

    Xie, M. G.; Guo, J. H.; Wu, J.; Chang, J.

    2014-03-01

    The DArk Matter Particle Explorer (DAMPE) is proposed by Purple Mountain Observatory, Chinese Academy of Sciences. This project expects to find the evidence of the existence of dark matter particle in the universe via the detection of high-energy electron and gamma-ray. A major component of the payload is a BGO (Bismuth Germanate Oxide) calorimeter, which is used to detect the particles in the energy range from 5 GeV to 10 TeV. According to a physical simulation, the dynamic range of each BGO detection unit is about 1.5×10^{5}. In order to test the linearity of BGO detection readout unit, we implement a simple linearity calibration system covering such a large dynamic range. The experimental result shows that the nonlinearity of the entire dynamic range is less than 2.7%.

  4. The Design and Realization of Linear Calibration System of a Large Dynamic Range Readout Unit for a BGO Calorimeter

    NASA Astrophysics Data System (ADS)

    Xie, Ming-Gang; Guo, Jian-Hua; Wu, Jian; Chang, Jin

    2015-01-01

    The DArk Matter Particle Explorer (DAMPE) is proposed by the Purple Mountain Observatory, Chinese Academy of Sciences. This project expects to find the evidence of the existence of dark matter particles in the universe via the detection of the high-energy electrons and gamma-ray particles produced possibly by the annihilation of dark matter particles. The major component of the satellite payload is a BGO (Bismuth Germanate Oxide) calorimeter, which is used to detect the particles in the energy range from 5 GeV to 10 TeV. According to a physical simulation, the dynamic range of each BGO detection unit is about 1.5×105. In order to test the readout linearity of the BGO detection unit, we have implemented a simple linear calibration system covering such a large dynamic range. The experimental result shows that the readout nonlinearity of the BGO detection unit in the entire dynamic range is less than 2.7%.

  5. Characterizing the Seasonal Dynamics of Plant Community Photosynthesis Across a Range of Vegetation Types

    SciTech Connect

    Gu, Lianhong; Post, Wilfred M; Baldocchi, Dennis; Black, Andy; Suyker, A.E.,; Verma, Shashi; Vesala, Timo; Wofsy, Steve

    2009-01-01

    The seasonal cycle of plant community photosynthesis is one of the most important biotic oscillations to mankind. This study built upon previous efforts to develop a comprehensive framework to studying this cycle systematically with eddy covariance flux measurements. We proposed a new function to represent the cycle and generalized a set of phenological indices to quantify its dynamic characteristics. We suggest that the seasonal variation of plant community photosynthesis generally consists of five distinctive phases in sequence each of which results from the interaction between the inherent biological and ecological processes and the progression of climatic conditions and reflects the unique functioning of plant community at different stages of the growing season. We applied the improved methodology to seven vegetation sites ranging from evergreen and deciduous forests to crop to grasslands and covering both cool-season (vegetation active during cool months, e.g. Mediterranean climate grasslands) and warm-season (vegetation active during warm months, e.g. temperate and boreal forests) vegetation types. Our application revealed interesting phenomena that had not been reported before and pointed to new research directions. We found that for the warm-season vegetation type, the recovery of plant community photosynthesis at the beginning of the growing season was faster than the senescence at the end of the growing season while for the coolseason vegetation type, the opposite was true. Furthermore, for the warm-season vegetation type, the recovery was closely correlated with the senescence such that a faster photosynthetic recovery implied a speedier photosynthetic senescence and vice versa. There was evidence that a similar close correlation could also exist for the cool-season vegetation type, and furthermore, the recovery-senescence relationship may be invariant between the warm-season and cool-season vegetation types up to an offset in the intercept. We also

  6. Enhancement tuning and control for high dynamic range images in multi-scale locally adaptive contrast enhancement algorithms

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Sascha D.; Schirris, Johan; de With, Peter H. N.

    2009-01-01

    For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. If we display High Dynamic-Range (HDR) scenes whose contrast spans four or more orders of magnitude on a conventional monitor without additional processing, results are unacceptable. Compression of the dynamic range is therefore a compulsory part of any high-end video processing chain because standard monitors are inherently Low- Dynamic Range (LDR) devices with maximally two orders of display dynamic range. In real-time camera processing, many complex scenes are improved with local contrast enhancements, bringing details to the best possible visibility. In this paper, we show how a multi-scale high-frequency enhancement scheme, in which gain is a non-linear function of the detail energy, can be used for the dynamic range compression of HDR real-time video camera signals. We also show the connection of our enhancement scheme to the processing way of the Human Visual System (HVS). Our algorithm simultaneously controls perceived sharpness, ringing ("halo") artifacts (contrast) and noise, resulting in a good balance between visibility of details and non-disturbance of artifacts. The overall quality enhancement, suitable for both HDR and LDR scenes, is based on a careful selection of the filter types for the multi-band decomposition and a detailed analysis of the signal per frequency band.

  7. Shock initiation of nano-Al/Teflon: High dynamic range pyrometry measurements

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Bassett, Will P.; Dlott, Dana D.

    2017-02-01

    Laser-launched flyer plates (25 μm thick Cu) were used to impact-initiate reactive materials consisting of 40 nm Al particles embedded in TeflonAF polymer (Al/Teflon) on sapphire substrates at a stoichiometric concentration (2.3:1 Teflon:Al), as well as one-half and one-fourth that concentration. A high dynamic range emission spectrometer was used to time and spectrally resolve the emitted light and to determine graybody temperature histories with nanosecond time resolution. At 0.5 km s-1, first light emission was observed from Teflon, but at 0.6 km s-1, the emission from Al/Teflon became much more intense, so we assigned the impact threshold for Al/Teflon reactions to be 0.6 (±0.1) km s-1. The flyer plates produced a 7 ns duration steady shock drive. Emission from shocked Al/Teflon above threshold consisted of two bursts. At the higher impact velocities, the first burst started 15 ns after impact, peaked at 25 ns, and persisted for 75 ns. The second burst started at a few hundred nanoseconds and lasted until 2 μs. The 15 ns start time was exactly the time the flyer plate velocity dropped to zero after impact with sapphire. The first burst was associated with shock-triggered reactions and the second, occurring at ambient pressure, was associated with combustion of leftover material that did not react during shock. The emission spectrum was found to be a good fit to a graybody at all times, allowing temperature histories to be extracted. At 25 ns, the temperature at 0.7 km s-1 and the one-fourth Al load was 3800 K. Those temperatures increased significantly with impact velocity, up to 4600 K, but did not increase as much with Al load. A steady combustion process at 2800 (±100) K was observed in the microsecond range. The minimal dependence on Al loading indicates that these peak temperatures arise primarily from Al nanoparticles reacting almost independently, since the presence of nearby heat sources had little influence on the peak temperatures.

  8. Short- and medium-range structure of amorphous zircon from molecular dynamics simulations

    SciTech Connect

    Du, Jincheng; Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Cormack, Alastair N.

    2006-12-18

    We have obtained new insights into the structure of amorphous zircon using classical molecular dynamics simulations with a partial charge model. We present detailed structural characterizations of the simulated high and low density amorphous zircon and compare our results with available neutron diffraction, EXAFS, NMR and other experimental results. The results show that amorphization leads to polymerization of the silicon-oxygen network and the formation of regions rich in zirconium. The average n value of Qn species is 1.6-1.8. A considerable percentage of the oxygen ions (around 20%) have only zirconium in the first coordination shell (free oxygen) in amorphous zircon. The Zr-O bond length (around 2.10?) is shorter and the oxygen coordination number around zirconium smaller (6-7) than those in crystalline zircon, in good agreement with the EXAFS results. The total structure factors of simulated amorphous zircon also agree well with neutron diffraction results. We have examined the effects of the simulation cell size and relative density on the amorphous structure. The general features such as polymerization of silicon-oxygen network and the formation of clustered zirconium rich regions appear to be independent of system size and volume expansion in the range of 11 to 18%. Based on the obtained amorphous zircon structure, experimentally observed lower chemical durability of amorphous zircon compared to its crystalline form can be explained by the existence of the silicon-oxygen networks and zirconium rich regions in amorphous zircon that provides diffusion channels and eases dissolution processes. Battelle operates PNNL for the USDOE

  9. High dynamic range optical scanning of sediments and rock samples: More than colour?

    NASA Astrophysics Data System (ADS)

    Klug, Martin; Fabian, Karl; Knies, Jochen

    2015-04-01

    An automated high dynamic range (HDR) scanning procedure for cores and single sediment samples has been developed based on the GeoTek core scanner equipped with a 3* 2048 pixel CCD array GeoScan colour line-scan camera and a Sigma AF 105mm F2.8 EX DG MACRO lens. Repeated colour line scans of the same core sequence using different illumination and exposure time settings, but equal aperture, can be combined into single HDR images. This yields improved colour definition especially if layers of highly variable brightness occur in the same sequence. Colour calibration is performed automatically during image processing based on synchronization of colour charts. Polarized light is used to minimize gloss on wet surfaces. Beyond improved colour detection, high resolution scans with pixel size down to 25 µm provide the possibility of quantifying fabric, texture, and colour contrast between mottle and matrix. We present examples from marine sediments, lake sediments, hard rock cores, and individual soil samples. Due to the high resolution in sediment sequences, the improved images provide important background information to interpret synchronous measurements of density, magnetic susceptibility, or X-ray fluorescence with respect to their respective measurement footprint. If for example an XRF measurement indicates a 2% increase in Fe at a location of a thin black layer of 1/10 of the XRF measurement footprint, within an otherwise homogenous sequence, it can be inferred that the real Fe abundance within the layer is probably 20% higher than in the surrounding sediment. HDR scanning can therefore help to provide high resolution informed interpolation and deconvolution of measurements with larger sensor footprints.

  10. Dynamic range compression in the honey bee auditory system toward waggle dance sounds.

    PubMed

    Tsujiuchi, Seiya; Sivan-Loukianova, Elena; Eberl, Daniel F; Kitagawa, Yasuo; Kadowaki, Tatsuhiko

    2007-02-21

    Honey bee foragers use a "waggle dance" to inform nestmates about direction and distance to locations of attractive food. The sound and air flows generated by dancer's wing and abdominal vibrations have been implicated as important cues, but the decoding mechanisms for these dance messages are poorly understood. To understand the neural mechanisms of honey bee dance communication, we analyzed the anatomy of antenna and Johnston's organ (JO) in the pedicel of the antenna, as well as the mechanical and neural response characteristics of antenna and JO to acoustic stimuli, respectively. The honey bee JO consists of about 300-320 scolopidia connected with about 48 cuticular "knobs" around the circumference of the pedicel. Each scolopidium contains bipolar sensory neurons with both type I and II cilia. The mechanical sensitivities of the antennal flagellum are specifically high in response to low but not high intensity stimuli of 265-350 Hz frequencies. The structural characteristics of antenna but not JO neurons seem to be responsible for the non-linear responses of the flagellum in contrast to mosquito and fruit fly. The honey bee flagellum is a sensitive movement detector responding to 20 nm tip displacement, which is comparable to female mosquito. Furthermore, the JO neurons have the ability to preserve both frequency and temporal information of acoustic stimuli including the "waggle dance" sound. Intriguingly, the response of JO neurons was found to be age-dependent, demonstrating that the dance communication is only possible between aged foragers. These results suggest that the matured honey bee antennae and JO neurons are best tuned to detect 250-300 Hz sound generated during "waggle dance" from the distance in a dark hive, and that sufficient responses of the JO neurons are obtained by reducing the mechanical sensitivity of the flagellum in a near-field of dancer. This nonlinear effect brings about dynamic range compression in the honey bee auditory system.

  11. Do High Dynamic Range threatments improve the results of Structure from Motion approaches in Geomorphology?

    NASA Astrophysics Data System (ADS)

    Gómez-Gutiérrez, Álvaro; Juan de Sanjosé-Blasco, José; Schnabel, Susanne; de Matías-Bejarano, Javier; Pulido-Fernández, Manuel; Berenguer-Sempere, Fernando

    2015-04-01

    In this work, the hypothesis of improving 3D models obtained with Structure from Motion (SfM) approaches using images pre-processed by High Dynamic Range (HDR) techniques is tested. Photographs of the Veleta Rock Glacier in Spain were captured with different exposure values (EV0, EV+1 and EV-1), two focal lengths (35 and 100 mm) and under different weather conditions for the years 2008, 2009, 2011, 2012 and 2014. HDR images were produced using the different EV steps within Fusion F.1 software. Point clouds were generated using commercial and free available SfM software: Agisoft Photoscan and 123D Catch. Models Obtained using pre-processed images and non-preprocessed images were compared in a 3D environment with a benchmark 3D model obtained by means of a Terrestrial Laser Scanner (TLS). A total of 40 point clouds were produced, georeferenced and compared. Results indicated that for Agisoft Photoscan software differences in the accuracy between models obtained with pre-processed and non-preprocessed images were not significant from a statistical viewpoint. However, in the case of the free available software 123D Catch, models obtained using images pre-processed by HDR techniques presented a higher point density and were more accurate. This tendency was observed along the 5 studied years and under different capture conditions. More work should be done in the near future to corroborate whether the results of similar software packages can be improved by HDR techniques (e.g. ARC3D, Bundler and PMVS2, CMP SfM, Photosynth and VisualSFM).

  12. Dynamic CFD Simulations of the Supersonic Inflatable Aerodynamic Decelerator (SIAD) Ballistic Range Tests

    NASA Technical Reports Server (NTRS)

    Brock, Joseph M; Stern, Eric

    2016-01-01

    Dynamic CFD simulations of the SIAD ballistic test model were performed using US3D flow solver. Motivation for performing these simulations is for the purpose of validation and verification of the US3D flow solver as a viable computational tool for predicting dynamic coefficients.

  13. Ultra-high-resolution large-dynamic-range optical fiber static strain sensor using Pound-Drever-Hall technique.

    PubMed

    Liu, Qingwen; Tokunaga, Tomochika; He, Zuyuan

    2011-10-15

    We report the realization of a fiber-optic static strain sensor with ultrahigh resolution and large dynamic range for the applications of geophysical research. The sensor consists of a pair of fiber-Bragg-grating-based Fabry-Perot interferometers as sensor heads for strain sensing and reference, respectively. The Pound-Drever-Hall technique is employed to interrogate the sensor heads, and a cross-correlation algorithm is used to figure out the strain information with high precision. Static strain resolution down to 5.8 nanostrains is demonstrated. The dynamic range can be extended up to hundreds of microstrains, and the measuring period is a few tens of seconds.

  14. The range of dynamic recrystallization of quartz - An updated correlation between nature and experiment

    NASA Astrophysics Data System (ADS)

    Stipp, Michael

    2014-05-01

    Several microstructural correlations between natural and experimental conditions for dynamic recrystallization of quartz have been proposed (e.g., Hirth et al. 2001; Stipp et al. 2002), but an attempt to unify the different results and data sets is missing. Based on additional experiments and a statistical analysis of microstructural data (e.g., Stipp et al. 2006, 2010) four characteristic microstructural zones with corresponding recrystallized grain size (D) ranges can be identified. (I) D < 3 µm: Experimental dislocation creep regime 1 of Hirth and Tullis (1992). Microstructures are characterized by porphyroclasts with serrations, bulges and very small recrystallized grains along the grain boundaries. Electron backscatter diffraction data indicate that both local grain boundary migration and subgrain rotation contribute to recrystallization, and that grain boundary sliding may operate at high strain (Stipp and Kunze, 2008). Comparable microstructures have not been observed in natural shear zones; their formation is not possible at greenschist facies conditions, because the required differential stresses would be larger than the confining pressure and so in conflict with the Goetze criterion (Kohlstedt et al. 1995). (II) D ˜3-35 µm: Experimental dislocation creep regimes 2 and 3 (Hirth and Tullis 1992), corresponding to the natural BLG zone of Stipp et al. (2002). Microstructures are again characterized by porphyroclasts with grain boundary bulges and small recrystallized grains. Compared to zone I, less strain is required to produce a considerable amount of recrystallized grains, forming "core-mantle microstuctures". (III) D ˜35-120 µm: Upper experimental dislocation creep regime 3, and natural SGR zone (Stipp et al. 2006, 2010). Microstructures are characterized by porphyroclastic ribbon grains and recrystallized grains which are about the same size or slightly larger than optical subgrains. Subgrain formation and dynamic recrystallization are initiated at

  15. Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past.

    PubMed

    Hu, Chuanmin; Feng, Lian; Lee, Zhongping; Davis, Curtiss O; Mannino, Antonio; McClain, Charles R; Franz, Bryan A

    2012-09-01

    Sensor design and mission planning for satellite ocean color measurements requires careful consideration of the signal dynamic range and sensitivity (specifically here signal-to-noise ratio or SNR) so that small changes of ocean properties (e.g., surface chlorophyll-a concentrations or Chl) can be quantified while most measurements are not saturated. Past and current sensors used different signal levels, formats, and conventions to specify these critical parameters, making it difficult to make cross-sensor comparisons or to establish standards for future sensor design. The goal of this study is to quantify these parameters under uniform conditions for widely used past and current sensors in order to provide a reference for the design of future ocean color radiometers. Using measurements from the Moderate Resolution Imaging Spectroradiometer onboard the Aqua satellite (MODISA) under various solar zenith angles (SZAs), typical (L(typical)) and maximum (L(max)) at-sensor radiances from the visible to the shortwave IR were determined. The L(typical) values at an SZA of 45° were used as constraints to calculate SNRs of 10 multiband sensors at the same L(typical) radiance input and 2 hyperspectral sensors at a similar radiance input. The calculations were based on clear-water scenes with an objective method of selecting pixels with minimal cross-pixel variations to assure target homogeneity. Among the widely used ocean color sensors that have routine global coverage, MODISA ocean bands (1 km) showed 2-4 times higher SNRs than the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) (1 km) and comparable SNRs to the Medium Resolution Imaging Spectrometer (MERIS)-RR (reduced resolution, 1.2 km), leading to different levels of precision in the retrieved Chl data product. MERIS-FR (full resolution, 300 m) showed SNRs lower than MODISA and MERIS-RR with the gain in spatial resolution. SNRs of all MODISA ocean bands and SeaWiFS bands (except the SeaWiFS near-IR bands) exceeded

  16. Dynamic Range and Sensitivity Requirements of Satellite Ocean Color Sensors: Learning from the Past

    NASA Technical Reports Server (NTRS)

    Hu, Chuanmin; Feng, Lian; Lee, Zhongping; Davis, Curtiss O.; Mannino, Antonio; McClain, Charles R.; Franz, Bryan A.

    2012-01-01

    Sensor design and mission planning for satellite ocean color measurements requires careful consideration of the signal dynamic range and sensitivity (specifically here signal-to-noise ratio or SNR) so that small changes of ocean properties (e.g., surface chlorophyll-a concentrations or Chl) can be quantified while most measurements are not saturated. Past and current sensors used different signal levels, formats, and conventions to specify these critical parameters, making it difficult to make cross-sensor comparisons or to establish standards for future sensor design. The goal of this study is to quantify these parameters under uniform conditions for widely used past and current sensors in order to provide a reference for the design of future ocean color radiometers. Using measurements from the Moderate Resolution Imaging Spectroradiometer onboard the Aqua satellite (MODISA) under various solar zenith angles (SZAs), typical (L(sub typical)) and maximum (L(sub max)) at-sensor radiances from the visible to the shortwave IR were determined. The Ltypical values at an SZA of 45 deg were used as constraints to calculate SNRs of 10 multiband sensors at the same L(sub typical) radiance input and 2 hyperspectral sensors at a similar radiance input. The calculations were based on clear-water scenes with an objective method of selecting pixels with minimal cross-pixel variations to assure target homogeneity. Among the widely used ocean color sensors that have routine global coverage, MODISA ocean bands (1 km) showed 2-4 times higher SNRs than the Sea-viewing Wide Field-of-view Sensor (Sea-WiFS) (1 km) and comparable SNRs to the Medium Resolution Imaging Spectrometer (MERIS)-RR (reduced resolution, 1.2 km), leading to different levels of precision in the retrieved Chl data product. MERIS-FR (full resolution, 300 m) showed SNRs lower than MODISA and MERIS-RR with the gain in spatial resolution. SNRs of all MODISA ocean bands and SeaWiFS bands (except the SeaWiFS near-IR bands

  17. High dynamic range adaptive real-time smart camera: an overview of the HDR-ARTiST project

    NASA Astrophysics Data System (ADS)

    Lapray, Pierre-Jean; Heyrman, Barthélémy; Ginhac, Dominique

    2015-04-01

    Standard cameras capture only a fraction of the information that is visible to the human visual system. This is specifically true for natural scenes including areas of low and high illumination due to transitions between sunlit and shaded areas. When capturing such a scene, many cameras are unable to store the full Dynamic Range (DR) resulting in low quality video where details are concealed in shadows or washed out by sunlight. The imaging technique that can overcome this problem is called HDR (High Dynamic Range) imaging. This paper describes a complete smart camera built around a standard off-the-shelf LDR (Low Dynamic Range) sensor and a Virtex-6 FPGA board. This smart camera called HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera) is able to produce a real-time HDR live video color stream by recording and combining multiple acquisitions of the same scene while varying the exposure time. This technique appears as one of the most appropriate and cheapest solution to enhance the dynamic range of real-life environments. HDR-ARtiSt embeds real-time multiple captures, HDR processing, data display and transfer of a HDR color video for a full sensor resolution (1280 1024 pixels) at 60 frames per second. The main contributions of this work are: (1) Multiple Exposure Control (MEC) dedicated to the smart image capture with alternating three exposure times that are dynamically evaluated from frame to frame, (2) Multi-streaming Memory Management Unit (MMMU) dedicated to the memory read/write operations of the three parallel video streams, corresponding to the different exposure times, (3) HRD creating by combining the video streams using a specific hardware version of the Devebecs technique, and (4) Global Tone Mapping (GTM) of the HDR scene for display on a standard LCD monitor.

