Science.gov

Sample records for 8-hydroxyquinoline inhibits inos

  1. Tumor Cellular Proteasome Inhibition and Growth Suppression by 8-Hydroxyquinoline and Clioquinol Requires Their Capabilities to Bind Copper and Transport Copper into Cells

    PubMed Central

    Zhai, Shumei; Yang, Lei; Cui, Qiuzhi Cindy; Sun, Ying; Dou, Q. Ping; Yan, Bing

    2009-01-01

    We have previously reported that when mixed with copper, 8-hydroxyquinoline (8-OHQ) and its analog clioquinol (CQ) inhibited the proteasomal activity and proliferation in cultured human cancer cells. CQ treatment of high copper-containing human tumor xenografts also caused cancer suppression, associated with proteasome inhibition in vivo. However, the nature of copper dependence of these events has not been elucidated experimentally. In the current study, by using chemical probe molecules that mimic structures of 8-OHQ and CQ, but have no copper binding capability, we dissected the complex cellular processes elicited by 8-OHQ-Cu or CQ-Cu mixture and revealed that copper-binding to 8-OHQ or CQ is required for transportation of copper complex into human breast cancer cells and the consequent proteasome-inhibitory, growth-suppressive and apoptosis-inducing activities. In contrast, the non-copper-binding analogs of 8-OHQ or CQ blocked the very first step – copper binding in this chain of events mediated by 8-OHQ-Cu or CQ-Cu. PMID:19809836

  2. Potential levels of metal complexes of 8-hydroxyquinoline

    NASA Astrophysics Data System (ADS)

    Nishikiori, Hiromasa; Nakamura, Shogo; Natori, Daichi; Teshima, Katsuya

    2016-10-01

    The potential levels of 8-hydroxyquinoline and its titanium and zinc complexes were determined by electrochemical measurements and quantum chemical calculations. The HOMO and LUMO levels of the complexes were lower and higher than those of the iodine redox couple and titania conduction band edge, respectively. This indicated that the electrons can be transferred from the electrolyte to the titania via the complexes. The 8-hydroxyquinoline formed titanium complexes on the titania surface and formed zinc complexes in the presence of zinc ions on the surface. It is suggested that electrons were injected from the complex LUMO into the titania conduction band.

  3. Synthesis and biological activity of some 5-substituted aminomethyl-8-hydroxyquinoline-7-sulphonic acids.

    PubMed

    Yanni, A S; Mohharam, A M

    1990-01-01

    5-Aryl (or alkyl)-8-hydroxyquinoline-7-sulphonic acids have been prepared by the Mannich reaction of 8-hydroxyquinoline-7-sulphonic acid with primary and secondary amines. Their bactericidal activities have been determined.

  4. Interaction of 8-Hydroxyquinoline with Cadmium Halides in Solid State

    NASA Astrophysics Data System (ADS)

    Beg, M. A.; Ahmad, A.; Beg, Saba; Askari, Hasan

    1995-07-01

    The solid state reactions of 8-hydroxyquinoline (8-HQ) and cadmium halides (CdX2; X = Cl, Br, and I) have been studied. Each reaction follows the rate equation Xn = kt. The activation energies calculated from the progress of the reaction studied by the lateral diffusion technique are 74.55 ± 1.22, 84.65 ± 3.88, and 101.66 ± 0.93 kJ mole-1 for CdCl2-8-HQ CdBr2-8-HQ and Cdl2-8-HQ reactions, respectively. 8-HQ diffuses into cadmium halide grains by a defect mechanism; penetration to the grains is preceded by surface migration. The reactions were followed by chemical analysis, IR spectral studies, and thermal and conductivity measurements. A single addition product, [CdX2-(8-HQ)], was obtained for CdCl2 and CdBr2, whereas Cdl2 gave rise to two addition products, Cdl2-(8-HQ) and Cdl2-(8-HQ)2.

  5. The evaluation of liposome-water partitioning of 8-hydroxyquinolines and their copper complexes.

    PubMed

    Kaiser, Sibylle M; Escher, Beate I

    2006-03-15

    Bioavailability and toxicity of mixtures are urgent research issues, but usually mixtures of exclusively organic chemicals or exclusively metals are investigated. In our study, we explored the role of combinations of hydrophobic ionogenic organic compounds (HIOCs) with copper (Cu2+)for uptake and bioavailability of metals and hydrophobic metal complexes in an in vitro membrane system. We investigated the influence of the interactions of copper and 8-hydroxyquinolines, both components used in formulations of pesticides, on their partitioning into liposomes, which are model systems for biological membranes and are composed of lipid bilayers made of phosphatidylcholine. The test set of compounds comprised the parent compound 8-hydroxyquinoline and 8-hydroxyquinolines with hydrophobic (e.g., 5-chloro-8-hydroxyquinoline, 5,7-dichloro-8-hydroxyquinoline, 5,7-dibromo-8-hydroxyquinoline) and with hydrophilic (e.g., 8-hydroxyquinoline-5-sulfonic acid) substituents. Hydrophobic 8-hydroxyquinolines facilitate the passive uptake of copper into phospholipid bilayers by complex formation. Not only the neutral species of the ligands and their neutral copper ligand complexes are significantly taken up into the membrane, but also the cationic and anionic species of the ligands and the cationic complexes. The neutral, anionic, and cationic species of 8-hydroxyquinoline and the hydrophobic substituted 8-hydroxyquinolines exhibit linear correlations between their logarithmic liposome-water partitioning coefficients (log Klipw) and the logarithmic octanol-water partitioning coefficients of their neutral species (log Kow, neutral). The neutral species show the strongest partitioning followed by the anionic and cationic species. The associated quantitative structure activity relationships describing the dependency of log Klipw of the various species from log Kow, neutral of the neutral ligand species have slopes between 0.9 and 1. In contrast, the partitioning of the neutral and cationic

  6. Ring-substituted 8-hydroxyquinoline-2-carboxanilides as photosystem II inhibitors.

    PubMed

    Jampilek, Josef; Kralova, Katarina; Pesko, Matus; Kos, Jiri

    2016-08-15

    Ring-substituted 8-hydroxyquinoline-2-carboxanilides inhibited photosynthetic electron transport (PET) through photosystem (PS) II. Their inhibitory efficiency depended on the compound lipophilicity, the electronic properties of the substituent R and the position of the substituent R on the benzene ring. The most effective inhibitors showing IC50 values in the range 2.3-3.6μM were substituted in C'(3) by F, CH3, Cl and Br. The dependence of the PET-inhibiting activity on the lipophilicity of the compounds was quasi-parabolic for 3-substituted derivatives, while for C'(2) ones a slight increase and for C'(4) derivatives a sharp decrease of the activity were observed with increasing lipophilicity. In addition, the dependence of PET-inhibiting activity on electronic Hammett's σ parameter of the substituent R was observed with optimum σ value 0.06 for C'(4) and 0.34 for C'(3) substituted derivatives, while the value of σ parameter did not significantly influence the PET-inhibiting activity of C'(2) substituted compounds. Interactions of the studied compounds with chlorophyll a and aromatic amino acids present in the pigment-protein complexes mainly in PS II were documented by fluorescence spectroscopy. The section between P680 and plastoquinone QB occurring on the acceptor side of PS II can be suggested as the site of action of the compounds. PMID:27432762

  7. Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer's disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties.

    PubMed

    Fernández-Bachiller, María Isabel; Pérez, Concepción; González-Muñoz, Gema C; Conde, Santiago; López, Manuela G; Villarroya, Mercedes; García, Antonio G; Rodríguez-Franco, María Isabel

    2010-07-01

    Tacrine and PBT2 (an 8-hydroxyquinoline derivative) are well-known drugs that inhibit cholinesterases and decrease beta-amyloid (Abeta) levels by complexation of redox-active metals, respectively. In this work, novel tacrine-8-hydroxyquinoline hybrids have been designed, synthesized, and evaluated as potential multifunctional drugs for the treatment of Alzheimer's disease. At nano- and subnanomolar concentrations they inhibit human acetyl- and butyrylcholinesterase (AChE and BuChE), being more potent than tacrine. They also displace propidium iodide from the peripheral anionic site of AChE and thus could be able to inhibit Abeta aggregation promoted by AChE. They show better antioxidant properties than Trolox, the aromatic portion of vitamin E responsible for radical capture, and display neuroprotective properties against mitochondrial free radicals. In addition, they selectively complex Cu(II), show low cell toxicity, and could be able to penetrate the CNS, according to an in vitro blood-brain barrier model.

  8. Investigation of aromatase inhibitory activity of metal complexes of 8-hydroxyquinoline and uracil derivatives

    PubMed Central

    Prachayasittikul, Veda; Pingaew, Ratchanok; Nantasenamat, Chanin; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2014-01-01

    Purpose Estrogens play important roles in the pathogenesis and progression of breast cancer as well as estrogen-related diseases. Aromatase is a key enzyme in the rate-limiting step of estrogen production, in which its inhibition is one strategy for controlling estrogen levels to improve prognosis of estrogen-related cancers and diseases. Herein, a series of metal (Mn, Cu, and Ni) complexes of 8-hydroxyquinoline (8HQ) and uracil derivatives (4–9) were investigated for their aromatase inhibitory and cytotoxic activities. Methods The aromatase inhibition assay was performed according to a Gentest™ kit using CYP19 enzyme, wherein ketoconazole and letrozole were used as reference drugs. The cytotoxicity was tested on normal embryonic lung cells (MRC-5) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results Only Cu complexes (6 and 9) exhibited aromatase inhibitory effect with IC50 0.30 and 1.7 μM, respectively. Cytotoxicity test against MRC-5 cells showed that Mn and Cu complexes (5 and 6), as well as free ligand 8HQ, exhibited activity with IC50 range 0.74–6.27 μM. Conclusion Cu complexes (6 and 9) were found to act as a novel class of aromatase inhibitor. Our findings suggest that these 8HQ–Cu–uracil complexes are promising agents that could be potentially developed as a selective anticancer agent for breast cancer and other estrogen-related diseases. PMID:25152615

  9. Effect of 8-hydroxyquinoline and derivatives on human neuroblastoma SH-SY5Y cells under high glucose.

    PubMed

    Suwanjang, Wilasinee; Prachayasittikul, Supaluk; Prachayasittikul, Virapong

    2016-01-01

    8-Hydroxyquinoline and derivatives exhibit multifunctional properties, including antioxidant, antineurodegenerative, anticancer, anti-inflammatory and antidiabetic activities. In biological systems, elevation of intracellular calcium can cause calpain activation, leading to cell death. Here, the effect of 8-hydroxyquinoline and derivatives (5-chloro-7-iodo-8-hydroxyquinoline or clioquinol and 8-hydroxy-5-nitroquinoline or nitroxoline) on calpain-dependent (calpain-calpastatin) pathways in human neuroblastoma (SH-SY5Y) cells was investigated. 8-Hydroxyquinoline and derivatives ameliorated high glucose toxicity in SH-SY5Y cells. The investigated compounds, particularly clioquinol, attenuated the increased expression of calpain, even under high-glucose conditions. 8-Hydroxyquinoline and derivatives thus adversely affected the promotion of neuronal cell death by high glucose via the calpain-calpastatin signaling pathways. These findings support the beneficial effects of 8-hydroxyquinolines for further therapeutic development. PMID:27635352

  10. Effect of 8-hydroxyquinoline and derivatives on human neuroblastoma SH-SY5Y cells under high glucose

    PubMed Central

    Suwanjang, Wilasinee; Prachayasittikul, Supaluk

    2016-01-01

    8-Hydroxyquinoline and derivatives exhibit multifunctional properties, including antioxidant, antineurodegenerative, anticancer, anti-inflammatory and antidiabetic activities. In biological systems, elevation of intracellular calcium can cause calpain activation, leading to cell death. Here, the effect of 8-hydroxyquinoline and derivatives (5-chloro-7-iodo-8-hydroxyquinoline or clioquinol and 8-hydroxy-5-nitroquinoline or nitroxoline) on calpain-dependent (calpain-calpastatin) pathways in human neuroblastoma (SH-SY5Y) cells was investigated. 8-Hydroxyquinoline and derivatives ameliorated high glucose toxicity in SH-SY5Y cells. The investigated compounds, particularly clioquinol, attenuated the increased expression of calpain, even under high-glucose conditions. 8-Hydroxyquinoline and derivatives thus adversely affected the promotion of neuronal cell death by high glucose via the calpain-calpastatin signaling pathways. These findings support the beneficial effects of 8-hydroxyquinolines for further therapeutic development. PMID:27635352

  11. Effect of 8-hydroxyquinoline and derivatives on human neuroblastoma SH-SY5Y cells under high glucose

    PubMed Central

    Suwanjang, Wilasinee; Prachayasittikul, Supaluk

    2016-01-01

    8-Hydroxyquinoline and derivatives exhibit multifunctional properties, including antioxidant, antineurodegenerative, anticancer, anti-inflammatory and antidiabetic activities. In biological systems, elevation of intracellular calcium can cause calpain activation, leading to cell death. Here, the effect of 8-hydroxyquinoline and derivatives (5-chloro-7-iodo-8-hydroxyquinoline or clioquinol and 8-hydroxy-5-nitroquinoline or nitroxoline) on calpain-dependent (calpain-calpastatin) pathways in human neuroblastoma (SH-SY5Y) cells was investigated. 8-Hydroxyquinoline and derivatives ameliorated high glucose toxicity in SH-SY5Y cells. The investigated compounds, particularly clioquinol, attenuated the increased expression of calpain, even under high-glucose conditions. 8-Hydroxyquinoline and derivatives thus adversely affected the promotion of neuronal cell death by high glucose via the calpain-calpastatin signaling pathways. These findings support the beneficial effects of 8-hydroxyquinolines for further therapeutic development.

  12. Insulin inhibits hepatocyte iNOS expression induced by cytokines by an Akt-dependent mechanism.

    PubMed

    Harbrecht, Brian G; Nweze, Ikenna; Smith, Jason W; Zhang, Baochun

    2012-01-01

    Hepatocyte inducible nitric oxide synthese (iNOS) expression is a tightly controlled pathway that mediates hepatic inflammation and hepatocyte injury in a variety of disease states. We have shown that cyclic adenosine monophosphate (cAMP) regulates cytokine-induced hepatocyte iNOS expression through mechanisms that involve protein kinase B/Akt. We hypothesized that insulin, which activates Akt signaling in hepatocytes, as well as signaling through p38 and MAPK p42/p44, would regulate iNOS expression during inflammation. In primary rat hepatocytes, insulin inhibited cytokine-stimulated nitrite accumulation and iNOS expression in a dose-dependent manner. Inhibition of MAPK p42/p44 with PD98059 had no effect on iNOS activation, whereas SB203580 to block p38 reversed insulin's inhibitory effect. However, insulin did not increase p38 activation and inhibition of p38 signaling with a dominant negative p38 plasmid had no effect on cytokine- or insulin-mediated effects on iNOS. We found that SB203580 blocked insulin-induced Akt activation. Inhibition of Akt signaling with LY294002 or a dominant negative Akt plasmid increased cytokine-stimulated nitrite production and iNOS protein expression and blocked the inhibitory effects of insulin. NF-κB induces iNOS expression and can be regulated by Akt, but insulin had no effect on cytokine-mediated IκBα levels or NF-κB p65 translocation. Our data demonstrate that insulin inhibits cytokine-stimulated hepatocyte iNOS expression and does so through effects on Akt-mediated signaling. PMID:22038823

  13. Quantitative High-Throughput Screening Identifies 8-Hydroxyquinolines as Cell-Active Histone Demethylase Inhibitors

    PubMed Central

    Kawamura, Akane; Rose, Nathan R.; Ng, Stanley S.; Quinn, Amy M.; Rai, Ganesha; Mott, Bryan T.; Beswick, Paul; Klose, Robert J.; Oppermann, Udo; Jadhav, Ajit; Heightman, Tom D.; Maloney, David J.; Schofield, Christopher J.; Simeonov, Anton

    2010-01-01

    Background Small molecule modulators of epigenetic processes are currently sought as basic probes for biochemical mechanisms, and as starting points for development of therapeutic agents. Nε-Methylation of lysine residues on histone tails is one of a number of post-translational modifications that together enable transcriptional regulation. Histone lysine demethylases antagonize the action of histone methyltransferases in a site- and methylation state-specific manner. Nε-Methyllysine demethylases that use 2-oxoglutarate as co-factor are associated with diverse human diseases, including cancer, inflammation and X-linked mental retardation; they are proposed as targets for the therapeutic modulation of transcription. There are few reports on the identification of templates that are amenable to development as potent inhibitors in vivo and large diverse collections have yet to be exploited for the discovery of demethylase inhibitors. Principal Findings High-throughput screening of a ∼236,000-member collection of diverse molecules arrayed as dilution series was used to identify inhibitors of the JMJD2 (KDM4) family of 2-oxoglutarate-dependent histone demethylases. Initial screening hits were prioritized by a combination of cheminformatics, counterscreening using a coupled assay enzyme, and orthogonal confirmatory detection of inhibition by mass spectrometric assays. Follow-up studies were carried out on one of the series identified, 8-hydroxyquinolines, which were shown by crystallographic analyses to inhibit by binding to the active site Fe(II) and to modulate demethylation at the H3K9 locus in a cell-based assay. Conclusions These studies demonstrate that diverse compound screening can yield novel inhibitors of 2OG dependent histone demethylases and provide starting points for the development of potent and selective agents to interrogate epigenetic regulation. PMID:21124847

  14. Structure and simulation of a Zundel ion stabilized by 8-hydroxyquinoline-5, 7 disulphonic acid

    NASA Astrophysics Data System (ADS)

    Venkatakrishnan, Hasthi Annapurna; Venkatakrishnan, Ramaseshan; Pennathur, Anuj Krishnasundar; Pennathur, Gautam

    2016-07-01

    8-hydroxyquinoline-5, 7 disulphonic was synthesized and recrystallized in methanol to strip away molecules of water. The structure of the molecule revealed that Zundel ion was stabilized in the crystal. Ab-initio molecular dynamics simulation was then carried out to understand the dynamics of proton hopping in this complex. During the course of simulation, the Zundel ion coordinates with a water molecule to form an open H7O3+ structure. This transition state structure de-solvated rapidly forming Zundel ion facilitating proton hopping in the first solvation shell. One of the sulphonic acid groups in the 5 or 7 position of the 8-hydroxyquinoline 5,7 disulphonic acid bonds with the Zundel ion favoring the proton to be transferred to the nearby water molecule through the formation of proton defects. The simulation results support the structural diffusion mechanism and that charged complex migrates through the hydrogen bond network.

  15. Catalysis by manganese (III) 8-hydroxyquinolinates of the chemiluminescent reaction of luminol with hydrogen peroxide

    SciTech Connect

    Kalinichenko, I.E.; Matveeva, E.Y.; Pilipenko, A.T.

    1985-09-01

    This paper examines the kinetics of the reaction of luminol with H/sub 2/O/sub 2/ in the presence of Mn (III) 8-hydroxyquinolinate according to the data of measurements of the chemiluminescence intensity and the yield of light in this reaction. A reaction mechanism was proposed, providing for the oxidation of luminol by complexes of Mn (IV) that are formed in the decoposition of H/sub 2/O/sub 2/.

  16. Characterization of 8-hydroxyquinoline derivatives containing aminobenzothiazole as inhibitors of dengue virus type 2 protease in vitro

    PubMed Central

    Lai, Huiguo; Prasad, G. Sridhar; Padmanabhan, Radhakrishnan

    2013-01-01

    Four serotypes of Dengue virus (DENV1–4), mosquito-borne members of Flaviviridae family cause frequent epidemics causing considerable morbidity and mortality in humans throughout tropical regions of the world. There is no vaccine or antiviral therapeutics available for human use. In a previous study, we reported that compounds containing the 8-hydroxyquinoline (8-HQ) scaffold as inhibitors of West Nile virus serine protease. In this study, we analyzed potencies of some compounds with (8-HQ)-aminobenzothiazole derivatives for inhibition of DENV2 protease in vitro. We identified analogs 1–4 with 2-aminothiazole or 2-aminobenzothiazole scaffold with submicromolar potencies (IC50) in the in vitro protease assays. The kinetic constant (Ki) for the most potent 8-HQ-aminobenzothiazoleinhibitor (compound 1) with an IC50 value of 0.91 ± 0.05 µM was determined to be 2.36 ± 0.13 µM. This compound inhibits the DENV2 NS2B/NS3pro by a competitive mode of inhibition. PMID:23127365

  17. Intensity and temperature-dependent photoluminescence of tris (8-hydroxyquinoline) aluminum films

    SciTech Connect

    Ajward, A. M.; Wang, X.; Wagner, H. P.

    2013-12-04

    We investigate the recombination of excitons in tris (8-hydroxyquinoline) aluminum films by intensity and temperature dependent time-resolved photoluminescence (PL). At low temperature (15 K) and elevated excitation intensity the radiative emission is quenched by singlet-singlet annihilation processes. With rising temperature the PL quenching is strongly reduced resulting in a PL efficiency maximum at ∼170 K. The reduced exciton annihilation is attributed to thermally activated occupation of non-quenchable trapped exciton states. Above 170 K the PL efficiency decreases due to thermal de-trapping of radiative states and subsequent migration to non-radiative centers.

  18. 8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications

    PubMed Central

    Prachayasittikul, Veda; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2013-01-01

    Metal ions play an important role in biological processes and in metal homeostasis. Metal imbalance is the leading cause for many neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. 8-Hydroxyquinoline (8HQ) is a small planar molecule with a lipophilic effect and a metal chelating ability. As a result, 8HQ and its derivatives hold medicinal properties such as antineurodegenerative, anticancer, antioxidant, antimicrobial, anti-inflammatory, and antidiabetic activities. Herein, diverse bioactivities of 8HQ and newly synthesized 8HQ-based compounds are discussed together with their mechanisms of actions and structure–activity relationships. PMID:24115839

  19. 8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications.

    PubMed

    Prachayasittikul, Veda; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2013-01-01

    Metal ions play an important role in biological processes and in metal homeostasis. Metal imbalance is the leading cause for many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. 8-Hydroxyquinoline (8HQ) is a small planar molecule with a lipophilic effect and a metal chelating ability. As a result, 8HQ and its derivatives hold medicinal properties such as antineurodegenerative, anticancer, antioxidant, antimicrobial, anti-inflammatory, and antidiabetic activities. Herein, diverse bioactivities of 8HQ and newly synthesized 8HQ-based compounds are discussed together with their mechanisms of actions and structure-activity relationships.

  20. Electrochemiluminescence of tris(8-hydroxyquinoline-5-sulfonic acid)aluminum(III) in aqueous solution.

    PubMed

    Muegge, Brian D; Brooks, Sean; Richter, Mark M

    2003-03-01

    The electrochemiluminescence (ECL) of tris(8-hydroxyquinoline-5-sulfonic acid)aluminum(III) in aqueous solution is reported. ECL is generated by complexing aluminum ions with the chelating agent 8-hydroxyquinoline-5-sulfonic acid (HQS) to form Al(HQS)3, followed by oxidation in the presence of tri-n-propylamine (TPrA). The ECL intensity peaks a potential corresponding to oxidation of both TPrA and Al(HQS)3, and the ECL emission spectrum (lambda(max) = 499 nm) matches the photoluminescence emission spectrum, indicating that the emission is from a Al(HQS)3* excited state. ECL efficiencies (phi(ecl), photons generated per redox event) of 0.002 using Ru(bpy)3(2+) (phi(ecl) = 1) as relative standard. Conditions for ECL emission were optimized and used to generate a calibration curve that was linear over the 7 x 10(-6)-4 x 10(-4) M (5-281 mg/L (ppm)) range with a theoretical limit of detection of 1 ppm. The ECL of several metal ions other than aluminum with HQS and effects on Al(HQS)3 ECL were also examined.

  1. Understanding M-ligand bonding and mer-/fac-isomerism in tris(8-hydroxyquinolinate) metallic complexes.

    PubMed

    Lima, Carlos F R A C; Taveira, Ricardo J S; Costa, José C S; Fernandes, Ana M; Melo, André; Silva, Artur M S; Santos, Luís M N B F

    2016-06-28

    Tris(8-hydroxyquinolinate) metallic complexes, Mq3, are one of the most important classes of organic semiconductor materials. Herein, the nature of the chemical bond in Mq3 complexes and its implications on their molecular properties were investigated by a combined experimental and computational approach. Various Mq3 complexes, resulting from the alteration of the metal and substitution of the 8-hydroxyquinoline ligand in different positions, were prepared. The mer-/fac-isomerism in Mq3 was explored by FTIR and NMR spectroscopy, evidencing that, irrespective of the substituent, mer- and fac-are the most stable molecular configurations of Al(iii) and In(iii) complexes, respectively. The relative M-ligand bond dissociation energies were evaluated experimentally by electrospray ionization tandem mass spectrometry (ESI-MS-MS), showing a non-monotonous variation along the group (Al > In > Ga). The results reveal a strong covalent character in M-ligand bonding, which allows for through-ligand electron delocalization, and explain the preferred molecular structures of Mq3 complexes as resulting from the interplay between bonding and steric factors. The mer-isomer reduces intraligand repulsions, being preferred for smaller metals, while the fac-isomer is favoured for larger metals where stronger covalent M-ligand bonds can be formed due to more extensive through-ligand conjugation mediated by metal "d" orbitals. PMID:27273193

  2. Understanding M-ligand bonding and mer-/fac-isomerism in tris(8-hydroxyquinolinate) metallic complexes.

    PubMed

    Lima, Carlos F R A C; Taveira, Ricardo J S; Costa, José C S; Fernandes, Ana M; Melo, André; Silva, Artur M S; Santos, Luís M N B F

    2016-06-28

    Tris(8-hydroxyquinolinate) metallic complexes, Mq3, are one of the most important classes of organic semiconductor materials. Herein, the nature of the chemical bond in Mq3 complexes and its implications on their molecular properties were investigated by a combined experimental and computational approach. Various Mq3 complexes, resulting from the alteration of the metal and substitution of the 8-hydroxyquinoline ligand in different positions, were prepared. The mer-/fac-isomerism in Mq3 was explored by FTIR and NMR spectroscopy, evidencing that, irrespective of the substituent, mer- and fac-are the most stable molecular configurations of Al(iii) and In(iii) complexes, respectively. The relative M-ligand bond dissociation energies were evaluated experimentally by electrospray ionization tandem mass spectrometry (ESI-MS-MS), showing a non-monotonous variation along the group (Al > In > Ga). The results reveal a strong covalent character in M-ligand bonding, which allows for through-ligand electron delocalization, and explain the preferred molecular structures of Mq3 complexes as resulting from the interplay between bonding and steric factors. The mer-isomer reduces intraligand repulsions, being preferred for smaller metals, while the fac-isomer is favoured for larger metals where stronger covalent M-ligand bonds can be formed due to more extensive through-ligand conjugation mediated by metal "d" orbitals.

  3. Novel Fluorinated 8-Hydroxyquinoline Based Metal Ionophores for Exploring the Metal Hypothesis of Alzheimer’s Disease

    PubMed Central

    2015-01-01

    Zinc, copper, and iron ions are involved in amyloid-beta (Aβ) deposition and stabilization in Alzheimer’s disease (AD). Consequently, metal binding agents that prevent metal-Aβ interaction and lead to the dissolution of Aβ deposits have become well sought therapeutic and diagnostic targets. However, direct intervention between diseases and metal abnormalities has been challenging and is partially attributed to the lack of a suitable agent to determine and modify metal concentration and distribution in vivo. In the search of metal ionophores, we have identified several promising chemical entities by strategic fluorination of 8-hydroxyquinoline drugs, clioquinol, and PBT2. Compounds 15–17 and 28–30 showed exceptional metal ionophore ability (6–40-fold increase of copper uptake and >2-fold increase of zinc uptake) and inhibition of zinc induced Aβ oligomerization (EC50s < ∼5 μM). These compounds are suitable for further development as drug candidates and/or positron emission tomography (PET) biomarkers if radiolabeled with 18F. PMID:26396692

  4. Multifunctional 8-hydroxyquinoline-appended cyclodextrins as new inhibitors of metal-induced protein aggregation.

    PubMed

    Oliveri, Valentina; Attanasio, Francesco; Puglisi, Antonino; Spencer, John; Sgarlata, Carmelo; Vecchio, Graziella

    2014-07-14

    Mounting evidence suggests a pivotal role of metal imbalances in protein misfolding and amyloid diseases. As such, metal ions represent a promising therapeutic target. In this context, the synthesis of chelators that also contain complementary functionalities to combat the multifactorial nature of neurodegenerative diseases is a highly topical issue. We report two new 8-hydroxyquinoline-appended cyclodextrins and highlight their multifunctional properties, including their Cu(II) and Zn(II) binding abilities, and capacity to act as antioxidants and metal-induced antiaggregants. In particular, the latter property has been applied in the development of an effective assay that exploits the formation of amyloid fibrils when β-lactoglobulin A is heated in the presence of metal ions.

  5. Fluorescence quenching determination of metallothioneins using 8-hydroxyquinoline-5-sulphonic acid-Cd(II) chelate.

    PubMed

    Qian, Qiu-Mei; Wang, Yong-Sheng; Zhou, Bin; Xue, Jin-Hua; Li, Le; Wang, Yong-Song; Wang, Jia-Cheng; Yin, Ji-Cheng; Liu, Shan-Du; Zhao, Hui; Liu, Hui

    2014-01-24

    A novel method for the determination of metallothioneins (MTs) in urine was developed by fluorescence quenching strategy. The response signals linearly correlated with the concentration of MTs in the ranges of 3.12×10(-8)-1.23×10(-6) mol L(-1), and the limit of detection (LOD) was 9.36×10(-9) mol L(-1). The proposed method avoids the label and derivatization steps in common methods, and is reliable, inexpensive and sensitive. Furthermore, the interaction of MTs and 8-hydroxyquinoline-5-sulphonic acid (HQS)-Cd(II) chelate was investigated, and a static quenching mode was proposed to be primarily responsible for the fluorescence quenching event. It could provide a promising potential for the detection of the biomacromolecules which have no native fluorescence, and be benefit to extend the application of fluorescence strategy.

  6. Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats.

    PubMed

    Wang, Weizheng W; Smith, Darcey L H; Zucker, Stephen D

    2004-08-01

    The inducible isoform of heme oxygenase (HO), HO-1, has been shown to play an important role in attenuating tissue injury. Because HO-1 catalyzes the rate-limiting step in bilirubin synthesis, we examined the hypothesis that bilirubin is a key mediator of HO-1 cytoprotection, employing a rat model of endotoxemia. Bilirubin treatment resulted in improved survival and attenuated liver injury in response to lipopolysaccharide infusion. Serum levels of NO and tumor necrosis factor alpha, key mediators of endotoxemia, and hepatic inducible nitric oxide synthase (iNOS) expression were significantly lower in bilirubin-treated rodents versus control animals. Both intraperitoneal and local administration of bilirubin also was found to ameliorate hindpaw inflammation induced by the injection of lambda-carrageenan. Consistent with in vivo results, bilirubin significantly inhibited iNOS expression and suppressed NO production in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages. In contrast, bilirubin treatment induced a threefold increase in LPS-mediated prostaglandin synthesis in the absence of significant changes in cyclooxygenase expression or activity, suggesting that bilirubin enhances substrate availability for eicosanoid synthesis. Bilirubin had no effect on LPS-mediated activation of nuclear factor kappaB or p38 mitogen-activated protein kinase, consistent with a nuclear factor kappaB-independent mechanism of action. Taken together, these data support a cytoprotective role for bilirubin that is mediated, at least in part, through the inhibition of iNOS expression and, potentially, through stimulation of local prostaglandin E2 production. In conclusion, our findings suggest a role for bilirubin in mollifying tissue injury in response to inflammatory stimuli and support the possibility that the phenomenon of "jaundice of sepsis" represents an adaptive physiological response to endotoxemia. Supplementary material for this article can be found on the

  7. Structure-based design, synthesis, and SAR evaluation of a new series of 8-hydroxyquinolines as HIF-1alpha prolyl hydroxylase inhibitors.

    PubMed

    Warshakoon, Namal C; Wu, Shengde; Boyer, Angelique; Kawamoto, Richard; Sheville, Justin; Renock, Sean; Xu, Kevin; Pokross, Matthew; Zhou, Songtao; Winter, Carol; Walter, Richard; Mekel, Marlene; Evdokimov, Artem G

    2006-11-01

    A new series of potent 8-hydroxyquinolines was designed based on the newly resolved X-ray crystal structure of EGLN-1. Both alkyl and aryl 8-hydroxyquinoline-7-carboxyamides were good HIF-1alpha prolyl hydroxylase (EGLN) inhibitors. In subsequent VEGF induction assays, these exhibited potent VEGF activity. In addition, this class of compounds did show the ability to stabilize HIF-1alpha.

  8. A spectrofluorimetric method for cysteine and glutathione using the fluorescence system of Zn(II)-8-hydroxyquinoline-5-sulphonic acid complex.

    PubMed

    Wang, H; Wang, W S; Zhang, H S

    2001-10-01

    The addition of thiol compounds to the fluorescence system of Zn(II)-8-hydroxyquinoline-5-sulphonic acid complex (Zn(II)-HQS) in H3BO3-Na2B4O7 buffer (pH 8.50) solution led to immediate fluorescence inhibition, which was proportional to their amounts. Based on this finding, a novel spectrofluorimetric method for the determination of cysteine (Cys) and reduced glutathione (GSH) has been developed. The detection limits were 17 ng ml(-1) and 0.6 microg ml(-1), respectively. Most amino acids had no interference at high concentrations. The proposed method has been applied to the determination of Cys in protein hydrolysate and cystine electrolyte, and GSH in human blood serum with recoveries of 95.6-104.5%.

  9. Development of a Direct and Continuous Phospholipase D Assay Based on the Chelation-Enhanced Fluorescence Property of 8-Hydroxyquinoline.

    PubMed

    Rahier, Renaud; Noiriel, Alexandre; Abousalham, Abdelkarim

    2016-01-01

    Through its production of phosphatidic acid (PA), phospholipase D (PLD) is strongly involved in vesicular trafficking and cell signaling, making this enzyme an important therapeutic target. However, most PLD assays developed so far are either discontinuous or based on the indirect determination of choline released during PLD-catalyzed phosphatidylcholine hydrolysis, making its kinetic characterization difficult. We present here the development of a direct, specific, and continuous PLD assay that is based on the chelation-enhanced fluorescence property of 8-hydroxyquinoline (8HQ) following Ca(2+) complexation with PLD-generated PA. The real-time fluorescence intensity from 8HQ/Ca(2+)/PA complexes can be converted to concentrations of product using a calibration curve, with a detection limit of 1.2 μM of PA on a microplate scale, thus allowing measurement of the PLD-catalyzed reaction rate parameters. Hence, this assay is well adapted for studying the substrate specificity of PLD, together with its kinetic parameters, using natural phospholipids with various headgroups. In addition, the assay was found to be effective in monitoring the competitive inhibition of PA formation in the production of phosphatidylalcohols following the addition of primary alcohols, such as ethanol, propan-1-ol, or butan-1-ol. Finally, this assay was validated using the purified recombinant Vigna unguiculata PLD, as well as the PLD from Streptomyces chromofuscus, cabbage, or peanuts, and no PA production could be detected using phospholipase A1, phospholipase A2, or phospholipase C, allowing for a reliable determination of PLD activity in crude protein extract samples. This easy to handle PLD assay constitutes, to our knowledge, the first direct and continuous PA determination method on a microplate scale. PMID:26636829

  10. Acacia ferruginea inhibits inflammation by regulating inflammatory iNOS and COX-2.

    PubMed

    Sakthivel, Kunnathur Murugesan; Guruvayoorappan, Chandrasekaran

    2016-01-01

    Inflammation is a local defensive reaction of a host to cellular injury or infection. Prolonged inflammation can contribute to pathogenesis of many disorders. Identification of naturally occurring phytoconstituents that can suppress inflammatory mediators can lead to the discovery of anti-inflammatory therapeutics. Acacia ferruginea is used traditionally to treat numerous ailments including hemorrhage, irritable bowel syndrome and leprosy. The present study evaluated the anti-inflammatory activity of A. ferruginea extract against acute (carrageenan) and chronic (formaldehyde) inflammation in Balb/c mice. Pre-treatment with A. ferruginea extract (10 mg/kg BW) for 5 consecutive days via intraperitonial (IP) administration significantly inhibited subsequent induction of paw edema in both models; the effects were comparable to that of the standard drug indomethacin. The results also showed the A. ferruginea extract significantly inhibited nitric oxide (NO) synthesis and iNOS expression (as measured in serum), diminished inflammation in - and neutrophil infiltration to - the paw tissues and led to a reduction in the number of COX-2(+) immunoreative cells (as evidenced by histologic and immunohistochemical analyses) in the paws relative to those in paws of mice that received the irritants only. Further, in vitro studies showed the extract could significantly scavenge free radicals generated as in DPPH and NO radical generating assays. Taken together, the results showed that A. ferruginea extract imparted potent anti-oxidant and -inflammatory effects, in part by maintaining oxidative homeostasis, inhibiting NO synthesis and suppressing iNOS and COX-2 expression and so could potentially be exploited as a potential plant-based medication against inflammatory disorders.

  11. Fluorescent complexes of nucleic acids/8-hydroxyquinoline/lanthanum(III) and the fluorometry of nucleic acids

    SciTech Connect

    Cheng Zhi Huang; Ke An Li; Shen Yang Tong

    1996-07-01

    The ternary fluorescent complexes of nucleic acids/8-hydroxyquinoline/lanthanum (III) were studied. Nucleic acids in the study involve natured and thermally denatured calf thymus DNA, fish sperm DNA and yeast RNA. In the range of PH 8.0-8.4 (controlled by NH{sub 3}-NH{sub 4}Cl buffer) ternary fluorescent complexes are formed which emit at 485.0 nm for calf thymus DNA and at 480.0 nm for fish sperm DNA when excited at 265.0 nm. Based on the fluorescence reactions sensitive fluorometric methods for nucleic acids were proposed. Using optimal conditions, the calibration curves were linear in the range of 0.4 --3.6 {mu}g{sup .}ml{sup -1} for calf thymus DNA, 0.4 -- 4.0 {mu}g{sup .}ml{sup -1} for fish sperm DNA and 0.4 --4.0{mu}g{sup .}ml{sup -1} for yeast RNA, respectively. Five synthetic samples were determined with satisfaction.

  12. Self-assembly of 2-aldehyde-8-hydroxyquinolinate-based lanthanide complexes and NIR luminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Meiqi; Li, Hongfeng; Chen, Peng; Sun, Wenbin; Zhang, Lei; Yan, Pengfei

    2015-02-01

    Self-assembly reaction of 2-aldehyde-8-hydroxyquinoline, tris(hydroxymethyl)aminomethane and LnCl3ṡ6H2O affords a series of mononuclear lanthanide complexes Ce(baho)2·Et2O (1) (H2baho = 2,8-bis(2-(8-hydroxylquinolinyl))-1-aza-5-hydroxymethyl-3,7-dioxabicyclo[3.3.0]octane), Dy(nhm)2Cl·0.5H2O (2) and Ln(nhm)2Cl·0.5C6H14 (Ln = Ho (3), Er (4), Yb (5) and Hnhm = N-(2-(8-hydroxylquinolinyl)methylene)(trishydroxymethyl)methylamine. The crystal structures have been determined by X-ray crystallographic analysis, and the tetravalence of Ce in 1 has been proven by XPS. Interestingly, the positive charge of Ce4+ ion in 1 is neutralized by two deprotonated baho2- ligands, while two deprotonated nhm- ligands and one Cl- compensate the positive charge of Ln3+ ions in 2-5. Complex 5 exhibit essential NIR luminescence of Yb3+ ion with lifetime of 17.64 μs in solid and 9.96 μs in CH3OH solution.

  13. Five 8-hydroxyquinolinate-based coordination polymers with tunable structures and photoluminescent properties for sensing nitroaromatics.

    PubMed

    Zhang, Liyan; Sun, Liying; Li, Xinyuan; Tian, Yulan; Yuan, Guozan

    2015-01-01

    Using two 8-hydroxyquinolinate ligands (L1-MOM and L2-MOM) containing 3-pyridyl or 4-pyridyl groups, five novel coordination polymers, namely, [Zn3(L1)6] (1), [Zn(L1)2]·2MeOH (2), [Zn(L2)2] (3), [Cd(L2)2] (4), and [Cd4(L1)6]·13H2O (5), were synthesized and characterized by a variety of techniques. Single-crystal X-ray structures have revealed that these coordination polymers exhibit a structural diversification due to the different choices of metal salts and the effect of pyridyl nitrogen position. Compounds 1-5 exhibited different fluorescence emissions and lifetimes upon excitation in the solid state. The sensing behavior of these polymers was also investigated upon exposure to vapors of various nitroaromatic molecules (analytes). The results show that all five polymers are capable of sensing these nitroaromatic molecules in the vapor phase through fluorescence quenching. Interestingly, 3 exhibits superior sensitivity to the analytes in comparison with other polymers. 2-Nitrotoluene quenches the emission of 3 by as much as 96%.

  14. Synthesis and electroluminescence properties of tris-[5-choloro-8-hydroxyquinoline] aluminum Al(5-Clq)3

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Bhargava, Parag; Srivastava, Ritu; Tyagi, Priyanka

    2015-06-01

    A new electroluminescent material tris-[5-choloro-8-hydroxyquinoline] aluminum has been synthesized and characterized. Solution of this material Al(5-Clq)3 in toluene showed absorption maxima at 385 nm which was attributed to the moderate energy (π-π*) transitions of the aromatic rings. The photoluminescence spectrum of Al(5-Clq)3 in toluene solution showed a peak at 522 nm. This material shows thermal stability up to 400 °C. The structure of the device is ITO/0.4 wt%F4-TCNQ doped α-NPD (35 nm) / Al(5-Clq)3 (30 nm) / BCP (6 nm) / Alq3 (30 nm) / LiF (1 nm) / Al (150 nm). This device exhibited a luminescence peak at 585 nm (CIE coordinates, x = 0.39, y = 0.50). The maximum luminescence of the device was 920 Cd/m2 at 25 V. The maximum current efficiency of OLED was 0.27 Cd/A at 20 V and maximum power efficiency was 0.04 lm/W at 18 V.

  15. Energy transfer ultraviolet photodetector with 8-hydroxyquinoline derivative-metal complexes as acceptors

    NASA Astrophysics Data System (ADS)

    Wu, Shuang-Hong; Li, Wen-Lian; Chen, Zhi; Li, Shi-Bin; Wang, Xiao-Hui; Wei, Xiong-Bang

    2015-02-01

    We choose 8-hydroxyquinoline derivative-metal complexes (Beq, Mgq, and Znq) as the acceptors (A) and 4,4',4”-tri-(2-methylphenyl phenylamino) triphenylaine (m-MTDATA) as the donor (D) respectively to study the existing energy transfer process in the organic ultraviolet (UV) photodetector (PD), which has an important influence on the sensitivity of PDs. The energy transfer process from D to A without exciplex formation is discussed, differing from the working mechanism of previous PDs with Gaq [Zisheng Su, Wenlian Li, Bei Chu, Tianle Li, Jianzhuo Zhu, Guang Zhang, Fei Yan, Xiao Li, Yiren Chen and Chun-Sing Lee 2008 Appl. Phys. Lett. 93 103309)] and REq [J. B. Wang, W. L. Li, B. Chu, L. L. Chen, G. Zhang, Z. S. Su, Y. R. Chen, D. F. Yang, J. Z. Zhu, S. H. Wu, F. Yan, H. H. Liu, C. S. Lee 2010 Org. Electron. 11 1301] used as an A material. Under 365-nm UV irradiation with an intensity of 1.2 mW/cm2, the m-MTDATA:Beq blend device with a weight ratio of 1:1 shows a response of 192 mA/W with a detectivity of 6.5× 1011 Jones, which exceeds those of PDs based on Mgq (146 mA/W) and Znq (182 mA/W) due to better energy level alignment between m-MTDATA/Beq and lower radiative decay. More photophysics processes of the PDs involved are discussed in detail. Project supported by the National Natural Science Foundation of China (Grant Nos. 61371046, 61405026, 61474016, and 61421002) and China Postdoctoral Science Foundation (Grant No. 2014M552330).

  16. Structural and photophysical studies on gallium(III) 8-hydroxyquinoline-5-sulfonates. Does excited state decay involve ligand photolabilisation?

    PubMed

    Ramos, M Luísa; de Sousa, Andreia R E; Justino, Licínia L G; Fonseca, Sofia M; Geraldes, Carlos F G C; Burrows, Hugh D

    2013-03-14

    Multinuclear ((1)H, (13)C and (71)Ga) magnetic resonance spectroscopy (1D and 2D), DFT calculations and luminescence techniques have been used to study 8-hydroxyquinoline-5-sulfonate (8-HQS) and its complexes with Ga(III) in aqueous solutions. The study combines the high sensitivity of luminescence techniques and the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to obtain a complete understanding of the complexation between the Ga(3+) ion and 8-HQS, and how this influences the luminescence behaviour. A full speciation study has been performed on this system and three complexes detected, with (metal : ligand) 1 : 1, 1 : 2 and 1 : 3 stoichiometries, the results being consistent with those previously found for the system Al(III)-8-HQS. Complexation in these systems is relevant to their potential biomedical, sensing and optoelectronic applications. On binding to Ga(III), a marked increase is seen in the intensity of the 8-HQS fluorescence band, which is accompanied by changes in the absorption spectra. These support the use of 8-HQS as a sensitive fluorescent sensor to detect Ga(3+) metal ions in surface waters, biological fluids, etc., and its metal complexes as an emitting or charge transport layer in light emitting devices. However, the fluorescence quantum yield of the Ga(III)-8-HQS 1 : 3 complex is about 35% of that of the corresponding system with Al(III). Although this may be due in part to a heavy atom effect favouring S(1)→ T(1) intersystem crossing with Ga(3+), this does not agree with transient absorption measurements on the triplet state yield, which is lower with the Ga(III) system than with Al(III). Instead, it is suggested that photolabilisation of ligand exchange plays a major role in nonradiative decay of the excited state and that this is more efficient with the Ga(3+) complex. Based on these results, suggestions are made of ways of enhancing fluorescence

  17. Structural and photophysical studies on gallium(III) 8-hydroxyquinoline-5-sulfonates. Does excited state decay involve ligand photolabilisation?

    PubMed

    Ramos, M Luísa; de Sousa, Andreia R E; Justino, Licínia L G; Fonseca, Sofia M; Geraldes, Carlos F G C; Burrows, Hugh D

    2013-03-14

    Multinuclear ((1)H, (13)C and (71)Ga) magnetic resonance spectroscopy (1D and 2D), DFT calculations and luminescence techniques have been used to study 8-hydroxyquinoline-5-sulfonate (8-HQS) and its complexes with Ga(III) in aqueous solutions. The study combines the high sensitivity of luminescence techniques and the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to obtain a complete understanding of the complexation between the Ga(3+) ion and 8-HQS, and how this influences the luminescence behaviour. A full speciation study has been performed on this system and three complexes detected, with (metal : ligand) 1 : 1, 1 : 2 and 1 : 3 stoichiometries, the results being consistent with those previously found for the system Al(III)-8-HQS. Complexation in these systems is relevant to their potential biomedical, sensing and optoelectronic applications. On binding to Ga(III), a marked increase is seen in the intensity of the 8-HQS fluorescence band, which is accompanied by changes in the absorption spectra. These support the use of 8-HQS as a sensitive fluorescent sensor to detect Ga(3+) metal ions in surface waters, biological fluids, etc., and its metal complexes as an emitting or charge transport layer in light emitting devices. However, the fluorescence quantum yield of the Ga(III)-8-HQS 1 : 3 complex is about 35% of that of the corresponding system with Al(III). Although this may be due in part to a heavy atom effect favouring S(1)→ T(1) intersystem crossing with Ga(3+), this does not agree with transient absorption measurements on the triplet state yield, which is lower with the Ga(III) system than with Al(III). Instead, it is suggested that photolabilisation of ligand exchange plays a major role in nonradiative decay of the excited state and that this is more efficient with the Ga(3+) complex. Based on these results, suggestions are made of ways of enhancing fluorescence

  18. Antimicrobial Activity of Metal & Metal Oxide Nanoparticles Interfaced With Ligand Complexes Of 8-Hydroxyquinoline And α-Amino Acids

    NASA Astrophysics Data System (ADS)

    Bhanjana, Gaurav; Kumar, Neeraj; Thakur, Rajesh; Dilbaghi, Neeraj; Kumar, Sandeep

    2011-12-01

    Antimicrobial nanotechnology is a recent addition to the fight against disease causing organisms, replacing heavy metals and toxins. In the present work, mixed ligand complexes of metals like zinc, silver etc. and metal oxide have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and N-and/O-donor amino acids such as L-serine, L-alanine, glycine, cysteine and histidine as secondary ligands. These complexes were characterized using different spectroscopic techniques. The complexes were tested for antifungal and antibacterial activity by using agar well diffusion bioassay.

  19. Theoretical determination of the p Kas of the 8-hydroxyquinoline-5-sulfonic acid: A DFT based approach

    NASA Astrophysics Data System (ADS)

    Le Bahers, Tangui; Adamo, Carlo; Ciofini, Ilaria

    2009-04-01

    The three acid dissociation constants (p Kas) of the 8-hydroxyquinoline-5-sulfonic acid were computed using a computational protocol based on Density Functional Theory. A hybrid exchange correlation functional was applied and bulk solvent effects were treated within the framework of the Polarizable Continuum Model. Direct solute-solvent interactions were taken into account adding explicit water molecules. The computed p Kas are in line with the experimental data and allow better defining the first p Ka, confirmed to be negative. From the calculated p Kas, 'ab initio' distribution diagrams of the relative concentration of the different species in solution as a function of pH were drawn.

  20. Studies on the growth, structural, optical, mechanical properties of 8-hydroxyquinoline single crystal by vertical Bridgman technique

    SciTech Connect

    Prabhakaran, SP.; Babu, R. Ramesh; Velusamy, P.; Ramamurthi, K.

    2011-11-15

    Highlights: {yields} Growth of bulk single crystal of 8-hydroxyquinoline (8-HQ) by vertical Bridgman technique for the first time. {yields} The crystalline perfection is reasonably good. {yields} The photoluminescence spectrum shows that the material is suitable for blue light emission. -- Abstract: Single crystal of organic nonlinear optical material, 8-hydroxyquinoline (8-HQ) of dimension 52 mm (length) x 12 mm (dia.) was grown from melt using vertical Bridgman technique. The crystal system of the material was confirmed by powder X-ray diffraction analysis. The crystalline perfection of the grown crystal was examined by high-resolution X-ray diffraction study. Low angular spread around 400'' of the diffraction curve and the low full width half maximum values show that the crystalline perfection is reasonably good. The recorded photoluminescence spectrum shows that the material is suitable for blue light emission. Optical transmittance for the UV and visible region was measured and mechanical strength was estimated from Vicker's microhardness test along the growth face of the grown crystal.

  1. Comparative solution equilibrium studies of anticancer gallium(III) complexes of 8-hydroxyquinoline and hydroxy(thio)pyrone ligands.

    PubMed

    Enyedy, Éva A; Dömötör, Orsolya; Varga, Erika; Kiss, Tamás; Trondl, Robert; Hartinger, Christian G; Keppler, Bernhard K

    2012-12-01

    The stoichiometry and stability constants of the Ga(III) complexes of 8-hydroxyquinoline (HQ), 8-hydroxyquinoline-5-sulfonate (HQS), maltol, thiomaltol, allomaltol and thioallomaltol were determined by means of pH-potentiometry, UV-vis spectrophotometry, spectrofluorometry and (1)H NMR spectroscopy in aqueous solution. Spectrofluorometry was used to determine the stability constants of the Ga(III)-HQ species in water. Formation of [GaL](2+), [GaL(2)](+) and [GaL(3)] complexes was found and the Ga(III) binding ability of the ligands followed the order: thioallomaltol

  2. Inhibition of nitric oxide is a good therapeutic target for bladder tumors that express iNOS.

    PubMed

    Belgorosky, Denise; Langle, Yanina; Prack Mc Cormick, Bárbara; Colombo, Lucas; Sandes, Eduardo; Eiján, Ana María

    2014-01-30

    Bladder cancer is the second cause of death for urological tumors in man. When the tumor is nonmuscle invasive, transurethral resection is curative. On the other hand, radical cystectomy is the treatment chosen for patients with invasive tumors, but still under treatment, these patients have high risk of dying, by the development of metastatic disease within 5 years. It is therefore important to identify a new therapeutic target to avoid tumor recurrences and tumor progression. Nitric oxide (NO) is an important biological messenger known to influence several types of cancers. In bladder cancer, production of NO and expression and activity of inducible NO synthase was associated to recurrence and progression. The objective of this work was to analyze if inhibition of nitric oxide production could be considered a therapeutic target for bladder tumors expressing iNOS. Using a bladder cancer murine model with different invasiveness grade we have demonstrated that NO inhibition was able to inhibit growth of bladder tumors expressing iNOS. Furthermore, invasive properties of MB49-I orthotopic growth was inhibited using NO inhibitors. This paper also shows that levels of NO in urine can be correlated with tumor size. In conclusion, inhibition of NO could be considered as a therapeutic target that prevents tumor growth and progression. Also, urine NO levels may be useful for measuring tumor growth.

  3. Modulating the near-infrared luminescence of neodymium and ytterbium complexes with tridentate ligands based on benzoxazole-substituted 8-hydroxyquinolines.

    PubMed

    Shavaleev, Nail M; Scopelliti, Rosario; Gumy, Frédéric; Bünzli, Jean-Claude G

    2009-04-01

    An improved synthesis of 2-(2'-benzothiazole)- and 2-(2'-benzoxazole)-8-hydroxyquinoline ligands that combine a tridentate N,N,O-chelating unit for metal binding and extended chromophore for light harvesting is developed. The 2-(2'-benzoxazole)-8-hydroxyquinoline ligands form mononuclear nine-coordinate complexes with neodymium, [Nd(kappa(3)-ligand)(3)], and an eight-coordinate complex with ytterbium, [Yb(kappa(3)-ligand)(2) x (kappa(1)-ligand) x H(2)O], as verified by crystallographic characterization of five complexes with four different ligands. The chemical stability of the complexes increases when the ligand contains 5,7-dihalo-8-hydroxyquinoline versus an 8-hydroxyquinoline group. The complexes feature a ligand-centered visible absorption band with a maximum at 508-527 nm and an intensity of (7.5-9.6) x 10(3) M(-1) x cm(-1). Upon excitation with UV and visible light within ligand absorption transitions, the complexes display characteristic lanthanide luminescence in the near-infrared at 850-1450 nm with quantum yields and lifetimes in the solid state at room temperature as high as 0.33% and 1.88 micros, respectively. The lanthanide luminescence in the complexes is enhanced upon halogenation of the 5,7-positions in the 8-hydroxyquinoline group and upon the addition of electron-donating substituents to the benzoxazole ring. Facile modification of chromophore units in 2-(2'-benzoxazole)-8-hydroxyquinoline ligands provides means for controlling the luminescence properties of their lanthanide complexes.

  4. Photoluminescence properties of new Zn(II) complexes with 8-hydroxyquinoline ligands: Dependence on volume and electronic effect of substituents

    NASA Astrophysics Data System (ADS)

    Huo, Yanping; Lu, Jiguo; Hu, Sheng; Zhang, Liming; Zhao, Fenghua; Huang, Huarong; Huang, Baohua; Zhang, Li

    2015-03-01

    A series of 2-arylethenyl-8-hydroxyquinoline ligands (A1-A4) with a trimethoxyphenyl, naphthyl, 2-fluoro-4-bromophenyl and anthracenyl group and their corresponding Zn(II) complexes (B1-B4) were synthesized and characterized by means of 1H NMR, ESI-MS, FT-IR and elemental analysis. A1 and A4 were characterized by single-crystal X-ray crystallography. The aggregation behavior of zinc salt and ligands in solution was investigated by several techniques, containing 1H NMR, UV-vis and photoluminescence (PL). The electronic nature and volume of arylethenyl substituents affect the absorption wavelength, the emission color, fluorescence lifetime, fluorescence quantum yield and thermostability of Zn(II) complexes. The experiments corroborated that the properties of Zinc(II) complexes can be tuned by introducing different functional substituents.

  5. Adsorption of lead (II) ions onto novel cassava starch 5-choloromethyl-8-hydroxyquinoline polymer from an aqueous medium.

    PubMed

    Shah, Prapti U; Raval, Nirav P; Vekariya, Mayur; Wadhwani, Poonam M; Shah, Nisha K

    2016-01-01

    Adsorption of lead (II) ions onto cassava starch 5-choloromethyl-8-hydroxyquinoline polymer (CSCMQ) was investigated with the variation in the parameters of pH, contact time, lead (II) ions concentration, temperature and the adsorbent dose. The Langmuir and Freundlich models have been applied. CSCMQ was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Results showed that the adsorption process was better described by the Langmuir model. Adsorption kinetics data obtained for the metal ions sorption were investigated using pseudo-first-order, pseudo-second-order and intraparticle diffusion model. The maximum adsorption capacities (qm) were 46.512, 43.859 and 42.735 mg/g at 25, 35 and 45 °C, respectively. The dynamical data fit well with the second-order kinetics model. The results indicate that CSCMQ could be employed as low-cost material for the adsorption of Pb(II) ions from aqueous medium. PMID:27533869

  6. Selective detection of 2,4,6-trinitrophenol based on a fluorescent nanoscale bis(8-hydroxyquinoline) metal complex.

    PubMed

    Lv, Xiao-Jun; Qi, Liang; Gao, Xiang-Yu; Wang, Huan; Huo, Yuan; Zhang, Zhi-Qi

    2016-04-01

    The reliable and accurate detection of explosives such as 2,4,6-trinitrophenol (TNP) and 2,4,6-trinitrotoluene (TNT) is in high demand for homeland security and public safety. Although extremely high sensitivity towards TNT has been demonstrated, detection of TNP remains a challenge. In this work, a fluorescent nanoscale complex composed of bis(8-hydroxyquinoline) and Al(3+) ions has been prepared, characterized and applied in detection of TNP. This complex exhibits the ability to sense the nitro explosive TNP via a fluorescence quenching mechanism with high selectivity. A simple paper test system for the rapid monitoring of TNP was also investigated. The results show that Bhq-Al is a quite ideal sensing material for trace-level detection of TNP. PMID:26838414

  7. Mechanism of UCH-L5 Activation and Inhibition by DEUBAD Domains in RPN13 and INO80G

    PubMed Central

    Sahtoe, Danny D.; van Dijk, Willem J.; El Oualid, Farid; Ekkebus, Reggy; Ovaa, Huib; Sixma, Titia K.

    2015-01-01

    Summary Deubiquitinating enzymes (DUBs) control vital processes in eukaryotes by hydrolyzing ubiquitin adducts. Their activities are tightly regulated, but the mechanisms remain elusive. In particular, the DUB UCH-L5 can be either activated or inhibited by conserved regulatory proteins RPN13 and INO80G, respectively. Here we show how the DEUBAD domain in RPN13 activates UCH-L5 by positioning its C-terminal ULD domain and crossover loop to promote substrate binding and catalysis. The related DEUBAD domain in INO80G inhibits UCH-L5 by exploiting similar structural elements in UCH-L5 to promote a radically different conformation, and employs molecular mimicry to block ubiquitin docking. In this process, large conformational changes create small but highly specific interfaces that mediate activity modulation of UCH-L5 by altering the affinity for substrates. Our results establish how related domains can exploit enzyme conformational plasticity to allosterically regulate DUB activity. These allosteric sites may present novel insights for pharmaceutical intervention in DUB activity. PMID:25702870

  8. An Introduction to Multivariate Curve Resolution-Alternating Least Squares: Spectrophotometric Study of the Acid-Base Equilibria of 8-Hydroxyquinoline-5-Sulfonic Acid

    ERIC Educational Resources Information Center

    Rodriguez-Rodriguez, Cristina; Amigo, Jose Manuel; Coello, Jordi; Maspoch, Santiago

    2007-01-01

    A spectrophotometric study of the acid-base equilibria of 8-hydroxyquinoline-5-sulfonic acid to describe the multivariate curve resolution-alternating least squares algorithm (MCR-ALS) is described. The algorithm provides a lot of information and hence is of great importance for the chemometrics research.

  9. Novel method for rapid copper chelation assessment confirmed low affinity of D-penicillamine for copper in comparison with trientine and 8-hydroxyquinolines.

    PubMed

    Říha, Michal; Karlíčková, Jana; Filipský, Tomáš; Macáková, Kateřina; Hrdina, Radomír; Mladěnka, Přemysl

    2013-06-01

    Copper is an essential trace element involved in many physiological processes. Since disorder of copper homeostasis is observed in various pathologies, copper chelators may represent a promising therapeutic tool. This study was aimed at: 1) formation of an in vitro methodology for screening of copper chelators, and 2) detailed analysis of the interaction of copper with clinically used D-penicillamine (D-PEN), triethylenetetramine (trientine), experimentally tested 8-hydroxyquinolines, and the disodium salt of EDTA as a standard chelator. Methodology based on bathocuproinedisulfonic acid disodium salt (BCS), usable at (patho)physiologically relevant pHs (4.5-7.5), enabled assessment of both cuprous and cupric ions chelation and comparison of the relative affinities of the tested compounds for copper. In the case of potent chelators, the stoichiometry could be estimated too. Clioquinol, chloroxine and EDTA formed very stable complexes with Cu(+)/Cu(2+) at all tested pHs, while copper complexes with trientine were stable only under neutral or slightly acidic conditions. Non-substituted 8-hydroxyquinoline was a less efficient copper chelator, but still unequivocally more potent than D-PEN. Both 8-hydroxyquinoline and D-PEN chelation potencies, similarly to that of trientine, were pH-dependent and decreased with pH. Moreover, only D-PEN was able to reduce cupric ions. Conclusively, BCS assay represents a rapid, simple and precise method for copper chelation measurement. In addition, lower binding affinity of D-PEN compared with 8-hydroxyquinolines and trientine was demonstrated.

  10. An effective in vitro and in vivo antileishmanial activity and mechanism of action of 8-hydroxyquinoline against Leishmania species causing visceral and tegumentary leishmaniasis.

    PubMed

    Costa Duarte, Mariana; dos Reis Lage, Letícia Martins; Lage, Daniela Pagliara; Mesquita, Juliana Tonini; Salles, Beatriz Cristina Silveira; Lavorato, Stefânia Neiva; Menezes-Souza, Daniel; Roatt, Bruno Mendes; Alves, Ricardo José; Tavares, Carlos Alberto Pereira; Tempone, André Gustavo; Coelho, Eduardo Antonio Ferraz

    2016-02-15

    The development of new therapeutic strategies to treat leishmaniasis has become a priority. In the present study, the antileishmanial activity of 8-hydroxyquinoline (8-HQN) was investigated against in vitro promastigotes and in vivo intra-macrophage amastigotes of three Leishmania species: Leishmania amazonensis, Leishmania infantum and Leishmania braziliensis. Studies were performed to establish the 50% Leishmania inhibitory concentration (IC50) of 8-HQN, as well as its 50% cytotoxic concentration (CC50) on murine macrophages and in human red blood cells. The inhibition of macrophages infection was also evaluated using parasites that were pre-treated with 8-HQN. The effects of this compound on nitric oxide (NO) production and in the mitochondrial membrane potential were also evaluated. Finally, the therapeutic efficacy of 8-HQN was assessed in a known murine model, L. amazonensis-chronically infected BALB/c mice. Our results showed that 8-HQN was effective against promastigote and amastigote stages of all tested Leishmania species, presenting a selectivity index of 328.0, 62.0 and 47.0 for L. amazonensis, L. infantum and L. braziliensis, respectively. It was effective in treating infected macrophages, as well as in preventing the infection of these cells using pre-treated parasites. In addition, 8-HQN caused an alteration in the mitochondrial membrane potential of the parasites. When administered at 10mg/kg body weight/day by subcutaneous route, this product was effective in reducing the lesion diameter, as well as the parasite load in evaluated tissues and organs of infected animals. The results showed the in vitro and in vivo efficacy of 8-HQN against three different Leishmania species causing tegumentary and/or visceral leishmaniasis, and it could well be used for future therapeutic optimization studies to treat leishmaniasis.

  11. Specific Oligopeptides in Fermented Soybean Extract Inhibit NF-κB-Dependent iNOS and Cytokine Induction by Toll-Like Receptor Ligands

    PubMed Central

    Lee, Woo Hyung; Wu, Hong Min; Lee, Chan Gyu; Sung, Dae Il; Song, Hye Jung; Matsui, Toshiro

    2014-01-01

    Abstract The ethanol extract of fermented soybean from Glycine max (chungkookjang, CHU) has been claimed to have chemopreventive and cytoprotective effects. In the present study, we examined the inhibitory effect of CHU on inducible nitric oxide synthase (iNOS) and cytokine induction by toll-like receptor (TLR) ligands treatment and attempted to identify the responsible active components. Nitric oxide (NO) content and iNOS levels in the media or RAW264.7 cells were measured using the Griess reagent and real-time polymerase chain reaction assays. CHU treatment inhibited NO production and iNOS induction elicited by lipopolysaccharide (LPS, TLR4L) in a concentration-dependent manner. Tumor necrosis factor-α and interleukin-6 productions were also diminished. Peptidoglycans (TLR2/6L) and CpG-oligodeoxynucleotides (TLR9L) from CHU inhibited iNOS induction, but not poly I:C (TLR3L) or loxoribine (TLF7L). The anti-inflammatory effect resulted from the inhibition of nuclear factor-kappa B (NF-κB) through the inhibition of inhibitory-κB degradation. Of the representative components in CHU, specific oligopeptides (AFPG and GVAWWMY) had the ability to inhibit iNOS induction by LPS, whereas others failed to do so. Daidzein, an isoflavone used for comparative purposes, was active at a relatively higher concentration. In an animal model, oral administration of CHU to rats significantly diminished carrageenan-induced paw edema and iNOS induction. Our results demonstrate that CHU has anti-inflammatory effects against TLR ligands by inhibiting NF-κB activation, which may result from specific oligopeptide components in CHU. Since CHU is orally effective, dietary applications of CHU and/or the identified oligopeptides may be of use in the prevention of inflammatory diseases. PMID:25184943

  12. Pravastatin inhibits fibrinogen- and FDP-induced inflammatory response via reducing the production of IL-6, TNF-α and iNOS in vascular smooth muscle cells.

    PubMed

    Lu, Peipei; Liu, Juntian; Pang, Xiaoming

    2015-10-01

    Atherosclerosis is a chronic inflammatory response of the arterial wall to pro‑atherosclerotic factors. As an inflammatory marker, fibrinogen directly participates in the pathogenesis of atherosclerosis. Our previous study demonstrated that fibrinogen and fibrin degradation products (FDP) produce a pro‑inflammatory effect on vascular smooth muscle cells (VSMCs) through inducing the production of interleukin‑6 (IL‑6), tumor necrosis factor‑α (TNF‑α) and inducible nitric oxide synthase (iNOS). In the present study, the effects of pravastatin on fibrinogen‑ and FDP‑induced expression of IL‑6, TNF‑α and iNOS were observed in VSMCs. The results showed that pravastatin dose‑dependently inhibited fibrinogen‑ and FDP‑stimulated expression of IL‑6, TNF‑α and iNOS in VSMCs at the mRNA and protein level. The maximal inhibition of protein expression of IL‑6, TNF‑α and iNOS was 46.9, 42.7 and 49.2% in fibrinogen‑stimulated VSMCs, and 50.2, 49.8 and 53.6% in FDP‑stimulated VSMCs, respectively. This suggests that pravastatin has the ability to relieve vascular inflammation via inhibiting the generation of IL‑6, TNF‑α and iNOS. The results of the present study may aid in further explaining the beneficial effects of pravastatin on atherosclerosis and related cardiovascular diseases. In addition, they suggest that application of pravastatin may be beneficial for prevention of atherosclerosis formation in hyperfibrinogenemia.

  13. First-Principles study of tris(8-hydroxyquinoline)iron(III) molecules: A promising spin filter material

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Zhou, Miao; Liu, Zheng; Sun, Dali; Vardeny, Z. Valy; Liu, Feng; Feng Liu's Group Team; Z. Valy. Vardeny's Group Team

    2015-03-01

    Using first-principles calculations, we have systematically investigated the structural, electronic, and magnetic properties of facial and meridional tris (8-hydroxyquinoline)iron(III) (Feq3) molecules, solvent-free Feq3 crystals and thin films. Our calculation results show that both Feq3 isomers have a high spin state of 5 μB as the ground state when an on-site Hubbard-U term is included to treat the highly localized Fe 3 d electrons, in agreement with experiment, while the standard DFT calculations produce a low spin Fe state of 1 μB. Furthermore, the freestanding Feq3 films are found to be paramagnetic, but become Ferromagnetic (FM) within each layer when deposited on a NiFe substrate. This is induced by a strong anti-ferromagnetic (AFM) coupling between the first molecular layer and FM substrate. Also, an AFM coupling is found between the molecular layers. These findings suggest that Feq3 molecular films may serve as a promising spin filter material in spintronic devices. This work is supported by National Science Foundation-Materials Research, Science & Engineering Center (NSF-MRSEC Grant # DMR-1121252).

  14. Indium-tin-oxide-free tris(8-hydroxyquinoline) Al organic light-emitting diodes with 80% enhanced power efficiency

    SciTech Connect

    Cai, Min; Xiao, Teng; Liu, Rui; Chen, Ying; Shinar, Ruth; Shinar, Joseph

    2011-10-11

    Efficient indium tin oxide (ITO)-free small molecule organic light-emitting diodes (SMOLEDs) with multilayered highly conductive poly(3,4-ethylenedioxy thiophene):poly(styrenesulfonate) (PEDOT:PSS) as the anode are demonstrated. PEDOT:PSS/MoO{sub 3}/N,N'-diphenyl- N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPD)/tris(8-hydroxyquinoline) Al (Alq{sub 3})/4,7-diphenyl-1,10-phenanthroline (BPhen)/LiF/Al SMOLEDs exhibited a peak power efficiency of 3.82 lm/W, 81% higher than that of similar ITO-based SMOLEDs (2.11 lm/W). The improved performance is believed to be due to the higher work function, lower refractive index, and decreased surface roughness of PEDOT:PSS vs ITO, and to Ohmic hole injection from PEDOT:PSS to the NPD layer via the MoO{sub 3} interlayer. The results demonstrate that PEDOT:PSS can substitute ITO in SMOLEDs with strongly improved device performance.

  15. Cloud point extraction of vanadium in pharmaceutical formulations, dialysate and parenteral solutions using 8-hydroxyquinoline and nonionic surfactant.

    PubMed

    Khan, Sumaira; Kazi, Tasneem G; Baig, Jameel A; Kolachi, Nida F; Afridi, Hassan I; Wadhwa, Sham Kumar; Shah, Abdul Q; Kandhro, Ghulam A; Shah, Faheem

    2010-10-15

    A cloud point extraction (CPE) method has been developed for the determination of trace quantity of vanadium ions in pharmaceutical formulations (PF), dialysate (DS) and parenteral solutions (PS). The CPE of vanadium (V) using 8-hydroxyquinoline (oxine) as complexing reagent and mediated by nonionic surfactant (Triton X-114) was investigated. The parameters that affect the extraction efficiency of CPE, such as pH of sample solution, concentration of oxine and Triton X-114, equilibration temperature and time period for shaking were investigated in detail. The validity of CPE of V was checked by standard addition method in real samples. The extracted surfactant-rich phase was diluted with nitric acid in ethanol, prior to subjecting electrothermal atomic absorption spectrometry. Under these conditions, the preconcentration of 50 mL sample solutions, allowed raising an enrichment factor of 125-fold. The lower limit of detection obtained under the optimal conditions was 42 ng/L. The proposed method has been successfully applied to the determination of trace quantity of V in various pharmaceutical preparations with satisfactory results. The concentration ranges of V in PF, DS and PS samples were found in the range of 10.5-15.2, 0.65-1.32 and 1.76-6.93 microg/L, respectively.

  16. Investigation of organic magnetoresistance dependence on spin-orbit coupling using 8-hydroxyquinolinate rare-earth based complexes

    NASA Astrophysics Data System (ADS)

    Carvalho, R. S.; Costa, D. G.; Ávila, H. C.; Paolini, T. B.; Brito, H. F.; Capaz, Rodrigo B.; Cremona, M.

    2016-05-01

    The recently discovered organic magnetoresistance effect (OMAR) reveals the spin-dependent behavior of the charge transport in organic semiconductors. So far, it is known that hyperfine interactions play an important role in this phenomenon and also that spin-orbit coupling is negligible for light-atom based compounds. However, in the presence of heavy atoms, spin-orbit interactions should play an important role in OMAR. It is known that these interactions are responsible for singlet and triplet states mixing via intersystem crossing and the change of spin-charge relaxation time in the charge mobility process. In this work, we report a dramatic change in the OMAR effect caused by the presence of strong intramolecular spin-orbit coupling in a series of rare-earth quinolate organic complex-based devices. Our data show a different OMAR lineshape compared with the OMAR lineshape of tris(8-hydroxyquinolinate) aluminum-based devices, which are well described in the literature. In addition, electronic structure calculations based on density functional theory help to establish the connection between this results and the presence of heavy central ions in the different complexes.

  17. Synthesis, molecular structure, theoretical calculation, DNA/protein interaction and cytotoxic activity of manganese(III) complex with 8-hydroxyquinoline.

    PubMed

    Thamilarasan, V; Sengottuvelan, N; Sudha, A; Srinivasan, P; Siva, A

    2015-01-01

    Manganese(III) complex (1) [Mn(8-hq)3] (where 8-hq=8-hydroxyquinoline) has been synthesized and characterized by elemental, spectral (UV-vis, FT-IR) and thermal analysis. The structure of complex (1) has been determined by single crystal X-ray diffraction studies and the configuration around manganese(III) ion was elongated octahedral coordination geometry. Density functional theory calculations were performed for ligand and its complex. Binding studies of ligand and complex 1 with calf thymus DNA (CT-DNA) was investigated by absorption, fluorescence, circular dichroic (CD) spectroscopy and viscosity measurements. Absorption spectral studies revealed that ligand and complex 1 binds to DNA groove and its intrinsic binding strength has been found to be 2.57×10(4) and 2.91×10(4)M(-1). A molecular docking study confirm that the complex 1 is a minor groove binder and was stabilized through hydrogen bonding interactions. Complex 1 exhibits a good binding propensity to bovine serum albumin (BSA) protein. The in vitro cytotoxicity study of complex 1 on breast cancer cell line (MCF-7) indicate that it has the potential to act as effective anticancer drug, with IC50 values of 3.25μM. The ligand and its complex have been screened for antimicrobial activities and the complex showed better antimicrobial activity than the free ligand.

  18. Toxicity of 8-Hydroxyquinoline in Cryprinus carpio Using the Acute Toxicity Test, Hepatase Activity Analysis and the Comet Assay.

    PubMed

    Yan, Shuaiguo; Chen, Lili; Dou, Xiaofei; Qi, Meng; Du, Qiyan; He, Qiaoqiao; Nan, Mingge; Chang, Zhongjie; Nan, Ping

    2015-08-01

    To evaluate the environmental toxicity of 8-hydroxyquinoline (8-HOQ), an important industrial raw material found in China's major ornamental fish, Cryprinus carpio, using the acute toxicity test, hepatase activity analysis and the comet assay. The results indicated that 8-HOQ had significant acute toxicity in adult C. carpio with a 96 h-LC50 of 1.15 and 0.22 mg L(-1) hepatic quinoline residues as assessed by HPLC. 8-HOQ also induced genotoxicity in the form of strand breaks in the DNA of hepatic cells as shown by the comet assay. With regard to physiological toxicity, 8-HOQ induced a decrease in the activities of hepatic GOT and GPT with increased exposure concentration and time. These data suggest that 8-HOQ may be toxic to the health of aquatic organisms when accidentally released into aquatic ecosystems. The data also suggest that the comet assay may be used in biomonitoring to determine 8-HOQ genotoxicity and hepatic GPT and GOT activities may be potential biomarkers of physiological toxicity.

  19. Structural and optical properties of ε-phase tris(8-hydroxyquinoline) aluminum crystals prepared by using physical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Xie, Wanfeng; Pang, Zhiyong; Zhao, Yu; Jiang, Feng; Yuan, Huimin; Song, Hui; Han, Shenghao

    2014-10-01

    Crystals of ε-phase tris(8-hydroxyquinoline) aluminum (ε-Alq3) were prepared by using physical vapor deposition (PVD) method in a double zone tube furnace. The structural properties of the ε-Alq3 crystals were investigated by using an X-ray single crystal diffractometer (XSCD) and a high resolution scanning electron microscope (SEM). Large straight steps were observed from the side face of the pine needle-like crystals. The straight steps are parallel with each other like terraces and the widths of the steps are fixed, indicating that the ε-Alq3 crystals may have layered structures. The photoluminescence (PL) spectra at different temperatures (7 K, 66 K, 220 K, 300 K and 350 K) and the absorption spectrum were also investigated. The optical band gap of the ε-Alq3 crystals was calculated to be about 2.82 eV. This value is a little larger than that of amorphous mer-Alq3 (about 2.7 eV), indicating a minimizing of impurities, grain boundaries and defects.

  20. Toxicity of 8-Hydroxyquinoline in Cryprinus carpio Using the Acute Toxicity Test, Hepatase Activity Analysis and the Comet Assay.

    PubMed

    Yan, Shuaiguo; Chen, Lili; Dou, Xiaofei; Qi, Meng; Du, Qiyan; He, Qiaoqiao; Nan, Mingge; Chang, Zhongjie; Nan, Ping

    2015-08-01

    To evaluate the environmental toxicity of 8-hydroxyquinoline (8-HOQ), an important industrial raw material found in China's major ornamental fish, Cryprinus carpio, using the acute toxicity test, hepatase activity analysis and the comet assay. The results indicated that 8-HOQ had significant acute toxicity in adult C. carpio with a 96 h-LC50 of 1.15 and 0.22 mg L(-1) hepatic quinoline residues as assessed by HPLC. 8-HOQ also induced genotoxicity in the form of strand breaks in the DNA of hepatic cells as shown by the comet assay. With regard to physiological toxicity, 8-HOQ induced a decrease in the activities of hepatic GOT and GPT with increased exposure concentration and time. These data suggest that 8-HOQ may be toxic to the health of aquatic organisms when accidentally released into aquatic ecosystems. The data also suggest that the comet assay may be used in biomonitoring to determine 8-HOQ genotoxicity and hepatic GPT and GOT activities may be potential biomarkers of physiological toxicity. PMID:26067700

  1. Improvement of (31)P NMR spectral resolution by 8-hydroxyquinoline precipitation of paramagnetic Fe and Mn in environmental samples.

    PubMed

    Ding, Shiming; Xu, Di; Li, Bin; Fan, Chengxin; Zhang, Chaosheng

    2010-04-01

    Solution (31)P nuclear magnetic resonance (NMR) spectroscopy is currently the main method for the characterization of phosphorus (P) forms in environment samples. However, identification and quantification of P compounds may be hampered by poor resolution of spectra caused by paramagnetic Fe and Mn. In this study, a novel technique was developed to improve spectral resolution by removing paramagnetic Fe and Mn from alkaline extracts via 8-hydroxyquinoline (8-HOQ) precipitation. Batch experiments showed that both Fe and Mn were effectively removed by the precipitation at pH 9.0, with the removal efficiencies of 83-91% for Fe and 67-78% for Mn from the extracts of five different environmental samples, while little effect was found on concentration of total P. The (31)P NMR analysis of a model P solution showed that addition of 8-HOQ and its precipitation with metal ions did not alter P forms. Further analyses of the five extracts with (31)P NMR spectroscopy demonstrated that the 8-HOQ precipitation was an ideal method compared with the present postextraction techniques, such as bicarbonate dithionate (BD), EDTA and Chelex-100 treatments, by improving spectral resolution to a large extent with no detrimental effects on P forms. PMID:20201571

  2. Fermented guava leaf extract inhibits LPS-induced COX-2 and iNOS expression in Mouse macrophage cells by inhibition of transcription factor NF-kappaB.

    PubMed

    Choi, Soo-Youn; Hwang, Joon-Ho; Park, Soo-Young; Jin, Yeong-Jun; Ko, Hee-Chul; Moon, Sang-Wook; Kim, Se-Jae

    2008-08-01

    The goal of this study was to elucidate the antiinflammatory activities of Psidium guajava L. (guava) leaf. To improve the functionality of guava leaf, it was fermented with Phellinus linteus mycelia, Lactobacillus plantarum and Saccharomyces cerevisiae. The ethanol extract from fermented guava leaf inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Western blot analysis showed that fermented guava leaf extract decreased LPS-induced inducible nitric oxide synthase (iNOS) and the cyclooxygenase-2 (COX-2) protein level in RAW 264.7 cells. To investigate the mechanism involved, the study examined the effect of fermented guava leaf extract on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. Fermented guava leaf extract significantly inhibited LPS-induced NF-kappaB transcriptional activity. Immunochemical analysis revealed that fermented guava leaf extract suppressed LPS-induced degradation of I-kappaBalpha. Taken together, the data indicate that fermented guava leaf extract is involved in the inhibition of iNOS and COX-2 via the down-regulation of NF-kappaB pathway, revealing a partial molecular basis for the antiinflammatory properties of fermented guava leaf extract.

  3. Structural and vibrational study of 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone - A potential metal-protein attenuating compound (MPAC) for the treatment of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    de Freitas, Leonardo Viana; da Silva, Cecilia C. P.; Ellena, Javier; Costa, Luiz Antônio Sodré; Rey, Nicolás A.

    2013-12-01

    A comprehensive structural and vibrational study of the potential metal-protein attenuating compound 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone is reported. X-ray diffraction data, as well as FT-IR and Raman frequencies, were compared with the respective theoretical values obtained from DFT calculations. Theory agrees well with experiment. In this context, an attempt of total assignment concerning the FT-IR and Raman spectra of the title compound was performed, shedding new light on previous partial assignments published elsewhere.

  4. A novel trimeric Zn (II) complex based on 8-hydroxyquinoline with trifluoromethylbenzene group: Synthesis, crystal structure, photophysical properties and DNA binding

    NASA Astrophysics Data System (ADS)

    Huo, Yanping; Wang, Chunquan; Lu, Jiguo; Hu, Sheng; Li, Xiaoyang; Zhang, Li

    2015-10-01

    A novel 2-substituted-8-hydroxyquinoline ligand (E)-2-[2-(4-trifluoromethylphenyl)ethenyl]-8-hydroxyquinoline (3, HL) was synthesized and characterized by ESI-MS, NMR spectroscopy and elemental analysis. Using solvothermal method, a trimeric complex [Zn3L6] (4) was fabricated by self-assembly of Zn(II) ions with 3. X-ray structural analysis shows that 4 exhibits a trinuclear core, which was bridged and encapsulated by six 8-hydroxyquinolinate-based ligands. The supramolecular structure of 4 features a lamellar solid constructed by aromatic stacking interactions and nonclassical C-H···F hydrogen bonds derived from 4-trifluoromethylphenyl group of the 3. The coordination behavior of zinc salt and 3 in solution was performed by 1H NMR, UV-vis and Photoluminescence (PL). The experimental results show that the complex 4 emits yellow luminescence in the solid state. To investigate its properties further, we also studied the thermal stability, photophysical properties (fluorescent emission, lifetime) of complex 4, and the interactions between 4 and C60 or EtBr-DNA system.

  5. NMR, DFT and luminescence studies of the complexation of Zn(II) with 8-hydroxyquinoline-5-sulfonate.

    PubMed

    Luísa Ramos, M; Justino, Licínia L G; Branco, Adriana; Duarte, Cláudia M G; Abreu, Paulo E; Fonseca, Sofia M; Burrows, Hugh D

    2011-11-28

    Multinuclear ((1)H, (13)C) magnetic resonance spectroscopy, DFT calculations and luminescence techniques have been used to study 8-hydroxyquinoline-5-sulfonate (8-HQS) and its complexes with Zn(ii), in aqueous solution. The study combines the high sensitivity of luminescence techniques, the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to obtain a detailed understanding of the complexation between the Zn(2+) ion and 8-HQS. In addition to a complete assignment of the (1)H and (13)C NMR signals of 8-HQS, a full speciation study has been performed. Over the concentration region studied, Zn(2+) metal ion forms only one significant complex species with 8-HQS in aqueous solution in the pH range 6-8. Job's method shows that this species has a 1:2 (metal:ligand) stoichiometry. The geometry around the metal centre, according to structural optimization using DFT calculations, is suggested to be square bipyramidal, with two coordinated water molecules mutually trans, and the remaining positions occupied by the donor groups of the two coordinated 8-HQS ligands. On binding to Zn(ii), 8-HQS shows a marked fluorescence compared with the weakly-luminescent free ligand. In addition, as previously noted, there are marked changes in the absorption spectra, which support the use of 8-HQS as a sensitive fluorescent sensor to detect Zn(2+) metal ion in surface waters, biological fluids, etc. Based on results of the structural studies, suggestions are made of ways for enhancing fluorescence sensitivity.

  6. NMR, DFT and luminescence studies of the complexation of Al(III) with 8-hydroxyquinoline-5-sulfonate.

    PubMed

    Ramos, M Luísa; Justino, Licínia L G; Salvador, Andreia I N; de Sousa, Andreia R E; Abreu, Paulo E; Fonseca, Sofia M; Burrows, Hugh D

    2012-10-28

    Multinuclear ((1)H, (13)C and (27)Al) magnetic resonance spectroscopy (1D and 2D), DFT calculations and fluorescence have been used to study the complexation of 8-hydroxyquinoline-5-sulfonate (8-HQS) with Al(III). The study combines the high sensitivity of luminescence techniques, the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to provide a detailed understanding of the complexation between the Al(3+) ion and 8-HQS. A full speciation study has been performed and over the concentration region studied, the Al(3+) ion forms complexes with 8-HQS in an aqueous solution in the pH range 2-6. At higher pH, the extensive hydrolysis of the metal limits complexation. Using Job's method, three complexes were detected, with 1 : 1, 1 : 2 and 1 : 3 (metal : ligand) stoichiometries. These results are in agreement with those previously reported using potentiometric and electrochemical techniques. The geometries of the complexes are proposed based on the combination of NMR results with optimized DFT calculations. All the complexes in aqueous solutions at 25 °C are mononuclear species, and have an approximately octahedral geometry with the metal coordinated to one molecule of 8-HQS and four molecules of water (1 : 1 complex), two molecules of 8-HQS and two molecules of water mutually cis (1 : 2 complex), and to three molecules of 8-HQS in non-symmetrical arrangement (mer-isomer), for the 1 : 3 (metal : ligand) complex. On binding to Al(III), 8-HQS shows a more marked fluorescence than the weakly fluorescent free ligand. In addition, as previously noted, there are marked changes in the absorption spectra, which support the use of 8-HQS as a sensitive optical sensor to detect Al(3+) metal ions in surface waters and biological fluids. These complexes also show potential for applications in organic light emitting diodes (OLEDs).

  7. Combined optical gain and degradation measurements in DCM2 doped Tris-(8-hydroxyquinoline)aluminum thin-films

    NASA Astrophysics Data System (ADS)

    Čehovski, Marko; Döring, Sebastian; Rabe, Torsten; Caspary, Reinhard; Kowalsky, Wolfgang

    2016-04-01

    Organic laser sources offer the opportunity to integrate flexible and widely tunable lasers in polymer waveguide circuits, e.g. for Lab-on-Foil applications. Therefore, it is necessary to understand gain and degradation processes for long-term operation. In this paper we address the challenge of life-time (degradation) measurements of photoluminescence (PL) and optical gain in thin-film lasers. The well known guest-host system of aluminum-chelate Alq3 (Tris-(8-hydroxyquinoline)aluminum) as host material and the laser dye DCM2 (4-(Dicyanomethylene)-2- methyl-6-julolidyl-9-enyl-4H-pyran) as guest material is employed as laser active material. Sample layers have been built up by co-evaporation in an ultrahigh (UHV) vacuum chamber. 200nm thick films of Alq3:DCM2 with different doping concentrations have been processed onto glass and thermally oxidized silicon substrates. The gain measurements have been performed by the variable stripe length (VSL) method. This measurement technique allows to determine the thin-film waveguide gain and loss, respectively. For the measurements the samples were excited with UV irradiation (ƛ = 355nm) under nitrogen atmosphere by a passively Q-switched laser source. PL degradation measurements with regard to the optical gain have been done at laser threshold (approximately 3 μJ/cm2), five times above laser threshold and 10 times above laser threshold. A t50-PL lifetime of > 107 pulses could be measured at a maximum excitation energy density of 32 μJ/cm2. This allows for a detailed analysis of the gain degradation mechanism and therefore of the stimulated cross section. Depending on the DCM2 doping concentration C the stimulated cross section was reduced by 35 %. Nevertheless, the results emphasizes the necessity of the investigation of degradation processes in organic laser sources for long-term applications.

  8. Synthesis and luminescence properties of polymeric complexes of Cu(II), Zn(II) and Al(III) with 8-hydroxyquinoline side group-containing polystyrene

    NASA Astrophysics Data System (ADS)

    Gao, Baojiao; Wei, Xiaopeng; Zhang, Yanyan

    2013-01-01

    Three kinds of metalloquinolate-containing polystyrene were prepared via a polymer reaction and a coordination reaction. 5-Chloromethyl-8-hydroxyquinoline (CHQ) was first prepared through the chloromethylation reaction of 8-hydroxyquinoline (HQ) with 1,4-bichloromethoxy-butane as chloromethylation reagent. A polymer reaction, Friedel-Crafts alkylation reaction, was carried out between polystyrene (PS) and CHQ in the presence of Lewis catalyst, and HQ was bonded onto the side chains of PS, obtaining 8-hydroxyquinoline-functionalized Polystyrene, HQ-PS. And then, by using one-pot method with two-stage procedures, the coordination reaction of HQ-PS and small molecule HQ with metal ions including Al(III), Zn(II) and Cu(II) ions, was allowed to be carried out, and three polymeric metalloquinolates, AlQ3-PS, ZnQ2-PS and CuQ2-PS, were successfully prepared, respectively. In the chemical structures of these polymeric metalloquinolates, metalloquinolates were chemically attached onto the side chains of PS. HQ-PS and three polymeric metalloquinolates were fully characterized by FTIR, 1H NMR and TGA. The luminescence properties of the three polymeric metalloquinolates were mainly investigated by UV/Vis absorption spectra and fluorescence emission spectra in solutions and in solid film states. When excited by the ray at about 365 nm, the three polymeric metalloquinolates have blue-green luminescence, and the main emission peaks in the DMF solutions are located at 490, 482 and 502 nm for AlQ3-PS, ZnQ2-PS and CuQ2-PS, respectively. As compared with their emissions in solutions, the emissions in solid film states are red-shifted to some extent, and the main emission peaks are located at 500, 488 and 510 nm for AlQ3-PS, ZnQ2-PS and CuQ2-PS, respectively. Besides, these polymeric metalloquinolates have higher thermal stability than PS as polymeric skeleton.

  9. Determination of aluminium with 8-hydroxyquinoline-5-sulfonic acid in presence of a cationic surfactant by first and second derivative synchronous fluorimetry

    SciTech Connect

    Salinas, F.; de la Pena, A.; Duran, M.S.

    1988-08-01

    An analytical method has been developed for the fluorimetric determination of nanogram amounts of aluminium in solution. The method is based on the reaction of aluminium with 8-hydroxyquinoline-5-sulfonic acid presence of hexadeciltrimethylammonium bromide as a surfactant agent. Synchronous scanned first and second derivative fluorimetry has been employed to increase the sensitivity of the method. The influence of reaction variables as well as instrumental parameters is discussed. The interference of various foreign ions has also been examined and in some cases eliminated or reduced by addition of 1,10-phenanthroline.

  10. Observation of the temperature dependence of the dynamics of photoexcited states in pristine tris(8-hydroxyquinoline) aluminum (AlQ{sub 3})

    SciTech Connect

    Priestley, R.; Walser, A.D.; Dorsinville, R.

    1998-07-01

    The authors have investigated the temperature dependence of the dynamics of radiative excited states in pristine thin films of tris(8-hydroxyquinoline) aluminum (Alq{sub 3}). By measuring the transient photoluminescence (PL) response with subnanosecond resolution, their results revealed an increase in the radiative excited state lifetime and fluorescence quantum yield with decreasing temperature from 300K to 77K. At low temperature the authors observed a decrease in the bimolecular recombination rate constant, singlet exciton diffusion coefficient and diffusion length. A singlet exciton trapping model is used to explain these results.

  11. Solid phase extraction of inorganic mercury using 5-phenylazo-8-hydroxyquinoline and determination by cold vapor atomic fluorescence spectroscopy in natural water samples.

    PubMed

    Daye, Mirna; Ouddane, Baghdad; Halwani, Jalal; Hamzeh, Mariam

    2013-01-01

    8-Hydroxyquinoline (8-HQ) was chosen as a powerful ligand for Hg solid phase extraction. Among several chelating resins based on 8-HQ, 5-phenylazo-8-hydroxyquinoline (5Ph8HQ) is used for mercury extraction in which the adsorption dynamics were fully studied. It has been shown that Hg(II) is totally absorbed by 5Ph8HQ within the first 30 minutes of contact time with t 1/2 5 minutes, following Langmuir adsorption model. At pH 4, the affinity of mercury is unchallenged by other metals except, for Cu(II), which have shown higher Kd value. With these latter characteristics, 5Ph8HQ was examined for the preconcentration of trace levels of Hg(II). The developed method showed quantitative recoveries of Hg(II) with LOD = 0.21 pg mL(-1) and RSD = 3-6% using cold vapor atomic fluorescence spectroscopy (CV-AFS) with a preconcentration factor greater than 250.

  12. Antioxidation and DNA-binding properties of binuclear lanthanide(III) complexes with a Schiff base ligand derived from 8-hydroxyquinoline-7-carboxaldehyde and benzoylhydrazine.

    PubMed

    Liu, Yongchun; Zhang, Kejun; Wu, Yun; Zhao, Junying; Liu, Jianning

    2012-08-01

    8-Hydroxyquinoline-7-carboxaldehyde (8-HQ-7-CA), Schiff-base ligand 8-hydroxyquinoline-7-carboxaldehyde benzoylhydrazone, and binuclear complexes [LnL(NO(3))(H(2)O)(2)](2) were prepared from the ligand and equivalent molar amounts of Ln(NO(3))·6H(2)O (Ln=La(3+), Nd(3+), Sm(3+), Eu(3+), Gd(3+), Dy(3+), Ho(3+), Er(3+), Yb(3+), resp.). Ligand acts as dibasic tetradentates, binding to Ln(III) through the phenolate O-atom, N-atom of quinolinato unit, and C=N and -O-C=N- groups of the benzoylhydrazine side chain. Dimerization of this monomeric unit occurs through the phenolate O-atoms leading to a central four-membered (LnO)(2) ring. Ligand and all of the Ln(III) complexes can strongly bind to CT-DNA through intercalation with the binding constants at 10(5)-10(6) M(-1). Moreover, ligand and all of the Ln(III) complexes have strong abilities of scavenging effects for hydroxyl (HO·) radicals. Both the antioxidation and DNA-binding properties of Ln(III) complexes are much better than that of ligand.

  13. Solid Phase Extraction of Inorganic Mercury Using 5-Phenylazo-8-hydroxyquinoline and Determination by Cold Vapor Atomic Fluorescence Spectroscopy in Natural Water Samples

    PubMed Central

    Daye, Mirna; Halwani, Jalal; Hamzeh, Mariam

    2013-01-01

    8-Hydroxyquinoline (8-HQ) was chosen as a powerful ligand for Hg solid phase extraction. Among several chelating resins based on 8-HQ, 5-phenylazo-8-hydroxyquinoline (5Ph8HQ) is used for mercury extraction in which the adsorption dynamics were fully studied. It has been shown that Hg(II) is totally absorbed by 5Ph8HQ within the first 30 minutes of contact time with t1/2 5 minutes, following Langmuir adsorption model. At pH 4, the affinity of mercury is unchallenged by other metals except, for Cu(II), which have shown higher Kd value. With these latter characteristics, 5Ph8HQ was examined for the preconcentration of trace levels of Hg(II). The developed method showed quantitative recoveries of Hg(II) with LOD = 0.21 pg mL−1 and RSD = 3–6% using cold vapor atomic fluorescence spectroscopy (CV-AFS) with a preconcentration factor greater than 250. PMID:24459417

  14. Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway.

    PubMed

    Kou, Xianjuan; Qi, Shimei; Dai, Wuxing; Luo, Lan; Yin, Zhimin

    2011-08-01

    Arctigenin has been demonstrated to have an anti-inflammatory function, but the precise mechanisms of its action remain to be fully defined. In the present study, we determined the effects of arctigenin on lipopolysaccharide (LPS)-induced production of proinflammatory mediators and the underlying mechanisms involved in RAW264.7 cells. Our results indicated that arctigenin exerted its anti-inflammatory effect by inhibiting ROS-dependent STAT signaling through its antioxidant activity. Arctigenin also significantly reduced the phosphorylation of STAT1 and STAT 3 as well as JAK2 in LPS-stimulated RAW264.7 cells. The inhibitions of STAT1 and STAT 3 by arctigenin prevented their translocation to the nucleus and consequently inhibited expression of iNOS, thereby suppressing the expression of inflammation-associated genes, such as IL-1β, IL-6 and MCP-1, whose promoters contain STAT-binding elements. However, COX-2 expression was slightly inhibited at higher drug concentrations (50 μM). Our data demonstrate that arctigenin inhibits iNOS expression via suppressing JAK-STAT signaling pathway in macrophages.

  15. Luteolin, a bioflavonoid inhibits azoxymethane-induced colon carcinogenesis: Involvement of iNOS and COX-2

    PubMed Central

    Pandurangan, Ashok Kumar; Kumar, Suresh Ananda Sadagopan; Dharmalingam, Prakash; Ganapasam, Sudhandiran

    2014-01-01

    Colon cancer (CRC) is a serious health problem through worldwide. Development of novel drug without side effect for this cancer was crucial. Luteolin (LUT), a bioflavonoid has many beneficial effects such as antioxidant, anti-inflammatory, anti-proliferative properties. Azoxymethane (AOM), a derivative of 1, 2-Dimethyl hydrazine (DMH) was used for the induction of CRC in Balb/C mice. CRC was induced by intraperitoneal injection of AOM to mice at the dose of 15 mg/body kg weight for 3 weeks. Mouse was treated with LUT at the dose of 1.2 mg/body kg weight orally until end of the experiment. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygense (COX)-2 were analyzed by RT-PCR and immunohistochemistry. The expressions of iNOS and COX-2 were increased in the case of AOM induction. Administration of LUT effectively reduced the expressions of iNOS and COX-2. The present study revealed that, LUT suppresses both iNOS and COX-2 expressions and act as an anti-inflammatory role against CRC. PMID:24991108

  16. The importance of holes in aluminium tris-8-hydroxyquinoline (Alq{sub 3}) devices with Fe and NiFe contacts

    SciTech Connect

    Zhang, Hongtao; Desai, P.; Kreouzis, T.; Zhan, Y. Q.; Drew, A. J.; Gillin, W. P.

    2014-01-06

    To study the dominant charge carrier polarity in aluminium tris-8-hydroxyquinoline (Alq{sub 3}) based spin valves, single Alq{sub 3} layer devices with NiFe, ITO, Fe, and aluminium electrodes were fabricated and characterised by Time of Flight (ToF) and Dark Injection (DI) techniques, yielding a lower hole mobility compared to electron mobility. We compare the mobility measured by DI for the dominant carrier injected from NiFe and Fe electrodes into Alq{sub 3}, to that of holes measured by ToF. This comparison leads us to conclude that the dominant charge carriers in Alq{sub 3} based spin valves with NiFe or Fe electrodes are holes.

  17. Fluorimetric determination of tin and organotin compounds in hydroorganic and micellar media in the presence of 8-hydroxyquinoline-5-sulfonic acid.

    PubMed

    Jourquin, G; Mahedero, M C; Paredes, S; Vire, J C; Kauffmann, J M

    1996-06-01

    The fluorescence of tin(IV) complexed by 8-hydroxyquinoline-5-sulfonic acid (8-HQSA) has been studied in both aqueous and hydroorganic (acetate buffer and dimethylsulfoxide) media. Several experimental parameters such as pH, DMSO/water ratio and reactant concentration have been investigated to increase the fluorescence of the tin(IV)-8-HQSA complex. A linear relationship between tin(IV) concentration and fluorescence intensity was observed between 1.7 and 20 microM). Mechanistic and quantitative studies in the presence of surfactants have been performed. Judiciously selected micellar media permitted solubilisation and quantitation of tin(IV) as well as dibutyltin compounds. A linear relationship between concentration and fluorescence intensity was found for mono-, di- and tributyltin with detection limits of 0.1 microM, 0.7 microM and 1 microM, respectively.

  18. Theoretical study on the effects of nitrogen and methyl substitution on tris-(8-hydroxyquinoline) aluminum: an efficient exciton blocking layer for organic photovoltaic cells.

    PubMed

    Lee, Hyunbok; Jeong, Kwangho; Cho, Sang Wan; Yi, Yeonjin

    2012-07-21

    We studied the effect of nitrogen and methyl substitution on tris-(8-hydroxyquinoline) aluminum (Alq(3)) with density functional theory, which has been adopted as an exciton blocking layer (EBL) in organic photovoltaic cells (OPVCs). The substitution of electron withdrawing nitrogen on the phenoxide moiety of Alq(3) lowers the highest molecular orbital (HOMO) level, thus photogenerated excitons can be effectively blocked in OPVC. Additional substitution of methyl on the pyridine moiety makes that Alq(3) has a smaller electron reorganization energy, which results in higher electron mobility with keeping HOMO level almost intact. Therefore, nitrogen and methyl simultaneous substitution shows high performance both in exciton blocking and electron mobility. This is the origins of the short circuit current enhancement in OPVC with 4-hydroxy-8-methyl-1,5-naphthyridine aluminum chelate (Alq(3) with the substitution of both nitrogen and methyl group) EBL.

  19. Effect of oxygen on the magnetic property of Bis(8-hydroxyquinoline)copper (CuQ2): An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Yuan, Huimin; Xie, Wanfeng; Pang, Zhiyong; Han, Shenghao

    2015-09-01

    The magnetic properties of bis(8-hydroxyquinoline)copper (CuQ2) were investigated by experiments and first-principles density functional theory (DFT) calculations. The as-prepared CuQ2 film shows paramagnetic behavior. After annealing in air, room temperature ferromagnetic (FM) properties were found in CuQ2 film. The Fourier transform infrared spectroscopy (FTIR) analysis indicates a new vibrational mode related to out of plane O-H bend in the annealed film. DFT calculations show that the energy difference between the FM and the antiferromagnetic (AFM) states is greatly increased after O doping, which may be responsible for the room temperature ferromagnetism in the annealed CuQ2 film.

  20. Improved efficiency in organic light-emitting devices with tris-(8-hydroxyquinoline) aluminium doped 9,10-di(2-naphthyl) anthracene emission layer

    NASA Astrophysics Data System (ADS)

    Yuan, Yongbo; Lian, Jiarong; Li, Shuang; Zhou, Xiang

    2008-11-01

    Organic light-emitting devices with tris-(8-hydroxyquinoline) aluminium (Alq3) doped 9,10-di(2-naphthyl) anthracene (ADN) as the emission layer (EML) have been fabricated. These devices exhibit efficient electroluminescence (EL) originated from the Alq3 as the mass ratio of Alq3 to ADN was varied from 1 to 50%. The devices with an optimal Alq3 mass ratio of 10 wt% showed a peak EL efficiency and an external quantum efficiency of 9.1 cd A-1 and 2.7% at a luminance of 1371 cd m-2, which is improved by a factor of 2.2 compared with 4.1 cd A-1 and 1.2% at a luminance of 3267 cd m-2 for conventional devices with the neat Alq3 as the EML.

  1. Preconcentration and purification of rare earth elements in natural waters using silica-immobilized 8-hydroxyquinoline and a supported organophosphorus extractant

    SciTech Connect

    Esser, B.K.; Volpe, A.; Kenneally, J.M.; Smith, D.K. )

    1994-05-15

    8-Hydroxyquinoline immobilized on silica gel (silica-8HQ) and RE-Spec, a supported organophosphorus extractant, were used to preconcentrate and purify rare earth elements (REEs) from natural waters prior to their determination by isotope-dilution inductivity coupled plasma mass spectrometry (ID-ICPMS). Preconcentration onto silica-8HQ is applicable to a wide range of trace metals, making it suitable for multielement ID-ICPMS studies. The silica-8HQ, RE-Spec technique concentrates REEs from 1 L or less of water into 1 mL of salt-free 0.1% nitric acid. The technique is rapid and has high REE yields (>80%) and low REE blanks (<2[minus]6 pg). In addition, Ba separation is high, allowing determination of La and Eu by ID-<300 pg of Ba is present in the final concentrates of sample solutions initially containing > 4 [mu]g of Ba. 24 refs., 2 figs., 4 tabs.

  2. Orostachys japonicus Inhibits Expression of the TLR4, NOD2, iNOS, and COX-2 Genes in LPS-Stimulated Human PMA-Differentiated THP-1 Cells by Inhibiting NF-κB and MAPK Activation

    PubMed Central

    Woo, Hong-Jung; Kim, Youngchul

    2015-01-01

    Orostachys japonicus is traditionally used as an inflammatory agent. In this report, we investigated the effects of O. japonicus extract on the expression of genes encoding pathogen-recognition receptors (TLR2, TLR4, NOD1, and NOD2) and proinflammatory factors (iNOS, COX-2, and cytokines) in LPS-stimulated PMA-differentiated THP-1 cells and the NF-κB and MAPK pathways. O. japonicus induced toxicity at high concentrations but had no effect at concentrations lower than 25 μg/mL. O. japonicus inhibited LPS-induced TLR4 and NOD2 mRNA levels, suppressed LPS-induced iNOS and COX-2 transcription and translocation, and downregulated LPS-induced proinflammatory cytokine (IL-1β, IL-6, IL-8, and TNF-α) mRNA levels. In addition, O. japonicus inhibited LPS-induced NF-κB activation and IκBα degradation and suppressed LPS-induced JNK, p38 MAPK, and ERK phosphorylation. Overall, our results demonstrate that the anti-inflammatory effects of O. japonicus are mediated by suppression of NF-κB and MAPK signaling, resulting in reduced TLR4, NOD2, iNOS, and COX-2 expression and inhibition of inflammatory cytokine expression. PMID:25810745

  3. The naturally occurring biflavonoid, ochnaflavone, inhibits LPS-induced iNOS expression, which is mediated by ERK1/2 via NF-kappaB regulation, in RAW264.7 cells.

    PubMed

    Suh, Seok-Jong; Chung, Tae-Wook; Son, Min-Jung; Kim, Sung-Hoon; Moon, Tae Chul; Son, Kun Ho; Kim, Hyun Pyo; Chang, Hyeun Wook; Kim, Cheorl-Ho

    2006-03-15

    Ochnaflavone (OC), a naturally occurring biflavonoid with anti-inflammatory activity [S.J. Lee, J.H. Choi, H.W. Chang, S.S. Kang, H.P. Kim. Life Sci. 57(6), 1995, 551-558], was isolated from Lonicera japonica and its effects on inducible nitric oxide synthase (iNOS) gene expression was examined in RAW264.7 cells. U0126, an inhibitor of the extracellular signal-regulated kinase (ERK), significantly down-regulated lipopolysaccharide (LPS)-induced iNOS expression and promoter activity. Transactivation of LPS-stimulated NF-kappaB was inhibited by U0126. These results suggest that the transcription factor NF-kappaB is involved in ERK-mediated iNOS regulation and that activation of the Ras/ERK pathway contributes to the induction of iNOS expression in RAW264.7 cells in response to LPS. OC treatment inhibited the production of nitric oxide in a concentration-dependent manner and also blocked the LPS-induced expression of iNOS. These inhibitory effects were associated with reduced ERK1/2 activity. OC inhibited the phosphorylation of c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase. The findings herein show that the inhibition of LPS-induced ERK1/2 activation may be a contributing factor to the main mechanisms by which OC inhibits RAW264.7. To clarify the mechanistic basis for its ability to inhibit iNOS induction, we examined the effect of OC on the transactivation of the iNOS gene by luciferase reporter activity using the -1588 flanking region. OC potently suppressed reporter gene activity. We also report here, for the first time, that LPS-induced iNOS expression was abolished by OC in RAW264.7 cells through by blocking the inhibition of transcription factor NF-kappaB binding activities. These activities are associated with the down-regulation of inhibitor kappaB (IkappaB) kinase (IKK) activity by OC (6 microM), thus inhibiting LPS-induced phosphorylation as well as the degradation of IkappaBalpha. These findings suggest that the inhibition of LPS

  4. A Polypodium leucotomos extract inhibits solar-simulated radiation-induced TNF-alpha and iNOS expression, transcriptional activation and apoptosis.

    PubMed

    Jańczyk, Agnieska; Garcia-Lopez, M Angeles; Fernandez-Peñas, Pablo; Alonso-Lebrero, Jose Luis; Benedicto, Ignacio; López-Cabrera, Manuel; Gonzalez, Salvador

    2007-10-01

    In this report, we have examined the molecular basis of the photoprotective effect of a hydrophilic extract of the fern Polypodium leucotomos (PL) in vitro, using a solar simulator as the source of UV radiation (SSR). We found that pretreatment of human keratinocytes with PL inhibited SSR-mediated increase of tumor necrosis factor (TNF)-alpha and also abrogated nitric oxide (NO) production. Consistent with this, PL blocked the induction of inducible nitric oxide synthase (iNOS) elicited by SSR. In addition, PL inhibited the SSR-mediated transcriptional activation of NF-kappaB and AP1. Finally, we demonstrated that pretreatment with PL exerted a cytoprotective effect against SSR-induced damage, resulting in increased cell survival. Together, these data postulate a multifactor mechanism of protection not exclusively reliant on the antioxidant capability of PL, and strengthen the basic knowledge on the photoprotective effect of this botanical agent.

  5. Prodigiosin inhibits gp91{sup phox} and iNOS expression to protect mice against the oxidative/nitrosative brain injury induced by hypoxia-ischemia

    SciTech Connect

    Chang, Chia-Che; Wang, Yea-Hwey; Chern, Chang-Ming; Liou, Kuo-Tong; Hou, Yu-Chang; Peng, Yu-Ta; Shen, Yuh-Chiang

    2011-11-15

    -Right-Pointing-Pointer Prodigiosin down-regulated gp91{sup phox} and iNOS by inhibiting NF-{kappa}B activation.

  6. Scabraside D Derived from Sea Cucumber Induces Apoptosis and Inhibits Metastasis via iNOS and STAT-3 Expression in Human Cholangiocarcinoma Xenografts.

    PubMed

    Assawasuparerk, Kanjana; Rawangchue, Thanakorn; Phonarknguen, Rassameepen

    2016-01-01

    Scabraside D, a sulfated triterpene glycoside, was extracted from the sea cucumber Holothuria scabra. It shows anti-proliferation in many of cancer cell lines, but the function and mechanisms of action of scabraside D in human cholangiocarcinoma (HuCCA) have not previously determined. In this study, we investigated the activity of scabraside D on HuCCA cell apoptosis, lymphangiogenesis and metastasis in a nude mouse model. Scabraside D induced signs of apoptosis, such as cell shrinkage, nuclear condensation, nuclear fragmentation and DNA fragmentation on TUNEL assays, while effectively decreasing expression of BCl-2 but increasing caspase-3 gene level expression. Immunohistochemistry revealed that scabraside D significantly reduced lymphatic vessel density (LVD). Moreover, scabraside D treatment significantly decreased VEGF-C, MMP-9 and uPA gene expression, which play important roles in the lymphangiogenesis and invasion of cancer cells in metastasis processes. Quantitative real-time PCR showed that scabraside D significantly decreased iNOS and STAT-3 gene expression. This study demonstrated that scabraside D plays a role in activation of HuCCA tumor apoptosis and inhibition of lymphangiogenesis, invasion and metastasis through decreasing BCl-2, MMP-9, uPA and VEGF-C and increasing caspase-3 expression by suppression of iNOS and STAT-3 expression. Therefore, scabraside D could be a promising candidate for cholangiocarcinoma treatment.

  7. Scabraside D Derived from Sea Cucumber Induces Apoptosis and Inhibits Metastasis via iNOS and STAT-3 Expression in Human Cholangiocarcinoma Xenografts.

    PubMed

    Assawasuparerk, Kanjana; Rawangchue, Thanakorn; Phonarknguen, Rassameepen

    2016-01-01

    Scabraside D, a sulfated triterpene glycoside, was extracted from the sea cucumber Holothuria scabra. It shows anti-proliferation in many of cancer cell lines, but the function and mechanisms of action of scabraside D in human cholangiocarcinoma (HuCCA) have not previously determined. In this study, we investigated the activity of scabraside D on HuCCA cell apoptosis, lymphangiogenesis and metastasis in a nude mouse model. Scabraside D induced signs of apoptosis, such as cell shrinkage, nuclear condensation, nuclear fragmentation and DNA fragmentation on TUNEL assays, while effectively decreasing expression of BCl-2 but increasing caspase-3 gene level expression. Immunohistochemistry revealed that scabraside D significantly reduced lymphatic vessel density (LVD). Moreover, scabraside D treatment significantly decreased VEGF-C, MMP-9 and uPA gene expression, which play important roles in the lymphangiogenesis and invasion of cancer cells in metastasis processes. Quantitative real-time PCR showed that scabraside D significantly decreased iNOS and STAT-3 gene expression. This study demonstrated that scabraside D plays a role in activation of HuCCA tumor apoptosis and inhibition of lymphangiogenesis, invasion and metastasis through decreasing BCl-2, MMP-9, uPA and VEGF-C and increasing caspase-3 expression by suppression of iNOS and STAT-3 expression. Therefore, scabraside D could be a promising candidate for cholangiocarcinoma treatment. PMID:27221911

  8. Melatonin Enhances the Anti-Tumor Effect of Fisetin by Inhibiting COX-2/iNOS and NF-κB/p300 Signaling Pathways

    PubMed Central

    Yu, Zhenlong; Xiao, Yao; Wang, Jingshu; Qiu, Huijuan; Yu, Wendan; Tang, Ranran; Yuan, Yuhui; Guo, Wei; Deng, Wuguo

    2014-01-01

    Melatonin is a hormone identified in plants and pineal glands of mammals and possesses diverse physiological functions. Fisetin is a bio-flavonoid widely found in plants and exerts antitumor activity in several types of human cancers. However, the combinational effect of melatonin and fisetin on antitumor activity, especially in melanoma treatment, remains unclear. Here, we tested the hypothesis that melatonin could enhance the antitumor activity of fisetin in melanoma cells and identified the underlying molecular mechanisms. The combinational treatment of melanoma cells with fisetin and melatonin significantly enhanced the inhibitions of cell viability, cell migration and clone formation, and the induction of apoptosis when compared with the treatment of fisetin alone. Moreover, such enhancement of antitumor effect by melatonin was found to be mediated through the modulation of the multiply signaling pathways in melanoma cells. The combinational treatment of fisetin with melatonin increased the cleavage of PARP proteins, triggered more release of cytochrome-c from the mitochondrial inter-membrane, enhanced the inhibition of COX-2 and iNOS expression, repressed the nuclear localization of p300 and NF-κB proteins, and abrogated the binding of NF-κB on COX-2 promoter. Thus, these results demonstrated that melatonin potentiated the anti-tumor effect of fisetin in melanoma cells by activating cytochrome-c-dependent apoptotic pathway and inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways, and our study suggests the potential of such a combinational treatment of natural products in melanoma therapy. PMID:25000190

  9. Melatonin enhances the anti-tumor effect of fisetin by inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways.

    PubMed

    Yi, Canhui; Zhang, Yong; Yu, Zhenlong; Xiao, Yao; Wang, Jingshu; Qiu, Huijuan; Yu, Wendan; Tang, Ranran; Yuan, Yuhui; Guo, Wei; Deng, Wuguo

    2014-01-01

    Melatonin is a hormone identified in plants and pineal glands of mammals and possesses diverse physiological functions. Fisetin is a bio-flavonoid widely found in plants and exerts antitumor activity in several types of human cancers. However, the combinational effect of melatonin and fisetin on antitumor activity, especially in melanoma treatment, remains unclear. Here, we tested the hypothesis that melatonin could enhance the antitumor activity of fisetin in melanoma cells and identified the underlying molecular mechanisms. The combinational treatment of melanoma cells with fisetin and melatonin significantly enhanced the inhibitions of cell viability, cell migration and clone formation, and the induction of apoptosis when compared with the treatment of fisetin alone. Moreover, such enhancement of antitumor effect by melatonin was found to be mediated through the modulation of the multiply signaling pathways in melanoma cells. The combinational treatment of fisetin with melatonin increased the cleavage of PARP proteins, triggered more release of cytochrome-c from the mitochondrial inter-membrane, enhanced the inhibition of COX-2 and iNOS expression, repressed the nuclear localization of p300 and NF-κB proteins, and abrogated the binding of NF-κB on COX-2 promoter. Thus, these results demonstrated that melatonin potentiated the anti-tumor effect of fisetin in melanoma cells by activating cytochrome-c-dependent apoptotic pathway and inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways, and our study suggests the potential of such a combinational treatment of natural products in melanoma therapy.

  10. Zinc protoporphyrin inhibition of lipopolysaccharide-, lipoteichoic acid-, and peptidoglycan-induced nitric oxide production through stimulating iNOS protein ubiquitination

    SciTech Connect

    Chow, J.-M.; Lin, H.-Y.; Shen, S.-C.; Wu, M.-S.; Lin, C.-W.; Chiu, W.-T.; Lin, C.-H. Chen, Y.-C.

    2009-06-15

    In the present study, zinc protoporphyrin (ZnPP), but not ferric protoporphyrin (FePP), tin protoporphyrin (SnPP), or zinc chloride (ZnCl{sub 2}), at the doses of 0.5, 1, and 2 {mu}M, dose-dependently inhibited lipopolysaccharide- (LPS), lipoteichoic acid (LTA), and peptidoglycan (PGN)-induced inducible nitric oxide (iNOS) and nitric oxide (NO) production with an increase in heme oxygenase 1 (HO-1) protein in RAW264.7 macrophages in a serum-free condition. NO inhibition and HO-1 induction by ZnPP were blocked by the separate addition of fetal bovine serum (FBS) and bovine serum albumin (BSA). A decrease in the iNOS/NO ratio and an increase in HO-1 protein by ZnPP were identified in three different conditions including ZnPP pretreatment, ZnPP co-treatment, and ZnPP post-treatment with LPS and LTA. Activation of c-Jun N-terminal kinases (JNKs) and extracellular regulated kinases (ERKs) were detected in LPS-, LTA-, and PGN-treated RAW264.7 cells, and iNOS/NO production was blocked by adding the JNK inhibitor, SP600125, but not the ERK inhibitor, PD98059. However, ZnPP addition potentiated ERK and JNK protein phosphorylation stimulated by LPS, LTA, and PGN. Increases in total protein ubiquitination and ubiquitinated iNOS proteins were detected in ZnPP-treated macrophages elicited by LPS according to Western and immunoprecipitation/Western blotting assays, respectively. The decrease in LPS-induced iNOS protein by ZnPP was reversed by adding the proteasome inhibitors MG132 and lactacystin. The reduction in HO-1 protein induced by ZnPP via transfection of HO-1 small interfering RNA did not affect the inhibitory effect of ZnPP against LPS-induced iNOS/NO production and protein ubiquitination induced by ZnPP in macrophages. Data of the present study provide the first evidence to support ZnPP effectively inhibiting inflammatory iNOS/NO production through activation of protein ubiquitination in a HO-1-independent manner in macrophages.

  11. TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: Key role of the excited-state hydrogen-bond strengthening

    NASA Astrophysics Data System (ADS)

    Lan, Sheng-Cheng; Liu, Yu-Hui

    2015-03-01

    Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations have been employed to study the excited-state intramolecular proton transfer (ESIPT) reaction of 8-hydroxyquinoline (8HQ). Infrared spectra of 8HQ in both the ground and the lowest singlet excited states have been calculated, revealing a red-shift of the hydroxyl group (-OH) stretching band in the excited state. Hence, the intramolecular hydrogen bond (O-H···N) in 8HQ would be significantly strengthened upon photo-excitation to the S1 state. As the intramolecular proton-transfer reaction occurs through hydrogen bonding, the ESIPT reaction of 8HQ is effectively facilitated by strengthening of the electronic excited-state hydrogen bond (O-H···N). As a result, the intramolecular proton-transfer reaction would occur on an ultrafast timescale with a negligible barrier in the calculated potential energy curve for the ESIPT reaction. Therefore, although the intramolecular proton-transfer reaction is not favorable in the ground state, the ESIPT process is feasible in the excited state. Finally, we have identified that radiationless deactivation via internal conversion (IC) becomes the main dissipative channel for 8HQ by analyzing the energy gaps between the S1 and S0 states for the enol and keto forms.

  12. Synthesis, spectroscopic, thermal, voltammetric studies and biological activity of crystalline complexes of pyridine-2,6-dicarboxylic acid and 8-hydroxyquinoline

    NASA Astrophysics Data System (ADS)

    Çolak, Alper Tolga; Çolak, Ferdağ; Yeşilel, Okan Zafer; Büyükgüngör, Orhan

    2009-11-01

    Two new compounds (8-H 2Q) 2[M(dipic) 2]·6H 2O (M = Co ( 1) and Ni ( 2), 8-HQ = 8-hydroxyquinoline, dipic = dipicolinate) have been prepared and characterized by elemental analysis, spectral (IR and UV-vis), thermal analyses, magnetic measurements and single-crystal X-ray diffraction techniques. Both 1 and 2 consist two 8-hydroxyquinolinium cations, one bis(dipicolinate)M(II) anion [M = Co(II), Ni(II)] and six uncoordinated water molecules. Both 1 and 2 crystallize in the monoclinic space group C2/c. In the compounds anion, each dipic ligand simultaneously exhibits tridentate coordination modes through N atom of pyridine ring and oxygen atoms of the carboxylate groups. The crystal packing of 1 and 2 is a composite of intermolecular hydrogen bonding and C-O⋯π interactions. The in vitro antibacterial and antifungal activities of 1 and 2 were evaluated by the agar well diffusion method by MIC tests. Both new compounds showed the same antimicrobial activity against Gram-positive bacteria and yeast and fungi expect Gram-negative bacteria.

  13. A study on the spectroscopic, energy band, and optoelectronic properties of α,ω-dihexylsexithiophene/tris(8-hydroxyquinolinate) gallium blends; DH6T/Gaq3 composite system.

    PubMed

    Muhammad, Fahmi F; Yahya, Mohd Yazid; Ketuly, Kamal Aziz; Muhammad, Abdulkader Jaleel; Sulaiman, Khaulah

    2016-12-01

    In this work the optical response, spectroscopic behaviour, and optoelectronic properties of solution and solid state composite systems based on α,ω-dihexylsexithiophene/tris(8-hydroxyquinolinate) gallium (DH6T/Gaq3) are studied upon the incorporation of different molar percentages of Gaq3. UV-vis, PL, FTIR spectrophotometers and SEM technique were utilized to perform the investigations. The results showed a reduced energy band (Eg) (from 2.33eV to 1.83eV) and a broadened absorption spectrum for the blend system when 29.8% molar of Gaq3 was incorporated. These were attributed to the enhanced intermolecular interactions that are brought about by the increased strength of π-π overlap between the molecular moieties. A mathematical formula was developed to interpret the non-monotonic change occurred in Eg, while numerical calculations have been made to assign the type and nature of the electronic transitions governing the spectroscopic behaviour of the system. The results were elaborated and comprehensively discussed in terms of the exciton generation, energy band theory, molecular interactions, and spatial geometry.

  14. Structural, electronic, and magnetic properties of tris(8-hydroxyquinoline)iron(III) molecules and their magnetic coupling with ferromagnetic surface: first-principles study

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Zhou, M.; Liu, Z.; Sun, D.; Vardeny, Z. V.; Liu, F.

    2016-05-01

    Using first-principles calculations, we have systematically investigated the structural, electronic, and magnetic properties of facial (fac-) and meridional (mer-) tris(8-hydroxyquinoline)iron(III) (Feq3) molecules and their interaction with ferromagnetic substrate. Our calculation results show that for the isolated Feq3, mer-Feq3 is more stable than the fac-Feq3; both Feq3 isomers have a high spin-state of 5 μ B as the ground state when an on-site Hubbard-U term is included to treat the highly localized Fe 3d electrons; while the standard DFT calculations produce a low spin-state of 1 μ B for mer-Feq3. These magnetic behaviors can be understood by the octahedral ligand field splitting theory. Furthermore, we found that fac-Feq3 has a stronger bonding to the Co surface than mer-Feq3 and an anti-ferromagnetic coupling was discovered between Fe and Co substrate, originating from the superexchange coupling between Fe and Co mediated by the interface oxygen and nitrogen atoms. These findings suggest that Feq3 molecular films may serve as a promising spin-filter material in spintronic devices.

  15. Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl) propanoic acid (HQA)

    PubMed Central

    Park, Sang Ho; Wang, Vivian; Radoicic, Jasmina; De Angelis, Anna A.; Berkamp, Sabrina; Opella, Stanley J.

    2014-01-01

    The use of paramagnetic constraints in protein NMR is an active area of research because of the benefits of long-range distance measurements (>10 Å). One of the main issues in successful execution is the incorporation of a paramagnetic metal ion into diamagnetic proteins. The most common metal ion tags are relatively long aliphatic chains attached to the side chain of a selected cysteine residue with a chelating group at the end where it can undergo substantial internal motions, decreasing the accuracy of the method. An attractive alternative approach is to incorporate an unnatural amino acid (UAA) that binds metal ions at a specific site on the protein using the methods of molecular biology. Here we describe the successful incorporation of the unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl) propanoic acid (HQA) into two different membrane proteins by heterologous expression in E. coli. Fluorescence and NMR experiments demonstrate complete replacement of the natural amino acid with HQA and stable metal chelation by the mutated proteins. Evidence of site-specific intra- and inter-molecular PREs by NMR in micelle solutions sets the stage for the use of HQA incorporation in solid-state NMR structure determinations of membrane proteins in phospholipid bilayers. PMID:25430059

  16. White light emission from Mn2 + doped ZnS nanocrystals through the surface chelating of 8-hydroxyquinoline-5-sulfonic acid

    NASA Astrophysics Data System (ADS)

    Lü, Xiaodan; Yang, Jing; Fu, Yuqin; Liu, Qianqian; Qi, Bin; Lü, Changli; Su, Zhongmin

    2010-03-01

    White light emitting semiconductor nanocrystals (NCs) have been successfully synthesized from 8-hydroxyquinoline-5-sulfonic acid (HQS) decorated manganese doped ZnS NCs through fine tuning the surface-coordination emission and dopant emission of the NC host. The HQS functionalized manganese doped ZnS NCs (QS-ZnS:Mn), with a cubic crystal structure, have the same diameter of about 4.0 nm as ZnS:Mn NCs without HQS. The intensity of the surface-coordination emission peak increased with increasing HQS content or augmenting excited wavelength. The emission of white light was achieved by carefully controlling the dosage of HQS in NCs and appropriately tuning the excited wavelength. The color coordinates (0.35, 0.34) for the efficient white light emitting NCs were very close to the ideal Commission Internationale de l'Eclairage (CIE) chromaticity coordinates for pure white light (0.33, 0.33). The photoluminescence (PL) decay study revealed that the white light emitting NCs exhibited maximum lifetime values at different emission peaks for different NC samples. The study results also indicated that the HQS molecules were attached to the surface of ZnS:Mn NCs in a single coordination fashion due to the steric hindrance effect of the special spherical surface of NCs, which made the QS-ZnS:Mn NCs possess stable and high fluorescent properties in different organic solvents as compared with the conventional small molecule complexes.

  17. White light emission from Mn2 + doped ZnS nanocrystals through the surface chelating of 8-hydroxyquinoline-5-sulfonic acid.

    PubMed

    Lü, Xiaodan; Yang, Jing; Fu, Yuqin; Liu, Qianqian; Qi, Bin; Lü, Changli; Su, Zhongmin

    2010-03-19

    White light emitting semiconductor nanocrystals (NCs) have been successfully synthesized from 8-hydroxyquinoline-5-sulfonic acid (HQS) decorated manganese doped ZnS NCs through fine tuning the surface-coordination emission and dopant emission of the NC host. The HQS functionalized manganese doped ZnS NCs (QS-ZnS:Mn), with a cubic crystal structure, have the same diameter of about 4.0 nm as ZnS:Mn NCs without HQS. The intensity of the surface-coordination emission peak increased with increasing HQS content or augmenting excited wavelength. The emission of white light was achieved by carefully controlling the dosage of HQS in NCs and appropriately tuning the excited wavelength. The color coordinates (0.35, 0.34) for the efficient white light emitting NCs were very close to the ideal Commission Internationale de l'Eclairage (CIE) chromaticity coordinates for pure white light (0.33, 0.33). The photoluminescence (PL) decay study revealed that the white light emitting NCs exhibited maximum lifetime values at different emission peaks for different NC samples. The study results also indicated that the HQS molecules were attached to the surface of ZnS:Mn NCs in a single coordination fashion due to the steric hindrance effect of the special spherical surface of NCs, which made the QS-ZnS:Mn NCs possess stable and high fluorescent properties in different organic solvents as compared with the conventional small molecule complexes.

  18. Spray-dried chitosan microspheres containing 8-hydroxyquinoline -5 sulphonic acid as a new adsorbent for Cd(II) and Zn(II) ions.

    PubMed

    Vitali, Luciano; Laranjeira, Mauro C M; Gonçalves, Norberto S; Fávere, Valfredo T

    2008-03-01

    In the present study, a new chelating adsorbent was prepared from chitosan microspheres cross-linked with glutaraldehyde by spray drying using 8-hydroxyquinoline -5 sulphonic acid as chelant agent (CTS-SX-CL). Microspheres of the new adsorbent were characterized by Raman spectroscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). The effect of pH, contact time and concentration of metallic ions in solution were evaluated on the adsorption behavior of Cd(II) and Zn(II) by CTS-SX-CL. Adsorption was maximum for both Cd(II) and Zn(II) at pH 8.0. Adsorption kinetic curves were obtained and could be fit by the pseudo second-order adsorption model. An analysis of equilibrium adsorption data using the Langmuir isotherm model indicated that the maximum adsorption capacity of CTS-SX-CL was higher than that of CTS-CL for both ions investigated. The adsorption capacity increased 74% for Cd(II).

  19. Use of 8-hydroxyquinoline-chitosan chelating resin in an automated on-line preconcentration system for determination of zinc(II) by F AAS.

    PubMed

    Carletto, Jeferson Schneider; Roux, Kalya Cravo Di Pietro; Maltez, Heloisa França; Martendal, Edmar; Carasek, Eduardo

    2008-08-30

    This study presents the development of an on-line preconcentration system for zinc(II) determination in aqueous samples. The analyte was trapped in a mini-column filled with a chelating resin based on a chitosan biopolymer modified with 8-hydroxyquinoline obtained by the diazotization reaction. Flow and chemical variables of the system, as well as the potential interference ions, were optimized through a multivariate procedure. The factors selected were sample pH, eluent concentration (HNO(3)), and sample and eluent flow rates. It was verified through a full factorial design that the sample pH and eluent flow rate factors were statistically significant at the 95% confidence level. A final optimization of the significant factors was carried out using a Doehlert matrix. The preconcentration system was linear between 2.5 and 75 microgL(-1), with a regression coefficient of 0.9995. The enrichment factor was 17.6. The limits of detection and quantification were 0.8 and 2.5 microgL(-1), respectively. The repeatability and the analytical frequency were, respectively, 2.7 (25.0 microgL(-1), n=8) and 18 samples per hour. Results for recovery tests using mineral water samples were between 85 and 93%. Certified reference materials were analyzed in order to check the accuracy of the proposed method.

  20. Photophysical properties of 8-hydroxyquinoline-5-sulfonic acid as a function of the pH: a TD-DFT investigation.

    PubMed

    Le Bahers, Tangui; Adamo, Carlo; Ciofini, Ilaria

    2010-05-13

    Time dependent density functional theory (TD-DFT) in conjunction with a hybrid exchange correlation functional (PBE0) were applied to characterize the photophysical behavior of the 8-hydroxyquinoline-5-sulfonic acid (8-HQS) in solution as a function of the pH. In particular, absorption and emission spectra of each species as well as their relative stability in the first excited state were computed. From these calculations it is possible to directly derive quantities otherwise hardly experimentally accessible such as excited state acidic dissociation constants (pK(a)*) and corresponding distribution diagrams at the excited state. These two latter quantities were determined by first principles from the relative stabilities of the species at the excited state computed at the TD-DFT level. Consequently, the evolution of the absorption and emission spectral properties of 8-HQS as a function of the pH could be fully simulated from first principles. Finally, insights on energetics and the mechanism of the phototautomerization reaction supposed to be responsible for the absence of fluorescence of the 8-HQS molecule were derived from the calculations.

  1. A study on the spectroscopic, energy band, and optoelectronic properties of α,ω-dihexylsexithiophene/tris(8-hydroxyquinolinate) gallium blends; DH6T/Gaq3 composite system.

    PubMed

    Muhammad, Fahmi F; Yahya, Mohd Yazid; Ketuly, Kamal Aziz; Muhammad, Abdulkader Jaleel; Sulaiman, Khaulah

    2016-12-01

    In this work the optical response, spectroscopic behaviour, and optoelectronic properties of solution and solid state composite systems based on α,ω-dihexylsexithiophene/tris(8-hydroxyquinolinate) gallium (DH6T/Gaq3) are studied upon the incorporation of different molar percentages of Gaq3. UV-vis, PL, FTIR spectrophotometers and SEM technique were utilized to perform the investigations. The results showed a reduced energy band (Eg) (from 2.33eV to 1.83eV) and a broadened absorption spectrum for the blend system when 29.8% molar of Gaq3 was incorporated. These were attributed to the enhanced intermolecular interactions that are brought about by the increased strength of π-π overlap between the molecular moieties. A mathematical formula was developed to interpret the non-monotonic change occurred in Eg, while numerical calculations have been made to assign the type and nature of the electronic transitions governing the spectroscopic behaviour of the system. The results were elaborated and comprehensively discussed in terms of the exciton generation, energy band theory, molecular interactions, and spatial geometry. PMID:27372510

  2. Synthesis and electroluminescence characterization of a new aluminum complex, [8-hydroxyquinoline] bis [2, 2'bipyridine] aluminum Al(Bpy)2q

    NASA Astrophysics Data System (ADS)

    Rahul, Kumar; Ritu, Srivastava; Punita, Singh

    2016-01-01

    We have synthesized and characterized a new electroluminescent material, [8-hydroxyquinoline] bis [2,2'bipyridine] aluminum. A solution of this material Al(Bpy)2q in toluene showed absorption maxima at 380 nm, which was attributed to the moderate energy (π-π*) transitions of the aromatic rings. The photoluminescence spectrum of Al(Bpy)2q in the toluene solution showed a peak at 518 nm. This material shows thermal stability up to 300 °C. The structure of the device is ITO/F4-TCNQ (1 nm)/α-NPD (35 nm)/Al(Bpy)2q (35 nm)/ BCP (6 nm)/Alq3 (28 nm)/LiF (1 nm)/Al (150 nm). This device exhibited a luminescence peak at 515 nm (CIE coordinates, x = 0.32, y = 0.49). The maximum luminescence of the device was 214 cd/m2 at 21 V. The maximum current efficiency of OLED was 0.12 cd/A at 13 V and the maximum power efficiency was 0.03 lm/W at 10 V.

  3. Synthesis and electroluminescence properties of a new aluminium complex [5-choloro-8-hydroxyquinoline] bis [2,2'bipyridine] Aluminium Al(Bpy)2(5-Clq)

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Bhargava, Parag; Srivastava, Ritu; Singh, Punita

    2015-11-01

    We have synthesized a new aluminium complex, [5-choloro-8-hydroxyquinoline] bis[2,2'bipyridine] Aluminium Al(Bpy)2(5-Clq) and characterized it for structural, thermal and photoluminescence properties. The prepared material was characterized by Fourier -transformed infra-red spectroscopy (FTIR), thermal gravimetric analysis (TGA) and photoluminescence. The prepared material showed thermal stability up to 240 °C. The photoluminescence spectrum of Al(Bpy)2(5-Clq) in toluene solution showed peak at 515 nm. This material was used as an emissive layer in organic light emitting diodes (OLEDs). The fundamental structure of device is ITO/F4-TCNQ(1 nm)/α-NPD(35 nm)/Al(Bpy)2(5-Clq) (35 nm)/BCP(6 nm)/Alq3(28 nm)/LiF(1 nm)/Al(150 nm). The device emits an yellowish green light (CIE coordinates, x = 0.32, y = 0.52) with maximum luminescence 314 Cd/m2 at 18 V. The maximum current efficiency of OLED was 0.09 Cd/A and maximum power efficiency was 0.03 lm/W at 9 V respectively.

  4. Structural, electronic, and magnetic properties of tris(8-hydroxyquinoline)iron(III) molecules and their magnetic coupling with ferromagnetic surface: first-principles study.

    PubMed

    Jiang, W; Zhou, M; Liu, Z; Sun, D; Vardeny, Z V; Liu, F

    2016-05-01

    Using first-principles calculations, we have systematically investigated the structural, electronic, and magnetic properties of facial (fac-) and meridional (mer-) tris(8-hydroxyquinoline)iron(III) (Feq3) molecules and their interaction with ferromagnetic substrate. Our calculation results show that for the isolated Feq3, mer-Feq3 is more stable than the fac-Feq3; both Feq3 isomers have a high spin-state of 5 μB as the ground state when an on-site Hubbard-U term is included to treat the highly localized Fe 3d electrons; while the standard DFT calculations produce a low spin-state of 1 μB for mer-Feq3. These magnetic behaviors can be understood by the octahedral ligand field splitting theory. Furthermore, we found that fac-Feq3 has a stronger bonding to the Co surface than mer-Feq3 and an anti-ferromagnetic coupling was discovered between Fe and Co substrate, originating from the superexchange coupling between Fe and Co mediated by the interface oxygen and nitrogen atoms. These findings suggest that Feq3 molecular films may serve as a promising spin-filter material in spintronic devices. PMID:27044670

  5. High-performance supercapacitor based on nitrogen-doped porous carbon derived from zinc(II)-bis(8-hydroxyquinoline) coordination polymer.

    PubMed

    Chen, Xiang Ying; Xie, Dong Hua; Chen, Chong; Liu, Jian Wei

    2013-03-01

    Nitrogen-doped porous carbon electrodes with remarkable specific capacitance have been fabricated by the rational carbonization of zinc(II)-bis(8-hydroxyquinoline) (abbr. Znq(2)) coordination polymer, and heating treatment with CO(NH(2))(2). The experimental results demonstrate that the mass ratio of carbon precursor and CO(NH(2))(2) plays a key role in the formation of porous carbon with various nitrogen content as well as specific surface areas and pore structures. The cyclic voltammetry and galvanostatic charge-discharge measurements show that the capacitive performance has been remarkably improved by doping with nitrogen. The specific capacitance of 219.2 F g(-1) is achieved at the current density of 1 A g(-1) with nitrogen-doped porous carbon, increasing up to ca. 56.8% compared to that with pristine porous carbon. The nitrogen-doped porous carbon electrode exhibits enhance capacitance retention as ca. 45.2% at 20 A g(-1) as well as cycling stability (ca. 7.6% loss after 3000 cycles). The present carbonization method as well as the nitrogen-doping method for porous carbon from coordination polymer can enrich the strategies for the production of carbon-based electrodes materials in the application of electrochemical capacitors.

  6. TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: key role of the excited-state hydrogen-bond strengthening.

    PubMed

    Lan, Sheng-Cheng; Liu, Yu-Hui

    2015-03-15

    Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations have been employed to study the excited-state intramolecular proton transfer (ESIPT) reaction of 8-hydroxyquinoline (8HQ). Infrared spectra of 8HQ in both the ground and the lowest singlet excited states have been calculated, revealing a red-shift of the hydroxyl group (-OH) stretching band in the excited state. Hence, the intramolecular hydrogen bond (O-H···N) in 8HQ would be significantly strengthened upon photo-excitation to the S1 state. As the intramolecular proton-transfer reaction occurs through hydrogen bonding, the ESIPT reaction of 8HQ is effectively facilitated by strengthening of the electronic excited-state hydrogen bond (O-H···N). As a result, the intramolecular proton-transfer reaction would occur on an ultrafast timescale with a negligible barrier in the calculated potential energy curve for the ESIPT reaction. Therefore, although the intramolecular proton-transfer reaction is not favorable in the ground state, the ESIPT process is feasible in the excited state. Finally, we have identified that radiationless deactivation via internal conversion (IC) becomes the main dissipative channel for 8HQ by analyzing the energy gaps between the S1 and S0 states for the enol and keto forms.

  7. Dietary cardamom inhibits the formation of azoxymethane-induced aberrant crypt foci in mice and reduces COX-2 and iNOS expression in the colon.

    PubMed

    Sengupta, Archana; Ghosh, Samit; Bhattacharjee, Shamee

    2005-01-01

    Recently, considerable attention has been focused on identifying naturally occurring chemopreventive compounds capable of inhibiting, retarding, or reversing the multi-step carcinogenesis. The primary aim of the present study was to identify the effects of a commonly consumed spice, viz., cardamom against azoxymethane (AOM) induced colonic aberrant crypt foci (ACF) in Swiss Albino mice. The secondary aim, was to explore the ability of cardamom to modulate the status of proliferation and apoptosis, and to understand its role in altering cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression. Male Swiss albino mice were injected with AOM (dose: 5mg/Kg body weight) or saline (Group 1) weekly once for two weeks. The AOM-injected mice were randomly assigned to two groups (Groups 2 and 3). While all the groups were on standard lab chow, Group 3 received oral doses of 0.5% cardamom, in aqueous suspension, daily for 8 weeks. Following treatment, significant reduction in the incidences of aberrant crypt foci (p<0.05) was observed. This reduction in ACF was accompanied by suppression of cell proliferation (mean Brdu LI in carcinogen control =13.91+/-3.31, and 0.5% cardamom =2.723+/-0.830) and induction of apoptosis (mean AI in carcinogen control=1.547+/-0.42 and 0.5% cardamom = 6.61+/-0.55). Moreover, reduction of both COX-2 and iNOS expression was also observed. These results suggest that aqueous suspensions of cardamom have protective effects on experimentally induced colon carcinogenesis. Cardamom as a whole and its active components require further attention if the use of this spice is to be recommended for cancer prevention.

  8. Highly sensitive gold nanoparticles-based optical sensing of DNA hybridization using bis(8-hydroxyquinoline-5-solphonate)cerium(III) chloride as a novel fluorescence probe.