  18. Passive Ranging of Dynamic Rocket Plumes Using Infrared and Visible Oxygen Attenuation

    DTIC Science & Technology

    2011-03-01

    405 m range and a full -scale solid rocket motor at 900 m range. The NIR O2 band provided range estimates accurate to within 3 % for both tests, while...and zenith angles. Data sets for passive ranging were taken of both a halogen lamp and a full scale stationary solid rocket motor at various ranges up...combustion was targeted as the emission source. Two static tests were conducted with a full scale solid rocket motor and a shoulder-launched model SAM

  19. Relaxation dynamics of glasses along a wide stability and temperature range

    PubMed Central

    Rodríguez-Tinoco, C.; Ràfols-Ribé, J.; González-Silveira, M.; Rodríguez-Viejo, J.

    2016-01-01

    While lots of measurements describe the relaxation dynamics of the liquid state, experimental data of the glass dynamics at high temperatures are much scarcer. We use ultrafast scanning calorimetry to expand the timescales of the glass to much shorter values than previously achieved. Our data show that the relaxation time of glasses follows a super-Arrhenius behaviour in the high-temperature regime above the conventional devitrification temperature heating at 10 K/min. The liquid and glass states can be described by a common VFT-like expression that solely depends on temperature and limiting fictive temperature. We apply this common description to nearly-isotropic glasses of indomethacin, toluene and to recent data on metallic glasses. We also show that the dynamics of indomethacin glasses obey density scaling laws originally derived for the liquid. This work provides a strong connection between the dynamics of the equilibrium supercooled liquid and non-equilibrium glassy states. PMID:27767071

  20. Relaxation dynamics of glasses along a wide stability and temperature range

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tinoco, C.; Ràfols-Ribé, J.; González-Silveira, M.; Rodríguez-Viejo, J.

    2016-10-01

    While lots of measurements describe the relaxation dynamics of the liquid state, experimental data of the glass dynamics at high temperatures are much scarcer. We use ultrafast scanning calorimetry to expand the timescales of the glass to much shorter values than previously achieved. Our data show that the relaxation time of glasses follows a super-Arrhenius behaviour in the high-temperature regime above the conventional devitrification temperature heating at 10 K/min. The liquid and glass states can be described by a common VFT-like expression that solely depends on temperature and limiting fictive temperature. We apply this common description to nearly-isotropic glasses of indomethacin, toluene and to recent data on metallic glasses. We also show that the dynamics of indomethacin glasses obey density scaling laws originally derived for the liquid. This work provides a strong connection between the dynamics of the equilibrium supercooled liquid and non-equilibrium glassy states.

  1. Effects of spatial structure of population size on the population dynamics of barnacles across their elevational range.

    PubMed

    Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi

    2014-11-01

    Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean

  2. Competition and facilitation may lead to asymmetric range shift dynamics with climate change.

    PubMed

    Ettinger, Ailene; HilleRisLambers, Janneke

    2017-02-04

    Forecasts of widespread range shifts with climate change stem from assumptions that climate drives species' distributions. However, local adaptation and biotic interactions also influence range limits and thus may impact range shifts. Despite the potential importance of these factors, few studies have directly tested their effects on performance at range limits. We address how population-level variation and biotic interactions may affect range shifts by transplanting seeds and seedlings of western North American conifers of different origin populations into different competitive neighborhoods within and beyond their elevational ranges and monitoring their performance. We find evidence that competition with neighboring trees limits performance within current ranges, but that interactions between adults and juveniles switch from competitive to facilitative at upper range limits. Local adaptation had weaker effects on performance that did not predictably vary with range position or seed origin. Our findings suggest that competitive interactions may slow species turnover within forests at lower range limits, whereas facilitative interactions may accelerate the pace of tree expansions upward near timberline.

  3. The Effects of Hearing Aid Compression Parameters on the Short-Term Dynamic Range of Continuous Speech

    ERIC Educational Resources Information Center

    Henning, Rebecca L. Warner; Bentler, Ruth A.

    2008-01-01

    Purpose: The purpose of this study was to evaluate and quantitatively model the independent and interactive effects of compression ratio, number of compression channels, and release time on the dynamic range of continuous speech. Method: A CD of the Rainbow Passage (J. E. Bernthal & N. W. Bankson, 1993) was used. The hearing aid was a…

  4. All-digital signal-processing open-loop fiber-optic gyroscope with enlarged dynamic range.

    PubMed

    Wang, Qin; Yang, Chuanchuan; Wang, Xinyue; Wang, Ziyu

    2013-12-15

    We propose and realize a new open-loop fiber-optic gyroscope (FOG) with an all-digital signal-processing (DSP) system where an all-digital phase-locked loop is employed for digital demodulation to eliminate the variation of the source intensity and suppress the bias drift. A Sagnac phase-shift tracking method is proposed to enlarge the dynamic range, and, with its aid, a new open-loop FOG, which can achieve a large dynamic range and high sensitivity at the same time, is realized. The experimental results show that compared with the conventional open-loop FOG with the same fiber coil and optical devices, the proposed FOG reduces the bias instability from 0.259 to 0.018 deg/h, and the angle random walk from 0.031 to 0.006 deg/h(1/2), moreover, enlarges the dynamic range to ±360 deg/s, exceeding the maximum dynamic range ±63 deg/s of the conventional open-loop FOG.

  5. 100-Gbit/s PDM-QPSK coherent receiver with wide dynamic range and excellent common-mode rejection ratio.

    PubMed

    Murata, Koichi; Saida, Takashi; Sano, Kimikazu; Ogawa, Ikuo; Fukuyama, Hiroyuki; Kasahara, Ryoichi; Muramoto, Yoshifumi; Nosaka, Hideyuki; Tsunashima, Satoshi; Mizuno, Takayuki; Tanobe, Hiromasa; Hattori, Kuninori; Yoshimatsu, Toshihide; Kawakami, Hiroto; Yoshida, Eiji

    2011-12-12

    We report the design and fabrication of a hybrid-integration-type coherent receiver. We optimize the receiver building blocks, and achieve a -25-dB common-mode rejection ratio and a 20-dB signal input power dynamic range.

  6. Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach

    DTIC Science & Technology

    2012-09-30

    COVERED - 4 . TITLE AND SUBTITLE Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach 5a. CONTRACT...mwheeler/maproom/RMM/ 4 • As the Madden-Julian oscillation (MJO) moves eastward from the Indian to the Pacific ocean, it typically accelerates, becomes

  7. Intelligibility and Clarity of Reverberant Speech: Effects of Wide Dynamic Range Compression Release Time and Working Memory

    ERIC Educational Resources Information Center

    Reinhart, Paul N.; Souza, Pamela E.

    2016-01-01

    Purpose: The purpose of this study was to examine the effects of varying wide dynamic range compression (WDRC) release time on intelligibility and clarity of reverberant speech. The study also considered the role of individual working memory. Method: Thirty older listeners with mild to moderately-severe sloping sensorineural hearing loss…

  8. Ultra-high dynamic range electro-optic sampling for detecting millimeter and sub-millimeter radiation

    PubMed Central

    Ibrahim, Akram; Férachou, Denis; Sharma, Gargi; Singh, Kanwarpal; Kirouac-Turmel, Marie; Ozaki, Tsuneyuki

    2016-01-01

    Time-domain spectroscopy using coherent millimeter and sub-millimeter radiation (also known as terahertz radiation) is rapidly expanding its application, owing greatly to the remarkable advances in generating and detecting such radiation. However, many current techniques for coherent terahertz detection have limited dynamic range, thus making it difficult to perform some basic experiments that need to directly compare strong and weak terahertz signals. Here, we propose and demonstrate a novel technique based on cross-polarized spectral-domain interferometry to achieve ultra-high dynamic range electro-optic sampling measurement of coherent millimeter and sub-millimeter radiation. In our scheme, we exploit the birefringence in a single-mode polarization maintaining fiber in order to measure the phase change induced by the electric field of terahertz radiation in the detection crystal. With our new technique, we have achieved a dynamic range of 7 × 106, which is 4 orders of magnitude higher than conventional electro-optic sampling techniques, while maintaining comparable signal-to-noise ratio. The present technique is foreseen to have great impact on experiments such as linear terahertz spectroscopy of optically thick materials (such as aqueous samples) and nonlinear terahertz spectroscopy, where the higher dynamic range is crucial for proper interpretation of experimentally obtained results. PMID:26976363

  9. Coupled quantum-classical method for long range charge transfer: relevance of the nuclear motion to the quantum electron dynamics.

    PubMed

    da Silva, Robson; Hoff, Diego A; Rego, Luis G C

    2015-04-10

    Charge and excitonic-energy transfer phenomena are fundamental for energy conversion in solar cells as well as artificial photosynthesis. Currently, much interest is being paid to light-harvesting and energy transduction processes in supramolecular structures, where nuclear dynamics has a major influence on electronic quantum dynamics. For this reason, the simulation of long range electron transfer in supramolecular structures, under environmental conditions described within an atomistic framework, has been a difficult problem to study. This work describes a coupled quantum mechanics/molecular mechanics method that aims at describing long range charge transfer processes in supramolecular systems, taking into account the atomistic details of large molecular structures, the underlying nuclear motion, and environmental effects. The method is applied to investigate the relevance of electron-nuclei interaction on the mechanisms for photo-induced electron-hole pair separation in dye-sensitized interfaces as well as electronic dynamics in molecular structures.

  10. Mountain gorilla ranging patterns: influence of group size and group dynamics.

    PubMed

    Caillaud, Damien; Ndagijimana, Felix; Giarrusso, Anthony J; Vecellio, Veronica; Stoinski, Tara S

    2014-08-01

    Since the 1980s, the Virunga mountain gorilla population has almost doubled, now reaching 480 individuals living in a 430-km(2) protected area. Analysis of the gorillas' ranging patterns can provide critical information on the extent and possible effects of competition for food and space. We analyzed 12 years of daily ranging data and inter-group encounter data collected on 11 gorilla groups monitored by the Karisoke Research Center in Rwanda. During that period, the study population increased in size by almost 50% and the number of groups tripled. Groups had small yearly home ranges compared to other known gorilla populations, with an average 90% kernel density estimate of 8.07 km2 and large between-group variations (3.17-23.59 km2). Most groups had consistent home range location over the course of the study but for some, we observed gradual range shifts of up to 4 km. Neighboring groups displayed high home range overlap, which increased dramatically after the formation of new groups. On average, each group used only 28.6% of its 90% kernel home range exclusively, and in some areas up to six different groups had overlapping home ranges with little or no exclusive areas. We found a significant intra-group positive relationship between the number of weaned individuals in a group and the home range size, but the fitted models only explained 17.5% and 13.7% of the variance in 50% and 90% kernel home range size estimates, respectively. This suggests that despite the increase in size, the study population is not yet experiencing marked effects of feeding competition. However, the increase in home range overlap resulting from the formation of new groups led to a sixfold increase in the frequency of inter-group encounters, which exposes the population to elevated risks of fight-related injuries and infanticide.

  11. Long-Range Signaling in MutS and MSH Homologs via Switching of Dynamic Communication Pathways

    PubMed Central

    Wang, Beibei; Francis, Joshua; Law, Sean M.; Feig, Michael

    2016-01-01

    Allostery is conformation regulation by propagating a signal from one site to another distal site. This study focuses on the long-range communication in DNA mismatch repair proteins MutS and its homologs where intramolecular signaling has to travel over 70 Å to couple lesion detection to ATPase activity and eventual downstream repair. Using dynamic network analysis based on extensive molecular dynamics simulations, multiple preserved communication pathways were identified that would allow such long-range signaling. The pathways appear to depend on the nucleotides bound to the ATPase domain as well as the type of DNA substrate consistent with previously proposed functional cycles of mismatch recognition and repair initiation by MutS and homologs. A mechanism is proposed where pathways are switched without major conformational rearrangements allowing for efficient long-range signaling and allostery. PMID:27768684

  12. Passive ranging of dynamic rocket plumes using infrared and visible oxygen attenuation

    NASA Astrophysics Data System (ADS)

    Vincent, R. Anthony; Hawks, Michael R.

    2011-05-01

    Atmospheric oxygen absorption bands in observed spectra of boost phase missiles can be used to accurately estimate range from sensor to target. One method is to compare observed values of band averaged absorption to radiative transfer models. This is most effective using bands where there is a single absorbing species. This work compares spectral attenuation of two oxygen absorption bands in the near-infrared (NIR) and visible (Vis) spectrum, centered at 762 nm and 690 nm, to passively determine range. Spectra were observed from a static test of a full-scale solid rocket motor at a 900m range. The NIR O2 band provided range estimates accurate to within 3%, while the Vis O2 band had a range error of 15%. A Falcon 9 rocket launch at an initial range of 13km was also tracked and observed for 90 seconds after ignition. The NIR O2 band provided in-flight range estimates accurate to within 2% error for the first 30 seconds of tracked observation. The Vis O2 band also provided accurate range estimates with an error of approximately 4%. Rocket plumes are expected to be significantly brighter at longer wavelengths, but absorption in the NIR band is nearly ten times stronger than the Vis band, causing saturation at shorter path lengths. An atmospheric band is considered saturated when all the in-band frequencies emitted from the rocket plume are absorbed before reaching the sensor.

  13. Single-filament dynamics and long-range ordering of semiflexible biopolymers under flow and confinement.

    PubMed

    Vonna, Laurent; Limozin, Laurent; Roth, Alexander; Sackmann, Erich

    2005-10-11

    We report the collective and single-filament dynamics of long semiflexible actin filaments flowing in an evaporating droplet adhering on glass and accumulating along the physical barrier constituted by the droplet triple line. The observation of fluorescent reporter filaments embedded in the entangled network enables us to relate the final collective organization of the accumulated filaments to the individual filament dynamics. Three areas corresponding to distinct filament organizations are observed in the region of the initial triple line pinning, after complete evaporation of the droplet. A nematic liquid-crystal-like alignment of the filaments is observed at the edge of the droplet because of the dynamic filament alignment, whereas a less-ordered packing is generated because of the bending and folding of most of the filaments. The latter unconventional dynamics is analyzed in terms of the amplification of undulation modes typical of semiflexible polymers. The receding regime of the droplet triple line leads finally to a remaining film of actin filaments showing random organization.

  14. Evaluation of dynamically dimensioned search algorithm for optimizing SWAT by altering sampling distributions and searching range

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary advantage of Dynamically Dimensioned Search algorithm (DDS) is that it outperforms many other optimization techniques in both convergence speed and the ability in searching for parameter sets that satisfy statistical guidelines while requiring only one algorithm parameter (perturbation f...

  15. Analysis of ISO NE Balancing Requirements: Uncertainty-based Secure Ranges for ISO New England Dynamic Inerchange Adjustments

    SciTech Connect

    Etingov, Pavel V.; Makarov, Yuri V.; Wu, Di; Hou, Zhangshuan; Sun, Yannan; Maslennikov, S.; Luo, X.; Zheng, T.; George, S.; Knowland, T.; Litvinov, E.; Weaver, S.; Sanchez, E.

    2013-01-31

    The document describes detailed uncertainty quantification (UQ) methodology developed by PNNL to estimate secure ranges of potential dynamic intra-hour interchange adjustments in the ISO-NE system and provides description of the dynamic interchange adjustment (DINA) tool developed under the same contract. The overall system ramping up and down capability, spinning reserve requirements, interchange schedules, load variations and uncertainties from various sources that are relevant to the ISO-NE system are incorporated into the methodology and the tool. The DINA tool has been tested by PNNL and ISO-NE staff engineers using ISO-NE data.

  16. Universality and critical behavior of the dynamical Mott transition in a system with long-range interactions

    PubMed Central

    Rademaker, Louk; Vinokur, Valerii M.; Galda, Alexey

    2017-01-01

    We study numerically the voltage-induced breakdown of a Mott insulating phase in a system of charged classical particles with long-range interactions. At half-filling on a square lattice this system exhibits Mott localization in the form of a checkerboard pattern. We find universal scaling behavior of the current at the dynamic Mott insulator-metal transition and calculate scaling exponents corresponding to the transition. Our results are in agreement, up to a difference in universality class, with recent experimental evidence of a dynamic Mott transition in a system of interacting superconducting vortices. PMID:28300065

  17. Mechanistic home range models capture spatial patterns and dynamics of coyote territories in Yellowstone

    PubMed Central

    Moorcroft, Paul R; Lewis, Mark A; Crabtree, Robert L

    2006-01-01

    Patterns of space-use by individuals are fundamental to the ecology of animal populations influencing their social organization, mating systems, demography and the spatial distribution of prey and competitors. To date, the principal method used to analyse the underlying determinants of animal home range patterns has been resource selection analysis (RSA), a spatially implicit approach that examines the relative frequencies of animal relocations in relation to landscape attributes. In this analysis, we adopt an alternative approach, using a series of mechanistic home range models to analyse observed patterns of territorial space-use by coyote packs in the heterogeneous landscape of Yellowstone National Park. Unlike RSAs, mechanistic home range models are derived from underlying correlated random walk models of individual movement behaviour, and yield spatially explicit predictions for patterns of space-use by individuals. As we show here, mechanistic home range models can be used to determine the underlying determinants of animal home range patterns, incorporating both movement responses to underlying landscape heterogeneities and the effects of behavioural interactions between individuals. Our analysis indicates that the spatial arrangement of coyote territories in Yellowstone is determined by the spatial distribution of prey resources and an avoidance response to the presence of neighbouring packs. We then show how the fitted mechanistic home range model can be used to correctly predict observed shifts in the patterns of coyote space-use in response to perturbation. PMID:16769637

  18. Mechanistic home range models capture spatial patterns and dynamics of coyote territories in Yellowstone.

    PubMed

    Moorcroft, Paul R; Lewis, Mark A; Crabtree, Robert L

    2006-07-07

    Patterns of space-use by individuals are fundamental to the ecology of animal populations influencing their social organization, mating systems, demography and the spatial distribution of prey and competitors. To date, the principal method used to analyse the underlying determinants of animal home range patterns has been resource selection analysis (RSA), a spatially implicit approach that examines the relative frequencies of animal relocations in relation to landscape attributes. In this analysis, we adopt an alternative approach, using a series of mechanistic home range models to analyse observed patterns of territorial space-use by coyote packs in the heterogeneous landscape of Yellowstone National Park. Unlike RSAs, mechanistic home range models are derived from underlying correlated random walk models of individual movement behaviour, and yield spatially explicit predictions for patterns of space-use by individuals. As we show here, mechanistic home range models can be used to determine the underlying determinants of animal home range patterns, incorporating both movement responses to underlying landscape heterogeneities and the effects of behavioural interactions between individuals. Our analysis indicates that the spatial arrangement of coyote territories in Yellowstone is determined by the spatial distribution of prey resources and an avoidance response to the presence of neighbouring packs. We then show how the fitted mechanistic home range model can be used to correctly predict observed shifts in the patterns of coyote space-use in response to perturbation.

  19. Chromosomal dynamics predicted by an elastic network model explains genome-wide accessibility and long-range couplings.

    PubMed

    Sauerwald, Natalie; Zhang, She; Kingsford, Carl; Bahar, Ivet

    2017-03-16

    Understanding the three-dimensional (3D) architecture of chromatin and its relation to gene expression and regulation is fundamental to understanding how the genome functions. Advances in Hi-C technology now permit us to study 3D genome organization, but we still lack an understanding of the structural dynamics of chromosomes. The dynamic couplings between regions separated by large genomic distances (>50 Mb) have yet to be characterized. We adapted a well-established protein-modeling framework, the Gaussian Network Model (GNM), to model chromatin dynamics using Hi-C data. We show that the GNM can identify spatial couplings at multiple scales: it can quantify the correlated fluctuations in the positions of gene loci, find large genomic compartments and smaller topologically-associating domains (TADs) that undergo en bloc movements, and identify dynamically coupled distal regions along the chromosomes. We show that the predictions of the GNM correlate well with genome-wide experimental measurements. We use the GNM to identify novel cross-correlated distal domains (CCDDs) representing pairs of regions distinguished by their long-range dynamic coupling and show that CCDDs are associated with increased gene co-expression. Together, these results show that GNM provides a mathematically well-founded unified framework for modeling chromatin dynamics and assessing the structural basis of genome-wide observations.

  20. Do group dynamics affect colour morph clines during a range shift?

    PubMed

    Lancaster, L T; Dudaniec, R Y; Hansson, B; Svensson, E I

    2017-04-01

    Species exhibiting colour polymorphism are thought to have an ecological advantage at the landscape scale, because spatial segregation of alternatively adapted ecotypes into diverse habitats can increase the species' niche breadth and thus confer greater geographic range size. However, morph frequencies are also influenced by intrapopulational processes such as frequency- or density-dependent social interactions. To identify how social feedback may affect clinal variation in morph frequencies, we investigated reciprocal interactions between morph-specific thermal tolerance, local climatic conditions and social environments, in the context of a colour-morph frequency cline associated with a recent range expansion in blue-tailed damselflies (Ischnura elegans) in Sweden. Cold tolerances of gynochromes (female-like female morph) were positively correlated with local gynochrome frequencies, suggesting a positive frequency-dependent fitness benefit. In contrast, androchrome (male-mimic female morph) cold tolerances were improved following recent exposure to cold weather, suggesting a beneficial environmental acclimation effect. Thus, according to an environment-matching hypothesis for clinal variation, androchrome frequencies should therefore increase towards the (cooler) range limit. In contrast to this prediction, gynochrome frequencies increased at the expanding range limit, consistent with a positive frequency-dependent social feedback that is beneficial when invading novel climates. Our results suggest that when phenotypes or fitnesses are affected by interactions with conspecifics, beneficial social effects on environmental tolerances may (i) facilitate range shifts, and (ii) reverse or counteract typical patterns of intraspecific interactions and environment-matching clines observed in stable populations observed over broader geographic scales.