    PubMed

    Shamsipur, Mojtaba; Memari, Zahra; Ganjali, Mohammad Reza; Norouzi, Parviz; Faridbod, Farnoush

    2016-01-25

    A simple and sensitive method for the detection of DNA hybridization in a homogeneous format was developed, using bis(8-hydroxyquinoline-5-solphonate)cerium(III) chloride (Ce(QS)2Cl) as a novel fluorescent probe. The method is based on fluorescence quenching by gold nanoparticles used as both nanoscafolds for the immobilization of the probe DNA sequence, which is related to Alicyclobacillus acidophilus strain TA-67 16S ribosomal RNA, and nanoquenchers of the Ce(QS)2Cl probe. The probe DNA-functionalized GNPs were synthesized by derivatizing the colloidal gold nanoparticles solution with 3-thiolated 16-base oligonucleotides. Addition of sequence-specific target DNAs (16 bases) into the mixture containing probe DNA-functionalized GNPs and fluorescent probe lead to the quenching of Ce(QS)2Cl fluorescence at 360 nm (λex=270 nm), due to DNA hybridization, the resulting quenched intensity being proportional to the concentration of target DNA. Under optimal conditions of pH 7.4 and Ce(QS)2Cl concentration of 1.0 × 10(-7) M, the linear dynamic range found to be 1.0 × 10(-10)-3.0 × 10(-8) M DNA, with a limit of detection of 7.0 × 10(-11) M. The interaction mechanism for the binding of Ce(QS)2Cl to DNA was studied in detail, and results proved that the interaction mode between Ce(QS)2Cl and DNA is groove binding, with a binding constant of 1.0 × 10(5) M(-1).

  9. Harpagoside suppresses lipopolysaccharide-induced iNOS and COX-2 expression through inhibition of NF-kappa B activation.

    PubMed

    Huang, Tom Hsun-Wei; Tran, Van H; Duke, Rujee K; Tan, Sharon; Chrubasik, Sigrun; Roufogalis, Basil D; Duke, Colin C

    2006-03-01

    Preparations of Harpagophytum procumbens, known as devil's claw, are used as an adjunctive therapy for the treatment of pain and osteoarthritis. Pharmacological evaluations have proven the effectiveness of this herbal drug as an anti-inflammatory and analgesic agent. The present study has investigated the mechanism of action of harpagoside, one of the major components of Harpagophytum procumbens, using human HepG2 hepatocarcinoma and RAW 264.7 macrophage cell lines. Harpagoside inhibited lipopolysaccharide-induced mRNA levels and protein expression of cyclooxygenase-2 and inducible nitric oxide in HepG2 cells. These inhibitions appeared to correlate with the suppression of NF-kappaB activation by harpagoside, as pre-treating cells with harpagoside blocked the translocation of NF-kappaB into the nuclear compartments and degradation of the inhibitory subunit IkappaB-alpha. Furthermore, harpagoside dose-dependently inhibited LPS-stimulated NF-kappaB promoter activity in a gene reporter assay in RAW 264.7 cells, indicating that harpagoside interfered with the activation of gene transcription. These results suggest that the inhibition of the expression of cyclooxygenase-2 and inducible nitric oxide by harpagoside involves suppression of NF-kappaB activation, thereby inhibiting downstream inflammation and subsequent pain events. PMID:16203115

  10. 8-Hydroxyquinoline anchored to silica gel via new moderate size linker: synthesis and applications as a metal ion collector for their flame atomic absorption spectrometric determination.

    PubMed

    Goswami, Anupama; Singh, Ajai K; Venkataramani, B

    2003-08-29

    The silica gel modified with (3-aminopropyl-triethoxysilane) was reacted with 5-formyl-8-hydroxyquinoline (FHOQ(x)) to anchor 8-quinolinol ligand on the silica gel. It was characterised with cross polarisation magic angle spinning (CPMAS) NMR and diffuse reflectance infrared Fourier transformation (DRIFT) spectroscopy and used for the preconcentration of Cu(II), Pb(II), Ni(II), Fe(III), Cd(II), Zn(II) and Co(II) prior to their determination by flame atomic absorption spectrometry. The surface area of the modified silica gel has been found to be 227 m(2) g(-1) and the two pKa values as 3.8 and 8.0. The optimum pH ranges for quantitative sorption are 4.0-7.0, 4.5-7.0, 3.0-6.0, 5.0-8.0, 5.0-8.0, 5.0-8.0 and 4.0-7.0 for Cu, Pb, Fe, Zn, Co, Ni and Cd, respectively. All the metals can be desorbed with 2.5 mol l(-1) HCl or HNO(3). The sorption capacity for these metal ions is in range of 92-448.0 micromol g(-1) and follows the order Cd

  11. Anti-Inflammatory Effects of Flavonoids: Genistein, Kaempferol, Quercetin, and Daidzein Inhibit STAT-1 and NF-κB Activations, Whereas Flavone, Isorhamnetin, Naringenin, and Pelargonidin Inhibit only NF-κB Activation along with Their Inhibitory Effect on iNOS Expression and NO Production in Activated Macrophages

    PubMed Central

    Hämäläinen, Mari; Nieminen, Riina; Vuorela, Pia; Heinonen, Marina; Moilanen, Eeva

    2007-01-01

    In inflammation, bacterial products and proinflammatory cytokines induce the formation of large amounts of nitric oxide (NO) by inducible nitric oxide synthase (iNOS), and compounds that inhibit NO production have anti-inflammatory effects. In the present study, we systematically investigated the effects of 36 naturally occurring flavonoids and related compounds on NO production in macrophages exposed to an inflammatory stimulus (lipopolysaccharide, LPS), and evaluated the mechanisms of action of the effective compounds. Flavone, the isoflavones daidzein and genistein, the flavonols isorhamnetin, kaempferol and quercetin, the flavanone naringenin, and the anthocyanin pelargonidin inhibited iNOS protein and mRNA expression and also NO production in a dose-dependent manner. All eight active compounds inhibited the activation of nuclear factor-κB (NF-κB), which is a significant transcription factor for iNOS. Genistein, kaempferol, quercetin, and daidzein also inhibited the activation of the signal transducer and activator of transcription 1 (STAT-1), another important transcription factor for iNOS. The present study characterises the effects and mechanisms of naturally occurring phenolic compounds on iNOS expression and NO production in activated macrophages. The results partially explain the pharmacological efficacy of flavonoids as anti-inflammatory compounds. PMID:18274639

  12. Trans-Cinnamaldehyde, An Essential Oil in Cinnamon Powder, Ameliorates Cerebral Ischemia-Induced Brain Injury via Inhibition of Neuroinflammation Through Attenuation of iNOS, COX-2 Expression and NFκ-B Signaling Pathway.

    PubMed

    Chen, Yuh-Fung; Wang, Yu-Wen; Huang, Wei-Shih; Lee, Ming-Ming; Wood, W Gibson; Leung, Yuk-Man; Tsai, Huei-Yann

    2016-09-01

    Trans-cinnamaldehyde (TCA), an essential oil in cinnamon powder, may have beneficial effects as a treatment for stroke which is the second leading cause of death worldwide. Post-ischemic inflammation induces neuronal cell damage after stroke, and activation of microglia, in particular, has been thought as the main contributor of proinflammatory and neurotoxic factors. The purpose of this study was to investigate the neuroprotective effects of TCA in an animal model of ischemia/reperfusion (I/R)-induced brain injury and the neuroprotective mechanism was verified in LPS-induced inflammation of BV-2 microglial cells. Our results showed that TCA (10-30 mg/kg, p.o.) significantly reduced the infarction area, neurological deficit score and decreased iNOS and COX-2 protein expression level in I/R-induced injury brain tissue. It inhibited 0.5 µg/ml LPS-induced NO production in BV-2 microglial cells without affecting cell viability, reduced protein expression of iNOS and COX-2, and attenuated inhibition of p53 protein. TCA also suppressed the effects of LPS-induced nuclear translocation of NF-κB p65 and p50 and increased cytosolic IκBα. It also reduced LPS-induced mRNA expression of iNOS, COX-2, and TNFα. We concluded that TCA has a potential neuroprotective effect to against the ischemic stroke, which may be via the inhibition of neuroinflammation through attenuating iNOS, COX-2 expression and NF-κB signaling pathway.

  13. Trans-Cinnamaldehyde, An Essential Oil in Cinnamon Powder, Ameliorates Cerebral Ischemia-Induced Brain Injury via Inhibition of Neuroinflammation Through Attenuation of iNOS, COX-2 Expression and NFκ-B Signaling Pathway.

    PubMed

    Chen, Yuh-Fung; Wang, Yu-Wen; Huang, Wei-Shih; Lee, Ming-Ming; Wood, W Gibson; Leung, Yuk-Man; Tsai, Huei-Yann

    2016-09-01

    Trans-cinnamaldehyde (TCA), an essential oil in cinnamon powder, may have beneficial effects as a treatment for stroke which is the second leading cause of death worldwide. Post-ischemic inflammation induces neuronal cell damage after stroke, and activation of microglia, in particular, has been thought as the main contributor of proinflammatory and neurotoxic factors. The purpose of this study was to investigate the neuroprotective effects of TCA in an animal model of ischemia/reperfusion (I/R)-induced brain injury and the neuroprotective mechanism was verified in LPS-induced inflammation of BV-2 microglial cells. Our results showed that TCA (10-30 mg/kg, p.o.) significantly reduced the infarction area, neurological deficit score and decreased iNOS and COX-2 protein expression level in I/R-induced injury brain tissue. It inhibited 0.5 µg/ml LPS-induced NO production in BV-2 microglial cells without affecting cell viability, reduced protein expression of iNOS and COX-2, and attenuated inhibition of p53 protein. TCA also suppressed the effects of LPS-induced nuclear translocation of NF-κB p65 and p50 and increased cytosolic IκBα. It also reduced LPS-induced mRNA expression of iNOS, COX-2, and TNFα. We concluded that TCA has a potential neuroprotective effect to against the ischemic stroke, which may be via the inhibition of neuroinflammation through attenuating iNOS, COX-2 expression and NF-κB signaling pathway. PMID:27087648

  14. Eugenolol and glyceryl-isoeugenol suppress LPS-induced iNOS expression by down-regulating NF-kappaB AND AP-1 through inhibition of MAPKS and AKT/IkappaBalpha signaling pathways in macrophages.

    PubMed

    Yeh, J L; Hsu, J H; Hong, Y S; Wu, J R; Liang, J C; Wu, B N; Chen, I J; Liou, S F

    2011-01-01

    Eugenol and isoeugenol, two components of clover oil, have been reported to possess several biomedical properties, such as anti-inflammatory, antimicrobial and antioxidant effects. This study aims to examine the anti-inflammatory effects of eugenol, isoeugenol and four of their derivatives on expression of inducible nitric oxide synthase (iNOS) activated by lipopolysaccharide (LPS) in mouse macrophages (RAW 264.7), and to investigate molecular mechanisms underlying these effects. We found that two derivatives, eugenolol and glyceryl-isoeugenol, had potent inhibitory effects on LPS-induced upregulation of nitrite levels, iNOS protein and iNOS mRNA. In addition, they both suppressed the release of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) induced by LPS. Moreover, they both attenuated the DNA binding of NF-kB and AP-1, phosphorylation of inhibitory kB-alpha (IkB-alpha), and nuclear translocation of p65 protein induced by LPS. Finally, we demonstrated that glyceryl-isoeugenol suppressed the phosphorylation of ERK1/2, JNK and p38 MAPK, whereas eugenolol suppressed the phosphorylation of ERK1/2 and p38 MAPK. Taken together, these results suggest that that eugenolol and glyceryl-isoeugenol suppress LPS-induced iNOS expression by down-regulating NF-kB and AP-1 through inhibition of MAPKs and Akt/IkB-alpha signaling pathways. Thus, this study implies that eugenolol and glyceryl-isoeugenol may provide therapeutic benefits for inflammatory diseases.

  15. Gentiolactone, a Secoiridoid Dilactone from Gentiana triflora, Inhibits TNF-α, iNOS and Cox-2 mRNA Expression and Blocks NF-κB Promoter Activity in Murine Macrophages

    PubMed Central

    Yamada, Hidetoshi; Kikuchi, Sayaka; Inui, Tomoki; Takahashi, Hideyuki; Kimura, Ken-ichi

    2014-01-01

    Background Gentian roots have been used as a herbal medicine because of their anti-inflammatory activities. However, the molecular mechanisms of these anti-inflammatory effects remain to be completely explained. Methods and Findings Here, we investigated anti-inflammatory effects of gentian roots and showed that root extracts from Gentiana triflora inhibited lipopolysaccharide (LPS)-induced expression of TNF-α in RAW264.7 cells. The extracts also contained swertiamarin and gentiopicroside, which are the major active compounds of gentian roots; however, neither compound had any effect on LPS-induced TNF-α production in our test system. We isolated gentiolactone as an inhibitor of TNF-α production from the extracts. Gentiolactone also inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (Cox-2) expression at the mRNA level. Moreover, gentiolactone suppressed NF-κB transcriptional activity without inhibition of IκB degradation or NF-κB nuclear transport. Conclusions Our results indicate that inhibition of TNF-α, iNOS and Cox-2 expression by gentiolactone is one of the mechanisms of the anti-inflammatory properties of gentian roots. PMID:25423092

  16. Dietary zerumbone prevents mouse cornea from UVB-induced photokeratitis through inhibition of NF-κB, iNOS, and TNF-α expression and reduction of MDA accumulation

    PubMed Central

    Chen, Bo-Yie; Lin, David Pei-Cheng; Wu, Chia-Yung; Teng, Mei-Ching; Sun, Chi-Yun; Tsai, Yuan-Ting; Su, Kuo-Chen; Wang, Soo-Ray

    2011-01-01

    UVB-induced corneal damages by inhibition of NF-κB, iNOS, and TNF-α, with concomitant reduction of MDA accumulation and increase of GSH and GR levels in the mouse model. Results of this study suggest that dietary zerumbone may be used as a prophylactic agent against UVB-induced photokeratitis. PMID:21527993

  17. Prodigiosin inhibits gp91(phox) and iNOS expression to protect mice against the oxidative/nitrosative brain injury induced by hypoxia-ischemia.

    PubMed

    Chang, Chia-Che; Wang, Yea-Hwey; Chern, Chang-Ming; Liou, Kuo-Tong; Hou, Yu-Chang; Peng, Yu-Ta; Shen, Yuh-Chiang

    2011-11-15

    This study aimed to explore the mechanisms by which prodigiosin protects against hypoxia-induced oxidative/nitrosative brain injury induced by middle cerebral artery occlusion/reperfusion (MCAo/r) injury in mice. Hypoxia in vitro was modeled using oxygen-glucose deprivation (OGD) followed by reoxygenation of BV-2 microglial cells. Our results showed that treatment of mice that have undergone MCAo/r injury with prodigiosin (10 and 100μg/kg, i.v.) at 1h after hypoxia ameliorated MCAo/r-induced oxidative/nitrosative stress, brain infarction, and neurological deficits in the mice, and enhanced their survival rate. MCAo/r induced a remarkable production in the mouse brains of reactive oxygen species (ROS) and a significant increase in protein nitrosylation; this primarily resulted from enhanced expression of NADPH oxidase 2 (gp91(phox)), inducible nitric oxide synthase (iNOS), and the infiltration of CD11b leukocytes due to breakdown of blood-brain barrier (BBB) by activation of nuclear factor-kappa B (NF-κB). All these changes were significantly diminished by prodigiosin. In BV-2 cells, OGD induced ROS and nitric oxide production by up-regulating gp91(phox) and iNOS via activation of the NF-κB pathway, and these changes were suppressed by prodigiosin. In conclusion, our results indicate that prodigiosin reduces gp91(phox) and iNOS expression possibly by impairing NF-κB activation. This compromises the activation of microglial and/or inflammatory cells, which then, in turn, mediates prodigiosin's protective effect in the MCAo/r mice.

  18. The return of the Scarlet Pimpernel: cobalamin in inflammation II - cobalamins can both selectively promote all three nitric oxide synthases (NOS), particularly iNOS and eNOS, and, as needed, selectively inhibit iNOS and nNOS.

    PubMed

    Wheatley, Carmen

    2007-09-01

    The up-regulation of transcobalamins [hitherto posited as indicating a central need for cobalamin (Cbl) in inflammation], whose expression, like inducible nitric oxide synthase (iNOS), is Sp1- and interferondependent, together with increased intracellular formation of glutathionylcobalamin (GSCbl), adenosylcobalamin (AdoCbl), methylcobalamin (MeCbl), may be essential for the timely promotion and later selective inhibition of iNOS and concordant regulation of endothelial and neuronal NOS (eNOS/nNOS.) Cbl may ensure controlled high output of nitric oxide (NO) and its safe deployment, because: (1) Cbl is ultimately responsible for the synthesis or availability of the NOS substrates and cofactors heme, arginine, BH(4) flavin adenine dinucleotide/flavin mononucleotide (FAD/FMN) and NADPH, via the far-reaching effects of the two Cbl coenzymes, methionine synthase (MS) and methylmalonyl CoA mutase (MCoAM) in, or on, the folate, glutathione, tricarboxylic acid (TCA) and urea cycles, oxidative phosphorylation, glycolysis and the pentose phosphate pathway. Deficiency of any of theNOS substrates and cofactors results in 'uncoupled' NOS reactions, decreasedNO production and increased or excessive O(2) (-), H(2)O(2), ONOO(-) and other reactive oxygen species (ROS), reactive nitric oxide species (RNIS) leading to pathology. (2) Cbl is also the overlooked ultimate determinant of positive glutathione status, which favours the formation of more benign NO species, s-nitrosothiols, the predominant form in which NO is safely deployed. Cbl status may consequently act as a 'back-up disc' that ensures the active status of antioxidant systems, as well as reversing and modulating the effects of nitrosylation in cell signal transduction.New evidence shows that GSCbl can significantly promote iNOS/ eNOS NO synthesis in the early stages of inflammation, thus lowering high levels of tumour necrosis factor-a that normally result in pathology, while existing evidence shows that in extreme

  19. The return of the Scarlet Pimpernel: cobalamin in inflammation II — cobalamins can both selectively promote all three nitric oxide synthases (NOS), particularly iNOS and eNOS, and, as needed, selectively inhibit iNOS and nNOS

    PubMed Central

    Wheatley, Carmen

    2007-01-01

    The up-regulation of transcobalamins [hitherto posited as indicating a central need for cobalamin (Cbl) in inflammation], whose expression, like inducible nitric oxide synthase (iNOS), is Sp1- and interferondependent, together with increased intracellular formation of glutathionylcobalamin (GSCbl), adenosylcobalamin (AdoCbl), methylcobalamin (MeCbl), may be essential for the timely promotion and later selective inhibition of iNOS and concordant regulation of endothelial and neuronal NOS (eNOS/nNOS.) Cbl may ensure controlled high output of nitric oxide (NO) and its safe deployment, because: (1) Cbl is ultimately responsible for the synthesis or availability of the NOS substrates and cofactors heme, arginine, BH4 flavin adenine dinucleotide/flavin mononucleotide (FAD/FMN) and NADPH, via the far-reaching effects of the two Cbl coenzymes, methionine synthase (MS) and methylmalonyl CoA mutase (MCoAM) in, or on, the folate, glutathione, tricarboxylic acid (TCA) and urea cycles, oxidative phosphorylation, glycolysis and the pentose phosphate pathway. Deficiency of any of theNOS substrates and cofactors results in ‘uncoupled’ NOS reactions, decreasedNO production and increased or excessive O2−, H2O2, ONOO− and other reactive oxygen species (ROS), reactive nitric oxide species (RNIS) leading to pathology. (2) Cbl is also the overlooked ultimate determinant of positive glutathione status, which favours the formation of more benign NO species, s-nitrosothiols, the predominant form in which NO is safely deployed. Cbl status may consequently act as a ‘back-up disc’ that ensures the active status of antioxidant systems, as well as reversing and modulating the effects of nitrosylation in cell signal transduction.New evidence shows that GSCbl can significantly promote iNOS/ eNOS NO synthesis in the early stages of inflammation, thus lowering high levels of tumour necrosis factor-a that normally result in pathology, while existing evidence shows that in extreme

  20. Cox-2 Inhibition Protects against Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis via Akt-Dependent Enhancement of iNOS Expression

    PubMed Central

    Cai, Yin; Tang, Eva Hoi Ching; Yan, Dan; Kosuru, Ramoji

    2016-01-01

    The present study explored the potential causal link between ischemia-driven cyclooxygenase-2 (COX-2) expression and enhanced apoptosis during myocardial ischemia/reperfusion (I/R) by using H9C2 cardiomyocytes and primary rat cardiomyocytes subjected to hypoxia/reoxygenation (H/R). The results showed that H/R resulted in higher COX-2 expression than that of controls, which was prevented by pretreatment with Helenalin (NFκB specific inhibitor). Furthermore, pretreatment with NS398 (COX-2 specific inhibitor) significantly attenuated H/R-induced cell injury [lower lactate dehydrogenase (LDH) leakage and enhanced cell viability] and apoptosis (higher Bcl2 expression and lower level of cleaved caspases-3 and TUNEL-positive cells) in cardiomyocytes. The amelioration of posthypoxic apoptotic cell death was paralleled by significant attenuation of H/R-induced increases in proinflammatory cytokines [interleukin 6 (IL6) and tumor necrosis factor (TNFα)] and reactive oxygen species (ROS) production and by higher protein expression of phosphorylated Akt and inducible nitric oxide synthase (iNOS) and enhanced nitric oxide production. Moreover, the application of LY294002 (Akt-specific inhibitor) or 1400W (iNOS-selective inhibitor) cancelled the cellular protective effects of NS398. Findings from the current study suggest that activation of NFκB during cardiomyocyte H/R induces the expression of COX-2 and that higher COX-2 expression during H/R exacerbates cardiomyocyte H/R injury via mechanisms that involve cross talks among inflammation, ROS, and Akt/iNOS/NO signaling. PMID:27795807

  1. Microfabrication services at INO

    NASA Astrophysics Data System (ADS)

    Alain, Christine; Jerominek, Hubert; Topart, Patrice A.; Pope, Timothy D.; Picard, Francis; Cayer, Felix; Larouche, Carl; Leclair, Sebastien; Tremblay, Bruno

    2003-01-01

    MEMS (Micro Electro Mechanical Systems) technology has expanded widely over the last decade in terms of its use in devices and instrumentation for diverse applications. However, access to versatile foundry services for MEMS fabrication is still limited. At INO, the presence of a multidisciplinary team and a complete tool set allow us to offer unique MEMS foundry-type services. These services include: design, prototyping, fabrication, packaging and testing of various MEMS and MOEMS devices. The design of a device starts with the evaluation of different structures adapted to a given application. Computer simulation tools, like IntelliSuite, ANSYS or custom software are used to evaluate the mechanical, optical, thermal and electromechanical performances. Standard IC manufacturing techniques such as metal, dielectric and semiconductor film deposition and etching as well as photolithographic pattern transfer are available. In addition, some unique techniques such as on-wafer lithography by laser writing, gray-scale mask lithography, thick photoresist lithography, selective electroplating, injection moulding and UV-assisted moulding are available to customers. The hermetic packaging and a novel patented wafer-level micropackaging are also applied. This multifaceted expertise has been utilized to manufacturing of several types of MEMS devices as well as complex instruments including micromirror-type devices, microfilters, IR microbolometric detector arrays, complete cameras and multipurpose sensors.

  2. Anti-inflammatory potential of an ethyl acetate fraction isolated from Justicia gendarussa roots through inhibition of iNOS and COX-2 expression via NF-κB pathway.

    PubMed

    Kumar, Kavitha S; Vijayan, Viji; Bhaskar, Shobha; Krishnan, Kripa; Shalini, V; Helen, A

    2012-01-01

    Justicia gendarussa Burm.f. (J. gendarussa) is a plant used as traditional medicine in different parts of India and China to treat inflammatory disorders like rheumatoid arthritis. But its mechanism of anti-inflammatory action is still unclear. Hence in this context, the objective of our study is to reveal the mechanism of anti-inflammatory activity of J. gendarussa which would form an additional proof to the traditional knowledge of this plant. The anti-inflammatory function and mechanism(s) of action was studied in an ethyl acetate fraction isolated from methanolic extract of J. gendarussa roots (EJG). Anti-inflammatory studies were conducted on rats using partitioned fractions isolated from methanolic extract of J. gendarussa roots. In carrageenan-induced rat paw edema, ethyl acetate fraction brought about 80% and 93% edema inhibition at 3rd and 5th hour at a dose of 50 mg/kg, when compared to other extracts and Voveran. We investigated whether EJG inhibits the release of cycloxygenase (COX), 5-lipoxygenase (5-LOX), interleukin-6 (IL-6) and nuclear factor kappa B (NF-κB) in LPS stimulated human peripheral blood mononuclear cells (hPBMCs). Results shows that EJG dose dependently inhibited LPS-activated COX, 5-LOX, IL-6, and NF-κB in hPBMCs. EJG also reduced LPS induced levels of iNOS and COX-2 mRNA expression in hPBMCs. This study provides an insight into the probable mechanism(s) underlying the anti-inflammatory activity of EJG and therefore, we report the first confirmation of the anti-inflammatory potential of this traditionally employed herbal medicine in vitro. PMID:22063737

  3. Identification of a novel compound that inhibits iNOS and COX-2 expression in LPS-stimulated macrophages from Schisandra chinensis

    SciTech Connect

    Lee, You Jin; Park, Sun Young; Kim, Sun Gun; Park, Da Jung; Kang, Jum Soon; Lee, Sang Joon; Yoon, Sik; Kim, Young Hun; Bae, Yoe-Sik; Choi, Young-Whan

    2010-01-22

    A novel {alpha}-iso-cubebenol, which has anti-inflammatory effects in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, was isolated from the fruits of Schisandra chinensis. {alpha}-iso-cubebenol inhibited LPS-induced nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) production. Consistent with these findings, {alpha}-iso-cubebenol also reduced the LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 at the protein and mRNA levels in a concentration-dependent manner. {alpha}-iso-cubebenol also inhibited LPS-induced nuclear translocation of the NF-{kappa}B p65 subunit. Furthermore, {alpha}-iso-cubebenol suppressed the phosphorylation of ERK, JNK, and p38 kinase induced by LPS. Since the novel {alpha}-iso-cubebenol blocked the production of several pro-inflammatory mediators induced by LPS in macrophages, the molecule can be useful material for the development of anti-inflammatory agents against bacterial infections or endotoxin.

  4. Rhododendron album Blume inhibits iNOS and COX-2 expression in LPS-stimulated RAW264.7 cells through the downregulation of NF-κB signaling.

    PubMed

    Park, Ji-Won; Kwon, Ok-Kyoung; Kim, Jung-Hee; Oh, Sei-Ryang; Kim, Jae-Hong; Paik, Jin-Hyub; Marwoto, Bambang; Widjhati, Rifatul; Juniarti, Fifit; Irawan, Doddy; Ahn, Kyung-Seop

    2015-04-01

    Rhododendron album Blume (RA) has traditionally been used as an herbal medicine and is considered to have anti-inflammatory properties. In the present study, we screened RA extracts with anti-inflammatory properties. The biological effects of an RA methanol extract (RAME) on inflammation were investigated in lipopolysaccharide (LPS)-stimulated mouse RAW264.7 cells. We investigated the effects of RAME on the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated RAW264.7 cells. To explore the anti-inflammatory mechanisms of RAME, we measured the mRNA and protein expression of pro-inflammatory mediators induced by RAME in the LPS-stimulated RAW264.7 cells by RT-PCR and western blot analysis, respectively. RAME significantly inhibited the production of NO, PGE2, interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α in the LPS-stimulated RAW264.7 cells. It also suppressed the mRNA and protein expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) and mitogen-activated protein kinases (MAPKs) with a concomitant decrease in the nuclear translocation of nuclear factor-κB (NF-κB) in the LPS-stimulated RAW264.7 cells. These results indicate that RAME inhibits LPS-induced inflammatory responses. These effects were considered to be strongly associated with the suppression of NF-κB activation. We therefore suggest that RAME may be prove to be an effective therapeutic agent for the treatment of inflammatory diseases. PMID:25784296

  5. Oxocomplexes of Mo(VI) and W(VI) with 8-hydroxyquinoline-5-sulfonate in solution: structural studies and the effect of the metal ion on the photophysical behaviour.

    PubMed

    Ramos, M Luísa; Justino, Licínia L G; Abreu, Paulo E; Fonseca, Sofia M; Burrows, Hugh D

    2015-11-28

    Multinuclear ((1)H, (13)C, (95)Mo and (183)W) NMR spectroscopy, combined with DFT calculations, provides detailed information on the complexation between the Mo(VI) and W(VI) oxoions and 8-hydroxyquinoline-5-sulfonate (8-HQS) in aqueous solution. Over the concentration region studied, Mo(VI) and W(VI) oxoions form three homologous complexes with 8-HQS in water in the pH range 2-8. Two of these, detected at pH < 6, are mononuclear 1 : 2 (metal : ligand) isomers, with the metal centre (MO2(2+)) coordinated to two 8-HQS ligands. An additional complex, dominant at slightly higher pH values (5-8) for solutions with a 1 : 1 metal : ligand molar ratio, has a binuclear M2O5(2+) centre coordinated to two 8-HQS ligands. The two metal atoms are bridged by three oxygen atoms, two coming from 8-HQS, together with the M-O-M bridge of the bimetallic centre. We show that the long-range exchange corrected BOP functional with local response dispersion (LCBOPLRD), together with explicit solvent molecules, leads to geometries that readily converge to equilibrium structures having realistic bridging O8-HQS-M bonds. Previous attempts to calculate the structures of such binuclear complexes using DFT with the B3LYP functional have failed due to difficulties in treating the weak interaction in these bridged structures. We believe that the LCBOPLRD method may be of more general application in theoretical studies in related binuclear metal complexes. UV/visible absorption and luminescence spectra of all the complexes have also been recorded. The complex between Mo(vi) and 8-HQS is only weakly luminescent, in contrast to what has been observed with this ligand and many other metal ions. We suggest that this is due to the presence of low-lying ligand-to-metal charge transfer (LMCT) states close to the emitting ligand-based level which quench the emission. However, with W(VI), DFT calculations show that the LMCT states are now much higher in energy than the ligand based levels

  6. On the mechanism of divalent metal ion chelator induced activation of the 7S nerve growth factor esteropeptidase. Activation by 2,2',2''-terpyridine and by 8-hydroxyquinoline 5-sulfonic acid.

    PubMed

    Pattison, S E; Dunn, M F

    1976-08-24

    Our previous studies (Pattison, S. E., and Dunn, M. F. (1975), Biochemistry 14, 2733) have shown that the reaction of divalent metal ion chelators with the 140 000 mol wt mouse submaxillary nerve growth factor protein (7S NGF) activates the iota-subunit esteropeptidase activity ca. sevenfold. Ultraviolet-visible spectral studies with the chelator 2,2',2''-terpyridine (terpyridine) and fluorescence emission studies with 8-hydroxyquinoline-5-sulfonic acid (HQSA) in combination with both conventional and rapid-mixing stopped-flow kinetic techniques have been employed in the present study to investigate (a) the mechanism of the chelator-induced activation process, and (b) the identity of the divalent metal ion involved. The spectral studies confirm the presence of stoichiometrically significant amounts of tightly bound zinc ion in native 7S NGF (1-2 g-atoms of An2+/mol of 7S NGF). The kinetic studies show that the reaction of terpyridine with 7S NGF occurs via a two-step process involving first a rapid, apparent second-order step (k1 = 1 x 10(6) M-1 s-1) to form a 7S NGF-Zn2+-chelator monocomplex, then a slow step to form a bis(terpyridine)-Zn(II) complex and activated 7S NGF in an apparent first-order process (kobsd = 0.10 min-1). This rate is, within experimental error, identical with the apparent first-order rate constant for the chelator-induced activation process (monitored by the rate of change in the steady-state rate of hydrolysis of chromophoric substrate, alpha-N-benzoyl-D,L-arginine-p-nitroanilide). Kinetic studies of the reaction of HQSA with native 7S NGF show that, under the same conditions of concentration, the rate of formation of the tris(HQSA)-Zn(II) complex is identical with the rate of the HQSA-induced activation of the 7S NGF esteropeptidase. Thus, these studies unambiguously establish that zinc ion is the metal ion involved in the chelator-induced activation process, and that activation involves removal of zinc ion from native 7S NGF.

  7. Inhibition of NO2, PGE2, TNF-α, and iNOS EXpression by Shorea robusta L.: An Ethnomedicine Used for Anti-Inflammatory and Analgesic Activity

    PubMed Central

    Debprasad, Chattopadhyay; Hemanta, Mukherjee; Paromita, Bag; Durbadal, Ojha; Kumar, Konreddy Ananda; Shanta, Dutta; Kumar, Haldar Pallab; Tapan, Chatterjee; Ashoke, Sharon; Sekhar, Chakraborti

    2012-01-01

    This paper is an attempt to evaluate the anti-inflammatory and analgesic activities and the possible mechanism of action of tender leaf extracts of Shorea robusta, traditionally used in ailments related to inflammation. The acetic-acid-induced writhing and tail flick tests were carried out for analgesic activity, while the anti-inflammatory activity was evaluated in carrageenan-and dextran- induced paw edema and cotton-pellet-induced granuloma model. The acetic-acid-induced vascular permeability, erythrocyte membrane stabilization, release of proinflammatory mediators (nitric oxide and prostaglandin E2), and cytokines (tumor necrosis factor-α, and interleukins-1β and -6) from lipopolysaccharide-stimulated human monocytic cell lines were assessed to understand the mechanism of action. The results revealed that both aqueous and methanol extract (400 mg/kg) caused significant reduction of writhing and tail flick, paw edema, granuloma tissue formation (P < 0.01), vascular permeability, and membrane stabilization. Interestingly, the aqueous extract at 40 μg/mL significantly inhibited the production of NO and release of PGE2, TNF-α, IL-1β, and IL-6. Chemically the extract contains flavonoids and triterpenes and toxicity study showed that the extract is safe. Thus, our study validated the scientific rationale of ethnomedicinal use of S. robusta and unveils its mechanism of action. However, chronic toxicological studies with active constituents are needed before its use. PMID:22649472

  8. 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-{alpha} and NF-{kappa}B pathways in lipopolysaccharide-stimulated mouse macrophages

    SciTech Connect

    Lee, Tzung-Yan; Lee, Ko-Chen; Chen, Shih-Yuan; Chang, Hen-Hong

    2009-04-24

    Inflammation is involved in numerous diseases, including chronic inflammatory diseases and the development of cancer. Many plants possess a variety of biological activities, including antifungal, antibacterial and anti-inflammatory activities. However, our understanding of the anti-inflammatory effects of 6-gingerol is very limited. We used lipopolysaccharide (LPS)-stimulated macrophages as a model of inflammation to investigate the anti-inflammatory effects of 6-gingerol, which contains phenolic structure. We found that 6-gingerol exhibited an anti-inflammatory effect. 6-Gingerol could decrease inducible nitric oxide synthase and TNF-{alpha} expression through suppression of I-{kappa}B{alpha} phosphorylation, NF-{kappa}B nuclear activation and PKC-{alpha} translocation, which in turn inhibits Ca{sup 2+} mobilization and disruption of mitochondrial membrane potential in LPS-stimulated macrophages. Here, we demonstrate that 6-gingerol acts as an anti-inflammatory agent by blocking NF-{kappa}B and PKC signaling, and may be developed as a useful agent for the chemoprevention of cancer or inflammatory diseases.

  9. INO80 governs superenhancer-mediated oncogenic transcription and tumor growth in melanoma.

    PubMed

    Zhou, Bingying; Wang, Li; Zhang, Shu; Bennett, Brian D; He, Fan; Zhang, Yan; Xiong, Chengliang; Han, Leng; Diao, Lixia; Li, Pishun; Fargo, David C; Cox, Adrienne D; Hu, Guang

    2016-06-15

    Superenhancers (SEs) are large genomic regions with a high density of enhancer marks. In cancer, SEs are found near oncogenes and dictate cancer gene expression. However, how oncogenic SEs are regulated remains poorly understood. Here, we show that INO80, a chromatin remodeling complex, is required for SE-mediated oncogenic transcription and tumor growth in melanoma. The expression of Ino80, the SWI/SNF ATPase, is elevated in melanoma cells and patient melanomas compared with normal melanocytes and benign nevi. Furthermore, Ino80 silencing selectively inhibits melanoma cell proliferation, anchorage-independent growth, tumorigenesis, and tumor maintenance in mouse xenografts. Mechanistically, Ino80 occupies >90% of SEs, and its occupancy is dependent on transcription factors such as MITF and Sox9. Ino80 binding reduces nucleosome occupancy and facilitates Mediator recruitment, thus promoting oncogenic transcription. Consistently, genes co-occupied by Ino80 and Med1 are selectively expressed in melanomas compared with melanocytes. Together, our results reveal an essential role of INO80-dependent chromatin remodeling in SE function and suggest a novel strategy for disrupting SEs in cancer treatment. PMID:27340176

  10. The dual role of iNOS in cancer.

    PubMed

    Vannini, Federica; Kashfi, Khosrow; Nath, Niharika

    2015-12-01

    Nitric oxide (NO) is one of the 10 smallest molecules found in nature. It is a simple gaseous free radical whose predominant functions is that of a messenger through cGMP. In mammals, NO is synthesized by the enzyme nitric oxide synthase (NOS) of which there are three isoforms. Neuronal (nNOS, NOS1) and endothelial (eNOS, NOS3) are constitutive calcium-dependent forms of the enzyme that regulate neural and vascular function respectively. The third isoform (iNOS, NOS2), is calcium-independent and is inducible. In many tumors, iNOS expression is high, however, the role of iNOS during tumor development is very complex and quite perplexing, with both promoting and inhibiting actions having been described. This review will aim to summarize the dual actions of iNOS-derived NO showing that the microenvironment of the tumor is a contributing factor to these observations and ultimately to cellular outcomes. PMID:26335399

  11. The dual role of iNOS in cancer☆

    PubMed Central

    Vanini, Frederica; Kashfi, Khosrow; Nath, Niharika

    2015-01-01

    Nitric oxide (NO) is one of the 10 smallest molecules found in nature. It is a simple gaseous free radical whose predominant functions is that of a messenger through cGMP. In mammals, NO is synthesized by the enzyme nitric oxide synthase (NOS) of which there are three isoforms. Neuronal (nNOS, NOS1) and endothelial (eNOS, NOS3) are constitutive calcium-dependent forms of the enzyme that regulate neural and vascular function respectively. The third isoform (iNOS, NOS2), is calcium-independent and is inducible. In many tumors, iNOS expression is high, however, the role of iNOS during tumor development is very complex and quite perplexing, with both promoting and inhibiting actions having been described. This review will aim to summarize the dual actions of iNOS-derived NO showing that the microenvironment of the tumor is a contributing factor to these observations and ultimately to cellular outcomes. PMID:26335399

  12. Mechanism for dynamic regulation of iNOS expression after UVB-irradiation.

    PubMed

    Lu, Wei; Wu, Shiyong

    2013-08-01

    Ultraviolet B (UVB) induces an immediate activation of cNOSs, which contributes to the early release of nitric oxide after irradiation. UVB also induces the expression of iNOS, which peaks at both the mRNA and protein level near 24 h post-irradiation. The induced expression of iNOS contributes largely to the late elevation of nitric oxide after UVB irradiation. However, the regulation of iNOS expression in the early stages of UVB irradiation is not well studied. We previously reported that the UVB-induced early release of nitric oxide leads to the activation of PERK and GCN2, which phosphorylate the alpha-subunit of eIF2 and inhibit protein synthesis. In this report, we demonstrate that eIF2 phosphorylation plays a critical role in regulation of iNOS expression in the early-phase (with in 12 h) of UVB irradiation. Our data shows that with an increased phosphorylation of eIF2, the iNOS protein expression was reduced even though the iNOS mRNA expression was linearly increased in HaCaT and MEF cells after UVB irradiation. The UVB-induced dynamic up- and down-regulation of iNOS expression was almost completely lost in MEF(A/A) cells, which contain a nonphosphorylatable S51A mutation on eIF2. Our results suggest that the UVB-induced eIF2 phosphorylation does not only regulate iNOS expression at the translational level, but at the transcriptional level as well. PMID:22430947

  13. Lithium and valproate decrease inositol mass and increase expression of the yeast INO1 and INO2 genes for inositol biosynthesis.

    PubMed

    Vaden, D L; Ding, D; Peterson, B; Greenberg, M L

    2001-05-01

    Bipolar affective disorder (manic-depressive illness) is a chronic, severe, debilitating illness affecting 1-2% of the population. The Food and Drug Administration-approved drugs lithium and valproate are not completely effective in the treatment of this disorder, and the mechanisms underlying their therapeutic effects have not been established. We are employing genetic and molecular approaches to identify common targets of lithium and valproate in the yeast Saccharomyces cerevisiae. We show that both drugs affect molecular targets in the inositol metabolic pathway. Lithium and valproate cause a decrease in intracellular myo-inositol mass and an increase in expression of both a structural (INO1) and a regulatory (INO2) gene required for inositol biosynthesis. The opi1 mutant, which exhibits constitutive expression of INO1, is more resistant to inhibition of growth by lithium but not by valproate, suggesting that valproate may inhibit the Ino1p-catalyzed synthesis of inositol 1-phosphate. Consistent with this possibility, growth in valproate leads to decreased synthesis of inositol monophosphate. Thus, both lithium and valproate perturb regulation of the inositol biosynthetic pathway, albeit via different mechanisms. This is the first demonstration of increased expression of genes in the inositol biosynthetic pathway by both lithium and valproate. Because inositol is a key regulator of many cellular processes, the effects of lithium and valproate on inositol synthesis have far-reaching implications for predicting genetic determinants of responsiveness and resistance to these agents. PMID:11278273

  14. Acacia ferruginea inhibits tumor progression by regulating inflammatory mediators-(TNF-a, iNOS, COX-2, IL-1β, IL-6, IFN-γ, IL-2, GM-CSF) and pro-angiogenic growth factor- VEGF.

    PubMed

    Sakthivel, Kunnathur Murugesan; Guruvayoorappan, Chandrasekaran

    2013-01-01

    The aim of the present investigation was to evaluate the effect of A ferruginea extract on Dalton's lymphoma ascites (DLA) induced tumours in BALB/c mice. Experimental animals received A ferruginea extract (10 mg/ kg.b.wt) intraperitoneally for 14 consecutive days after DLA tumor challenge. Treatment with extract significantly increased the life span, total white blood cell (WBC) count and haemoglobin (Hb) content and decreased the level of serum aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (γ-GT) and nitric oxide (NO) in DLA bearing ascites tumor models. In addition, administration of extract significantly decreased the tumour volume and body weight in a DLA bearing solid tumor model. The levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and granulocyte monocyte-colony stimulating factor (GM-CSF), as well as pro-angiogenic growth factors such as vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS) were elevated in solid tumour controls, but significantly reduced by A ferruginea administration. On the other hand, the extract stimulated the production of interleukin-2 (IL-2) and interferon-gamma (IFN-γ) in animals with DLA induced solid tumours. Increase in CD4+ T-cell population suggested strong immunostimulant activity for this extract. GC/MS and LC/MS analysis showed quinone, quinoline, imidazolidine, pyrrolidine, cyclopentenone, thiazole, pyrazole, catechin and coumarin derivatives as major compounds present in the A ferruginea methanolic extract. Thus, the outcome of the present study suggests that A ferruginea extract has immunomodulatory and tumor inhibitory activities and has the potential to be developed as a natural anticancer agent. PMID:23886206

  15. Antioxidative effects of cinnamomi cortex: A potential role of iNOS and COX-II

    PubMed Central

    Chung, Jin-Won; Kim, Jeong-Jun; Kim, Sung-Jin

    2011-01-01

    Background: Cinnamomi cortex has wide varieties of pharmacological actions such as anti-inflammatory action, anti-platelet aggregation, and improving blood circulation. In this study, we tested to determine whether the Cinnamomi cortex extract has antioxidant activities. Materials and Methods: Antioxidative actions were explored by measuring free radical scavenging activity, NO levels, and reducing power. The mechanism of antioxidative action of Cinnamomi cortex was determined by measuring iNOS and COX-II expression in lipopolysaccharide (LPS) stimulated Raw cells. Results: Seventy percent methanolic extract of Cinnamomi cortex exerted significant 1,1-diphenyl--2--picrylhydrazyl (DPPH) free radicals and NO scavenging activities in a dose-dependent manner. More strikingly, the Cinnamomi cortex extract exerted dramatic reducing power activity (13-fold over control). Production of iNOS induced by LPS was significantly inhibited by the Cinnamomi cortex extract, suggesting that it inhibits NO production by suppressing iNOS expression. Additionally, COX-2 induced by LPS was dramatically inhibited by the Cinnamomi cortex extract. Conclusion: These results suggest that 70% methanolic extract of Cinnamomi cortex exerts significant antioxidant activity via inhibiting iNOS and COX-II induction. PMID:22262934

  16. Pterostilbene Is Equally Potent as Resveratrol in Inhibiting 12-O-tetradecanoylphorbol-13-acetate Activated NFkappaB, AP-1, COX-2 and iNOS in Mouse Epidermis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resveratrol, a phytoalexin present in grapes, has been reported to inhibit multistage mouse skin carcinogenesis. Recent studies showed that topically applied resveratrol significantly inhibited cyclooxygenase-2 (COX-2) expression and activation of nuclear factor-kB (NF-kB) induced by tumor promoter...

  17. Glycogen synthase kinase 3 regulates IL-1β mediated iNOS expression in hepatocytes by down-regulating c-Jun.

    PubMed

    Lakshmanan, Jaganathan; Zhang, Baochun; Nweze, Ikenna C; Du, Yibo; Harbrecht, Brian G

    2015-01-01

    Excessive nitric oxide from the inducible nitric oxide synthase (iNOS) increases shock-induced hepatic injury, hepatic dysfunction, inflammation, and mortality in animal models. Cytokines increase the expression of iNOS in hepatocytes, but the signaling mechanisms involved are not completely understood. We have previously demonstrated that Akt mediates the inhibitory effect of cAMP and insulin on cytokine-induced hepatocyte iNOS expression. We hypothesized that glycogen synthase kinase 3 (GSK3), a target of Akt phosphorylation, would regulate hepatocyte iNOS expression. In cultured rat hepatocytes, GSK3 inhibitors decreased IL-1β mediated nitric oxide (NO) production and iNOS protein expression, while the phosphatidylinositol 3-kinase (PI3K)/Akt pathway inhibitor LY294002 increased the cytokine-mediated NO production and iNOS expression. Over-expression of the constitutively active form of GSK3β enhanced IL-1β-mediated iNOS expression. GSK3 catalyzes the phosphorylation of c-Jun at the c-terminal Thr239 that facilitates c-Jun degradation. Inhibition of GSK3 with SB216763 and lithium chloride significantly reduced, whereas blocking PI3K/Akt increased phosphorylation of c-Jun at Thr239. The levels of total-c-Jun and c-Jun phosphorylated at Ser63 inversely correlated with c-Jun phosphorylated at Thr239, GSK3 activation and iNOS expression. Over-expression of a dominant negative c-Jun not only caused an increase in IL-1β-mediated iNOS promoter activity and iNOS protein expression but was also able to reverse the SB216763-mediated suppression of iNOS. These results demonstrate that GSK3, a downstream target of Akt, regulates IL-1β-stimulated iNOS expression in hepatocytes by directly phosphorylating c-Jun in an inhibitory manner. PMID:25160751

  18. Separation of Betti Reaction Product Enantiomers: Absolute Configuration and Inhibition of Botulinum Neurotoxin A

    PubMed Central

    2011-01-01

    The racemic product of the Betti reaction of 5-chloro-8-hydroxyquinoline, benzaldehyde, and 2-aminopyridine was separated by chiral HPLC to determine which enantiomer inhibited botulinum neurotoxin serotype A. When the enantiomers unexpectedly proved to have comparable activity, the absolute structures of (+)-(R)-1 and (−)-(S)-1 were determined by comparison of calculated and observed circular dichroism spectra. Molecular modeling studies were undertaken in an effort to understand the observed bioactivity and revealed different ensembles of binding modes, with roughly equal binding energies, for the two enantiomers. PMID:22102940

  19. Cosmic ray test of INO RPC stack

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Datar, V. M.; Kalmani, S. D.; Lahamge, S. M.; Mondal, N. K.; Nagaraj, P.; Pal, S.; Reddy, L. V.; Redij, A.; Samuel, D.; Saraf, M. N.; Satyanarayana, B.; Shinde, R. R.; Verma, P.

    2012-01-01

    The India-based Neutrino Observatory (INO) collaboration is planning to build a 50 kt magnetised iron calorimeter (ICAL) detector using glass Resistive Plate Chambers (RPCs) as active detector elements. A stack of 12 such glass RPCs of 1 m ×1 m in area is tracking cosmic ray muons for over three years. In this paper, we will review the constructional aspects of the stack and discuss the performance of the RPCs using this cosmic ray data.

  20. Downregulation of inducible nitric oxide synthase (iNOS) expression is implicated in the antiviral activity of acetylsalicylic acid in HCV-expressing cells.

    PubMed

    Ríos-Ibarra, Clara Patricia; Lozano-Sepulveda, Sonia; Muñoz-Espinosa, Linda; Rincón-Sánchez, Ana Rosa; Cordova-Fletes, Carlos; Rivas-Estilla, Ana María G

    2014-12-01

    Previously, we described that acetylsalicylic acid (ASA) decreases HCV expression, but the mechanisms involved have not been clearly established. We evaluated the participation of inducible nitric oxide synthase (iNOS) in the regulation of HCV-RNA induced by ASA. Huh7 cells expressing non-structural HCV proteins were exposed to 4 mM ASA and incubated at the same times we reported HCV downregulation (24-72 h), and iNOS mRNA and protein levels were then measured by real-time PCR and Western blot, respectively. Nitric oxide levels were measured at the same time. Inhibition of iNOS mRNA by small interfering RNAs (siRNA) and activation of the iNOS gene promoter by ASA treatment were evaluated. In Huh7 replicon cells treated with ASA, we found decreased levels of iNOS mRNA, iNOS protein and nitrosylated protein levels at 48-72 h. ASA exposure also reduced the transactivation of the iNOS promoter in HCV replicon cells at 48 h, and this was partly due to the decrease in the affinity of transcription factor C/EBP-β for its binding site in the iNOS promoter. siRNA silencing of iNOS decreased HCV-RNA expression (65 %) and potentiated the antiviral effect (80 %) of ASA compared with control cells. ASA reduces iNOS expression by downregulating promoter activity, mRNA and protein levels at the same time that it decreases HCV expression. These findings suggest that the antiviral activity of ASA is mediated partially through the modulation of iNOS.

  1. MEMS/MOEMS foundry services at INO

    NASA Astrophysics Data System (ADS)

    García-Blanco, Sonia; Ilias, Samir; Williamson, Fraser; Généreux, Francis; Le Noc, Loïc; Poirier, Michel; Proulx, Christian; Tremblay, Bruno; Provençal, Francis; Desroches, Yan; Caron, Jean-Sol; Larouche, Carl; Beaupré, Patrick; Fortin, Benoit; Topart, Patrice; Picard, Francis; Alain, Christine; Pope, Timothy; Jerominek, Hubert

    2010-06-01

    In the MEMS manufacturing world, the "fabless" model is getting increasing importance in recent years as a way for MEMS manufactures and startups to minimize equipment costs and initial capital investment. In order for this model to be successful, the fabless company needs to work closely with a MEMS foundry service provider. Due to the lack of standardization in MEMS processes, as opposed to CMOS microfabrication, the experience in MEMS development processes and the flexibility of the MEMS foundry are of vital importance. A multidisciplinary team together with a complete microfabrication toolset allows INO to offer unique MEMS foundry services to fabless companies looking for low to mid-volume production. Companies that benefit from their own microfabrication facilities can also be interested in INO's assistance in conducting their research and development work during periods where production runs keep their whole staff busy. Services include design, prototyping, fabrication, packaging, and testing of various MEMS and MOEMS devices on wafers fully compatible with CMOS integration. Wafer diameters ranging typically from 1 inch to 6 inches can be accepted while 8-inch wafers can be processed in some instances. Standard microfabrication techniques such as metal, dielectric, and semiconductor film deposition and etching as well as photolithographic pattern transfer are available. A stepper permits reduction of the critical dimension to around 0.4 μm. Metals deposited by vacuum deposition methods include Au, Ag, Al, Al alloys, Ti, Cr, Cu, Mo, MoCr, Ni, Pt, and V with thickness varying from 5 nm to 2 μm. Electroplating of several materials including Ni, Au and In is also available. In addition, INO has developed and built a gold black deposition facility to answer customer's needs for broadband microbolometric detectors. The gold black deposited presents specular reflectance of less than 10% in the wavelength range from 0.2 μm to 100 μm with thickness ranging from

  2. The functional diversity of Drosophila Ino80 in development.

    PubMed

    Ghasemi, Mohsen; Pawar, Hema; Mishra, Rakesh K; Brahmachari, Vani

    2015-11-01

    Ino80 is well known as a chromatin remodeling protein with the catalytic function of DNA dependent ATPase and is highly conserved across phyla. Ino80 in human and Drosophila is known to form the Ino80 complex in association with the DNA binding protein Ying-Yang 1 (YY1)/Pleiohomeotic (Pho) the Drosophila homologue. We have earlier reported that Ino80 sub-family of proteins has two functional domains, namely, the DNA dependent ATPase and the DNA binding domain. In the background of the essential role of dIno80 in development, we provide evidence of Pho independent function of dIno80 in development and analyze the dual role of dIno80 in activation as well as repression in the context of the homeotic gene Scr (sex combs reduced) in imaginal discs. This differential effect of dIno80 in different imaginal discs suggests the contextual function of dIno80 as an Enhancer of Trithorax and Polycomb (ETP). We speculate on the role of dIno80 as a chromatin remodeler on one hand and a potential recruiter of epigenetic regulatory complexes on the other.

  3. Synergy and antagonism in regulation of recombinant human INO80 chromatin remodeling complex

    PubMed Central

    Willhoft, Oliver; Bythell-Douglas, Rohan; McCormack, Elizabeth A.; Wigley, Dale B.

    2016-01-01

    We have purified a minimal core human Ino80 complex from recombinant protein expressed in insect cells. The complex comprises one subunit each of an N-terminally truncated Ino80, actin, Arp4, Arp5, Arp8, Ies2 and Ies6, together with a single heterohexamer of the Tip49a and Tip49b proteins. This core complex has nucleosome sliding activity that is similar to that of endogenous human and yeast Ino80 complexes and is also inhibited by inositol hexaphosphate (IP6). We show that IP6 is a non-competitive inhibitor that acts by blocking the stimulatory effect of nucleosomes on the ATPase activity. The IP6 binding site is located within the C-terminal region of the Ino80 subunit. We have also prepared complexes lacking combinations of Ies2 and Arp5/Ies6 subunits that reveal regulation imposed by each of them individually and synergistically that couples ATP hydrolysis to nucleosome sliding. This coupling between Ies2 and Arp5/Ies6 can be overcome in a bypass mutation of the Arp5 subunit that is active in the absence of Ies2. These studies reveal several underlying mechanisms for regulation of ATPase activity involving a complex interplay between these protein subunits and IP6 that in turn controls nucleosome sliding. PMID:27257055

  4. INO prototype detector and data acquisition system

    NASA Astrophysics Data System (ADS)

    Behere, Anita; Bhatia, M. S.; Chandratre, V. B.; Datar, V. M.; Mukhopadhyay, P. K.; Jena, Satyajit; Viyogi, Y. P.; Bhattacharya, Sudeb; Saha, Satyajit; Bhide, Sarika; Kalmani, S. D.; Mondal, N. K.; Nagaraj, P.; Nagesh, B. K.; Rao, Shobha K.; Reddy, L. V.; Saraf, M.; Satyanarayana, B.; Shinde, R. R.; Upadhya, S. S.; Verma, P.; Biswas, Saikat; Chattopadhyay, Subhasish; Sarma, P. R.

    2009-05-01

    India-based Neutrino Observatory (INO) collaboration is proposing to build a 50 kton magnetised iron calorimetric (ICAL) detector in an underground laboratory to be located in South India. Glass resistive plate chambers (RPCs) of about 2 m×2 m in size will be used as active elements for the ICAL detector. As a first step towards building the ICAL detector, a 35 ton prototype of the same is being set up over ground to track cosmic muons. Design and construction details of the prototype detector and its data acquisition system will be discussed. Some of the preliminary results from the detector stack will also be highlighted.

  5. Increased intracellular Ca2+ selectively suppresses IL-1-induced NO production by reducing iNOS mRNA stability

    PubMed Central

    1995-01-01

    This study addresses the role of intracellular calcium (Ca2+) in the expression of iNOS, an IL-1 inducible gene in human articular chondrocytes. The calcium ionophore A23187 and ionomycin did not induce NO release or iNOS expression but inhibited dose dependently IL-1- induced NO release with IC50 of 200 nM and 100 nM, respectively. Increased intracellular Ca2+ induced by thapsigargin or cyclopiazonic acid, inhibitors of the endoplasmic reticulum Ca2+ ATPase, had similar inhibitory effects with IC50 of 1 nM and 3 microM, respectively. LPS and TNF alpha induced NO production were also suppressed by these Ca2+ elevating drugs. Levels of IL-1-induced iNOS protein were reduced by A23187, thapsigargin, and cyclopiazonic acid. These drugs as well as Bay K 8644 and KCl inhibited IL-1-induced iNOS mRNA expression. To analyze the role of Ca2+ in the expression of other IL-1 responsive genes in chondrocytes, these Ca2+ modulating drugs were tested for effects on COXII. In contrast to the inhibitory effects on iNOS mRNA, these drugs induced COXII mRNA expression and in combination with IL-1, enhanced COXII mRNA levels. Ca2+ mediated increases in COXII mRNA expression were associated with an increase in COXII protein. The kinetics of Ca2+ effects on IL-1-induced iNOS mRNA levels suggested a posttranscriptional mechanism. Analysis of iNOS mRNA half life showed that it was 6-7 h in IL-1-stimulated cells and decreased by A23187 to 2- 3 h. In conclusion, these results show that Ca2+ inhibits IL-1-induced NO release, iNOS protein, and mRNA expression in human articular chondrocytes by reducing iNOS mRNA stability. Under identical conditions increased Ca2+ enhances IL-1-induced COXII gene and protein expression. PMID:7540612

  6. Increases in Calmodulin Abundance and Stabilization of Activated iNOS Mediate Bacterial Killing in RAW 264.7 Macrophages

    SciTech Connect

    Smallwood, Heather S.; Shi, Liang; Squier, Thomas C.

    2006-08-01

    The rapid activation of macrophages in response to bacterial antigens is central to the innate immune system that permits the recognition and killing of pathogens to limit infection. To understand regulatory mechanisms underlying macrophage activation, we have investigated changes in the abundance of calmodulin (CaM) and iNOS in response to the bacterial cell wall component lipopolysaccharide (LPS) using RAW 264.7 macrophages. Critical to these measurements was the ability to differentiate free iNOS from the CaM-bound (active) form of iNOS associated with nitric oxide generation. We observe a rapid two-fold increase in CaM abundance during the first 30 minutes that is blocked by inhibition of NF?B nuclear translocation or protein synthesis. A similar two-fold increase in the abundance of the complex between CaM and iNOS is observed with the same time dependence. In contrast, there are no detectable increases in the CaM-free (i.e., inactive) form of iNOS within the first hour; it remains at a very low abundance during the initial phase of macrophage activation. Increasing cellular CaM levels in stably transfected cells results in a corresponding increase in the abundance of the CaM/iNOS complex that promotes effective bacterial killing following challenge by Salmonella typhimurium. Thus, LPS-dependent increases in CaM abundance function in the stabilization and activation of iNOS on the rapid time-scale associated with macrophage activation and bacterial killing. These results explain how CaM and iNOS coordinately function to form a stable complex that is part of a rapid host-response that functions within the first 30 minutes following bacterial infection to up-regulate the innate immune system involving macrophage activation.

  7. Bioactive products of arginine in sepsis: tissue and plasma composition after LPS and iNOS blockade.

    PubMed

    Lortie, M J; Ishizuka, S; Schwartz, D; Blantz, R C

    2000-06-01

    Blockade or gene deletion of inducible nitric oxide synthase (iNOS) fails to fully abrogate all the sequelae leading to the high morbidity of septicemia. An increase in substrate uptake may be necessary for the increased production of nitric oxide (NO), but arginine is also a precursor for other bioactive products. Herein, we demonstrate an increase in alternate arginine products via arginine and ornithine decarboxylase in rats given lipopolysaccharide (LPS). The expression of iNOS mRNA in renal tissue was evident 60 but not 30 min post-LPS, yet a rapid decrease in blood pressure was obtained within 30 min that was completely inhibited by selective iNOS blockade. Plasma levels of arginine and ornithine decreased by at least 30% within 60 min of LPS administration, an effect not inhibited by the iNOS blocker L-N(6)(1-iminoethyl)lysine (L-NIL). Significant increases in plasma nitrates and citrulline occurred only 3-4 h post-LPS, an effect blocked by L-NIL pretreatment. The intracellular composition of organs harvested 6 h post-LPS reflected tissue-specific profiles of arginine and related metabolites. Tissue arginine concentration, normally an order of magnitude higher than in plasma, did not decrease after LPS. Pretreatment with L-NIL had a significant impact on the disposition of tissue arginine that was organ specific. These data demonstrate changes in arginine metabolism before and after de novo iNOS activity. Selective blockade of iNOS did not prevent uptake and can deregulate the production of other bioactive arginine metabolites.

  8. Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice.

    PubMed

    Han, Xiaonan; Fink, Mitchell P; Yang, Runkuan; Delude, Russell L

    2004-03-01

    We tested the hypothesis that increased production of nitric oxide (NO.) associated with lipopolysaccharide (LPS)-induced systemic inflammation leads to functionally significant alterations in the expression and/or targeting of key tight junction (TJ) proteins in ileal and colonic epithelium. Wild-type or inducible NO. synthase (iNOS) knockout male C57B1/6J mice were injected intraperitoneally with 2 mg/kg Escherichia coli O111:B4 LPS. iNOS was inhibited using intraperitoneal L-N(6)-(1-iminoethyl)lysine (L-NIL; 5 mg/kg). Immunoblotting of total protein and NP-40 insoluble proteins revealed decreased expression and decreased TJ localization, respectively, of the TJ proteins, zonula occludens (ZO)-1, ZO-2, ZO-3, and/or occludin in ileal mucosa and colonic mucosa (total protein only) after injection of C57B1/6J mice with LPS. Immunohistochemistry showed deranged distribution of ZO-1 and occludin in both tissues from endotoxemic mice. Endotoxemia was associated with evidence of gut epithelial barrier dysfunction evidenced by increased ileal mucosal permeability to fluorescein isothiocyanate-dextran (Mr=4 kDa) and increased bacterial translocation to mesenteric lymph nodes. Pharmacologic inhibition of iNOS activity using L-NIL or genetic ablation of the iNOS gene ameliorated LPS-induced changes in TJ protein expression and gut mucosal barrier function. These results support the view that at least one mechanism contributing to the pathogenesis of gastrointestinal epithelial dysfunction secondary to systemic inflammation is increased iNOS-dependent NO. production leading to altered expression and localization of key TJ proteins.

  9. India-based Neutrino Observatory(INO): A Status Report

    SciTech Connect

    Murthy, M. V. N.

    2011-11-23

    We present a status report on the proposed India-based Neutrino Observatory (INO). Various aspects of the INO project such as its location, the present status of the detector development, physics goals and simulation studies are discussed briefly. In particular we focus on physics studies possible with an iron calorimeter detector (ICAL) and the logistics of constructing this detector at INO. Such a detector would make precision measurements of neutrino oscillation parameters with atmospheric neutrinos in the first phase with the possibility of acting as a far-end detector of a future neutrino factory or beta beam.

  10. THE ROLE OF MIR-212 AND INOS IN ALCOHOL-INDUCED INTESTINAL BARRIER DYSFUNCTION AND STEATOHEPATITIS

    PubMed Central

    Tang, Yueming; Zhang, Lijuan; Forsyth, Christopher B.; Shaikh, Maliha; Song, Shiwen; Keshavarzian, Ali

    2015-01-01

    Background Alcoholic liver disease (ALD) is commonly associated with intestinal barrier dysfunction. Alcohol-induced dysregulation of intestinal tight junction (TJ) proteins, such as Zonula Occludens-1 (ZO-1), plays an important role in alcohol-induced gut leakiness. However, the mechanism of alcohol-induced disruption of TJ proteins is not well established. The goal of this study was to elucidate this mechanism by studying the role of MicroRNA 212 (miR-212) and inducible nitric oxide synthase (iNOS) in alcohol-induced gut leakiness. Methods The permeability of the Caco-2 monolayer was assessed by transepithelial electrical resistance (TER) and flux of fluorescein sulfonic acid (FSA). miR-212 was measured by real time PCR. The wild type, iNOS knockout, and miR-212 knockdown mice were fed with alcohol diet (29% of total calories, 4.5% v/v) for 8 weeks. The LNA-anti-miR-212 was used to inhibit miR-212 expression in mice. The alcohol-induced intestinal permeability, miR-212 expression and liver injuries in mice were measured. Results Our in vitro monolayer and in vivo mice studies showed that: (1) alcohol-induced over-expression of the intestinal miR-212 and intestinal hyperpermeability is prevented by using miR-212 knock-down techniques; and (2). iNOS is upregulated in the intestine by alcohol and that iNOS signaling is required for alcohol-induced miR-212 over-expression, ZO-1 disruption, gut leakiness and steatohepatis. Conclusions These studies thus support a novel miR-212 mechanism for alcohol-induced gut leakiness and a potential target that could be exploited for therapeutic intervention to prevent leaky gut and liver injury in alcoholics. PMID:26207424

  11. RPC detector characteristics and performance for INO-ICAL experiment

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Gaur, A.; Hasbuddin, Md.; Naimuddin, Md.

    2016-03-01

    The India-based Neutrino Observatory (INO) is an approved multi-institutional collaboration neutrino physics project, aimed at building an underground laboratory in the southern India. INO will utilize a large magnetized Iron Calorimeter (ICAL) detector to study the atmospheric neutrinos, and to explore the unresolved issues related to neutrinos. The Resistive Plate Chambers (RPCs), interleaved in between iron absorber layers, are going to be used as the active signal readouts for the ICAL experiment at INO. The research and development is carried out to find structural quality and electrical response for RPC electrode materials available within local domain. The assembled 2 mm gap RPCs are tested using cosmic muons for their detection performance. The study also incorporates preliminary results on detector timing and signal induced charge measurements.

  12. [TREATMENT OF EXTREMELY PREMATURE NEWBORN INFANT WITH INO. CLINICAL CASE].

    PubMed

    Radulova, P; Slancheva, B; Marinov, R

    2015-01-01

    Prolonged inhaled nitric oxide (iNO) from birth in preterm neonates with BPD improves endogenous surfactant function as well as lung growth, angiogenesis, and alveologenesis. As a result there is a reduction in the frequency of the "new" form of BPD in neonates under 28 weeks of gestation and birth weight under 1000 gr. Delivery of inhaled nitric oxide is a new method of prevention of chronic lung disease. According to a large number of randomized trials iNO in premature neonates reduces pulmonary morbidity and leads to a reduction of the mortality in this population of patients. This new therapy does not have serious side effects. We represent a clinical case of extremely premature newborn infant with BPD treated with iNO.

  13. Effect of ulinastatin on the expression of iNOS, MMP-2, and MMP-3 in degenerated nucleus pulposus cells of rabbits.

    PubMed

    Hua, Guo; Haiping, Zhang; Baorong, He; Dingjun, Hao

    2013-01-01

    We examined the effects of ulinastatin on the expression of inducible nitric oxide synthase (iNOS), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-3 (MMP-3) in degenerated nucleus pulposus (NP) cells of rabbits induced by interleukin (IL)-1β in vitro. An in vitro NP cell culture model was set up with enzyme digestion. NP cells from adult white rabbits were divided into six groups: the normal control group, the ulinastatin control group (320 U/mL ulinastatin), the induced group (10 ng/mL IL-1β), and three inhibition groups (IL-1β followed by 160, 320, or 640 U/mL ulinastatin). After a 2-day culture, the NP cells were collected for immunohistochemical staining for MMP-2 and MMP-3 and spectrophotometric analysis of the amount of iNOS. Immunohistochemical staining showed that the expression of MMP-2 and MMP-3 proteins in NP cells decreased in the inhibition groups compared with the induced group, which was in inverse proportion to the ulinastatin concentration. Spectrophotometric results showed that, compared with the induced group, the iNOS content in each inhibition group decreased, most significantly in the 320 U/mL group. Ulinastatin effectively inhibited the increased expression of MMP-2, MMP-3, and iNOS in degenerated NP cells induced by IL-1β in vitro. It suggests that ulinastatin may potentially be useful for clinical therapy of intervertebral disc degeneration.

  14. Controlled bile acid exposure to oesophageal mucosa causes up-regulation of nuclear γ-H2AX possibly via iNOS induction

    PubMed Central

    Jiang, Bo; Zhao, Shengqian; Tao, Zhen; Wen, Jin; Yang, Yancheng; Zheng, Yin; Yan, Hongling; Sheng, Ying; Gao, Aimin

    2016-01-01

    Using an in vitro model in which flatmounts of oesophagus was periodically exposed to bile acids, we demonstrate, using multiple methods, that the bile acid receptor TGR5, inducible nitric oxide synthase (iNOS) and γ-histone family 2A variant (γ-H2AX) are up-regulated. This indicates that bile acids cause up-regulation of iNOS, which further causes genotoxic stress as evidenced by increase of the highly sensitive marker, phosphorylated histone. In vitro nitric oxide (NO) assays showed increased production of nitric acid in the oesophageal epithelium exposed to the bile acids. This increase was inhibited in the presence of the nonspecific iNOS inhibitor aminoguanidine (AG). Cumulatively, the results of the present study provide suggestion that not only acid reflux, but also non-acid reflux of bile may cause genotoxic stress. These aspects merit to be tested in wide spectrum of Barrett epithelial tissues. PMID:27247425

  15. ER stress upregulated PGE2/IFNγ-induced IL-6 expression and down-regulated iNOS expression in glial cells

    NASA Astrophysics Data System (ADS)

    Hosoi, Toru; Honda, Miya; Oba, Tatsuya; Ozawa, Koichiro

    2013-12-01

    The disruption of endoplasmic reticulum (ER) function can lead to neurodegenerative disorders, in which inflammation has also been implicated. We investigated the possible correlation between ER stress and immune function using glial cells. We demonstrated that ER stress synergistically enhanced prostaglandin (PG) E2 + interferon (IFN) γ-induced interleukin (IL)-6 production. This effect was mediated through cAMP. Immune-activated glial cells produced inducible nitric oxide synthase (iNOS). Interestingly, ER stress inhibited PGE2 + IFNγ-induced iNOS expression. Similar results were obtained when cells were treated with dbcAMP + IFNγ. Thus, cAMP has a dual effect on immune reactions; cAMP up-regulated IL-6 expression, but down-regulated iNOS expression under ER stress. Therefore, our results suggest a link between ER stress and immune reactions in neurodegenerative diseases.

  16. Controlled bile acid exposure to oesophageal mucosa causes up-regulation of nuclear γ-H2AX possibly via iNOS induction.

    PubMed

    Jiang, Bo; Zhao, Shengqian; Tao, Zhen; Wen, Jin; Yang, Yancheng; Zheng, Yin; Yan, Hongling; Sheng, Ying; Gao, Aimin

    2016-08-01

    Using an in vitro model in which flatmounts of oesophagus was periodically exposed to bile acids, we demonstrate, using multiple methods, that the bile acid receptor TGR5, inducible nitric oxide synthase (iNOS) and γ-histone family 2A variant (γ-H2AX) are up-regulated. This indicates that bile acids cause up-regulation of iNOS, which further causes genotoxic stress as evidenced by increase of the highly sensitive marker, phosphorylated histone. In vitro nitric oxide (NO) assays showed increased production of nitric acid in the oesophageal epithelium exposed to the bile acids. This increase was inhibited in the presence of the nonspecific iNOS inhibitor aminoguanidine (AG). Cumulatively, the results of the present study provide suggestion that not only acid reflux, but also non-acid reflux of bile may cause genotoxic stress. These aspects merit to be tested in wide spectrum of Barrett epithelial tissues. PMID:27247425

  17. Effect of sildenafil citrate on interleukin-1β-induced nitric oxide synthesis and iNOS expression in SW982 cells

    PubMed Central

    Kim, Kyung-Ok; Park, Shin-Young; Han, Chang-Woo; Chung, Hyun Kee; Ryu, Dae-Hyun

    2008-01-01

    The purpose of this study was to identify the effect of sildenafil citrate on IL-1β-induced nitric oxide (NO) synthesis and iNOS expression in human synovial sarcoma SW982 cells. IL-1β stimulated the cells to generate NO in both dose- and time-dependent manners. The IL-1β-induced NO synthesis was inhibited by guanylate cyclase (GC) inhibitor, LY83583. When the cells were treated with 8-bromo-cGMP, a hydrolyzable analog of cGMP, NO synthesis was increased upto 5-fold without IL-1β treatment suggesting that cGMP is an essential component for increasing the NO synthesis. Synoviocytes and chondrocytes contain strong cGMP phosphodiesterase (PDE) activity, which has biochemical features of PDE5. When SW982 cells were pretreated with sildenafil citrate (Viagra), a PDE5 specific inhibitor, sildenafil citrate significantly inhibited IL-1β-induced NO synthesis and iNOS expressions. From this result, we noticed that PDE5 activity is required for IL-1β-induced NO synthesis and iNOS expressions in human synovial sarcoma cells, and sildenafil citrate may be able to suppress an inflammatory reaction of synovium through inhibition of NO synthesis and iNOS expression by cytokines. PMID:18587266

  18. Interaction of the Chromatin Remodeling Protein hINO80 with DNA

    PubMed Central

    Jain, Shruti; Kaur, Taniya; Brahmachari, Vani

    2016-01-01

    The presence of a highly conserved DNA binding domain in INO80 subfamily predicted that INO80 directly interacts with DNA and we demonstrated its DNA binding activity in vitro. Here we report the consensus motif recognized by the DBINO domain identified by SELEX method and demonstrate the specific interaction of INO80 with the consensus motif. We show that INO80 significantly down regulates the reporter gene expression through its binding motif, and the repression is dependent on the presence of INO80 but not YY1 in the cell. The interaction is lost if specific residues within the consensus motif are altered. We identify a large number of potential target sites of INO80 in the human genome through in silico analysis that can grouped into three classes; sites that contain the recognition sequence for INO80 and YY1, only YY1 and only INO80. We demonstrate the binding of INO80 to a representative set of sites in HEK cells and the correlated repressive histone modifications around the binding motif. In the light of the role of INO80 in homeotic gene regulation in Drosophila as an Enhancer of trithorax and polycomb protein (ETP) that can modify the effect of both repressive complexes like polycomb as well as the activating complex like trithorax, it remains to be seen if INO80 can act as a recruiter of chromatin modifying complexes. PMID:27428271

  19. Inducible nitric oxide synthase (iNOS) expression in monocytes during acute Dengue Fever in patients and during in vitro infection

    PubMed Central

    Neves-Souza, Patrícia CF; Azeredo, Elzinandes L; Zagne, Sonia MO; Valls-de-Souza, Rogério; Reis, Sonia RNI; Cerqueira, Denise IS; Nogueira, Rita MR; Kubelka, Claire F

    2005-01-01

    Abstract Mononuclear phagocytes are considered to be main targets for Dengue Virus (DENV) replication. These cells are activated after infection, producing proinflammatory mediators, including tumour-necrosis factor-α, which has also been detected in vivo. Nitric oxide (NO), usually produced by activated mononuclear phagocytes, has antimicrobial and antiviral activities. Methods The expression of DENV antigens and inducible nitric oxide synthase (iNOS) in human blood isolated monocytes were analysed by flow cytometry using cells either from patients with acute Dengue Fever or after DENV-1 in vitro infection. DENV-1 susceptibility to iNOS inhibition and NO production was investigated using NG-methyl L-Arginine (NGMLA) as an iNOS inhibitor, which was added to DENV-1 infected human monocytes, and sodium nitroprussiate (SNP), a NO donor, added to infected C6/36 mosquito cell clone. Viral antigens after treatments were detected by flow cytometry analysis. Results INOS expression in activated monocytes was observed in 10 out of 21 patients with Dengue Fever and was absent in cells from ten healthy individuals. DENV antigens detected in 25 out of 35 patients, were observed early during in vitro infection (3 days), significantly diminished with time, indicating that virus replicated, however monocytes controlled the infection. On the other hand, the iNOS expression was detected at increasing frequency in in vitro infected monocytes from three to six days, exhibiting an inverse relationship to DENV antigen expression. We demonstrated that the detection of the DENV-1 antigen was enhanced during monocyte treatment with NGMLA. In the mosquito cell line C6/36, virus detection was significantly reduced in the presence of SNP, when compared to that of untreated cells. Conclusion This study is the first to reveal the activation of DENV infected monocytes based on induction of iNOS both in vivo and in vitro, as well as the susceptibility of DENV-1 to a NO production. PMID:16109165

  20. Phosphorylation of human INO80 is involved in DNA damage tolerance

    SciTech Connect

    Kato, Dai; Waki, Mayumi; Umezawa, Masaki; Aoki, Yuka; Utsugi, Takahiko; Ohtsu, Masaya; Murakami, Yasufumi

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced PCNA ubiquitination. Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced nuclear dots intensity of RAD18 after UV irradiation. Black-Right-Pointing-Pointer Western blot analyses showed phosphorylated hINO80 C-terminus. Black-Right-Pointing-Pointer Overexpression of phosphorylation mutant hINO80 reduced PCNA ubiquitination. -- Abstract: Double strand breaks (DSBs) are the most serious type of DNA damage. DSBs can be generated directly by exposure to ionizing radiation or indirectly by replication fork collapse. The DNA damage tolerance pathway, which is conserved from bacteria to humans, prevents this collapse by overcoming replication blockages. The INO80 chromatin remodeling complex plays an important role in the DNA damage response. The yeast INO80 complex participates in the DNA damage tolerance pathway. The mechanisms regulating yINO80 complex are not fully understood, but yeast INO80 complex are necessary for efficient proliferating cell nuclear antigen (PCNA) ubiquitination and for recruitment of Rad18 to replication forks. In contrast, the function of the mammalian INO80 complex in DNA damage tolerance is less clear. Here, we show that human INO80 was necessary for PCNA ubiquitination and recruitment of Rad18 to DNA damage sites. Moreover, the C-terminal region of human INO80 was phosphorylated, and overexpression of a phosphorylation-deficient mutant of human INO80 resulted in decreased ubiquitination of PCNA during DNA replication. These results suggest that the human INO80 complex, like the yeast complex, was involved in the DNA damage tolerance pathway and that phosphorylation of human INO80 was involved in the DNA damage tolerance pathway. These findings provide new insights into the DNA damage tolerance pathway in mammalian cells.

  1. CPEB1 modulates lipopolysaccharide-mediated iNOS induction in rat primary astrocytes

    SciTech Connect

    Kim, Ki Chan; Hyun Joo, So; Shin, Chan Young

    2011-06-17

    Highlights: {yields} Expression and phosphorylation of CPEB1 is increased by LPS stimulation in rat primary astrocytes. {yields} JNK regulates expression and phosphorylation of CPEB1 in reactive astrocytes. {yields} Down-regulation of CPEB1 using siRNA inhibits oxidative stress and iNOS induction by LPS stimulation. {yields} CPEB1 may play an important role in regulating inflammatory responses in reactive astrocytes induced by LPS. -- Abstract: Upon CNS damage, astrocytes undergo a series of biological changes including increased proliferation, production of inflammatory mediators and morphological changes, in a response collectively called reactive gliosis. This process is an essential part of the brains response to injury, yet much is unknown about the molecular mechanism(s) that induce these changes. In this study, we investigated the role of cytoplasmic polyadenylation element binding protein 1 (CPEB1) in the regulation of inflammatory responses in a model of reactive gliosis, lipopolysaccharide-stimulated astrocytes. CPEB1 is an mRNA-binding protein recently shown to be expressed in astrocytes that may play a role in astrocytes migration. After LPS stimulation, the expression and phosphorylation of CPEB1 was increased in rat primary astrocytes in a JNK-dependent process. siRNA-induced knockdown of CPEB1 expression inhibited the LPS-induced up-regulation of iNOS as well as NO and ROS production, a hallmark of immunological activation of astrocytes. The results from the study suggest that CPEB1 is actively involved in the regulation of inflammatory responses in astrocytes, which might provide new insights into the regulatory mechanism after brain injury.

  2. iNOS signaling interacts with COX-2 pathway in colonic fibroblasts.

    PubMed

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-10-01

    COX-2 and iNOS are two major inflammatory mediators implicated in colorectal inflammation and cancer. Previously, the role of colorectal fibroblasts involved in regulation of COX-2 and iNOS expression was largely ignored. In addition, the combined interaction of COX-2 and iNOS signalings and their significance in the progression of colorectal inflammation and cancer within the fibroblasts have received little investigation. To address those issues, we investigated the role of colonic fibroblasts in the regulation of COX-2 and iNOS gene expression, and explored possible mechanisms of interaction between COX-2 and iNOS signalings using a colonic CCD-18Co fibroblast line and LPS, a potential stimulator of COX-2 and iNOS. Our results clearly demonstrated that LPS activated COX-2 gene expression and enhanced PGE(2) production, stimulated iNOS gene expression and promoted NO production in the fibroblasts. Interestingly, activation of COX-2 signaling by LPS was not involved in activation of iNOS signaling, while activation of iNOS signaling by LPS contributed in part to activation of COX-2 signaling. Further analysis indicated that PKC plays a major role in the activation and interaction of COX-2 and iNOS signalings induced by LPS in the fibroblasts. PMID:22683859

  3. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants.

    PubMed

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS(-/-)) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS(-/-) mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS(-/-) mice. In contrast, the iNOS(-/-) implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS(-/-) mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice.

  4. Mechanism of Inducible Nitric-oxide Synthase Dimerization Inhibition by Novel Pyrimidine Imidazoles*

    PubMed Central

    Nagpal, Latika; Haque, Mohammad M.; Saha, Amit; Mukherjee, Nirmalya; Ghosh, Arnab; Ranu, Brindaban C.; Stuehr, Dennis J.; Panda, Koustubh

    2013-01-01

    Overproduction of nitric oxide (NO) by inducible nitric-oxide synthase (iNOS) has been etiologically linked to several inflammatory, immunological, and neurodegenerative diseases. As dimerization of NOS is required for its activity, several dimerization inhibitors, including pyrimidine imidazoles, are being evaluated for therapeutic inhibition of iNOS. However, the precise mechanism of their action is still unclear. Here, we examined the mechanism of iNOS inhibition by a pyrimidine imidazole core compound and its derivative (PID), having low cellular toxicity and high affinity for iNOS, using rapid stopped-flow kinetic, gel filtration, and spectrophotometric analysis. PID bound to iNOS heme to generate an irreversible PID-iNOS monomer complex that could not be converted to active dimers by tetrahydrobiopterin (H4B) and l-arginine (Arg). We utilized the iNOS oxygenase domain (iNOSoxy) and two monomeric mutants whose dimerization could be induced (K82AiNOSoxy) or not induced (D92AiNOSoxy) with H4B to elucidate the kinetics of PID binding to the iNOS monomer and dimer. We observed that the apparent PID affinity for the monomer was 11 times higher than the dimer. PID binding rate was also sensitive to H4B and Arg site occupancy. PID could also interact with nascent iNOS monomers in iNOS-synthesizing RAW cells, to prevent their post-translational dimerization, and it also caused irreversible monomerization of active iNOS dimers thereby accomplishing complete physiological inhibition of iNOS. Thus, our study establishes PID as a versatile iNOS inhibitor and therefore a potential in vivo tool for examining the causal role of iNOS in diseases associated with its overexpression as well as therapeutic control of such diseases. PMID:23696643

  5. Constitutive intracellular production of iNOS and NO in human melanoma: possible role in regulation of growth and resistance to apoptosis.

    PubMed

    Grimm, Elizabeth A; Ellerhorst, Julie; Tang, Chi-Hui; Ekmekcioglu, Suhendan

    2008-09-01

    Human melanoma tumors cells are known to express the enzyme, inducible nitric oxide synthase (iNOS), which is responsible for cytokine induced nitric oxide (NO) production during immune responses. This constitutive expression of iNOS in many patients' tumor cells, as well as its strong association with poor patient survival, have led to the consideration of iNOS as a molecular marker of poor prognosis, as well as a possible target for therapy. The expression of iNOS in patient tumors was found to associate with nitrotyrosine, COX2, pSTAT3, and arginase. Using human melanoma patients' samples as well as cell lines, we have further evidence supporting intracellular NO production by detection of nitrotyrosine and also by use of DAF-2DA staining. Experiments were performed to scavenge the endogenous NO (with c-PTIO) resulting in melanoma cell growth inhibition; this was restored with SIN-1 (NO and O2-donor) providing data to support a functional role of this gas. Our goal is to understand the aberrant biology leading to this curious phenomenon, and to regulate it in favor of patient treatments.

  6. Inhibitory effects of Euterpe oleracea Mart. on nitric oxide production and iNOS expression.

    PubMed

    Matheus, Maria Eline; de Oliveira Fernandes, Sidnei Bessa; Silveira, Cristiane Silva; Rodrigues, Verônica Pinto; de Sousa Menezes, Fabio; Fernandes, Patricia Dias

    2006-09-19

    The palm Euterpe oleracea is a plant of great economic value in Brazil. Although the heart of palm extracted from its trunk is considered a delicacy the world over, its fruits are popular only among Brazilians. In some poor regions of Brazil, there are reports on the popular use of its juice in the treatment of several disorders, mainly those of oxidative onset as cardiovascular ones. Because of its wide utilization; because there are very few scientific studies of this species, and to discover if its use in folk medicine for problems related with oxidation is in fact justifiable, we decided, in this study, to evaluate the effects of Euterpe oleracea flowers, fruits and spikes fractions on: nitric oxide (NO) production, NO scavenger capacity, and on the expression of inducible nitric oxide synthase enzyme, as well. Results showed that the fractions obtained from fruits were the most potent in inhibiting NO production, followed by those from flowers and spikes. Only in high doses, did some fractions reduce cell viability. Reduction on NO production was not due to NO scavenger activity. These results were accompanied by inhibition of iNOS expression. The more pronounced effect was observed in the fractions in which the concentration of cyanidin-3-O-glucoside and cyanidin-3-O-rhamnoside were higher. To sum up, our results indicate that fractions from Euterpe oleracea inhibits NO production by reducing the levels of inducible nitric oxide synthase expression. PMID:16635558

  7. 4-dimethylamino-3',4'-dimethoxychalcone downregulates iNOS expression and exerts anti-inflammatory effects.

    PubMed

    Herencia, F; Ferrándiz, M L; Ubeda, A; Guillén, I; Dominguez, J N; Charris, J E; Lobo, G M; Alcaraz, M J

    2001-01-01

    Reactive oxygen and nitrogen species contribute to the pathophysiology of inflammatory conditions. We have studied the effects of a novel superoxide scavenger, 4-dimethylamino-3', 4'-dimethoxychalcone (CH11) in macrophages and in vivo. CH11 has been shown to inhibit the chemiluminescence induced by zymosan in mouse peritoneal macrophages and the cytotoxic effects of superoxide. In the same cells, the modulation by superoxide of nitric oxide (NO) production in response to zymosan was investigated. CH11 was more effective than the membrane-permeable scavenger Tiron for inhibition of inducible nitric oxide synthase (iNOS) protein expression and nitrite production. We have shown that CH11 inhibited chemiluminescence in vivo, as well as cell migration, and eicosanoid and tumor necrosis factor-alpha (TNF-alpha) levels in the mouse air pouch injected with zymosan. This chalcone derivative also exerted anti-inflammatory effects in the carrageenan paw oedema.

  8. Stabilization and targeting of INO80 to replication forks by BAP1 during normal DNA synthesis.

    PubMed

    Lee, Han-Sae; Lee, Shin-Ai; Hur, Shin-Kyoung; Seo, Jeong-Wook; Kwon, Jongbum

    2014-10-06

    The INO80 chromatin-remodelling complex has been implicated in DNA replication during stress in yeast. However, its role in normal DNA replication and its underlying mechanisms remain unclear. Here, we show that INO80 binds to replication forks and promotes fork progression in human cells under unperturbed, normal conditions. We find that Ino80, which encodes the catalytic ATPase of INO80, is essential for mouse embryonic DNA replication and development. Ino80 is recruited to replication forks through interaction with ubiquitinated H2A--aided by BRCA1-associated protein-1 (BAP1), a tumour suppressor and nuclear de-ubiquitinating enzyme that also functions to stabilize Ino80. Importantly, Ino80 is downregulated in BAP1-defective cancer cells due to the lack of an Ino80 stabilization mechanism via BAP1. Our results establish a role for INO80 in normal DNA replication and uncover a mechanism by which this remodeler is targeted to replication forks, suggesting a molecular basis for the tumour-suppressing function of BAP1.

  9. Nitrosyl iodide, INO: A combined ab initio and high-resolution spectroscopic study

    NASA Astrophysics Data System (ADS)

    Bailleux, S.; Duflot, D.; Aiba, S.; Nakahama, S.; Ozeki, H.

    2016-04-01

    In the nitrosyl halides series (XNO, where X = F, Cl, Br, I), INO is the only chemical species whose rotational spectrum has not been reported. Nitrosyl iodide, together with the nitryl (INO2), nitrite (IONO) and nitrate (IONO2) iodides, is believed to impact tropospheric ozone levels. Guided by our quantum chemical calculations, we report the detection of INO in the gas phase by high-resolution spectroscopy for the first time. INO was generated by mixing continuously I2 and NO. The measurement and least-squares analysis of 173 a-type rotational transitions resulted in the accurate determination of molecular parameters.

  10. PEX7 and EBP50 target iNOS to the peroxisome in hepatocytes.

    PubMed

    Loughran, Patricia A; Stolz, Donna B; Barrick, Stacey R; Wheeler, David S; Friedman, Peter A; Rachubinski, Richard A; Watkins, Simon C; Billiar, Timothy R

    2013-05-31

    iNOS localizes to both the cytosol and peroxisomes in hepatocytes in vitro and in vivo. The structural determinants for iNOS localization are not known. One plausible mechanism for iNOS localization to the peroxisome is through the interaction with peroxisomal import proteins PEX5 or PEX7. siRNA knockdown of PEX7 reduced iNOS colocalization with the peroxisomal protein PMP70. Proteomic studies using MALDI-MS identified iNOS association with the 50-kD ezrin binding PDZ protein (EBP50). Confocal microscopy studies and immunoelectron microscopy confirmed iNOS association with EBP50, with greatest colocalization occurring at 8h of cytokine exposure. EBP50 associated with peroxisomes in a PEX5 and PEX7-dependent manner. iNOS localization to peroxisomes was contingent on EBP50 expression in LPS-treated mice. Thus, iNOS targeting to peroxisomes in hepatocytes involves interaction with PEX7 and EBP50. The targeting of iNOS protein to the peroxisome may shift the balance of metabolic processes that rely on heme proteins susceptible to modification by radical oxygen and nitrogen radicals.

  11. PEX7 and EBP50 Target iNOS to the Peroxisome in Hepatocytes

    PubMed Central

    Loughran, Patricia A.; Stolz, Donna B.; Barrick, Stacey R.; Wheeler, David S.; Friedman, Peter A.; Rachubinski, Richard A.; Watkins, Simon C.; Billiar, Timothy R.

    2013-01-01

    iNOS localizes to both the cytosol and peroxisomes in hepatocytes in vitro and in vivo. The structural determinants for iNOS localization are not known. One plausible mechanism for iNOS localization to the peroxisome is through the interaction with peroxisomal import proteins PEX5 or PEX7. siRNA knockdown of PEX7 reduced iNOS colocalization with the peroxisomal protein PMP70. Proteomic studies using MALDI-MS identified iNOS association with the 50-kD ezrin binding PDZ protein (EBP50). Confocal microscopy studies and immunoelectron microscopy confirmed iNOS association with EBP50, with greatest colocalization occurring at 8 hours of cytokine exposure. EBP50 associated with peroxisomes in a PEX5 and PEX7-dependent manner. iNOS localization to peroxisomes was contingent on EBP50 expression in LPS-treated mice. Thus, iNOS targeting to peroxisomes in hepatocytes involves interaction with PEX7 and EBP50. The targeting of iNOS protein to the peroxisome may shift the balance of metabolic processes that rely on heme proteins susceptible to modification by radical oxygen and nitrogen radicals. PMID:23474170

  12. Development of glass resistive plate chambers for INO experiment

    NASA Astrophysics Data System (ADS)

    Datar, V. M.; Jena, Satyajit; Kalmani, S. D.; Mondal, N. K.; Nagaraj, P.; Reddy, L. V.; Saraf, M.; Satyanarayana, B.; Shinde, R. R.; Verma, P.

    2009-05-01

    The India-based Neutrino Observatory (INO) collaboration is planning to build a massive 50 kton magnetised Iron Calorimeter (ICAL) detector, to study atmospheric neutrinos and to make precision measurements of the parameters related to neutrino oscillations. Glass Resistive Plate Chambers (RPCs) of about 2 m×2 m in size are going to be used as active elements for the ICAL detector. We have fabricated a large number of glass RPC prototypes of 1 m×1 m in size and have studied their performance and long term stability. In the process, we have developed and produced a number of materials and components required for fabrication of RPCs. We have also designed and optimised a number of fabrication and quality control procedures for assembling the gas gaps. In this paper we will review our various activities towards development of glass RPCs for the INO ICAL detector. We will present results of the characterisation studies of the RPCs and discuss our plans to prototype 2 m×2 m sized RPCs.

  13. Later phase cardioprotection of ischemic post-conditioning against ischemia/reperfusion injury depends on iNOS and PI3K-Akt pathway

    PubMed Central

    Wang, Gongming; Li, Xin; Wang, Hong; Wang, Yan; Zhang, Ligong; Zhang, Le; Liu, Bei; Zhang, Mengyuan

    2015-01-01

    Background: The cardioprotection of ischemic post-conditioning (IPO) has been well demonstrated after a short period of reperfusion. However, little is known about the long-term effects of IPO. This study aimed to investigate the long term cardioprotection of IPO in a rat myocardial ischemia/reperfusion model and to explore the potential mechanism. Methods and results: Rats were either sham-operated (Sham group) or underwent 30-min left anterior descending coronary artery ischemia followed by immediate reperfusion (I/R group) or post-conditioning with 5 cycles of 10-s ischemia and 10-s reperfusion (IPO group). At 24 h after reperfusion, infarct size reduced from 34.7±1.1% in I/R group to 24.9±1.3% in IPO group (P<0.05) and the iNOS expression in IPO group was 4.7-fold higher than in I/R group. iNOS inhibitor 1400 W (1 mg/kg, 5 min before postconditioning or reperfusion) prevented the increase in iNOS expression and abolished IPO-induced protection (34.4±1.0%, P>0.05 vs. I/R group). When rats were treated with PI3K inhibitor LY294002 5 min before reperfusion (0.3 mg/kg), p-Akt expression at R 3 h and iNOS expression at R 24 h were significantly inhibited. Moreover, the delayed infarct-sparing effect of IPO was absent in the presence of LY294002. Conclusion: IPO has prolonged cardioprotective effects and iNOS as an important downstream effector of PI3K-Akt pathway contributes to the delayed phase cardioprotection of IPO. PMID:26885260

  14. Tetramethylpyrazine attenuates TNF-α-induced iNOS expression in human endothelial cells: Involvement of Syk-mediated activation of PI3K-IKK-IκB signaling pathways

    SciTech Connect

    Zheng, Zhen; Li, Zhiliang; Chen, Song; Pan, Jieyi; Ma, Xiaochun

    2013-08-15

    Endothelial cells produce nitric oxide (NO) by activation of constitutive nitric oxide synthase (NOS) and transcription of inducible NO synthase (iNOS). We explored the effect of tetramethylpyrazine (TMP), a compound derived from chuanxiong, on tumor necrosis factor (TNF)-α-induced iNOS in human umbilical vein endothelial cells (HUVECs) and explored the signal pathways involved by using RT-PCR and Western blot. TMP suppressed TNF-α-induced expression of iNOS by inhibiting IκB kinase (IKK) phosphorylation, IκB degradation and nuclear factor κB (NF-κB) nuclear translocation, which were required for NO gene transcription. Exposure to wortmannin abrogated IKK/IκB/NF-κB-mediated iNOS expression, suggesting activation of such a signal pathway might be phosphoinositide-3-kinase (PI3K) dependent. Spleen tyrosine kinase (Syk) inhibitor piceatannol significantly inhibited NO production. Furthermore, piceatannol obviously suppressed TNF-α-induced IκB phosphorylation and the downstream NF-κB activation, suggesting that Syk is an upstream key regulator in the activation of PI3K/IKK/IκB-mediated signaling. TMP significantly inhibited TNF-α-induced phosphorylation of Syk and PI3K. Our data indicate that TMP might repress iNOS expression, at least in part, through its inhibitory effect of Syk-mediated PI3K phosphorylation in TNF-α-stimulated HUVECs. -- Highlights: •TMP suppressed TNF-α-induced expression of iNOS by inhibiting IKK/IκB/NF-κB pathway. •PI3K inhibitor wortmannin abrogated IKK/IκB/NF-κB-mediated iNOS expression. •Syk inhibitor piceatannol repressed PI3K/IKK/IκB mediated NO production. •Syk is an upstream regulator in the activation of PI3K/IKK/IκB-mediated signaling. •TMP might repress iNOS expression through Syk-mediated PI3K pathway.

  15. Oxidative stress increases hepatocyte iNOS gene transcription and promoter activity.

    PubMed

    Kuo, P C; Abe, K Y; Schroeder, R A

    1997-05-19

    Hepatocyte expression of inducible nitric oxide synthase (iNOS) is initiated by the presence of pro-inflammatory cytokines, such as interleukin-1beta (IL-1). In the presence of oxidative stress, IL-1beta mediated hepatocyte iNOS expression and NO synthesis are significantly increased. To determine the underlying molecular mechanism responsible for oxidative stress augmentation of hepatocyte iNOS expression, rat hepatocytes in primary culture were stimulated with IL-1beta (250 U/mL) in the presence and absence of benzenetriol (BZT, 0-100 microM), an autocatalytic source of superoxide at physiologic pH. Nuclear runon analysis demonstrated that BZT was associated with increased iNOS gene transcription in the setting of IL-1 stimulation. Transient transfection of a plasmid construct composed of the rat hepatocyte iNOS promoter and a chloramphenicol transferase reporter gene demonstrated that the combination of BZT and IL-1 significantly increased iNOS promoter activity in comparison to that of IL-1beta alone. These data indicate that BZT-mediated oxidative stress increases IL-1beta induced iNOS gene transcription and iNOS promoter activity.

  16. Redox-stable cyclic peptide inhibitors of the SPSB2-iNOS interaction.

    PubMed

    Yap, Beow Keat; Harjani, Jitendra R; Leung, Eleanor W W; Nicholson, Sandra E; Scanlon, Martin J; Chalmers, David K; Thompson, Philip E; Baell, Jonathan B; Norton, Raymond S

    2016-03-01

    SPSB2 mediates the proteasomal degradation of iNOS. Inhibitors of SPSB2-iNOS interaction are expected to prolong iNOS lifetime and thereby enhance killing of persistent pathogens. Here, we describe the synthesis and characterization of two redox-stable cyclized peptides containing the DINNN motif required for SPSB2 binding. Both analogues bind with low nanomolar affinity to the iNOS binding site on SPSB, as determined by SPR and (19)F NMR, and efficiently displace full-length iNOS from binding to SPSB2 in macrophage cell lysates. These peptides provide a foundation for future development of redox-stable, potent ligands for SPSB proteins as a potential novel class of anti-infectives. PMID:26921848

  17. Redox-stable cyclic peptide inhibitors of the SPSB2-iNOS interaction.

    PubMed

    Yap, Beow Keat; Harjani, Jitendra R; Leung, Eleanor W W; Nicholson, Sandra E; Scanlon, Martin J; Chalmers, David K; Thompson, Philip E; Baell, Jonathan B; Norton, Raymond S

    2016-03-01

    SPSB2 mediates the proteasomal degradation of iNOS. Inhibitors of SPSB2-iNOS interaction are expected to prolong iNOS lifetime and thereby enhance killing of persistent pathogens. Here, we describe the synthesis and characterization of two redox-stable cyclized peptides containing the DINNN motif required for SPSB2 binding. Both analogues bind with low nanomolar affinity to the iNOS binding site on SPSB, as determined by SPR and (19)F NMR, and efficiently displace full-length iNOS from binding to SPSB2 in macrophage cell lysates. These peptides provide a foundation for future development of redox-stable, potent ligands for SPSB proteins as a potential novel class of anti-infectives.

  18. Latest developments in active remote sensing at INO

    NASA Astrophysics Data System (ADS)

    Babin, F.; Forest, R.; Bourliaguet, B.; Cantin, D.; Cottin, P.; Pancrati, O.; Turbide, S.; Lambert-Girard, S.; Cayer, F.; Lemieux, D.; Cormier, J.-F.; Châteauneuf, F.

    2012-09-01

    Remote sensing or stand-off detection using controlled light sources is a well known and often used technique for atmospheric and surface spatial mapping. Today, ground based, vehicle-borne and airborne systems are able to cover large areas with high accuracy and good reliability. This kind of detection based on LiDAR (Light Detection and Ranging) or active Differential Optical Absorption Spectroscopy (DOAS) technologies, measures optical responses from controlled illumination of targets. Properties that can be recorded include volume back-scattering, surface reflectivity, molecular absorption, induced fluorescence and Raman scattering. The various elastic and inelastic backscattering responses allow the identification or characterization of content of the target volumes or surfaces. INO has developed instrumentations to measure distance to solid targets and monitor particles suspended in the air or in water in real time. Our full waveform LiDAR system is designed for use in numerous applications in environmental or process monitoring such as dust detection systems, aerosol (pesticide) drift monitoring, liquid level sensing or underwater bathymetric LiDARs. Our gated imaging developments are used as aids in visibility enhancement or in remote sensing spectroscopy. Furthermore, when coupled with a spectrograph having a large number of channels, the technique becomes active multispectral/hyperspectral detection or imaging allowing measurement of ultra-violet laser induced fluorescence (UV LIF), time resolved fluorescence (in the ns to ms range) as well as gated Raman spectroscopy. These latter techniques make possible the stand-off detection of bio-aerosols, drugs, explosives as well as the identification of mineral content for geological survey. This paper reviews the latest technology developments in active remote sensing at INO and presents on-going projects conducted to address future applications in environmental monitoring.

  19. Ginsenoside Rg3 regulates S-nitrosylation of the NLRP3 inflammasome via suppression of iNOS

    SciTech Connect

    Yoon, Sung-Jin; Park, Jun-Young; Choi, Song; Lee, Jin-Bong; Jung, Haiyoung; Kim, Tae-Don; Yoon, Suk Ran; Choi, Inpyo; Shim, Sungbo; Park, Young-Jun

    2015-08-07

    Ginsenoside Rg3, a specific biological effector, is well-known as a major bioactive ingredient of Panax ginseng. However, its role in the inflammasome activation process remains unclear. In this report, we demonstrate that ginsenosides 20(R)-Rg3 and 20(S)-Rg3 are capable of suppressing both lethal endotoxic shock and the S-nitrosylation of the NLRP3 inflammasome by inhibiting nitric oxide (NO) production through the regulation of inducible nitric oxide synthase (iNOS) expression. In response to lipopolysaccharide (LPS), the reducing effect of 20(S)-Rg3 and 20(R)-Rg3 on nitric oxide led to an increase in the survival time of mice after lethal endotoxin-induced shock, and excess levels of NO inhibited IL-1β production via the S-nitrosylation of the NLRP3 inflammasome. In addition, ginsenosides 20(R)-Rg3 and 20(S)-Rg3 had suppressive effects on the LPS- or UV-irradiation-induced reactive oxygen species (ROS) levels in macrophage and HaCaT cells and thereby prevented apoptosis of spleen cells in mice. Altogether, these results demonstrate that ginsenoside 20(R)-Rg3 and 20(S)-Rg3, a naturally occurring compound, might act as a dual therapeutic regulator for the treatment of inflammatory and oxidative stress-related diseases. - Highlights: • Ginsenosides Rg3 inhibits NO production through the regulation of iNOS expression. • Ginsenosides Rg3 inhibits the S-nitrosylation of the NLRP3 inflammasome. • Ginsenosides Rg3 suppress on the LPS- or UV-irradiation-induced ROS levels in cells.

  20. Lectin purified from Musca domestica pupa up-regulates NO and iNOS production via TLR4/NF-κB signaling pathway in macrophages.

    PubMed

    Cao, Xiaohong; Zhou, Minghui; Wang, Chunling; Hou, Lihua; Zeng, Bin

    2011-04-01

    The present study reported that nitric oxide (NO) was up-regulated by the induction of lectin purified from Musca domestica pupa (MPL) in macrophages without cytotoxicity. The mRNA expression and protein secretion of inducible nitric oxide synthase (iNOS) were strongly induced by MPL treatments. Subsequent investigation revealed that the nuclear factor-κB (NF-κB) inhibitory κB (IκB) in endochylema was inhibited and NF-κB translocated into the nucleus after MPL treatment. Meanwhile, the IKKβ was strongly induced and the production of the toll-like receptor 4 (TLR4) was significantly up-regulated. Moreover, MPL increased NO production via inducing the expression of iNOS through the activation of NF-κB, which suggested that MPL probably acted as an activating agent of the NF-κB activation.

  1. The mammalian INO80 chromatin remodeling complex is required for replication stress recovery

    PubMed Central

    Vassileva, Ivelina; Yanakieva, Iskra; Peycheva, Michaela; Gospodinov, Anastas; Anachkova, Boyka

    2014-01-01

    A number of studies have implicated the yeast INO80 chromatin remodeling complex in DNA replication, but the function of the human INO80 complex during S phase remains poorly understood. Here, we have systematically investigated the involvement of the catalytic subunit of the human INO80 complex during unchallenged replication and under replication stress by following the effects of its depletion on cell survival, S-phase checkpoint activation, the fate of individual replication forks, and the consequences of fork collapse. We report that INO80 was specifically needed for efficient replication elongation, while it was not required for initiation of replication. In the absence of the Ino80 protein, cells became hypersensitive to hydroxyurea and displayed hyperactive ATR-Chk1 signaling. Using bulk and fiber labeling of DNA, we found that cells deficient for Ino80 and Arp8 had impaired replication restart after treatment with replication inhibitors and accumulated double-strand breaks as evidenced by the formation of γ-H2AX and Rad51 foci. These data indicate that under conditions of replication stress mammalian INO80 protects stalled forks from collapsing and allows their subsequent restart. PMID:25016522

  2. India-based neutrino observatory (INO): Physics reach and status report

    SciTech Connect

    Indumathi, D.

    2015-07-15

    We present a review of the physics reach and current status of the proposed India-based Neutrino Observatory (INO). We briefly outline details of the INO location and the present status of detector development. We then present the physics goals and simulation studies of the main detector, the magnetised Iron Calorimeter (ICAL) detector, to be housed in INO. The ICAL detector would make precision measurements of neutrino oscillation parameters with atmospheric neutrinos including a measurement of the neutrino mass hierarchy. Additional synergies with other experiments due to the complete insensitivity of ICAL to the CP phase are also discussed.

  3. Investigation on growth, structure and characterization of succinate salt of 8-hydroxyquinoline: An organic NLO crystal

    NASA Astrophysics Data System (ADS)

    Thirumurugan, R.; Babu, B.; Anitha, K.; Chandrasekaran, J.

    2015-04-01

    8-Hydroxyquinolinium succinate (8-HQSU) has been synthesized and single crystals were grown from ethanol solvent by employing the technique of slow evaporation at room temperature. The structure of the grown crystal has been elucidated by single crystal X-ray diffraction analysis. It reveals that 8-HQSU crystallizes in monoclinic system with non-centro symmetric space group P21. FTIR, 1H and 13C NMR spectral investigations have been carried out to identify the vibrational modes of various functional groups and placement of proton and carbon in the 8-HQSU compound, respectively. UV-vis-NIR transmission spectrum shows the cutoff wavelength around 357 nm. In addition, a photoluminescence spectral analysis was carried out for 8-HQSU crystals. The thermal properties of crystals were evaluated from TGA and DTA techniques and the crystal was found to be stable up to 145 °C. The dielectric studies show that the dielectric constant and dielectric loss decrease exponentially with frequency at different temperatures. Photoconductivity studies were carried out on the grown crystals it reveals the positive photo conducting nature. Powder second harmonic generation property of the crystal was confirmed by Kurtz and Perry powder SHG technique and it is found to be 1.3 times greater than that of KDP.

  4. OMNIS, The Observatory for Multiflavor NeutrInos from Supernovae

    NASA Astrophysics Data System (ADS)

    Murphy, Alexander; Boyd, Richard

    2001-10-01

    OMNIS, the Observatory for Multiflavor NeutrInos from Supernovae will consist of 8 kT of lead and 4 kT of iron which, when irradiated by neutrinos from a supernova, will produce secondary neutrons. Detection of the neutrons in gadolinium loaded liquid scintillators will then signal the arrival of the supernova neutrinos. A supernova at the center of the Galaxy, will produce about 2000 events in OMNIS, mostly from neutral current interactions, thus providing statistically significant tests of the energies and emission time profiles of core-collapse supernova models. Additionally, OMNIS' combination of lead and iron modules gives it sensitivity to several neutrino oscillation scenarios, especially the type ν_μ/τ rightarrow ν_e. Its intrinsic timing capability, better than 1 ms, gives it the capability to measure neutrino mass from the time-of-flight shifts in the luminosity curves of the different neutrino flavors, to about 20 eV/c^2. OMNIS will also be able to detect differences in the luminosity cutoffs of the different flavors in the event of a fairly prompt collapse to a black hole, which might allow charting out of the neutrinospheres and other diagnostics, and a better measurement of neutrino mass ( ~3 eV/c^2).

  5. The RSC and INO80 chromatin-remodeling complexes in DNA double-strand break repair.

    PubMed

    Chambers, Anna L; Downs, Jessica A

    2012-01-01

    In eukaryotes, DNA is packaged into chromatin and is therefore relatively inaccessible to DNA repair enzymes. In order to perform efficient DNA repair, ATP-dependent chromatin-remodeling enzymes are required to alter the chromatin structure near the site of damage to facilitate processing and allow access to repair enzymes. Two of the best-studied remodeling complexes involved in repair are RSC (Remodels the Structure of Chromatin) and INO80 from Saccharomyces cerevisiae, which are both conserved in higher eukaryotes. RSC is very rapidly recruited to breaks and mobilizes nucleosomes to promote phosphorylation of H2A S129 and resection. INO80 enrichment at a break occurs later and is dependent on phospho-S129 H2A. INO80 activity at the break site also facilitates resection. Consequently, both homologous recombination and nonhomologous end-joining are defective in rsc mutants, while subsets of these repair pathways are affected in ino80 mutants.

  6. Trans-cinnamaldehyde improves memory impairment by blocking microglial activation through the destabilization of iNOS mRNA in mice challenged with lipopolysaccharide.

    PubMed

    Zhang, Liqing; Zhang, Zhangang; Fu, Yan; Yang, Pin; Qin, Zhenxia; Chen, Yongjun; Xu, Ying

    2016-11-01

    Microglia activation and neuroinflammation are critically involved in pathogenesis of neurodegenerative disorders. Patients with neurodegenerative disorders often suffer memory impairment and currently there is no effective treatment for inflammation-led memory impairment. Trans-cinnamaldehyde (TCA) isolated from medicinal herb Cinnamomum cassia has been shown to exhibit anti-inflammatory capability. However, the potential of TCA to be used to improve memory impairment under neuroinflammation has not been explored. Primary microglia stimulated by lipopolysaccharide (LPS) were used to evaluate the potential anti-neuroinflammatory effects of TCA by examining the production of nitric oxide (NO), expression of inducible nitric oxide synthase (iNOS), pro-inflammatory cytokines, and activation of MAPKs. A mouse model of LPS-induced memory impairment was established to assess the neuroprotective effects of TCA against memory deficit and synaptic plasticity inhibition by both behavioral tests and electrophysiological recordings. TCA pretreatment decreased LPS-induced morphological changes, NO production and IL-1β release in primary microglia. Decreased NO production was due to the accelerated degradation of iNOS mRNA in LPS-stimulated microglia through TCA's inhibitory effect on MEK1/2-ERK1/2 signaling pathway. TCA was able to reduce the levels of iNOS and phosphorylated ERK1/2 in hippocampus of mice challenged with LPS. Most importantly, TCA significantly lessened memory deficit and improved synaptic plasticity in LPS-challenged mice. This study demonstrates that TCA suppressed microglial activation by destabilizing iNOS mRNA, which leads to improved memory impairment in mice suffering neuroinflammation.

  7. Ethanol-induced iNOS and COX-2 expression in cultured astrocytes via NF-kappa B.

    PubMed

    Blanco, Ana M; Pascual, María; Valles, Soraya L; Guerri, Consuelo

    2004-03-22

    The CNS is particularly susceptible to the effects of alcohol and toxicity. Astrocytes are immunoactive cells, and the activation of these cells is associated with several neurodegenerative disorders. By using cultured cortical astrocytes, we show that a short ethanol treatment (100 mM) is able to up-regulate both cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, and that these effects are regulated via nuclear factor kappa B (NF-kappa B) as revealed by the inhibition of NF-kappa B activation with pyrrolidine dithiocarbamate (PDTC) or BAY 11-7082. These results suggest that ethanol is able to induce inflammatory mediators in astrocytes through the NF-kappa B activation.

  8. Enhancements to INO's broadband SWIR/MWIR spectroscopic lidar

    NASA Astrophysics Data System (ADS)

    Lambert-Girard, Simon; Babin, François; Allard, Martin; Piché, Michel

    2013-09-01

    Recent advances in the INO broadband SWIR/MWIR spectroscopic lidar will be presented. The system is designed for the detection of gaseous pollutants via active infrared differential optical absorption spectroscopy (DOAS). Two distinctive features are a sub-nanosecond PPMgO:LN OPG capable of generating broadband (10 to <100 nm FWHM) and tunable (1.5 to 3.8 μm) SWIR/MWIR light, and an in-house gated MCT-APD focal plane array used in the output plane of a grating spectrograph. The operation consists in closely gating the returns from back-scattering off topographic features, and is thus, for now, a path integrated measurement. All wavelengths are emitted and received simultaneously, for low concentration measurements and DOAS fitting methods are then applied. The OPG approach enables the generation of moderate FWHM continua with high spectral energy density and tunable to absorption features of many molecules. Recent measurements demonstrating a minimum sensitivity of 10 ppm-m for methane around 3.3 μm with ˜ 2 mW average power in less than 10 seconds will be described. Results of enhancements to the laser source using small or large bandwidth seeds constructed from telecom off-the-shelf components indicate that the OPG output spectral energy density can have controllable spectral widths and shapes. It also has a slightly more stable spectral shape from pulse to pulse than without the seed (25 % enhancement). Most importantly, the stabilized output spectra will allow more sensitive measurements.

  9. Development of Antisense Therapeutic and Imaging Agents to Detect and Suppress Inducible Nitric Oxide Synthase (iNOS) Expression in Acute Lung Injury (ALI)

    NASA Astrophysics Data System (ADS)

    Shen, Yuefei

    antisense PNA-YR9·oligodeoxynucleotide (ODN) hybrid and a cationic shell-crosslinked knedel-like nanoparticle (cSCK) to specifically target and image iNOS mRNA toward the diagnosis of ALI. The Y (tyrosine) residue was used for 123I radiolabeling while the R9 (arginine9) peptide was used to facilitate endosomal, lysosomal, and cellular escape of untargeted PNA probe. Complete binding of the antisense PNA-YR9·ODN hybrid to the cSCK was achieved at an 8:1 cSCK amine to ODN phosphate (N/P) ratio. The antisense PNA-YR9·ODN*cSCK nanocomplexes efficiently entered RAW 264.7 cells, while the PNA-YR9 ·ODN alone was not taken up. Low concentrations of 123 I-labeled antisense PNA-YR9·ODN complexed with cSCK, showed significantly higher retention of radioactivity in iNOS-induced RAW 264.7 cells when compared to a mismatched PNA. The fourth effort was the study of a degradable polyphosphoester-based cationic nanoparticle (dg-cSCK), which itself demonstrated efficient iNOS inhibition without further loading of any other therapeutic drugs. It appeared that spontaneous hydrolytic degradation and/or assisted by enzymes caused the particle to quickly release degraded small fragments. One of the expected degradation products showed dose-dependent iNOS inhibition, and might serve as a novel inhibitor that could explain the behavior of dg-cSCK. Dg-cSCK showed much more efficient iNOS inhibition than the degradation product, probably due to higher cellular uptake on the nanoparticle precursor than the degradation product. Dg-cSCK also led to the decrease of iNOS mRNA level, suggesting that the inhibition might be taking place upstream of iNOS. (Abstract shortened by UMI.)

  10. The human parasite Leishmania amazonensis downregulates iNOS expression via NF-κB p50/p50 homodimer: role of the PI3K/Akt pathway

    PubMed Central

    Calegari-Silva, Teresa C.; Vivarini, Áislan C.; Miqueline, Marina; Dos Santos, Guilherme R. R. M.; Teixeira, Karina Luiza; Saliba, Alessandra Mattos; Nunes de Carvalho, Simone; de Carvalho, Laís; Lopes, Ulisses G.

    2015-01-01

    Leishmania amazonensis activates the NF-κB transcriptional repressor homodimer (p50/p50) and promotes nitric oxide synthase (iNOS) downregulation. We investigated the role of PI3K/Akt in p50/p50 NF-κB activation and the effect on iNOS expression in L. amazonensis infection. The increased occupancy of p50/p50 on the iNOS promoter of infected macrophages was observed and we demonstrated that both p50/p50 NF-κB induction and iNOS downregulation in infected macrophages depended on PI3K/Akt activation. Importantly, the intracellular growth of the parasite was also impaired during PI3K/Akt signalling inhibition and in macrophages knocked-down for Akt 1 expression. It was also observed that the increased nuclear levels of p50/p50 in L. amazonensis-infected macrophages were associated with reduced phosphorylation of 907 Ser p105, the precursor of p50. Corroborating these data, we demonstrated the increased levels of phospho-9 Ser GSK3β in infected macrophages, which is associated with GSK3β inhibition and, consequently, its inability to phosphorylate p105. Remarkably, we found that the levels of pPTEN 370 Ser, a negative regulator of PI3K, increased due to L. amazonensis infection. Our data support the notion that PI3K/Akt activity is sustained during the parasite infection, leading to NF-κB 105 phosphorylation and further processing to originate p50/p50 homodimers and the consequent downregulation of iNOS expression. PMID:26400473

  11. Neuroprotective and anti-apoptotic propensity of Bacopa monniera extract against sodium nitroprusside induced activation of iNOS, heat shock proteins and apoptotic markers in PC12 cells.

    PubMed

    Pandareesh, M D; Anand, T

    2014-05-01

    Sodium nitroprusside (SNP) is a widely used nitric oxide (NO) donor, known to exert nitrative stress by up-regulation of inducible nitric oxide synthase (iNOS). Nω-nitro-L-arginine-methyl esther (L-NAME) is a NO inhibitor, which inhibits iNOS expression, is used as positive control. The present study was designed to assess neuroprotective propensity of Bacopa monniera extract (BME) in SNP-induced neuronal damage and oxido-nitrative stress in PC12 cells via modulation of iNOS, heat shock proteins and apoptotic markers. Our results elucidate that pre-treatment of PC12 cells with BME ameliorates the mitochondrial and plasma membrane damage induced by SNP (200 μM) as evidenced by MTT and LDH assays. BME pre-treatment inhibited NO generation by down regulating iNOS expression. BME replenished the depleted antioxidant status induced by SNP treatment. SNP-induced damage to cellular, nuclear and mitochondrial integrity was also restored by BME, which was confirmed by ROS estimation, comet assay and mitochondrial membrane potential assays respectively. BME pre-treatment efficiently attenuated the SNP-induced apoptotic protein biomarkers such as Bax, Bcl-2, cytochrome-c and caspase-3, which orchestrate the proteolytic damage of the cell. Q-PCR results further elucidated up-regulation of neuronal cell stress markers like HO-1 and iNOS and down-regulation of BDNF upon SNP exposure was attenuated by BME pre-treatment. By considering all these findings, we report that BME protects PC12 cells against SNP-induced toxicity via its free radical scavenging and neuroprotective mechanism.

  12. The human parasite Leishmania amazonensis downregulates iNOS expression via NF-κB p50/p50 homodimer: role of the PI3K/Akt pathway.

    PubMed

    Calegari-Silva, Teresa C; Vivarini, Áislan C; Miqueline, Marina; Dos Santos, Guilherme R R M; Teixeira, Karina Luiza; Saliba, Alessandra Mattos; Nunes de Carvalho, Simone; de Carvalho, Laís; Lopes, Ulisses G

    2015-09-01

    Leishmania amazonensis activates the NF-κB transcriptional repressor homodimer (p50/p50) and promotes nitric oxide synthase (iNOS) downregulation. We investigated the role of PI3K/Akt in p50/p50 NF-κB activation and the effect on iNOS expression in L. amazonensis infection. The increased occupancy of p50/p50 on the iNOS promoter of infected macrophages was observed and we demonstrated that both p50/p50 NF-κB induction and iNOS downregulation in infected macrophages depended on PI3K/Akt activation. Importantly, the intracellular growth of the parasite was also impaired during PI3K/Akt signalling inhibition and in macrophages knocked-down for Akt 1 expression. It was also observed that the increased nuclear levels of p50/p50 in L. amazonensis-infected macrophages were associated with reduced phosphorylation of 907 Ser p105, the precursor of p50. Corroborating these data, we demonstrated the increased levels of phospho-9 Ser GSK3β in infected macrophages, which is associated with GSK3β inhibition and, consequently, its inability to phosphorylate p105. Remarkably, we found that the levels of pPTEN 370 Ser, a negative regulator of PI3K, increased due to L. amazonensis infection. Our data support the notion that PI3K/Akt activity is sustained during the parasite infection, leading to NF-κB 105 phosphorylation and further processing to originate p50/p50 homodimers and the consequent downregulation of iNOS expression. PMID:26400473

  13. Obesity, Inflammation, and Exercise Training: Relative Contribution of iNOS and eNOS in the Modulation of Vascular Function in the Mouse Aorta

    PubMed Central

    Silva, Josiane F.; Correa, Izabella C.; Diniz, Thiago F.; Lima, Paulo M.; Santos, Roger L.; Cortes, Steyner F.; Coimbra, Cândido C.; Lemos, Virginia S.

    2016-01-01

    Background: The understanding of obsesity-related vascular dysfunction remains controversial mainly because of the diseases associated with vascular injury. Exercise training is known to prevent vascular dysfunction. Using an obesity model without comorbidities, we aimed at investigating the underlying mechanism of vascular dysfunction and how exercise interferes with this process. Methods: High-sugar diet was used to induce obesity in mice. Exercise training was performed 5 days/week. Body weight, energy intake, and adipose tissues were assessed; blood metabolic and hormonal parameters were determined; and serum TNFα was measured. Blood pressure and heart rate were assessed by plethysmography. Changes in aortic isometric tension were recorded on myograph. Western blot was used to analyze protein expression. Nitric oxide (NO) was evaluated using fluorescence microscopy. Antisense oligodeoxynucleotides were used for inducible nitric oxide synthase isoform (iNOS) knockdown. Results: Body weight, fat mass, total cholesterol, low-density lipoprotein cholesterol fraction, insulin, and leptin were higher in the sedentary obese group (SD) than in the sedentary control animals (SS). Exercise training prevented these changes. No difference in glucose tolerance, insulin sensitivity, blood pressure, and heart rate was found. Decreased vascular relaxation and reduced endothelial nitric oxide synthase (eNOS) functioning in the SD group were prevented by exercise. Contractile response to phenylephrine was decreased in the aortas of the wild SD mice, compared with that of the SS group; however, no alteration was noted in the SD iNOS−/− animals. The decreased contractility was endothelium-dependent, and was reverted by iNOS inhibition or iNOS silencing. The aortas from the SD group showed increased basal NO production, serum TNFα, TNF receptor-1, and phospho-IκB. Exercise training attenuated iNOS-dependent reduction in contractile response in high-sugar diet–fed animals

  14. Obesity, Inflammation, and Exercise Training: Relative Contribution of iNOS and eNOS in the Modulation of Vascular Function in the Mouse Aorta

    PubMed Central

    Silva, Josiane F.; Correa, Izabella C.; Diniz, Thiago F.; Lima, Paulo M.; Santos, Roger L.; Cortes, Steyner F.; Coimbra, Cândido C.; Lemos, Virginia S.

    2016-01-01

    Background: The understanding of obsesity-related vascular dysfunction remains controversial mainly because of the diseases associated with vascular injury. Exercise training is known to prevent vascular dysfunction. Using an obesity model without comorbidities, we aimed at investigating the underlying mechanism of vascular dysfunction and how exercise interferes with this process. Methods: High-sugar diet was used to induce obesity in mice. Exercise training was performed 5 days/week. Body weight, energy intake, and adipose tissues were assessed; blood metabolic and hormonal parameters were determined; and serum TNFα was measured. Blood pressure and heart rate were assessed by plethysmography. Changes in aortic isometric tension were recorded on myograph. Western blot was used to analyze protein expression. Nitric oxide (NO) was evaluated using fluorescence microscopy. Antisense oligodeoxynucleotides were used for inducible nitric oxide synthase isoform (iNOS) knockdown. Results: Body weight, fat mass, total cholesterol, low-density lipoprotein cholesterol fraction, insulin, and leptin were higher in the sedentary obese group (SD) than in the sedentary control animals (SS). Exercise training prevented these changes. No difference in glucose tolerance, insulin sensitivity, blood pressure, and heart rate was found. Decreased vascular relaxation and reduced endothelial nitric oxide synthase (eNOS) functioning in the SD group were prevented by exercise. Contractile response to phenylephrine was decreased in the aortas of the wild SD mice, compared with that of the SS group; however, no alteration was noted in the SD iNOS−/− animals. The decreased contractility was endothelium-dependent, and was reverted by iNOS inhibition or iNOS silencing. The aortas from the SD group showed increased basal NO production, serum TNFα, TNF receptor-1, and phospho-IκB. Exercise training attenuated iNOS-dependent reduction in contractile response in high-sugar diet–fed animals

  15. Assembly of the Arp5 (Actin-related Protein) Subunit Involved in Distinct INO80 Chromatin Remodeling Activities.

    PubMed

    Yao, Wei; Beckwith, Sean L; Zheng, Tina; Young, Thomas; Dinh, Van T; Ranjan, Anand; Morrison, Ashby J

    2015-10-16

    ATP-dependent chromatin remodeling, which repositions and restructures nucleosomes, is essential to all DNA-templated processes. The INO80 chromatin remodeling complex is an evolutionarily conserved complex involved in diverse cellular processes, including transcription, DNA repair, and replication. The functional diversity of the INO80 complex can, in part, be attributed to specialized activities of distinct subunits that compose the complex. Furthermore, structural analyses have identified biochemically discrete subunit modules that assemble along the Ino80 ATPase scaffold. Of particular interest is the Saccharomyces cerevisiae Arp5-Ies6 module located proximal to the Ino80 ATPase and the Rvb1-Rvb2 helicase module needed for INO80-mediated in vitro activity. In this study we demonstrate that the previously uncharacterized Ies2 subunit is required for Arp5-Ies6 association with the catalytic components of the INO80 complex. In addition, Arp5-Ies6 module assembly with the INO80 complex is dependent on distinct conserved domains within Arp5, Ies6, and Ino80, including the spacer region within the Ino80 ATPase domain. Arp5-Ies6 interacts with chromatin via assembly with the INO80 complex, as IES2 and INO80 deletion results in loss of Arp5-Ies6 chromatin association. Interestingly, ectopic addition of the wild-type Arp5-Ies6 module stimulates INO80-mediated ATP hydrolysis and nucleosome sliding in vitro. However, the addition of mutant Arp5 lacking unique insertion domains facilitates ATP hydrolysis in the absence of nucleosome sliding. Collectively, these results define the requirements of Arp5-Ies6 assembly, which are needed to couple ATP hydrolysis to productive nucleosome movement.

  16. Control of TMEM16A by INO-4995 and other inositolphosphates

    PubMed Central

    Tian, Yuemin; Schreiber, Rainer; Wanitchakool, Podchanart; Kongsuphol, Patthara; Sousa, Marisa; Uliyakina, Inna; Palma, Marta; Faria, Diana; Traynor-Kaplan, Alexis E; Fragata, José I; Amaral, Margarida D; Kunzelmann, Karl

    2013-01-01

    Background And Purpose Ca2+-dependent Cl− secretion (CaCC) in airways and other tissues is due to activation of the Cl− channel TMEM16A (anoctamin 1). Earlier studies suggested that Ca2+-activated Cl− channels are regulated by membrane lipid inositol phosphates, and that 1-O-octyl-2-O-butyryl-myo-inositol 3,4,5,6-tetrakisphosphate octakis(propionoxymethyl) ester (INO-4995) augments CaCC. Here we examined whether TMEM16A is the target for INO-4995 and if the channel is regulated by inositol phosphates. Experimental Approach The effects of INO-4995 on CaCC were examined in overexpressing HEK293, colonic and primary airway epithelial cells as well as Xenopus oocytes. We used patch clamping, double electrode voltage clamp and Ussing chamber techniques. Key Results We found that INO-4995 directly activates a TMEM16A whole cell conductance of 6.1 ± 0.9 nS pF–1 in overexpressing cells. The tetrakisphosphates Ins(3,4,5,6)P4 or Ins(1,3,4,5)P4 and enzymes controlling levels of InsP4 or PIP2 and PIP3 had no effects on the magnitude or kinetics of TMEM16A currents. In contrast in Xenopus oocytes, human airways and colonic cells, which all express TMEM16A endogenously, Cl− currents were not acutely activated by INO-4995. However incubation with INO-4995 augmented 1.6- to 4-fold TMEM16A-dependent Cl− currents activated by ionomycin or ATP, while intracellular Ca2+ signals were not affected. The potentiating effect of INO-4995 on transient ATP-activated TMEM16A-currents in cystic fibrosis (CF) airways was twice of that observed in non-CF airways. Conclusions And Implications These data indicate that TMEM16A is the target for INO-4995, although the mode of action appears different for overexpressed and endogenous channels. INO-4995 may be useful for the treatment of CF lung disease. PMID:22946960

  17. Platelet activating factor (PAF) antagonists on cytokine induction of iNOS and sPLA2 in immortalized astrocytes (DITNC).

    PubMed

    Wang, J H; Sun, G Y

    2000-05-01

    Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) and its receptor are known to play important roles in modulating neuronal plasticity and inflammatory responses, particularly during neuronal injury. PAF receptors are widespread in different brain regions and are present on the cell surface as well as in intracellular membrane compartments. Astrocytes are immune active cells and are responsive to cytokines, which stimulate signaling cascades leading to transcriptional activation of genes and protein synthesis. Our recent studies indicate the ability of cytokines, e.g., tumor necrosis factor-alpha (TNFalpha), interleukin-1beta (IL-1beta) and interferon-gamma (IFNgamma), to induce the inducible nitric oxide (iNOS) and secretory phospholipase A2 (sPLA2) genes in immortalized astrocytes (DITNC) (Li et al., J. Interferon and Cytokine Res. 19: 121-127. 1999). The main objective for this study is to examine the effects of PAF antagonists on cytokine induction of iNOS and sPLA2 in these cells. Results show that BN50730, a synthetic PAF antagonist, but not BN52021, a natural PAF antagonist (ginkolide B) can dose-dependently inhibit cytokine induction of NO production and sPLA2 release. Inhibition of NO production by BN50730 corroborated well with the decrease in iNOS protein and mRNA levels as well as binding of NF-kappaB STAT- 1 to DNA, suggesting that BN50730 action is upstream of the transcriptional process. These results are in agreement with the role of intracellular PAF in regulating the cytokine signaling cascade in astrocytes and further suggest the possible use of BN50730 as a therapeutic agent for suppressing the inflammatory pathways elicited by cytokines. PMID:10905622

  18. Induction of endothelial iNOS by 4-hydroxyhexenal through NF-kappaB activation.

    PubMed

    Lee, J Y; Je, J H; Jung, K J; Yu, B P; Chung, H Y

    2004-08-15

    Lipid peroxidation and its end-product, 4-hydroxyhexenal (HHE), are known to affect redox balance during aging, which causes various degenerative processes including vascular alterations from endothelial cell deterioration. To better understand the molecular action of HHE in the development of vascular abnormalities during the aging process, we investigated whether the upregulation of inducible endothelial nitric oxide synthase (iNOS) by HHE is mediated through nuclear factor kappaB (NF-kappaB) activation. Results indicate that HHE stimulates iNOS by the transcriptional regulation of NF-kappaB activation through cytosolic kappaB degradation inhibitors (IkappaB). Pretreatment with NF-kappaB inhibitors Bay 11-7082 and N-acetyl cysteine (NAC) suppressed the upregulation of iNOS by blunting IkappaB degradation and NF-kappaB binding activity. Because inflammatory stimuli induce iNOS to generate large amounts of nitric oxide (NO), intracellular NO levels in the presence of Bay 11-7082, NAC, and caffeic acid methyl ester were estimated. These inhibitors significantly suppressed the HHE-induced NO levels to a basal level. These findings strongly suggest that in endothelial cells, HHE induces iNOS gene expression through NF-kappaB activation, which can lead to vascular dysfunction by the activation of various proinflammatory genes.

  19. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants

    PubMed Central

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS−/−) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS−/− mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS−/− mice. In contrast, the iNOS−/− implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS−/− mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice. PMID:26106257

  20. The Complex Role of iNOS in Acutely-Rejecting Cardiac Transplants

    PubMed Central

    Pieper, Galen M.; Roza, Allan M.

    2008-01-01

    This review summarizes the evidence for a detrimental role of nitric oxide (NO) derived from inducible NO synthase (iNOS) and/or reactive nitrogen species such as peroxynitrite in acutely-rejecting cardiac transplants. In chronic cardiac transplant rejection, iNOS may have an opposing beneficial component. The purpose of this review is primarily to address issues related to acute rejection which is a recognized risk factor for chronic rejection. The evidence for a detrimental role is based upon strategies involving non-selective NOS inhibitors, NO neutralizers, selective iNOS inhibitors and iNOS gene deletion in rodent models of cardiac rejection. The review is discussed in the context of the impact on various components including graft survival, histological rejection and cardiac function which may contribute in toto to the process of graft rejection. Possible limitations of each strategy are discussed in order to understand better the variance in published findings including issues related to the potential importance of cell localization of iNOS expression. Finally, the concept of a dual role of NO and its down-stream product, peroxynitrite, in rejection vs. immune regulation is discussed. PMID:18291116

  1. Pleiotropic effects of YC-1 selectively inhibit pathological retinal neovascularization and promote physiological revascularization in a mouse model of oxygen-induced retinopathy.

    PubMed

    DeNiro, M; Al-Halafi, A; Al-Mohanna, F H; Alsmadi, O; Al-Mohanna, F A

    2010-03-01

    Vascular endothelial growth factor (VEGF) and inducible nitric-oxide synthase (iNOS) have been implicated in ischemia-induced retinal neovascularization. Retinal ischemia has been shown to induce VEGF and iNOS expression. It has been postulated that one of the crucial consequences of iNOS expression in the ischemic retina is the inhibition of angiogenesis. Furthermore, iNOS was shown to be overexpressed in Müller cells from patients with diabetic retinopathy. YC-1, a small molecule inhibitor of hypoxia-inducible factor (HIF)-1 alpha, has been shown to inhibit iNOS expression in various tissue models. Our aim was to assess the pleiotropic effects of YC-1 in an oxygen-induced retinopathy (OIR) mouse model and evaluate its therapeutic potential in HIF-1- and iNOS-mediated retinal pathologies. Dual-injections of YC-1 into the neovascular retinas decreased the total retinopathy score, inhibited vaso-obliteration and pathologic tuft formation, and concomitantly promoted physiological retinal revascularization, compared with dimethyl sulfoxide (DMSO)-treated group. Furthermore, YC-1-treated retinas exhibited a marked increase in immunoreactivities for CD31 and von Willebrand factor and displayed significant inhibition in HIF-1alpha protein expression. Furthermore, YC-1 down-regulated VEGF, erythropoietin, endothelin-1, matrix metalloproteinase-9, and iNOS message and protein levels. When hypoxic Müller and neuoroglial cells were treated with YC-1, iNOS mRNA and protein levels were reduced in a dose-dependent fashion. We demonstrate that YC-1 inhibits pathological retinal neovascularization by exhibiting antineovascular activities, which impaired ischemia-induced expression of HIF-1 and its downstream angiogenic molecules. Furthermore, YC-1 enhanced physiological revascularization of the retinal vascular plexuses via the inhibition of iNOS mRNA and protein expressions. The pleiotropic effects of YC-1 allude to its possible use as a promising therapeutic iNOS inhibitor

  2. Ginsenoside Rg3 regulates S-nitrosylation of the NLRP3 inflammasome via suppression of iNOS.

    PubMed

    Yoon, Sung-Jin; Park, Jun-Young; Choi, Song; Lee, Jin-Bong; Jung, Haiyoung; Kim, Tae-Don; Yoon, Suk Ran; Choi, Inpyo; Shim, Sungbo; Park, Young-Jun

    2015-08-01

    Ginsenoside Rg3, a specific biological effector, is well-known as a major bioactive ingredient of Panax ginseng. However, its role in the inflammasome activation process remains unclear. In this report, we demonstrate that ginsenosides 20(R)-Rg3 and 20(S)-Rg3 are capable of suppressing both lethal endotoxic shock and the S-nitrosylation of the NLRP3 inflammasome by inhibiting nitric oxide (NO) production through the regulation of inducible nitric oxide synthase (iNOS) expression. In response to lipopolysaccharide (LPS), the reducing effect of 20(S)-Rg3 and 20(R)-Rg3 on nitric oxide led to an increase in the survival time of mice after lethal endotoxin-induced shock, and excess levels of NO inhibited IL-1β production via the S-nitrosylation of the NLRP3 inflammasome. In addition, ginsenosides 20(R)-Rg3 and 20(S)-Rg3 had suppressive effects on the LPS- or UV-irradiation-induced reactive oxygen species (ROS) levels in macrophage and HaCaT cells and thereby prevented apoptosis of spleen cells in mice. Altogether, these results demonstrate that ginsenoside 20(R)-Rg3 and 20(S)-Rg3, a naturally occurring compound, might act as a dual therapeutic regulator for the treatment of inflammatory and oxidative stress-related diseases. PMID:26086107

  3. Glutathione S-transferase P1 suppresses iNOS protein stability in RAW264.7 macrophage-like cells after LPS stimulation.

    PubMed

    Cao, Xiang; Kong, Xiuqin; Zhou, Yi; Lan, Lei; Luo, Lan; Yin, Zhimin

    2015-01-01

    Glutathione S-transferase P1 (GSTP1) is a ubiquitous expressed protein which plays an important role in the detoxification and xenobiotics metabolism. Previous studies showed that GSTP1 was upregulated by the LPS stimulation in RAW264.7 macrophage-like cells and GSTP1 overexpression downregulated lipopolysaccharide (LPS) induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Here we show that GSTP1 physically associates with the oxygenase domain of iNOS by the G-site domain and decreases the protein level of iNOS dimer. Both overexpression and RNA interference (RNAi) experiments indicate that GSTP1 downregulates iNOS protein level and increases S-nitrosylation and ubiquitination of iNOS. The Y7F mutant type of GSTP1 physically associates with iNOS, but shows no effect on iNOS protein content, iNOS S-nitrosylation, and changes in iNOS from dimer to monomer, suggesting the importance of enzyme activity of GSTP1 in regulating iNOS S-nitrosylation and stability. GSTM1, another member of GSTs shows no significant effect on regulation of iNOS. In conclusion, our study reveals the novel role of GSTP1 in regulation of iNOS by affecting S-nitrosylation, dimerization, and stability, which provides a new insight for analyzing the regulation of iNOS and the anti-inflammatory effects of GSTP1. PMID:26361746

  4. Gemfibrozil, a Lipid-lowering Drug, Inhibits the Induction of Nitric-oxide Synthase in Human Astrocytes*

    PubMed Central

    Pahan, Kalipada; Jana, Malabendu; Liu, Xiaojuan; Taylor, Bradley S.; Wood, Charles; Fischer, Susan M.