  1. PBL dynamic measurements with new compact long range wind Lidar WINDCUBE WLS70

    NASA Astrophysics Data System (ADS)

    Cariou, J.; Sauvage, L.; Lolli, S.; Parmentier, R.; Boquet, M.; Loaec, S.

    2008-12-01

    The WindCube WLS70 is a new generation wind Lidar developed by LEOSPHERE for meteorological applications. The Lidar is derived from the commercial WindCube widely used for autonomous and very accurate short range measurements by the wind industry. It has been modified increasing the range up to 4 km and can even detect cirrus at 8km. First results of the measurement campaign which took place in Orsay, France in August 2008 put in evidence both vertical wind speed and atmosphere structure (PBL height , clouds top and base) derived from Lidar data with good time resolution (30s per profile), good range resolution (50m from 100m to 4000m), and good velocity resolution (0.2m/s). These measurement data play a key role in many meteorological applications, and can be used as input for forecast mathematical models.

  2. Latent evidence detection using a combination of near infrared and high dynamic range photography: an example using bloodstains.

    PubMed

    Albanese, John; Montes, Ronald

    2011-11-01

    In this paper, we use bloodstains to illustrate an approach for identifying latent evidence on dark cloth using near infrared (NIR) photography combined with high dynamic range (HDR) photography techniques. NIR photography alone has been used to capture latent evidence that cannot be seen in normal ambient light. HDR techniques combine multiple bracketed photographs of the same image to increase the dynamic range of the photograph which can provide greater contrast. Using NIR photography alone, we were able to detect a bloodstain up to a 1/16 dilution, an improvement over previous studies. Combining NIR photography with the HDR process resulted in a noticeable increase in visibility up to 1/16 dilution when compared to NIR photographs alone. At 1/32 dilution, we were able to detect bloodstains that were not visible using NIR alone. NIR is a useful tool for imaging latent evidence, and combining NIR with HDR consistently provides better results over NIR alone.

  3. Flat panel X-ray detector with reduced internal scattering for improved attenuation accuracy and dynamic range

    DOEpatents

    Smith, Peter D.; Claytor, Thomas N.; Berry, Phillip C.; Hills, Charles R.

    2010-10-12

    An x-ray detector is disclosed that has had all unnecessary material removed from the x-ray beam path, and all of the remaining material in the beam path made as light and as low in atomic number as possible. The resulting detector is essentially transparent to x-rays and, thus, has greatly reduced internal scatter. The result of this is that x-ray attenuation data measured for the object under examination are much more accurate and have an increased dynamic range. The benefits of this improvement are that beam hardening corrections can be made accurately, that computed tomography reconstructions can be used for quantitative determination of material properties including density and atomic number, and that lower exposures may be possible as a result of the increased dynamic range.

  4. Metastability for a Non-reversible Dynamics: The Evolution of the Condensate in Totally Asymmetric Zero Range Processes

    NASA Astrophysics Data System (ADS)

    Landim, C.

    2014-08-01

    It has been observed (Evans in Braz J Phys 30:42-57, 2000; Jeon et al. in Ann Probab 28:1162-1194, 2000) that some zero-range processes exhibit condensation, a macroscopic fraction of particles concentrates on one single site. We examined in (Beltrán and Landim in Probab Theory Relat Fields 152:781-807, 2012) the asymptotic evolution of the condensate in the case where the dynamics is reversible, the number of sites is fixed, and the total number of particles diverges. We proved in that paper that in an appropriate time-scale the condensate evolves according to a symmetric random walk whose transition rates are proportional to the capacities of the underlying random walk. In this article, we extend this result to the condensing totally asymmetric zero-range process, a non-reversible dynamics.

  5. Constrained matched filtering for extended dynamic range and improved noise rejection for Shack-Hartmann wavefront sensing.

    PubMed

    Gilles, L; Ellerbroek, B L

    2008-05-15

    We recently introduced matched filtering in the context of astronomical Shack-Hartmann wavefront sensing with elongated sodium laser beacons [Appl. Opt. 45, 6568 (2006)]. Detailed wave optics Monte Carlo simulations implementing this technique for the Thirty Meter Telescope dual conjugate adaptive optics system have, however, revealed frequent bursts of degraded closed loop residual wavefront error [Proc. SPIE 6272, 627236 (2006)]. The origin of this problem is shown to be related to laser guide star jitter on the sky that kicks the filter out of its linear dynamic range, which leads to bursts of nonlinearities that are reconstructed into higher-order wavefront aberrations, particularly coma and trifoil for radially elongated subaperture spots. An elegant reformulation of the algorithm is proposed to extend its dynamic range using a set of linear constraints while preserving its improved noise rejection and Monte Carlo performance results are reported that confirm the benefits of the method.

  6. High dynamic range imaging for fringe projection profilometry with single-shot raw data of the color camera

    NASA Astrophysics Data System (ADS)

    Yin, Yongkai; Cai, Zewei; Jiang, Hao; Meng, Xiangfeng; Xi, Jiangtao; Peng, Xiang

    2017-02-01

    It is a challenging issue to get satisfied results in terms of 3D imaging for shiny surface with fringe projection profilometry (FPP), as the wide variation of surface reflectance for shiny surface will lead to bad exposure, which requires the high dynamic range imaging (HDRI) technique. HDRI with monochromatic illumination and single-shot raw data of the color camera is presented in this paper. From the single-shot raw data, 4 monochrome sub-images corresponding to R, G, G and B channels can be separated respectively. After the attenuation ratios between R&G, G&B channels are calibrated, an image with higher dynamic range can be synthesized with the 4 sub-images, which can help to avoid the impact of bad exposure and improve the accuracy of phase calculation. Experiments demonstrate the validity of proposed method for shiny surface.

  7. Hominin geographical range dynamics and relative brain size: Do non-human primates provide a good analogy?

    PubMed

    MacDonald, Katharine; Smaers, Jeroen B; Steele, James

    2015-10-01

    We use climatic and satellite remote sensing data to characterize environmental seasonality in the geographical ranges of extant non-human primates in order to assess the effect of relative brain size on tolerance of more seasonal habitats. Demonstration of such an effect in living non-human primates could provide a comparative framework for modeling hominin dispersals and geographical range dynamics in the Pliocene and Pleistocene. Our analyses found no such effect: there are neither positive nor negative correlations between relative brain size and either geographical range size or the average and range of values for environmental seasonality, whether analysed at the level of all primates, or within parvorders (strepsirrhine, catarrhine, platyrrhine). Independent analyses by other researchers comparing feeding behaviour and ecology at individual primate study sites demonstrate that in seasonal environments, the year-round metabolic costs of maintaining a relatively large brain are met by adaptive behavioural/dietary strategies. However, consistent with our own results, those comparative studies found that there was no overall association, whether positive or negative, between 'raw' environmental seasonality and primate relative brain size. We must therefore look elsewhere for a comparative model of hominin geographical range dynamics in the Pleistocene.

  8. Evaluation of detector dynamic range in the x-ray exposure domain in mammography: a comparison between film-screen and flat panel detector systems.

    PubMed

    Cooper, Virgil N; Oshiro, Thomas; Cagnon, Christopher H; Bassett, Lawrence W; McLeod-Stockmann, Tyler M; Bezrukiy, Nikita V

    2003-10-01

    Digital detectors in mammography have wide dynamic range in addition to the benefit of decoupled acquisition and display. How wide the dynamic range is and how it compares to film-screen systems in the clinical x-ray exposure domain are unclear. In this work, we compare the effective dynamic ranges of film-screen and flat panel mammography systems, along with the dynamic ranges of their component image receptors in the clinical x-ray exposure domain. An ACR mammography phantom was imaged using variable mAs (exposure) values for both systems. The dynamic range of the contrast-limited film-screen system was defined as that ratio of mAs (exposure) values for a 26 kVp Mo/Mo (HVL=0.34 mm Al) beam that yielded passing phantom scores. The same approach was done for the noise-limited digital system. Data from three independent observers delineated a useful phantom background optical density range of 1.27 to 2.63, which corresponded to a dynamic range of 2.3 +/- 0.53. The digital system had a dynamic range of 9.9 +/- 1.8, which was wider than the film-screen system (p<0.02). The dynamic range of the film-screen system was limited by the dynamic range of the film. The digital detector, on the other hand, had an estimated dynamic range of 42, which was wider than the dynamic range of the digital system in its entirety by a factor of 4. The generator/tube combination was the limiting factor in determining the digital system's dynamic range.

  9. Heterotrimeric G-protein shuttling via Gip1 extends the dynamic range of eukaryotic chemotaxis

    PubMed Central

    Kamimura, Yoichiro; Miyanaga, Yukihiro; Ueda, Masahiro

    2016-01-01

    Chemotactic eukaryote cells can sense chemical gradients over a wide range of concentrations via heterotrimeric G-protein signaling; however, the underlying wide-range sensing mechanisms are only partially understood. Here we report that a novel regulator of G proteins, G protein-interacting protein 1 (Gip1), is essential for extending the chemotactic range of Dictyostelium cells. Genetic disruption of Gip1 caused severe defects in gradient sensing and directed cell migration at high but not low concentrations of chemoattractant. Also, Gip1 was found to bind and sequester G proteins in cytosolic pools. Receptor activation induced G-protein translocation to the plasma membrane from the cytosol in a Gip1-dependent manner, causing a biased redistribution of G protein on the membrane along a chemoattractant gradient. These findings suggest that Gip1 regulates G-protein shuttling between the cytosol and the membrane to ensure the availability and biased redistribution of G protein on the membrane for receptor-mediated chemotactic signaling. This mechanism offers an explanation for the wide-range sensing seen in eukaryotic chemotaxis. PMID:27044073

  10. Numerical Analysis of Stochastic Dynamical Systems in the Medium-Frequency Range

    DTIC Science & Technology

    2003-02-01

    frequency vibration analysis such as the statistical energy analysis (SEA), the traditional modal analysis (well-suited for high and low: frequency...that the first few structural normal modes primarily constitute the total response. In the higher frequency range, the statistical energy analysis (SEA

  11. Analysis of a stability valve system for extending the dynamic range of a supersonic inlet

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Dustin, M. O.

    1975-01-01

    A stability valve system designed for a full-scale, flight, supersonic, mixed-compression inlet was modeled dynamically by using analog computer techniques. The system uses poppet valves mounted in the inlet cowl to bypass airflow and augments the inlet shock position control system by preventing unstarts caused by high-frequency perturbations. The model was used as a design aid to investigate the effects of varying both the physical configurations of the valve and the flight and wind tunnel conditions. Results of the analysis indicate that the stability valve will provide a bandpass operation of 1 hertz to 17 hertz.

  12. Long-Range Order in a Two-Dimensional Dynamical XY Model: How Birds Fly Together

    NASA Astrophysics Data System (ADS)

    Toner, John; Tu, Yuhai

    1995-12-01

    We propose a nonequilibrium continuum dynamical model for the collective motion of large groups of biological organisms (e.g., flocks of birds, slime molds, etc.) Our model becomes highly nontrivial, and different from the equilibrium model, for d

  13. Dynamic World Modeling for an Intelligent Mobile Robot Using a Rotating Ultra-Sonic Ranging Device.

    DTIC Science & Technology

    1984-12-01

    RD-Ai149 979 DYNAMIC WRLD MODELING FOR AN INTELLIGENT MOBILE ROBOT i/i USING A ROTATING U_.(U) CARNEGIE-MELLON UNIV PITTSBURGH PA ROBOTICS INST J L...Intelligent Mobile Robot Using a Rotating Ultra-Sonic flanging Device James L. Crowley CMU-RI-TR-84-27 The Laboratory for Household Robotics The Robotics ...sponsored 1’, (Cotnmodore Business Machines. Inc., Denning Mobile Robotics , Inc., and the Commonwealth of P,.ris𔃻lvania. * .Re Unclassiflied. *SECURITY

  14. How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models?

    PubMed

    Proix, Timothée; Spiegler, Andreas; Schirner, Michael; Rothmeier, Simon; Ritter, Petra; Jirsa, Viktor K

    2016-11-15

    Recent efforts to model human brain activity on the scale of the whole brain rest on connectivity estimates of large-scale networks derived from diffusion magnetic resonance imaging (dMRI). This type of connectivity describes white matter fiber tracts. The number of short-range cortico-cortical white-matter connections is, however, underrepresented in such large-scale brain models. It is still unclear on the one hand, which scale of representation of white matter fibers is optimal to describe brain activity on a large-scale such as recorded with magneto- or electroencephalography (M/EEG) or functional magnetic resonance imaging (fMRI), and on the other hand, to which extent short-range connections that are typically local should be taken into account. In this article we quantified the effect of connectivity upon large-scale brain network dynamics by (i) systematically varying the number of brain regions before computing the connectivity matrix, and by (ii) adding generic short-range connections. We used dMRI data from the Human Connectome Project. We developed a suite of preprocessing modules called SCRIPTS to prepare these imaging data for The Virtual Brain, a neuroinformatics platform for large-scale brain modeling and simulations. We performed simulations under different connectivity conditions and quantified the spatiotemporal dynamics in terms of Shannon Entropy, dwell time and Principal Component Analysis. For the reconstructed connectivity, our results show that the major white matter fiber bundles play an important role in shaping slow dynamics in large-scale brain networks (e.g. in fMRI). Faster dynamics such as gamma oscillations (around 40 Hz) are sensitive to the short-range connectivity if transmission delays are considered.

  15. Altitudinal dynamics of glacial lakes under changing climate in the Hindu Kush, Karakoram, and Himalaya ranges

    NASA Astrophysics Data System (ADS)

    Ashraf, Arshad; Naz, Rozina; Iqbal, Muhammad Bilal

    2017-04-01

    The environmental challenges posed by global warming in the Himalayan region include early and rapid melting of snow and glaciers, creation of new lakes, and expansion of old ones posing a high risk of glacial lakes outburst flood (GLOF) hazard for downstream communities. According to various elevation ranges, 3044 lakes were analyzed basinwide in the Hindu Kush-Karakoram-Himalaya (HKH) ranges of Pakistan using multisensor remote sensing data of the 2001-2013 period. An overall increase in glacial lakes was observed at various altitudinal ranges between 2500 and 5500, m out of which noticeable change by number was within the 4000-4500 m range. The analysis carried out by glacial-fed lakes and nonglacial-fed lakes in different river basins indicated variable patterns depending on the geographic location in the HKH region. The correlation analysis of parameters like lake area, expansion rate, and elevation was performed with 617 glacial lakes distributed in various river basins of the three HKH ranges. Lake area (2013) and elevation showed a negative relationship for all basins except Hunza, Shigar, and Shyok. The correlation between the expansion rate of lakes and elevation was on the positive side for Swat, Gilgit, Shigar, and Shingo basins-a situation that may be attributed to the variable altitudinal pattern of temperature and precipitation. In order to explore such diverse patterns of lake behavior and relationship with influential factors in the HKH, detailed studies based on using high resolution image data coupled with in situ information are a prerequisite. Although an increase in lake area observed below 3500 m would be favorable for water resource management, but could be alarming in context of glacial flood hazards that need to be monitored critically on a long-term basis.

  16. A per-pixel Log2ADC for high dynamic range, 1000FPS digital focal plane arrays (DFPA)

    NASA Astrophysics Data System (ADS)

    Petilli, Eugene

    2016-09-01

    Intrinsix has developed a Digital Focal Plane Array (DFPA) architecture based on a novel piecewise linear Log2 ADC (LADC) with "lossless" analog compression which enables ultra-high dynamic range ROICs that use less power than other extended dynamic range technologies. The LADC provides dynamic range of 126dB with a constant 75dB SNR over the entire frame. The companding 13bit mantissa, 3bit radix per pixel LADCs compress the 21bit signals into efficient 16 bit data words. The Read Out IC (ROIC) is compatible with most IR and LWIR detectors including two-color SLS (photodiode) and uBolometers. The DFPA architecture leverages two (staggered frame prime and redundant) MIPI CSI-3 interfaces to achieve full HD DFPA at 1000 frames/sec; an equivalent uncompressed data rate of 100Gb/sec. The LADC uses direct injection into a moderate sized integrating capacitor and several comparators create a stream of multi-bit data values. These values are accumulated in an SRAM based log2ALU and the radix of the ALU is combined with the data to generate a feedback current to the integrating capacitor, closing the delta loop. The integration time and a single pole low pass IIR filter are configurable using control signals to the log2ALU. The feedback current is at least partially generated using PWM for high linearity.

  17. Mediator facilitates transcriptional activation and dynamic long-range contacts at the IgH locus during class switch recombination.

    PubMed

    Thomas-Claudepierre, Anne-Sophie; Robert, Isabelle; Rocha, Pedro P; Raviram, Ramya; Schiavo, Ebe; Heyer, Vincent; Bonneau, Richard; Luo, Vincent M; Reddy, Janardan K; Borggrefe, Tilman; Skok, Jane A; Reina-San-Martin, Bernardo

    2016-03-07

    Immunoglobulin (Ig) class switch recombination (CSR) is initiated by the transcription-coupled recruitment of activation-induced cytidine deaminase (AID) to Ig switch regions (S regions). During CSR, the IgH locus undergoes dynamic three-dimensional structural changes in which promoters, enhancers, and S regions are brought to close proximity. Nevertheless, little is known about the underlying mechanisms. In this study, we show that Med1 and Med12, two subunits of the mediator complex implicated in transcription initiation and long-range enhancer/promoter loop formation, are dynamically recruited to the IgH locus enhancers and the acceptor regions during CSR and that their knockdown in CH12 cells results in impaired CSR. Furthermore, we show that conditional inactivation of Med1 in B cells results in defective CSR and reduced acceptor S region transcription. Finally, we show that in B cells undergoing CSR, the dynamic long-range contacts between the IgH enhancers and the acceptor regions correlate with Med1 and Med12 binding and that they happen at a reduced frequency in Med1-deficient B cells. Our results implicate the mediator complex in the mechanism of CSR and are consistent with a model in which mediator facilitates the long-range contacts between S regions and the IgH locus enhancers during CSR and their transcriptional activation.

  18. Characterization of HZC XP1805 photomultiplier tube for LHAASO-WCDA with a high dynamic range base

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Tang, Z.; Li, C.; Li, X.; Zha, W.; Chen, H.; Zhang, Y.; Shao, M.; Sun, Y.; Zhou, Y.

    2016-10-01

    The Water Cherenkov Detector Array (WCDA) for the Large High Altitude Air Shower Observatory (LHAASO) will employ 3000 large-sized hemisphere photomultiplier tubes (PMTs) to collect the Cherenkov light produced by shower particles crossing water. The PMTs require not only good single photoelectron (SPE) resolution and small transit time spread (TTS), but also good linearity up to 4000 photoelectrons. XP1805 PMT produced by Hainan Zhanchuang Photonics Technology Co., Ltd (HZC), China, with a production line imported from Photonis (France) is a good candidate for LHAASO-WCDA readout. In this paper, the design of a high dynamic range base for XP1805 is presented. The SPE responses and non-linearity of XP1805 with the high dynamic range base are measured. These results show that HZC XP1805 with the designed base is well qualified for LHAASO-WCDA, with peak-to-valley ratio greater than 2, TTS around 3 ns, dynamic range (non-linearity within 5%) over 1500 and 5300 photoelectrons for anode and the 6th dynode output, respectively, at PMT gain of 3 × 106 with the inciting light pulse width of 6.4 ns.

  19. A Dynamic Range Enhanced Readout Technique with a Two-Step TDC for High Speed Linear CMOS Image Sensors.

    PubMed

    Gao, Zhiyuan; Yang, Congjie; Xu, Jiangtao; Nie, Kaiming

    2015-11-06

    This paper presents a dynamic range (DR) enhanced readout technique with a two-step time-to-digital converter (TDC) for high speed linear CMOS image sensors. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA) structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A column-parallel ADC based on a two-step TDC is utilized to improve the conversion rate. The conversion is divided into coarse phase and fine phase. An error calibration scheme is also proposed to correct quantization errors caused by propagation delay skew within -T(clk)~+T(clk). A linear CMOS image sensor pixel array is designed in the 0.13 μm CMOS process to verify this DR-enhanced high speed readout technique. The post simulation results indicate that the dynamic range of readout circuit is 99.02 dB and the ADC achieves 60.22 dB SNDR and 9.71 bit ENOB at a conversion rate of 2 MS/s after calibration, with 14.04 dB and 2.4 bit improvement, compared with SNDR and ENOB of that without calibration.

  20. High-dynamic range image projection using an auxiliary MEMS mirror array.

    PubMed

    Hoskinson, Reynald; Stoeber, Boris

    2008-05-12

    We introduce a new concept to improve the contrast and peak brightness of conventional data projectors. Our method provides a non-homogenous light source by dynamically directing fractions of the light from the projector lamp before it reaches the display mechanism. This will supply more light to the areas that need it most, at the expense of the darker parts of the image. In effect, this method will produce a low resolution version of the image onto the image-forming element. To manipulate the light in this manner, we propose using an intermediate array of microelectromechanical system (MEMS) mirrors. By directing the light away from the dark parts earlier in the display chain, the amount of light that needs to be blocked will be reduced, thus decreasing the black level of the final image. Moreover, the ability to dynamically allocate more light to the bright parts of the image will allow for peak brightness higher than the average maximum brightness of display.

  1. Long-Range Correlations and Memory in the Dynamics of Internet Interdomain Routing.

    PubMed

    Kitsak, Maksim; Elmokashfi, Ahmed; Havlin, Shlomo; Krioukov, Dmitri

    2015-01-01

    Data transfer is one of the main functions of the Internet. The Internet consists of a large number of interconnected subnetworks or domains, known as Autonomous Systems (ASes). Due to privacy and other reasons the information about what route to use to reach devices within other ASes is not readily available to any given AS. The Border Gateway Protocol (BGP) is responsible for discovering and distributing this reachability information to all ASes. Since the topology of the Internet is highly dynamic, all ASes constantly exchange and update this reachability information in small chunks, known as routing control packets or BGP updates. In the view of the quick growth of the Internet there are significant concerns with the scalability of the BGP updates and the efficiency of the BGP routing in general. Motivated by these issues we conduct a systematic time series analysis of BGP update rates. We find that BGP update time series are extremely volatile, exhibit long-term correlations and memory effects, similar to seismic time series, or temperature and stock market price fluctuations. The presented statistical characterization of BGP update dynamics could serve as a basis for validation of existing and developing better models of Internet interdomain routing.

  2. Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Havlin, S.; Hausdorff, J. M.; Mietus, J. E.; Stanley, H. E.; Goldberger, A. L.

    1995-01-01

    Under healthy conditions, the normal cardiac (sinus) interbeat interval fluctuates in a complex manner. Quantitative analysis using techniques adapted from statistical physics reveals the presence of long-range power-law correlations extending over thousands of heartbeats. This scale-invariant (fractal) behavior suggests that the regulatory system generating these fluctuations is operating far from equilibrium. In contrast, it is found that for subjects at high risk of sudden death (e.g., congestive heart failure patients), these long-range correlations break down. Application of fractal scaling analysis and related techniques provides new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as motivating development of novel physiologic models of systems that appear to be heterodynamic rather than homeostatic.

  3. Dynamical properties of the brain tissue under oscillatory shear stresses at large strain range

    NASA Astrophysics Data System (ADS)

    Boudjema, F.; Khelidj, B.; Lounis, M.

    2017-01-01

    In this experimental work, we study the viscoelastic behaviour of in vitro brain tissue, particularly the white matter, under oscillatory shear strain. The selective vulnerability of this tissue is the anisotropic mechanical properties of theirs different regions lead to a sensitivity to the angular shear rate and magnitude of strain. For this aim, shear storage modulus (G‧) and loss modulus (G″) were measured over a range of frequencies (1 to 100 Hz), for different levels of strain (1 %, to 50 %). The mechanical responses of the brain matter samples showed a viscoelastic behaviour that depend on the correlated strain level and frequency range and old age sample. The samples have been showed evolution behaviour by increasing then decreasing the strain level. Also, the stiffness anisotropy of brain matter was showed between regions and species.

  4. Negative auto-regulation increases the input dynamic-range of the arabinose system of Escherichia coli

    PubMed Central

    2011-01-01

    Background Gene regulation networks are made of recurring regulatory patterns, called network motifs. One of the most common network motifs is negative auto-regulation, in which a transcription factor represses its own production. Negative auto-regulation has several potential functions: it can shorten the response time (time to reach halfway to steady-state), stabilize expression against noise, and linearize the gene's input-output response curve. This latter function of negative auto-regulation, which increases the range of input signals over which downstream genes respond, has been studied by theory and synthetic gene circuits. Here we ask whether negative auto-regulation preserves this function also in the context of a natural system, where it is embedded within many additional interactions. To address this, we studied the negative auto-regulation motif in the arabinose utilization system of Escherichia coli, in which negative auto-regulation is part of a complex regulatory network. Results We find that when negative auto-regulation is disrupted by placing the regulator araC under constitutive expression, the input dynamic range of the arabinose system is reduced by 10-fold. The apparent Hill coefficient of the induction curve changes from about n = 1 with negative auto-regulation, to about n = 2 when it is disrupted. We present a mathematical model that describes how negative auto-regulation can increase input dynamic-range, by coupling the transcription factor protein level to the input signal. Conclusions Here we demonstrate that the negative auto-regulation motif in the native arabinose system of Escherichia coli increases the range of arabinose signals over which the system can respond. In this way, negative auto-regulation may help to increase the input dynamic-range while maintaining the specificity of cooperative regulatory systems. This function may contribute to explaining the common occurrence of negative auto-regulation in biological systems. PMID

  5. Dynamic range compression/expansion of light beams by photorefractive crystals

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen (Inventor); Liu, Hua-Kuang (Inventor)

    1988-01-01

    An apparatus is provided which greatly reduces the intensity of bright portions of an image while only moderately reducing the brightness of dimmer portions of the image, to thereby compress the range of light intensities to facilitate detection of the image. The apparatus includes a light detector device formed by a chip of photorefractive material. A 2-D array of light beams from an object to be detected passes through a beam splitter to form two arrays of light beams. The two arrays are directed at different angles against a surface of the chip of photorefractive material, the two arrays of light beams forming coincident images on the surface. One of the 2-D arrays of beams emerging from an opposite surface of the chip has a lower range of intensities, to facilitate detection of the object despite very bright spots in its image. The other array of light beams emerging from the chip has a greater range of intensities than the unprocessed image of the object.

  6. Determining Occurrence Dynamics when False Positives Occur: Estimating the Range Dynamics of Wolves from Public Survey Data.

    PubMed

    Miller, David A W; Nichols, James D; Gude, Justin A; Rich, Lindsey N; Podruzny, Kevin M; Hines, James E; Mitchell, Michael S

    2013-01-01

    Large-scale presence-absence monitoring programs have great promise for many conservation applications. Their value can be limited by potential incorrect inferences owing to observational errors, especially when data are collected by the public. To combat this, previous analytical methods have focused on addressing non-detection from public survey data. Misclassification errors have received less attention but are also likely to be a common component of public surveys, as well as many other data types. We derive estimators for dynamic occupancy parameters (extinction and colonization), focusing on the case where certainty can be assumed for a subset of detections. We demonstrate how to simultaneously account for non-detection (false negatives) and misclassification (false positives) when estimating occurrence parameters for gray wolves in northern Montana from 2007-2010. Our primary data source for the analysis was observations by deer and elk hunters, reported as part of the state's annual hunter survey. This data was supplemented with data from known locations of radio-collared wolves. We found that occupancy was relatively stable during the years of the study and wolves were largely restricted to the highest quality habitats in the study area. Transitions in the occupancy status of sites were rare, as occupied sites almost always remained occupied and unoccupied sites remained unoccupied. Failing to account for false positives led to over estimation of both the area inhabited by wolves and the frequency of turnover. The ability to properly account for both false negatives and false positives is an important step to improve inferences for conservation from large-scale public surveys. The approach we propose will improve our understanding of the status of wolf populations and is relevant to many other data types where false positives are a component of observations.

  7. Determining Occurrence Dynamics when False Positives Occur: Estimating the Range Dynamics of Wolves from Public Survey Data

    PubMed Central

    Miller, David A. W.; Nichols, James D.; Gude, Justin A.; Rich, Lindsey N.; Podruzny, Kevin M.; Hines, James E.; Mitchell, Michael S.

    2013-01-01

    Large-scale presence-absence monitoring programs have great promise for many conservation applications. Their value can be limited by potential incorrect inferences owing to observational errors, especially when data are collected by the public. To combat this, previous analytical methods have focused on addressing non-detection from public survey data. Misclassification errors have received less attention but are also likely to be a common component of public surveys, as well as many other data types. We derive estimators for dynamic occupancy parameters (extinction and colonization), focusing on the case where certainty can be assumed for a subset of detections. We demonstrate how to simultaneously account for non-detection (false negatives) and misclassification (false positives) when estimating occurrence parameters for gray wolves in northern Montana from 2007–2010. Our primary data source for the analysis was observations by deer and elk hunters, reported as part of the state’s annual hunter survey. This data was supplemented with data from known locations of radio-collared wolves. We found that occupancy was relatively stable during the years of the study and wolves were largely restricted to the highest quality habitats in the study area. Transitions in the occupancy status of sites were rare, as occupied sites almost always remained occupied and unoccupied sites remained unoccupied. Failing to account for false positives led to over estimation of both the area inhabited by wolves and the frequency of turnover. The ability to properly account for both false negatives and false positives is an important step to improve inferences for conservation from large-scale public surveys. The approach we propose will improve our understanding of the status of wolf populations and is relevant to many other data types where false positives are a component of observations. PMID:23840372

  8. Collective Flocking Dynamics: Long Rang Order in a Non-Equilibrium 2D XY Model

    NASA Astrophysics Data System (ADS)

    Tu, Yuhai

    1996-03-01

    We propose and study a non-equilibrium continuum dynamical model for the collective motion of large groups of biological organisms (e.g., flocks of birds, slime molds, schools of fishs, etc.) (J. Toner and Y. Tu, Phys. Rev. Lett.), 75(23), 4326(1995) Our model becomes highly non-trivial, and different from the equilibrium model, for d

  9. Development and testing of a fast Fourier transform high dynamic-range spectral diagnostics for millimeter wave characterization

    SciTech Connect

    Thoen, D. J.; Bongers, W. A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Beveren, V. van; Goede, A. P. H.; Graswinckel, M. F.; Schueller, F. C.; Oosterbeek, J. W.; Buerger, A.; Hennen, B. A.

    2009-10-15

    A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digital converter and a compact peripheral component interconnect computer. Frequency spectra are obtained by FFT in the time domain of the intermediate frequency signal. The scattered millimeter waves are generated during high power electron cyclotron resonance heating experiments on the TEXTOR tokamak and demonstrate the performance of the diagnostics and, in particular, the usability of direct digitizing and Fourier transformation of millimeter wave signals. The diagnostics is able to acquire 4 GHz wide spectra of signals in the range of 136-140 GHz. The rate of spectra is tunable and has been tested between 200 000 spectra/s with a frequency resolution of 100 MHz and 120 spectra/s with a frequency resolution of 25 kHz. The respective dynamic ranges are 52 and 88 dB. Major benefits of the new diagnostics are a tunable time and frequency resolution due to postdetection, near-real time processing of the acquired data. This diagnostics has a wider application in astrophysics, earth observation, plasma physics, and molecular spectroscopy for the detection and analysis of millimeter wave radiation, providing high-resolution spectra at high temporal resolution and large dynamic range.

  10. Theoretical study of the spurious-free dynamic range of a tunable delay line based on slow light in SOA.

    PubMed

    Berger, Perrine; Bourderionnet, Jérôme; Alouini, Mehdi; Bretenaker, Fabien; Dolfi, Daniel

    2009-10-26

    We developed a predictive model describing harmonic generation and intermodulation distortions in semiconductor optical amplifiers (SOAs). This model takes into account the variations of the saturation parameters along the propagation axis inside the SOA, and uses a rigorous expression of the gain oscillations harmonics. We derived the spurious-free dynamic range (SFDR) of a slow light delay line based on coherent population oscillation (CPO) effects, in a frequency range covering radar applications (from 40 kHz up to 30 GHz), and for a large range of injected currents. The influence of the high order distortions in the input microwave spectrum is discussed, and in particular, an interpretation of the SFDR improvement of a Mach-Zehnder modulator by CPOs effects in a SOA is given.

  11. High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)

    2000-01-01

    A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.

  12. Communication Range Dynamics and Performance Analysis for a Self-Adaptive Transmission Power Controller.

    PubMed

    Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; Del Toro Matamoros, Raúl M

    2016-05-12

    The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value.

  13. Hierarchical structures induce long-range dynamical correlations in written texts.

    PubMed

    Alvarez-Lacalle, E; Dorow, B; Eckmann, J-P; Moses, E

    2006-05-23

    Thoughts and ideas are multidimensional and often concurrent, yet they can be expressed surprisingly well sequentially by the translation into language. This reduction of dimensions occurs naturally but requires memory and necessitates the existence of correlations, e.g., in written text. However, correlations in word appearance decay quickly, while previous observations of long-range correlations using random walk approaches yield little insight on memory or on semantic context. Instead, we study combinations of words that a reader is exposed to within a "window of attention," spanning about 100 words. We define a vector space of such word combinations by looking at words that co-occur within the window of attention, and analyze its structure. Singular value decomposition of the co-occurrence matrix identifies a basis whose vectors correspond to specific topics, or "concepts" that are relevant to the text. As the reader follows a text, the "vector of attention" traces out a trajectory of directions in this "concept space." We find that memory of the direction is retained over long times, forming power-law correlations. The appearance of power laws hints at the existence of an underlying hierarchical network. Indeed, imposing a hierarchy similar to that defined by volumes, chapters, paragraphs, etc. succeeds in creating correlations in a surrogate random text that are identical to those of the original text. We conclude that hierarchical structures in text serve to create long-range correlations, and use the reader's memory in reenacting some of the multidimensionality of the thoughts being expressed.

  14. Communication Range Dynamics and Performance Analysis for a Self-Adaptive Transmission Power Controller †

    PubMed Central

    Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; del Toro Matamoros, Raúl M.

    2016-01-01

    The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value. PMID:27187397

  15. A Methodology Of Map-Guided Autonomous Navigation With Range Sensor In Dynamic Environment

    NASA Astrophysics Data System (ADS)

    Meng, Alex C.; Wand, Marty; Hwang, Vincent S.

    1989-03-01

    This paper describes the work for a map-guided robot (AGV) maneuvering in dynamic factory floor environment. The robot is equipped with a narrow-beam sonar to detect obstacles. In factory applications, the location and orientation of the robot will be determined by external sensors. A path from start to target location will be digitized into a sequence of waypoints and the robot navigates locally by dead-reckoning between two adjacent waypoints. Autonomous navigation, in this setup, is viewed in terms of three components: automatic path plannihg for the given floor layout, the start and target locations of the robot, automatic path replanning after detecting obstacles, and local navigation which should always lead the robot out of a trap (cul-de-sac) if one occurs. For any given floor layout, we model the passage ways between obstacles (processing machines) as a connected graph knowns as the Voronoi graph. From the robot's point of view, the graph is the map to plan paths and navigate. Path planning is based on the retraction method. After detecting an obstacle, path replanning will be invoked. Algorithms for path planning, path replanning, and local navigation are given.

  16. Long-Range Vibrational Dynamics Are Directed by Watson-Crick Base Pairing in Duplex DNA.

    PubMed

    Hithell, Gordon; Shaw, Daniel J; Donaldson, Paul M; Greetham, Gregory M; Towrie, Michael; Burley, Glenn A; Parker, Anthony W; Hunt, Neil T

    2016-05-05

    Ultrafast two-dimensional infrared (2D-IR) spectroscopy of a 15-mer A-T DNA duplex in solution has revealed structure-dependent vibrational coupling and energy transfer processes linking bases with the sugar-phosphate backbone. Duplex melting induces significant changes in the positions of off-diagonal peaks linking carbonyl and ring-stretching vibrational modes of the adenine and thymine bases with vibrations of the phosphate group and phosphodiester linkage. These indicate that Watson-Crick hydrogen bonding and helix formation lead to a unique vibrational coupling arrangement of base vibrational modes with those of the phosphate unit. On the basis of observations from time-resolved 2D-IR data, we conclude that rapid energy transfer processes occur between base and backbone, mediated by additional modes located on the deoxyribose moiety within the same nucleotide. These relaxation dynamics are insensitive to duplex melting, showing that efficient intramolecular energy relaxation to the solvent via the phosphate groups is the key to excess energy dissipation in both single- and double-stranded DNA.

  17. Femtosecond dynamics of short-range protein electron transfer in flavodoxin.

    PubMed

    He, Ting-Fang; Guo, Lijun; Guo, Xunmin; Chang, Chih-Wei; Wang, Lijuan; Zhong, Dongping

    2013-12-23

    Intraprotein electron transfer (ET) in flavoproteins is important for understanding the correlation of their redox, configuration, and reactivity at the active site. Here, we used oxidized flavodoxin as a model system and report our complete characterization of a photoinduced redox cycle from the initial charge separation in 135-340 fs to subsequent charge recombination in 0.95-1.6 ps and to the final cooling relaxation of the product(s) in 2.5-4.3 ps. With 11 mutations at the active site, we observed that these ultrafast ET dynamics, much faster than active-site relaxation, mainly depend on the reduction potentials of the electron donors with minor changes caused by mutations, reflecting a highly localized ET reaction between the stacked donor and acceptor at a van der Waals distance and leading to a gas-phase type of bimolecular ET reaction confined in the active-site nanospace. Significantly, these ultrafast ET reactions ensure our direct observation of vibrationally excited reaction product(s), suggesting that the back ET barrier is effectively reduced because of the decrease in the total free energy in the Marcus inverted region, leading to the accelerated charge recombination. Such vibrationally coupled charge recombination should be a general feature of flavoproteins with similar configurations and interactions between the cofactor flavin and neighboring aromatic residues.

  18. Black holes as random particles: entanglement dynamics in infinite range and matrix models

    NASA Astrophysics Data System (ADS)

    Magán, Javier M.

    2016-08-01

    We first propose and study a quantum toy model of black hole dynamics. The model is unitary, displays quantum thermalization, and the Hamiltonian couples every oscillator with every other, a feature intended to emulate the color sector physics of large- {N} matrix models. Considering out of equilibrium initial states, we analytically compute the time evolution of every correlator of the theory and of the entanglement entropies, allowing a proper discussion of global thermalization/scrambling of information through the entire system. Microscopic non-locality causes factorization of reduced density matrices, and entanglement just depends on the time evolution of occupation densities. In the second part of the article, we show how the gained intuition extends to large- {N} matrix models, where we provide a gauge invariant entanglement entropy for `generalized free fields', again depending solely on the quasinormal frequencies. The results challenge the fast scrambling conjecture and point to a natural scenario for the emergence of the so-called brick wall or stretched horizon. Finally, peculiarities of these models in regards to the thermodynamic limit and the information paradox are highlighted.

  19. Resetting the dynamic range of hypothalamic-pituitary-adrenal axis stress responses through pregnancy.

    PubMed

    Brunton, P J

    2010-11-01

    The hypothalamic-pituitary-adrenal (HPA) axis plays a key role in the neuroendocrine response to stress. Dynamic changes in HPA axis regulation and hence HPA responsivity occur over the lifetime of an animal. This article focuses on two extremes of the spectrum. The first occurs naturally during pregnancy when stress responses are dampened. The second, at the opposite end of the scale, occurs in offspring of mothers who were exposed to stress during pregnancy and display exaggerated HPA axis stress responses. Reduced glucocorticoid output in response to stress in pregnancy may have important consequences for conserving energy supply to the foetus(es), in modulating immune system adaptations and in protecting against adverse foetal programming by glucocorticoids. Understanding the mechanisms underpinning this adaptation in pregnancy may provide insights for manipulating HPA axis responsiveness in later life, particularly in the context of resetting HPA axis hyperactivity associated with prenatal stress exposure, which may underlie several major pathologies, including cardiovascular disease, diabetes mellitus type 2, obesity, cognitive decline and mood disorders.

  20. Allosteric Nanobodies Reveal the Dynamic Range and Diverse Mechanisms of GPCR Activation

    PubMed Central

    Staus, Dean P; Strachan, Ryan T; Manglik, Aashish; Pani, Biswaranjan; Kahsai, Alem W; Kim, Tae Hun; Wingler, Laura M; Ahn, Seungkirl; Chatterjee, Arnab; Masoudi, Ali; Kruse, Andrew C; Pardon, Els; Steyaert, Jan; Weis, William I; Prosser, R. Scott; Kobilka, Brian K; Costa, Tommaso; Lefkowitz, Robert J

    2016-01-01

    G-protein coupled receptors (GPCRs) modulate many physiological processes by transducing a variety of extracellular cues into intracellular responses. Ligand binding to an extracellular orthosteric pocket propagates conformational change to the receptor cytosolic region to promote binding and activation of downstream signaling effectors such as G proteins and β-arrestins. It is widely appreciated that different agonists can share the same binding pocket but evoke unique receptor conformations leading to a wide range of downstream responses (i.e., ‘efficacy’)1. Furthermore, mounting biophysical evidence, primarily using the β-adrenergic receptor (β2AR) as a model system, supports the existence of multiple active and inactive conformational states2–5. However, how agonists with varying efficacy modulate these receptor states to initiate cellular responses is not well understood. Here we report stabilization of two distinct β2AR conformations using single domain camelid antibodies (nanobodies): a previously described positive allosteric nanobody (Nb80) and a newly identified negative allosteric nanobody (Nb60)6,7. We show that Nb60 stabilizes a previously unappreciated low affinity receptor state which corresponds to one of two inactive receptor conformations as delineated by X-ray crystallography and NMR spectroscopy. We find that the agonist isoproterenol has a 15,000-fold higher affinity for the β2AR in the presence of Nb80 compared to Nb60, highlighting the full allosteric range of a GPCR. Assessing the binding of 17 ligands of varying efficacy to the β2AR in the absence and presence of Nb60 or Nb80 reveals large ligand-specific effects that can only be explained using an allosteric model which assumes equilibrium amongst at least three receptor states. Agonists generally exert efficacy by stabilizing the active Nb80-stabilized receptor state (R80). In contrast, for a number of partial agonists, both stabilization of R80 and destabilization of the

  1. Dynamics of chromatin accessibility and long-range interactions in response to glucocorticoid pulsing.

    PubMed

    Stavreva, Diana A; Coulon, Antoine; Baek, Songjoon; Sung, Myong-Hee; John, Sam; Stixova, Lenka; Tesikova, Martina; Hakim, Ofir; Miranda, Tina; Hawkins, Mary; Stamatoyannopoulos, John A; Chow, Carson C; Hager, Gordon L

    2015-06-01

    Although physiological steroid levels are often pulsatile (ultradian), the genomic effects of this pulsatility are poorly understood. By utilizing glucocorticoid receptor (GR) signaling as a model system, we uncovered striking spatiotemporal relationships between receptor loading, lifetimes of the DNase I hypersensitivity sites (DHSs), long-range interactions, and gene regulation. We found that hormone-induced DHSs were enriched within ± 50 kb of GR-responsive genes and displayed a broad spectrum of lifetimes upon hormone withdrawal. These lifetimes dictate the strength of the DHS interactions with gene targets and contribute to gene regulation from a distance. Our results demonstrate that pulsatile and constant hormone stimulations induce unique, treatment-specific patterns of gene and regulatory element activation. These modes of activation have implications for corticosteroid function in vivo and for steroid therapies in various clinical settings.