    2007-01-01

    Gemfibrozil, a lipid-lowering drug, inhibited cytokine-induced production of NO and the expression of inducible nitric-oxide synthase (iNOS) in human U373MG astroglial cells and primary astrocytes. Similar to gemfibrozil, clofibrate, another fibrate drug, also inhibited the expression of iNOS. Inhibition of human iNOS promoter-driven luciferase activity by gemfibrozil in cytokine-stimulated U373MG astroglial cells suggests that this compound inhibits the transcription of iNOS. Since gemfibrozil is known to activate peroxisome proliferator-activated receptor-α (PPAR-α), we investigated the role of PPAR-α in gemfibrozil-mediated inhibition of iNOS. Gemfibrozil induced peroxisome proliferator-responsive element (PPRE)-dependent luciferase activity, which was inhibited by the expression of ΔhPPAR-α, the dominant-negative mutant of human PPAR-α. However, ΔhPPAR-α was unable to abrogate gemfibrozil-mediated inhibition of iNOS suggesting that gemfibrozil inhibits iNOS independent of PPAR-α. The human iNOS promoter contains consensus sequences for the binding of transcription factors, including interferon-γ (IFN-γ) regulatory factor-1 (IRF-1) binding to interferon-stimulated responsive element (ISRE), signal transducer and activator of transcription (STAT) binding to γ-activation site (GAS), nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and CCAAT/enhancer-binding protein β (C/EBPβ); therefore, we investigated the effect of gemfibrozil on the activation of these transcription factors. The combination of interleukin (IL)-1β and IFN-γ induced the activation of NF-κB, AP-1, C/EBPβ, and GAS but not that of ISRE, suggesting that IRF-1 may not be involved in cytokine-induced expression of iNOS in human astrocytes. Interestingly, gemfibrozil strongly inhibited the activation of NF-κB, AP-1, and C/EBPβ but not that of GAS in cytokine-stimulated astroglial cells. These results suggest that gemfibrozil inhibits the induction of iNOS probably by

  5. Exposure to diesel exhaust up-regulates iNOS expression in ApoE knockout mice

    SciTech Connect

    Bai Ni; Kido, Takashi; Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E.; Breemen, Cornelis van; Eeden, Stephan F. van

    2011-09-01

    Traffic related particulate matter air pollution is a risk factor for cardiovascular events; however, the biological mechanisms are unclear. We hypothesize that diesel exhaust (DE) inhalation induces up-regulation of inducible nitric oxide synthase (iNOS), which is known to contribute to vascular dysfunction, progression of atherosclerosis and ultimately cardiovascular morbidity and mortality. Methods: ApoE knockout mice (30-week) were exposed to DE (at 200 {mu}g/m{sup 3} of particulate matter) or filtered-air (control) for 7 weeks (6 h/day, 5 days/week). iNOS expression in the blood vessels and heart was evaluated by immunohistochemistry and western blotting analysis. To examine iNOS activity, thoracic aortae were mounted in a wire myograph, and vasoconstriction stimulated by phenylephrine (PE) was measured with and without the presence of the specific inhibitor for iNOS (1400 W). NF-{kappa}B (p65) activity was examined by ELISA. The mRNA expression of iNOS and NF-{kappa}B (p65) was determined by real-time PCR. Results: DE exposure significantly enhanced iNOS expression in the thoracic aorta (4-fold) and heart (1.5 fold). DE exposure significantly attenuated PE-stimulated vasoconstriction by {approx} 20%, which was partly reversed by 1400 W. The mRNA expression of iNOS and NF-{kappa}B was significantly augmented after DE exposure. NF-{kappa}B activity was enhanced 2-fold after DE inhalation, and the augmented NF-{kappa}B activity was positively correlated with iNOS expression (R{sup 2} = 0.5998). Conclusions: We show that exposure to DE increases iNOS expression and activity possibly via NF-{kappa}B-mediated pathway. We suspect that DE exposure-caused up-regulation of iNOS contributes to vascular dysfunction and atherogenesis, which could ultimately lead to urban air pollution-associated cardiovascular morbidity and mortality. - Highlights: > Exposed ApoE knockout mice (30-week) to diesel exhaust (DE) for 7 weeks. > Examine iNOS expression and activity in the

  6. Tumor necrosis factor-alpha and nerve growth factor synergistically induce iNOS in pheochromocytoma cells.

    PubMed

    Macdonald, N J; Taglialatela, G

    2000-11-01

    Inducible nitric oxide synthase (iNOS) has been reported in tangle-bearing neurons of patients with Alzheimer's disease (AD), and can be induced by tumor necrosis factor-alpha (TNFalpha). High CNS levels of TNFalpha are associated with neurodegenerative diseases such as AD, where neurons dependent on neurotrophins such as nerve growth factor (NGF) are particularly affected. In this study we determined the effect of TNFalpha on iNOS in NGF-responsive pheochromocytoma (PC12) cells. We found that while TNFalpha and NGF alone were unable to induce iNOS, their simultaneous addition resulted in iNOS induction and the release of nitric oxide. Our results suggest that synergistic iNOS induction by TNFalpha and NGF may occur in selective population of NGF-responsive neurons in the presence of elevated CNS levels of TNFalpha.

  7. Expression of the calcium-independent cytokine-inducible (iNOS) isoform of nitric oxide synthase in rat placenta.

    PubMed Central

    Casado, M; D-iaz-Guerra, M J; Rodrigo, J; Fernández, A P; Boscá, L; Martín-Sanz, P

    1997-01-01

    The presence of the calcium-independent cytokine-inducible nitric oxide synthase (iNOS) has been investigated in rat placenta from day 19 of gestation till delivery. iNOS has been detected at the mRNA, enzyme activity and protein levels in complete placenta. Immunocytochemical detection of iNOS was heterogeneously distributed in control placenta. Intraperitoneal injection of pregnant rats at 21 days of gestation with lipopolysaccharide (LPS) increased the iNOS immunoreactivity in the decidua basalis of the placenta, and, when the mRNA levels and enzyme activity were measured in total tissue, a moderate increase (approx. 160%) was observed. A constitutive nuclear factor kappaB activity was observed in placenta from both control and LPS-treated animals. These results indicate constitutive expression of iNOS in rat placenta. PMID:9164857

  8. Exposure to Diesel Exhaust Up-regulates iNOS Expression in ApoE Knockout Mice

    PubMed Central

    Bai, Ni; Kido, Takashi; Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E.; van Breemen, Cornelis; van Eeden, Stephan F.

    2012-01-01

    Traffic related particulate matter air pollution is a risk factor for cardiovascular events; however, the biological mechanisms are unclear. We hypothesize that diesel exhaust (DE) inhalation induces up-regulation of inducible nitric oxide synthase (iNOS), which is known to contribute to vascular dysfunction, progression of atherosclerosis and ultimately cardiovascular morbidity and mortality. Methods ApoE knockout mice (30-week) were exposed to DE (at 200µg/m3 of particulate matter) or filtered-air (control) for 7 weeks (6h/day, 5days/week). iNOS expression in the blood vessels and heart was evaluated by immunohistochemistry and western blotting analysis. To examine iNOS activity, thoracic aortae were mounted in a wire myograph, and vasoconstriction stimulated by phenylephrine (PE) was measured with and without the presence of the specific inhibitor for iNOS (1400W). NF-κB (p65) activity was examined by ELISA. The mRNA expression of iNOS and NF-κB (p65) was determined by real-time PCR. Results DE exposure significantly enhanced iNOS expression in the thoracic aorta (4-fold) and heart (1.5 fold). DE exposure significantly attenuated PE-stimulated vasoconstriction by ~20%, which was partly reversed by 1400W. The mRNA expression of iNOS and NF-κB was significantly augmented after DE exposure. NF-κB activity was enhanced 2-fold after DE inhalation, and the augmented NF-κB activity was positively correlated with iNOS expression (R2= 0.5998). Conclusions We show that exposure to DE increases iNOS expression and activity possibly via NF-κB-mediated pathway. We suspect that DE exposure-caused up-regulation of iNOS contributes to vascular dysfunction and atherogenesis, which could ultimately lead to urban air pollution-associated cardiovascular morbidity and mortality. PMID:21722660

  9. Burkholderia pseudomallei rpoS mediates iNOS suppression in human hepatocyte (HC04) cells.

    PubMed

    Sanongkiet, Sucharat; Ponnikorn, Saranyoo; Udomsangpetch, Rachanee; Tungpradabkul, Sumalee

    2016-08-01

    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen and the causative agent of melioidosis, a widespread disease in Southeast Asia. Reactive nitrogen, in an intermediate form of nitric oxide (NO), is one of the first lines of defense used by host cells to eliminate intracellular pathogens, through the stimulation of inducible nitric oxide synthase (iNOS). Studies in phagocytotic cells have shown that the iNOS response is muted in B. pseudomallei infection, and implicated the rpoS sigma factor as a key regulatory factor mediating suppression. The liver is a main visceral organ affected by B. pseudomallei, and there is little knowledge about the interaction of liver cells and B. pseudomallei This study investigated the induction of iNOS, as well as autophagic flux and light-chain 3 (LC3) localization in human liver (HC04) cells in response to infection with B. pseudomallei and its rpoS deficient mutant. Results showed that the rpoS mutant was unable to suppress iNOS induction and that the mutant showed less induction of autophagy and lower co-localization with LC3, and this was coupled with a lower intracellular growth rate. Combining these results suggest that B. pseudomallei rpoS is an important factor in establishing infection in liver cells. PMID:27324398

  10. Burkholderia pseudomallei rpoS mediates iNOS suppression in human hepatocyte (HC04) cells

    PubMed Central

    Sanongkiet, Sucharat; Ponnikorn, Saranyoo; Udomsangpetch, Rachanee; Tungpradabkul, Sumalee

    2016-01-01

    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen and the causative agent of melioidosis, a widespread disease in Southeast Asia. Reactive nitrogen, in an intermediate form of nitric oxide (NO), is one of the first lines of defense used by host cells to eliminate intracellular pathogens, through the stimulation of inducible nitric oxide synthase (iNOS). Studies in phagocytotic cells have shown that the iNOS response is muted in B. pseudomallei infection, and implicated the rpoS sigma factor as a key regulatory factor mediating suppression. The liver is a main visceral organ affected by B. pseudomallei, and there is little knowledge about the interaction of liver cells and B. pseudomallei. This study investigated the induction of iNOS, as well as autophagic flux and light-chain 3 (LC3) localization in human liver (HC04) cells in response to infection with B. pseudomallei and its rpoS deficient mutant. Results showed that the rpoS mutant was unable to suppress iNOS induction and that the mutant showed less induction of autophagy and lower co-localization with LC3, and this was coupled with a lower intracellular growth rate. Combining these results suggest that B. pseudomallei rpoS is an important factor in establishing infection in liver cells. PMID:27324398

  11. Structural analyses of the chromatin remodeling enzymes INO80-C and SWR-C

    PubMed Central

    Watanabe, Shinya; Tan, Dongyan; Lakshminarasimhan, Mahadevan; Washburn, Michael P.; Hong, Eun-Jin Erica; Walz, Thomas; Peterson, Craig L.

    2015-01-01

    INO80-C and SWR-C are conserved members of a subfamily of ATP-dependent chromatin remodeling enzymes that function in transcription and genome-maintenance pathways. A crucial role for these enzymes is to control chromosomal distribution of the H2A.Z histone variant. Here we use electron microscopy (EM) and two-dimensional (2D) class averaging to demonstrate that these remodeling enzymes have similar overall architectures. Each enzyme is characterized by a dynamic ‘tail’ domain and a compact ‘head’ that contains Rvb1/Rvb2 subunits organized as hexameric rings. EM class averages and mass spectrometry support the existence of single heterohexameric rings in both SWR-C and INO80-C. EM studies define the position of the Arp8/Arp4/Act1 module within INO80-C, and we find that this module enhances nucleosome binding affinity but is largely dispensable for remodeling activities. In contrast, the Ies6/Arp5 module is essential for INO80-C remodeling, and furthermore this module controls conformational changes that may couple nucleosome binding to remodeling. PMID:25964121

  12. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals.

    PubMed

    Murakami, Akira; Ohigashi, Hajime

    2007-12-01

    Biological, biochemical and physical stimuli activate inflammatory leukocytes, such as macrophages, resulting in induction and synthesis of proinflammatory proteins and enzymes, together with free radicals, as innate immune responses. On the other hand, chronic and dysregulated activation of some inducible enzymes, including NADPH oxidase (NOX), inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, have been shown to play pivotal roles in the development of certain inflammatory diseases such as oncogenesis. While the use of synthetic agents, especially those targeting molecules, is an attractive and reasonable approach to prevent carcinogenesis, it should be noted that traditional herbs and spices also exist along with their active constituents, which have been demonstrated to disrupt inflammatory signal transduction pathways. In this mini-review, the molecular mechanisms of activation or induction of NOX, iNOS and COX-2, as well as some food phytochemicals with marked potential to regulate those key inflammatory molecules, are highlighted. For example, 1'-acetoxychavicol acetate, which occurs in the rhizomes of the subtropical Zingiberaceae plant, has been shown to attenuate NOX-derived superoxide generation in macrophages, as well as lipopolysaccharide-induced nitric oxide and prostaglandin E(2) production through the suppression of iNOS and COX-2 synthesis, respectively. Notably, this phytochemical has exhibited a wide range of cancer prevention activities in several rodent models of inflammation-associated carcinogenesis. Herein, the cancer preventive potentials of several food phytochemicals targeting the induction of NOX, iNOS and COX-2 are described.

  13. Role of iNOS in Bystander Signaling Between Macrophages and Lymphoma Cells

    SciTech Connect

    Ghosh, Somnath; Maurya, Dharmendra Kumar; Krishna, Malini

    2008-12-01

    Purpose: The present report describes the bystander effects of radiation between similar and dissimilar cells and the role of iNOS in such communication. Materials and Methods: EL-4 and RAW 264.7 cells were exposed to 5 Gy {gamma}-irradiation. The medium from irradiated cells was transferred to unirradiated cells. Results: Irradiated EL-4 cells as well as those cultured in the presence of medium from {gamma}-irradiated EL-4 cells showed an upregulation of NF-{kappa}B, iNOS, p53, and p21/waf1 genes. The directly irradiated and the bystander EL-4 cells showed an increase in DNA damage, apoptosis, and NO production. Bystander signaling was also found to exist between RAW 264.7 (macrophage) and EL-4 (lymphoma) cells. Unstimulated or irradiated RAW 264.7 cells did not induce bystander effect in unirradiated EL-4 cells, but LPS stimulated and irradiated RAW 264.7 cells induced an upregulation of NF-{kappa}B and iNOS genes and increased the DNA damage in bystander EL-4 cells. Treatment of EL-4 or RAW 264.7 cells with L-NAME significantly reduced the induction of gene expression and DNA damage in the bystander EL-4 cells, whereas treatment with cPTIO only partially reduced the induction of gene expression and DNA damage in the bystander EL-4 cells. Conclusions: It was concluded that active iNOS in the irradiated cells was essential for bystander response.

  14. Bioactive compounds from liverworts: Inhibition of lipopolysaccharide-induced inducible NOS mRNA in RAW 264.7 cells by herbertenoids and cuparenoids.

    PubMed

    Harinantenaina, Liva; Quang, Dang Ngoc; Nishizawa, Takashi; Hashimoto, Toshihiro; Kohchi, Chie; Soma, Gen-Ichiro; Asakawa, Yoshinori

    2007-08-01

    The inhibition of lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) by herbertenoids and cuparenoids isolated from liverworts in RAW 264.7 macrophages was evaluated. Among compounds tested, herbertenediol, cuparenediol, 1,2-diacetoxyherbertene and 2-hydroxy-4-methoxycuparene exhibited significant activity. For 2-hydroxy-4-methoxycuparene, chosen as representative compound, the strong inhibitory activity was related to the inhibition on LPS-induced iNOS mRNA. The structure-activity relationship will be discussed.

  15. Inhibition of inducible nitric oxide synthase and interleukin-1β expression by tunicamycin in cultured glial cells exposed to lipopolysaccharide.

    PubMed

    Hosoi, Toru; Noguchi, Jun; Takakuwa, Misae; Honda, Miya; Okuma, Yasunobu; Nomura, Yasuyuki; Ozawa, Koichiro

    2014-04-16

    Endoplasmic reticulum (ER) stress has recently been implicated in human diseases such as Alzheimer׳s disease (AD) and Parkinson׳s disease (PD). However, the link between the immune system, ER stress, and the development of neurodegenerative diseases has not yet been clarified in detail. Mouse primary cultured astrocytes were treated with lipopolysaccharide (LPS) and/or tunicamycin (Tm), and inducible nitric oxide synthase (iNOS) and interleukin (IL)-1β levels were then measured using RT-PCR, ELISA, and Western blotting. Activation of the immune system by LPS triggered inflammatory responses in astrocytes, as measured by the induction of iNOS and IL-1β. Tm-induced ER stress inhibited the LPS-induced expression of IL-1β and iNOS at the protein level. On the other hand, ER stress alone did not induce the expression of IL-1β or iNOS. The inhibitory effect of ER stress on iNOS and IL-1β may not be mediated transcriptionally as we did not observe inhibition at the mRNA level. LPS-induced iNOS protein levels were attenuated by the Tm post-treatment in the absence of LPS. Overall, these results suggest that ER stress negatively regulates the expression of IL-1β and iNOS in LPS-activated astrocytes.

  16. Transcriptional regulation of the human iNOS gene by IL-1beta in endothelial cells.

    PubMed Central

    Kolyada, A. Y.; Madias, N. E.

    2001-01-01

    BACKGROUND: Vascular endothelium participates in the control of vascular tone and function via the release of nitric oxide (NO) by the endothelial-type NO synthase (eNOS). Inducible NO synthase (iNOS) expression in endothelial cells occurs in many clinical conditions following induction by lipopolysaccharide or cytokines and generates large quantities of NO that result in endothelial cell activation and dysfunction. No information exists on the transcriptional regulation of the human iNOS gene (or that of other species) in endothelial cells. MATERIALS AND METHODS: We examined the transcriptional regulation of the human iNOS gene by interleukin-1beta (IL-1beta) in rat pulmonary microvascular endothelial cells (PVEC) by transient cotransfections of different iNOS-promoter constructs and cDNA of different transcription factors and regulatory proteins. RESULTS: The -1034/+88 bp iNOS promoter was strongly induced by IL-1beta, the regulatory elements for such induction being localized downstream of -205 bp. Cotransfection experiments with NF-kappaB isoforms, IkappaB isoforms, and IKK mutants suggested that the NF-kappaB site at -115/-106 bp is important, but not sufficient, for induction of iNOS promoter and that the role of NF-kappaB is partially independent of its binding site. C/EBP sites within the -205/+88 bp region were shown to be responsible, along with NF-kappaB site, for induction of iNOS promoter by IL-1beta. Overexpression of C/EBPalpha, C/EBPdelta, and liver-enriched activator protein (LAP) activated the promoter, whereas overexpression of liver-enriched inhibitory protein (LIP) strongly suppressed it. C/EBPbeta (LAP and LIP isoforms) was constitutively present in PVEC and was induced (approximately 2-fold) by IL-1beta, whereas C/EBPdelta was not constitutively expressed but was strongly induced by IL-1beta. Both C/EBPbeta and C/EBPdelta participated in DNA-protein complex formation. CONCLUSION: Both NF-kappaB and C/EBP pathways are important for the

  17. Upregulated iNOS and oxidative damage to the cochlear stria vascularis due to noise stress.

    PubMed

    Shi, Xiaorui; Nuttall, Alfred L

    2003-03-28

    Our previous work has revealed increased nitric oxide (NO) production in the cochlear perilymph following noise stress. However, it is not clear if the increase of NO is related to iNOS and whether NO-related oxidative stress can cause vascular tissue damage. In this study, iNOS immunoreactivity, NO production, and reactive oxygen species (ROS) in the lateral wall were examined in normal mice and compared with similar animals exposed to 120 dBA broadband noise, 3 h/day, for 2 consecutive days. In the normal animals, iNOS expression was not observed in the vascular endothelium of the stria vascularis and only weak iNOS immunoactivity was detected in the marginal cells. However, expression of iNOS in the wall of the blood vessels of stria vascularis and marginal cells was observed after loud sound stress (LSS). Relatively low levels of NO production and low ROS activity were detected in the stria vascularis in the unstimulated condition. In contrast, NO production was increased and ROS activity was elevated in the stria vascularis after LSS. These changes were attenuated by the iNOS inhibitor, GW 274150. To explore whether noise induces apoptotic processes in the stria vascularis, we examined morphological changes in endothelial- and marginal-cells. In vitro, annexin-V phosphatidylserine (PS) (to label and detect early evidence of apoptosis) was combined with propidium iodide (PI) (to probe plasma membrane integrity). PI alone was used in fixed tissues to detect later stage apoptotic cells by morphology of the nuclei. Following LSS, PS was expressed on cell surfaces of endothelial cells of blood vessels and marginal cells of the stria vascularis. Later stage apoptosis, characterized by irregular nuclei and condensation of nuclei, was also observed in these cells. The data indicate that increased iNOS expression and production of both NO and ROS following noise stress may lead to marginal cell pathology, and the dysfunction of cochlear microcirculation by inducing

  18. Nitrosyl Iodide, Ino: Millimeter-Wave Spectroscopy Guided by AB Initio Quantum Chemical Computation

    NASA Astrophysics Data System (ADS)

    Bailleux, Stephane; Duflot, Denis; Aiba, Shohei; Ozeki, Hiroyuki

    2015-06-01

    In the series of the nitrosyl halides, XNO (where X = {F, Cl, Br, I}), the millimeter-wave spectrum of INO remains so far unknown. We report our investigation on the first high-resolution rotational spectroscopy of nitrosyl iodide, INO. One of the motivation for this work comes from the growing need in developing a more complete understanding of atmospheric chemistry, especially halogen and nitrogen oxides chemistry that adversely impacts ozone levels. In the family of the nitrogen oxyhalides such as nitrosyl (XNO), nitryl (XNO), nitrite (XONO), and nitrate (XON0_2) halides, those with X = {F, Cl, Br} have been well studied, both theoretically and experimentally. However, relatively little is known about the iodine-containing analogues, although they also are of potential importance in tropospheric chemistry. In 1991, the Fourier-transform IR spectroscopic detection of INO, INO_2 and IONO_2 in the gas phase has been reported The INO molecule was generated by in situ mixing continuously I_2 and NO in a 50-cm long reaction glass tube whose outlet was connected to the absorption cell using a teflon tube. At the time of writing this abstract, 68 μ_a-type transitions (K_a = 0-10), all weak, have been successfully assigned. The hyperfine structures due to both I and N nuclei will also be presented. S.B. and D.D. acknowledge support from the Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-005 of the Programme d'Investissement d'Avenir. I. Barnes, K. H. Becker and J. Starcke, J. Phys. Chem. 1991, 95, 9736-9740.

  19. Attenuation of smoke induced neuronal and physiological changes by bacoside rich extract in Wistar rats via down regulation of HO-1 and iNOS.

    PubMed

    Pandareesh, M D; Anand, T

    2014-01-01

    Bacopa monniera is well known herbal medicine for its neuropharmacological effects. It alleviates variety of disorders including neuronal and physiological changes. Crackers smoke is a potent risk factor that leads to free radical mediated oxidative stress in vivo. The aim of the current study is to evaluate the protective efficacy of B. monniera extract (BME) against crackers smoke induced neuronal and physiological changes via modulating inducible nitric oxide synthase (iNOS) and hemeoxygenase-1 (HO-1) expression in rats. Rats were exposed to smoke for 1h for a period of 3 weeks and consecutively treated with BME at three different dosages (i.e., 10, 20 and 40 mg/kg b.wt.). Our results elucidate that BME treatment ameliorates histopathalogical changes, reactive oxygen species levels, lipid peroxidation, acetylcholine esterase activity and brain neurotransmitter levels to normal. BME supplementation efficiently inhibited HO-1 expression and nitric oxide generation by down-regulating iNOS expression. Smoke induced depletion of antioxidant enzyme status, monoamine oxidase activity was also replenished by BME supplementation. Thus the present study indicates that BME ameliorates various impairments associated with neuronal and physiological changes in rats exposed to crackers smoke by its potent neuromodulatory, antioxidant and adaptogenic propensity.

  20. Chromatin Remodeling Factors Isw2 and Ino80 Regulate Checkpoint Activity and Chromatin Structure in S Phase

    PubMed Central

    Lee, Laura; Rodriguez, Jairo; Tsukiyama, Toshio

    2015-01-01

    When cells undergo replication stress, proper checkpoint activation and deactivation are critical for genomic stability and cell survival and therefore must be highly regulated. Although mechanisms of checkpoint activation are well studied, mechanisms of checkpoint deactivation are far less understood. Previously, we reported that chromatin remodeling factors Isw2 and Ino80 attenuate the S-phase checkpoint activity in Saccharomyces cerevisiae, especially during recovery from hydroxyurea. In this study, we found that Isw2 and Ino80 have a more pronounced role in attenuating checkpoint activity during late S phase in the presence of methyl methanesulfonate (MMS). We therefore screened for checkpoint factors required for Isw2 and Ino80 checkpoint attenuation in the presence of MMS. Here we demonstrate that Isw2 and Ino80 antagonize checkpoint activators and attenuate checkpoint activity in S phase in MMS either through a currently unknown pathway or through RPA. Unexpectedly, we found that Isw2 and Ino80 increase chromatin accessibility around replicating regions in the presence of MMS through a novel mechanism. Furthermore, through growth assays, we provide additional evidence that Isw2 and Ino80 partially counteract checkpoint activators specifically in the presence of MMS. Based on these results, we propose that Isw2 and Ino80 attenuate S-phase checkpoint activity through a novel mechanism. PMID:25701287

  1. Protection against lipopolysaccharide-induced endothelial dysfunction in resistance and conduit vasculature of iNOS knockout mice.

    PubMed

    Chauhan, S D; Seggara, G; Vo, P A; Macallister, R J; Hobbs, A J; Ahluwalia, A

    2003-04-01

    Endothelial dysfunction is a characteristic of, and may be pathogenic in, inflammatory cardiovascular diseases, including sepsis. The mechanism underlying inflammation-induced endothelial dysfunction may be related to the expression and activity of inducible nitric oxide synthase (iNOS). This possibility was investigated in isolated resistance (mesenteric) and conduit (aorta) arteries taken from lipopolysaccharide (LPS)-treated (12.5 mg/kg i.v.) or saline-treated iNOS knockout (KO) and wild-type (WT) mice. LPS pretreatment (for 15 h, but not 4 h) profoundly suppressed responses to acetylcholine (ACh) and significantly reduced sensitivity to the NO donor spermine-NONOate (SPER-NO) in aorta and mesenteric arteries of WT mice. This effect was temporally associated with iNOS protein expression in both conduit and resistance arteries and with a 10-fold increase in plasma NOx levels. In contrast, no elevation of plasma NOx was observed in LPS-treated iNOS KO animals, and arteries dissected from these animals did not express iNOS or display hyporeactivity to ACh or SPER-NO. The mechanism underlying this phenomenon may be suppression of eNOS expression, as observed in arteries of WT animals, that was absent in arteries of iNOS KO animals. These results clearly demonstrate that iNOS induction plays an integral role in mediation of the endothelial dysfunction associated with sepsis in both resistance and conduit arteries.

  2. An inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 chromatin remodeling complex

    PubMed Central

    Kracker, Sven; Di Virgilio, Michela; Schwartzentruber, Jeremy; Cuenin, Cyrille; Forveille, Monique; Deau, Marie-Céline; McBride, Kevin M.; Majewski, Jacek; Gazumyan, Anna; Seneviratne, Suranjith; Grimbacher, Bodo; Kutukculer, Necil; Herceg, Zdenko; Cavazzana, Marina; Jabado, Nada; Nussenzweig, Michel C.; Fischer, Alain; Durandy, Anne

    2015-01-01

    Background Immunoglobulin class-switch recombination defects (CSR-D) are rare primary immunodeficiencies characterized by impaired production of switched immunoglobulin isotypes and normal or elevated IgM levels. They are caused by impaired T:B cooperation or intrinsic B cell defects. However, many immunoglobulin CSR-Ds are still undefined at the molecular level. Objective This study's objective was to delineate new causes of immunoglobulin CSR-Ds and thus gain further insights into the process of immunoglobulin class-switch recombination (CSR). Methods Exome sequencing in 2 immunoglobulin CSR-D patients identified variations in the INO80 gene. Functional experiments were performed to assess the function of INO80 on immunoglobulin CSR. Results We identified recessive, nonsynonymous coding variations in the INO80 gene in 2 patients affected by defective immunoglobulin CSR. Expression of wild-type INO80 in patients' fibroblastic cells corrected their hypersensitivity to high doses of γ-irradiation. In murine CH12-F3 cells, the INO80 complex accumulates at Sα and Eμ regions of the IgH locus, and downregulation of INO80 as well as its partners Reptin and Pontin impaired CSR. In addition, Reptin and Pontin were shown to interact with activation-induced cytidine deaminase. Finally, an abnormal separation of sister chromatids was observed upon INO80 downregulation in CH12-F3 cells, pinpointing its role in cohesin activity. Conclusion INO80 deficiency appears to be associated with defective immunoglobulin CSR. We propose that the INO80 complex modulates cohesin function that may be required during immunoglobulin switch region synapsis. PMID:25312759

  3. Development and commissioning of the HARDROC based readout for the INO-ICAL experiment

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Gaur, Ankit; Phogat, Aman; Rafik, Md.; Naimuddin, Md.

    2016-10-01

    Glass based Resistive Plate Chambers (RPCs) are going to be used as an active element in the Iron Calorimeter (ICAL) experiment at the India based Neutrino Observatory (INO), which is being constructed to study atmospheric neutrinos. Though the RPC detector operational parameters are more or less finalized, the readout electronics is being developed using various technologies. The ICAL experiment will consist of about 29,000 RPC detectors of 2 m × 2 m in size with each detector having 64 readout channels both in the X and Y directions. The present study focusses on multi-channel electronics based on SiGe 350 nm technology as an option for the INO-ICAL RPC detectors. The study includes commissioning and usage of frontend application specific integrated circuit (ASIC) HARDROC chip in which 64 channels are handled independently to perform zero suppression. We present first testbench results using the HARDROC chip with the aim to use it finally in the ICAL experiment.

  4. A prospective, single-blind, multicenter, dose escalation study of intracoronary iNOS lipoplex (CAR-MP583) gene therapy for the prevention of restenosis in patients with de novo or restenotic coronary artery lesion (REGENT I extension).

    PubMed

    von der Leyen, Heiko E; Mügge, Andreas; Hanefeld, Christoph; Hamm, Christian W; Rau, Mathias; Rupprecht, Hans J; Zeiher, Andreas M; Fichtlscherer, Stephan

    2011-08-01

    Neointimal hyperplasia causing recurrent stenosis is a limitation of the clinical utility of percutaneous transluminal coronary interventions (PCI). Nitric oxide (NO) inhibits smooth muscle cell proliferation, platelet activation, and inflammatory responses, all of which have been implicated in the pathogenesis of restenosis. In animals, neointimal proliferation after balloon injury has been shown to be effectively reduced by gene transfer of the inducible NO synthase (iNOS). The primary objective of this first multicenter, prospective, single-blind, dose escalation study was to obtain safety and tolerability information of the iNOS lipoplex (CAR-MP583) gene therapy for reducing restenosis following PCI. Local coronary intramural CAR-MP583 delivery was achieved using the Infiltrator balloon catheter. A total of 30 patients were treated in the study (six patients, 0.5 μg; six patients, 2.0 μg; six patients, 5.0 μg; and 12 patients, 10 μg). There were no complications related to local application of CAR-MP583. In one patient, PCI procedure-related transient vessel occlusion occurred with consecutive troponin elevation. There were no signs of inflammatory responses or hepatic or renal toxicity. No dose relationship was seen with regard to adverse events across the dose groups. Thus, coronary intramural lipoplex-enhanced iNOS gene therapy during PCI is feasible and appears to be safe. These initial clinical results are encouraging to support further clinical research, in particular in conjunction with new local drug delivery technologies.

  5. As(III) inhibits ultraviolet radiation-induced cyclobutane pyrimidine dimers repair via generation of nitric oxide in human keratinocytes

    PubMed Central

    Ding, Wei; Hudson, Laurie G.; Sun, Xi; Feng, Changjian; Liu, Ke Jian

    2008-01-01

    Inorganic arsenic enhances skin tumor formation when combined with other carcinogens including ultraviolet radiation (UVR). The inhibition of DNA damage repair by arsenic has been hypothesized to contribute to the co-carcinogenic activities of arsenic observed in vivo. Cyclobutane pyrimidine dimers (CPDs) are an important mutagenic UVR photoproduct and implicated in the genesis of non-melanoma skin cancer. The current study demonstrates that low concentrations of arsenite (As(III)) inhibit UVR-induced CPDs repair in a human keratinocyte cell line via nitric oxide (NO) and inducible nitric oxide synthase (iNOS). Following As(III) treatment, NO production and iNOS expression are elevated. Little is known about regulation of iNOS by As(III) and further investigations indicated that p38 mitogen-activated protein kinase (p38 MAPK) and NF-κB are required for As(III) induction of iNOS expression. This As(III)-stimulated signaling cascade was involved in inhibition of UVR-induced CPDs repair as disruption of p38 MAPK activity and NF-κB nuclear translocation counteracted the effects of As(III) on CPD repair. Selective inhibition of iNOS ameliorated As(III) inhibition of CPDs repair thereby suggesting that iNOS is a downstream mediator of As(III) activity. These findings provide evidence that an As(III) stimulated signal transduction cascade culminating in elevated iNOS expression and NO generation is an underlying mechanism for inhibition of UVR-induced DNA damage repair by arsenic. PMID:18621123

  6. 3,5,4'-Tri-O-acetylresveratrol decreases seawater inhalation-induced acute lung injury by interfering with the NF-κB and i-NOS pathways.

    PubMed

    Ma, Lijie; Chen, Xiangjun; Wang, Ruixuan; Duan, Hongtao; Wang, Libin; Liang, Li; Nan, Yandong; Liu, Xueying; Liu, Ao; Jin, Faguang

    2016-01-01

    Drowning is a cause of accidental mortality. However, survival may result in acute lung injury. The aim of the present study was to evaluate the effects of 3,5,4'-tri-O-acetylresveratrol (AC-Res) on acute lung injury (ALI) induced by seawater inhalation in rats. ALI models were established by the tracheal instillation of artificial seawater with or without 50 mg/kg AC-Res pretreatment for 7 days. Lung samples from different groups were harvested 4 h after the model was established. Histological changes, blood vessel permeability, inflammatory factor secretion and expression states of the nuclear factor-κB (NF-κB) and inducible NOS (i-NOS) pathway were assessed to evaluate seawater‑induced lung injury and the protective effects of acetylated resveratrol. The results showed that seawater inspiration led to physiological structure changes and an increased permeability of blood vessels. In addition, seawater stimulation enhanced the expression levels of nitric oxide (NO), tumor necrosis factor α (TNF-α) and interleukin-1 β (IL-1β) secretion in vitro and in vivo. Notably, seawater inhalation increased NF-κB and i-NOS expression in lungs and cells. On the other hand, pretreatment of AC-Res inhibited the abnormal expression of the NF-κB and i-NOS pathways, followed by decreased NO, TNF-α and IL-1β secretion, protein and cell content in bronchoalveolar lavage fluid (BALF) and Evans blue, protein and cell infiltration from blood vessels into lung tissues. The results therefore suggest that AC-Res attenuated seawater inhalation induced‑ALI by interfering with the NF-κB and i-NOS pathways.

  7. Hypoxia regulates iNOS expression in human normal peritoneal and adhesion fibroblasts through NF-κB activation mechanism

    PubMed Central

    Jiang, Zhong L.; Fletcher, Nicole M.; Diamond, Michael P.; Abu-Soud, Husam M.; Saed, Ghassan M.

    2009-01-01

    Objective To determine the mechanism by which hypoxia increases expression of iNOS in human normal peritoneal and adhesion fibroblasts. Design Prospective experimental study. Setting University medical center. Patient(s) Primary cultures of fibroblasts from normal peritoneum and adhesion tissues. Intervention(s) Hypoxia treated cells. Main Outcome Measure(s) We utilized real-time RT-PCR to quantify mRNA levels of iNOS and NF-κB. Western blots were used to determine iNOS, NF-κB, IκB-α and phospho-IκB expression levels in normal peritoneal and adhesion fibroblasts in response to hypoxia. Result(s) Hypoxia resulted in a significant increase in iNOS and NF-κB expression in normal and adhesion fibroblasts. Furthermore, both cell types manifested lower levels of NF-κB, cytoplasmic phospho-IκB-α, and iNOS proteins. In contrast, they manifested higher levels of cytoplasmic IκB-α and IκB-α/NF-κB ratios as well as phosphorylated-IκB-α/NF-κB ratio. Under hypoxic conditions, both cell types exhibited significantly decreased cytoplasmic NF-κB, IκB-α levels, and significantly increased cytoplasmic phospho-IκB-α, iNOS, and NF-κB protein levels. Conclusions Hypoxia increases iNOS expression by a mechanism involving activation of NF-κB. The ratio of IκB-α/NF-κB or IκB-α/p-IκB-α can be used to monitor activation. PMID:18281043

  8. Single-Molecule-Magnet Behavior and Fluorescence Properties of 8-Hydroxyquinolinate Derivative-Based Rare-Earth Complexes.

    PubMed

    Gao, Hong-Ling; Jiang, Li; Wang, Wen-Min; Wang, Shi-Yu; Zhang, Hong-Xia; Cui, Jian-Zhong

    2016-09-01

    Five tetranuclear rare-earth complexes, [RE4(dbm)4L6(μ3-OH)2] [HL = 5- (4-fluorobenzylidene)-8-hydroxylquinoline; dbm = 1,3-diphenyl-1,3-propanedione; RE = Y (1), Eu (2), Tb (3), Dy (4), Lu (5)], have been synthesized and completely characterized. The X-ray structural analyses show that each [RE4] complex is of typical butterfly or rhombus topology. Each RE(III) center exists in an eight-coordinated square-antiprism environment. Magnetic studies reveal that complex 4 displays single-molecule-magnet behavior below 10 K under a zero direct-current field, with an effective anisotropy barrier (ΔE/kB = 56 K). The fluorescence properties of complexes 1-5 were also investigated. Complexes 2-4 showed their characteristic peaks for the corresponding RE(III) center, while complexes 1 and 5 showed the same emission peaks with the ligand when they were excited at the same wavelength. PMID:27560459

  9. Understanding the role of electron and hole trions on current transport in aluminium tris(8-hydroxyquinoline) using organic magnetoresistance

    SciTech Connect

    Zhang, Sijie; Gillin, W. P.; Willis, M.; Gotto, R.; Roy, K. A.; Kreouzis, T.; Rolfe, N. J.

    2014-01-27

    The change in current through an organic light emitting diode (OLED) when it is placed in a magnetic field has been dubbed organic magnetoresistance and provides a means to understand the spin interactions that are occurring in working devices. Whilst there are a wide range of interactions that have been proposed to be the cause of the measured effects, there is still a need to identify their individual roles and in particular how they respond to an applied magnetic field. In this work, we investigate the effect of changing the balance of electron and hole injection in a simple aluminium tris(8-hydroxyqinoline) based OLED and demonstrate that the triplet polaron interaction appears to be much stronger for electrons than for holes in this material.

  10. The human Ino80 binds to microtubule via the E-hook of tubulin: Implications for the role in spindle assembly

    SciTech Connect

    Park, Eun-Jung; Hur, Shin-Kyoung; Lee, Han-Sae; Lee, Shin-Ai; Kwon, Jongbum

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The N-terminal domain of hIno80 is important for binding to the spindle. Black-Right-Pointing-Pointer The hIno80 N-terminal domain binds to tubulin and microtubule in vitro. Black-Right-Pointing-Pointer The E-hook of tubulin is critical for hIno80 binding to tubulin and microtubule. Black-Right-Pointing-Pointer Tip49a does not bind to microtubule and dispensable for spindle formation. -- Abstract: The human INO80 chromatin remodeling complex, comprising the Ino80 ATPase (hIno80) and the associated proteins such as Tip49a, has been implicated in a variety of nuclear processes other than transcription. We previously have found that hIno80 interacts with tubulin and co-localizes with the mitotic spindle and is required for spindle formation. To better understand the role of hIno80 in spindle formation, we further investigated the interaction between hIno80 and microtubule. Here, we show that the N-terminal domain, dispensable for the nucleosome remodeling activity, is important for hIno80 to interact with tubulin and co-localize with the spindle. The hIno80 N-terminal domain binds to monomeric tubulin and polymerized microtubule in vitro, and the E-hook of tubulin, involved in the polymerization of microtubule, is critical for this binding. Tip49a, which has been reported to associate with the spindle, does not bind to microtubule in vitro and dispensable for spindle formation in vivo. These results suggest that hIno80 can play a direct role in the spindle assembly independent of its chromatin remodeling activity.

  11. Bioactive diterpenoids from Trigonostemon chinensis: Structures, NO inhibitory activities, and interactions with iNOS.

    PubMed

    Xu, Jing; Peng, Maoqin; Sun, Xiaocong; Liu, Xingyu; Tong, Ling; Su, Guochen; Ohizumi, Yasushi; Lee, Dongho; Guo, Yuanqiang

    2016-10-01

    A phytochemical investigation to obtain new NO inhibitors led to the isolation of two new (1 and 2) and four known (3-6) diterpenoids from Trigonostemon chinensis. Their structures were elucidated on the basis of extensive 1D and 2D NMR spectroscopic data analyses, and the absolute configurations of new compounds were established by experimental and calculated ECD spectra. The inhibitory activities on lipopolysaccharide-induced NO production in murine microglial BV-2 cells of these diterpenoids were evaluated, and all of the compounds showed inhibitory effects. The interactions of bioactive compounds with iNOS protein were also studied by molecular docking. PMID:27570243

  12. Performance of the prototype gas recirculation system with built-in RGA for INO RPC system

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Datar, V. M.; Joshi, A.; Kalmani, S. D.; Mondal, N. K.; Rahman, M. A.; Satyanarayana, B.; Verma, P.

    2012-01-01

    An open loop gas recovery and recirculation system has been developed for the INO RPC system. The gas mixture coming from RPC exhaust is first desiccated by passing through molecular sieve (3 Å+4 Å). Subsequent scrubbing over basic active alumina removes toxic and acidic contaminants. The Isobutane and Freon are then separated by diffusion and liquefied by fractional condensation by cooling up to -26C. A Residual Gas Analyser (RGA) is being used in the loop to study the performance of the recirculation system. The results of the RGA analysis will be discussed.

  13. The INO80 Complex Requires the Arp5-Ies6 Subcomplex for Chromatin Remodeling and Metabolic Regulation

    PubMed Central

    Yao, Wei; King, Devin A.; Beckwith, Sean L.; Gowans, Graeme J.; Yen, Kuangyu; Zhou, Coral

    2016-01-01

    ATP-dependent chromatin remodeling complexes are essential for transcription regulation, and yet it is unclear how these multisubunit complexes coordinate their activities to facilitate diverse transcriptional responses. In this study, we found that the conserved Arp5 and Ies6 subunits of the Saccharomyces cerevisiae INO80 chromatin-remodeler form an abundant and distinct subcomplex in vivo and stimulate INO80-mediated activity in vitro. Moreover, our genomic studies reveal that the relative occupancy of Arp5-Ies6 correlates with nucleosome positioning at transcriptional start sites and expression levels of >1,000 INO80-regulated genes. Notably, these genes are significantly enriched in energy metabolism pathways. Specifically, arp5Δ, ies6Δ, and ino80Δ mutants demonstrate decreased expression of genes involved in glycolysis and increased expression of genes in the oxidative phosphorylation pathway. Deregulation of these metabolic pathways results in constitutively elevated mitochondrial potential and oxygen consumption. Our results illustrate the dynamic nature of the INO80 complex assembly and demonstrate for the first time that a chromatin remodeler regulates glycolytic and respiratory capacity, thereby maintaining metabolic stability. PMID:26755556

  14. Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species.

    PubMed

    Su, J; Chen, X; Huang, Y; Li, W; Li, J; Cao, K; Cao, G; Zhang, L; Li, F; Roberts, A I; Kang, H; Yu, P; Ren, G; Ji, W; Wang, Y; Shi, Y

    2014-03-01

    Mammalian mesenchymal stem cells (MSCs) have been shown to be strongly immunosuppressive in both animal disease models and human clinical trials. We have reported that the key molecule mediating immunosuppression by MSCs is species dependent: indoleamine 2,3-dioxygenase (IDO) in human and inducible nitric oxide synthase (iNOS) in mouse. In the present study, we isolated MSCs from several mammalian species, each of a different genus, and investigated the involvement of IDO and iNOS during MSC-mediated immunosuppression. The characterization of MSCs from different species was by adherence to tissue culture plastic, morphology, specific marker expression, and differentiation potential. On the basis of the inducibility of IDO and iNOS by inflammatory cytokines in MSCs, the tested mammalian species fall into two distinct groups: IDO utilizers and iNOS utilizers. MSCs from monkey, pig, and human employ IDO to suppress immune responses, whereas MSCs from mouse, rat, rabbit, and hamster utilize iNOS. Interestingly, based on the limited number of species tested, the iNOS-utilizing species all belong to the phylogenetic clade, Glires. Although the evolutionary significance of this divergence is not known, we believe that this study provides critical guidance for choosing appropriate animal models for preclinical studies of MSCs.

  15. Hemozoin Regulates iNOS Expression by Modulating the Transcription Factor NF-κB in Macrophages

    PubMed Central

    Ranjan, Ravi; Karpurapu, Manjula; Rani, Asha; Chishti, Athar H; Christman, John W

    2016-01-01

    Hemozoin (Hz) is released from ruptured erythrocytes during malaria infection caused by Plasmodium sp., in addition the malaria infected individuals are prone to bacterial sepsis. The molecular interactions between Hz, bacterial components and macrophages remains poorly investigated. In this report, we investigated the combinatorial immune-modulatory effects of phagocytosed Hz, Interferon gamma (IFNγ) or lipopolysaccharide (LPS) in macrophages. Macrophages were treated with various concentrations of commercial synthetic Hz, and surprisingly it did not result in inducible nitric oxide synthase (iNOS) expression. However, when macrophages were pretreated with Hz and then challenged with IFNγ or LPS, there was a differential impact on iNOS expression. There was an increase in iNOS expression when macrophages were pre-treated with Hz and subsequently treated with IFNγ when compared to IFNγ alone. Whereas iNOS expression was reduced when Hz phagocytosed macrophages were stimulated with LPS compared to LPS alone. Furthermore, there was an increased activation of NF-κB in Hz phagocytosed macrophages that were challenged with IFNγ. The interaction between Hz and macrophages has an impact on iNOS expression.

  16. The SPRY domain–containing SOCS box protein SPSB2 targets iNOS for proteasomal degradation

    PubMed Central

    Kuang, Zhihe; Lewis, Rowena S.; Curtis, Joan M.; Zhan, Yifan; Saunders, Bernadette M.; Babon, Jeffrey J.; Kolesnik, Tatiana B.; Low, Andrew; Masters, Seth L.; Willson, Tracy A.; Kedzierski, Lukasz; Yao, Shenggen; Handman, Emanuela

    2010-01-01

    Inducible nitric oxide (NO) synthase (iNOS; NOS2) produces NO and related reactive nitrogen species, which are critical effectors of the innate host response and are required for the intracellular killing of pathogens such as Mycobacterium tuberculosis and Leishmania major. We have identified SPRY domain–containing SOCS (suppressor of cytokine signaling) box protein 2 (SPSB2) as a novel negative regulator that recruits an E3 ubiquitin ligase complex to polyubiquitinate iNOS, resulting in its proteasomal degradation. SPSB2 interacts with the N-terminal region of iNOS via a binding interface on SPSB2 that has been mapped by nuclear magnetic resonance spectroscopy and mutational analyses. SPSB2-deficient macrophages showed prolonged iNOS expression, resulting in a corresponding increase in NO production and enhanced killing of L. major parasites. These results lay the foundation for the development of small molecule inhibitors that could disrupt the SPSB–iNOS interaction and thus prolong the intracellular lifetime of iNOS, which may be beneficial in chronic and persistent infections. PMID:20603330

  17. Inhibition of inducible nitric oxide synthase and osteoclastic differentiation by Atractylodis Rhizoma Alba extract

    PubMed Central

    Choi, Sung-Ho; Kim, Sung-Jin

    2014-01-01

    Background: Atractylodis Rhizoma Alba (ARA) has been used in Korean folk medicine for constipation, dizziness, and anticancer agent. In the present study, we performed to test whether the methanolic extract of ARA has antioxidant and antiosteoclastogenesis activity in RAW 264.7 macrophage cells. Materials and Methods: Antioxidant capacities were tested by measuring free radical scavenging activity, nitric oxide (NO) levels, reducing power, and inducible nitric oxide synthase (iNOS) expression in response to lipopolysaccharides (LPS). Antiosteoclastogenesis activity was evaluated by performing tartrate-resistant acid phosphatase assay in RAW 264.7 macrophage cells. Results: The extract exerted significant 1,1-diphenyl-2-picrylhydrazyl and NO radical scavenging activity, and it exerted dramatic reducing power. Induction of iNOS and NO by LPS in RAW 264.7 cells was significantly inhibited by the extract, suggesting that the ARA extract inhibits NO production by suppressing iNOS expression. Strikingly, the ARA extracts substantially inhibited the receptor activator of NF-κB ligand-induced osteclastic differentiation of LPS-activated RAW 264.7 cells. The ARA extract contains a significant amount of antioxidant components, including phenolics, flavonoids and anthocyanins. Conclusion: These results suggest that the methanolic extract of ARA exerts significant antioxidant activities potentially via inhibiting free radicals and iNOS induction, thereby leading to the inhibition of osteoclastogenesis. PMID:25298665

  18. Purification and characterisation of aquamarine blue pigment from the shells of abalone (Haliotis discus hannai Ino).

    PubMed

    Cai, Zhixing; Wu, Jiulin; Chen, Li; Guo, Wei; Li, Jianhua; Wang, Jiabin; Zhang, Qiqing

    2011-09-01

    Aquamarine blue pigment (ABP) from the shells of abalone (Haliotis discus hannai Ino) was extracted using a precipitation adsorption method and further purified via semi-preparative HPLC. The ABP with molecular weight of 582.8 was identified as a polyenic compound by NMR. The colour value of ABP was E1cm(1%)612nm=534.3. ABP can dissolve in water, ethanol, methanol, acetic acid and DMSO but was scarcely soluble in chloroform, aether, acetone, petroleum ether and cyclohexane. ABP was relatively stable between 25 and 100°C, from pH 2 to pH 12, under UV-light and indoor natural light. However, it was bleached by H2O2 and Na2SO3 and even unstable under sunlight. The stability of ABP was slightly influenced by metal ions (Ca(2+), Cu(2+), Fe(2+) and so on) and food addictives (sodium chloride, sugar, starch and so on). This is the first report on the characterisation of pigment obtained from Haliotis discus hannai Ino.

  19. Development of 2 m×2 m size glass RPCs for INO

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Datar, V. M.; Kalmani, S. D.; Lahamge, S. M.; Mohammed, S.; Mondal, N. K.; Nagaraj, P.; Redij, A.; Samuel, D.; Saraf, M. N.; Satyanarayana, B.; Shinde, R. R.; Verma, P.

    2012-01-01

    The India-based Neutrino Observatory (INO) collaboration is planning to build a massive 50 kt magnetised iron calorimeter (ICAL) detector to study atmospheric neutrinos and to precisely determine the neutrino oscillation parameters. About 30,000 2 m×2 m size glass Resistive Plate Chambers (RPCs) will be used as active detector elements in ICAL. Starting with a small 30 cm ×30 cm size RPCs, we have now succeeded in developing full size 2 m ×2 m RPCs. The fabrication procedures used for these large size RPCs as well as their performance will be discussed in this paper. We will also present some preliminary results from our studies on SF6 based gas mixtures on the RPC operation and characteristics.

  20. Isolation, identification, and antioxidant activity of polysaccharides from the shell of abalone (Haliotis discus hannai Ino).

    PubMed

    Wang, Z L; Liang, H B; Guo, W; Peng, Z F; Chen, J D; Zhang, Q Q

    2014-07-04

    In this study, two antioxidative substances, a homogeneous polysaccharide [abalone shell polysaccharide (ASP-1), corresponding to the first peak by size exclusion chromatography] and a non-polysaccharide compound [abalone shell compound (ACS-2), corresponding to the second peak by size exclusion chromatography], were extracted from the abalone (Haliotis discus hannai Ino) shell. We primarily focused on the investigation of ASP-1. As a heteropolysaccharide, ASP-1 is comprised of 9.3% uronic acid and 86.4% saccharide, the latter including mannose, ribose, rhamnose, glucose, galactose, arabinose, and two unknown monosaccharides, NO1 and NO2, with a mass ratio of 9.5:10.1:2.2:18.2:21.8:5.5:16.5:16.2. The antioxidant activity assays indicated that 5.0 mg/mL ASP-1 has significant scavenging effects on superoxide radicals (86.2%) compared to the positive control of ascorbic acid (95.6%).

  1. Effects of dietary menadione on the activity of antioxidant enzymes in abalone, Haliotis discus hannai Ino

    NASA Astrophysics Data System (ADS)

    Fu, Jinghua; Xu, Wei; Mai, Kangsen; Zhang, Wenbing; Feng, Xiuni; Liufu, Zhiguo

    2012-01-01

    A 240-day growth experiment in a re-circulating water system was conducted to investigate the effects of dietary menadione on the growth and antioxidant responses of abalone Haliotis discus hannai Ino. Triplicate groups of juvenile abalone (initial weight: 1.19 ± 0.01 g; shell length: 19.23 ± 0.01 mm) were fed to satiation with 3 semi-purified diets containing 0, 10, and 1 000 mg menadione sodium bisulfite (MSB)/kg, respectively. Results show that there were no significant differences in the rate of weight gain or in the daily increment in shell length of abalone among different treatments. Activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR) in viscera were significantly decreased with dietary menadione. However, activities of these enzymes except for GPX in muscle were increased. Therefore, antioxidant responses of abalone were increased in muscle and decreased in viscera by dietary menadione.

  2. Enteropathogenic Escherichia coli outer membrane proteins induce iNOS by activation of NF-kappaB and MAP kinases.

    PubMed

    Malladi, Vasantha; Puthenedam, Manjula; Williams, Peter H; Balakrishnan, Arun

    2004-12-01

    Enteropathogenic Escherichia coli (EPEC) infects the human intestinal epithelium and is a major cause of infantile diarrhea in developing countries. Nitric oxide (NO) is an important modulator of intestinal inflammatory response. The aim of the present study was to investigate whether EPEC outer membrane proteins (OMPs) up regulate epithelial cell expression of inducible nitric oxide synthase (iNOS) and to examine the role of NF-kappaB and MAP kinases (MAPK) on nitrite production. iNOS mRNA expression was assessed by RT-PCR. Nitrite levels were measured by Griess reaction. NF-kappaB activation by OMPs was evaluated by EMSA and immunoblotting was done to detect MAPK activation. EPEC OMP up regulated iNOS, induced nitrite production and NF-kappaB and MAPK were activated in caco-2 cells. The nitrite levels decreased when NF-kappaB and MAPK inhibitors were used. Thus, EPEC OMPs induce iNOS expression and NO production through activation of NF-kappaB and MAPK.

  3. Inflammatory modulating effects of low level laser therapy on iNOS expression by means of bioluminescence imaging

    NASA Astrophysics Data System (ADS)

    Moriyama, Yumi; Moriyama, Eduardo H.; Blackmore, Kristina; Akens, Margarete K.; Lilge, Lothar

    2005-09-01

    This study investigates the efficacy of low level laser therapy (LLLT) in modulating inducible nitric oxide synthase (iNOS) expression as molecular marker of the inflammation signaling pathway. LLLT was mediated by different therapeutic wavelengths using transgenic animals with the luciferase gene under control of the iNOS gene expression. Inflammation in 30 transgenic mice (iNOS-luc mice, from FVB strain) was induced by intra-articular injection of Zymosan-A in both knee joints. Four experimental groups were treated with one of four different wavelengths (λ=635, 785, 808 and 905nm) and one not laser-irradiated control group. Laser treatment (25 mW cm-2, 5 J cm-2) was applied to the knees 15 minutes after inflammation induction. Measurements of iNOS expression were performed at multiple times (0, 3, 5, 7, 9 and 24h) post-LLLT by measuring the bioluminescence signal using a highly sensitive charge-coupled device (CCD) camera. The responsivity of BLI was sufficient to demonstrate a significant increase in bioluminescence signals after laser irradiation of 635nm when compared to non-irradiated animals and the other LLLT treated groups, showing the wavelength-dependence of LLLT on iNOS expression during the acute inflammatory process.

  4. The Effect of Garlic Extract on Expression of INFγ And Inos Genes in Macrophages Infected with Leishmania major

    PubMed Central

    Gharavi, MJ; Nobakht, M; Khademvatan, SH; Bandani, E; Bakhshayesh, M; Roozbehani, M

    2011-01-01

    Background The study was aimed to show the effect of molecular mechanism of Aqueous Garlic Extract (AGE) on expression of IFNγ and iNOS genes in Leishmania major. Methods Leishmania major promastigotes (MRHO/IR/75/ER) were added to the in-vitro cultured J774 cell line, the cells were incubated for 72 hours. Various concentrations of garlic extract (9.25, 18.5, 37, 74, 148 mg/ml) were added to the infected cells. MTT assay was applied for cellular proliferation. After 72 hours of incubation, supernatants were collected and total RNA was extracted from the infected cells. The express of IFNγ and iNOS genes were studied by RT-PCR method. Results The colorimetric MTT assay after 3 days of incubation showed cytotoxic effect of garlic extract with an IC50 of 37 mg/ml. In addition, IFNγ and iNOS genes expression by RT-PCR indicated that garlic extract lead to over expression of these genes in J774 cell line infected with L. major. Conclusion Garlic extract exerts cytotoxic effect on infected J774 cell line. In addition, the hypothesis that garlic can improve cellular immunity with raising the expression of IFNγ and of iNOS genes confirmed. PMID:22347300

  5. Polypeptide from Chlamys farreri inhibits UVB-induced apoptosis of HaCaT cells via iNOS/NO and HSP90

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyang; Liu, Xiaojin; Liu, Tuo; Yan, Lin; Wang, Yuejun; Wang, Chunbo

    2009-09-01

    Polypeptide from Chlamys farreri (PCF) is a novel marine bioactive product that was isolated from the gonochoric Chinese scallop Chlamys farreri, and was found to be an effective antioxidant in our recent studies. In this study, we investigated the effect of PCF on ultraviolet B (UVB)-induced apoptosis of HaCaT cells and the intracellular signaling pathways involved. Pretreatment with the inducible nitric oxide synthase (iNOS) inhibitor S-methylisothiourea sulfate inhibited UVB-induced apoptosis, indicating that iNOS and NO play important roles in apoptosis. On the other hand, the inhibition of UVB-induced apoptosis in the immortalized keratinocyte (HaCaT) cells by PCF was estimated using a DNA ladder. PCF treatment inhibited UVB-induced iNOS activation, as determined by RT-PCR, NO production, as determined by ESR, and up-regulated heat shock protein (HSP) 90 activation, as determined by Western blotting. Our results indicate that iNOS and NO are involved in UVB-induced apoptosis of HaCaT cells and the protective effect of PCF against UVB irradiation is exerted by suppressing the expression of iNOS, followed by inhibition of NO release and enhanced activation of HSP90.

  6. Effects of selective iNOS inhibition in sepsis: evaluation of lung tissue damage and blood gases.

    PubMed

    Ceran, Sami; Erikoglu, Mehmet; Sahin, Mustafa; Sunam, Güven Sadi; Gölcük, Murat; Pasaoğlu, Hatice; Avsar, Fatih; Hücümenoglu, Sema

    2008-01-01

    NO is an important mediator in the generalized inflammatory response of the body during sepsis and septic shock. We investigated the possible effects of L-arginine and aminoguanidine on plasma NO levels and the interaction between NO levels and lung tissue damage and blood gases in sepsis. Fifty Wistar male rats were used in this study and divided into five groups: group 1, sham group; group 2, CLP (sepsis); group 3, CLP + 10 mg/kg L-arginine administration; group 4, CLP +15 mg/kg aminoguanidine administration; group 5: CLP + L-arginine + aminoguanidine given in similar doses. Sepsis was induced by cecal ligation and puncture (CLP) method. Drugs were administered at postoperative hours 4 and 12. The levels in the aminoguanidine and aminoguanidine + L-arginine groups were similar to the sham group. Lung tissue damage in the sepsis and L-arginine groups was more severe than the other groups.

  7. Aloe vera toxic effects: expression of inducible nitric oxide synthase (iNOS) in testis of Wistar rat

    PubMed Central

    Asgharzade, Samira; Rafieian-kopaei, Mahmoud; Mirzaeian, Amin; Reiisi, Somaye; Salimzadeh, Loghman

    2015-01-01

    Objective(s): Nitric oxide (NO), a product of inducible nitric oxide synthase (iNOS), contributes in germ cell apoptosis. This study was aimed to evaluate the effects of Aloe vera gel (AVG) on male Wistar rat reproductive organ, serum NO level, and expression of iNOS gene in leydig cells. Materials and Methods: Adult male Wistar rats (n=36) were used for experiments in three groups. The experimental groups were orally administered with the AVG extract solution once-daily as follow: 150 mg.kg-1; group A, 300 mg.kg-1; group B, and only normal saline; group C (control group). They were mated with untreated females and the reproductive and chemical parameters were assessed for each group, including semen quality, serum testosterone, sperm fertility, gonad and body weight, serum NO concentration (by the Griess method), and iNOS gene expression (using RT-PCR). Results: The testes weight, serum testosterone, as well as sperm count and fertility of the AVG treated groups were significantly reduced when compared to the control (P<0.001). Concentration of serum NO was significantly increased (37.1±4.63 µM) in the administrated group with higher AVG concentration, compared to the control group (P<0.001; 10.19±0.87 µM); however, iNOS mRNA expression was increased in the treated animals (P<0.001). Conclusion: iNOS may play a functional role in spermatogenesis via apoptosis, reducing sperm count, but further studies are needed to illustrate the mechanisms by which AVG exerts its negative effects on spermatogenesis and sperm quality. PMID:26730330

  8. Rate and severity of HIV-associated dementia (HAD): correlations with Gp41 and iNOS.

    PubMed Central

    Adamson, D. C.; McArthur, J. C.; Dawson, T. M.; Dawson, V. L.

    1999-01-01

    BACKGROUND: Fifteen to thirty percent of AIDS patients develop some type of neurologic disorder during the course of their illness and the vast majority of these neurologic disorders will be HIV-associated dementia (HAD). These patients can exhibit varying degrees of severity and rates of progression of HAD. Neuropathologic variables that are associated with the rate of progression of HAD are not known. MATERIALS AND METHODS: Tissue was collected at autopsy from the Johns Hopkins University HIV Neurology Program. Seventy-one AIDS patients of this prospectively characterized population were followed until death to obtain information on dementia severity and the rate of neurological progression. Immunoblot analysis of immunological nitric oxide synthase (iNOS), HAM56, gp41, p24, gp120, and beta-tubulin was performed and the levels of iNOS, HAM56, gp41, and p24 were normalized to beta-tubulin and analyzed for significance by means of the Kruskal-Wallis test for multiple groups. RESULTS: We have identified unique groups within this spectrum and designated them slow, moderate, and rapid progressors. Slow and moderate progressors' neurological progression occurs over a course of months to years, whereas the rapid progressors' disease shows rapid increases in severity over weeks to months. In the present study we demonstrate that the severity and rate of progression of HAD correlates significantly with levels of the HIV-1 coat protein, gp41, iNOS, and HAM56, a marker of microglial/macrophage activation. CONCLUSION: The severity and rate of progression of HAD correlates with indices of immune activation as well as levels of iNOS and gp41. There appears to be a threshold effect in which high levels of gp41, iNOS, and immune activation are particularly associated with severe (Memorial Sloan-Kettering score 3 to 4) and rapidly progressive HAD. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:10203575

  9. Diterpenes from the roots of Oryza sativa L. and their inhibition activity on NO production in LPS-stimulated RAW264.7 macrophages.

    PubMed

    Cho, Jin-Gyeong; Cha, Byeong-Ju; Min Lee, Sang; Shrestha, Sabina; Jeong, Rak-Hun; Sung Lee, Dong; Kim, Youn-Chul; Lee, Dong-Geol; Kang, Hee-Cheol; Kim, Jiyoung; Baek, Nam-In

    2015-09-01

    Two new pimarane diterpenoids, momilactone D (3) and momilactone E (5), along with three known diterpenoids, momilactone A (1), sandaracopimaradien-3-one (2), and oryzalexin A (4) were isolated from Oryza sativa roots. The chemical structures of the compounds were determined by spectroscopic data analysis. The isolated diterpenoids were evaluated for their ability to inhibit NO production and iNOS mRNA and protein expression in LPS-stimulated RAW264.7 macrophages. Compound 4 showed strong inhibition activity on NO production, and compounds 1 and 4 decreased the expression of iNOS mRNA and protein levels. PMID:26363880

  10. Discovery of inducible nitric oxide synthase (iNOS) inhibitor development candidate KD7332, part 1: Identification of a novel, potent, and selective series of quinolinone iNOS dimerization inhibitors that are orally active in rodent pain models.

    PubMed

    Bonnefous, Céline; Payne, Joseph E; Roppe, Jeffrey; Zhuang, Hui; Chen, Xiaohong; Symons, Kent T; Nguyen, Phan M; Sablad, Marciano; Rozenkrants, Natasha; Zhang, Yan; Wang, Li; Severance, Daniel; Walsh, John P; Yazdani, Nahid; Shiau, Andrew K; Noble, Stewart A; Rix, Peter; Rao, Tadimeti S; Hassig, Christian A; Smith, Nicholas D

    2009-05-14

    There are three isoforms of dimeric nitric oxide synthases (NOS) that convert arginine to citrulline and nitric oxide. Inducible NOS is implicated in numerous inflammatory diseases and, more recently, in neuropathic pain states. The majority of existing NOS inhibitors are either based on the structure of arginine or are substrate competitive. We describe the identification from an ultra high-throughput screen of a novel series of quinolinone small molecule, nonarginine iNOS dimerization inhibitors. SAR studies on the screening hit, coupled with an in vivo lipopolysaccharide (LPS) challenge assay measuring plasma nitrates and drug levels, rapidly led to the identification of compounds 12 and 42--potent inhibitors of the human and mouse iNOS enzyme that were highly selective over endothelial NOS (eNOS). Following oral dosing, compounds 12 and 42 gave a statistical reduction in pain behaviors in the mouse formalin model, while 12 also statistically reduced neuropathic pain behaviors in the chronic constriction injury (Bennett) model.

  11. Nitric oxide synthases: structure, function and inhibition.

    PubMed Central

    Alderton, W K; Cooper, C E; Knowles, R G

    2001-01-01

    This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated. PMID:11463332

  12. Anticoagulant Activity and Structural Characterization of Polysaccharide from Abalone (Haliotis discus hannai Ino) Gonad.

    PubMed

    Zhao, Jun; Yang, Jingfeng; Song, Shuang; Zhou, Dayong; Qiao, Weizhou; Zhu, Ce; Liu, Shuyin; Zhu, Beiwei

    2016-01-01

    In this study, we aimed at characterizing the structure and the anticoagulant activity of a polysaccharide fraction (AGP33) isolated from the gonads of Haliotis discus hannai Ino. AGP33 was extracted by enzymatic hydrolysis and purified by ion-exchange and gel-filtration chromatography. The backbone fraction of AGP33 (BAGP33), which appeared to contain of mannose, glucose and galactose, was prepared by partial acid hydrolysis. According to methylation and nuclear magnetic resonance (NMR) spectroscopy, the backbone of AGP33 was identified as mainly consisting of 1→3-linked, 1→4-linked, and 1→6-linked monosaccharides. AGP33 is a sulfated polysaccharide with sulfates occur at 3-O- and 4-O-positions. It prolonged thromboplastin time (APTT), thrombin time (TT) and prothrombin time (PT) compared to a saline control solution in a dosage-dependent manner. AGP33 exhibited an extension (p < 0.01) of APTT compared to the saline group at concentrations higher than 5 μg/mL. AGP33 exhibited higher anticoagulant activity than its desulfated product (AGP33-des) and BAGP33. The results showed that polysaccharide with higher molecular weight and sulfate content demonstrated greater anticoagulant activity. PMID:27338320

  13. Anticoagulant Activity and Structural Characterization of Polysaccharide from Abalone (Haliotis discus hannai Ino) Gonad.

    PubMed

    Zhao, Jun; Yang, Jingfeng; Song, Shuang; Zhou, Dayong; Qiao, Weizhou; Zhu, Ce; Liu, Shuyin; Zhu, Beiwei

    2016-06-08

    In this study, we aimed at characterizing the structure and the anticoagulant activity of a polysaccharide fraction (AGP33) isolated from the gonads of Haliotis discus hannai Ino. AGP33 was extracted by enzymatic hydrolysis and purified by ion-exchange and gel-filtration chromatography. The backbone fraction of AGP33 (BAGP33), which appeared to contain of mannose, glucose and galactose, was prepared by partial acid hydrolysis. According to methylation and nuclear magnetic resonance (NMR) spectroscopy, the backbone of AGP33 was identified as mainly consisting of 1→3-linked, 1→4-linked, and 1→6-linked monosaccharides. AGP33 is a sulfated polysaccharide with sulfates occur at 3-O- and 4-O-positions. It prolonged thromboplastin time (APTT), thrombin time (TT) and prothrombin time (PT) compared to a saline control solution in a dosage-dependent manner. AGP33 exhibited an extension (p < 0.01) of APTT compared to the saline group at concentrations higher than 5 μg/mL. AGP33 exhibited higher anticoagulant activity than its desulfated product (AGP33-des) and BAGP33. The results showed that polysaccharide with higher molecular weight and sulfate content demonstrated greater anticoagulant activity.

  14. Effects of polysaccharides from abalone (Haliotis discus hannai Ino) on HepG2 cell proliferation.

    PubMed

    Wang, Yu-Ming; Wu, Feng-Juan; Du, Lei; Li, Guo-Yun; Takahashi, Koretaro; Xue, Yong; Xue, Chang-Hu

    2014-05-01

    Three polysaccharides, AAP, AVAP I, and AVAP II, were isolated from abalone Haliotis discus hannai Ino. The polysaccharides' compositions were analysed, and their effects on HepG2 cell proliferation were assessed. AVAP I had a greater growth-stimulatory effect than AAP or AVAP II. The oligosaccharide of AVAP I (Oli-AVAP I) exhibited the same growth effects, but rhamnose, the primary monosaccharide of AVAP I and Oli-AVAP I, did not exhibit this activity. Moreover, AVAP I dramatically reduced the mRNA levels of CDK6 and Cyclin E1 but significantly increased Cyclin B1, CDK1 and Cyclin F. Interestingly, AVAP I remained able to induce cell proliferation in a low serum concentration medium. AVAP I could therefore promote HepG2 cell proliferation by regulating gene expression and accelerating the cell cycle process. AVAP I may be useful as a serum supplement for stimulating the proliferation of mammalian cells. Our results offer a comprehensive method for utilising the abalone viscera, which is usually discarded as waste.

  15. Clinical Implications of iNOS Levels in Triple-Negative Breast Cancer Responding to Neoadjuvant Chemotherapy

    PubMed Central

    Jiang, Nan; Zhang, Lei; Li, Yiming; Xu, Xiaoyin; Cai, Shouliang; Wei, Liang; Liu, Xuhong; Chen, Guanglei; Zhou, Yizhen; Liu, Cheng; Li, Zhan; Jin, Feng; Chen, Bo

    2015-01-01

    Triple-negative breast cancer is a high-risk breast cancer with poor survival rate. To date, there is a lack of targeted therapy for this type of cancer. One unique phenomenon is that inflammatory breast cancer is frequently triple negative. However, it is still ambiguous how inflammation influences triple-negative breast cancer growth and responding to chemotherapy. Herein, we investigated the levels of inflammation-associated enzyme, iNOS, in 20 triple-negative breast cancer patients’ tumors, and examined its correlation with patients’ responses to platinum-based neoadjuvant chemotherapy. Our studies showed that triple-negative breast cancer patients with attenuated iNOS levels in tumor cells after treatment showed better responses to platinum-based neoadjuvant chemotherapy than other triple-negative breast cancer patients. Our further in vitro studies confirmed that induction of proper levels of NO increased the resistance to cisplatin in triple-negative MDA-MB-231 cells. Our data suggest that aberrant high level of iNOS/NO are associated with less effectiveness of platinum-based neoadjuvant chemotherapy in triple-negative breast cancer. Therefore, we propose to monitor iNOS levels as a new predictor for triple-negative breast cancer patient’s response to platinum-based neoadjuvant chemotherapy. Moreover, iNOS/NO is considered as a potential target for combination therapy with platinum drugs for triple-negative breast cancer. PMID:26196284

  16. HIF‑1 signaling pathway involving iNOS, COX‑2 and caspase‑9 mediates the neuroprotection provided by erythropoietin in the retina of chronic ocular hypertension rats.