  2. Hierarchical structures induce long-range dynamical correlations in written texts

    PubMed Central

    Alvarez-Lacalle, E.; Dorow, B.; Eckmann, J.-P.; Moses, E.

    2006-01-01

    Thoughts and ideas are multidimensional and often concurrent, yet they can be expressed surprisingly well sequentially by the translation into language. This reduction of dimensions occurs naturally but requires memory and necessitates the existence of correlations, e.g., in written text. However, correlations in word appearance decay quickly, while previous observations of long-range correlations using random walk approaches yield little insight on memory or on semantic context. Instead, we study combinations of words that a reader is exposed to within a “window of attention,” spanning about 100 words. We define a vector space of such word combinations by looking at words that co-occur within the window of attention, and analyze its structure. Singular value decomposition of the co-occurrence matrix identifies a basis whose vectors correspond to specific topics, or “concepts” that are relevant to the text. As the reader follows a text, the “vector of attention” traces out a trajectory of directions in this “concept space.” We find that memory of the direction is retained over long times, forming power-law correlations. The appearance of power laws hints at the existence of an underlying hierarchical network. Indeed, imposing a hierarchy similar to that defined by volumes, chapters, paragraphs, etc. succeeds in creating correlations in a surrogate random text that are identical to those of the original text. We conclude that hierarchical structures in text serve to create long-range correlations, and use the reader’s memory in reenacting some of the multidimensionality of the thoughts being expressed. PMID:16698933

  3. Disturbance and climatic effects on red spruce community dynamics at its southern continuous range margin

    PubMed Central

    2014-01-01

    Red spruce (Picea rubens) populations experienced a synchronous rangewide decline in growth and vigor starting in the 1960s, likely caused by climate change and a combination of environmental disturbances. However, it is not yet known if populations continue to decline or have recovered. Red spruce growing near its southern range margin in Massachusetts is a species of concern, in light of the vulnerability to climate change. This study uses population data from 17 permanent plots coupled with tree-ring data to examine radial growth rates, determine the growth-climate relationship, and document disturbance events. Red spruce at these plots ranged from 90 to 184 years old, and comprised 15 to 29 m2/ha basal area. Red spruce seedlings and saplings were common at plots with previously high overstory spruce abundance, indicating it could return to a more dominant position under favorable growing conditions. However, permanent plot measures over a 50 year time span did not indicate any consistent trends for changes in basal area or density for red spruce or other woody species. Climate data show that mean annual minimum, maximum, and summer temperatures have increased over the last 100 years. Dendroclimatological analyses indicated that red spruce growth was sensitive to both temperature and precipitation. Prior to the 1960s, spruce at these sites showed a positive response to precipitation; however after a multi-year drought in the 1960s showed an increasingly negative correlation with precipitation. There has been a negative growth response to regional warming, as spruce radial growth was mostly constrained by increasing temperatures, potentially coupled with the associated increasing drought-dress. I suggest the change in climate response is potentially due to a physiological threshold response to increasing temperatures, which may cause spruce to continue to decline or be lost from the lower elevation sites, while the high elevation sites has a persistent spruce

  4. Electro-optic testbed utilizing a dynamic range gated Rayleigh beacon for atmospheric turbulence profiling

    NASA Astrophysics Data System (ADS)

    Zuraski, Steven M.; Fiorino, Steven T.; Beecher, Elizabeth A.; Figlewski, Nathan M.; Schmidt, Jason D.; McCrae, Jack E.

    2016-10-01

    The Photometry Analysis and Optical Tracking and Evaluation System (PANOPTES) Quad Axis Telescope is a unique four axis mount Ritchey-Chretien 24 inch telescope capable of tracking objects through the zenith without axes rotation delay (no Dead Zone). This paper describes enhancement components added to the quad axis mount telescope that will enable measurements supporting novel research and field testing focused on `three-dimensional' characterization of turbulent atmospheres, mitigation techniques, and new sensing modalities. These all support research and operational techniques relating to astronomical imaging and electro-optical propagation though the atmosphere, relative to sub-meter class telescopes in humid, continental environments. This effort will use custom designed and commercial off the shelf hardware; sub-system components discussed will include a wavefront sensor system, a co-aligned beam launch system, and a fiber coupled research laser. The wavefront sensing system has the ability to take measurements from a dynamic altitude adjustable laser beacon scattering spot, a key concept that enables rapid turbulence structure parameter measurements over an altitude varied integrated atmospheric volume. The sub-components are integrated with the overall goal of measuring a height-resolved volumetric profile for the atmospheric turbulence structure parameter at the site, and developing mobile techniques for such measurements. The design concept, part selection optimization, baseline component lab testing, and initial field measurements, will be discussed in the main sections of this paper. This project is a collaborative effort between the Air Force Research Labs Sensors Directorate and the Air Force Institute of Technology Center for Directed Energy.

  5. Effect of total and pair configurational entropy in determining dynamics of supercooled liquids over a range of densities

    NASA Astrophysics Data System (ADS)

    Banerjee, Atreyee; Nandi, Manoj Kumar; Sastry, Srikanth; Bhattacharyya, Sarika Maitra

    2016-07-01

    In this paper, we present a study of supercooled liquids interacting with the Lennard Jones potential and the corresponding purely repulsive (Weeks-Chandler-Andersen) potential, over a range of densities and temperatures, in order to understand the origin of their different dynamics in spite of their structures being similar. Using the configurational entropy as the thermodynamic marker via the Adam Gibbs relation, we show that the difference in the dynamics of these two systems at low temperatures can be explained from thermodynamics. At higher densities both the thermodynamical and dynamical difference between these model systems decrease, which is quantitatively demonstrated in this paper by calculating different parameters. The study also reveals the origin of the difference in pair entropy despite the similarity in the structure. Although the maximum difference in structure is obtained in the partial radial distribution function of the B type of particles, the rdf of AA pairs and AB pairs gives rise to the differences in the entropy and dynamics. This work supports the observation made in an earlier study [A. Banerjee et al., Phys. Rev. Lett. 113, 225701 (2014)] and shows that they are generic in nature, independent of density.

  6. Dynamic registration of the absorption spectrum of water in the SiO(2) nanopores in high-frequency range.

    PubMed

    Sinitsa, L N; Lugovskoy, A A

    2010-11-28

    The high-frequency region was used to record the absorption spectrum of water in nanoscale pores during vacuum pumping or injection of water. The wide spectral range, which included the vibration overtones, allowed to resolve the structure of the absorption bands with variation of water concentration in the pores of SiO(2). The absorption bands of water clusters in the 4570-5400 cm(-1) range consist of well-resolved sub-bands with interpeak intervals of up to 580 cm(-1). When the pore diameter is decreased from 11.8 to 2.6 nm, the absorption bands of clusters in this frequency range are shifted by 530 cm(-1) in the direction of the water monomer which indicates an increase of hydrogen bond strength in confined water with an increase of the pore diameter. The spectrum recorded during water pumping is extremely variable in time, and the cluster dynamics in large pores (11.8 nm) differs greatly from the dynamics in small pores (2.6 nm). While all types of water clusters are removed from small pores uniformly, in the case of large pores, the water clusters relating to strong hydrogen bonds are removed from the sample at the beginning of the vacuum pumping and the loosely coupled clusters are removed later. The rate of this process is not steady and varies throughout pumping.

  7. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV

    NASA Astrophysics Data System (ADS)

    Sjue, S. K. L.; Mariam, F. G.; Merrill, F. E.; Morris, C. L.; Saunders, A.

    2016-01-01

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Comparison with a series of static calibration images demonstrates the model's accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.

  8. High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV

    SciTech Connect

    Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; Mariam, Fesseha Gebre; Saunders, Alexander

    2016-01-14

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.

  9. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV

    SciTech Connect

    Sjue, S. K. L. Mariam, F. G.; Merrill, F. E.; Morris, C. L.; Saunders, A.

    2016-01-15

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Comparison with a series of static calibration images demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.

  10. High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV

    DOE PAGES

    Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; ...

    2016-01-14

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane.more » Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less

  11. Streaking Artifact Reduction for Quantitative Susceptibility Mapping of Sources with Large Dynamic Range

    PubMed Central

    Wei, Hongjiang; Dibb, Russell; Zhou, Yan; Sun, Yawen; Xu, Jianrong; Wang, Nian; Liu, Chunlei

    2015-01-01

    Quantitative susceptibility mapping (QSM) is a novel MRI technique for measuring tissue magnetic susceptibility in 3D. While there are numerous algorithms developed to solve this ill-posed inverse problem, estimating susceptibility maps with a wide range of values is still problematic. In cases such as large veins, contrast agent uptake, and intracranial hemorrhages, extreme susceptibility values in focal areas cause severe streaking artifacts. To enable the reduction of these artifacts while preserving subtle susceptibility contrast, a two-level QSM reconstruction algorithm (STAR-QSM) was developed in this study by tuning a regularization parameter to automatically reconstruct both large and small susceptibility values. Compared to current state-of-the-art QSM methods such as iLSQR, STAR-QSM significantly reduced streaking artifacts while preserving sharp boundaries for blood vessels of mouse brains in vivo and fine anatomical details of high resolution mouse brains ex vivo. Brain image data from patients with cerebral hematoma and multiple sclerosis further illustrated the superiority of this method in reducing streaking artifacts caused by large susceptibility sources while maintaining sharp anatomical details. STAR-QSM is implemented in STI Suite, a comprehensive shareware for susceptibility imaging and quantification. PMID:26313885

  12. Range dynamics, rather than convergent selection, explain the mosaic distribution of red-winged blackbird phenotypes

    PubMed Central

    Dufort, Matthew J; Keith Barker, F

    2013-01-01

    Geographic distributions of genetic and phenotypic characters can illuminate historical evolutionary processes. In particular, mosaic distributions of phenotypically similar populations can arise from parallel evolution or from irregular patterns of dispersal and colonization by divergent forms. Two phenotypically divergent forms of the red-winged blackbird (Agelaius phoeniceus) show a mosaic phenotypic distribution, with a “bicolored” form occurring disjunctly in California and Mexico. We analyzed the relationships among these bicolored populations and neighboring typical populations, using ∼600 bp of mitochondrial DNA sequence data and 10 nuclear short tandem repeat loci. We find that bicolored populations, although separated by ∼3000 km, are genetically more similar to one other than they are to typical populations separated by ∼400 km. We also find evidence of ongoing gene flow among populations, including some evidence of asymmetric gene flow. We conclude that the current distribution of bicolored forms represents incomplete speciation, where recent asymmetric hybridization with typical A. phoeniceus is dividing the range of a formerly widespread bicolored form. This hypothesis predicts that bicolored forms may suffer extinction by hybridization. Future work will use fine-scaled geographical sampling and nuclear sequence data to test for hybrid origins of currently typical populations and to more precisely quantify the directionality of gene flow. PMID:24455125

  13. Biogeography of boreal passerine range dynamics in western North America: past, present, and future

    USGS Publications Warehouse

    Stralberg, Diana; Matsuoka, Steven; Handel, Colleen M.; Schmiegelow, Fiona K.A.; Hamann, Andreas; Bayne, Erin M.

    2016-01-01

    Many of the Neotropical migrant bird species that breed throughout the Canadian boreal region are not found in the Alaskan boreal region, separated by the northwestern cordilleran mountains, despite the presence of climatically suitable habitat. We asked whether biological or climatic factors constrain certain species from crossing this geographic barrier. Analyzing a comprehensive dataset for 80 boreal passerine species, we used phylogenetic logistic regression to evaluate the relative importance of physical, migratory and competition metrics versus current and paleoclimatic suitability factors. Controlling for current climatic suitability within boreal Alaska, we found that species with the greatest climatic suitability across the northwestern cordillera, presently and also during the mid-Holocene period, were most likely to be regular breeders in the Alaskan boreal region. Migratory strategy also played a role, but could not be disentangled from its strong phylogenetic basis. Our analysis suggests that the perceived barrier of the northwestern cordillera may be easily weakened as climate change improves conditions there for many forest species. The weakening of this barrier may lead to relatively rapid range expansions and the reshuffling of species communities. Species’ realized distributional shifts will be a function of the interplay between a changing climate and static topographic features.

  14. Theta Band Zero-Lag Long-Range Cortical Synchronization via Hippocampal Dynamical Relaying

    PubMed Central

    Gollo, Leonardo L.; Mirasso, Claudio R.; Atienza, Mercedes; Crespo-Garcia, Maite; Cantero, Jose L.

    2011-01-01

    Growing evidence suggests that synchronization among distributed neuronal networks underlie functional integration in the brain. Neural synchronization is typically revealed by a consistent phase delay between neural responses generated in two separated sources. But the influence of a third neuronal assembly in that synchrony pattern remains largely unexplored. We investigate here the potential role of the hippocampus in determining cortico-cortical theta synchronization in different behavioral states during motor quiescent and while animals actively explore the environment. To achieve this goal, the two states were modeled with a recurrent network involving the hippocampus, as a relay element, and two distant neocortical sites. We found that cortico-cortical neural coupling accompanied higher hippocampal theta oscillations in both behavioral states, although the highest level of synchronization between cortical regions emerged during motor exploration. Local field potentials recorded from the same brain regions qualitatively confirm these findings in the two behavioral states. These results suggest that zero-lag long-range cortico-cortical synchronization is likely mediated by hippocampal theta oscillations in lower mammals as a function of cognitive demands and motor acts. PMID:21408082

  15. Coarsening and clustering in run-and-tumble dynamics with short-range exclusion

    NASA Astrophysics Data System (ADS)

    Sepúlveda, Néstor; Soto, Rodrigo

    2016-08-01

    The emergence of clustering and coarsening in crowded ensembles of self-propelled agents is studied using a lattice model in one dimension. The persistent exclusion process, where particles move at directions that change randomly at a low tumble rate α , is extended allowing sites to be occupied by more than one particle, with a maximum nmax per site. Three phases are distinguished. For nmax=1 a gas of clusters form, with sizes distributed exponentially and no coarsening takes place. For nmax≥3 and small values of α , coarsening takes place and few large clusters appear, with a large fraction of the total number of particles in them. In the same range of nmax but for larger values of α , a gas phase where a negligible fraction of particles takes part of clusters. Finally, nmax=2 corresponds to a crossover phase. The character of the transitions between phases is studied extending the model to allow nmax to take real values and jumps to an occupied site are probabilistic. The transition from the gas of clusters to the coarsening phase is continuous and the mass of the large clusters grows continuously when varying the maximum occupancy, and the crossover found corresponds to values close to the transition. The second transition, from the coarsening to the gaseous phase, can be either continuous or discontinuous depending on the parameters, with a critical point separating both cases.

  16. X-ray Dust Halos Seen With Extreme Dynamic Range: What Do We Learn?

    NASA Astrophysics Data System (ADS)

    Smith, Randall

    2008-03-01

    The exquisite angular resolution available with Chandra should allow precision measurements of faint diffuse emission surrounding bright sources, such as the X-ray scattering halos created by interstellar dust. However, the ACIS CCDs suffer from pileup when observing bright sources, and this creates difficulties when trying to extract the scattered halo near the source. The initial study of the X-ray halo around GX13+1 using only the ACIS-I detector done by Smith, Edgar & Shafer (2002) suffered from a lack of sensitivity within 50'' of the source, limiting what conclusions could be drawn. To address this problem, observations of GX13+1 were obtained with the Chandra HRC-I and simultaneously with the RXTE PCA. Combined with the existing ACIS-I data, this allowed measurements of the X-ray halo between 2-1000''. After considering a range of dust models, each assumed to be smoothly distributed with or without a dense cloud along the line of sight, the results show that there is no evidence in this data for a dense cloud near the source, as suggested by Xiang et al. 2005. Finally, although no model leads to formally acceptable results, the Weingartner & Draine (2001) and nearly all of the composite grain models from Zubko, Dwek & Arendt (2004) give poor fits. I thank Dr. Michael Juda of the HRC-I team for providing significant assistance; this work was supported by Chandra Observing Grant GO56144X.

  17. Coarsening and clustering in run-and-tumble dynamics with short-range exclusion.

    PubMed

    Sepúlveda, Néstor; Soto, Rodrigo

    2016-08-01

    The emergence of clustering and coarsening in crowded ensembles of self-propelled agents is studied using a lattice model in one dimension. The persistent exclusion process, where particles move at directions that change randomly at a low tumble rate α, is extended allowing sites to be occupied by more than one particle, with a maximum n_{max} per site. Three phases are distinguished. For n_{max}=1 a gas of clusters form, with sizes distributed exponentially and no coarsening takes place. For n_{max}≥3 and small values of α, coarsening takes place and few large clusters appear, with a large fraction of the total number of particles in them. In the same range of n_{max} but for larger values of α, a gas phase where a negligible fraction of particles takes part of clusters. Finally, n_{max}=2 corresponds to a crossover phase. The character of the transitions between phases is studied extending the model to allow n_{max} to take real values and jumps to an occupied site are probabilistic. The transition from the gas of clusters to the coarsening phase is continuous and the mass of the large clusters grows continuously when varying the maximum occupancy, and the crossover found corresponds to values close to the transition. The second transition, from the coarsening to the gaseous phase, can be either continuous or discontinuous depending on the parameters, with a critical point separating both cases.

  18. Genetically-encoded yellow fluorescent cAMP indicator with an expanded dynamic range for dual-color imaging.

    PubMed

    Odaka, Haruki; Arai, Satoshi; Inoue, Takafumi; Kitaguchi, Tetsuya

    2014-01-01

    Cyclic AMP is a ubiquitous second messenger, which mediates many cellular responses mainly initiated by activation of cell surface receptors. Various Förster resonance energy transfer-based ratiometric cAMP indicators have been created for monitoring the spatial and temporal dynamics of cAMP at the single-cell level. However, single fluorescent protein-based cAMP indicators have been poorly developed, with improvement required for dynamic range and brightness. Based on our previous yellow fluorescent protein-based cAMP indicator, Flamindo, we developed an improved yellow fluorescent cAMP indicator named Flamindo2. Flamindo2 has a 2-fold expanded dynamic range and 8-fold increased brightness compared with Flamindo by optimization of linker peptides in the vicinity of the chromophore. We found that fluorescence intensity of Flamindo2 was decreased to 25% in response to cAMP. Live-cell cAMP imaging of the cytosol and nucleus in COS7 cells using Flamindo2 and nlsFlamindo2, respectively, showed that forskolin elevated cAMP levels in each compartment with different kinetics. Furthermore, dual-color imaging of cAMP and Ca2+ with Flamindo2 and a red fluorescent Ca2+ indicator, R-GECO, showed that cAMP and Ca2+ elevation were induced by noradrenaline in single HeLa cells. Our study shows that Flamindo2, which is feasible for multi-color imaging with other intracellular signaling molecules, is useful and is an alternative tool for live-cell imaging of intracellular cAMP dynamics.

  19. Diagnosing the possible dynamics controlling Sahel precipitation in the short-range ensemble community atmospheric model hindcasts

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-heng; Lin, Yen-heng; Lo, Min-hui; Yang, Shu-chih

    2016-11-01

    The actual dynamics and physical mechanisms affecting the Sahel precipitation pattern and amplitude in the climate models remain under debate due to the inconsistent drying and rainfall variability/pattern among them. We diagnose the boreal summer rainfall pattern in the Sahel and its possible causes using short-range ensemble hindcasts based on NCAR community atmospheric model with the local ensemble transform Kalman filter (CAM-LETKF) data assimilation. The CAM-LETKF assimilation was conducted using 64 ensemble members with an assimilation cycle of 6-h. By comparing the superior and inferior groups within these 64 ensembles, we confirmed the influence of the Atlantic in the West Sahel rainfall (a robust feature in the ensembles) and a severe model bias resulting from erroneously modeled locations and magnitudes of low-level Sahara heat low (SHL) and African easterly jet (AEJ). This bias is highly related to atmospheric jet dynamics as shown in recent studies and local wave instability triggered mainly by the boundary-layer temperature gradient and amplified by land-atmosphere interactions. In particular, our results demonstrated that more accurate divergence and convergence fields resulting from improved SHL and AEJ in the superior groups enabled more accurate rainbelt patterns to be discerned, thus improving the ensemble mean model hindcast prediction by more than 25 % in precipitation and 16 % in temperature. We concluded that the use of low-resolution climate models to project future rainfall in the Sahel requires caution because the model hindcasts may quickly diverge even the same boundary conditions and forcings are applied. The model bias may easily grow up within a few months in the short-range CAM-LETKF hindcast, let along the free model centennial simulations. Unconstrained future climate model projections for the Sahel must more effectively capture the short-term key boundary-layer dynamics in the boreal summer to be credible regardless model dynamics

  20. A 100 μm diameter capacitive pressure sensor with 50 MPa dynamic range

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Gianchandani, Yogesh B.

    2016-04-01

    This paper presents fully sealed absolute capacitive pressure sensors for high-pressure applications in hydraulic environments. The sensors have a ø100 μm diaphragm and a nominal interelectrode gap of 3 μm. The interiors of the cavities are electrically isolated, allowing the sensors to operate at the high end of the pressure range with the center of the diaphragm in contact with the substrate beneath it. The sensors are monolithically fabricated using a combination of surface micromachining and through-wafer isolated bulk-silicon lead transfer for backside contacts. This structure allows the device footprints to be reduced to about 150  ×  150 μm2, and simplifies system integration. Fabricated sensors with diaphragm thicknesses of 3 μm (C100t3) and 5 μm (C100t5) are tested in an oil environment at pressures up to 20 MPa and 50 MPa, respectively. The average sensitivities are 7200 ppm MPa-1 (3.1 fF MPa-1) for C100t3, and 3400 ppm MPa-1 (1.6 fF MPa-1) for C100t5 in the non-contact mode. In the contact mode, the average sensitivities are 9900 ppm MPa-1 (5.3 fF MPa-1) for C100t3, and 3100 ppm MPa-1 (1.6 fF MPa-1) for C100t5. A multiphysics finite element analysis approach that accommodates contact mode simulations is also presented.