    PubMed

    Gui, Dongmei; Li, Yanfeng; Chen, Xiaolong; Gao, Dianwen; Yang, Yang; Li, Xun

    2015-02-01

    This study aimed to investigate the impacts of erythropoietin (EPO) on the electroretinogram b‑wave (ERG‑b), and on the mRNA and protein expression levels of hypoxia‑inducible factor‑1α (HIF‑1α), inducible nitric oxide synthase (iNOS), cyclooxygenase‑2 (COX‑2) and caspase‑9 in chronic ocular hypertension rats. Episcleral vein cauterization (EVC) was used to establish the chronic ocular hypertension rat model based on the intraocular pressure (IOP) value. ERG‑b and mRNA and protein expression levels of HIF‑1α, iNOS, COX‑2 and caspase‑9 in normal, EVC‑treated and EVC combined with EPO (EVC+EPO)‑treated rats were measured by electroretinography, RT‑PCR and western blotting, respectively. Moreover, the correlations of HIF‑1α with IOP, ERG‑b, iNOS, COX‑2 and caspase‑9 were evaluated. The mRNA and protein expression levels of HIF‑1α, iNOS, COX‑2 and caspase‑9 in EVC‑treated rats were increased significantly compared with normal rats. The peak expression levels of HIF‑1α, iNOS, COX‑2 and caspase‑9 were respectively obtained 7, 7, 7 and 14 days postoperatively. Compared with EVC‑treated rats, EPO administration weakened the mRNA and protein expression levels of HIF‑1α, iNOS, COX‑2 and caspase‑9. The mRNA expression level of HIF‑1α demonstrated a significant positive correlation with IOP and ERG‑b. HIF‑1α was positively correlated with iNOS, COX‑2 and caspase‑9 at the mRNA and protein levels. The protective effect of EPO on the retina of chronic ocular hypertension rats may be mediated by the HIF‑1 signaling pathway involving iNOS, COX‑2 and caspase‑9.

  17. HIF‑1 signaling pathway involving iNOS, COX‑2 and caspase‑9 mediates the neuroprotection provided by erythropoietin in the retina of chronic ocular hypertension rats.

    PubMed

    Gui, Dongmei; Li, Yanfeng; Chen, Xiaolong; Gao, Dianwen; Yang, Yang; Li, Xun

    2015-02-01

    This study aimed to investigate the impacts of erythropoietin (EPO) on the electroretinogram b‑wave (ERG‑b), and on the mRNA and protein expression levels of hypoxia‑inducible factor‑1α (HIF‑1α), inducible nitric oxide synthase (iNOS), cyclooxygenase‑2 (COX‑2) and caspase‑9 in chronic ocular hypertension rats. Episcleral vein cauterization (EVC) was used to establish the chronic ocular hypertension rat model based on the intraocular pressure (IOP) value. ERG‑b and mRNA and protein expression levels of HIF‑1α, iNOS, COX‑2 and caspase‑9 in normal, EVC‑treated and EVC combined with EPO (EVC+EPO)‑treated rats were measured by electroretinography, RT‑PCR and western blotting, respectively. Moreover, the correlations of HIF‑1α with IOP, ERG‑b, iNOS, COX‑2 and caspase‑9 were evaluated. The mRNA and protein expression levels of HIF‑1α, iNOS, COX‑2 and caspase‑9 in EVC‑treated rats were increased significantly compared with normal rats. The peak expression levels of HIF‑1α, iNOS, COX‑2 and caspase‑9 were respectively obtained 7, 7, 7 and 14 days postoperatively. Compared with EVC‑treated rats, EPO administration weakened the mRNA and protein expression levels of HIF‑1α, iNOS, COX‑2 and caspase‑9. The mRNA expression level of HIF‑1α demonstrated a significant positive correlation with IOP and ERG‑b. HIF‑1α was positively correlated with iNOS, COX‑2 and caspase‑9 at the mRNA and protein levels. The protective effect of EPO on the retina of chronic ocular hypertension rats may be mediated by the HIF‑1 signaling pathway involving iNOS, COX‑2 and caspase‑9. PMID:25370745

  18. Regulation of Inducible Nitric Oxide Synthase Expression by Viral A238L-Mediated Inhibition of p65/RelA Acetylation and p300 Transactivation

    PubMed Central

    Granja, Aitor G.; Sabina, Prado; Salas, María L.; Fresno, Manuel; Revilla, Yolanda

    2006-01-01

    Uncontrolled generation of nitric oxide (NO) by inducible nitric-oxide synthase (iNOS) can cause damage to host cells and inflammation, two undesirable events for virus spreading. African swine fever virus (ASFV) infection regulates iNOS-induced gene expression through the synthesis of the A238L virus protein. We here explored the role of A238L, an NF-κB and NFAT inhibitor, in the regulation of iNOS transcription in macrophages. NO production and iNOS mRNA and protein levels as well as iNOS promoter activity after lipopolysaccharide (LPS)-gamma interferon (IFN-γ) treatment were down-regulated both during ASFV infection and in Raw 264.7 cells stably expressing the viral protein. Overexpression of p300, but not of a histone acetyltransferase (HAT) defective mutant, reverted the A238L-mediated inhibition of both basal and LPS-IFN-γ-induced iNOS promoter activity. Following stimulation with LPS-IFN-γ, p65 and p300 interaction was abolished in Raw-A238L cells. Expression of A238L also inhibited p65/relA and p300 binding to the distal NF-κB sequence of the iNOS promoter together with p65 acetylation. Finally, A238L abrogated p300 transactivation mediated by a GAL4-p300 construction. These results provide evidence for an unique viral mechanism involved in transcriptional regulation of iNOS gene expression. PMID:17041221

  19. Nitric oxide inhibition after Toxoplasma gondii infection of chicken macrophage cell lines.

    PubMed

    Guillermo, L V C; DaMatta, R A

    2004-05-01

    Toxoplasma gondii infects many warm-blooded animals, including chickens. However, little is known about how this protozoan behaves within chicken macrophages. Thus, the microbicidal biology of HD11 and MQ-NCSU (available chicken macrophage cell lines) and the escaping mechanism of T. gondii were investigated. After infection, both cell lines were activated with lipopolysaccharide (LPS) and nitric oxide (NO), and reactive oxygen intermediates (ROI) were evaluated. T. gondii infected both cell lines, and 30 and 60% inhibition of NO production was detected in MQ-NCSU and HD11, respectively. In HD11, NO inhibition was not dependent on cyclooxygenase products. Although NO was partially inhibited, it did control T. gondii multiplication, showing the importance of this microbicidal molecule. Production of ROI was not detected in either cell line after T. gondii or yeast interaction. NADPH diaphorase (NADPH-d) activity, a histochemical marker of inducible NO synthase (iNOS), was detected at various levels in the HD11 population activated with LPS. The HD11 population infected with T. gondii showed a decrease in NADPH-d, indicating that NO production inhibition was related to iNOS disappearance in infected macrophages. These results demonstrate that in chicken macrophages T. gondii can also inhibit NO production, which suggests that an iNOS suppression mechanism might be used for better survival in macrophages.

  20. Bis(bibenzyls) from liverworts inhibit lipopolysaccharide-induced inducible NOS in RAW 264.7 cells: a study of structure-activity relationships and molecular mechanism.

    PubMed

    Harinantenaina, Liva; Quang, Dang Ngoc; Takeshi, Nishizawa; Hashimoto, Toshihiro; Kohchi, Chie; Soma, Gen-Ichiro; Asakawa, Yoshinori

    2005-12-01

    The inhibition of lipopolysaccharide-induced NOS by 19 bis(bibenzyls) isolated from liverworts in RAW 264.7 macrophages was evaluated. The presence of phenolic hydroxyls and saturation at 7,8 and/or 7'/8' are required for inhibition of NO production. Among the compounds tested, marchantin A was the most potent, and its inhibitory activity was consistent with the inhibition of LPS-induced iNOS mRNA.

  1. Effects of dietary carbohydrates sources on lipids compositions in abalone, Haliotis discus hannai Ino

    NASA Astrophysics Data System (ADS)

    Wang, Weifang; Mai, Kangsen; Zhang, Wenbing; Xu, Wei; Ai, Qinghui; Yao, Chunfeng; Li, Huitao

    2009-09-01

    A study was conducted to evaluate the effects of dietary carbohydrates on triglyceride, cholesterol and fatty acid concentrations in abalone, Haliotis discus hannai Ino. Six semi-purified diets with different carbohydrates (dextrin, heat-treated wheat starch, wheat starch, corn starch, tapioca starch and potato starch, respectively), all containing a carbohydrate level of 33.5%, were fed to abalone (initial shell length: 29.98 mm ± 0.09 mm; initial weight: 3.42 g ± 0.02 g) for 24 weeks in a recirculation system. The results indicate that serum triglyceride concentrations were significantly ( P < 0.05) higher in the abalone fed with dextrin, heat-treated wheat starch and wheat starch than those fed with corn starch, and serum cholesterol concentrations were significantly ( P < 0.05) higher in the abalone fed with dextrin, heat-treated wheat starch than those fed with corn starch. Fatty acid C20:4n-6 in the foot muscles were significantly ( P < 0.05) lower in the abalone fed with dextrin than those fed with wheat starch, corn starch, tapioca starch and potato starch. Fatty acid C20:4n-6 in hepatopancreas was significantly ( P < 0.05) lower in abalone fed with heat-treated wheat starch than those fed with corn starch, tapioca starch and potato starch. Fatty acid C22:6n-3 in the foot muscles were significantly ( P < 0.05) lower in the abalone fed with dextrin and heat-treated wheat starch than those fed with wheat starch and potato starch.

  2. Inducible nitric oxide synthase (iNOS) in muscle wasting syndrome, sarcopenia, and cachexia

    PubMed Central

    Hall, Derek T.; Ma, Jennifer F.; Di Marco, Sergio; Gallouzi, Imed-Eddine

    2011-01-01

    Muscle atrophy—also known as muscle wasting—is a debilitating syndrome that slowly develops with age (sarcopenia) or rapidly appears at the late stages of deadly diseases such as cancer, AIDS, and sepsis (cachexia). Despite the prevalence and the drastic detrimental effects of these two syndromes, there are currently no widely used, effective treatment options for those suffering from muscle wasting. In an attempt to identify potential therapeutic targets, the molecular mechanisms of sarcopenia and cachexia have begun to be elucidated. Growing evidence suggests that inflammatory cytokines may play an important role in the pathology of both syndromes. As one of the key cytokines involved in both sarcopenic and cachectic muscle wasting, tumor necrosis factor α (TNFα) and its downstream effectors provide an enticing target for pharmacological intervention. However, to date, no drugs targeting the TNFα signaling pathway have been successful as a remedial option for the treatment of muscle wasting. Thus, there is a need to identify new effectors in this important pathway that might prove to be more efficacious targets. Inducible nitric oxide synthase (iNOS) has recently been shown to be an important mediator of TNFα-induced cachectic muscle loss, and studies suggest that it may also play a role in sarcopenia. In addition, investigations into the mechanism of iNOS-mediated muscle loss have begun to reveal potential therapeutic strategies. In this review, we will highlight the potential for targeting the iNOS/NO pathway in the treatment of muscle loss and discuss its functional relevance in sarcopenia and cachexia. PMID:21832306

  3. Effect of ambient pressure variation on closed loop gas system for India based Neutrino Observatory (INO)

    NASA Astrophysics Data System (ADS)

    Satyanarayana, B.; Majumder, G.; Mondal, N. K.; Kalmani, S. D.; Shinde, R. R.; Joshi, A.

    2014-10-01

    Pilot unit of a closed loop gas mixing and distribution system for the INO project was designed and is being operated with 1.8meters × 1.9meters RPCs for about two years. A number of studies on controlling the flow and optimisation of the gas mixture through the RPC stack were carried out during this period. The gas system essentially measures and attempts to maintain absolute pressure inside the RPC gas volume. During typical Mumbai monsoon seasons, the barometric pressure changes rather rapidly, due to which the gas system fails to maintain the set differential pressure between the ambience and the RPC gas volume. As the safety bubblers on the RPC gas input lines are set to work on fixed pressure differentials, the ambient pressure changes lead to either venting out and thus wasting gas through safety bubblers or over pressuring the RPCs gas volume and thus degrading its performance. The above problem also leads to gas mixture contamination through minute leaks in gas gap. The problem stated above was solved by including the ambient barometric pressure as an input parameter in the closed loop. Using this, it is now possible to maintain any set differential pressure between the ambience and RPC gas volumes between 0 to 20mm of water column, thus always ensuring a positive pressure inside the RPC gas volume with respect to the ambience. This has resulted in improved performance of the gas system by maintaining the constant gas flow and reducing the gas toping up frequency. In this paper, we will highlight the design features and improvements of the closed loop gas system. We will present some of the performance studies and considerations for scaling up the system to be used with the engineering module and then followed by Iron Calorimeter detector (ICAL), which is designed to deploy about 30,000 RPCs of 1.8meters × 1.9 meters in area.

  4. Investigating the Role of TNF-α and IFN-γ Activation on the Dynamics of iNOS Gene Expression in LPS Stimulated Macrophages

    PubMed Central

    Salim, Taha; Sershen, Cheryl L.; May, Elebeoba E.

    2016-01-01

    Macrophage produced inducible nitric oxide synthase (iNOS) is known to play a critical role in the proinflammatory response against intracellular pathogens by promoting the generation of bactericidal reactive nitrogen species. Robust and timely production of nitric oxide (NO) by iNOS and analogous production of reactive oxygen species are critical components of an effective immune response. In addition to pathogen associated lipopolysaccharides (LPS), iNOS gene expression is dependent on numerous proinflammatory cytokines in the cellular microenvironment of the macrophage, two of which include interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). To understand the synergistic effect of IFN-γ and TNF-α activation, and LPS stimulation on iNOS expression dynamics and NO production, we developed a systems biology based mathematical model. Using our model, we investigated the impact of pre-infection cytokine exposure, or priming, on the system. We explored the essentiality of IFN-γ priming to the robustness of initial proinflammatory response with respect to the ability of macrophages to produce reactive species needed for pathogen clearance. Results from our theoretical studies indicated that IFN-γ and subsequent activation of IRF1 are essential in consequential production of iNOS upon LPS stimulation. We showed that IFN-γ priming at low concentrations greatly increases the effector response of macrophages against intracellular pathogens. Ultimately the model demonstrated that although TNF-α contributed towards a more rapid response time, measured as time to reach maximum iNOS production, IFN-γ stimulation was significantly more significant in terms of the maximum expression of iNOS and the concentration of NO produced. PMID:27276061

  5. Role of NADPH oxidase and iNOS in vasoconstrictor responses of vessels from hypertensive and normotensive rats

    PubMed Central

    Álvarez, Y; Briones, A M; Hernanz, R; Pérez-Girón, J V; Alonso, M J; Salaices, M

    2007-01-01

    Background and purpose: To analyse the influence of hypertension in the modulation induced by inducible NOS (iNOS)-derived NO and superoxide anion (O2 •−) of vasoconstrictor responses and the sources of O2 •− implicated. Experimental approach: Vascular reactivity experiments were performed in segments of aorta from normotensive, Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR); protein and mRNA expressions were respectively measured by western blot and quantitative reverse transcription-polymerase chain reaction and O2 •− production was evaluated by ethidium fluorescence. Key results: The contractile responses to phenylephrine (1 nM–30 μM) and 5-hydroxytryptamine (0.1–100 μM) were greater in aortic segments from SHR than WKY. The selective iNOS inhibitor, 1400W (10 μM), increased the phenylephrine contraction only in WKY segments; however, iNOS protein and mRNA expressions were greater in aorta from SHR than WKY. Superoxide dismutase (SOD, 150 U ml−1) reduced phenylephrine and 5-hydroxytryptamine responses only in aorta from SHR; the NAD(P)H oxidase inhibitor apocynin (0.3 mM) decreased phenylephrine and 5-hydroxytryptamine responses more in vessels from SHR than WKY. Co-incubation with SOD plus 1400W potentiated the phenylephrine and 5-hydroxytryptamine responses more in segments from SHR than WKY. O2 •− production was greater in aorta from SHR than WKY; apocynin abolished this difference. Conclusions and implications: Increased O2 •− formation from NADP(H) oxidase in vessels from hypertensive rats contributes to the vasoconstrictor responses and counteract the increase of NO from iNOS and the consequent modulation of these responses. PMID:17994107

  6. Development of a pyramidal wavefront sensor test-bench at INO

    NASA Astrophysics Data System (ADS)

    Turbide, Simon; Wang, Min; Gauvin, Jonny; Martin, Olivier; Savard, Maxime; Bourqui, Pascal; Veran, Jean-Pierre; Deschenes, William; Anctil, Genevieve; Chateauneuf, François

    2013-12-01

    The key technical element of the adaptive optics in astronomy is the wavefront sensing (WFS). One of the advantages of the pyramid wavefront sensor (P-WFS) over the widely used Shack-Hartmann wavefront sensor seems to be the increased sensitivity in closed-loop applications. A high-sensitivity and large dynamic-range WFS, such as P-WFS technology, still needs to be further investigated for proper justification in future Extremely Large Telescopes application. At INO, we have recently carried out the optical design, testing and performance evaluation of a P-WFS bench setup. The optical design of the bench setup mainly consists of the super-LED fiber source, source collimator, spatial light modulator (SLM), relay lenses, tip-tilt mirror, Fourier-transforming lens, and a four-faceted glass pyramid with a large vertex angle as well as pupil re-imaged optics. The phase-only SLM has been introduced in the bench setup to generate atmospheric turbulence with a maximum phase shift of more than 2π at each pixel (256 grey levels). Like a modified Foucault knife-edge test, the refractive pyramid element is used to produce four images of the entrance pupil on a CCD camera. The Fourier-transforming lens, which is used before the pyramid prism, is designed for telecentric output to allow dynamic modulation (rotation of the beam around the pyramid-prism center) from a tip-tilt mirror. Furthermore, a P-WFS diffraction-based model has been developed. This model includes most of the system limitations such as the SLM discrete voltage steps and the CCD pixel pitch. The pyramid effects (edges and tip) are considered as well. The modal wavefront reconstruction algorithm relies on the construction of an interaction matrix (one for each modulation's amplitude). Each column of the interaction matrix represents the combination of the four pupil images for a given wavefront aberration. The nice agreement between the data and the model suggest that the limitation of the system is not the P

  7. Effect of electrical properties of glass electrodes on the performance of RPC detectors for the INO-ICAL experiment

    NASA Astrophysics Data System (ADS)

    Raveendrababu, K.; Behera, P. K.; Satyanarayana, B.

    2016-08-01

    The India-based Neutrino Observatory (INO) collaboration has chosen glass Resistive Plate Chambers (RPCs) as the active detector elements for the Iron Calorimeter (ICAL) experiment. In the present work, we study the electrical properties such as bulk resistivity and relative permittivity of the glasses from two different manufacturers and compared the performances of RPCs built using these glasses. We conclude that the glass electrodes with larger bulk resistivity and permittivity are better suited for manufacturing RPCs for the ICAL experiment, as these detectors could be operated at lower bias currents and voltages, and produce better time resolution compared to those built with glass electrodes of smaller bulk resistivity and permittivity.

  8. Mechanical properties and structure of Haliotis discus hannai Ino and Hemifusus tuba conch shells: a comparative study

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Chen, Chen; Liang, Yan; Wang, Jian

    2010-03-01

    Haliotis discus hannai Ino (abalone shell) and Hemifusus tuba conch shell have been studied for the purpose to comparatively investigate the mechanisms by which nature designs composites. It is shown that both shells are composed of aragonite and a small amount of proteins while the conch shell shows finer microstructure but lower strength than abalone shell. It is also shown that the fresh shells exhibits better property than those after heat-treatments. It is therefore supposed that the size of inorganic substance is not a dominant factor to improve strength, while both proteins in shells and the microstructure of inorganic matter also play important roles.

  9. NPM-ALK up-regulates iNOS expression through a STAT3/microRNA-26a-dependent mechanism.

    PubMed

    Zhu, Haifeng; Vishwamitra, Deeksha; Curry, Choladda V; Manshouri, Roxsan; Diao, Lixia; Khan, Aarish; Amin, Hesham M

    2013-05-01

    NPM-ALK chimeric oncogene is aberrantly expressed in an aggressive subset of T-cell lymphomas that frequently occurs in children and young adults. The mechanisms underlying the oncogenic effects of NPM-ALK are not completely elucidated. Inducible nitric oxide synthase (iNOS) promotes the survival and maintains the malignant phenotype of cancer cells by generating NO, a highly active free radical. We tested the hypothesis that iNOS is deregulated in NPM-ALK(+) T-cell lymphoma and promotes the survival of this lymphoma. In line with this possibility, an iNOS inhibitor and NO scavenger decreased the viability, adhesion, and migration of NPM-ALK(+) T-cell lymphoma cells, and an NO donor reversed these effects. Moreover, the NO donor salvaged the viability of lymphoma cells treated with ALK inhibitors. In further support of an important role of iNOS, we found iNOS protein to be highly expressed in NPM-ALK(+) T-cell lymphoma cell lines and in 79% of primary tumours but not in human T lymphocytes. Although expression of iNOS mRNA was identified in NPM-ALK(+) T-cell lymphoma cell lines and tumours, iNOS mRNA was remarkably elevated in T lymphocytes, suggesting post-transcriptional regulation. Consistently, we found that miR-26a contains potential binding sites and interacts with the 3'-UTR of iNOS. In addition, miR-26a was significantly decreased in NPM-ALK(+) T-cell lymphoma cell lines and tumours compared with T lymphocytes and reactive lymph nodes. Restoration of miR-26a in lymphoma cells abrogated iNOS protein expression and decreased NO production and cell viability, adhesion, and migration. Importantly, the effects of miR-26a were substantially attenuated when the NO donor was simultaneously used to treat lymphoma cells. Our investigation of the mechanisms underlying the decrease in miR-26a in this lymphoma revealed novel evidence that STAT3, a major downstream substrate of NPM-ALK tyrosine kinase activity, suppresses MIR26A1 gene expression.

  10. Activated Macrophages as a Novel Determinant of Tumor Cell Radioresponse: The Role of Nitric Oxide-Mediated Inhibition of Cellular Respiration and Oxygen Sparing

    SciTech Connect

    Jiang Heng; De Ridder, Mark; Verovski, Valeri N.; Sonveaux, Pierre; Jordan, Benedicte F.; Law, Kalun; Monsaert, Christinne; Van den Berge, Dirk L.; Verellen, Dirk; Feron, Olivier; Gallez, Bernard; Storme, Guy A.

    2010-04-15

    Purpose: Nitric oxide (NO), synthesized by the inducible nitric oxide synthase (iNOS), is known to inhibit metabolic oxygen consumption because of interference with mitochondrial respiratory activity. This study examined whether activation of iNOS (a) directly in tumor cells or (b) in bystander macrophages may improve radioresponse through sparing of oxygen. Methods and Materials: EMT-6 tumor cells and RAW 264.7 macrophages were exposed to bacterial lipopolysaccharide plus interferon-gamma, and examined for iNOS expression by reverse transcription polymerase chain reaction, Western blotting and enzymatic activity. Tumor cells alone, or combined with macrophages were subjected to metabolic hypoxia and analyzed for radiosensitivity by clonogenic assay, and for oxygen consumption by electron paramagnetic resonance and a Clark-type electrode. Results: Both tumor cells and macrophages displayed a coherent picture of iNOS induction at transcriptional/translational levels and NO/nitrite production, whereas macrophages showed also co-induction of the inducible heme oxygenase-1, which is associated with carbon monoxide (CO) and bilirubin production. Activation of iNOS in tumor cells resulted in a profound oxygen sparing and a 2.3-fold radiosensitization. Bystander NO-producing, but not CO-producing, macrophages were able to block oxygen consumption by 1.9-fold and to radiosensitize tumor cells by 2.2-fold. Both effects could be neutralized by aminoguanidine, a metabolic iNOS inhibitor. An improved radioresponse was clearly observed at macrophages to tumor cells ratios ranging between 1:16 to 1:1. Conclusions: Our study is the first, as far as we are aware, to provide evidence that iNOS may induce radiosensitization through oxygen sparing, and illuminates NO-producing macrophages as a novel determinant of tumor cell radioresponse within the hypoxic tumor microenvironment.

  11. 6'-O-Caffeoyldihydrosyringin isolated from Aster glehni suppresses lipopolysaccharide-induced iNOS, COX-2, TNF-α, IL-1β and IL-6 expression via NF-κB and AP-1 inactivation in RAW 264.7 macrophages.

    PubMed

    Seo, Seunghwan; Lee, Kyoung-Goo; Shin, Ji-Sun; Chung, Eun Kyoung; Lee, Jae Yeol; Kim, Hyoung Ja; Lee, Kyung-Tae

    2016-10-01

    Previously, we found that ethyl acetate extract fraction of Aster glehni exhibited anti-hyperuricemic effects in animal models and also five new caffeoylglucoside derivatives were isolated from this fraction. In this work, we evaluated the anti-inflammatory effects of these caffeoylglucoside derivatives and found that 6'-O-caffeoyldihydrosyringin (2, CDS) most potently inhibited the LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 macrophages. In addition, CDS was found to concentration-dependently reduce the production of NO, PGE2, and the pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) induced by LPS in macrophages. Consistent with these observations, CDS concentration-dependently inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxidase-2 (COX-2) expression at the protein level and also iNOS, COX-2, TNF-α, and IL-6, IL-1β expression at the mRNA level. Furthermore, CDS suppressed the LPS-induced transcriptional activities of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) as well as the phosphorylation of p65 and c-Fos. Taken together, these results suggest that the anti-inflammatory effect of CDS is associated with the downregulation of iNOS, COX-2, TNF-α, IL-1β, and IL-6 expression via the negative regulation of NF-κB and AP-1 activation in LPS-induced RAW 264.7 macrophages. PMID:27590705

  12. Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress

    PubMed Central

    Poli, Jérôme; Gerhold, Christian-Benedikt; Tosi, Alessandro; Hustedt, Nicole; Seeber, Andrew; Sack, Ragna; Herzog, Franz; Pasero, Philippe; Shimada, Kenji; Hopfner, Karl-Peter; Gasser, Susan M.

    2016-01-01

    Little is known about how cells ensure DNA replication in the face of RNA polymerase II (RNAPII)-mediated transcription, especially under conditions of replicative stress. Here we present genetic and proteomic analyses from budding yeast that uncover links between the DNA replication checkpoint sensor Mec1–Ddc2 (ATR–ATRIP), the chromatin remodeling complex INO80C (INO80 complex), and the transcription complex PAF1C (PAF1 complex). We found that a subset of chromatin-bound RNAPII is degraded in a manner dependent on Mec1, INO80, and PAF1 complexes in cells exposed to hydroxyurea (HU). On HU, Mec1 triggers the efficient removal of PAF1C and RNAPII from transcribed genes near early firing origins. Failure to evict RNAPII correlates inversely with recovery from replication stress: paf1Δ cells, like ino80 and mec1 mutants, fail to restart forks efficiently after stalling. Our data reveal unexpected synergies between INO80C, Mec1, and PAF1C in the maintenance of genome integrity and suggest a mechanism of RNAPII degradation that reduces transcription–replication fork collision. PMID:26798134

  13. Influence of intravascular low level He-Ne laser irradiation on iNOS, total-NOS, and ET-1 in acute spinal cord-injured rabbits

    NASA Astrophysics Data System (ADS)

    Yin, Zhenchun; Dong, Yinghai; Zhu, Jing

    2005-07-01

    Objective To research the influence of intravascular low level Laser irradiation (ILLLI) on total NOS, iNOS, and ET-1 in spinal cord following acute spinal cord injury (ASCI), and discuss the protective effects of ILLLI on neurons .Methods 72 rabbits were randomly divided into 3 groups: treatment group, injury group and control group. In treatment group and injury group, after laminectomy at the level of T-13, ASCI was performed by using Allen"s method with slight modification (6g×10cm) on rabbits. After injury, rabbits were treated immediately with He-Ne laser (power 5 mW, 1 hour per day for 10 days). At the day of 10th after treatment, total-NOS, iNOS, and ET-1 in spinal cord tissues were measured. Results The expression level of total-NOS, iNOS, and ET-1 in spinal cord in injury group were significantly higher than those in control group (P<0.05), while after ILLLI the level of these index in treatment group decreased statistically significantly compared with those in injury group (P<0.05). Conclusion ILLLI can significantly decrease the expression level of total-NOS, iNOS, and ET-1 in spinal cord. It indicates that ILLLI can relieve the overexpression of total-NOS, iNOS, and ET-1 ,and thus can perform protective effects on neurons in the course of secondary spinal cord injury (SSCI) following ASCI

  14. The Heme Oxygenase-1 Inducer THI-56 Negatively Regulates iNOS Expression and HMGB1 Release in LPS-Activated RAW 264.7 Cells and CLP-Induced Septic Mice

    PubMed Central

    Kim, Young Min; Park, Sang Won; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl

    2013-01-01

    The nuclear DNA binding protein high mobility group box 1 (HMGB1) has recently been suggested to act as a late mediator of septic shock. The effect of ((S)-6,7-dihydroxy-1-(4-hydroxynaphthylmethyl)-1,2,3,4-tetrahydroisoquinoline alkaloid, also known as THI-56, in an experimental model of sepsis was investigated. THI-56 exhibited potent anti-inflammatory properties in response to LPS in RAW 264.7 cells. In particular, THI-56 significantly inhibited the expression of inducible nitric oxide synthase (iNOS) and the release of HMGB1 in activated macrophages. THI-56 activated NE-F2-regulated factor 2 (Nrf-2)/heme oxygenase 1 (HO-1). The specific knockdown of the HO-1 gene by HO-1 siRNA significantly reversed the inhibitory effects of THI-56 on iNOS expression and HMGB1 release in LPS-stimulated macrophages. Importantly, THI-56 administration protected animals from death induced by either a lethal dose of LPS or cecal ligation and puncture (CLP). Furthermore, the ALT, AST, BUN, creatinine, and HMGB1 levels in the blood were significantly increased in CLP-induced septic mice, and the administration of THI-56 reduced these levels in a concentration-dependent and zinc protoporphyrin IX (ZnPPIX)-sensitive manner. In addition, the administration of THI-56 significantly ameliorated not only lung damage but also macrophage infiltration in the livers of CLP-induced septic mice, and these effects were also abrogated in the presence of ZnPPIX. Thus, we conclude that THI-56 significantly attenuates the proinflammatory response induced by LPS and reduces organ damage in a CLP-induced sepsis model through the upregulation of Nrf-2/HO-1. PMID:24098466

  15. SG-HQ2 inhibits mast cell-mediated allergic inflammation through suppression of histamine release and pro-inflammatory cytokines.

    PubMed

    Je, In-Gyu; Kim, Hui-Hun; Park, Pil-Hoon; Kwon, Taeg Kyu; Seo, Seung-Yong; Shin, Tae-Yong; Kim, Sang-Hyun

    2015-05-01

    In this study, we investigated the effect of 3,4,5-trihydroxy-N-(8-hydroxyquinolin-2-yl)benzamide) (SG-HQ2), a synthetic analogue of gallic acid (3,4,5-trihydroxybenzoic acid), on the mast cell-mediated allergic inflammation and the possible mechanism of action. Mast cells play major roles in immunoglobulin E-mediated allergic responses by the release of histamine, lipid-derived mediators, and pro-inflammatory cytokines. We previously reported the potential effects of gallic acid using allergic inflammation models. For incremental research, we synthesized the SG-HQ2 by the modification of functional groups from gallic acid. SG-HQ2 attenuated histamine release by the reduction of intracellular calcium in human mast cells and primary peritoneal mast cells. The inhibitory efficacy of SG-HQ2 was similar with gallic acid. Enhanced expression of pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, interleukin-4, and interleukin-6 in activated mast cells was significantly diminished by SG-HQ2 100 times lower concentration of gallic acid. This inhibitory effect was mediated by the reduction of nuclear factor-κB. In animal models, SG-HQ2 inhibited compound 48/80-induced serum histamine release and immunoglobulin E-mediated local allergic reaction, passive cutaneous anaphylaxis. Our results indicate that SG-HQ2, an analogue of gallic acid, might be a possible therapeutic candidate for mast cell-mediated allergic inflammatory diseases through suppression of histamine release and pro-inflammatory cytokines.

  16. SG-HQ2 inhibits mast cell-mediated allergic inflammation through suppression of histamine release and pro-inflammatory cytokines

    PubMed Central

    Je, In-Gyu; Kim, Hui-Hun; Park, Pil-Hoon; Kwon, Taeg Kyu

    2015-01-01

    In this study, we investigated the effect of 3,4,5-trihydroxy-N-(8-hydroxyquinolin-2-yl)benzamide) (SG-HQ2), a synthetic analogue of gallic acid (3,4,5-trihydroxybenzoic acid), on the mast cell-mediated allergic inflammation and the possible mechanism of action. Mast cells play major roles in immunoglobulin E-mediated allergic responses by the release of histamine, lipid-derived mediators, and pro-inflammatory cytokines. We previously reported the potential effects of gallic acid using allergic inflammation models. For incremental research, we synthesized the SG-HQ2 by the modification of functional groups from gallic acid. SG-HQ2 attenuated histamine release by the reduction of intracellular calcium in human mast cells and primary peritoneal mast cells. The inhibitory efficacy of SG-HQ2 was similar with gallic acid. Enhanced expression of pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, interleukin-4, and interleukin-6 in activated mast cells was significantly diminished by SG-HQ2 100 times lower concentration of gallic acid. This inhibitory effect was mediated by the reduction of nuclear factor-κB. In animal models, SG-HQ2 inhibited compound 48/80-induced serum histamine release and immunoglobulin E-mediated local allergic reaction, passive cutaneous anaphylaxis. Our results indicate that SG-HQ2, an analogue of gallic acid, might be a possible therapeutic candidate for mast cell-mediated allergic inflammatory diseases through suppression of histamine release and pro-inflammatory cytokines. PMID:25349218

  17. Lack of association of the iNOS gene polymorphism with risk of cancer: a systematic review and Meta-Analysis.

    PubMed

    Jiao, Jinghua; Wu, Jingyang; Huang, Desheng; Liu, Lei

    2015-01-01

    In order to investigate the association between the iNOS gene polymorphisms and susceptibility to cancer, a search of English papers was done using Pubmed, the Cochrane Library, Embase, ISI Web of Science, Google (scholar) database, and all Chinese reports were conducted using CBMDisc, Chongqing VIP database, and CNKI database. A total of eight studies were included in this meta-analysis including 1,920 cases and 2,373 controls. The results indicated that the polymorphisms in iNOS gene (C150T(Ser(608) Leu) polymorphism and polymorphic (CCTTT)n repeats) had no association with cancer risk for all genetic models. This meta-analysis suggested that the polymorphisms in the iNOS gene were not associated with cancer risk. PMID:26391304

  18. Differential induction of PPAR-gamma by luminal glutamine and iNOS by luminal arginine in the rodent postischemic small bowel.

    PubMed

    Sato, N; Moore, F A; Kone, B C; Zou, L; Smith, M A; Childs, M A; Moore-Olufemi, S; Schultz, S G; Kozar, R A

    2006-04-01

    Using a rodent model of gut ischemia-reperfusion (I/R), we have previously shown that the induction of inducible nitric oxide synthase (iNOS) is harmful, whereas the induction of heme oxygenase 1 (HO-1) and peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is protective. In the present study, we hypothesized that the luminal nutrients arginine and glutamine differentially modulate these molecular events in the postischemic gut. Jejunal sacs were created in rats at laparotomy, filled with either 60 mM glutamine, arginine, or magnesium sulfate (osmotic control) followed by 60 min of superior mesenteric artery occlusion and 6 h of reperfusion, and compared with shams. The jejunum was harvested for histology or myeloperoxidase (MPO) activity (inflammation). Heat shock proteins and iNOS were quantitated by Western blot analysis and PPAR-gamma by DNA binding activity. In some experiments, rats were pretreated with the PPAR-gamma inhibitor G9662 or with the iNOS inhibitor N-[3(aminomethyl)benzyl]acetamidine (1400W). iNOS was significantly increased by arginine but not by glutamine following gut I/R and was associated with increased MPO activity and mucosal injury. On the other hand, PPAR-gamma was significantly increased by glutamine but decreased by arginine, whereas heat shock proteins were similarly increased in all experimental groups. The PPAR-gamma inhibitor G9662 abrogated the protective effects of glutamine, whereas the iNOS inhibitor 1400W attenuated the injurious effects of arginine. We concluded that luminal arginine and glutamine differentially modulate the molecular events that regulate injurious I/R-mediated gut inflammation and injury. The induction of PPAR-gamma by luminal glutamine is a novel protective mechanism, whereas luminal arginine appears harmful to the postischemic gut due to enhanced expression of iNOS.

  19. Achillea Millefolium L. Hydro- Alcoholic Extract Protects Pancreatic Cells by Down Regulating IL- 1β and iNOS Gene Expression in Diabetic Rats

    PubMed Central

    Zolghadri, Yalda; Fazeli, Mehdi; Kooshki, Marzieh; Shomali, Tahoora; Karimaghayee, Negar; Dehghani, Maryam

    2014-01-01

    Interleukin-1β (IL-1β) has a role in β- cell destruction in autoimmune diabetes by stimulating the expression of inducible nitric oxide synthase (iNOS) that generates the free radical nitric oxide. We aimed to investigate the effect of Achillea millefolium L, as a traditional hypoglycemic agent, on IL-1β and iNOS gene expression of pancreatic tissue in the STZ- induced diabetic rats. Forty adult male Wistar rats were randomly divided into four groups: 1. diabetic control; 2. diabetic rats treated with Achillea millefolium L. extract; 3. normal rats received only extract and 4. negative control (n= 10 each). Diabetes was induced by single i.p. injection of 45 mg/ kg streptozotocin (STZ). Rats in groups 2 and 3 were treated with i.p. injection of Achillea millefolium L. extract (100 mg/ kg/ day) for 14 days. Body weight, serum glucose and insulin levels were assayed at baseline and on days 3, 7, 10 and 14 of the experiment. Finally, the quantity of pancreatic IL-1β and iNOS mRNA was determined by real- time PCR. The mRNA expression level of IL-1β and iNOS genes, was significantly (p<0.001) increased in diabetic rats of group 1. Treatment with Achillea millefolium L. caused a significant (p<0.01) reduction in both IL-1β and iNOS genes expression. Moreover, rats in group 2 had higher insulin level associated with lower glucose level and higher body weight compared to control diabetic group. It seems that beneficial effect of Achillea millefolium L. on STZ- induced diabetes is at least partly due to amelioration of IL-1β and iNOS gene over expression which can have a β-cell protective effect. PMID:25635252

  20. Bilirubin prevents acute DSS-induced colitis by inhibiting leukocyte infiltration and suppressing upregulation of inducible nitric oxide synthase.

    PubMed

    Zucker, Stephen D; Vogel, Megan E; Kindel, Tammy L; Smith, Darcey L H; Idelman, Gila; Avissar, Uri; Kakarlapudi, Ganesh; Masnovi, Michelle E

    2015-11-15

    Bilirubin is thought to exert anti-inflammatory effects by inhibiting vascular cell adhesion molecule-1 (VCAM-1)-dependent leukocyte migration and by suppressing the expression of inducible nitric oxide synthase (iNOS). As VCAM-1 and iNOS are important mediators of tissue injury in the dextran sodium sulfate (DSS) murine model of inflammatory colitis, we examined whether bilirubin prevents colonic injury in DSS-treated mice. Male C57BL/6 mice were administered 2.5% DSS in the drinking water for 7 days, while simultaneously receiving intraperitoneal injections of bilirubin (30 mg/kg) or potassium phosphate vehicle. Disease activity was monitored, peripheral blood counts and serum nitrate levels were determined, and intestinal specimens were analyzed for histological injury, leukocyte infiltration, and iNOS expression. The effect of bilirubin on IL-5 production by HSB-2 cells and on Jurkat cell transendothelial migration also was determined. DSS-treated mice that simultaneously received bilirubin lost less body weight, had lower serum nitrate levels, and exhibited reduced disease severity than vehicle-treated animals. Concordantly, histopathological analyses revealed that bilirubin-treated mice manifested significantly less colonic injury, including reduced infiltration of eosinophils, lymphocytes, and monocytes, and diminished iNOS expression. Bilirubin administration also was associated with decreased eosinophil and monocyte infiltration into the small intestine, with a corresponding increase in peripheral blood eosinophilia. Bilirubin prevented Jurkat migration but did not alter IL-5 production. In conclusion, bilirubin prevents DSS-induced colitis by inhibiting the migration of leukocytes across the vascular endothelium and by suppressing iNOS expression.

  1. Measurement of integrated flux of cosmic ray muons at sea level using the INO-ICAL prototype detector

    SciTech Connect

    Pal, S.; Acharya, B.S.; Majumder, G.; Mondal, N.K.; Samuel, D.; Satyanarayana, B. E-mail: acharya@tifr.res.in E-mail: nkm@tifr.res.in E-mail: bsn@tifr.res.in

    2012-07-01

    The India-based Neutrino Observatory (INO) collaboration is planning to set-up a magnetized Iron-CALorimeter (ICAL) to study atmospheric neutrino oscillations with precise measurements of oscillations parameters. The ICAL uses 50 kton iron as target mass and about 28800 Resistive Plate Chambers (RPC) of 2 m × 2 m in area as active detector elements. As part of its R and D program, a prototype detector stack comprising 12 layers of RPCs of 1 m × 1 m in area has been set-up at Tata Institute of Fundamental Research (TIFR) to study the detector parameters using cosmic ray muons. We present here a study of muon flux measurement at sea level and lower latitude. (Site latitude: 18°54'N, longitude: 72°48'E.)

  2. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    SciTech Connect

    Kim, Sun Ae; Choi, Hyoung Chul

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK

  3. Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2.

    PubMed

    Gupta, Akanksha; Rhodes, George J; Berg, David T; Gerlitz, Bruce; Molitoris, Bruce A; Grinnell, Brian W

    2007-07-01

    Endothelial dysfunction contributes significantly to acute renal failure (ARF) during inflammatory diseases including septic shock. Previous studies have shown that activated protein C (APC) exhibits anti-inflammatory properties and modulates endothelial function. Therefore, we investigated the effect of APC on ARF in a rat model of endotoxemia. Rats subjected to lipopolysaccharide (LPS) treatment exhibited ARF as illustrated by markedly reduced peritubular capillary flow and increased serum blood urea nitrogen (BUN) levels. Using quantitative two-photon intravital microscopy, we observed that at 3 h post-LPS treatment, rat APC (0.1 mg/kg iv bolus) significantly improved peritubular capillary flow [288 +/- 15 microm/s (LPS) vs. 734 +/- 59 microm/s (LPS+APC), P = 0.0009, n = 6], and reduced leukocyte adhesion (P = 0.003) and rolling (P = 0.01) compared with the LPS-treated group. Additional experiments demonstrated that APC treatment significantly improved renal blood flow and reduced serum BUN levels compared with 24-h post-LPS treatment. Biochemical analysis revealed that APC downregulated inducible nitric oxide synthase (iNOS) mRNA levels and NO by-products in the kidney. In addition, APC modulated the renin-angiotensin system by reducing mRNA expression levels of angiotensin-converting enzyme-1 (ACE1), angiotensinogen, and increasing ACE2 mRNA levels in the kidney. Furthermore, APC significantly reduced ANG II levels in the kidney compared with the LPS-treated group. Taken together, these data suggest that APC can suppress LPS-induced ARF by modulating factors involved in vascular inflammation, including downregulation of renal iNOS and ANG II systems. Furthermore, the data suggest a potential therapeutic role for APC in the treatment of ARF.

  4. Attenuation of iNOS and COX2 by blueberry polyphenols is mediated through the suppression of NF-KB activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Treatment of BV2 microglial cells with blueberry extracts has been shown to be effective in reducing lipopolysaccharide (LPS)-induced pro-inflammatory mediators such as nitric oxide (NO), tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1Beta), inducible NO synthase (iNOS), and cyclo-...

  5. Elevated levels of NO in both unchallenged and LPS-challenged C. parvum-primed mice are attributable to the activity of a cytokine-inducible isoform of iNOS.

    PubMed

    Smith, S R; Manfra, D; Davies, L; Terminelli, C; Denhardt, G; Donkin, J

    1997-01-01

    Elevated levels of nitric oxide (NO2-/NO3-) were detected in the serum of mice 3-7 days after priming with Corynebacterium parvum (Propionibacterium acnes). The serum NO2-/NO3- response was completely inhibited when C. parvum-primed (C. parrum) mice were treated with N(G)-monomethyl-L-arginine (L-NMMA) or aminoguanidine (AG) on days 6 and 7 post priming. The response was also inhibited when the mice were treated with interleukin-10 (IL-10) and the cytokine was most effective when given in multiple doses beginning on the day of priming. In contrast to L-NMMA and AG, IL-10 had no effect on the serum NO2-/NO3- response when administered to the mice on days 6 and 7 post priming. The inducible isoform of NOS (iNOS) appeared to be responsible for the elevated NO2-/NO3- response in C. parvum mice because iNOS transcripts were readily detected in their livers. Moreover, these transcripts as well as the circulating levels of NO2-/NO3- were dramatically reduced when the mice were treated with anti-tumor necrosis factor alpha (anti-TNF-alpha) or anti-interferon-gamma (anti-IFN-gamma) monoclonal antibodies (mAbs) during the priming interval. There was a modest increase (less than twofold) in the serum NO2-/NO3- response following a lipopolysaccharide (LPS) challenge to C. parvum mice (C. parvum/LPS mice). LPS had a more dramatic stimulatory effect if the levels of NO2-/NO3- preexisting in C. parvum/LPS mice were reduced by treatment with L-NMMA, AG, or IL-10 before the challenge. Thus the levels of NO2-/NO3- that preexisted in C. parvum/LPS mice appeared to influence their ability to mount a NO2-/NO3- response subsequent to the LPS challenge. The NO2-/NO3- response did not contribute to lethality in C. parvum/LPS mice because anti-TNF-alpha and anti-IFN-gamma mAbs were protective but had no effect on serum NO2-/NO3- levels when administered to mice 24 h before the LPS challenge. PMID:9000533

  6. Lanostanes from Phellinus igniarius and their iNOS inhibitory activities.

    PubMed

    Wang, Guei-Jane; Tsai, Tung-Hu; Chang, Tun-Tschu; Chou, Cheng-Jen; Lin, Lie-Chwen

    2009-12-01

    Four new lanostanol-type triterpenoids, igniarens A - D ( 1- 4), were isolated from the fruit body of Phellinus igniarius together with two known triterpenoids, and two known ergostanes. These four new compounds were identified by spectroscopic analysis as 22 R-hydroxy-24-methylene-29-norlanost-7, 9(11)-dien-3-one (1), 3alpha,22 R-dihydroxy-24-methylene-29-norlanost-7, 9(11)-diene (2), 3alpha,22 R-dihydroxy-24-methylene-29-norlanost-8-ene ( 3), and 3alpha,22 R-dihydroxy-24-methylenelanost-8-ene ( 4). Their effects on NO production in lipopolysaccharide (LPS)-activated macrophages were assessed. Compounds 1- 8 inhibited NO production in activated RAW 264.7 cells to various degrees. The most potent compound 5alpha,8alpha-epidioxy-22 E-ergosta-6,22-dien-3beta-ol ( 7) significantly inhibited LPS-induced NO production in a concentration-dependent manner without affecting the cellular viability, with an IC (50) of 37.57 +/- 1.38 microM. PMID:19557671

  7. The Influences of different cathode materials on Tris-(8-Hydroxyquinoline)- Aluminum Doped with CsNO3 in Organic Light emitting Devices

    NASA Astrophysics Data System (ADS)

    Chen, Mei-Hsin; Lu, Yin-Jui; Wu, Chung-Chih; Wu, Chih-I.

    2008-03-01

    This paper presents the investigations of interfacial interactions and electron-injection mechanisms between cesium nitrate (CsNO3) and different cathode materials. By using ultraviolet and x-ray photoemission spectroscopy, the properties of electronic structures and the interfacial chemistry are studied. According to our results, there exists a phenomenon of electron exchange at the interface results in changes of Aluminum 2s core level binding energy by 1 eV when aluminum was deposited on CsNO3. This means electrons transfer from cathode materials to the surface of CsNO3, forming a strong dipolar field at the interface and reduction of the electron injection barrier. But, in contract, there exists nearly no reaction between CsNO3 and silver cathode. The evidences show that CsNO3 is more effective only with aluminum cathode due to a reaction between Aluminum, Cesium and Nitrogen atoms.

  8. COMPARISON OF SILICA IMMOBILIZED POLY-L-CYSTEINE AND 8-HYDROXYQUINOLINE FOR TRACE METAL CHELATION AND PRECONCENTRATION. (R826694C651)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. Water-Soluble 8-Hydroxyquinoline Conjugate of Amino-Glucose As Receptor for La(3+) in HEPES Buffer, on Whatman Cellulose Paper and in Living Cells.

    PubMed

    Areti, Sivaiah; Bandaru, Sateesh; Teotia, Rohit; Rao, Chebrolu P

    2015-12-15

    A water-soluble glucopyranosyl conjugate, L, has been synthesized and characterized by different analytical and spectral techniques. The L has been demonstrated to have switch-on fluorescence enhancement of ∼75 fold in the presence of La(3+) among the nine lanthanide ions studied in the HEPES buffer at pH 7.4. A minimum detection limit of 140 nM (16 ± 2 ppb) was shown by L for La(3+) in the buffer at physiological pH. The utility of L has been demonstrated by showing its sensitivity toward La(3+) on Whatman filter paper strips. The reversible and reusable action of L has been demonstrated by monitoring the fluorescence changes as a function of the addition of La(3+) followed by F(-) and HPO4(2-) ions. The complexation of L by La(3+) was shown by absorption spectra wherein isosbestic behavior was observed. The Job's plot suggests a 2:1 complex between L and La(3+), and the same was supported by ESI-MS. The control molecular study revealed the necessity of hydroxy quinoline and the amine group for La(3+) ion binding and the glyco-moiety to bring water solubility and biocompatibility. The structural features of the [2L+La(3+)] complex were established by DFT computational calculations. The chemo-ensemble, [2L+La(3+)], is shown responsible for providing intracellular fluorescence imaging in HepG2 cells.

  10. The Role of Weak Interactions in the Mechano-induced Single-Crystal-to-Single-Crystal Phase Transition of 8-Hydroxyquinoline-Based Co-crystals.

    PubMed

    Liu, Jie; Liu, Guangfeng; Liu, Yang; Zheng, Xiaoxin; Han, Quanxiang; Ye, Xin; Tao, Xutang

    2016-06-01

    Mechano-induced single-crystal-to-single-crystal (SCSC) phase transitions in crystalline materials that change their properties have received more and more attention. However, there are still too few examples to study molecular-level mechanisms in the mechano-induced SCSC phase transitions, making the systematic and in-depth understanding very difficult. We report that bis-(8-hydroxyquinolinato) palladium(II)-tetracyanoquinodimethane (PdQ2 -TCNQ) and bis-(8-hydroxyquinolinato) copper(II)-tetracyanoquinodimethane (CuQ2 -TCNQ) show very different mechano-response behaviors during the SCSC phase transition. Phase transition in CuQ2 -TCNQ can be triggered by pricking on the crystal surface, while in PdQ2 -TCNQ it can only be induced by applying pressure uniformly over the whole crystal face. The crystallography data and Hirshfeld surface analysis indicate that the weak intra-layer C-H⋅⋅⋅O, C-H⋅⋅⋅N hydrogen bonds and inter-layer stacking interactions determine the feasibility of the SCSC phase transition by mechanical stimuli. Weaker intra-layer interactions and looser inter-layer stacking make the SCSC phase transition occur much more easily in the CuQ2 -TCNQ.

  11. Sodium phenylacetate inhibits adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice at multiple steps.

    PubMed

    Dasgupta, Subhajit; Zhou, You; Jana, Malabendu; Banik, Naren L; Pahan, Kalipada

    2003-04-01

    Experimental allergic encephalomyelitis (EAE) is the animal model for multiple sclerosis. The present study underlines the importance of sodium phenylacetate (NaPA), a drug approved for urea cycle disorders, in inhibiting the disease process of adoptively transferred EAE in female SJL/J mice at multiple steps. Myelin basic protein (MBP)-primed T cells alone induced the expression of NO synthase (iNOS) and the activation of NF-kappaB in mouse microglial cells through cell-cell contact. However, pretreatment of MBP-primed T cells with NaPA markedly inhibited its ability to induce microglial expression of iNOS and activation of NF-kappaB. Consistently, adoptive transfer of MBP-primed T cells, but not that of NaPA-pretreated MBP-primed T cells, induced the clinical symptoms of EAE in female SJL/J mice. Furthermore, MBP-primed T cells isolated from NaPA-treated donor mice were also less efficient than MBP-primed T cells isolated from normal donor mice in inducing iNOS in microglial cells and transferring EAE to recipient mice. Interestingly, clinical symptoms of EAE were much less in mice receiving NaPA through drinking water than those without NaPA. Similar to NaPA, sodium phenylbutyrate, a chemically synthesized precursor of NaPA, also inhibited the disease process of EAE. Histological and immunocytochemical analysis showed that NaPA inhibited EAE-induced spinal cord mononuclear cell invasion and normalized iNOS, nitrotyrosine, and p65 (the RelA subunit of NF-kappaB) expression within the spinal cord. Taken together, our results raise the possibility that NaPA or sodium phenylbutyrate taken through drinking water or milk may reduce the observed neuroinflammation and disease process in multiple sclerosis patients. PMID:12646656

  12. Four new sesquiterpenes from the rhizomes of Curcuma phaeocaulis and their iNOS inhibitory activities.

    PubMed

    Ma, Jiang-Hao; Wang, Ying; Liu, Yue; Gao, Su-Yu; Ding, Li-Qin; Zhao, Feng; Chen, Li-Xia; Qiu, Feng

    2015-05-01

    Three new guaiane-type sesquiterpenes named phaeocaulisins K-M (1-3), and one germacrane-type sesquiterpenoid with new ring system of 1,5- and 1,8-ether groups named phagermadiol (4), were isolated from rhizomes of Curcuma phaeocaulis. Their structures were established based on extensive spectroscopic analysis. Compound 1, the first example of norsesquiterpene with tropone backbone, and compound 3 with a novel 1,2-dioxolane sesquiterpene alcohol were isolated from the genus Curcuma. All of the isolated compounds were tested for inhibitory activity against lipopolysaccharide-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compound 3 inhibited NO production with IC50 value of 6.05 ± 0.43 μM. The plausible biosynthetic pathway for compounds 3 and 4 in C. phaeocaulis was also discussed.

  13. Erucin exerts anti-inflammatory properties in murine macrophages and mouse skin: possible mediation through the inhibition of NFκB signaling.

    PubMed

    Cho, Han Jin; Lee, Ki Won; Park, Jung Han Yoon

    2013-01-01

    Erucin, an isothiocyanate, is a hydrolysis product of glucoerucin found in arugula and has recently been reported to have anti-cancer properties in various cancer cells. In this study, we assessed the anti-inflammatory effects of erucin and the underlying mechanisms, using lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages and 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin. In RAW 264.7 cells, erucin (2.5, 5 μmol/L) inhibited LPS-induced production of nitric oxide and prostaglandin E2. Erucin inhibited LPS-induced degradation of the inhibitor of κBα and translocation of p65 to the nucleus and, subsequently, reduced LPS-induced nuclear factor κB (NFκB) DNA binding activities, as well as the transcriptional activity of NFκB, leading to the decreased expression of NFκB-target genes, including tumor necrosis factor-α, interleukin (IL)-6, IL-1β, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, as well as transcriptional activity of iNOS and COX-2. In mice, erucin (100, 300 nmoles) treatment significantly inhibited phorbol ester-induced formation of ear edema and expression of iNOS and COX-2 proteins. These results indicate that erucin exerts a potent anti-inflammatory activity by inhibiting the pro-inflammatory enzymes and cytokines, which may be mediated, at least in part, via the inhibition of NFκB signaling. PMID:24132147

  14. Erucin Exerts Anti-Inflammatory Properties in Murine Macrophages and Mouse Skin: Possible Mediation through the Inhibition of NFκB Signaling

    PubMed Central

    Cho, Han Jin; Lee, Ki Won; Park, Jung Han Yoon

    2013-01-01

    Erucin, an isothiocyanate, is a hydrolysis product of glucoerucin found in arugula and has recently been reported to have anti-cancer properties in various cancer cells. In this study, we assessed the anti-inflammatory effects of erucin and the underlying mechanisms, using lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages and 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin. In RAW 264.7 cells, erucin (2.5, 5 μmol/L) inhibited LPS-induced production of nitric oxide and prostaglandin E2. Erucin inhibited LPS-induced degradation of the inhibitor of κBα and translocation of p65 to the nucleus and, subsequently, reduced LPS-induced nuclear factor κB (NFκB) DNA binding activities, as well as the transcriptional activity of NFκB, leading to the decreased expression of NFκB-target genes, including tumor necrosis factor-α, interleukin (IL)-6, IL-1β, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, as well as transcriptional activity of iNOS and COX-2. In mice, erucin (100, 300 nmoles) treatment significantly inhibited phorbol ester-induced formation of ear edema and expression of iNOS and COX-2 proteins. These results indicate that erucin exerts a potent anti-inflammatory activity by inhibiting the pro-inflammatory enzymes and cytokines, which may be mediated, at least in part, via the inhibition of NFκB signaling. PMID:24132147

  15. Episodic Inhibition

    ERIC Educational Resources Information Center

    Racsmany, Mihaly; Conway, Martin A.

    2006-01-01

    Six experiments examined the proposal that an item of long-term knowledge can be simultaneously inhibited and activated. In 2 directed forgetting experiments items to-be-forgotten were found to be inhibited in list-cued recall but activated in lexical decision tasks. In 3 retrieval practice experiments, unpracticed items from practiced categories…

  16. The effect of aspirin nanoemulsion on TNFα and iNOS in gastric tissue in comparison with conventional aspirin

    PubMed Central

    Mahmoud, Fatma Abd Elhalim; Hashem, Khalid S; Hussein Elkelawy, Asmaa Mohammed M

    2015-01-01

    Background No dose of aspirin is free of bleeding risk. Even at a dose as low as 75 mg/day, the risk of upper gastrointestinal bleeding is twice as high as among nonusers. Nanoemulsions (NEs) are emulsion systems with droplet size in nanometer scale in which oil or water droplets are finely dispersed in the opposite phase with the help of a suitable surfactant to stabilize the system. Objectives The objective of this study was to determine the effect of aspirin NE in comparison to conventional aspirin. Materials and methods A total of 24 male rats were used in the study and arbitrarily assigned to four groups. Group 1 was the control group, and was given saline. Group 2 was given blank NE 1.5 mL/kg orally. Group 3 was given aspirin 30 mg/kg body weight orally. Group 4 was given aspirin NE 30 mg/kg body weight orally. Rats were killed, and gastric tissue was quickly excised after dissection of the animals. The tissues were divided into three pieces. The first one was kept in formalin 10% for pathological investigation. The second piece was kept in liquid nitrogen for molecular investigation. The third piece was homogenized in ten volumes of ice-cold phosphate-buffered saline (pH 7) using a Teflon homogenizer until a uniform suspension was obtained. The homogenate was centrifuged at 4,000 rpm for 30 minutes at 4°C to separate the supernatant from cellular debris. The supernatant was then used for the estimation of biochemical assays. Results The present study shows that aspirin has a toxic effect on the stomach as a result of inducing marked oxidative damage and the release of reactive oxygen species. This was shown by the significant increase in TNFα, iNOS, prostaglandin E2, and malondialdehyde levels, and also a significant decrease in glutathione, glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase. In the aspirin-treated group compared to the control group, the NE had a protective effect on the stomach and caused less injury than

  17. Proliferation of macrophages due to the inhibition of inducible nitric oxide synthesis by oxidized low-density lipoproteins

    PubMed Central

    Brunner, Monika; Gruber, Miriam; Schmid, Diethart; Baran, Halina; Moeslinger, Thomas

    2015-01-01

    Oxidized low-density lipoprotein (ox-LDL) is assumed to be a major causal agent in hypercholesteraemia-induced atherosclerosis. Because the proliferation of lipid-loaden macrophages within atherosclerotic lesions has been described, we investigated the dependence of macrophage proliferation on the inhibition of inducible nitric oxide synthase (iNOS) by hypochlorite oxidized LDL. Ox-LDL induces a dose dependent inhibition of inducible nitric oxide synthesis in lipopolysaccharide-interferon stimulated mouse macrophages (J774.A1) with concomitant macrophage proliferation as assayed by cell counting, tritiated-thymidine incorporation and measurement of cell protein. Native LDL did not influence macrophage proliferation and inducible nitric oxide synthesis. iNOS protein and mRNA was reduced by HOCl-oxidized LDL (0-40 µg/ml) as revealed by immunoblotting and competitive semiquantitative PCR. Macrophage proliferation was increased by the addition of the iNOS inhibitor L-NAME. The addition of ox-LDL to L-NAME containing incubations induced no further statistically significant increase in cell number. Nitric oxide donors decreased ox-LDL induced macrophage proliferation and nitric oxide scavengers restored macrophage proliferation to the initial values achieved by ox-LDL. The decrease of cytosolic DNA fragments in stimulated macrophages incubated with ox-LDL demonstrates that the proliferative actions of ox-LDL are associated with a decrease of NO-induced apoptosis. Our data show that inhibition of iNOS dependent nitric oxide production caused by hypochlorite oxidized LDL enhances macrophage proliferation. This might be a key event in the pathogenesis of atherosclerotic lesions. PMID:26600745

  18. Selective inhibition of human inducible nitric oxide synthase by S-alkyl-L-isothiocitrulline-containing dipeptides.

    PubMed

    Park, J M; Higuchi, T; Kikuchi, K; Urano, Y; Hori, H; Nishino, T; Aoki, J; Inoue, K; Nagano, T

    2001-04-01

    The aim of this study was to investigate the structure-activity relationship of S-alkyl-L-isothiocitrulline-containing dipeptides towards three partially purified recombinant human nitric oxide synthase (NOS) isozymes, as well as the effects of these compounds on cytokine-induced NO production by human DLD-1 cells. In an in vitro assay, S-methyl-L-isothiocitrulline (L-MIT) was slightly selective for human neuronal NOS (nNOS) over the inducible (iNOS) or endothelial (eNOS) isozyme, but the combination of a hydrophobic L-amino acid (L-Phe, L-Leu or L-Trp) with L-MIT dramatically altered the inhibition pattern to give selective iNOS inhibitors. Introduction of a hydroxy, nitro, amino or methoxy group at the para position of the aromatic ring of L-MIT-L-Phe (MILF) decreased the selectivity and inhibitory potency. A longer or larger S-alkyl group also decreased the selectivity and potency. Dixon analysis showed that all of the dipeptides were competitive inhibitors of the three isoforms of human NOS. The enzymatic time course curves indicated that MILF was a slow binding inhibitor of human iNOS. These results suggest that the human NOS isozymes have different-sized cavities in the binding site near the position to which the C-terminal of L-arginine binds, and the cavity of iNOS is hydrophobic. Interestingly, L-MIT-D-Phe (MIDF) showed little inhibitory activity or selectivity, suggesting that the cavity of human iNOS is located in a well-defined direction from the alpha carbon atom. NO production in cytokine-stimulated human DLD-1 cells was measured with a fluorescent indicator, DAF-FM. MILF, L-MIT-L-Trp(-CHO) (MILW) and L-MIT-L-Tyr (MILY) showed more potent activity than L-MIT in this whole-cell assay. Thus, S-alkyl-L-isothiocitrulline-containing dipeptides are selective inhibitors of human iNOS, and work efficiently in cell-based assay. PMID:11309260

  19. Interannual variation of stable isotopes in precipitation at Bangkok in response to El Ñino Southern Oscillation

    NASA Astrophysics Data System (ADS)

    Ichiyanagi, Kimpei; Yamanaka, Manabu D.

    2005-11-01

    Evidence for a close relationship between the interannual variation of stable isotopes in precipitation and the El Ñino Southern Oscillation (ENSO) is presented for Bangkok, Thailand. Anomalies of sea surface temperature in the Niño-3 region of the equatorial Pacific (ENSO index) and 18O in precipitation in Bangkok were positively correlated for May and October. The composite mean precipitation was much greater in the isotopic low phase than in the high phase for both May and October. This suggests that the amount of precipitation is the main factor determining the observed variation of stable isotopes in precipitation in Bangkok. Composite analyses of 850 hPa temperature, evaporation, outgoing longwave radiation (OLR), and precipitation showed that the variation in the amount of precipitation in Bangkok is a response to the ENSO-Asian summer monsoon coupling in May, and a direct response to ENSO in October. The composite mean d-excess values in both the low and high phases in October and in the low phase in May were about 10, and were less than 7 during the high phase in May. A large difference in the evaporation field between the low and high phases of May exists over the Indian Ocean, suggesting that evaporation was not in equilibrium during the high phase in May. Future studies will consider the precipitation amount effect based on daily or event-based sampling. Copyright

  20. Heterosis and combining ability: a diallel cross of three geographically isolated populations of Pacific abalone Haliotis discus hannai Ino

    NASA Astrophysics Data System (ADS)

    Deng, Yuewen; Liu, Xiao; Zhang, Guofan; Wu, Fucun

    2010-11-01

    We conducted a complete diallel cross among three geographically isolated populations of Pacific abalone Haliotis discus hannai Ino to determine the heterosis and the combining ability of growth traits at the spat stage. The three populations were collected from Qingdao (Q) and Dalian (D) in China, and Miyagi (M) in Japan. We measured the shell length, shell width, and total weight. The magnitude of the general combining ability (GCA) variance was more pronounced than the specific combining ability (SCA) variance, which is evidenced by both the ratio of the genetic component in total variation and the GCA/SCA values. The component variances of GCA and SCA were significant for all three traits ( P<0.05), indicating the importance of additive and non-additive genetic effects in determining the expression of these traits. The reciprocal maternal effects (RE) were also significant for these traits ( P<0.05). Our results suggest that population D was the best general combiner in breeding programs to improve growth traits. The DM cross had the highest heterosis values for all three traits.

  1. Baicalin ameliorates isoproterenol-induced acute myocardial infarction through iNOS, inflammation, oxidative stress and P38MAPK pathway in rat

    PubMed Central

    Sun, Shen-Jie; Wu, Xiao-Peng; Song, Heng-Liang; Li, Gui-Qi

    2015-01-01

    Baicalin is one of the active ingredients in the skullcap, with a variety of pharmacological effects, such as blood pressure reduction, sedation, liver-protection, gallbladder-protection, anti-bacteria, anti-inflammation, etc. The aim of this study was to investigate the potential cardioprotective effects of baicalin ameliorates isoproterenol-induced acute myocardial infarction (AMI) through inducible nitric oxide synthase (iNOS), inflammation, oxidative stress and P38MAPK passageway in rat. Rat model of AMI was induced by isoproterenol (100 mg/kg) and then treated baicalin (various does of baicalin: 1 mg/kg, 10 mg/kg and 100 mg/kg, respectively) for 24 h. Infarct size, the heart weight to body weight ratio and creatine kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin T (cTnT) of rats with AMI induced by isoproterenol were used to evaluate curative effect of baicalin on AMI. Meanwhile, iNOS and phosphorylation-p38 MAPK (p-p38) protein expressions, inflammatory factor and oxidative stress were inspected using western blot and commercial kits, respectively. In the present study, pre-treatment with baicalin (10 or 100 mg/kg) significantly ameliorated infarct size, the heart weight to body weight ratio and CK, CK-MB, LDH and cTnT levels in rats with AMI induced by isoproterenol. iNOS protein expression, the serum TNF-α, IL-6, MDA and SOD levels and p-38 protein expressions were significantly suppressed by treatment with baicalin (10 or 100 mg/kg). These results suggest that acute treatment with baicalin ameliorates AMI, iNOS, inflammation, oxidative stress and P38MAPK pathway in rat with AMI induced by isoproterenol. PMID:26885181

  2. iNOS null MRL+/+ mice show attenuation of trichloroethene-mediated autoimmunity: contribution of reactive nitrogen species and lipid-derived reactive aldehydes.

    PubMed

    Wang, Gangduo; Wakamiya, Maki; Wang, Jianling; Ansari, G A S; Firoze Khan, M

    2015-12-01

    Earlier studies from our laboratory in MRL+/+ mice suggest that free radicals, especially overproduction of reactive nitrogen species (RNS) and lipid-derived reactive aldehydes (LDRAs), are associated with trichloroethene (TCE)-mediated autoimmune response. The current study was undertaken to further assess the contribution of RNS and LDRAs in TCE-mediated autoimmunity by using iNOS-null MRL+/+ mice. iNOS-null MRL+/+ mice were obtained by backcrossing iNOS-null mice (B6.129P2-Nos2(tm1Lau)/J) to MRL +/+ mice. Female MRL+/+ and iNOS-null MRL+/+ mice were given TCE (10 mmol/kg, i.p., every 4(th) day) for 6 weeks; their respective controls received corn oil only. TCE exposure led to significantly increased iNOS mRNA in livers, iNOS protein in livers and sera, increased nitrotyrosine (NT) formation in both livers and sera, induction of MDA-/HNE-protein adducts in livers and their respective antibodies in sera along with significant increases in serum antinuclear antibodies (ANA) and anti-dsDNA in MRL+/+ mice. Even though in iNOS-null MRL+/+ mice, the iNOS and NT levels were negligible in both TCE-treated and untreated groups, TCE treatment still led to significant increases in MDA-/HNE-protein adducts and their respective antibodies along with increases in serum ANA and anti-dsDNA compared to controls. Most remarkably, the increases in serum ANA and anti-dsDNA induced by TCE in the iNOS-null MRL+/+ mice were significantly less pronounced compared to that in MRL+/+ mice. Our results provide further evidence that both RNS and LDRAs contribute to TCE-induced autoimmunity in MRL+/+ mice, and iNOS deficiency attenuates this autoimmune response.

  3. Macrophages From Irradiated Tumors Express Higher Levels of iNOS, Arginase-I and COX-2, and Promote Tumor Growth

    SciTech Connect

    Tsai, C.-S.; Chen, F.-H.; Wang, C.-C.; Huang, H.-L.; Jung, Shih-Ming; Wu, C.-J.; Lee, C.-C.; McBride, William H.; Chiang, C.-S.; Hong, J.-H. . E-mail: jihong@adm.cgmh.org.tw

    2007-06-01

    Purpose: To investigate the effects of single and fractionated doses of radiation on tumors and tumor-associated macrophages (TAMs), and to elucidate the potential of TAMs to influence tumor growth. Methods and Materials: A murine prostate cell line, TRAMP-C1, was grown in C57Bl/6J mice to 4-mm tumor diameter and irradiated with either 25 Gy in a single dose, or 60 Gy in 15 fractions. The tumors were removed at the indicated times and assessed for a variety of markers related to TAM content, activation status, and function. Results: In tumors receiving a single radiation dose, arginase (Arg-I), and cycloxygenase-2 (COX-2) mRNA expression increased as a small transient wave within 24 h and a larger persistent wave starting after 3 days. Inducible nitric oxide synthase (iNOS) mRNA was elevated only after 3 days and continued to increase up to 3 weeks. After fractionated irradiation, Arg-1 and COX-2 mRNA levels increased within 5 days, whereas iNOS was increased only after 10 fractions of irradiation had been given. Increased levels of Arg-I, COX-2, and, to a lesser extent, iNOS protein were found to associate with TAMs 1-2 weeks after tumor irradiation. Function of TAMs were compared by mixing them with TRAMP-C1 cells and injecting them into mice; TRAMP-C1 cells mixed with TAMs from irradiated tumors appeared earlier and grew significantly faster than those mixed with TAMs from unirradiated tumors or TRAMP-C1 alone. Conclusions: Tumor-associated macrophages in the postirradiated tumor microenvironment express higher levels of Arg-1, COX-2, and iNOS, and promote early tumor growth in vivo.