  1. Oxygen Sensing Difluoroboron β-Diketonate Polylactide Materials with Tunable Dynamic Ranges for Wound Imaging.

    PubMed

    DeRosa, Christopher A; Seaman, Scott A; Mathew, Alexander S; Gorick, Catherine M; Fan, Ziyi; Demas, James N; Peirce, Shayn M; Fraser, Cassandra L

    2016-11-23

    Difluoroboron β-diketonate poly(lactic acid) materials exhibit both fluorescence (F) and oxygen sensitive room-temperature phosphorescence (RTP). Introduction of halide heavy atoms (Br and I) is an effective strategy to control the oxygen sensitivity in these materials. A series of naphthyl-phenyl (nbm) dye derivatives with hydrogen, bromide and iodide substituents were prepared for comparison. As nanoparticles, the hydrogen derivative was hypersensitive to oxygen (0-0.3%), while the bromide analogue was suited for hypoxia detection (0-3% O2). The iodo derivative, BF2nbm(I)PLA, showed excellent F to RTP peak separation and an 0-100% oxygen sensitivity range unprecedented for metal-free RTP emitting materials. Due to the dual emission and unconventionally long RTP lifetimes of these O2 sensing materials, a portable, cost-effective camera was used to quantify oxygen levels via lifetime and red/green/blue (RGB) ratiometry. The hypersensitive H dye was well matched to lifetime detection, simultaneous lifetime and ratiometric imaging was possible for the bromide analogue, whereas the iodide material, with intense RTP emission and a shorter lifetime, was suited for RGB ratiometry. To demonstrate the prospects of this camera/material design combination for bioimaging, iodide boron dye-PLA nanoparticles were applied to a murine wound model to detect oxygen levels. Surprisingly, wound oxygen imaging was achieved without covering (i.e. without isolating from ambient conditions, air). Additionally, would healing was monitored via wound size reduction and associated oxygen recovery, from hypoxic to normoxic. These single-component materials provide a simple tunable platform for biological oxygen sensing that can be deployed to spatially resolve oxygen in a variety of environments.

  2. Dynamics of erosion in a compressional mountain range revealed by 10Be paleoerosion rates

    NASA Astrophysics Data System (ADS)

    Val, P.; Hoke, G. D.; Fosdick, J. C.; Wittmann, H.

    2015-12-01

    The temporal evolution of erosion over million-year timescales is key to understanding the evolution of mountain ranges and adjacent fold-and-thrust belts. While models of orogenic wedge evolution predict an instantaneous response of erosion to pulses of rock uplift, stream-power based landscape evolution models predict catchment-wide erosion maxima that lag behind a rock uplift pulse. Here, we explore the relationships between rock uplift, erosion, and sediment deposition in the Argentine Precordillera fold-and-thrust belt at 30°S where extensive previous work documents deformation, climate and sediment accumulation histories. Sandstone samples spanning 8.8 to 1.8 Ma were collected from the previously dated wedge-top (Iglesia) and foredeep basins (Bermejo) for quartz purification and 10Be extraction. 10Be concentrations due to burial and exhumation were estimated and subtracted from the measured concentrations and yielded the inherited 10Be concentrations, which were then corrected for sample magnetostratigraphic age. The inherited concentrations were then used to calculate paleoerosion rates. We modeled various pre-burial and post-burial exposure scenarios in order to assess potential sources of uncertainty in the recovered paleoerosion rates. The modeling results reveal that pre-burial and post-burial exposure periods only marginally affect our results. By combining the 10Be-derived paleoerosion rates and geomorphic observations with detrital zircon provenance, we document the isolation of the wedge-top basin, which was later reconnected by an upstream migrating pulse of erosion in a process that was directly controlled by thrust activity and base level. The data further indicate that the attainment of maximum upland erosion rates lags maximum rates of deformation and subsidence over million-year timescales. The magnitudes and causes of the erosional delays shed new light on the catchment erosional response to tectonic deformation and rock uplift in orogenic

  3. Frozen debris lobe morphology and movement: an overview of eight dynamic features, southern Brooks Range, Alaska

    NASA Astrophysics Data System (ADS)

    Darrow, Margaret M.; Gyswyt, Nora L.; Simpson, Jocelyn M.; Daanen, Ronald P.; Hubbard, Trent D.

    2016-05-01

    Frozen debris lobes (FDLs) are elongated, lobate permafrost features that mostly move through shear in zones near their bases. We present a comprehensive overview of eight FDLs within the Dalton Highway corridor (southern Brooks Range, Alaska), including their catchment geology and rock strengths, lobe soil characteristics, surface movement measurements collected between 2012 and 2015, and analysis of historic and modern imagery from 1955 to 2014. Field mapping and rock strength data indicate that the metasedimentary and metavolcanic bedrock forming the majority of the lobe catchments has very low to medium strength and is heavily fractured, thus easily contributing to FDL formation. The eight investigated FDLs consist of platy rocks typical of their catchments, organic debris, and an ice-poor soil matrix; massive ice, however, is present within FDLs as infiltration ice, concentrated within cracks open to the surface. Exposure of infiltration ice in retrogressive thaw slumps (RTSs) and associated debris flows leads to increased movement and various stages of destabilization, resulting in morphological differences among the lobes. Analysis of historic imagery indicates that movement of the eight investigated FDLs has been asynchronous over the study period, and since 1955, there has been an overall increase in movement rates of the investigated FDLs. The formation of surface features, such as cracks, scarps, and RTSs, suggests that the increased movement rates correlate to general instability, and even at their current distances, FDLs are impacting infrastructure through increased sediment mobilization. FDL-A is the largest of the investigated FDLs. As of August 2015, FDL-A was 39.2 m from the toe of the Dalton Highway embankment. Based on its current distance and rate of movement, we predict that FDL-A will reach the Dalton Highway alignment by 2023.

  4. Sediment Dynamics in the Upper McKenzie River Basin, Central Oregon Cascade Range

    NASA Astrophysics Data System (ADS)

    Stallman, J. D.; Bowers, R. J.; Cabrera, N. C.; Real de Asua, R.; Wooster, J. K.

    2005-12-01

    Reference and current sediment budgets were developed to evaluate the extent to which hydroelectric dams alter sediment dynamics in the upper McKenzie River basin of central Oregon. The 647 km2 study area straddles the western boundary of the High Cascades graben separating the High Cascades and Western Cascades geologic terrains. Permeable Quaternary volcanics forming the low-gradient High Cascades plateau promote surface hydrologic disconnection, nearly constant discharge controlled by groundwater emergence, and low sediment yield. In contrast, deeply weathered Tertiary volcanics, rugged topography, and a dense network of steep channels in the Western Cascades terrain promote peaked storm responses and high sediment yield by deep-seated mass movement, debris slides, and debris flows. Three independent estimates of sediment yield (application of published surface process rates, extrapolation of regional suspended load and bedload flux rates, and extrapolation of reservoir sedimentation rates) illustrate the dominant role of geologic terrains in determining the longitudinal pattern of sediment supply to the McKenzie River. Average reference yields from High Cascades and Western Cascades sources were 9 t km-2y-1 and 200 t km-2y-1, respectively. Downstream of Trail Bridge Dam, High Cascades sources (241 km2) account for 12% of the total reference yield, while Western Cascades sources (67 km2) account for 62%. Estimates of current sediment yield illustrate the offsetting effects of reservoir sediment trapping and accelerated yield related to forest management. Average current yields from High Cascades and Western Cascades sources were 17 t km-2y-1 and 300 t km-2y-1, respectively. Current yield to the McKenzie River arm of Trail Bridge Reservoir (42 km2 sourced in High Cascades terrain) was 17 t km-2y-1, while current yield to Smith Reservoir (48 km2 sourced in Western Cascades terrain) was 251 t km-2y-1. The relation between hydroelectric project effects and forest

  5. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited)

    NASA Astrophysics Data System (ADS)

    MacPhee, A. G.; Dymoke-Bradshaw, A. K. L.; Hares, J. D.; Hassett, J.; Hatch, B. W.; Meadowcroft, A. L.; Bell, P. M.; Bradley, D. K.; Datte, P. S.; Landen, O. L.; Palmer, N. E.; Piston, K. W.; Rekow, V. V.; Hilsabeck, T. J.; Kilkenny, J. D.

    2016-11-01

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  6. A 1-channel 3-band wide dynamic range compression chip for vibration transducer of implantable hearing aids.

    PubMed

    Kim, Dongwook; Seong, Kiwoong; Kim, Myoungnam; Cho, Jinho; Lee, Jyunghyun

    2014-01-01

    In this paper, a digital audio processing chip which uses a wide dynamic range compression (WDRC) algorithm is designed and implemented for implantable hearing aids system. The designed chip operates at a single voltage of 3.3V and drives a 16 bit parallel input and output at 32 kHz sample. The designed chip has 1-channel 3-band WDRC composed of a FIR filter bank, a level detector, and a compression part. To verify the performance of the designed chip, we measured the frequency separations of bands and compression gain control to reflect the hearing threshold level.

  7. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range

    SciTech Connect

    Karl, N.; Reichel, K.; Mendis, R.; Mittleman, D. M.; Chen, H.-T.; Taylor, A. J.; Brener, I.; Benz, A.; Reno, J. L.

    2014-03-03

    We design and experimentally demonstrate a switchable diffraction grating for terahertz modulation based on planar active metamaterials, where a Schottky gate structure is implemented to tune the metamaterial resonances in real-time via the application of an external voltage bias. The diffraction grating is formed by grouping the active split-ring resonators into an array of independent columns with alternate columns biased. We observe off-axis diffraction over a wide frequency band in contrast to the narrow-band resonances, which permits operation of the device as a relatively high-speed, wide-bandwidth, high-contrast modulator, with more than 20 dB of dynamic range.

  8. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited).

    PubMed

    MacPhee, A G; Dymoke-Bradshaw, A K L; Hares, J D; Hassett, J; Hatch, B W; Meadowcroft, A L; Bell, P M; Bradley, D K; Datte, P S; Landen, O L; Palmer, N E; Piston, K W; Rekow, V V; Hilsabeck, T J; Kilkenny, J D

    2016-11-01

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  9. Optimization of nonimaging focusing heliostat in dynamic correction of astigmatism for a wide range of incident angles.

    PubMed

    Chong, Kok-Keong

    2010-05-15

    To overcome astigmatism has always been a great challenge in designing a heliostat capable of focusing the sunlight on a small receiver throughout the year. In this Letter, a nonimaging focusing heliostat with a dynamic adjustment of facet mirrors in a group manner has been analyzed for optimizing the astigmatic correction in a wide range of incident angles. This what is to the author's knowledge a new heliostat is not only designed to serve the purpose of concentrating sunlight to several hundreds of suns, but also to significantly reduce the variation of the solar flux distribution with the incident angle.

  10. High-speed and high-dynamic range difference imaging based on the near-sensor image processing concept

    NASA Astrophysics Data System (ADS)

    Åström, Anders; Forchheimer, Robert

    2009-02-01

    The paper describes the Near Sensor Image Processing (NSIP) paradigm developed in the early 1990s and shows that it was a precursor to recent architectures proposed for direct (in the sensor) image processing and high dynamic range (HDR) image sensing. Both of these architectures are based on the specific properties of CMOS light sensors, in particular the ability to continuously monitor the accumulation of photon-induced charge as a function of time. We further propose an extension of the original NSIP pixel to include a circuit that facilitates temporal and spatio-temporal processing.

  11. Intracisternal injection of palmitoylethanolamide inhibits the peripheral nociceptive evoked responses of dorsal horn wide dynamic range neurons.

    PubMed

    González-Hernández, Abimael; Martínez-Lorenzana, Guadalupe; Rodríguez-Jiménez, Javier; Rojas-Piloni, Gerardo; Condés-Lara, Miguel

    2015-03-01

    Endogenous palmitoylethanolamide (PEA) has a key role in pain modulation. Central or peripheral PEA can reduce nociceptive behavior, but no study has yet reported a descending inhibitory effect on the neuronal nociceptive activity of Aδ- and C-fibers. This study shows that intracisternal PEA inhibits the peripheral nociceptive responses of dorsal horn wide dynamic range cells (i.e., inhibition of Aδ- and C-fibers), an effect blocked by spinal methiothepin. These results suggest that a descending analgesic mechanism mediated by the serotonergic system could be activated by central PEA.

  12. A High Sensitivity and Wide Dynamic Range Fiber-Optic Sensor for Low-Concentration VOC Gas Detection

    PubMed Central

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2014-01-01

    In this paper, we propose a volatile organic compound (VOC) gas sensing system with high sensitivity and a wide dynamic range that is based on the principle of the heterodyne frequency modulation method. According to this method, the time period of the sensing signal shift when Nile Red containing a VOC-sensitive membrane of a fiber-optic sensing element comes into contact with a VOC. This sensing membrane produces strong, fast and reversible signals when exposed to VOC gases. The response and recovery times of the proposed sensing system were less than 35 s, and good reproducibility and accuracy were obtained. PMID:25490592

  13. Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser.

    PubMed

    Luo, Zhi-Chao; Cao, Wen-Jun; Lin, Zhen-Bin; Cai, Ze-Rong; Luo, Ai-Ping; Xu, Wen-Cheng

    2012-11-15

    The pulse dynamics operating in dissipative soliton resonance (DSR) region is experimentally investigated in a fiber ring laser. With the increase of pump power, the pulse profile transit from sech-like to rectangular shape was observed. The generated pulse in DSR region exhibits the conventional soliton spectrum with sideband generation. The duration-tuning range of the rectangular pulse is up to the cavity roundtrip time. Particularly, during the process of pulse duration broadening it was found that the rectangular pulse would trap a weak pulse generated from cw background. The obtained results may be useful for better understanding the DSR phenomenon.

  14. Solvation force induced by short range, exact dissipative particle dynamics effective surfaces on a simple fluid and on polymer brushes.

    PubMed

    Goicochea, Armando Gama; Alarcón, Francisco

    2011-01-07

    The thermodynamic properties of a simple fluid confined by effective wall forces are calculated using Monte Carlo simulations in the grand canonical ensemble. The solvation force produced by polymer brushes of two different lengths is obtained also. For the particular type of model interactions used, known as the dissipative particle dynamics method, we find that it is possible to obtain an exact, simple expression for the effective force induced by a planar wall composed of identical particles that interact with those in the fluid. We show that despite the short range of all forces in the model, the solvation force can be finite at relatively large distances and therefore does not depend only on the range of the interparticle or solvent-surface forces. As for the polymer brushes, we find that the shape of the solvation force profiles is in fair agreement with scaling and self-consistent field theories. The applications and possible extensions of this work are discussed.

  15. Ultra-sensitive and wide-dynamic-range sensors based on dense arrays of carbon nanotube tips

    NASA Astrophysics Data System (ADS)

    Sun, Gengzhi; Huang, Yinxi; Zheng, Lianxi; Zhan, Zhaoyao; Zhang, Yani; Pang, John H. L.; Wu, Tom; Chen, Peng

    2011-11-01

    Electrochemical electrodes based on dense and vertically aligned arrays of multi-walled carbon nanotubes (MWCNTs) were produced. The open tips of individual hollow nanotubes are exposed as active sites while the entangled nanotube stems encapsulated in epoxy collectively provide multiplexed and highly conductive pathways for charge transport. This unique structure together with the extraordinary electrical and electrochemical properties of MWCNTs offers a high signal-to-noise ratio (thus high sensitivity) and a large detection range, compared with other carbon-based electrodes. Our electrodes can detect K3FeCN6 and dopamine at concentrations as low as 5 nM and 10 nM, respectively, and are responsive in a large dynamic range that spans almost 5 orders of magnitude.Electrochemical electrodes based on dense and vertically aligned arrays of multi-walled carbon nanotubes (MWCNTs) were produced. The open tips of individual hollow nanotubes are exposed as active sites while the entangled nanotube stems encapsulated in epoxy collectively provide multiplexed and highly conductive pathways for charge transport. This unique structure together with the extraordinary electrical and electrochemical properties of MWCNTs offers a high signal-to-noise ratio (thus high sensitivity) and a large detection range, compared with other carbon-based electrodes. Our electrodes can detect K3FeCN6 and dopamine at concentrations as low as 5 nM and 10 nM, respectively, and are responsive in a large dynamic range that spans almost 5 orders of magnitude. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr10899a

  16. Statistical treatment of photon/electron counting: extending the linear dynamic range from the dark count rate to saturation.

    PubMed

    Kissick, David J; Muir, Ryan D; Simpson, Garth J

    2010-12-15

    An experimentally simple photon counting method is demonstrated providing 7 orders of magnitude in linear dynamic range (LDR) for a single photomultiplier tube (PMT) detector. In conventional photon/electron counting methods, the linear range is dictated by the agreement between the binomially distributed measurement of counted events and the underlying Poisson distribution of photons/electrons. By explicitly considering the log-normal probability distribution in voltage transients as a function of the number of photons present and the Poisson distribution of photons, observed counts for a given threshold can be related to the mean number of photons well beyond the conventional limit. Analytical expressions are derived relating counts and photons that extend the linear range to an average of ∼11 photons arriving simultaneously with a single threshold. These expressions can be evaluated numerically for multiple thresholds extending the linear range to the saturation point of the PMT. The peak voltage distributions are experimentally shown to follow a Poisson weighted sum of log-normal distributions that can all be derived from the single photoelectron voltage peak-height distribution. The LDR that results from this method is compared to conventional single photon counting (SPC) and to signal averaging by analog to digital conversion (ADC).

  17. Effect of Long-Range Polar Electron-Phonon Interaction on the Hot Carrier Dynamics of GaAs

    NASA Astrophysics Data System (ADS)

    Ong, Chin Shen; Bernadi, Marco; Louie, Steven G.

    Hot carrier dynamics plays an important role in the functionality of electronic and photovoltaic devices. Recent interest in harvesting the energy of hot electrons before it is lost through thermalization has led to renewed interest in the microscopic details of hot electron energy loss mechanisms. Gallium arsenide (GaAs) is of particular interest because amongst its many advantages, it is a direct-gap semiconductor, has high electron mobility and is a high-performing candidate for electronic and photovoltaic applications. GaAs is a polar material, and long-range polar (Frölich) electron-phonon interaction has non-trivial effects on the carrier dynamics in the material. In this work, we investigate the effect of this interaction on the hot carrier dynamics of GaAs. This work is supported by NSF Grant No. DMR15-1508412 and the DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at Lawrence Berkeley National Laboratory's NERSC facility.

  18. A Dual-Colour Architecture for Pump-Probe Spectroscopy of Ultrafast Magnetization Dynamics in the Sub-10-femtosecond Range

    PubMed Central

    Gonçalves, C. S.; Silva, A. S.; Navas, D.; Miranda, M.; Silva, F.; Crespo, H.; Schmool, D. S.

    2016-01-01

    Current time-resolution-limited dynamic measurements clearly show the need for improved techniques to access processes on the sub-10-femtosecond timescale. To access this regime, we have designed and constructed a state-of-the-art time-resolved magneto-optic Kerr effect apparatus, based on a new dual-color scheme, for the measurement of ultrafast demagnetization and precessional dynamics in magnetic materials. This system can operate well below the current temporal ranges reported in the literature, which typically lie in the region of around 50 fs and above. We have used a dual-colour scheme, based on ultra broadband hollow-core fibre and chirped mirror pulse compression techniques, to obtain unprecedented sub-8-fs pump and probe pulse durations at the sample plane. To demonstrate the capabilities of this system for ultrafast demagnetization and precessional dynamics studies, we have performed measurements in a ferrimagnetic GdFeCo thin film. Our study has shown that the magnetization shows a sudden drop within the first picosecond after the pump pulse, a fast recovery (remagnetization) within a few picoseconds, followed by a clear oscillation or precession during a slower magnetization recovery. Moreover, we have experimentally confirmed for the first time that a sub-10-fs pulse is able to efficiently excite a magnetic system such as GdFeCo. PMID:26976721

  19. Static, dynamic and electronic properties of expanded fluid mercury in the metal-nonmetal transition range. An ab initio study.

    PubMed

    Calderín, L; González, L E; González, D J

    2011-09-21

    Fluid Hg undergoes a metal-nonmetal (M-NM) transition when expanded toward a density of around 9 g cm(-3). We have performed ab initio molecular dynamics simulations for several thermodynamic states around the M-NM transition range and the associated static, dynamic and electronic properties have been analyzed. The calculated static structure shows a good agreement with the available experimental data. It is found that the volume expansion decreases the number of nearest neighbors from 10 (near the triple point) to around 8 at the M-NM transition region. Moreover, these neighbors are arranged into two subshells and the decrease in the number of neighbors occurs in the inner subshell. The calculated dynamic structure factors agree fairly well with their experimental counterparts obtained by inelastic x-ray scattering experiments, which display inelastic side peaks. The derived dispersion relation exhibits some positive dispersion for all the states, although its value around the M-NM transition region is not as marked as suggested by the experiment. We have also calculated the electronic density of states, which shows the appearance of a gap at a density of around 8.3 g cm(-3).

  20. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane.

    PubMed

    Khan, Md Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won

    2016-02-20

    In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt's dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.

  1. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane

    PubMed Central

    Khan, Md. Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won

    2016-01-01

    In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt’s dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance. PMID:26907291

  2. Sensitivity Gains, Linearity, and Spectral Reproducibility in Nonuniformly Sampled Multidimensional MAS NMR Spectra of High Dynamic Range.

    SciTech Connect

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David M.; Hoch, Jeffrey C.; Rovnyak, David S.; Polenova, Tatyana E.

    2014-04-22

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C,15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high quality artifact-free datasets.

  3. A high dynamic-range instrument for SPICA for coronagraphic observation of exoplanets and monitoring of transiting exoplanets

    NASA Astrophysics Data System (ADS)

    Enya, K.; Abe, L.; Takeuchi, S.; Kotani, T.; Yamamuro, T.

    2011-09-01

    This paper, first, presents introductory reviews of the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission and the SPICA Coronagraph Instrument (SCI). SPICA will realize a 3m class telescope cooled to 6K in orbit. The launch of SPICA is planned to take place in FY2018. The SPICA mission provides us with a unique opportunity to make high dynamic-range observations because of its large telescope aperture, high stability, and the capability for making infrared observations from deep space. The SCI is a high dynamic-range instrument proposed for SPICA. The primary objectives for the SCI are the direct coronagraphic detection and spectroscopy of Jovian exoplanets in the infrared region, while the monitoring of transiting planets is another important target owing to the non-coronagraphic mode of the SCI. Then, recent technical progress and ideas in conceptual studies are presented, which can potentially enhance the performance of the instrument: the designs of an integral 1-dimensional binary-shaped pupil mask coronagraph with general darkness constraints, a concentric ring mask considering the obscured pupil for surveying a wide field, and a spectral disperser for simultaneous wide wavelength coverage, and the first results of tests of the toughness of MEMS deformable mirrors for the rocket launch are introduced, together with a description of a passive wavefront correction mirror using no actuator.

  4. Airborne prototype instrument suite test flight of a low-light high-dynamic range imager and visible spectrometer

    NASA Astrophysics Data System (ADS)

    Kuester, Michele A.; Lasnik, James K.; Ramond, Tanya; Lin, Tony; Johnson, Brian; Kaptchen, Paul; Good, William

    2007-09-01

    The Airborne Sensors Initiative (ASI) at Ball Aerospace and Technologies Corp. (BATC) specializes in airborne demonstration of internally-developed instrument concepts and innovative remote sensing technologies. In December 2006, ASI flew an environmental remote sensing suite consisting of the Low Light Imager (LLI) and Prototype Airborne Visible Imaging Spectrometer (PAVIS), both of which are operated using a pushbroom approach. LLI is designed for nighttime or high dynamic range imaging. It is capable of yielding 10 7 dynamic range and offers quality images amid illumination extending from a 1/ 4 moon to full sunlight and with autonomous operation. PAVIS is an imaging spectrometer based on the Dyson design and exhibits a 200 nm spectral bandwidth tunable within 400 - 850 nm. Developed internally to demonstrate promising remote sensing capabilities, these small, low-mass and low-power instruments are prepared for aircraft flight and are currently being used in the field to acquire scientific data. The LLI/PAVIS instrument suite has been utilized to collect airborne urban and rural imagery, as well as spectral information about the Great Salt Lake area, western Colorado, and ancient lava flows in southern Idaho. Highlights of the instrument design and ensuing data from previous flights are presented herein.

  5. Dynamic "Range of Motion" Hindlimb Stretching Disrupts Locomotor Function in Rats with Moderate Subacute Spinal Cord Injuries.

    PubMed

    Keller, Anastasia; Rees, Kathlene; Prince, Daniella; Morehouse, Johnny; Shum-Siu, Alice; Magnuson, David

    2017-04-12

    Joint contractures and spasticity are two common secondary complications of a severe spinal cord injury (SCI), which can significantly reduce quality of life, and stretching is one of the top strategies for rehabilitation of these complications. We have previously shown that a daily static stretching protocol administered to rats at either acute or chronic time points after a moderate or moderate-severe T10 SCI significantly disrupts their hindlimb locomotor function. The objective of the current study was to examine the effects of dynamic range of motion (ROM) stretching on the locomotor function of rats with SCI as an alternative to static stretching. Starting at 6 weeks post-injury (T10 moderate contusion) eight adult Sprague-Dawley rats were subjected to hindlimb stretching for 4 weeks. Our standard stretching protocol (six maneuvers to stretch the major hindlimb muscle groups) was modified from 1 min static stretch-and-hold at the end ROM of each stretch position to a dynamic 2 sec hold, 1 sec release rhythm repeated for a duration of 1 min. Four weeks of daily (5 days/week) dynamic stretching led to significant disruption of locomotor function as assessed by the Basso, Beattie, Bresnahan (BBB) Open Field Locomotor Scale and three-dimensional (3D) kinematic and gait analyses. In addition, we identified and analyzed an apparently novel hindlimb response to dynamic stretch that resembles human clonus. The results of the current study extend the observation of the stretching phenomenon to a new modality of stretching that is also commonly used in SCI rehabilitation. Although mechanisms and clinical relevance still need to be established, our findings continue to raise concerns that stretching as a therapy can potentially hinder aspects of locomotor recovery.

  6. Sexual Segregation in Juvenile New Zealand Sea Lion Foraging Ranges: Implications for Intraspecific Competition, Population Dynamics and Conservation

    PubMed Central

    Leung, Elaine S.; Chilvers, B. Louise; Nakagawa, Shinichi; Moore, Antoni B.; Robertson, Bruce C.

    2012-01-01

    Sexual segregation (sex differences in spatial organisation and resource use) is observed in a large range of taxa. Investigating causes for sexual segregation is vital for understanding population dynamics and has important conservation implications, as sex differences in foraging ecology may affect vulnerability to area-specific human activities. Although behavioural ecologists have proposed numerous hypotheses for this phenomenon, the underlying causes of sexual segregation are poorly understood. We examined the size-dimorphism and niche divergence hypotheses as potential explanations for sexual segregation in the New Zealand (NZ) sea lion (Phocarctos hookeri), a nationally critical, declining species impacted by trawl fisheries. We used satellite telemetry and linear mixed effects models to investigate sex differences in the foraging ranges of juvenile NZ sea lions. Male trip distances and durations were almost twice as long as female trips, with males foraging over the Auckland Island shelf and in further locations than females. Sex was the most important variable in trip distance, maximum distance travelled from study site, foraging cycle duration and percent time at sea whereas mass and age had small effects on these characteristics. Our findings support the predictions of the niche divergence hypothesis, which suggests that sexual segregation acts to decrease intraspecific resource competition. As a consequence of sexual segregation in foraging ranges, female foraging grounds had proportionally double the overlap with fisheries operations than males. This distribution exposes female juvenile NZ sea lions to a greater risk of resource competition and bycatch from fisheries than males, which can result in higher female mortality. Such sex-biased mortality could impact population dynamics, because female population decline can lead to decreased population fecundity. Thus, effective conservation and management strategies must take into account sex differences

  7. Sexual segregation in juvenile New Zealand sea lion foraging ranges: implications for intraspecific competition, population dynamics and conservation.

    PubMed

    Leung, Elaine S; Chilvers, B Louise; Nakagawa, Shinichi; Moore, Antoni B; Robertson, Bruce C

    2012-01-01

    Sexual segregation (sex differences in spatial organisation and resource use) is observed in a large range of taxa. Investigating causes for sexual segregation is vital for understanding population dynamics and has important conservation implications, as sex differences in foraging ecology may affect vulnerability to area-specific human activities. Although behavioural ecologists have proposed numerous hypotheses for this phenomenon, the underlying causes of sexual segregation are poorly understood. We examined the size-dimorphism and niche divergence hypotheses as potential explanations for sexual segregation in the New Zealand (NZ) sea lion (Phocarctos hookeri), a nationally critical, declining species impacted by trawl fisheries. We used satellite telemetry and linear mixed effects models to investigate sex differences in the foraging ranges of juvenile NZ sea lions. Male trip distances and durations were almost twice as long as female trips, with males foraging over the Auckland Island shelf and in further locations than females. Sex was the most important variable in trip distance, maximum distance travelled from study site, foraging cycle duration and percent time at sea whereas mass and age had small effects on these characteristics. Our findings support the predictions of the niche divergence hypothesis, which suggests that sexual segregation acts to decrease intraspecific resource competition. As a consequence of sexual segregation in foraging ranges, female foraging grounds had proportionally double the overlap with fisheries operations than males. This distribution exposes female juvenile NZ sea lions to a greater risk of resource competition and bycatch from fisheries than males, which can result in higher female mortality. Such sex-biased mortality could impact population dynamics, because female population decline can lead to decreased population fecundity. Thus, effective conservation and management strategies must take into account sex differences

  8. A novel opinion dynamics model based on expanded observation ranges and individuals’ social influences in social networks

    NASA Astrophysics Data System (ADS)

    Diao, Su-Meng; Liu, Yun; Zeng, Qing-An; Luo, Gui-Xun; Xiong, Fei

    2014-12-01

    In this paper, we propose an opinion dynamics model in order to investigate opinion evolution and interactions and the behavior of individuals. By introducing social influence and its feedback mechanism, the proposed model can highlight the heterogeneity of individuals and reproduce realistic online opinion interactions. It can also expand the observation range of affected individuals. Combining psychological studies on the social impact of majorities and minorities, affected individuals update their opinions by balancing social impact from both supporters and opponents. It can be seen that complete consensus is not always obtained. When the initial density of either side is greater than 0.8, the enormous imbalance leads to complete consensus. Otherwise, opinion clusters consisting of a set of tightly connected individuals who hold similar opinions appear. Moreover, a tradeoff is discovered between high interaction intensity and low stability with regard to observation ranges. The intensity of each interaction is negatively correlated with observation range, while the stability of each individual’s opinion positively affects the correlation. Furthermore, the proposed model presents the power-law properties in the distribution of individuals’ social influences, which is in agreement with people’s daily cognition. Additionally, it is proven that the initial distribution of individuals’ social influences has little effect on the evolution.

  9. Ionization suppression effects with condensed phase membrane introduction mass spectrometry: methods to increase the linear dynamic range and sensitivity.

    PubMed

    Duncan, Kyle D; Vandergrift, Gregory W; Krogh, Erik T; Gill, Chris G

    2015-03-01

    Condensed phase membrane introduction mass spectrometry (CP-MIMS) is an online analytical method that allows for the direct, trace level measurement of a wide range of analytes in complex samples. The technique employs a semi-permeable membrane that transfers analytes from a sample into a flowing acceptor solvent, which is directly infused to an atmospheric pressure ionization source, such as electrospray or atmospheric pressure chemical ionization. While CP-MIMS and variants of the technique have been in the literature for nearly a decade, much of the work has focused on instrument development. Few studies have thoroughly addressed quantitative methods related to detection limits, ionization suppression, or linear dynamic range. We examine ionization suppression in the direct rapid quantitation of analytes by CP-MIMS and introduce several analytical strategies to mitigate these effects, including the novel implementation of a continuously infused internal standard in the acceptor phase solvent, and modulation of acceptor phase flow rate. Several representative analytes were used to evaluate this approach with spiked, complex sample matrices, including primary wastewater effluent and artificial urine. Also reported are improved measured detection limits in the low part-per-trillion range, using a 'stopped-flow' acceptor mode.

  10. Inertial-range dynamics and scaling laws of two-dimensional magnetohydrodynamic turbulence in the weak-field regime.

    PubMed

    Blackbourn, Luke A K; Tran, Chuong V

    2014-08-01

    We study inertial-range dynamics and scaling laws in unforced two-dimensional magnetohydrodynamic turbulence in the regime of moderately small and small initial magnetic-to-kinetic-energy ratio r(0), with an emphasis on the latter. The regime of small r(0) corresponds to a relatively weak field and strong magnetic stretching, whereby the turbulence is characterized by an intense conversion of kinetic into magnetic energy (dynamo action in the three-dimensional context). This conversion is an inertial-range phenomenon and, upon becoming quasisaturated, deposits the converted energy within the inertial range rather than transferring it to the small scales. As a result, the magnetic-energy spectrum E(b)(k) in the inertial range can become quite shallow and may not be adequately explained or understood in terms of conventional cascade theories. It is demonstrated by numerical simulations at high Reynolds numbers (and unity magnetic Prandtl number) that the energetics and inertial-range scaling depend strongly on r(0). In particular, for fully developed turbulence with r(0) in the range [1/4,1/4096], E(b)(k) is found to scale as k(α), where α≳-1, including α>0. The extent of such a shallow spectrum is limited, becoming broader as r(0) is decreased. The slope α increases as r(0) is decreased, appearing to tend to +1 in the limit of small r(0). This implies equipartition of magnetic energy among the Fourier modes of the inertial range and the scaling k(-1) of the magnetic potential variance, whose flux is direct rather than inverse. This behavior of the potential resembles that of a passive scalar. However, unlike a passive scalar whose variance dissipation rate slowly vanishes in the diffusionless limit, the dissipation rate of the magnetic potential variance scales linearly with the diffusivity in that limit. Meanwhile, the kinetic-energy spectrum is relatively steep, followed by a much shallower tail due to strong antidynamo excitation. This gives rise to a total

  11. Ranges of Cervical Intervertebral Disc Deformation during an In-Vivo Dynamic Flexion-Extension of the Neck.

    PubMed

    Yu, Yan; Mao, Haiqing; Li, Jing-Sheng; Tsai, Tsung-Yuan; Cheng, Liming; Wood, Kirkham B; Li, Guoan; Cha, Thomas D

    2017-03-23

    While abnormal loading is widely believed to cause cervical spine disc diseases, in-vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in-vivo functional flexion-extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system and MRI based 3D modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6 and C6/7). Five points (anterior, center, posterior, left and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine.

  12. Spatial and temporal dynamics of fucoid populations (Ascophyllum nodosum and Fucus serratus): a comparison between central and range edge populations.

    PubMed

    Araújo, Rita M; Serrão, Ester A; Sousa-Pinto, Isabel; Åberg, Per

    2014-01-01

    Persistence of populations at range edges relies on local population dynamics and fitness, in the case of geographically isolated populations of species with low dispersal potential. Focusing on spatial variations in demography helps to predict the long-term capability for persistence of populations across the geographical range of species' distribution. The demography of two ecological and phylogenetically close macroalgal species with different life history characteristics was investigated by using stochastic, stage-based matrix models. Populations of Ascophyllum nodosum and Fucus serratus were sampled for up to 4 years at central locations in France and at their southern range limits in Portugal. The stochastic population growth rate (λ(s)) of A. nodosum was lower and more variable in central than in southern sites whilst for F. serratus this trend was reversed with λ(s) much lower and more variable in southern than in central populations. Individuals were larger in central than in southern populations for both species, which was reflected in the lower transition probabilities of individuals to larger size classes and higher probability of shrinkage in the southern populations. In both central and southern populations elasticity analysis (proportional sensitivity) of population growth rate showed that fertility elements had a small contribution to λ(s) that was more sensitive to changes in matrix transitions corresponding to survival. The highest elasticities were found for loop transitions in A. nodosum and for growth to larger size classes in F. serratus. Sensitivity analysis showed high selective pressure on individual growth for both species at both locations. The results of this study highlight the deterministic role of species-specific life-history traits in population demography across the geographical range of species. Additionally, this study demonstrates that individuals' life-transitions differ in vulnerability to environmental variability and

  13. Optical engineering application of modeled photosynthetically active radiation (PAR) for high-speed digital camera dynamic range optimization

    NASA Astrophysics Data System (ADS)

    Alves, James; Gueymard, Christian A.

    2009-08-01

    As efforts to create accurate yet computationally efficient estimation models for clear-sky photosynthetically active solar radiation (PAR) have succeeded, the range of practical engineering applications where these models can be successfully applied has increased. This paper describes a novel application of the REST2 radiative model (developed by the second author) in optical engineering. The PAR predictions in this application are used to predict the possible range of instantaneous irradiances that could impinge on the image plane of a stationary video camera designed to image license plates on moving vehicles. The overall spectral response of the camera (including lens and optical filters) is similar to the 400-700 nm PAR range, thereby making PAR irradiance (rather than luminance) predictions most suitable for this application. The accuracy of the REST2 irradiance predictions for horizontal surfaces, coupled with another radiative model to obtain irradiances on vertical surfaces, and to standard optical image formation models, enable setting the dynamic range controls of the camera to ensure that the license plate images are legible (unsaturated with adequate contrast) regardless of the time of day, sky condition, or vehicle speed. A brief description of how these radiative models are utilized as part of the camera control algorithm is provided. Several comparisons of the irradiance predictions derived from the radiative model versus actual PAR measurements under varying sky conditions with three Licor sensors (one horizontal and two vertical) have been made and showed good agreement. Various camera-to-plate geometries and compass headings have been considered in these comparisons. Time-lapse sequences of license plate images taken with the camera under various sky conditions over a 30-day period are also analyzed. They demonstrate the success of the approach at creating legible plate images under highly variable lighting, which is the main goal of this

  14. Large dynamic range digital nanodot gradients of biomolecules made by low-cost nanocontact printing for cell haptotaxis.

    PubMed

    Ricoult, Sébastien G; Pla-Roca, Mateu; Safavieh, Roozbeh; Lopez-Ayon, G Monserratt; Grütter, Peter; Kennedy, Timothy E; Juncker, David

    2013-10-11

    A novel method is introduced for ultrahigh throughput and ultralow cost patterning of biomolecules with nanometer resolution and novel 2D digital nanodot gradients (DNGs) with mathematically defined slopes are created. The technique is based on lift-off nanocontact printing while using high-resolution photopolymer stamps that are rapidly produced at a low cost through double replication from Si originals. Printed patterns with 100 nm features are shown. DNGs with varying spacing between the dots and a record dynamic range of 4400 are produced; 64 unique DNGs, each with hundreds of thousands of dots, are inked and printed in 5.5 min. The adhesive response and haptotaxis of C2C12 myoblast cells on DNGs demonstrated their biofunctionality. The great flexibility in pattern design, the massive parallel ability, the ultra low cost, and the extreme ease of polymer lift-off nanocontact printing will facilitate its use for various biological and medical applications.

  15. Ultra-low power high-dynamic range color pixel embedding RGB to r-g chromaticity transformation

    NASA Astrophysics Data System (ADS)

    Lecca, Michela; Gasparini, Leonardo; Gottardi, Massimo

    2014-05-01

    This work describes a novel color pixel topology that converts the three chromatic components from the standard RGB space into the normalized r-g chromaticity space. This conversion is implemented with high-dynamic range and with no dc power consumption, and the auto-exposure capability of the sensor ensures to capture a high quality chromatic signal, even in presence of very bright illuminants or in the darkness. The pixel is intended to become the basic building block of a CMOS color vision sensor, targeted to ultra-low power applications for mobile devices, such as human machine interfaces, gesture recognition, face detection. The experiments show that significant improvements of the proposed pixel with respect to standard cameras in terms of energy saving and accuracy on data acquisition. An application to skin color-based description is presented.

  16. Statistical connection of binomial photon counting and photon averaging in high dynamic range beam-scanning microscopy

    PubMed Central

    Muir, Ryan D.; Kissick, David J.; Simpson, Garth J.

    2012-01-01

    Data from photomultiplier tubes are typically analyzed using either counting or averaging techniques, which are most accurate in the dim and bright signal limits, respectively. A statistical means of adjoining these two techniques is presented by recovering the Poisson parameter from averaged data and relating it to the statistics of binomial counting from Kissick et al. [Anal. Chem. 82, 10129 (2010)]. The point at which binomial photon counting and averaging have equal signal to noise ratios is derived. Adjoining these two techniques generates signal to noise ratios at 87% to approaching 100% of theoretical maximum across the full dynamic range of the photomultiplier tube used. The technique is demonstrated in a second harmonic generation microscope. PMID:22535131

  17. A High Dynamic Range and Low Power Consumption Audio Delta-Sigma Modulator with Opamp Sharing Technique among Three Integrators

    NASA Astrophysics Data System (ADS)

    Kanemoto, Daisuke; Ido, Toru; Taniguchi, Kenji

    A low power and high performance with third order delta-sigma modulator for audio applications, fabricated in a 0.18µm CMOS process, is presented. The modulator utilizes a third order noise shaping with only one opamp by using an opamp sharing technique. The opamp sharing among three integrator stages is achieved through the optimal operation timing, which makes use of the load capacitance differences between the three integrator stages. The designed modulator achieves 101.1dB signal-to-noise ratio (A-weighted) and 101.5dB dynamic range (A-weighted) with 7.5mW power consumption from a 3.3V supply. The die area is 1.27mm2. The fabricated delta-sigma modulator achieves the highest figure-of-merit among published high performance low power audio delta-sigma modulators.

  18. Excited-state quantum phase transitions in many-body systems with infinite-range interaction: Localization, dynamics, and bifurcation

    NASA Astrophysics Data System (ADS)

    Santos, Lea F.; Távora, Marco; Pérez-Bernal, Francisco

    2016-07-01

    Excited-state quantum phase transitions (ESQPTs) are generalizations of quantum phase transitions to excited levels. They are associated with local divergences in the density of states. Here, we investigate how the presence of an ESQPT can be detected from the analysis of the structure of the Hamiltonian matrix, the level of localization of the eigenstates, the onset of bifurcation, and the speed of the system evolution. Our findings are illustrated for a Hamiltonian with infinite-range Ising interaction in a transverse field. This is a version of the Lipkin-Meshkov-Glick (LMG) model and the limiting case of the one-dimensional spin-1/2 system with tunable interactions realized with ion traps. From our studies for the dynamics, we uncover similarities between the LMG and the noninteracting XX models.

  19. High-dynamic-range microscope imaging based on exposure bracketing in full-field optical coherence tomography.

    PubMed

    Leong-Hoi, Audrey; Montgomery, Paul C; Serio, Bruno; Twardowski, Patrice; Uhring, Wilfried

    2016-04-01

    By applying the proposed high-dynamic-range (HDR) technique based on exposure bracketing, we demonstrate a meaningful reduction in the spatial noise in image frames acquired with a CCD camera so as to improve the fringe contrast in full-field optical coherence tomography (FF-OCT). This new signal processing method thus allows improved probing within transparent or semitransparent samples. The proposed method is demonstrated on 3 μm thick transparent polymer films of Mylar, which, due to their transparency, produce low contrast fringe patterns in white-light interference microscopy. High-resolution tomographic analysis is performed using the technique. After performing appropriate signal processing, resulting XZ sections are observed. Submicrometer-sized defects can be lost in the noise that is present in the CCD images. With the proposed method, we show that by increasing the signal-to-noise ratio of the images, submicrometer-sized defect structures can thus be detected.