  4. PARP-1 Inhibition Is Neuroprotective in the R6/2 Mouse Model of Huntington's Disease.

    PubMed

    Cardinale, Antonella; Paldino, Emanuela; Giampà, Carmela; Bernardi, Giorgio; Fusco, Francesca R

    2015-01-01

    Poly (ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is involved in physiological processes as DNA repair, genomic stability, and apoptosis. Moreover, published studies demonstrated that PARP-1 mediates necrotic cell death in response to excessive DNA damage under certain pathological conditions. In Huntington's disease brains, PARP immunoreactivity was described in neurons and in glial cells, thereby suggesting the involvement of apoptosis in HD. In this study, we sought to determine if the PARP-1 inhibitor exerts a neuroprotective effect in R6/2 mutant mice, which recapitulates, in many aspects, human HD. Transgenic mice were treated with the PARP-1 inhibitor INO-1001 mg/Kg daily starting from 4 weeks of age. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that INO 1001-treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as striatal atrophy, morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. INO-1001 was effective in significantly increasing activated CREB and BDNF in the striatal spiny neurons, which might account for the beneficial effects observed in this model. Our findings show that PARP-1 inhibition could be considered as a valid therapeutic approach for HD.

  5. Human inducible nitric oxide synthase (iNOS) expression depends on chromosome region maintenance 1 (CRM1)- and eukaryotic translation initiation factor 4E (elF4E)-mediated nucleocytoplasmic mRNA transport.

    PubMed

    Bollmann, Franziska; Fechir, Katrin; Nowag, Sebastian; Koch, Kathrin; Art, Julia; Kleinert, Hartmut; Pautz, Andrea

    2013-04-01

    Human inducible nitric oxide synthase (iNOS) is regulated on the expressional level mostly by post-transcriptional mechanisms modulating the mRNA stability. Another important step in the control of eukaryotic gene expression is the nucleocytoplasmic mRNA transport. Most cellular mRNAs are exported via the TAP/Nxt complex of proteins. However, some mRNAs are transported by a different mechanism involving the nuclear export receptor CRM1. Treatment of DLD-1 cells with the CRM1 inhibitor leptomycin B (LMB) or anti-CRM1 siRNAs reduced cytokine-induced iNOS expression. We could demonstrate that the iNOS mRNA is exported from the nucleus in a CRM1-dependent manner. Since CRM1 itself does not possess any RNA binding affinity, an adapter protein is needed to mediate CRM1-dependent mRNA export. Western blot experiments showed that the eukaryotic translation initiation factor eIF4E is retained in the nucleus after LMB treatment. Blockade of eIF4E by ribavirin or overexpression of the promyelocytic leukemia protein (PML) decreased iNOS expression due to reduced iNOS mRNA export from the nucleus. Transfection experiments provide evidence that the 3'-untranslated region of the iNOS mRNA is involved in eIF4E-mediated iNOS mRNA transport. In summary, CRM1 and eIF4E seem to play an important role in the nucleocytoplasmic export of human iNOS mRNA.

  6. Oct-2 forms a complex with Oct-1 on the iNOS promoter and represses transcription by interfering with recruitment of RNA PolII by Oct-1.

    PubMed

    Bentrari, Fatima; Chantôme, Aurelie; Knights, Andrew; Jeannin, Jean-François; Pance, Alena

    2015-11-16

    Oct-1 (POU2f1) and Oct-2 (POU2f2) are members of the POU family of transcription factors. They recognize the same DNA sequence but fulfil distinct functions: Oct-1 is ubiquitous and regulates a variety of genes while Oct-2 is restricted to B-cells and neurones. Here we examine the interplay and regulatory mechanisms of these factors to control the inducible nitric oxide synthase (iNOS, NOS2). Using two breast cancer cell lines as a comparative model, we found that MCF-7 express iNOS upon cytokine stimulation while MDA-MB-231 do not. Oct-1 is present in both cell lines but MDA-MB-231 also express high levels of Oct-2. Manipulation of Oct-2 expression in these cell lines demonstrates that it is directly responsible for the repression of iNOS in MDA-MB-231. In MCF-7 cells Oct-1 binds the iNOS promoter, recruits RNA PolII and triggers initiation of transcription. In MDA-MB-231 cells, both Oct-1 and Oct-2 bind the iNOS promoter, forming a higher-order complex which fails to recruit RNA PolII, and as a consequence iNOS transcription does not proceed. Unravelling the mechanisms of transcription factor activity is paramount to the understanding of gene expression patterns that determine cell behaviour.

  7. Oct-2 forms a complex with Oct-1 on the iNOS promoter and represses transcription by interfering with recruitment of RNA PolII by Oct-1

    PubMed Central

    Bentrari, Fatima; Chantôme, Aurelie; Knights, Andrew; Jeannin, Jean-François; Pance, Alena

    2015-01-01

    Oct-1 (POU2f1) and Oct-2 (POU2f2) are members of the POU family of transcription factors. They recognize the same DNA sequence but fulfil distinct functions: Oct-1 is ubiquitous and regulates a variety of genes while Oct-2 is restricted to B-cells and neurones. Here we examine the interplay and regulatory mechanisms of these factors to control the inducible nitric oxide synthase (iNOS, NOS2). Using two breast cancer cell lines as a comparative model, we found that MCF-7 express iNOS upon cytokine stimulation while MDA-MB-231 do not. Oct-1 is present in both cell lines but MDA-MB-231also express high levels of Oct-2. Manipulation of Oct-2 expression in these cell lines demonstrates that it is directly responsible for the repression of iNOS in MDA-MB-231. In MCF-7 cells Oct-1 binds the iNOS promoter, recruits RNA PolII and triggers initiation of transcription. In MDA-MB-231 cells, both Oct-1 and Oct-2 bind the iNOS promoter, forming a higher-order complex which fails to recruit RNA PolII, and as a consequence iNOS transcription does not proceed. Unravelling the mechanisms of transcription factor activity is paramount to the understanding of gene expression patterns that determine cell behaviour. PMID:26271992

  8. Lipocortin 1 mediates the inhibition by dexamethasone of the induction by endotoxin of nitric oxide synthase in the rat.

    PubMed Central

    Wu, C C; Croxtall, J D; Perretti, M; Bryant, C E; Thiemermann, C; Flower, R J; Vane, J R

    1995-01-01

    Administration of Escherichia coli lipopolysaccharide (LPS; 10 mg/kg i.v.) to male Wistar rats caused within 240 min (i) a sustained fall (approximately 30 mmHg) in mean arterial blood pressure, (ii) a reduction (> 75%) in the pressor responses to norepinephrine (1 microgram/kg i.v.), and (iii) an induction of nitric oxide synthase (iNOS) as measured in the lung. Dexamethasone (1 mg/kg i.p. at 2 h prior to LPS) attenuated the hypotension and the vascular hyporeactivity to norepinephrine and reduced (by approximately 77%) the expression of iNOS in the lung. These effects of dexamethasone were prevented by pretreatment of LPS-treated rats with a neutralizing antiserum to lipocortin 1 (anti-LC1; 60 mg/kg s.c. at 24 h prior to LPS) but not by a control nonimmune sheep serum. Stimulation of J774.2 macrophages with LPS (1 microgram/ml for 24 h) caused the expression of iNOS and cyclooxygenase 2 (COX-2) protein and significantly increased nitrite generation; this was prevented by dexamethasone (0.1 microM at 1 h prior to LPS), which also increased cell surface lipocortin 1. Pretreatment of J774.2 cells with anti-LC1 (1:60 dilution at 4 h prior to LPS) also abolished the inhibitory effect of dexamethasone on iNOS expression and nitrite accumulation but not that on COX-2 expression. A lipocortin 1 fragment (residues 1-188 of human lipocortin 1; 20 micrograms/ml at 1 h prior to LPS) also blocked iNOS in J774.2 macrophages activated by LPS (approximately 78% inhibition), and this too was prevented by anti-LC1. We conclude that the extracellular release of endogenous lipocortin 1 (i) mediates the inhibition by dexamethasone of the expression of iNOS, but not of COX-2, and (ii) contributes substantially to the beneficial actions of dexamethasone in rats with endotoxic shock. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7536934

  9. Acute inhibition of myoglobin impairs contractility and energy state of iNOS-overexpressing hearts.

    PubMed

    Wunderlich, Carsten; Flögel, Ulrich; Gödecke, Axel; Heger, Jacqueline; Schrader, Jürgen

    2003-06-27

    Elevated cardiac levels of nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS) have been implicated in the development of heart failure. The surprisingly benign phenotype of recently generated mice with cardiac-specific iNOS overexpression (TGiNOS) provided the rationale to investigate whether NO scavenging by oxymyoglobin (MbO2) yielding nitrate and metmyoglobin (metMb) is involved in preservation of myocardial function in TGiNOS mice. 1H nuclear magnetic resonance (NMR) spectroscopy was used to monitor changes of cardiac myoglobin (Mb) metabolism in isolated hearts of wild-type (WT) and TGiNOS mice. NO formation by iNOS resulted in a significant decrease of the MbO2 signal and a concomitantly emerging metMb signal in spectra of TGiNOS hearts only (DeltaMbO2: -46.3+/-38.4 micromol/kg, DeltametMb: +41.4+/-17.6 micromol/kg, n=6; P<0.05) leaving contractility and energetics unaffected. Inhibition of the Mb-mediated NO degradation by carbon monoxide (20%) led to a deterioration of myocardial contractility in TGiNOS hearts (left ventricular developed pressure: 78.2+/-8.2% versus 96.7+/-4.6% of baseline, n=6; P<0.005), which was associated with a profound pertubation of cardiac energy state as assessed by 31P NMR spectroscopy (eg, phosphocreatine: 13.3+/-1.3 mmol/L (TGiNOS) versus 15.9+/-0.7 mmol/L (WT), n=6; P<0.005). These alterations could be fully antagonized by the NOS inhibitor S-ethylisothiourea. Our findings demonstrate that myoglobin serves as an important cytoplasmic buffer of iNOS-derived NO, which determines the functional consequences of iNOS overexpression. PMID:12775582

  10. Acute inhibition of myoglobin impairs contractility and energy state of iNOS-overexpressing hearts.

    PubMed

    Wunderlich, Carsten; Flögel, Ulrich; Gödecke, Axel; Heger, Jacqueline; Schrader, Jürgen

    2003-06-27

    Elevated cardiac levels of nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS) have been implicated in the development of heart failure. The surprisingly benign phenotype of recently generated mice with cardiac-specific iNOS overexpression (TGiNOS) provided the rationale to investigate whether NO scavenging by oxymyoglobin (MbO2) yielding nitrate and metmyoglobin (metMb) is involved in preservation of myocardial function in TGiNOS mice. 1H nuclear magnetic resonance (NMR) spectroscopy was used to monitor changes of cardiac myoglobin (Mb) metabolism in isolated hearts of wild-type (WT) and TGiNOS mice. NO formation by iNOS resulted in a significant decrease of the MbO2 signal and a concomitantly emerging metMb signal in spectra of TGiNOS hearts only (DeltaMbO2: -46.3+/-38.4 micromol/kg, DeltametMb: +41.4+/-17.6 micromol/kg, n=6; P<0.05) leaving contractility and energetics unaffected. Inhibition of the Mb-mediated NO degradation by carbon monoxide (20%) led to a deterioration of myocardial contractility in TGiNOS hearts (left ventricular developed pressure: 78.2+/-8.2% versus 96.7+/-4.6% of baseline, n=6; P<0.005), which was associated with a profound pertubation of cardiac energy state as assessed by 31P NMR spectroscopy (eg, phosphocreatine: 13.3+/-1.3 mmol/L (TGiNOS) versus 15.9+/-0.7 mmol/L (WT), n=6; P<0.005). These alterations could be fully antagonized by the NOS inhibitor S-ethylisothiourea. Our findings demonstrate that myoglobin serves as an important cytoplasmic buffer of iNOS-derived NO, which determines the functional consequences of iNOS overexpression.

  11. Inhibition of Inducible Nitric Oxide Synthase Attenuates Monosodium Urate-induced Inflammation in Mice

    PubMed Central

    Ju, Tae-Jin; Dan, Jin-Myoung; Cho, Young-Je

    2011-01-01

    The present study elucidated the effect of the selective inducible nitric oxide synthase (iNOS) inhibitor N6-(1-iminoethyl)-L-lysine (L-NIL) on monosodium urate (MSU) crystal-induced inflammation and edema in mice feet. L-NIL (5 or 10 mg/kg/day) was administered intraperitoneally 4 h before injection of MSU (4 mg) into the soles of mice hindlimb feet. Twenty-four hours after MSU injection, foot thickness was increased by 160% and L-NIL pretreatment reduced food pad swelling in a dose dependent manner. Pretreatment of 10 mg/kg/day L-NIL significantly suppressed the foot pad swelling by MSU. Plasma level of nitric oxide (NO) metabolites and gene expression and protein level of iNOS in feet were increased by MSU, which was suppressed by L-NIL pretreatment. Similar pattern of change was observed in nitrotyrosine level. MSU increased the gene expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β and L-NIL pretreatment suppressed MSU-induced cytokines expression. The mRNA levels of superoxide dismutase and glutathione peroxidase1 were increased by MSU and L-NIL pretreatment normalized the gene expression. Phosphorylation of extracellular signal-regulated kinase 1/2 and p38 was increased by MSU, which was suppressed by L-NIL pretreatment. The mRNA levels of iNOS, TNF-α, and IL-1β were increased by MSU in human dermal fibroblasts, C2C12 myoblasts, and human fetal osteoblasts in vitro, which was attenuated by L-NIL in a dose dependent manner. This study shows that L-NIL inhibits MSU-induced inflammation and edema in mice feet suggesting that iNOS might be involved in MSU-induced inflammation. PMID:22359474

  12. Transcriptional up-regulation of a novel ferritin homolog in abalone Haliotis discus hannai Ino by dietary iron.

    PubMed

    Wu, Chenglong; Zhang, Wenbing; Mai, Kangsen; Xu, Wei; Wang, Xiaojie; Ma, Hongming; Liufu, Zhiguo

    2010-11-01

    A novel cDNA encoding ferritin (HdhNFT) was cloned from the hepatopancreas of abalone, Haliotis discus hannai Ino. The deduced protein contains 171 amino acid residues with a predicted molecular mass (MW) about 19.8 kDa and theoretical isoelectric point (pI) of 4.792. Amino acid alignment revealed that HdhNFT shared high similarity with other known ferritins. The HdhNFT contained a highly conserved motif for the ferroxidase center, which consists of seven residues of a typical vertebrate heavy-chain ferritin with a typical stem-loop structure. HdhNFT mRNA contains a 27 bp iron-responsive element (IRE) in the 5'-untranslated region. This IRE exhibited 82.14% similarity with abalone H. discus discus and 78.57% similarity with Pacific oyster Crassostrea gigas IREs. By real-time PCR assays, the mRNA transcripts of HdhNFT were found to be higher expressed in kidney, hepatopancreas, gill, mantle and muscle than in haemocytes and gonad. Moreover, mRNA expression levels of HdhNFT in the hepatopancreas and haemocytes were measured by real-time PCR in abalone fed with graded levels of dietary iron (29.2, 65.7, 1267.2 and 6264.7 mg/kg). Results showed that the expression of the HdhNFT mRNA increased with dietary iron contents. Furthermore, the maximum value of the HdhNFT mRNA was found in the treatment with 6264.7 mg/kg of dietary iron. These data indicated that dietary iron can up-regulate HdhNFT at transcriptional level in abalone.

  13. Scutellarin protects against lipopolysaccharide-induced acute lung injury via inhibition of NF-kappaB activation in mice.

    PubMed

    Tan, Zheng-Huai; Yu, Ling-Hong; Wei, Huai-Ling; Liu, Geng-Tao

    2010-03-01

    This paper investigates the effect of natural scutellarin on acute lung injury (ALI) induced by Escherichia coli endotoxin lipopolysaccharide (LPS) in mice and its mechanism of action. Mouse ALI was induced by the injection of LPS (15 mg/kg) via the tail vein, and mice were intraperitoneally injected with 50 and 25 mg/kg of scutellarin before the LPS injection. The lung index, serum NO2(-)/NO3(-), and tumor necrosis factor-alpha (TNF-alpha) levels were determined using kits. The lung lesions were examined by light microscope. The mRNA levels of TNF-alpha, inducible nitric oxide synthase (iNOS), and FasL in pulmonary tissues were detected by RT-PCR. c-Fos, c-Jun, IkappaB, and iNOS proteins were detected by the western blotting method. Pretreatment with 25 and 50 mg/kg of scutellarin significantly reduced lung injury induced by LPS, which expressed in the decrease in lung morphological lesions, serum NO2(-)/NO3(-), TNF-alpha levels, lactate dehydrogenase release, and total protein in the lavage fluid of bronchoalveolar of the lung. The mRNA level of TNF-alpha, iNOS, the protein content of c-Fos, iNOS, and the activation of NF-kappaB in pulmonary tissues were all inhibited, while the lung glutathione level increased. In conclusion, scutellarin has protective action against LPS-induced lung damage in mice, and its underlying mechanism might be the inhibition of IkappaB alpha degradation and the expression of TNF-alpha mRNA.

  14. Inhibition of endotoxin-induced nitric oxide synthase production in microglial cells by the presence of astroglial cells: a role for transforming growth factor beta.

    PubMed

    Vincent, V A; Tilders, F J; Van Dam, A M

    1997-03-01

    In mixed glial cell cultures from cerebral cortices of newborn rats, endotoxin induces inducible nitric oxide (iNOS), nitric oxide (NO), and interleukin-1 beta (IL-1 beta) production in microglial cells. Earlier we demonstrated that endotoxin induced iNOS but not IL-1 beta expression in microglial cells is inhibited by the presence of astroglial cells. In the present paper we describe studies on the mechanism by which astroglial cells exert selective suppressive action on iNOS expression by microglial cells. Expression of iNOS and IL-1 beta was studied by single or double label immunocytochemical techniques and cell identification was performed with GSA-I-B4-isolectin and an antibody against GFAP. Production of IL-1 beta and NO was determined by measurement of IL-1 beta and nitrite concentrations in cell lysates and the culture medium, respectively. TGF beta, a cytokine known to inhibit NO production by endotoxin challenged macrophages, was measured in culture medium of mixed glial cell cultures using a bioassay. Microglial, astroglial, and mixed glial cell cultures produced similar concentrations of TGF beta. The potential effect of TGF beta was studied by using immunoneutralizing antibodies against TGF beta 1 and TGF beta 2 on the induction of iNOS in microglial cells in the presence of astroglial cells. Incubation of the mixed glial cell culture with these TGF beta antibodies (3 micrograms/ml) markedly increased endotoxin-induced NO production and iNOS expression in microglial cells, whereas the production of IL-1 beta was not affected. The antibodies against TGF beta 1 and TGF beta 2 marginally increased NO production in pure microglial cell cultures, nonetheless in cultures of purified microglial cells recombinant TGF beta 1 and TGF beta 2 together with endotoxin inhibited NO production. We conclude that the presence of astroglial cells is essential for the inhibitory effect of TGF beta on NO production by microglial cells (possibly) by activation of TGF beta

  15. D-limonene suppresses doxorubicin-induced oxidative stress and inflammation via repression of COX-2, iNOS, and NFκB in kidneys of Wistar rats.

    PubMed

    Rehman, Muneeb U; Tahir, Mir; Khan, Abdul Quaiyoom; Khan, Rehan; Oday-O-Hamiza; Lateef, Abdul; Hassan, Syed Kazim; Rashid, Sumaya; Ali, Nemat; Zeeshan, Mirza; Sultana, Sarwat

    2014-04-01

    D-limonene is a naturally occurring monoterpene and has been found to posses numerous therapeutic properties. In this study, we used D-limonene as a protective agent against the nephrotoxic effects of anticancer drug doxorubicin (Dox). Rats were given D-limonene at doses of 5% and 10% mixed with diet for 20 consecutive days. Dox was give at the dose of 20 mg/kg body weight intraperitoneally. The protective effects of D-limonene on Dox-induced oxidative stress and inflammation were investigated by assaying oxidative stress biomarkers, lipid peroxidation, serum toxicity markers, proinflammatory cytokines, and expression of nuclear factor kappa B (NFκB), cyclo-oxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) and Nitrite levels. Administration of Dox (20 mg/kg body weight) in rats enhanced renal lipid peroxidation; depleted glutathione content and anti-oxidant enzymes; elevated levels of kidney toxicity markers viz. kidney injury molecule-1 (KIM-1), blood urea nitrogen (BUN), and creatinine; enhanced expression of NFκB, COX-2, and iNOS and nitric oxide. Treatment with D-limonene prevented oxidative stress by restoring the levels of antioxidant enzymes, further both doses of 5% and 10% showed significant decrease in inflammatory response. Both the doses of D-limonene significantly decreased the levels of kidney toxicity markers KIM-1, BUN, and creatinine. D-limonene also effectively decreased the Dox induced overexpression of NF-κB, COX-2, and iNOS and nitric oxide. Data from the present study indicate the protective role of D-limonene against Dox-induced renal damage.

  16. Leptospira Interrogans Induces Fibrosis in the Mouse Kidney through Inos-Dependent, TLR- and NLR-Independent Signaling Pathways

    PubMed Central

    Fanton d'Andon, Martine; Quellard, Nathalie; Fernandez, Béatrice; Ratet, Gwenn; Lacroix-Lamandé, Sonia; Vandewalle, Alain; Boneca, Ivo G.; Goujon, Jean-Michel; Werts, Catherine

    2014-01-01

    Background Leptospira (L.) interrogans are bacteria responsible for a worldwide reemerging zoonosis. Rodents carry L. interrogans asymptomatically in their kidneys and excrete bacteria in the urine, contaminating the environment. Humans get infected through skin contact and develop a mild or severe leptospirosis that may lead to renal failure and fibrosis. L. interrogans provoke an interstitial nephritis, but the induction of fibrosis caused by L. interrogans has not been studied in murine models. Innate immune receptors from the TLR and NLR families have recently been shown to play a role in the development and progression of tissue fibrosis in the lung, liver and kidneys under different pathophysiological situations. We recently showed that TLR2, TLR4, and NLRP3 receptors were crucial in the defense against leptospirosis. Moreover, infection of a human cell line with L. interrogans was shown to induce TLR2-dependent production of fibronectin, a component of the extracellular matrix. Therefore, we thought to assess the presence of renal fibrosis in L. interrogans infected mice and to analyze the contribution of some innate immune pathways in this process. Methodology/principal findings Here, we characterized by immunohistochemical studies and quantitative real-time PCR, a model of Leptospira-infected C57BL/6J mice, with chronic carriage of L. interrogans inducing mild renal fibrosis. Using various strains of transgenic mice, we determined that the renal infiltrates of T cells and, unexpectedly, TLR and NLR receptors, are not required to generate Leptospira-induced renal fibrosis. We also show that the iNOS enzyme, known to play a role in Leptospira-induced interstitial nephritis, also plays a role in the induction of renal fibrosis. Conclusion/significance To our knowledge, this work provides the first experimental murine model of sustained renal fibrosis induced by a chronic bacterial infection that may be peculiar, since it does not rely on TLR or NLR receptors

  17. Inhibition of lipopolysaccharide-stimulated NO production by crotafuran B in RAW 264.7 macrophages involves the blockade of NF-{kappa}B activation through the increase in I{kappa}B{alpha} synthesis

    SciTech Connect

    Lin, M.-W.; Tsao, L.-T.; Huang, L.-J.; Kuo, S.-C.; Weng, J.-R.; Ko, H.-H.; Lin, C.-N.; Lee, M.-R.; Wang, J.-P. . E-mail: w1994@vghtc.gov.tw

    2006-01-15

    Crotafuran B, a natural pterocarpanoid isolated from Crotalaria pallida, inhibited the lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production (IC{sub 5} 16.4 {+-} 0.7 {mu}M) and inducible nitric oxide synthase (iNOS) protein and mRNA expression (IC{sub 5} 11.5 {+-} 0.6 {mu}M and 11.8 {+-} 2.2 {mu}M, respectively), but not via its cytotoxicity or the inhibition of iNOS enzyme activity, in RAW 264.7 macrophages. Crotafuran B also reduced the iNOS promoter activity (IC{sub 5} 13.4 {+-} 0.1 {mu}M) in piNOS-LUC-transfected cells. Crotafuran B treatment inhibited the p65 nuclear translocation and the nuclear factor-{kappa}B (NF-{kappa}B) DNA binding activity in LPS-activated macrophages. Crotafuran B also reduced the NF-{kappa}B transcriptional activity in pNF-{kappa}B-LUC-transfected cells. Crotafuran B had no effect on the LPS-induced phosphorylation of inhibitory {kappa}B{alpha} (I{kappa}B{alpha}), but enhanced the cellular level of I{kappa}B{alpha} that rebounded to the basal levels and increased the I{kappa}B{alpha} mRNA expression. These results indicate that the crotafuran B inhibition of NO production involves a decrease in the iNOS gene expression via the inhibition of NF-{kappa}B activation through the increase in I{kappa}B{alpha} synthesis.

  18. Inhibition of C5a receptor alleviates experimental CNS lupus.

    PubMed

    Jacob, Alexander; Hack, Bradley; Bai, Tao; Brorson, James R; Quigg, Richard J; Alexander, Jessy J

    2010-04-15

    To investigate the role of C5a generated on complement activation in brain, the lupus model, MRL/lpr mice were treated with C5a receptor(R) antagonist (ant). Neutrophil infiltration, ICAM, TNF-alpha and iNOS mRNA expression, neuronal apoptosis and the expression of p-JNK, pSTAT1 and p-Erk were reduced and p-Akt increased on C5aR inhibition in MRL/lpr brains. MRL/lpr serum caused increased apoptosis in neurons showing that lupus had a direct effect on these cells. C5aRant pretreatment prevented the lupus serum induced loss of neuronal cells. Our findings demonstrate for the first time that C5a/C5aR signaling plays an important role in the pathogenesis of CNS lupus.

  19. Inhibition of C5a receptor alleviates experimental CNS lupus

    PubMed Central

    Jacob, Alexander; Hack, Bradley; Bai, Tao; Brorson, James R.; Quigg, Richard J.; Alexander, Jessy J.

    2010-01-01

    To investigate the role of C5a generated on complement activation in brain, the lupus model, MRL/lpr mice were treated with C5a receptor(R) antagonist (ant). Neutrophil infiltration, ICAM, TNF-α and iNOS mRNA expression, neuronal apoptosis and the expression of p-JNK, pSTAT1 and p-Erk were reduced and p-Akt increased on C5aR inhibition in MRL/lpr brains. MRL/lpr serum caused increased apoptosis in neurons showing that lupus had a direct effect on these cells. C5aRant pretreatment prevented the lupus serum induced loss of neuronal cells. Our findings demonstrate for the first time that C5a/C5aR signaling plays an important role in the pathogenesis of CNS lupus. PMID:20207017

  20. Selective inhibition of human inducible nitric oxide synthase by S-alkyl-L-isothiocitrulline-containing dipeptides

    PubMed Central

    Park, Jung-Min; Higuchi, Tsunehiko; Kikuchi, Kazuya; Urano, Yasuteru; Hori, Hiroyuki; Nishino, Takeshi; Aoki, Junken; Inoue, Keizo; Nagano, Tetsuo

    2001-01-01

    The aim of this study was to investigate the structure-activity relationship of S-alkyl-L-isothiocitrulline-containing dipeptides towards three partially purified recombinant human nitric oxide synthase (NOS) isozymes, as well as the effects of these compounds on cytokine-induced NO production by human DLD-1 cells.In an in vitro assay, S-methyl-L-isothiocitrulline (L-MIT) was slightly selective for human neuronal NOS (nNOS) over the inducible (iNOS) or endothelial (eNOS) isozyme, but the combination of a hydrophobic L-amino acid (L-Phe, L-Leu or L-Trp) with L-MIT dramatically altered the inhibition pattern to give selective iNOS inhibitors. Introduction of a hydroxy, nitro, amino or methoxy group at the para position of the aromatic ring of L-MIT-L-Phe (MILF) decreased the selectivity and inhibitory potency. A longer or larger S-alkyl group also decreased the selectivity and potency. Dixon analysis showed that all of the dipeptides were competitive inhibitors of the three isoforms of human NOS. The enzymatic time course curves indicated that MILF was a slow binding inhibitor of human iNOS.These results suggest that the human NOS isozymes have different-sized cavities in the binding site near the position to which the C-terminal of L-arginine binds, and the cavity of iNOS is hydrophobic. Interestingly, L-MIT-D-Phe (MIDF) showed little inhibitory activity or selectivity, suggesting that the cavity of human iNOS is located in a well-defined direction from the α carbon atom.NO production in cytokine-stimulated human DLD-1 cells was measured with a fluorescent indicator, DAF-FM. MILF, L-MIT-L-Trp(-CHO) (MILW) and L-MIT-L-Tyr (MILY) showed more potent activity than L-MIT in this whole-cell assay.Thus, S-alkyl-L-isothiocitrulline-containing dipeptides are selective inhibitors of human iNOS, and work efficiently in cell-based assay. PMID:11309260

  1. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits MAP kinases and AP-1 activation via potent MKK inhibition: the role in TNF-alpha inhibition.

    PubMed

    Cho, Min Kyung; Jang, Young Pyo; Kim, Young Choong; Kim, Sang Geon

    2004-10-01

    Arctigenin, naturally occurring in Bardanae fructus, Saussurea medusa, Arctium lappa L., Torreya nucifera and Ipomea cairica, is a phenylpropanoid dibenzylbutyrolactone lignan with antioxidant and anti-inflammatory activities. Previously, we showed that arctigenin potently inhibited the induction of nitric oxide synthase (iNOS) by lipopolysaccharide (LPS), which involved suppression of NF-kappaB activation. In the present study, we examined the effects of arctigenin on mitogen-activated protein (MAP) kinase activation in Raw264.7 cells and MAP kinase kinase (MKK) activity. The effect of arctigenin on activator protein-1 (AP-1) activation was also studied in association with tumor necrosis factor-alpha (TNF-alpha) expression. Immunoblot analysis showed that arctigenin inhibited phosphorylation of MAP kinases ERK1/2, p38 kinase and JNK and their activities in Raw264.7 cells treated with LPS. Arctigenin potently inhibited the activity of MKK1 in vitro with the IC(50) value of 1 nM. Gel shift and reporter gene analyses revealed that arctigenin inhibited LPS-inducible AP-1 binding to the AP-1 consensus oligonucleotide and AP-1-mediated reporter gene expression. In view of the potential role of AP-1 in the induction of TNF-alpha, we next examined the inhibitory effects of arctigenin on the expression of TNF-alpha. Arctigenin blocked TNF-alpha production and decreased the level of TNF-alpha mRNA in the cells exposed to LPS. These results showed that arctigenin inhibited activation of MAP kinases including ERK1/2, p38 kinase and JNK through the inhibition of MKK activities, leading to AP-1 inactivation, which might, at least in part, contribute to the inhibition of TNF-alpha production.

  2. PARP-1 Inhibition Is Neuroprotective in the R6/2 Mouse Model of Huntington’s Disease

    PubMed Central

    Cardinale, Antonella; Paldino, Emanuela; Giampà, Carmela; Bernardi, Giorgio; Fusco, Francesca R.

    2015-01-01

    Poly (ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is involved in physiological processes as DNA repair, genomic stability, and apoptosis. Moreover, published studies demonstrated that PARP-1 mediates necrotic cell death in response to excessive DNA damage under certain pathological conditions. In Huntington’s disease brains, PARP immunoreactivity was described in neurons and in glial cells, thereby suggesting the involvement of apoptosis in HD. In this study, we sought to determine if the PARP-1 inhibitor exerts a neuroprotective effect in R6/2 mutant mice, which recapitulates, in many aspects, human HD. Transgenic mice were treated with the PARP-1 inhibitor INO-1001 mg/Kg daily starting from 4 weeks of age. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that INO 1001-treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as striatal atrophy, morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. INO-1001 was effective in significantly increasing activated CREB and BDNF in the striatal spiny neurons, which might account for the beneficial effects observed in this model. Our findings show that PARP-1 inhibition could be considered as a valid therapeutic approach for HD. PMID:26252217

  3. Piperine inhibits IL-β induced expression of inflammatory mediators in human osteoarthritis chondrocyte.

    PubMed

    Ying, Xiaozhou; Chen, Xiaowei; Cheng, Shaowen; Shen, Yue; Peng, Lei; Xu, Hua Zi

    2013-10-01

    Black pepper (Piper nigrum) is a common remedy in Traditional Chinese Medicine and possesses diverse biological activities including anti-inflammatory properties. Osteoarthritis (OA) is a degenerative joint disease with an inflammatory component that drives the degradation of cartilage extracellular matrix. The present study aimed to assess the effects of piperine, the active phenolic component in black pepper extract, on human OA chondrocytes. In this study, human OA chondrocytes were pretreated with piperine at 10, 50 or 100μg/ml and subsequently stimulated with IL-1β (5ng/ml) for 24h. Production of PGE2 and NO was evaluated by the Griess reaction and an ELISA. Gene expression of MMP-3, MMP-13, iNOS and COX-2 was measured by real-time PCR. MMP-3 and MMP-13 proteins in culture medium were determined using cytokine-specific ELISA. Western immunoblotting was used to analyze the iNOS and COX-2 protein production in the culture medium. The regulation of NF-kB activity and the degradation of IkB were explored using luciferase and Western immunoblotting, respectively. We found that piperine inhibited the production of PGE2 and NO induced by IL-1β. Piperine significantly decreased the IL-1β-stimulated gene expression and production of MMP-3, MMP-13, iNOS and COX-2 in human OA chondrocytes. Piperine inhibited the IL-1β-mediated activation of NF-κB by suppressing the degradation of its inhibitory protein IκBα in the cytoplasm. The present report is first to demonstrate the anti-inflammatory activity of piperine in human OA chondrocytes. Piperine can effectively abrogate the IL-1β-induced over-expression of inflammatory mediators; suggesting that piperine may be a potential agent in the treatment of OA.

  4. Dental pulp in mature replanted human teeth: morphological alterations and metalloproteineses-2 and -9, Annexin-5, BCL-2 and iNOS modulation.

    PubMed

    Leone, A; Angelova Volponi, A; Uzzo, M L; Spatola, G F; Jurjus, A; Vandevska-Radunovic, V

    2015-01-01

    Tooth replantation, as a treatment concept, has been subject to controversies regarding the mechanism as well as the various parameters underlying this process. This work aimed to study time-related changes in the pulp of replanted mature human premolars through the changes in the levels of certain factors involved in the underlying mechanisms of pulpal tissue healing after replantation. Eleven experimental mature teeth were extracted, immediately replanted in the original socket and left without any other intervention for 1, 2, 3 and 12 weeks before re-extraction. Three premolars served as control. All specimens were subject to histological analysis and the levels of MMP-2, MMP-9, Annexin V, iNOS and BCL-2 (anti-apoptotic family) were analyzed employing immunohistochemistry. The results showed degradation of the extracellular matrix (ECM), inflammatory cell infiltrate, loss in pulpo-dentine interface and loss of odontoblasts in the dental pulp tissue. This was accompanied by increase over time of MMP-9, Annexin V, iNOS and a decrease of BCL-2 and MMP-2, suggesting that apoptosis increased throughout the experimental period. PMID:26753662

  5. Transition from two to one integument in Prunus species: expression pattern of INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT).

    PubMed

    Lora, Jorge; Hormaza, José I; Herrero, Maria

    2015-10-01

    While gymnosperm ovules have one integument, in most angiosperms two integuments surround the ovules. Unitegmic ovules have arisen independently several times during the evolution of angiosperms, but the ultimate genetic cause of the presence of a single integument remains elusive. We compared species of the genus Prunus that have different numbers of integuments: bitegmic species, such as Prunus armeniaca (apricot) and Prunus persica (peach), and unitegmic species, such as Prunus incisa, analyzing the expression pattern of genes that are involved in integument development in Arabidopsis thaliana: INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT). Bitegmic and unitegmic species showed similar INO expression patterns, indicative of the conservation of an outer integument. However, expression of ETT, which occurs in the boundary of the outer and inner integuments, was altered in unitegmic ovules, which showed lack of ETT expression. These results strongly suggest that the presence of a single integument could be attributable to the amalgamation of two integuments and support the role of ETT in the fusion of the outer and inner integuments in unitegmic ovules, a situation that could be widespread in other unitegmic species of angiosperms.

  6. Effects of high tidal volume mechanical ventilation on production of cytokines, iNOS, and MIP-1β proteins in pigs.

    PubMed

    Vobruba, Václav; Klimenko, Oxana V; Kobr, Jiri; Cerna, Olga; Pokorna, Pavla; Mikula, Ivan; Hridel, Jan; Brantova, Olga; Martasek, Pavel

    2013-02-01

    The aim of this study was to investigate longitudinal changes of the pulmonary inflammatory process as a result of mechanical stress due to mechanical ventilation. The concentrations of IL-8, TNF-α, MIP-1β, nitrites/nitrates, and inducible nitric oxide synthases (iNOS) were investigated indicate in bronchoalveolar lavage (BAL). Twenty-three piglets were divided into three groups. Group I: animals breathing spontaneously; group II: mechanical ventilation (tidal volume (TV) = 7 mL/kg, PEEP = 5 cmH(2)O); group III: mechanical ventilation (TV = 15 mL/kg, PEEP = 0 cmH(2)0). Concentrations of BAL nitrites/nitrates from groups II and III increased during the first hour of mechanical ventilation (P = .03 and .02, respectively). The highest expression of iNOS was observed during the first hour in groups II and III. IL-8 concentration increased significantly in groups II and III. Production of TNF-α increased significantly in group III during the second and third hour (P = .01). Concentration of MIP-1β was significantly increased in groups II and III after the first hour (P = .012 and P = .008, respectively).

  7. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    PubMed

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.

  8. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    PubMed

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling. PMID:25616905

  9. Transition from two to one integument in Prunus species: expression pattern of INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT).

    PubMed

    Lora, Jorge; Hormaza, José I; Herrero, Maria

    2015-10-01

    While gymnosperm ovules have one integument, in most angiosperms two integuments surround the ovules. Unitegmic ovules have arisen independently several times during the evolution of angiosperms, but the ultimate genetic cause of the presence of a single integument remains elusive. We compared species of the genus Prunus that have different numbers of integuments: bitegmic species, such as Prunus armeniaca (apricot) and Prunus persica (peach), and unitegmic species, such as Prunus incisa, analyzing the expression pattern of genes that are involved in integument development in Arabidopsis thaliana: INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT). Bitegmic and unitegmic species showed similar INO expression patterns, indicative of the conservation of an outer integument. However, expression of ETT, which occurs in the boundary of the outer and inner integuments, was altered in unitegmic ovules, which showed lack of ETT expression. These results strongly suggest that the presence of a single integument could be attributable to the amalgamation of two integuments and support the role of ETT in the fusion of the outer and inner integuments in unitegmic ovules, a situation that could be widespread in other unitegmic species of angiosperms. PMID:25991552

  10. Protection of Tong-Sai-Mai Decoction against Apoptosis Induced by H2O2 in PC12 Cells: Mechanisms via Bcl-2-Mitochondria-ROS-INOS Pathway

    PubMed Central

    Lee, Maxwell Kim Kit; Lu, Yin; Di, Liu-qing; Xu, Hui-qin

    2014-01-01

    Tong-Sai-Mai decoction (TSM) is a Chinese materia medica polyherbal formulation that has been applied in treating brain ischemia for hundreds of years. Because it could repress the oxidative stress in in vivo studies, now we focus on the in vitro studies to investigate the mechanism by targeting the oxidative stress dependent signaling. The relation between the neurogenesis and the reactive oxygen species (ROS) production remains largely unexamined. PC12 cells are excitable cell types widely used as in vitro model for neuronal cells. Most marker genes that are related to neurotoxicity, apoptosis, and cell cycles are expressed at high levels in these cells. The aim of the present study is to explore the cytoprotection of TSM against hydrogen peroxide- (H2O2-) induced apoptosis and the molecular mechanisms underlying PC12 cells. Our findings revealed that TSM cotreatment with H2O2 restores the expression of bcl-2, inducible nitric oxide synthase (INOS), and mitochondria membrane potential. Meanwhile, it reduces intracellular [Ca2+] concentration, lactate dehydrogenase (LDH) release, and the expression of caspase-3 and bax. The results of the present study suggested that the cytoprotective effects of the TSM might be mediated, at least in part, by the bcl-2-mitochondria-ROS-INOS pathway. Due to its nontoxic characteristics, TSM could be further developed to treat the neurodegenerative diseases which are closely associated with the oxidative stress. PMID:25404948

  11. Allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation.

    PubMed

    Wu, Zhuang; Li, Linlang; Zheng, Long-Tai; Xu, Zhihong; Guo, Lin; Zhen, Xuechu

    2015-09-01

    Recent studies have shown that sigma-1 receptor orthodox agonists can inhibit neuroinflammation. SKF83959 (3-methyl-6-chloro-7,8-hydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine), an atypical dopamine receptor-1 agonist, has been recently identified as a potent allosteric modulator of sigma-1 receptor. Here, we investigated the anti-inflammatory effects of SKF83959 in lipopolysaccharide (LPS)-stimulated BV2 microglia. Our results indicated that SKF83959 significantly suppressed the expression/release of the pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), and inhibited the generation of reactive oxygen species. All of these responses were blocked by selective sigma-1 receptor antagonists (BD1047 or BD1063) and by ketoconazole (an inhibitor of enzyme cytochrome c17 to inhibit the synthesis of endogenous dehydroepiandrosterone, DHEA). Additionally, we found that SKF83959 promoted the binding activity of DHEA with sigma-1 receptors, and enhanced the inhibitory effects of DHEA on LPS-induced microglia activation in a synergic manner. Furthermore, in a microglia-conditioned media system, SKF83959 inhibited the cytotoxicity of conditioned medium generated by LPS-activated microglia toward HT-22 neuroblastoma cells. Taken together, our study provides the first evidence that allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation. SKF83959 is a potent allosteric modulator of sigma-1 receptor. Our results indicated that SKF83959 enhanced the activity of endogenous dehydroepiandrosterone (DHEA) in a synergic manner, and inhibited the activation of BV2 microglia and the expression/release of the pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS).

  12. Role of iNOS gene expression in the anti-inflammatory and tissue protective mechanisms of continuous wave at 630-905nm and 905nm superpulsed laser therapy

    NASA Astrophysics Data System (ADS)

    Mandel, Arkady; Moriyama, Yumi; Fong, Jamie; Dumoulin-White, Roger; Lilge, Lothar

    2012-03-01

    Up regulation of iNOS gene expression is playing a role in the initiation of the anti-inflammatory and tissue protective mechanisms related to nitric oxide (NO) for continuous wave red and infrared as well as 905nm superpulsed laser therapy (SPLT). The iNOS expression before and after laser therapy was evaluated in a zymosan-induced acute arthritis model, in knee joints of young (<15 weeks), middle aged (>15 weeks and < 35 weeks) and old (> 35 weeks) FVB/N-Tg (iNOS-luc) mice by bioluminescence imaging.

  13. Taraxasterol inhibits IL-1β-induced inflammatory response in human osteoarthritic chondrocytes.

    PubMed

    Piao, Taikui; Ma, Zhiqiang; Li, Xin; Liu, Jianyu

    2015-06-01

    Osteoarthritis (OA), a chronic degenerative joint disease, is a leading cause of disability among elderly patients. Taraxasterol, a pentacyclic-triterpene isolated from Taraxacum officinale, has been shown to have anti-inflammatory effects. However, the protective effect of taraxasterol on OA remains unclear. In order to provide a scientific basis for the applicability of taraxasterol in OA, the anti-inflammatory effects of taraxasterol on IL-1β-stimulated osteoarthritic chondrocytes were investigated. Chondrocytes were pretreated with taraxasterol 1h before IL-1β treatment. The productions of MMP-1, MMP3, MMP13, PGE2 and NO were measured by ELISA and Griess reaction. The expression of COX-2, iNOS, and NF-κB was detected by western blot analysis. Our results demonstrated that taraxasterol dose-dependently suppressed MMP-1, MMP3, MMP13, PGE2 and NO production induced by IL-1β. The expression of COX-2 and iNOS was also inhibited by taraxasterol. Western blot analysis showed that taraxasterol suppressed IL-1β-induced NF-κB activation in a dose-dependent manner. Taken together, we found that taraxasterol protected human chondrocytes by inhibiting MMPs, NO and PGE2 production. Taraxasterol may be a useful agent for prevention and treatment of OA. PMID:25797286

  14. Poly(ADP-ribose) polymerase inhibition reverses vascular dysfunction after {gamma}-irradiation

    SciTech Connect

    Beller, Carsten J. . E-mail: Carsten.Beller@urz.uni-heidelberg.de; Radovits, Tamas; Seres, Leila; Kosse, Jens; Krempien, Robert; Gross, Marie-Luise; Penzel, Roland; Berger, Irina; Huber, Peter E.; Hagl, Siegfried; Szabo, Csaba; Szabo, Gabor

    2006-08-01

    Purpose: The generation of reactive oxygen species during {gamma}-irradiation may induce DNA damage, leading to activation of the nuclear enzyme poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) culminating in endothelial dysfunction. In the present study, we assessed the effect of PARP inhibition on changes in vascular function after acute and short-term irradiation. Methods and Materials: In the acute experiments, aortic rings were exposed to 20 Gy of {gamma}-irradiation. The aortae were harvested after 1 or 7 days. Two additional groups received the ultrapotent PARP inhibitor, INO-1001, for 1 or 7 days after irradiation. The aortic rings were precontracted by phenylephrine and relaxation to acetylcholine and sodium nitroprusside were studied. Results: The vasoconstrictor response to phenylephrine was significantly lower both acutely and 1 and 7 days after irradiation. Vasorelaxation to acetylcholine and sodium nitroprusside was not impaired acutely after irradiation. One and seven days after irradiation, vasorelaxation to acetylcholine and sodium nitroprusside was significantly enhanced. Treatment with INO-1001 reversed vascular dysfunction after irradiation. Conclusion: Vascular dysfunction was observed 1 and 7 days after irradiation, as evidenced by reduced vasoconstriction, coupled with endothelium-dependent and -independent hyperrelaxation. PARP inhibition restored vascular function and may, therefore, be suitable to reverse vascular dysfunction after irradiation.

  15. Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells.

    PubMed

    Rafi, Mohamed M; Yadav, Prem Narayan; Reyes, Marynell

    2007-01-01

    Lycopene is a fat-soluble red-orange carotenoid found primarily in tomatoes and tomato-derived products, including tomato sauce, tomato paste, and ketchup, and other dietary sources, including dried apricots, guava, watermelon, papaya, and pink grapefruit. In this study, we have demonstrated the molecular mechanism underlying the anti-inflammatory properties of lycopene using a mouse macrophage cell line (RAW 264.7). Treatment with lycopene (10 microM) inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production (40% compared with the control). Western blotting and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that lycopene treatment decreased LPS-induced inducible nitric oxide synthase (iNOS) protein and mRNA expression in RAW 264.7 cells, respectively. These results suggest that lycopene has anti-inflammatory activity by inhibiting iNOS proteins and mRNA expressions in mouse macrophage cell lines. Furthermore, cyclooxygenase-2 (COX-2) protein and mRNA expression were not affected by treatment with lycopene. PMID:17995901

  16. Coptis chinensis and Myrobalan (Terminalia chebula) Can Synergistically Inhibit Inflammatory Response In Vitro and In Vivo

    PubMed Central

    Cui, Enhui; Zhi, Xiaoyan; Chen, Ying; Gao, Yuanyuan; Fan, Yunpeng; Zhang, Weimin; Ma, Wuren; Hou, Weifeng; Guo, Chao; Song, Xiaoping

    2014-01-01

    Objectives. To investigate the anti-inflammatory effect of Coptis chinensis plus myrobalan (CM) in vitro and in vivo. Methods. The inflammation in mouse peritoneal macrophages was induced by lipopolysaccharide (LPS). Animal models were established by using ear swelling and paw edema of mouse induced by xylene and formaldehyde, respectively. In vitro, cytotoxicity, the phagocytosis of macrophages, the levels of nitric oxide (NO), induced nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in cell supernatant were detected. In vivo, swelling rate and edema inhibitory rate of ear and paw were observed using CM-treated mice. Results. At 150–18.75 μg·mL−1, CM had no cytotoxicity and could significantly promote the growth and the phagocytosis of macrophages and inhibit the overproduction of NO, iNOS, TNF-α, and IL-6 in macrophages induced by LPS. In vivo, pretreatment with CM, the ear swelling, and paw edema of mice could be significantly inhibited in a dose-dependent manner, and the antiedema effect of CM at high dose was better than dexamethasone. Conclusion. Our results demonstrated that Coptis chinensis and myrobalan possessed synergistically anti-inflammatory activities in vitro and in vivo, which indicated that CM had therapeutic potential for the prevention and treatment of inflammation-mediated diseases. PMID:25587343

  17. Newly synthesized 'hidabeni' chalcone derivatives potently suppress LPS-induced NO production via inhibition of STAT1, but not NF-κB, JNK, and p38, pathways in microglia.

    PubMed

    Hara, Hirokazu; Ikeda, Ryoko; Ninomiya, Masayuki; Kamiya, Tetsuro; Koketsu, Mamoru; Adachi, Tetsuo

    2014-01-01

    Chalcones are open-chain flavonoids that are biosynthesized in various plants. Some of them possess anti-inflammatory activity. We previously found that chalcone glycosides from Brassica rapa L. 'hidabeni' suppress lipopolysaccharide (LPS)-induced nitric oxide (NO) production in rat microglia highly aggressively proliferating immortalized (HAPI) cells. In this study, to explore chalcone derivatives with potent NO inhibitory activity, we synthesized ten compounds based on 'hidabeni' chalcone and examined their effects on LPS-triggered inducible NO synthase (iNOS) expression and NO production. Compounds C4 and C10 potently inhibited NO production (IC50: 4.19, 2.88 µM, respectively). C4 and C10 suppressed LPS-induced iNOS expression via the inhibition of the signal transduction and activator of transcription 1 (STAT1), but not nuclear factor-kappa B (NF-κB), c-Jun N terminal kinase (JNK), and p38, pathways. C10, but not C4, inhibited activation of the MEK/extracellular signal-regulated kinase (ERK) pathway. C4 and C10 also suppressed LPS-induced expression of interferon regulatory factor 1 (IRF-1), which is an important transcription factor involved in iNOS expression. Our findings indicate that these chalcone derivatives are candidate compounds for preventing microglia-mediated neuroinflammation.

  18. Oral administration of royal jelly inhibits the development of atopic dermatitis-like skin lesions in NC/Nga mice.

    PubMed

    Taniguchi, Yoshifumi; Kohno, Keizo; Inoue, Shin-ichiro; Koya-Miyata, Satomi; Okamoto, Iwao; Arai, Norie; Iwaki, Kanso; Ikeda, Masao; Kurimoto, Masashi

    2003-09-01

    We have shown previously that in addition to IL-4, IL-5 and IL-10, antigen-specific interferon-gamma (IFN-gamma) production by spleen cells from ovalbumin (OVA)/Alum-immunized mice is inhibited by the administration of royal jelly (RJ). Since it has been shown that both Th1 and Th2 cytokines play pathogenic roles in the generation of atopic dermatitis (AD), we have examined whether RJ suppresses the development of AD-like skin lesions in NC/Nga mice induced by repeated application of picryl chloride (PiCl) under specific pathogen-free (SPF) conditions. Oral administration of RJ to the PiCl-treated NC/Nga mice inhibited the development of AD-like skin lesions in these mice as exemplified by the significant decrease in the total skin severity scores and the decrease in hypertrophy, hyperkeratosis, and infiltration of the epidermis and corium by inflammatory cells. IFN-gamma production by spleen cells from PiCl-treated NC/Nga mice in response to TNP-KLH was partially but significantly inhibited by the oral administration of RJ, while IFN-gamma production by Con A-stimulated spleen cells was not affected. Since inducible nitric oxide (NO) synthase (iNOS)-derived NO has been suggested as an important immunoregulatory mediator in inflammatory autoimmune diseases, we have also examined the expression of iNOS in the dorsal skin lesions of PiCl-treated NC/Nga mice. Interestingly, the expression of iNOS was significantly increased in the skin lesions of RJ-administered mice compared with those of control PBS-administered mice. Thus, our results suggest that RJ suppresses the development of AD-like skin lesions in PiCl-treated NC/Nga mice, possibly by a combination of down-regulating TNP-specific IFN-gamma production and up-regulating iNOS expression. PMID:12890429

  19. Inhibition of inflammatory mediators contributes to the anti-inflammatory activity of KYKZL-1 via MAPK and NF-κB pathway

    SciTech Connect

    Xu, Guang-Lin; Du, Yi-Fang; Cheng, Jing; Huan, Lin; Chen, Shi-Cui; Wei, Shao-Hua; Gong, Zhu-Nan; Cai, Jie; Qiu, Ting; Wu, Hao; Sun, Ting; Ao, Gui-Zhen

    2013-10-01

    KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the anti-inflammatory activity test focusing on its modulation of inflammatory mediators as well as intracellular MAPK and NF-κB signaling pathways. In acute ear edema model, pretreatment with KYKZL-1 (p.o.) dose-dependently inhibited the xylene-induced ear edema in mice with a higher inhibition than diclofenac. In a three-day TPA-induced inflammation, KYKZL-1 also showed significant anti-inflammatory activity with inhibition ranging between 20% and 64%. In gastric lesion test, KYKZL-1 elicited markedly fewer stomach lesions with a low index of ulcer as compared to diclofenac in rats. In further studies, KYKZL-1 was found to significantly inhibit the production of NO, PGE{sub 2}, LTB{sub 4} in LPS challenged RAW264.7, which is parallel to its attenuation of the expression of iNOS, COX-2, 5-LOX mRNAs or proteins and inhibition of phosphorylation of p38 and ERK MAPKs and activation of NF-κB. Taken together, our data indicate that KYKZL-1 comprises dual inhibition of COX and 5-LOX and exerts an obvious anti-inflammatory activity with an enhanced gastric safety profile via simultaneous inhibition of phosphorylation of p38 and ERK MAPKs and activation of NF-κB. - Highlights: • KYKZL-1 is designed to exhibit COX/5-LOX dual inhibition. • KYKZL-1 inhibits NO, PGE{sub 2} and LTB{sub 4} and iNOS, COX-2 and 5-LOX mRNAs and MAPKs. • KYKZL-1 inhibits phosphorylation of MAPKs. • KYKZL-1 inactivates NF-κB pathway.

  20. Edaravone attenuates hippocampal damage in an infant mouse model of pneumococcal meningitis by reducing HMGB1 and iNOS expression via the Nrf2/HO-1 pathway

    PubMed Central

    Li, Zheng; Ma, Qian-qian; Yan, Yan; Xu, Feng-dan; Zhang, Xiao-ying; Zhou, Wei-qin; Feng, Zhi-chun

    2016-01-01

    Aim: Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a free radical scavenger that has shown potent antioxidant, anti-inflammatory and neuroprotective effects in variety of disease models. In this study, we investigated whether edaravone produced neuroprotective actions in an infant mouse model of pneumococcal meningitis. Methods: C57BL/6 mice were infected on postnatal d 11 by intracisternal injection of a certain inoculum of Streptococcus pneumoniae. The mice received intracisternal injection of 10 μL of saline containing edaravone (3 mg/kg) once a day for 7 d. The severity of pneumococcal meningitis was assessed with a clinical score. In mice with severe meningitis, the survival rate from the time of infection to d 8 after infection was analyzed using Kaplan-Meier curves. In mice with mild meningitis, the CSF inflammation and cytokine levels in the hippocampus were analyzed d 7 after infection, and the clinical neurological deficit score was evaluated using a neurological scoring system d 14 after infection. The nuclear factor (erythroid-derived 2)-like 2 knockout (Nrf2 KO) mice and heme oxygenase-1 knockout (HO-1 KO) mice were used to confirm the involvement of Nrf2/HO-1 pathway in the neuroprotective actions of edaravone. Results: In mice with severe meningitis, edaravone treatment significantly increased the survival rate (76.4%) compared with the meningitis model group (32.2%). In mice with mild meningitis, edaravone treatment significantly decreased the number of leukocytes and TNF- levels in CSF, as well as the neuronal apoptosis and protein levels of HMGB1 and iNOS in the hippocampus, but did not affect the high levels of IL-10 and IL-6 in the hippocampus. Moreover, edaravone treatment significantly improved the neurological function of mice with mild meningitis. In Nrf2 KO or HO-1 KO mice with the meningitis, edaravone treatment was no longer effective in improving the survival rate of the mice with severe meningitis (20.2% and 53.6%, respectively

  1. Arginase inhibition reduces interleukin-1β-stimulated vascular smooth muscle cell proliferation by increasing nitric oxide synthase-dependent nitric oxide production

    SciTech Connect

    Yoon, Jeongyeon; Ryoo, Sungwoo

    2013-06-07

    Highlights: •Arginase inhibition suppressed proliferation of IL-1β-stimulated VSMCs in dose-dependent manner. •NO production from IL-1β-induced iNOS expression was augmented by arginase inhibition, reducing VSMC proliferation. •Incubation with cGMP analogues abolished IL-1β-dependent proliferation of VSMCs. -- Abstract: We investigated whether arginase inhibition suppressed interleukin (IL)-1β-stimulated proliferation in vascular smooth muscle cells (VSMCs) and the possible mechanisms involved. IL-1β stimulation increased VSMC proliferation, while the arginase inhibitor BEC and transfection of the antisense (AS) oligonucleotide against arginase I decreased VSMC proliferation and was associated with increased protein content of the cell cycle regulator p21Waf1/Cip1. IL-1β incubation induced inducible nitric oxide synthase (iNOS) mRNA expression and protein levels in a dose-dependent manner, but did not affect arginase I and II expression. Consistent with this data, IL-1β stimulation resulted in increase in NO production that was significantly augmented by arginase inhibition. The specific iNOS inhibitor 1400W abolished IL-1β-mediated NO production and further accentuated IL-1β-stimulated cell proliferation. Incubation with NO donors GSNO and DETA/NO in the presence of IL-1β abolished VSMCs proliferation and increased p21Waf1/Cip1 protein content. Furthermore, incubation with the cGMP analogue 8-Br-cGMP prevented IL-1β-induced VSMCs proliferation. In conclusion, arginase inhibition augmented iNOS-dependent NO production that resulted in suppression of IL-1β-induced VSMCs proliferation in a cGMP-dependent manner.

  2. Prodigiosin isolated from Hahella chejuensis suppresses lipopolysaccharide-induced NO production by inhibiting p38 MAPK, JNK and NF-kappaB activation in murine peritoneal macrophages.

    PubMed

    Huh, Jung-Eun; Yim, Joung-Han; Lee, Hong-Kum; Moon, Eun-Yi; Rhee, Dong-Kwon; Pyo, Suhkneung

    2007-12-15

    Prodigiosin was isolated from marine bacteria Hahella chejuensis which has been recently discovered from Marado, Cheju Island, Republic of Korea. Immunosuppressive properties have been reported for prodigiosin members such as undecylprodigiosin, metacycloprodigiosin, prodigiosin and its synthetic analogue PNU156804 (PNU). However, the effect of this agent on macrophage function has not been characterized in detail. In the present study, we examined the effects of prodigiosin on the production of inflammatory cytokines and nitric oxide (NO) in lipopolysaccharide (LPS)-activated murine macrophage. When thioglycollate-elicited macrophages pre-exposed to prodigiosin (1-100 ng/ml) were stimulated with LPS, pretreatment with prodigiosin resulted in the inhibition of NO production and inducible nitric oxide synthase (iNOS) protein and mRNA expression in a concentration-dependent manner. In contrast, the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1) and IL-6 was not altered. Inhibition of iNOS protein expression appears to be at the transcriptional level, since prodigiosin decreased LPS-induced NF-kappaB activity through preventing the degradation of IkBalpha, with significant inhibition achieved following pretreatment with prodigiosin. However, prodigiosin did not exert any effect on AP-1 activity. Prodigiosin blocked phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal kinase (JNK), but not that of extracellular signal-regulated kinase 1/2 (ERK 1/2). These results indicate that the inhibition of these signaling molecules expression was correlated with the reduced production of NO in macrophages. Taken together, the present data suggest that prodigiosin reduces NO production and iNOS expression by inhibiting LPS-triggered p38 MAPK and JNK phosphorylation and NF-kappaB activation, thereby implicating a mechanism by which prodigiosin may exert its immunosuppressive effects.

  3. Inhibition of the NMDA receptor protects the rat sciatic nerve against ischemia/reperfusion injury

    PubMed Central

    KE, TIE; LI, RENBIN; CHEN, WENCHANG

    2016-01-01

    Inhibition of the N-methyl-D-aspartate (NMDA) receptor by MK-801 reduces ischemia/reperfusion (I/R) injury in the central nervous system. However, few previous studies have evaluated the neuroprotective effects of MK-801 against peripheral I/R injury. The present study aimed to investigate the protective effects of MK-801 pretreatment against I/R injury in the rat sciatic nerve (SN). Sprague-Dawley rats were subjected to a sham surgery (n=8) or to a 5-h ischemic insult by femoral artery clamping (I/R and I/R+MK-801 groups; n=48 per group). I/R+MK-801 rats were intraperitoneally injected with MK-801 (0.5 ml or 1 mg/kg) at 15 min prior to reperfusion. The rats were sacrificed at 0, 6, 12, 24, 72 h, or 7 days following reperfusion. Plasma malondialdehyde (MDA) and nitric oxide (NO) concentrations, and SN inducible NO synthase (iNOS) protein expression levels, were measured using colorimetry. In addition, the protein expression levels of tumor necrosis factor-α (TNF-α) were measured using immunohistochemistry, and histological analyses of the rat SN were conducted using light and electron microscopy. Alterations in the mRNA expression levels of TNF-α and TNF-α converting enzyme (TACE) in the rat SN were detected using reverse transcription-quantitative polymerase chain reaction. In the I/R group, plasma concentrations of NO (175.3±4.2 µmol/l) and MDA (16.2±1.9 mmol/l), and the levels of iNOS (2.5±0.3) in the SN, peaked at 24 h post-reperfusion. At 24 h, pretreatment with MK-801 significantly reduced plasma NO (107.3±3.6 µmol/l) and MDA (11.8±1.6 mmol/l), and SN iNOS (1.65±0.2) levels (all P<0.01). The mRNA expression levels of TNF-α and TACE in the SN were significantly reduced in the I/R+MK-801 group, as compared with the I/R group (P<0.05). Furthermore, MK-801 pretreatment was shown to have alleviated histological signs of I/R injury, including immune cell infiltration and axon demyelination. The results of the present study suggested that pretreatment

  4. Exposure and post-exposure effects of endosulfan on Bufo bufo tadpoles: morpho-histological and ultrastructural study on epidermis and iNOS localization.

    PubMed

    Bernabò, Ilaria; Guardia, Antonello; La Russa, Daniele; Madeo, Giuseppe; Tripepi, Sandro; Brunelli, Elvira

    2013-10-15

    Endosulfan is a persistent organic pollutant (POP) that has lethal and sublethal effects on non-target organisms, including amphibians. In a laboratory study, we investigated direct and post-exposure effects of endosulfan on Bufo bufo tadpoles. For this purpose we exposed the tadpoles to a single short-term contamination event (96 h) at an environmentally-realistic concentration (200 μg endosulfan/L). This was followed by a recovery period of 10 days when the experimental animals were kept in pesticide-free water. The endpoints were assessed in terms of mortality, incidence of deformity, effects on behavior, and the morpho-functional features of the epidermis. We found that a short-term exposure to the tested concentration of endosulfan did not cause mortality but induced severe sublethal effects, such as hyperactivity, convulsions, and axis malformations. Following relocation to a pesticide-free environment, we noted two types of response within the experimental sample, in terms of morphological and behavioral traits. Moreover, by using both ultrastructural and a morpho-functional approach, we found that a short-term exposure to endosulfan negatively affected the amphibian epidermis. We also observed several histo-pathological alterations: increased mucous secretion, an increase in intercellular spaces and extensive cell degeneration, together with the induction of an inducible isoform of nitric oxide synthase (iNOS). Following the post-exposure period, we found large areas of epidermis in which degeneration phenomena were moderate or absent, as well as a further increase in iNOS immunoreactivity. Thus, after 10 days in a free-pesticide environment, the larval epidermis was able to partially replace elements that had been compromised due to a physiological and/or a pathological response to the pesticide. These results highlight the need for both exposure and post-exposure experiments, when attempting to assess pollutant effects.

  5. Association of INOS, TRAIL, TGF-β2, TGF-β3, and IgL genes with response to Salmonella enteritidis in poultry

    PubMed Central

    2003-01-01

    Several candidate genes were selected, based on their critical roles in the host's response to intracellular bacteria, to study the genetic control of the chicken response to Salmonella enteritidis (SE). The candidate genes were: inducible nitric oxide synthase (INOS), tumor necrosis factor related apoptosis inducing ligand (TRAIL), transforming growth factor β2 (TGF-β2), transforming growth factor β3 (TGF-β3), and immunoglobulin G light chain (IgL). Responses to pathogenic SE colonization or to SE vaccination were measured in the Iowa Salmonella response resource population (ISRRP). Outbred broiler sires and three diverse, highly inbred dam lines produced 508 F1 progeny, which were evaluated as young chicks for either bacterial load isolated from spleen or cecum contents after pathogenic SE inoculation, or the circulating antibody level after SE vaccination. Fragments of each gene were sequenced from the founder lines of the resource population to identify genomic sequence variation. Single nucleotide polymorphisms (SNP) were identified, then PCR-RFLP techniques were developed to genotype the F1 resource population. Linear mixed models were used for statistical analyses. Because the inbred dam lines always contributed one copy of the same allele, the heterozygous sire allele effects could be assessed in the F1 generation. Association analyses revealed significant effects of the sire allele of TRAIL-StyI on the spleen (P < 0.07) and cecum (P < 0.0002) SE bacterial load. Significant effects (P < 0.04) were found on the cecum bacterial load for TGF-β3-BsrI. Varied and moderate association was found for SE vaccine antibody response for all genes. This is the first reported study on the association of SNP in INOS, TRAIL, TGF-β2, TGF-β3, and IgL with the chicken response to SE. Identification of candidate genes to improve the immune response may be useful for marker-assisted selection to enhance disease resistance. PMID:12927083

  6. High-Resolution Global Analysis of the Influences of Bas1 and Ino4 Transcription Factors on Meiotic DNA Break Distributions in Saccharomyces cerevisiae

    PubMed Central

    Zhu, Xuan; Keeney, Scott

    2015-01-01

    Meiotic recombination initiates with DNA double-strand breaks (DSBs) made by Spo11. In Saccharomyces cerevisiae, many DSBs occur in “hotspots” coinciding with nucleosome-depleted gene promoters. Transcription factors (TFs) stimulate DSB formation in some hotspots, but TF roles are complex and variable between locations. Until now, available data for TF effects on global DSB patterns were of low spatial resolution and confined to a single TF. Here, we examine at high resolution the contributions of two TFs to genome-wide DSB distributions: Bas1, which was known to regulate DSB activity at some loci, and Ino4, for which some binding sites were known to be within strong DSB hotspots. We examined fine-scale DSB distributions in TF mutant strains by deep sequencing oligonucleotides that remain covalently bound to Spo11 as a byproduct of DSB formation, mapped Bas1 and Ino4 binding sites in meiotic cells, evaluated chromatin structure around DSB hotspots, and measured changes in global messenger RNA levels. Our findings show that binding of these TFs has essentially no predictive power for DSB hotspot activity and definitively support the hypothesis that TF control of DSB numbers is context dependent and frequently indirect. TFs often affected the fine-scale distributions of DSBs within hotspots, and when seen, these effects paralleled effects on local chromatin structure. In contrast, changes in DSB frequencies in hotspots did not correlate with quantitative measures of chromatin accessibility, histone H3 lysine 4 trimethylation, or transcript levels. We also ruled out hotspot competition as a major source of indirect TF effects on DSB distributions. Thus, counter to prevailing models, roles of these TFs on DSB hotspot strength cannot be simply explained via chromatin “openness,” histone modification, or compensatory interactions between adjacent hotspots. PMID:26245832

  7. Minocycline attenuates pain by inhibiting spinal microglia activation in diabetic rats.

    PubMed

    Sun, Jin-Shan; Yang, Yu-Jie; Zhang, Yong-Zhen; Huang, Wen; Li, Zhao-Shen; Zhang, Yong

    2015-08-01

    The mechanisms associated with diabetes-induced neuropathic pain are complex and poorly understood. In order to understand the involvement of spinal microglia activity in diabetic pain, the present study investigated whether minocycline treatment is able to attenuate diabetic pain using a rat model. Diabetes was induced using a single intraperitoneal injection of streptozotocin (STZ). Minocycline was then intrathecally administered to the rats. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were tested weekly. The expression of OX-42, Iba-1, phospho-p38 mitogen-activated protein kinase (MAPK), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS), were examined in the spinal cord in order to evaluate the activation of microglia. The present study demonstrated that rats with STZ-induced diabetes exhibited increased mean plasma glucose concentration, decreased mean body weight and significant pain hypersensitivity compared with control rats. PWT and PWL values of rats with STZ-induced diabetes increased following treatment with minocycline. No differences were observed in expression levels of the microglial activity markers (OX-42, Iba-1 and phospho-p38 MAPK) between rats with STZ-induced diabetes and control rats. However, TNF-α, IL-1β and iNOS expression levels were higher in rats with STZ-induced diabetes compared with control rats. Following treatment with minocycline markers of microglial activation, including cytokines and iNOS, were downregulated in rats with STZ-induced diabetes. The results of the present study indicated that minocycline treatment may inhibit spinal microglial activation and attenuate diabetic pain in rats with STZ-induced diabetes.

  8. The cannabinoid TRPA1 agonist cannabichromene inhibits nitric oxide production in macrophages and ameliorates murine colitis

    PubMed Central

    Romano, B; Borrelli, F; Fasolino, I; Capasso, R; Piscitelli, F; Cascio, MG; Pertwee, RG; Coppola, D; Vassallo, L; Orlando, P; Di Marzo, V; Izzo, AA

    2013-01-01

    Background and Purpose The non-psychotropic cannabinoid cannabichromene is known to activate the transient receptor potential ankyrin-type1 (TRPA1) and to inhibit endocannabinoid inactivation, both of which are involved in inflammatory processes. We examined here the effects of this phytocannabinoid on peritoneal macrophages and its efficacy in an experimental model of colitis. Experimental Approach Murine peritoneal macrophages were activated in vitro by LPS. Nitrite levels were measured using a fluorescent assay; inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2) and cannabinoid (CB1 and CB2) receptors were analysed by RT-PCR (and/or Western blot analysis); colitis was induced by dinitrobenzene sulphonic acid (DNBS). Endocannabinoid (anandamide and 2-arachidonoylglycerol), palmitoylethanolamide and oleoylethanolamide levels were measured by liquid chromatography-mass spectrometry. Colonic inflammation was assessed by evaluating the myeloperoxidase activity as well as by histology and immunohistochemistry. Key Results LPS caused a significant production of nitrites, associated to up-regulation of anandamide, iNOS, COX-2, CB1 receptors and down-regulation of CB2 receptors mRNA expression. Cannabichromene significantly reduced LPS-stimulated nitrite levels, and its effect was mimicked by cannabinoid receptor and TRPA1 agonists (carvacrol and cinnamaldehyde) and enhanced by CB1 receptor antagonists. LPS-induced anandamide, iNOS, COX-2 and cannabinoid receptor changes were not significantly modified by cannabichromene, which, however, increased oleoylethanolamide levels. In vivo, cannabichromene ameliorated DNBS-induced colonic inflammation, as revealed by histology, immunohistochemistry and myeloperoxidase activity. Conclusion and Implications Cannabichromene exerts anti-inflammatory actions in activated macrophages – with tonic CB1 cannabinoid signalling being negatively coupled to this effect – and ameliorates experimental murine colitis. PMID:23373571

  9. UVB exposure enhanced benzanthrone-induced inflammatory responses in SKH-1 mouse skin by activating the expression of COX-2 and iNOS through MAP kinases/NF-κB/AP-1 signalling pathways.