  20. A new type of tri-axial accelerometers with high dynamic range MEMS for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Peng, Chaoyong; Chen, Yang; Chen, Quansheng; Yang, Jiansi; Wang, Hongti; Zhu, Xiaoyi; Xu, Zhiqiang; Zheng, Yu

    2017-03-01

    Earthquake Early Warning System (EEWS) has shown its efficiency for earthquake damage mitigation. As the progress of low-cost Micro Electro Mechanical System (MEMS), many types of MEMS-based accelerometers have been developed and widely used in deploying large-scale, dense seismic networks for EEWS. However, the noise performance of these commercially available MEMS is still insufficient for weak seismic signals, leading to the large scatter of early-warning parameters estimation. In this study, we developed a new type of tri-axial accelerometer based on high dynamic range MEMS with low noise level using for EEWS. It is a MEMS-integrated data logger with built-in seismological processing. The device is built on a custom-tailored Linux 2.6.27 operating system and the method for automatic detecting seismic events is STA/LTA algorithms. When a seismic event is detected, peak ground parameters of all data components will be calculated at an interval of 1 s, and τc-Pd values will be evaluated using the initial 3 s of P wave. These values will then be organized as a trigger packet actively sent to the processing center for event combining detection. The output data of all three components are calibrated to sensitivity 500 counts/cm/s2. Several tests and a real field test deployment were performed to obtain the performances of this device. The results show that the dynamic range can reach 98 dB for the vertical component and 99 dB for the horizontal components, and majority of bias temperature coefficients are lower than 200 μg/°C. In addition, the results of event detection and real field deployment have shown its capabilities for EEWS and rapid intensity reporting.

  1. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5–10 GHz frequency range

    SciTech Connect

    Bonetti, Stefano; Kukreja, Roopali; Chen, Zhao; Spoddig, Detlef; Ollefs, Katharina; Schöppner, Christian; Meckenstock, Ralf; Ney, Andreas; Pinto, Jude; Houanche, Richard; Frisch, Josef; Stöhr, Joachim; Dürr, Hermann A.; Ohldag, Hendrik

    2015-09-10

    In this study, we present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme in order to study high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes of the magnetization on short time scales and nanometer spatial dimensions is achieved by combination of the developed excitation mechanism with a single photon counting electronics that is locked to the synchrotron operation frequency. The required mechanical stability is achieved by a compact design of the microscope. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range, with 35 nm resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a –6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ~0.1° amplitude at –9 GHz in a micrometer-sized cobalt strip.

  2. Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary

    NASA Astrophysics Data System (ADS)

    Schneeloch, John A.; Xu, Zhijun; Winn, B.; Stock, C.; Gehring, P. M.; Birgeneau, R. J.; Xu, Guangyong

    2015-12-01

    We report neutron inelastic scattering experiments on single-crystal PbMg1 /3Nb2 /3O3 doped with 32% PbTiO3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E ∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ℏ ω ≤9 meV. However, TA and TO phonons polarized perpendicular to E show no change. This anisotropic field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E . Our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.

  3. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5–10 GHz frequency range

    SciTech Connect

    Bonetti, Stefano Chen, Zhao; Kukreja, Roopali; Spoddig, Detlef; Schöppner, Christian; Meckenstock, Ralf; Ollefs, Katharina; Ney, Andreas; Pinto, Jude; Houanche, Richard; Frisch, Josef; Stöhr, Joachim; Dürr, Hermann A.; Ohldag, Hendrik

    2015-09-15

    We present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme for studying high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes in the magnetization on short time scales and nanometer spatial dimensions is achieved by combining the excitation mechanism with single photon counting electronics that is locked to the synchrotron operation frequency. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range, with high spatial resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a ∼6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ∼0.1° amplitude at ∼9 GHz in a micrometer-sized cobalt strip.

  4. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5-10 GHz frequency range

    NASA Astrophysics Data System (ADS)

    Bonetti, Stefano; Kukreja, Roopali; Chen, Zhao; Spoddig, Detlef; Ollefs, Katharina; Schöppner, Christian; Meckenstock, Ralf; Ney, Andreas; Pinto, Jude; Houanche, Richard; Frisch, Josef; Stöhr, Joachim; Dürr, Hermann A.; Ohldag, Hendrik

    2015-09-01

    We present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme for studying high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes in the magnetization on short time scales and nanometer spatial dimensions is achieved by combining the excitation mechanism with single photon counting electronics that is locked to the synchrotron operation frequency. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range, with high spatial resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a ˜6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ˜0.1° amplitude at ˜9 GHz in a micrometer-sized cobalt strip.

  5. Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary

    DOE PAGES

    John A. Schneeloch; Xu, Zhijun; Winn, B.; ...

    2015-12-28

    We report neutron inelastic scattering experiments on single-crystal PbMg1/3Nb2/3O3 doped with 32% PbTiO3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E show no change. This anisotropicmore » field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.« less

  6. Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary

    SciTech Connect

    John A. Schneeloch; Xu, Zhijun; Winn, B.; Stock, C.; Gehring, P. M.; Birgeneau, R. J.; Xu, Guangyong

    2015-12-28

    We report neutron inelastic scattering experiments on single-crystal PbMg1/3Nb2/3O3 doped with 32% PbTiO3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E show no change. This anisotropic field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.

  7. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5–10 GHz frequency range

    DOE PAGES

    Bonetti, Stefano; Kukreja, Roopali; Chen, Zhao; ...

    2015-09-10

    In this study, we present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme in order to study high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes of the magnetization on short time scales and nanometer spatial dimensions is achieved by combination of the developed excitation mechanism with a single photon counting electronics that is locked to the synchrotron operation frequency. The required mechanical stability is achieved by a compact design of the microscope. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range,more » with 35 nm resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a –6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ~0.1° amplitude at –9 GHz in a micrometer-sized cobalt strip.« less

  8. Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Tilocca, Antonio

    2013-09-01

    A set of molecular dynamics simulations were performed to investigate the effect of cooling rate and system size on the medium-range structure of melt-derived multicomponent silicate glasses, represented by the quaternary 45S5 Bioglass composition. Given the significant impact of the glass degradation on applications of these materials in biomedicine and nuclear waste disposal, bulk structural features which directly affect the glass dissolution process are of particular interest. Connectivity of the silicate matrix, ion clustering and nanosegregation, distribution of ring and chain structural patterns represent critical features in this context, which can be directly extracted from the models. A key issue is represented by the effect of the computational approach on the corresponding glass models, especially in light of recent indications questioning the suitability of conventional MD approaches (that is, involving melt-and-quench of systems containing ˜103 atoms at cooling rates of 5-10 K/ps) when applied to model these glasses. The analysis presented here compares MD models obtained with conventional and nonconventional cooling rates and system sizes, highlighting the trend and range of convergence of specific structural features in the medium range. The present results show that time-consuming computational approaches involving much lower cooling rates and/or significantly larger system sizes are in most cases not necessary in order to obtain a reliable description of the medium-range structure of multicomponent glasses. We identify the convergence range for specific properties and use them to discuss models of several glass compositions for which a possible influence of cooling-rate or size effects had been previously hypothesized. The trends highlighted here represent an important reference to obtain reliable models of multicomponent glasses and extract converged medium-range structural features which affect the glass degradation and thus their application

  9. Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics

    SciTech Connect

    Tilocca, Antonio

    2013-09-21

    A set of molecular dynamics simulations were performed to investigate the effect of cooling rate and system size on the medium-range structure of melt-derived multicomponent silicate glasses, represented by the quaternary 45S5 Bioglass composition. Given the significant impact of the glass degradation on applications of these materials in biomedicine and nuclear waste disposal, bulk structural features which directly affect the glass dissolution process are of particular interest. Connectivity of the silicate matrix, ion clustering and nanosegregation, distribution of ring and chain structural patterns represent critical features in this context, which can be directly extracted from the models. A key issue is represented by the effect of the computational approach on the corresponding glass models, especially in light of recent indications questioning the suitability of conventional MD approaches (that is, involving melt-and-quench of systems containing ∼10{sup 3} atoms at cooling rates of 5-10 K/ps) when applied to model these glasses. The analysis presented here compares MD models obtained with conventional and nonconventional cooling rates and system sizes, highlighting the trend and range of convergence of specific structural features in the medium range. The present results show that time-consuming computational approaches involving much lower cooling rates and/or significantly larger system sizes are in most cases not necessary in order to obtain a reliable description of the medium-range structure of multicomponent glasses. We identify the convergence range for specific properties and use them to discuss models of several glass compositions for which a possible influence of cooling-rate or size effects had been previously hypothesized. The trends highlighted here represent an important reference to obtain reliable models of multicomponent glasses and extract converged medium-range structural features which affect the glass degradation and thus their

  10. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.

    PubMed

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-11-09

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  11. Higher order moments of the matter distribution in scale-free cosmological simulations with large dynamic range

    NASA Technical Reports Server (NTRS)

    Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro

    1994-01-01

    We calculate reduced moments (xi bar)(sub q) of the matter density fluctuations, up to order q = 5, from counts in cells produced by particle-mesh numerical simulations with scale-free Gaussian initial conditions. We use power-law spectra P(k) proportional to k(exp n) with indices n = -3, -2, -1, 0, 1. Due to the supposed absence of characteristic times or scales in our models, all quantities are expected to depend on a single scaling variable. For each model, the moments at all times can be expressed in terms of the variance (xi bar)(sub 2), alone. We look for agreement with the hierarchical scaling ansatz, according to which ((xi bar)(sub q)) proportional to ((xi bar)(sub 2))(exp (q - 1)). For n less than or equal to -2 models, we find strong deviations from the hierarchy, which are mostly due to the presence of boundary problems in the simulations. A small, residual signal of deviation from the hierarchical scaling is however also found in n greater than or equal to -1 models. The wide range of spectra considered and the large dynamic range, with careful checks of scaling and shot-noise effects, allows us to reliably detect evolution away from the perturbation theory result.

  12. The long-term dynamics of Campylobacter colonizing a free-range broiler breeder flock: an observational study.

    PubMed

    Colles, Frances M; McCarthy, Noel D; Bliss, Carly M; Layton, Ruth; Maiden, Martin C J

    2015-04-01

    A free-range broiler breeder flock was studied in order to determine the natural patterns of Campylobacter colonization over a period of 63 weeks. Campylobacter sequence types (STs) were not mutually exclusive and on average colonized only 17.7% of the birds tested at any time. Campylobacter STs typically reached a peak in prevalence upon initial detection in the flock before tailing off, although the ST and antigenic flaA short variable region in combination were stable over a number of months. There was evidence that, with a couple of exceptions, the ecology of C. jejuni and C. coli differed, with the latter forming a more stable population. Despite being free range, no newly colonizing STs were detected over a 6-week period in autumn and a 10-week period in winter, towards the end of the study. There was limited evidence that those STs identified among broiler chicken flocks on the same farm site were likely to colonize the breeder flock earlier (R(2) 0.16, P 0.01). These results suggest that there is natural control of Campylobacter dynamics within a flock which could potentially be exploited in designing new intervention strategies, and that the two different species should perhaps be considered separately.

  13. Phylogenetic fields through time: temporal dynamics of geographical co-occurrence and phylogenetic structure within species ranges.

    PubMed

    Villalobos, Fabricio; Carotenuto, Francesco; Raia, Pasquale; Diniz-Filho, José Alexandre F

    2016-04-05

    Species co-occur with different sets of other species across their geographical distribution, which can be either closely or distantly related. Such co-occurrence patterns and their phylogenetic structure within individual species ranges represent what we call the species phylogenetic fields (PFs). These PFs allow investigation of the role of historical processes--speciation, extinction and dispersal--in shaping species co-occurrence patterns, in both extinct and extant species. Here, we investigate PFs of large mammalian species during the last 3 Myr, and how these correlate with trends in diversification rates. Using the fossil record, we evaluate species' distributional and co-occurrence patterns along with their phylogenetic structure. We apply a novel Bayesian framework on fossil occurrences to estimate diversification rates through time. Our findings highlight the effect of evolutionary processes and past climatic changes on species' distributions and co-occurrences. From the Late Pliocene to the Recent, mammal species seem to have responded in an individualistic manner to climate changes and diversification dynamics, co-occurring with different sets of species from different lineages across their geographical ranges. These findings stress the difficulty of forecasting potential effects of future climate changes on biodiversity.

  14. Phylogenetic fields through time: temporal dynamics of geographical co-occurrence and phylogenetic structure within species ranges

    PubMed Central

    Carotenuto, Francesco; Diniz-Filho, José Alexandre F.

    2016-01-01

    Species co-occur with different sets of other species across their geographical distribution, which can be either closely or distantly related. Such co-occurrence patterns and their phylogenetic structure within individual species ranges represent what we call the species phylogenetic fields (PFs). These PFs allow investigation of the role of historical processes—speciation, extinction and dispersal—in shaping species co-occurrence patterns, in both extinct and extant species. Here, we investigate PFs of large mammalian species during the last 3 Myr, and how these correlate with trends in diversification rates. Using the fossil record, we evaluate species' distributional and co-occurrence patterns along with their phylogenetic structure. We apply a novel Bayesian framework on fossil occurrences to estimate diversification rates through time. Our findings highlight the effect of evolutionary processes and past climatic changes on species' distributions and co-occurrences. From the Late Pliocene to the Recent, mammal species seem to have responded in an individualistic manner to climate changes and diversification dynamics, co-occurring with different sets of species from different lineages across their geographical ranges. These findings stress the difficulty of forecasting potential effects of future climate changes on biodiversity. PMID:26977061

  15. Effect of the speed of a single-channel dynamic range compressor on intelligibility in a competing speech task

    NASA Astrophysics Data System (ADS)

    Stone, Michael A.; Moore, Brian C. J.

    2003-08-01

    Using a ``noise-vocoder'' cochlear implant simulator [Shannon et al., Science 270, 303-304 (1995)], the effect of the speed of dynamic range compression on speech intelligibility was assessed, using normal-hearing subjects. The target speech had a level 5 dB above that of the competing speech. Initially, baseline performance was measured with no compression active, using between 4 and 16 processing channels. Then, performance was measured using a fast-acting compressor and a slow-acting compressor, each operating prior to the vocoder simulation. The fast system produced significant gain variation over syllabic timescales. The slow system produced significant gain variation only over the timescale of sentences. With no compression active, about six channels were necessary to achieve 50% correct identification of words in sentences. Sixteen channels produced near-maximum performance. Slow-acting compression produced no significant degradation relative to the baseline. However, fast-acting compression consistently reduced performance relative to that for the baseline, over a wide range of performance levels. It is suggested that fast-acting compression degrades performance for two reasons: (1) because it introduces correlated fluctuations in amplitude in different frequency bands, which tends to produce perceptual fusion of the target and background sounds and (2) because it reduces amplitude modulation depth and intensity contrasts.

  16. Extensive range persistence in peripheral and interior refugia characterizes Pleistocene range dynamics in a widespread Alpine plant species (Senecio carniolicus, Asteraceae)

    PubMed Central

    Escobar García, Pedro; Winkler, Manuela; Flatscher, Ruth; Sonnleitner, Michaela; KrejčíKová, Jana; Suda, Jan; HüLber, Karl; Schneeweiss, Gerald M; SchöNswetter, Peter

    2012-01-01

    Recent evidence suggests that survival of arctic-alpine organisms in peripheral or interior glacial refugia are not mutually exclusive and may both be involved in shaping an organism’s Pleistocene history, yet potentially at different time levels. Here, we test this hypothesis in a high-mountain plant (diploid lineage of Senecio carniolicus, Asteraceae) from the Eastern European Alps, in which patterns of morphological variation and current habitat requirements suggest survival in both types of refugia. To this end, we used AFLPs, nuclear and plastid DNA sequences and analysed them, among others, within a graph theoretic framework and using novel Bayesian methods of phylogeographic inference. On the basis of patterns of genetic diversity, occurrence of rare markers, distribution of distinct genetic lineages and patterns of range connectivity both interior refugia in the formerly strongly glaciated central Alps and peripheral refugia along the southern margin of the Alps were identified. The presence of refugia congruently inferred by markers resolving at different time levels suggests that these refugia acted as such throughout several glacial cycles. The high degree of range persistence together with gradual range expansion, which contrasts with the extent of range shifts implied for other Alpine species, is likely responsible for incipient lineage differentiation evident from the genetic data. Replacing a simplistic peripheral vs. interior refugia dualism by more complex models involving both types of refugia and considering different time levels will help identifying common phylogeographic patterns with respect to, for instance, location of refugia and colonization routes and elucidating their underlying genetic and/or ecological causes. PMID:22276934

  17. Dynamic properties of Indiana, Fort Knox and Utah test range limestones and Danby Marble over the stress range 1 to 20 GPa

    SciTech Connect

    Furnish, M.D.

    1994-12-01

    The responses of the following carbonate materials to shock loading and release have been measured: Indiana limestone (18% porosity; saturated and dry), Jeffersonville/Louisville Limestones (Fort Knox limestone) (variable dolomitization, low porosity), Danby Marble (essentially pure calcite; low porosity), and a limestone from the Utah Test and Training Range (low porosity, with 22% silica). Various experimental configurations were used, some optimized to yield detailed waveform information, others to yield a clean combination of Hugoniot states and release paths. All made use of velocity interferometry as a primary diagnostic. The stress range of 0 - 20 GPa was probed (in most cases, emphasizing the stress range 0 -10 GPa). The primary physical processes observed in this stress regime were material strength, porosity, and polymorphic phase transitions between the CaCO{sub 3} phases I, II, III and VI. Hydration was also a significant reaction under certain conditions. The Indiana Limestone studies in particular represent a significant addition to the low-pressure database for porous limestone. Temperature dependence and the effect of freezing were assessed for the Fort Knox limestone. Experimental parameters and detailed results are provided for the 42 impact tests in this series.

  18. Woodland dynamics at the northern range periphery: a challenge for protected area management in a changing world.

    PubMed

    Powell, Scott L; Hansen, Andrew J; Rodhouse, Thomas J; Garrett, Lisa K; Betancourt, Julio L; Dicus, Gordon H; Lonneker, Meghan K

    2013-01-01

    Managers of protected natural areas increasingly are confronted with novel ecological conditions and conflicting objectives to preserve the past while fostering resilience for an uncertain future. This dilemma may be pronounced at range peripheries where rates of change are accelerated and ongoing invasions often are perceived as threats to local ecosystems. We provide an example from City of Rocks National Reserve (CIRO) in southern Idaho, positioned at the northern range periphery of pinyon-juniper (P-J) woodland. Reserve managers are concerned about P-J woodland encroachment into adjacent sagebrush steppe, but the rates and biophysical variability of encroachment are not well documented and management options are not well understood. We quantified the rate and extent of woodland change between 1950 and 2009 based on a random sample of aerial photo interpretation plots distributed across biophysical gradients. Our study revealed that woodland cover remained at approximately 20% of the study area over the 59-year period. In the absence of disturbance, P-J woodlands exhibited the highest rate of increase among vegetation types at 0.37% yr(-1). Overall, late-successional P-J stands increased in area by over 100% through the process of densification (infilling). However, wildfires during the period resulted in a net decrease of woody evergreen vegetation, particularly among early and mid-successional P-J stands. Elevated wildfire risk associated with expanding novel annual grasslands and drought is likely to continue to be a fundamental driver of change in CIRO woodlands. Because P-J woodlands contribute to regional biodiversity and may contract at trailing edges with global warming, CIRO may become important to P-J woodland conservation in the future. Our study provides a widely applicable toolset for assessing woodland ecotone dynamics that can help managers reconcile the competing demands to maintain historical fidelity and contribute meaningfully to the U

  19. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    PubMed Central

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865

  20. Local order and long range correlations in imidazolium halide ionic liquids: a combined molecular dynamics and XAS study.

    PubMed

    Migliorati, Valentina; Serva, Alessandra; Aquilanti, Giuliana; Pascarelli, Sakura; D'Angelo, Paola

    2015-07-07

    A thorough characterization of the structural properties of alkylimidazolium halide ionic liquids (ILs), namely 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br with n = 5, 6, 8, 10) and iodide ([C6mim]I), has been carried out by combining molecular dynamics simulations and EXAFS spectroscopy. The existence of a local order in [Cnmim]Br ILs has been evidenced, with anions and imidazolium head groups forming a local three-dimensional bonding pattern that is common to all the [Cnmim]Br IL family, regardless of the length of the alkyl chain attached to the cation. On the other hand, upon alkyl chain elongation significant differences have been highlighted in the long-range structure of these ILs. Theoretical X-ray structure factors have been calculated from MD simulations and a low q peak has been found for all [Cnmim]Br ILs, indicating the existence of long-range structural correlations. The low q peak moves to smaller q values corresponding to longer distances, increases in intensity and sharpens with increasing alkyl chain length on the cation. Similarities and differences between the ion three-dimensional arrangements in [C6mim]Br and [C6mim]I were highlighted and the structural arrangement of Br(-) and I(-) was found to be different in the proximity of the most acidic hydrogen atom of the imidazolium ring: the I(-) ion is preferentially located above and below the ring plane, while the Br(-) ion has a high probability also to be coplanar with the imidazolium ring. A quantitative analysis of the Br and I K-edge EXAFS spectra of alkylimidazolium halide ILs has been carried out based on the microscopic description of the systems derived from MD simulations. A very good agreement between theoretical and experimental EXAFS signals has been obtained, allowing us to assess the reliability of the MD structural results for all the alkylimidazolium halide ILs investigated in this work.