    PubMed

    Abbas, Sabiya; Alam, Shamshad; Pal, Anu; Kumar, Mahadeo; Singh, Dhirendra; Ansari, Kausar Mahmood

    2016-10-01

    This study was conducted to explore the role of UVB on benzanthrone (BA)-induced skin inflammation and its mechanism/s. SKH-1 hairless mice were topically exposed with BA (25 and 50 mg/kg b.wt) either alone or along with UVB (50 mJ/cm(2)) for 24 h and estimation of ROS, histopathological analysis, myeloperoxidase (MPO) activity, mast cell staining, immunohistochemistry for COX-2 and iNOS as well as western blotting for MAPKs, p-NF-κB, c-jun, c-fos COX-2 and iNOS were carried out. Enhanced ROS generation, increased epidermal thickness, mast cell number, MPO activity, enhanced expression of COX-2 and iNOS, MAPKs, c-jun, c-fos, NF-κB were found in BA either alone or when followed by UVB treatment, compared to the control groups. Expression of COX-2, iNOS and phosphorylation of ERK1/2 were found to be more enhanced in BA and UVB- exposed group compared to BA and UVB only group, while phosphorylation of JNK1/2, p38, NF-κB and expression of c-jun and c-fos were comparable with BA and UVB only groups. In summary, we suggest that UVB exposure enhanced BA-induced SKH-1 skin inflammation possibly via oxidative stress-mediated activation of MAPKs-NF-κB/AP-1 signalling, which subsequently increased the expression of COX-2 and iNOS and led to inflammation in SKH-1 mouse skin.

  10. Tiliroside, the major component of Agrimonia pilosa Ledeb ethanol extract, inhibits MAPK/JNK/p38-mediated inflammation in lipopolysaccharide-activated RAW 264.7 macrophages

    PubMed Central

    JIN, XIN; SONG, SHIQING; WANG, JING; ZHANG, QINGZHEN; QIU, FENG; ZHAO, FENG

    2016-01-01

    In the present study, the in vivo anti-inflammatory activity of Agrimonia pilosa Ledeb (AP) ethanol extract was confirmed in experimental animal models, including xylene-induced ear edema in mice and carrageenan-induced paw edema in rats. Tiliroside, the major component of AP extract, was isolated and purified by high-performance liquid chromatography. The anti-inflammatory mechanism of tiliroside was then examined using lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells. An MTT assay was used to determine cytotoxicity and a Griess assay was used to determine nitric oxide (NO) production. Concentration levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were determined by enzyme-linked immunosorbent assay. Protein expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), phosphorylated (p)-extracellular signal-regulated kinase (ERK) 1/2, p-c-Jun N-terminal kinases (JNK), p-p38 and inhibitor of κB-α were detected by western blot analysis. AP ethanol extract was revealed to inhibit xylene-induced ear edema in mice and carrageenan-induced paw edema in rats. Tiliroside significantly suppressed the overproduction of NO (P<0.01), but revealed no notable inhibition of the release of TNF-α and IL-6. In addition, tiliroside significantly downregulated the elevated expression levels of iNOS and COX-2 induced by LPS (P<0.01). The phosphorylation of JNK and p38 proteins were also significantly inhibited (P<0.01), however, tiliroside exhibited no obvious inhibition on the phosphorylation of ERK 1/2 and the degradation of IκB-α protein. In conclusion, the anti-inflammatory molecular mechanism of tiliroside may involve the downregulation of iNOS and COX-2 protein expression levels, and the inactivation of mitogen-activated protein kinase (MAPK)/JNK, in addition to the MAPK/p38 signaling pathway. PMID:27347085

  11. Tyrosol ameliorates lipopolysaccharide-induced ocular inflammation in rats via inhibition of nuclear factor (NF)-κB activation

    PubMed Central

    SATO, Kazuaki; MIHARA, Yuko; KANAI, Kazutaka; YAMASHITA, Yohei; KIMURA, Yuya; ITOH, Naoyuki

    2016-01-01

    We evaluated the anti-inflammatory effect of tyrosol (Tyr) on endotoxin-induced uveitis (EIU) in rats. EIU was induced in male Lewis rats by subcutaneous injection of lipopolysaccharide (LPS). Tyr (10, 50 or 100 mg/kg) was intravenously injected 2 hr before, simultaneously and 2 hr after LPS injection. The aqueous humor (AqH) was collected 24 hr after LPS injection; the infiltrating cell number, protein concentration, and tumor necrosis factor (TNF)-α, prostaglandin (PG)-E2 and nitric oxide (NO) levels were determined. Histopathologic examination and immunohistochemical studies for nuclear factor (NF)-κB, inhibitor of κB (IκB)-α, cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) in the iris–ciliary body (ICB) were performed at 3 or 24 hr after LPS injection. To further clarify the anti-inflammatory effects, RAW264.7 macrophages were stimulated with LPS in the presence or absence of Tyr. Tyr reduced, in a dose-dependent manner, the infiltrating cell number, protein concentration, and TNF-α, PGE2 and NO levels in AqH and improved histopathologic scores of EIU. Tyr also inhibited LPS-induced COX-2 and iNOS expression, IκB-α degradation and nuclear translocation of activated NF-κB in ICB. Tyr significantly suppressed inflammatory mediator production in the culture medium and COX-2 and iNOS expression and activated NF-κB translocation in LPS-stimulated RAW264.7 cells. These results suggest that Tyr suppresses ocular inflammation of EIU by inhibiting NF-κB activation and subsequent proinflammatory mediator production. PMID:27238160

  12. Supplementation with Angelica keiskei inhibits expression of inflammatory mediators in the gastric mucosa of Helicobacter pylori-infected mice.

    PubMed

    Kim, Aryoung; Lim, Joo Weon; Kim, Hoguen; Kim, Hyeyoung

    2016-05-01

    Oxidative stress is involved in the pathogenesis of Helicobacter pylori-associated gastric ulceration and carcinogenesis. The oxidant-sensitive transcription factor, nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), regulates expression of inflammatory mediators such as interferon γ (IFN-γ), cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS). These inflammatory mediators increased in gastric mucosal tissues from patients infected with H pylori. Angelica keiskei (AK), a green leafy vegetable, is rich in carotenoids and flavonoids and shows antioxidant and anti-inflammatory activities. Therefore, we hypothesized that AK may protect the gastric mucosa of H pylori-infected mice against inflammation. We determined lipid peroxide abundance, myeloperoxidase activity, expression levels of inflammatory mediators (IFN-γ, COX-2, and iNOS), NF-κB-DNA binding activity, and histologic changes in gastric mucosal tissues. The antioxidant N-acetylcysteine served as the positive control treatment. Supplementation with AK suppressed increases in lipid peroxide abundance, myeloperoxidase activity, induction of inflammatory mediators (IFN-γ, COX-2, and iNOS), activation of NF-κB, and degradation of nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor α in gastric mucosal tissue from H pylori-infected mice. Inhibition of H pylori-induced alterations by AK was similar to that by N-acetylcysteine. Taken together, these results suggest that supplementation with AK may prevent H pylori-induced gastric inflammation by inhibiting NF-κB-mediated induction of inflammatory mediators in the gastric mucosa of patients infected with H pylori. PMID:27101766

  13. α2A-adrenoceptors, but not nitric oxide, mediate the peripheral cardiac sympatho-inhibition of moxonidine.

    PubMed

    Cobos-Puc, Luis E; Aguayo-Morales, Hilda; Silva-Belmares, Yesenia; González-Zavala, Maria A; Centurión, David

    2016-07-01

    Moxonidine centrally inhibits the sympathetic activity through the I1-imidazoline receptor and nitric oxide. In addition, inhibits the peripheral cardiac sympathetic outflow by α2-adrenoceptors/I1-imidazoline receptors, although the role of α2-adrenoceptor subtypes or nitric oxide in the cardiac sympatho-inhibition induced by moxonidine are unknown. Therefore, the cardiac sympatho-inhibition induced by moxonidine (10μg/kgmin) was evaluated before and after of the treatment with the following antagonists/inhibitor: (1) BRL 44408, (300μg/kg, α2A), imiloxan, (3000μg/kg, α2B), and JP-1302, (300μg/kg, α2C), in animals pretreated with AGN 192403 (3000μg/kg, I1 antagonist); (2) N(ω)-nitro-l-arginine methyl ester (l-NAME; 34, 100, and 340μg/kgmin); and (3) the combinations of the highest dose of l-NAME plus AGN 192403 or BRL 44408. Additionally, the expression of the neuronal (nNOS) and inducible (iNOS) nitric oxide synthase in the stellate ganglion was determined after treatment with moxonidine (i.p. 0.56mg/kg daily, during one week). The cardiac sympatho-inhibition of 10μg/kgmin moxonidine was: (1) unaffected by imiloxan and JP-1302, under pretreatment with AGN 192403, or l-NAME (34, 100 and 340μg/kgmin) given alone; (2) partially antagonized by the combination of 340 μg/kgmin l-NAME plus BRL 44408; and (3) abolished by BRL 44408 under treatment with AGN 192403. Furthermore, moxonidine did not modify the nNOS or iNOS protein expression in the stellate ganglion, the main source of postganglionic sympathetic neurons innervating the heart. In conclusion, our results suggest that the peripheral cardiac sympatho-inhibition induced by moxonidine is mediated by α2A-adrenoceptor subtype but not by nitric oxide.

  14. Schizandrin A Inhibits Microglia-Mediated Neuroninflammation through Inhibiting TRAF6-NF-κB and Jak2-Stat3 Signaling Pathways

    PubMed Central

    Song, Fangjiao; Zeng, Kewu; Liao, Lixi; Yu, Qian; Tu, Pengfei; Wang, Xuemei

    2016-01-01

    Microglial-mediated neuroinflammation has been established as playing a vital role in pathogenesis of neurodegenerative disorders. Thus, rational regulation of microglia functions to inhibit inflammation injury may be a logical and promising approach to neurodegenerative disease therapy. The purposes of the present study were to explore the neuroprotective effects and potential molecular mechanism of Schizandrin A (Sch A), a lignin compound isolated from Schisandra chinesnesis. Our observations showed that Sch A could significantly down-regulate the increased production of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-6 induced by lipopolysaccharide (LPS) both in BV-2 cells and primary microglia cells. Moreover, Sch A exerted obvious neuroprotective effects against inflammatory injury in neurons when exposed to microglia-conditioned medium. Investigations of the mechanism showed the anti-inflammatory effect of Sch A involved the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) expression levels and inhibition of the LPS-induced TRAF6-IKKβ-NF-κB pathway. Furthermore, inhibition of Jak2-Stat3 pathway activation and Stat3 nuclear translocation also was observed. In conclusion, SchA can exert anti-inflammatory and neuroprotective effects by alleviating microglia-mediated neuroinflammation injury through inhibiting the TRAF6-IKKβ-NF-κB and Jak2-Stat3 signaling pathways. PMID:26919063

  15. Anti-inflammatory effect of Mentha longifolia in lipopolysaccharide-stimulated macrophages: reduction of nitric oxide production through inhibition of inducible nitric oxide synthase.

    PubMed

    Karimian, Parastoo; Kavoosi, Gholamreza; Amirghofran, Zahra

    2013-01-01

    Mentha longifolia is an aromatic plant used in flavoring and preserving foods and as an anti-inflammatory folk medicine remedy. The present study assessed the effects of M. longifolia extracts, including essential oil and crude methanol extract and its fractions (ethyl acetate, butanol and hexane), on nitric oxide (NO) production and inducible NO synthase (iNOS) mRNA expression in lipopolysaccharide (LPS)-stimulated J774A.1 cells using real-time polymerase chain reaction (PCR). The cytotoxic effects of the extracts on the cells were examined and non-cytotoxic concentrations (<0.2 mg/ml) were used to examine their effects on NO production and iNOS mRNA expression. Only the hexane fraction that contained high levels of phenolic and flavonoid compounds at concentrations from 0.05-0.20 mg/ml significantly reduced NO production in LPS-stimulated cells (p < 0.001). Real-time PCR analysis indicated the ability of this fraction at the same concentrations to significantly decrease iNOS as well as TNFα mRNA expression in the cells (p < 0.001). All extracts were able to scavenge NO radicals in a concentration-dependent manner. At concentrations greater than 0.2 mg/ml, total radicals were 100% scavenged. In conclusion, M. longifolia possibly reduces NO secretion in macrophages by scavenging NO and inhibiting iNOS mRNA expression, and also decreases TNFα pro-inflammatory cytokine expression, thus showing its usefulness in the inflammatory disease process.

  16. Shikonin inhibits inflammation and chondrocyte apoptosis by regulation of the PI3K/Akt signaling pathway in a rat model of osteoarthritis

    PubMed Central

    Fu, Daijie; Shang, Xifu; Ni, Zhe; Shi, Guoguang

    2016-01-01

    Shikonin has previously been shown to have antitumor, anti-inflammatory, antiviral and extensive pharmacological effects. The aim of the present study was to explore whether the protective effect of shikonin is mediated via the inhibition of inflammation and chondrocyte apoptosis, and to elucidate the potential molecular mechanisms in a rat model of osteoarthritis. A model of osteoarthritis was established in healthy male Sprague-Dawley rats and 10 mg/kg/day shikonin was administered intraperitoneally for 4 days. It was found that shikonin treatment significantly inhibited inflammatory reactions in the rats with osteoarthritis. Osteoarthritis was found to significantly increase interleukin (IL)-1β, tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) levels compared with those in the sham group. However, shikonin treatment significantly inhibited the increases in IL-1β, TNF-α and iNOS levels in the rats with osteoarthritis. Furthermore, caspase-3 activity and cyclooxygenase (COX)-2 protein expression were significantly increased and phosphorylated Akt protein expression was greatly suppressed in rats with osteoarthritis when compared with the sham group. Shikonin administration attenuated the changes in caspase-3 activity and COX-2 expression and Akt phosphorylation in rats with osteoarthritis. These results indicate that shikonin inhibits inflammation and chondrocyte apoptosis by regulating the phosphoinositide 3-kinase/Akt signaling pathway in a rat model of osteoarthritis. PMID:27703516

  17. KMUP-1 inhibits H441 lung epithelial cell growth, migration and proinflammation via increased NO/CGMP and inhibited RHO kinase/VEGF signaling pathways.

    PubMed

    Wu, B N; Chen, H Y; Liu, C P; Hsu, L Y; Chen, I J

    2011-01-01

    This study investigates whether KMUP-1 protects soluble guanylate cyclase (sGC) and inhibits vascular endothelial growth factor (VEGF) expression in lung epithelial cells in hypoxia, therapeutically targeting epithelial proinflammation. H441 cells were used as a representative epithelial cell line to examine the role of sGC and VEGF in hypoxia and the anti-proinflammatory activity of KMUP-1 in normoxia. Human H441 cells were grown in hypoxia for 24-72 h. KMUP-1 (1, 10, 100 microM) arrested cells at the G0/G1 phase of the cell cycle, reduced cell survival and migration, increased p21/p27, restored eNOS, increased soluble guanylate cyclase (sGC) and PKG and inhibited Rho kinase II (ROCK-II). KMUP-1 (0.001-0.1 microM) concentration dependently increased eNOS in normoxia and did not inhibit phosphodiesterase-5A (PDE-5A) in hypoxic cells. Hypoxia-induced factor-1alpha (HIF-1alpha) and VEGF were suppressed by KMUP-1 but not by L-NAME (100 microM). The PKG inhibitor Rp-8-CPT-cGMPS (10 microM) blunted the inhibition of ROCK-II by KMUP-1. KMUP-1 inhibited thromboxane A2-mimetic agonist U46619-induced PDE-5A, TNF-alpha (100 ng/ml)-induced iNOS, and ROCK-II and associated phospho-p38 MAPK, suggesting multiple anti-proinflammatory activities. In addition, increased p21/p27 by KMUP-1 at higher concentrations might contribute to an increased Bax/Bcl-2 and active caspase-3/procaspase-3 ratio, concomitantly causing apoptosis. KMUP-1 inhibited ROCK-II/VEGF in hypoxia, indicating its anti-neoplastic and anti-inflammatory properties. KMUP-1 inhibited TNF-alpha-induced iNOS and U46619-induced PDE-5A and phospho-p38 MAPK in normoxia, confirming its anti-proinflammatory action. KMUP-1 could be used as an anti-proinflammatory to reduce epithelial inflammation.

  18. Paeonol attenuates TNBS-induced colitis by inhibiting NF-{kappa}B and STAT1 transactivation

    SciTech Connect

    Ishiguro, Kazuhiro . E-mail: kio@med.nagoya-u.ac.jp; Ando, Takafumi; Maeda, Osamu; Hasegawa, Motofusa; Kadomatsu, Kenji; Ohmiya, Naoki; Niwa, Yasumasa; Xavier, Ramnik; Goto, Hidemi

    2006-11-15

    Paeonol, a major phenolic component of Moutan Cortex, is known to have anti-inflammatory activity. However, the effect of Paeonol on colitis has not been evaluated and the molecular mechanism of its anti-inflammatory action remains unknown. The aim of this study was to determine if Paeonol enema attenuates trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. We also investigated the effects of Paeonol in colon cancer-derived CW-2 cells and T cell leukemia-derived Jurkat cells treated with tumor necrosis factor {alpha} (TNF{alpha}) and/or interferon {gamma} (IFN{gamma}), which play critical roles in TNBS-induced colitis. Paeonol enema attenuated TNBS-induced colitis judging by body weigh reduction, colon length and histological score. Myeloperoxidase activity and inducible nitric oxide synthase (iNOS) production in the colon were also reduced with Paeonol enema. In CW-2 cells, Paeonol inhibited iNOS protein and mRNA expression induced by costimulation of TNF{alpha} and IFN{gamma}. Furthermore, Paeonol reduced TNF{alpha}-induced NF-{kappa}B transactivation and IFN{gamma}-induced STAT1 transactivation in CW-2 cells and also in Jurkat cells. These findings suggest that Paeonol enema may be useful for the treatment of colitis.

  19. Berberine Inhibits Intestinal Polyps Growth in Apc (min/+) Mice via Regulation of Macrophage Polarization

    PubMed Central

    Piao, Meiyu; Cao, Hailong; He, NaNa; Yang, Boli; Dong, Wenxiao; Xu, Mengque; Yan, Fang; Zhou, Bing

    2016-01-01

    Antitumor effect of berberine has been reported in a wide spectrum of cancer, however, the mechanisms of which are not fully understood. The aim of this study was to investigate the hypothesis that berberine suppresses tumorigenesis in the familial adenomatous polyposis (FAP) by regulating the macrophage polarization in Apc (min/+) mouse model. Berberine was given to Apc (min/+) mice for 12 weeks. Primary macrophages were isolated; after berberine treatment, the change in signaling cascade was determined. The total number and size of polyps were reduced remarkably in berberine group, compared with control group. A significant decrease in protein levels of F4/80, mannose receptor (MR), and COX-2 in stroma of intestinal polyps and an increase in the level of iNOS were observed after berberine treatment. The mRNA level of MR and Arg-1 in berberine group was significantly lower than those in IL-10 or IL-4 group, while no significant difference in mRNA levels of iNOS and CXCL10 was observed. The migration and invasiveness assays in vitro showed that berberine could reduce the capability of migration and invasiveness. These findings suggest that berberine attenuates intestinal tumorigenesis by inhibiting the migration and invasion of colorectal tumor cells via regulation of macrophage polarization. PMID:27493671

  20. Berberine Inhibits Intestinal Polyps Growth in Apc (min/+) Mice via Regulation of Macrophage Polarization.

    PubMed

    Piao, Meiyu; Cao, Hailong; He, NaNa; Yang, Boli; Dong, Wenxiao; Xu, Mengque; Yan, Fang; Zhou, Bing; Wang, Bangmao

    2016-01-01

    Antitumor effect of berberine has been reported in a wide spectrum of cancer, however, the mechanisms of which are not fully understood. The aim of this study was to investigate the hypothesis that berberine suppresses tumorigenesis in the familial adenomatous polyposis (FAP) by regulating the macrophage polarization in Apc (min/+) mouse model. Berberine was given to Apc (min/+) mice for 12 weeks. Primary macrophages were isolated; after berberine treatment, the change in signaling cascade was determined. The total number and size of polyps were reduced remarkably in berberine group, compared with control group. A significant decrease in protein levels of F4/80, mannose receptor (MR), and COX-2 in stroma of intestinal polyps and an increase in the level of iNOS were observed after berberine treatment. The mRNA level of MR and Arg-1 in berberine group was significantly lower than those in IL-10 or IL-4 group, while no significant difference in mRNA levels of iNOS and CXCL10 was observed. The migration and invasiveness assays in vitro showed that berberine could reduce the capability of migration and invasiveness. These findings suggest that berberine attenuates intestinal tumorigenesis by inhibiting the migration and invasion of colorectal tumor cells via regulation of macrophage polarization. PMID:27493671

  1. Effects of abalone (Haliotis discus hannai Ino) gonad polysaccharides on cholecystokinin release in STC-1 cells and its signaling mechanism.

    PubMed

    Zhao, Jun; Zhou, Da-Yong; Yang, Jing-Feng; Song, Shuang; Zhang, Ting; Zhu, Ce; Song, Yan-Qing; Yu, Chen-Xu; Zhu, Bei-Wei

    2016-10-20

    Abalone gonad polysaccharide (AGP) -31, -32 and -33 prepared in this study had the molecular weight (MW) of 37.8, 32.2 and 27.5kDa, respectively. They all contained mannose, rhamnose, glucuronic acid, glucose, galactose, xylose, arabinose, and fucose, with very similar monosaccharide profile. All the three polysaccharides could significantly increase the secretion of cholecystokinin (CCK) in STC-1 cells. Among them, AGP-32 showed the strongest effect. However, the low-MW fragments of AGP-32 showed significantly lower activity than AGP-32 itself. It was also found that the inhibitors on calcium-sensing receptor (CaSR), protein kinase A (PKA), Ca(2+)⁄calmodulin-dependent protein kinase (CaMK) II, p38- mitogen-activated protein kinases (MAPK), and an intracellular calcium chelator all inhibited AGP-induced CCK secretion. To conclude, Ca(2+)/calmodulin (CaM)/CaMK, cyclic adenosine monophosphate (cAMP)/PKA and MAPK pathways are all involved in AGP-induced CCK secretion. PMID:27474567

  2. Effects of abalone (Haliotis discus hannai Ino) gonad polysaccharides on cholecystokinin release in STC-1 cells and its signaling mechanism.

    PubMed

    Zhao, Jun; Zhou, Da-Yong; Yang, Jing-Feng; Song, Shuang; Zhang, Ting; Zhu, Ce; Song, Yan-Qing; Yu, Chen-Xu; Zhu, Bei-Wei

    2016-10-20

    Abalone gonad polysaccharide (AGP) -31, -32 and -33 prepared in this study had the molecular weight (MW) of 37.8, 32.2 and 27.5kDa, respectively. They all contained mannose, rhamnose, glucuronic acid, glucose, galactose, xylose, arabinose, and fucose, with very similar monosaccharide profile. All the three polysaccharides could significantly increase the secretion of cholecystokinin (CCK) in STC-1 cells. Among them, AGP-32 showed the strongest effect. However, the low-MW fragments of AGP-32 showed significantly lower activity than AGP-32 itself. It was also found that the inhibitors on calcium-sensing receptor (CaSR), protein kinase A (PKA), Ca(2+)⁄calmodulin-dependent protein kinase (CaMK) II, p38- mitogen-activated protein kinases (MAPK), and an intracellular calcium chelator all inhibited AGP-induced CCK secretion. To conclude, Ca(2+)/calmodulin (CaM)/CaMK, cyclic adenosine monophosphate (cAMP)/PKA and MAPK pathways are all involved in AGP-induced CCK secretion.

  3. Fibronectin prevents endotoxin shock after partial hepatectomy in rats via inhibition of nuclear factor-kappaB and apoptosis.

    PubMed

    Kwon, A-Hon; Qiu, Zeyu; Tsuji, Katsushige; Miyaso, Takeshi; Okumura, Tadayoshi

    2007-07-01

    Fibronectins (Fns) are involved in a number of biologic processes, such as cellular adhesion, motility, differentiation, apoptosis, hemostasis, wound healing, and ischemic injury. We investigated the possible mechanism underlying the protective action of plasma Fn (pFn) on endotoxin shock following partial hepatectomy in rats. Lipopolysaccharide (LPS) was administered intravenously to male Sprague-Dawley rats within 48 hrs of 70% hepatectomy. Prior to LPS administration, pFn or human serum albumin was given intravenously. The survival rate of the pFn-treated group was improved markedly compared with that of the controls. The levels of inflammatory cytokines and nitric oxide (NO) in serum were significantly lower in the pFn-treated group than in the control group. Expression of inducible nitric oxide synthase (iNOS) in hepatocytes also was reduced following pFn treatment. The degree of apoptosis and necrosis in the remnant liver was significantly lower in the pFn-treated rats than the controls. Furthermore, pFn pretreatment greatly inhibited the activation of nuclear factor-kappaB (NF-kappaB), caspase 3 and 8 activities, and cytochrome c release, and caused a decrease in mitochondrial Bcl-x(L). Plasma Fn prevents endotoxin-induced liver injury at least in part through inhibition of NF-kappaB activation, which causes the reduction of iNOS expression and NO production by hepatocytes, and through the downregulation of inflammatory cytokines and promotion of Bcl-x(L) expression. PMID:17609505

  4. Sitagliptin attenuates inflammatory responses in lipopolysaccharide-stimulated cardiomyocytes via nuclear factor-κB pathway inhibition

    PubMed Central

    LIN, CHIEN-HUNG; LIN, CHUNG-CHING

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) and GLP-1 receptors (GLP-1Rs) are responsible for glucose homeostasis, and have been shown to reduce inflammation in preclinical studies. The aim of the present study was to determine whether sitagliptin, an inhibitor of the enzyme dipeptidyl peptidase-4 (DPP-4), as a GLP-1 receptor agonist, exerts an anti-inflammatory effect on cardiomyoblasts during lipopolysaccharide (LPS) stimulation. Exposure to LPS increased the expression levels of tumor necrosis factor (TNF)-α, interleukin-6 (IL)-6 and IL-1β in H9c2 cells, and also resulted in elevations in cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression and nuclear factor-κB (NF-κB) nuclear translocation. Treatment with the DPP-4 inhibitor sitagliptin dose-dependently downregulated the mRNA levels of IL-6, COX-2 and iNOS in LPS-stimulated H9c2 cells. In addition, sitagliptin inhibited the increased protein expression of IL-6, TNF-α and IL-1β. NF-κB mRNA expression was reduced and its translocation to the nucleus was suppressed by treatment with sitagliptin. The present results demonstrated that sitagliptin exerts a beneficial effect on cardiomyoblasts exposed to LPS by inhibiting expression of inflammatory mediators and suppressing NF-κB activation. These findings indicate that the DPP-4 inhibitor sitagliptin may serve a function in cardiac remodeling attributed to sepsis-induced inflammation. PMID:27284355

  5. A supercritical CO₂ extract from seabuckthorn leaves inhibits pro-inflammatory mediators via inhibition of mitogen activated protein kinase p38 and transcription factor nuclear factor-κB.

    PubMed

    Jayashankar, Bindhya; Mishra, K P; Kumar, M S Y; Udayasankar, K; Misra, K; Ganju, L; Singh, S B

    2012-08-01

    In the present study, we have demonstrated the anti-inflammatory properties of supercritical CO₂ extract of seabuckthorn leaves (SCE) on mouse alveolar macrophage cell line (MH-S), human peripheral blood mononuclear cells (hPBMCs) in-vitro and in-vivo. Treatment of MH-S cells with SCE (0.5-100 μg/ml) significantly inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production. It also inhibited the release of LPS-induced pro-inflammatory cytokines IL-6 and TNF-α, which was further confirmed by suppression of LPS induced TNF-α in hPBMCs by ELISPOT assay. In addition, western blot analysis demonstrated that SCE decreased LPS-induced inducible nitric-oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression in MH-S cells. Furthermore, SCE treatment also reduced nuclear factor-κB (NF-κB) translocation in nucleus induced by LPS in MH-S cells. To elucidate the molecular mechanism for inhibition of pro-inflammatory mediators by SCE (100 μg/ml), we further studied the effect of SCE on LPS-induced p38 mitogen-activated protein kinase (MAPK). It was observed that the phosphorylation of p38 MAPK in LPS-stimulated MH-S cells was significantly inhibited by SCE, which was further proven by suppression of LPS induced CD40 expression. The in-vivo model of AIA mice also showed a significant reduction in the inflammation of paw edema. These data collectively suggest that SCE suppressed the LPS-induced production of NO, IL-6, and TNF-α and expression of CD40, iNOS and COX-2 proteins by inhibiting NF-κB activation and phosphorylation of p38 MAPK. Hence, the SCE has potent anti-inflammatory activity and might be useful in chronic inflammatory diseases. PMID:22664145

  6. Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats

    PubMed Central

    Kim, Jae Hyung; Bugaj, Lukasz J.; Oh, Young Jun; Bivalacqua, Trinity J.; Ryoo, Sungwoo; Soucy, Kevin G.; Santhanam, Lakshmi; Webb, Alanah; Camara, Andre; Sikka, Gautam; Nyhan, Daniel; Shoukas, Artin A.; Ilies, Monica; Christianson, David W.; Champion, Hunter C.

    2009-01-01

    There is increasing evidence that upregulation of arginase contributes to impaired endothelial function in aging. In this study, we demonstrate that arginase upregulation leads to endothelial nitric oxide synthase (eNOS) uncoupling and that in vivo chronic inhibition of arginase restores nitroso-redox balance, improves endothelial function, and increases vascular compliance in old rats. Arginase activity in old rats was significantly increased compared with that shown in young rats. Old rats had significantly lower nitric oxide (NO) and higher superoxide (O2−) production than young. Acute inhibition of both NOS, with NG-nitro-l-arginine methyl ester, and arginase, with 2(S)-amino- 6-boronohexanoic acid (ABH), significantly reduced O2− production in old rats but not in young. In addition, the ratio of eNOS dimer to monomer in old rats was significantly decreased compared with that shown in young rats. These results suggest that eNOS was uncoupled in old rats. Although the expression of arginase 1 and eNOS was similar in young and old rats, inducible NOS (iNOS) was significantly upregulated. Furthermore, S-nitrosylation of arginase 1 was significantly elevated in old rats. These findings support our previously published finding that iNOS nitrosylates and activates arginase 1 (Santhanam et al., Circ Res 101: 692–702, 2007). Chronic arginase inhibition in old rats preserved eNOS dimer-to-monomer ratio and significantly reduced O2− production and enhanced endothelial-dependent vasorelaxation to ACh. In addition, ABH significantly reduced vascular stiffness in old rats. These data indicate that iNOS-dependent S-nitrosylation of arginase 1 and the increase in arginase activity lead to eNOS uncoupling, contributing to the nitroso-redox imbalance, endothelial dysfunction, and vascular stiffness observed in vascular aging. We suggest that arginase is a viable target for therapy in age-dependent vascular stiffness. PMID:19661445

  7. Acclimation-dependent expression of heat shock protein 70 in Pacific abalone ( Haliotis discus hannai Ino) and its acute response to thermal exposure

    NASA Astrophysics Data System (ADS)

    Li, Jiaqi; He, Qingguo; Sun, Hui; Liu, Xiao

    2012-01-01

    Heat shock protein 70 (Hsp70) is one important member of heat shock protein (Hsp) family that is responsible for various stresses, especially thermal stress. Here we examined the response of Hsp70 gene to both chronic and acute thermal exposure in Pacific abalone ( Haliotis discus hannai Ino). For the chronic exposure, abalones were maintained at 8, 12, 20, and 30°C for four months and their mRNA levels were measured. The highest mRNA level of Hsp70 gene relative to actin gene was detected in the 30°C-acclimated group, followed by the 8°C-acclimated group and then the 12°C- and 20°C-acclimated groups. After the long-term acclimation, gills from each of the above acclimation groups were dissected and exposed to different temperatures between 8°C and 38°C for 30 min. Hsp70 expression in gills acclimated to different temperatures responded differentially to the same temperature exposure. The incubation temperature that induced maximum Hsp70 mRNA expression was higher in the higher temperature acclimation groups than lower temperature groups. Pacific abalones could alter the expression pattern of Hsp70 gene according to environmental thermal conditions, through which they deal with the stress of thermal variations.

  8. Effects of dietary supplementation of probiotic Shewanella colwelliana WA64, Shewanella olleyana WA65 on the innate immunity and disease resistance of abalone, Haliotis discus hannai Ino.

    PubMed

    Jiang, Hai-Feng; Liu, Xiao-Lin; Chang, Ya-Qing; Liu, Ming-Tai; Wang, Gao-Xue

    2013-07-01

    The effects of dietary administration of two probiotics, Shewanella colwelliana WA64 and Shewanella olleyana WA65, on the innate immunity of abalone (Haliotis discus hannai Ino), and survival of juvenile abalone challenged with Vibrio harveyi have been studied. Two groups of abalone were fed with three different diets: one control, and two diets supplemented with 10(9) cell g(-1) of probiotic WA64 (WA64 diet) and WA65 (WA65 diet) for up to four weeks. Results showed that abalone fed diets containing S. colwelliana WA64 and S. olleyana WA65 had led to an enhanced cellular and humoral immune response, notably higher haemocytes, respiratory burst activity, serum lysozyme activity and total protein levels were recorded after one week of probiotic administration. On the other hand, mortality after the challenges with V. harveyi in the group fed with control diet ranged from 77 to 80%, while mortality rates observed in the groups fed with diets supplemented with WA64 and WA65 ranged from 27 to 50% and 30-43%, respectively. The results demonstrated potential for S. colwelliana WA64 and S. olleyana WA65 to improve innate immunity and disease resistance in H. discus hannai.

  9. Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264.7 cells.

    PubMed

    Hu, Chun; Kitts, David D

    2004-10-01

    Both reactive oxygen- and nitrogen-derived reactive species play important roles in physiological and pathophysiological conditions. Flavones, luteolin and luteolin-7-O-glucoside along with a rich plant source of both flavones, namely dandelion (Taraxacum officinale) flower extract were studied for antioxidant activity in different in vitro model systems. In this current study, luteolin and luteolin-7-O-glucoside at concentrations lower than 20 microM, significantly (p < 0.05) suppressed the productions of nitric oxide and prostaglandin E2 (PGE2) in bacterial lipopolysaccharide activated-mouse macrophage RAW264.7 cells without introducing cytotoxicity. The inhibitory effects were further attributed to the suppression of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression, and not reduced enzymatic activity. Similar suppression for both inducible enzymes was also found with the presence of dandelion flower extract, specifically, the ethyl acetate fraction of dandelion flower extract which contained 10% luteolin and luteolin-7-O-glucoside. PMID:15543940

  10. Tormentic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NF-κB signaling pathway.

    PubMed

    Wang, Yu-Lun; Sun, Gen-Yi; Zhang, Ying; He, Jia-Jun; Zheng, Shen; Lin, Jing-Na

    2016-10-01

    Tormentic acid (TA) is a triterpene isolated from the stem bark of the plant Vochysia divergens and has been reported to exhibit anticancer, anti‑inflammatory and anti‑atherogenic properties. However, the functions of TA in hydrogen peroxide (H2O2)‑induced oxidative stress and inflammation in rat vascular smooth muscle cells (RVSMCs) remain unclear. Therefore, the present study aimed to investigate whether TA suppressed H2O2‑induced oxidative stress and inflammation in RVSMCs, and to determine its molecular mechanisms. The present study demonstrated that TA inhibited reactive oxygen species (ROS) generation, induced H2O2 in RVSMCs, and inhibited H2O2-induced expression of inducible nitric oxide synthase (iNOS) and NADPH oxidase (NOX) in RVSMCs. In addition, TA significantly decreased the production of tumor necrosis factor‑α (TNF‑α), interleukin 6 (IL‑6) and IL‑1β. Furthermore, TA pretreatment prevented nuclear factor‑κB (NF‑κB) subunit p65 phosphorylation and NF‑κB inhibitor α (IκBα) degradation induced by H2O2 in RVSMCs. TA is, therefore, suggested to inhibit H2O2-induced oxidative stress and inflammation in RVSMCs via inhibition of the NF‑κB signaling pathway. TA may have potential as a pharmacological agent in the prevention or treatment of atherosclerosis. PMID:27572426

  11. Tormentic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NF-κB signaling pathway

    PubMed Central

    Wang, Yu-Lun; Sun, Gen-Yi; Zhang, Ying; He, Jia-Jun; Zheng, Shen; Lin, Jing-Na

    2016-01-01

    Tormentic acid (TA) is a triterpene isolated from the stem bark of the plant Vochysia divergens and has been reported to exhibit anticancer, anti-inflammatory and anti-atherogenic properties. However, the functions of TA in hydrogen peroxide (H2O2)-induced oxidative stress and inflammation in rat vascular smooth muscle cells (RVSMCs) remain unclear. Therefore, the present study aimed to investigate whether TA suppressed H2O2-induced oxidative stress and inflammation in RVSMCs, and to determine its molecular mechanisms. The present study demonstrated that TA inhibited reactive oxygen species (ROS) generation, induced H2O2 in RVSMCs, and inhibited H2O2-induced expression of inducible nitric oxide synthase (iNOS) and NADPH oxidase (NOX) in RVSMCs. In addition, TA significantly decreased the production of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6) and IL-1β. Furthermore, TA pretreatment prevented nuclear factor-κB (NF-κB) subunit p65 phosphorylation and NF-κB inhibitor α (IκBα) degradation induced by H2O2 in RVSMCs. TA is, therefore, suggested to inhibit H2O2-induced oxidative stress and inflammation in RVSMCs via inhibition of the NF-κB signaling pathway. TA may have potential as a pharmacological agent in the prevention or treatment of atherosclerosis. PMID:27572426

  12. Tormentic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NF-κB signaling pathway.

    PubMed

    Wang, Yu-Lun; Sun, Gen-Yi; Zhang, Ying; He, Jia-Jun; Zheng, Shen; Lin, Jing-Na

    2016-10-01

    Tormentic acid (TA) is a triterpene isolated from the stem bark of the plant Vochysia divergens and has been reported to exhibit anticancer, anti‑inflammatory and anti‑atherogenic properties. However, the functions of TA in hydrogen peroxide (H2O2)‑induced oxidative stress and inflammation in rat vascular smooth muscle cells (RVSMCs) remain unclear. Therefore, the present study aimed to investigate whether TA suppressed H2O2‑induced oxidative stress and inflammation in RVSMCs, and to determine its molecular mechanisms. The present study demonstrated that TA inhibited reactive oxygen species (ROS) generation, induced H2O2 in RVSMCs, and inhibited H2O2-induced expression of inducible nitric oxide synthase (iNOS) and NADPH oxidase (NOX) in RVSMCs. In addition, TA significantly decreased the production of tumor necrosis factor‑α (TNF‑α), interleukin 6 (IL‑6) and IL‑1β. Furthermore, TA pretreatment prevented nuclear factor‑κB (NF‑κB) subunit p65 phosphorylation and NF‑κB inhibitor α (IκBα) degradation induced by H2O2 in RVSMCs. TA is, therefore, suggested to inhibit H2O2-induced oxidative stress and inflammation in RVSMCs via inhibition of the NF‑κB signaling pathway. TA may have potential as a pharmacological agent in the prevention or treatment of atherosclerosis.

  13. Tadalafil Integrates Nitric Oxide-Hydrogen Sulfide Signaling to Inhibit High Glucose-induced Matrix Protein Synthesis in Podocytes*

    PubMed Central

    Lee, Hak Joo; Feliers, Denis; Mariappan, Meenalakshmi M.; Sataranatarajan, Kavithalakshmi; Choudhury, Goutam Ghosh; Gorin, Yves; Kasinath, Balakuntalam S.

    2015-01-01

    Diabetes-induced kidney cell injury involves an increase in matrix protein expression that is only partly alleviated by current treatment, prompting a search for new modalities. We have previously shown that hydrogen sulfide (H2S) inhibits high glucose-induced protein synthesis in kidney podocytes. We tested whether tadalafil, a phosphodiesterase 5 inhibitor used to treat erectile dysfunction, ameliorates high glucose stimulation of matrix proteins by generating H2S in podocytes. Tadalafil abrogated high glucose stimulation of global protein synthesis and matrix protein laminin γ1. Tadalafil inhibited high glucose-induced activation of mechanistic target of rapamycin complex 1 and laminin γ1 accumulation in an AMP-activated protein kinase (AMPK)-dependent manner. Tadalafil increased AMPK phosphorylation by stimulating calcium-calmodulin kinase kinase β. Tadalafil rapidly increased the expression and activity of the H2S-generating enzyme cystathionine γ-lyase (CSE) by promoting its translation. dl-Propargylglycine, a CSE inhibitor, and siRNA against CSE inhibited tadalafil-induced AMPK phosphorylation and abrogated the tadalafil effect on high glucose stimulation of laminin γ1. In tadalafil-treated podocytes, we examined the interaction between H2S and nitric oxide (NO). Nω-Nitro-l-arginine methyl ester and 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one, inhibitors of NO synthase (NOS) and soluble guanylyl cyclase, respectively, abolished tadalafil induction of H2S and AMPK phosphorylation. Tadalafil rapidly augmented inducible NOS (iNOS) expression by increasing its mRNA, and siRNA for iNOS and 1400W, an iNOS blocker, inhibited tadalafil stimulation of CSE expression and AMPK phosphorylation. We conclude that tadalafil amelioration of high glucose stimulation of synthesis of proteins including matrix proteins in podocytes requires integration of the NO-H2S-AMPK axis leading to the inhibition of high glucose-induced mechanistic target of rapamycin complex 1

  14. Fulgidic Acid Isolated from the Rhizomes of Cyperus rotundus Suppresses LPS-Induced iNOS, COX-2, TNF-α, and IL-6 Expression by AP-1 Inactivation in RAW264.7 Macrophages.

    PubMed

    Shin, Ji-Sun; Hong, Yujin; Lee, Hwi-Ho; Ryu, Byeol; Cho, Young-Wuk; Kim, Nam-Jung; Jang, Dae Sik; Lee, Kyung-Tae

    2015-01-01

    To identify bioactive natural products possessing anti-inflammatory activity, the potential of fulgidic acid from the rhizomes of Cyperus rotundus and the underlying mechanisms involved in its anti-inflammatory activity were evaluated in this study. Fulgidic acid reduced the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Consistent with these findings, fulgidic acid suppressed the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein level, as well as iNOS, COX-2, TNF-α, and IL-6 at mRNA levels. Fulgidic acid suppressed the LPS-induced transcriptional activity of activator protein-1 (AP-1) as well as the phosphorylation of c-Fos and c-Jun. On the other hand, fulgidic acid did not show any effect on LPS-induced nuclear factor κB (NF-κB) activity. Taken together, these results suggest that the anti-inflammatory effect of fulgidic acid is associated with the suppression of iNOS, COX-2, TNF-α, and IL-6 expression through down-regulating AP-1 activation in LPS-induced RAW264.7 macrophages. PMID:26133719

  15. Corrosion inhibiting organic coatings

    SciTech Connect

    Sasson, E.

    1984-10-16

    A corrosion inhibiting coating comprises a mixture of waxes, petroleum jelly, a hardener and a solvent. In particular, a corrosion inhibiting coating comprises candelilla wax, carnauba wax, microcrystalline waxes, white petrolatum, an oleoresin, lanolin and a solvent.

  16. Chlojaponilactone B from Chloranthus japonicus: Suppression of Inflammatory Responses via Inhibition of the NF-κB Signaling Pathway.

    PubMed

    Zhao, Jing-Jun; Guo, Yan-Qiong; Yang, De-Po; Xue, Xue; Liu, Qin; Zhu, Long-Ping; Yin, Sheng; Zhao, Zhi-Min

    2016-09-23

    Bioassay-guided fractionation of an ethanolic extract of Chloranthus japonicus led to the isolation of the known lindenane-type sesquiterpenoid chlojaponilactone B (1). This compound exhibited pronounced inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Further anti-inflammatory assays showed that 1 suppressed the levels of some key inflammation mediators, such as iNOS, TNF-α, and IL-6, in a dose-dependent manner, and reduced the ear thickness and neutrophil infiltration in 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated mice. A mechanistic study revealed that compound 1 exerted its anti-inflammatory effects via the suppression of the NF-κB signaling pathway, which inhibited NF-κB-dependent transcriptional activity, IκBα phosphorylation, and p65 nuclear translocation. In contrast, chlojaponilactone B (1) was found to exert little influence on the MAPK signaling pathway. PMID:27588583

  17. Disturbance effects of PM₁₀ on iNOS and eNOS mRNA expression levels and antioxidant activity induced by ischemia-reperfusion injury in isolated rat heart: protective role of vanillic acid.

    PubMed

    Dianat, Mahin; Radmanesh, Esmat; Badavi, Mohammad; Mard, Seyed Ali; Goudarzi, Gholamraza

    2016-03-01

    Myocardial infarction is the acute condition of myocardial necrosis that occurs as a result of imbalance between coronary blood supply and myocardial demand. Air pollution increases the risk of death from cardiovascular diseases (CVDs). The aim of this study was to investigate the effects of particulate matter (PM) on oxidative stress, the expression of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) messenger RNA (mRNA) level induced by ischemia-reperfusion injury, and the protective effects of vanillic acid (VA) in the isolated rat heart. Male Wistar rats were randomly divided into eight groups (n = 10), namely control, VAc, sham, VA, PMa (0.5 mg/kg), PMb (2.5 mg/kg), PMc (5 mg/kg), and PMc + VA groups. Particles with an aerodynamic diameter <10 μm (PM10) was instilled into the trachea through a fine intubation tube. Two days following the PM10 instillation, the animal's hearts were isolated and transferred to a Langendorff apparatus. The hearts were subjected to 30 min of global ischemia followed by 60 min of reperfusion. The activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), xanthine oxidase (XOX), and lactate dehydrogenase (LDH) were measured using special kits. Reverse transcription polymerase chain reaction (RT-PCR) was used to determine levels of iNOS and eNOS mRNA. An increase in left ventricular end-diastolic pressure (LVEDP), S-T elevation, and oxidative stress in PM10 groups was observed. Ischemia-reperfusion (I/R) induction showed a significant augment in the expression of iNOS mRNA level and a significant decrease in the expression eNOS mRNA level. This effect was more pronounced in the PM groups than in the control and sham groups. Vanillic acid caused a significant decrease in LVEDP, S-T elevation, and also a significant difference in eNOS mRNA expression level, antioxidant enzymes, iNOS mRNA expression level, and oxidative stress occurred on myocardial dysfunction

  18. Effect of dietary lipid on the growth, fatty acid composition and Δ5 Fads expression of abalone ( Haliotis discus hannai Ino) hepatopancreas

    NASA Astrophysics Data System (ADS)

    Li, Mingzhu; Mai, Kangsen; Ai, Qinghui; He, Gen; Xu, Wei; Zhang, Wenbing; Zhang, Yanjiao; Zhou, Huihui; Liufu, Zhiguo

    2015-04-01

    This study investigated the effect of dietary lipid on the growth, fatty acid composition and Δ5 fatty acyl desaturase genes ( Fads) expression of juvenile abalone ( Haliotis discus hannai Ino) hepatopancreas. Six purified diets were formulated to contain tripalmitin (TP), olive oil (OO, 72.87% 18:1n-9), grape seed oil (GO, 68.67% 18:2n-6), linseed oil (LO, 70.48% 18:3n-3), ARA oil (AO, 41.81% ARA) or EPA oil (EO, 44.09% EPA and 23.67% DAH). No significant difference in survival rate was observed among abalone fed with different diets. Weight gain rate ( WGR) and daily growth rate of shell length ( DGR SL) were significantly increased in abalone fed with diets containing OO, AO and EO, but decreased in abalone fed with LO diet ( P < 0.05) in comparison with those fed with TP. High level of dietary 18:2n-6 resulted in higher content of n-6 polyunsaturated fatty acids (PUFAs) in abalone fed with GO than those fed with TP, OO, LO and EO ( P < 0.05). n-3 PUFAs in abalone fed with LO was significantly higher than those in abalone fed with TP, OO, GO and AO ( P < 0.05). The highest contents of 20:1n-9 and 22:1n-9 were observed in abalone fed with OO. The expression of Δ5 Fads in hepatopancreas of abalone was enhanced by high concentration of 18:3n-3 and suppressed by dietary LC-PUFAs; however it was not affected by dietary high concentration of 18:1n-9 or 18:2n-6. These results provided valuable information for understanding the synthesis of LC-PUFAs and nutritional regulation of Δ5 Fads expression in abalone.

  19. Pulsed ENDOR determination of relative orientation of g-frame and molecular frame of imidazole-coordinated heme center of iNOS.

    PubMed

    Astashkin, Andrei V; Fan, Weihong; Elmore, Bradley O; Guillemette, J Guy; Feng, Changjian

    2011-09-22

    Mammalian nitric oxide synthase (NOS) is a flavo-hemoprotein that catalyzes the oxidation of L-arginine to nitric oxide. Information about the relative alignment of the heme and FMN domains of NOS is important for understanding the electron transfer between the heme and FMN centers, but no crystal structure data for NOS holoenzyme are available. In our previous work [Astashkin, A. V.; Elmore, B. O.; Fan, W.; Guillemette, J. G.; Feng, C. J. Am. Chem. Soc. 2010, 132, 12059-12067], the distance between the imidazole-coordinated low-spin Fe(III) heme and FMN semiquinone in a human inducible NOS (iNOS) oxygenase/FMN construct has been determined by pulsed electron paramagnetic resonance (EPR). The orientation of the Fe-FMN radius vector, R(Fe-FMN), with respect to the heme g-frame was also determined. In the present study, pulsed electron-nuclear double resonance (ENDOR) investigation of the deuterons at carbons C2 and C5 in the deuterated coordinated imidazole was used to determine the relative orientation of the heme g-frame and molecular frame, from which R(Fe-FMN) can be referenced to the heme molecular frame. Numerical simulations of the ENDOR spectra showed that the g-factor axis corresponding to the low-field EPR turning point is perpendicular to the heme plane, whereas the axis corresponding to the high-field turning point is in the heme plane and makes an angle of about 80° with the coordinated imidazole plane. The FMN-heme domain docking model obtained in the previous work was found to be in qualitative agreement with the combined experimental results of the two pulsed EPR works.

  20. Pyrroloquinoline Quinone Slows Down the Progression of Osteoarthritis by Inhibiting Nitric Oxide Production and Metalloproteinase Synthesis.

    PubMed

    Tao, Ran; Wang, Shitao; Xia, Xiaopeng; Wang, Youhua; Cao, Yi; Huang, Yuejiao; Xu, Xinbao; Liu, Zhongbing; Liu, Peichao; Tang, Xiaohang; Liu, Chun; Shen, Gan; Zhang, Dongmei

    2015-08-01

    Osteoarthritis (OA) is the most common arthritis and also one of the major causes of joint pain in elderly people. The aim of this study was to investigate the effects of pyrroloquinoline quinone (PQQ) on degenerated-related changes in osteoarthritis (OA). SW1353 cells were stimulated with IL-1β to establish the chondrocyte injury model in vitro. PQQ was administrated into SW1353 cultures 1 h before IL-1β treatment. Amounts of MMP-1, MMP-13, P65, IκBα, ERK, p-ERK, P38, and p-P38 were measured via western blot. The production of NO was determined by Griess reaction assay and reflected by the iNOS level. Meniscal-ligamentous injury (MLI) was performed on 8-week-old rats to establish the OA rat model. PQQ was injected intraperitoneally 3 days before MLI and consecutively until harvest, and the arthritis cartilage degeneration level was assessed. The expressions of MMP-1 and MMP-13 were significantly downregulated after PQQ treatment compared with that in IL-1β alone group. NO production and iNOS expression were decreased by PQQ treatment compared with control group. Amounts of nucleus P65 were upregulated in SW1353 after stimulated with IL-1β, while PQQ significantly inhibited the translocation. In rat OA model, treatment with PQQ markedly decelerated the degeneration of articular cartilage. These findings suggested that PQQ could inhibit OA-related catabolic proteins MMPs expression, NO production, and thus, slow down the articular cartilage degeneration and OA progression. Owing to its beneficial effects, PQQ is expected to be a novel pharmacological application in OA clinical prevention and treatment in the near future.

  1. Inhibition of IκB kinase (IKK) protects against peripheral nerve dysfunction of experimental diabetes.

    PubMed

    Negi, Geeta; Sharma, Shyam S

    2015-04-01

    Nuclear factor-κB (NF-κB) has been reported as a critical component of signalling mechanisms involved in the pathogenesis of a number of inflammatory conditions. Previous reports have shown that anti-inflammatory agents have a protective role in experimental diabetic neuropathy. Here, we assessed whether the inhibition of NF-κB cascade via IκB kinase (IKK) exerts any neuroprotective effect in experimental diabetic neuropathy. IKK inhibitor SC-514 (1 and 3 mg/kg) was administered daily for 2 weeks starting after 6 weeks of streptozotocin-induced diabetes. Nerve conduction and blood flow were determined by Powerlab and LASER Doppler system, respectively. We evaluated the changes in NF-κB, iNOS, and COX-2 expression by Western blotting in sciatic nerve. We found that IKK inhibition with SC-514 increased nerve blood flow and conduction velocity and improved pain threshold in diabetic animals. SC-514 also reduced the expression of NF-κB and phosphorylation of IKKβ in the sciatic nerve. Treatment with SC-514 reduced the elevated levels of pro-inflammatory cytokines (TNF-α and IL-6), iNOS, and COX-2. SC-514 reduces the expression of NF-κB and its downstream inflammatory components which may be involved in the improvement in nerve functions and pain perception in diabetic neuropathy. From the data of the present study, we suggest that diminution in IKK can be exploited as a drug target to significantly reduce the development of long-term complications of diabetes, particularly neuropathy. PMID:24946751

  2. Indole-containing fractions of Brassica rapa inhibit inducible nitric oxide synthase and pro-inflammatory cytokine expression by inactivating nuclear factor-κB.

    PubMed

    Shin, Ji-Sun; Yun, Chang Hyeon; Cho, Young-Wuk; Baek, Nam-In; Choi, Myung-Sook; Jeong, Tae-Sook; Chung, Hae-Gon; Lee, Kyung-Tae

    2011-12-01

    In an attempt to identify bioactive natural products with anti-inflammatory activity, we evaluated the anti-inflammatory potential of the indole-containing fraction from the roots of Brassica rapa (IBR) (Family Brassicaceae) and the underlying mechanisms. Initially, we examined the inhibitory effect of IBR on the production of pro-inflammatory mediators in vitro and then evaluated its in vivo anti-inflammatory effects. IBR was found to concentration-dependently reduce the productions of nitric oxide, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-induced macrophages. Consistent with these findings, IBR suppressed the LPS-induced expressions of inducible nitric oxide synthase (iNOS) at the protein level and of iNOS, TNF-α, and IL-6 at the mRNA level. Furthermore, IBR attenuated LPS-induced DNA-binding activities of nuclear factor-κB (NF-κB), and this was accompanied by a parallel reduction in the degradation and phosphorylation of inhibitory κBα and, consequently, by a reduction in the nuclear translocation of the p65 subunit of NF-κB. In addition, treatment with IBR inhibited carrageenan-induced paw edema in rats and acetic acid-induced writing response in mice. Taken together, our data suggest that the expressional inhibitions of iNOS, TNF-α, and IL-6 caused by an attenuation of NF-κB activation are responsible for the anti-inflammatory and antinociceptive activity of IBR.

  3. Inhibition of glycogen synthase kinase-3β attenuates acute kidney injury in sodium taurocholate‑induced severe acute pancreatitis in rats.

    PubMed

    Zhao, Kailiang; Chen, Chen; Shi, Qiao; Deng, Wenhong; Zuo, Teng; He, Xiaobo; Liu, Tianyi; Zhao, Liang; Wang, Weixing

    2014-12-01

    The aim of the present study was to investigate the efficacy of 4‑benzyl‑2‑methyl‑1,2,4‑thiadiazolidine‑3,5‑dione (TDZD‑8), the selective inhibitor of glycogen synthase kinase‑3β (GSK‑3β), on the development of acute kidney injury in an experimental model of sodium taurocholate‑induced severe acute pancreatitis (SAP) in rats. The serum amylase, lipase, interleukin‑1β and interleukin‑6 levels, and the pancreatic pathological score were examined to determine the magnitude of pancreatitis injury. The serum creatinine and blood urea nitrogen levels, myeloperoxidase (MPO) activity and renal histological grading were measured to assess the magnitude of SAP‑induced acute kidney injury. The activation of nuclear factor‑κB (NF‑κB) was examined using an immunohistochemistry assay. The expression of GSK‑3β, phospho‑GSK‑3β (Ser9), tumour necrosis factor‑α (TNF‑α), intercellular adhesion molecule‑1 (ICAM‑1) and inducible nitric oxide synthase (iNOS) protein in the kidney was characterised using western blot analysis. TDZD‑8 attenuated (i) serum amylase, lipase and renal dysfunction; (ii) the serum concentrations of proinflammatory cytokines; (iii) pancreatic and renal pathological injury; (iv) renal MPO activity and (v) NF‑κB activation and TNF‑α, ICAM‑1 and iNOS protein expression in the kidney. The results obtained in the present study suggest that the inhibition of GSK‑3β attenuates renal disorders associated with SAP through the inhibition of NF‑κB activation and the downregulation of the expression of proinflammatory cytokines, TNF‑α, ICAM‑1 and iNOS in rats. Blocking GSK‑3β protein kinase activity may be a novel approach to the treatment of this inflammatory condition. PMID:25323773

  4. Aged red garlic extract suppresses nitric oxide production in lipopolysaccharide-treated RAW 264.7 macrophages through inhibition of NF-κB.

    PubMed

    Ryu, Ji Hyeon; Park, Hye-Jin; Jeong, Yi-Yeong; Han, Sunkyu; Shin, Jung-Hye; Lee, Soo Jung; Kang, Min Jung; Sung, Nak-Ju; Kang, Dawon

    2015-04-01

    Lipopolysaccharides (LPS) activate nuclear factor kappa B (NF-κB), a transcription factor that is involved in inflammatory response. The pathways that activate NF-κB can be modulated by phytochemicals derived from garlic. We recently demonstrated that aged red garlic extract (ARGE), a new formulation of garlic, decreases nitric oxide (NO) generation by upregulating of heme oxygenase-1 (HO-1) in RAW 264.7 cells activated by LPS. However, the effects of ARGE on LPS-induced NF-κB activation are unknown. This study was performed to evaluate whether ARGE regulates LPS-induced NO production by modulation of NF-κB activation in macrophages. The inhibition of NF-κB by Bay 11-7085, an inhibitor of NF-κB, decreased LPS-induced NO production. ARGE treatment markedly reduced LPS-induced NO production and NF-κB nuclear translocation. ARGE downregulated expression of inducible nitric oxide synthase (iNOS) and upregulated expression of HO-1, a cytoprotective and anti-inflammatory protein. However, Bay 11-7085 only reduced iNOS expression. The NO production and iNOS expressions upregulated by suppression of HO-1 were suppressed by treatment with ARGE and Bay 11-7085. These results show that ARGE reduces LPS-induced NO production in macrophages through inhibition of NF-κB nuclear translocation and HO-1 activation. Compared to Bay 11-7085, ARGE may enhance anti-inflammatory effects by controlling other anti-inflammatory signals as well as regulation of NF-κB.

  5. Aged red garlic extract suppresses nitric oxide production in lipopolysaccharide-treated RAW 264.7 macrophages through inhibition of NF-κB.

    PubMed

    Ryu, Ji Hyeon; Park, Hye-Jin; Jeong, Yi-Yeong; Han, Sunkyu; Shin, Jung-Hye; Lee, Soo Jung; Kang, Min Jung; Sung, Nak-Ju; Kang, Dawon

    2015-04-01

    Lipopolysaccharides (LPS) activate nuclear factor kappa B (NF-κB), a transcription factor that is involved in inflammatory response. The pathways that activate NF-κB can be modulated by phytochemicals derived from garlic. We recently demonstrated that aged red garlic extract (ARGE), a new formulation of garlic, decreases nitric oxide (NO) generation by upregulating of heme oxygenase-1 (HO-1) in RAW 264.7 cells activated by LPS. However, the effects of ARGE on LPS-induced NF-κB activation are unknown. This study was performed to evaluate whether ARGE regulates LPS-induced NO production by modulation of NF-κB activation in macrophages. The inhibition of NF-κB by Bay 11-7085, an inhibitor of NF-κB, decreased LPS-induced NO production. ARGE treatment markedly reduced LPS-induced NO production and NF-κB nuclear translocation. ARGE downregulated expression of inducible nitric oxide synthase (iNOS) and upregulated expression of HO-1, a cytoprotective and anti-inflammatory protein. However, Bay 11-7085 only reduced iNOS expression. The NO production and iNOS expressions upregulated by suppression of HO-1 were suppressed by treatment with ARGE and Bay 11-7085. These results show that ARGE reduces LPS-induced NO production in macrophages through inhibition of NF-κB nuclear translocation and HO-1 activation. Compared to Bay 11-7085, ARGE may enhance anti-inflammatory effects by controlling other anti-inflammatory signals as well as regulation of NF-κB. PMID:25584924

  6. Complexation and coordination selectivities of the tetradentate ligand 7-[(2-hydroxy-5-sulfophenyl) azo]-8-hydroxyquinoline-5-sulfonic acid with Fe(II), Ni(II), Zn(II), Cd(II) and VO(IV)

    SciTech Connect

    Huang, Hu; Kai, Fumiaki; Hirohata, Masaaki; Nakamura, Masaaki; Matsuzaki, Susumu; Komori, Kenji; Tsunematsu, Yuriko

    1993-12-31

    The new title tetradentate ligand (SPAHQS), containing both phenylazo and 8-quinolinol fragments, was prepared. Proton-dissociation processes of the ligand and complexing equilibria with Fe(II), Ni(II), Zn(II), Cd(II), and VO(IV) were analyzed spectrophotometrically. Coordination modes of SPAHQS with these metal ions have been investigated by means of polarography and Raman spectroscopy in aqueous solution. It was established that the coordination selectivity of SPAHQS for such metal ions is mainly dependent on steric factors in the chelate ring formed, not on HSAB properties. 18 refs., 6 figs., 2 tabs.

  7. MODEL FOR NON-EQUILIBRIUM BINDING AND AFFINITY CHROMATOGRAPHY WITH CHARACTERIZATION OF 8-HYDROXYQUINOLINE IMMOBILIZED ON CONTROLLED PORE GLASS USING A FLOW INJECTION SYSTEM WITH A PACKED MICRO-COLUMN. (R826694C651)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Acacetin inhibits in vitro and in vivo angiogenesis and down-regulates Stat signaling and VEGF expression

    PubMed Central

    Bhat, Tariq A.; Nambiar, Dhanya; Tailor, Dhanir; Pal, Arttatrana; Agarwal, Rajesh; Singh, Rana P.

    2013-01-01

    Angiogenesis is an effective target in cancer control. The anti-angiogenic efficacy and associated mechanisms of acacetin, a plant flavone, is poorly known. In the present study, acacetin inhibited growth and survival (upto 92%, p<0.001), and capillary-like tube formation on matrigel (upto 98%, p<0.001) by human umbilical vein endothelial cells (HUVEC) in regular condition, as well as VEGF-induced and tumor cells conditioned medium-stimulated growth conditions. It caused retraction and disintegration of preformed capillary networks (upto 91%, p<0.001). HUVEC migration and invasion were suppressed by 68-100% (p<0.001). Acacetin inhibited Stat-1 (Tyr701) and Stat-3 (Tyr705) phosphorylation, and down-regulated pro-angiogenic factors including VEGF, eNOS, iNOS, MMP-2 and bFGF in HUVEC. It also suppressed nuclear localization of pStat-3 (Tyr705). Acacetin strongly inhibited capillary sprouting and networking from rat aortic rings and fertilized chicken egg chorioallantoic membrane (CAM) (~71%, p<0.001). Furthermore, it suppressed angiogenesis in matrigel plugs implanted in Swiss albino mice. Acacetin also inhibited tyrosine phosphorylation of Stat-1 and Stat-3, and expression of VEGF in cancer cells. Overall, acacetin inhibits Stat signaling and suppresses angiogenesis in vitro, ex vivo and in vivo, and therefore, it could be a potential agent to inhibit tumor angiogenesis and growth. PMID:23943785

  9. Rosmarinic Acid Methyl Ester Inhibits LPS-Induced NO Production via Suppression of MyD88- Dependent and -Independent Pathways and Induction of HO-1 in RAW 264.7 Cells.

    PubMed

    So, Yangkang; Lee, Seung Young; Han, Ah-Reum; Kim, Jin-Baek; Jeong, Hye Gwang; Jin, Chang Hyun

    2016-01-01

    In this study, we investigated the anti-inflammatory effect of rosmarinic acid methyl ester (RAME) isolated from a mutant cultivar of Perilla frutescens (L.) Britton. We found that RAME inhibits lipopolysaccharide (LPS)-induced nitric oxide (NO) production, with an IC50 of 14.25 µM, in RAW 264.7 cells. RAME inhibited the LPS-induced expression of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, monocyte chemoattractant protein-1, interferon-β, and inducible nitric oxide synthase (iNOS). Moreover, RAME suppressed the activation of nuclear factor kappa B. These results suggest that the downregulation of iNOS expression by RAME was due to myeloid differentiation primary response gene 88 (MyD88)-dependent and -independent pathways. Furthermore, RAME induced the expression of heme oxygenase-1 (HO-1) through activation of nuclear factor-erythroid 2-related factor 2. Treatment with tin protoporphyrin, an inhibitor of HO-1, reversed the RAME-induced suppression of NO production. Taken together, RAME isolated from P. frutescens inhibited NO production in LPS-treated RAW 264.7 cells through simultaneous induction of HO-1 and inhibition of MyD88-dependent and -independent pathways. PMID:27548124

  10. A combined extract of Cinnamomi Ramulus, Anemarrhenae Rhizoma and Alpiniae Officinari Rhizoma suppresses production of nitric oxide by inhibiting NF-kappaB activation in RAW 264.7 cells.

    PubMed

    Jeong, Mi-Young; Lee, Ji-Suk; Lee, Jae-Dong; Kim, Nam-Jae; Kim, Jin-Woo; Lim, Sabina

    2008-06-01

    An herbal mixture prepared with Cinnamomi Ramulus, Anemarrhenae Rhizoma and Alpiniae Officinari Rhizoma (CAA) is used in oriental medicine for treating several ailments. The purpose of this study was to determine the mechanisms by which CAA elicits an antiinflammatory effect on nitric oxide (NO) production in the mouse macrophage cell line RAW 264.7 cells. The results indicated that lipopolysaccharide (LPS)-induced NO production was inhibited by CAA in a dose-dependent manner. Western blotting and RT-PCR analysis demonstrated that CAA decreased LPS-induced inducible nitric oxide synthase (iNOS) protein and gene expression in RAW 264.7 cells. Furthermore, CAA inhibited the LPS-induced DNA binding activity of nuclear factor-kappa B (NF-kappaB) and this effect was mediated through inhibiting the degradation of inhibitory factor-kappaBalpha (IkappaBalpha). Therefore, the results demonstrate that CAA inhibits LPS-induced production of NO and expression of iNOS by blocking NF-kappaB activation. CAA might be a potential therapeutic candidate for treating inflammatory diseases such as arthritis.

  11. Inhibition of nitric oxide production in lipopolysaccharide-activated RAW 264.7 macrophages by Jeju plant extracts

    PubMed Central

    Yang, Eun-Jin; Yim, Eun-Young; Song, Gwanpil; Kim, Gi-Ok; Hyun, Chang-Gu

    2009-01-01

    Nitric oxide (NO) produced in large amounts by inducible nitric oxide synthase (iNOS) is known to be responsible for the vasodilation and hypotension observed during septic shock and inflammation. Thus, inhibitors of iNOS may be useful candidates for the treatment of inflammatory diseases accompanied by the overproduction of NO. In this study, we prepared alcoholic extracts of Jeju plants and screened them for their inhibitory activity against NO production in lipopolysaccharide (LPS)-activated macrophages. Among the 260 kinds of plant extract tested, 122 extracts showed potent inhibitory activity towards NO production by more than 25% at a concentration of 100 µg/mL. Plants such as Malus sieboldii, Vaccinium oldhamii, Corylus hallaisanensis, Carpinus laxiflora, Styrax obassia, and Securinega suffruticosa showed the most potent inhibition (above 70%) at a concentration of 100 µg/mL. The cytotoxic effects of the plant extracts were determined by colorimetric MTT assays and most plant extracts exhibited only moderate cytotoxicity at 100 µg/mL. Therefore, these plants should be considered promising candidates for the further purification of bioactive compounds and would be useful for the treatment of inflammatory diseases accompanying overproduction of NO. PMID:21217861

  12. Inducible nitric oxide synthase-vascular endothelial growth factor axis: a potential target to inhibit tumor angiogenesis by dietary agents.

    PubMed

    Singh, Rana P; Agarwal, Rajesh

    2007-08-01

    Human solid tumors remain latent in the absence of angiogenesis since it is a critical process for their further growth and progression. Experimental evidence suggests that targeting tumor angiogenesis may be a novel strategy to check tumor growth and metastases. Recent studies suggest that several bioactive food components can suppress tumor growth by inhibiting angiogenesis. This suppression occurs because of a direct effect on the tumor, as well as a direct effect on vascular endothelial cells. These food components can target epigenetic processes and thereby suppress the pro-angiogenic tumor microenvironment. One likely epigenetic target is inducible nitric oxide synthase (iNOS). iNOS is known to regulate vascular endothelial growth factor (VEGF) expression, and thereby tumor angiogenesis. The ability of food components to influence the inducible form of cyclooxygenase, COX-2 may also contribute to their impact on tumor growth and angiogenesis. This review focuses on recent developments related to the angiogenic role of the iNOS-VEGF axis and how dietary components may target this axis. Overall, studies suggest that the anti-angiogenic potential of physiologically concentrations of relevant food components could be used as a practical approach for cancer prevention and intervention. PMID:17691907

  13. Phosphatase-1 and -2A inhibition modulates apoptosis in human osteoarthritis chondrocytes independently of nitric oxide production

    PubMed Central

    Lopez-Armada, M; Carames, B; Cillero-Pastor, B; Lires-Dean, M; Maneiro, E; Fuentes, I; Ruiz, C; Galdo, F; Blanco, F

    2005-01-01

    Methods: Human OA chondrocytes were isolated from cartilage obtained from the femoral heads of patients undergoing joint replacement surgery. Cell viability was evaluated by MTT assay. Apoptosis was quantified by ELISA, which measures DNA fragmentation. Nitric oxide (NO) production was evaluated by the Greiss method, and inducible nitric oxide synthase (iNOS) protein synthesis was studied by western blotting. Results: Inhibition of PP1/2A by the specific inhibitor okadaic acid (OKA) dose and time dependently caused a reduction of cell viability (OKA at 50 nmol/l: a reduction to 60% and 43% at 48 and 72 hours, respectively). Genomic DNA from chondrocytes treated with OKA at 50 and 100 nmol/l for 48 hours displayed increased internucleosomal DNA fragmentation by 11 and 13 fields, respectively. Light microscopy and DAPI studies showed that OKA induced DNA condensation and fragmentation, typical of death by apoptosis. The caspase inhibitors Z-VAD-FMK and Z-DEVD-FMK increased cell viability, reduced by OKA at 50 nmol/l to 87% and 73%, respectively. OKA did not increase iNOS protein synthesis or NO production. Conclusion: PP1/2A modulate apoptosis in human OA chondrocytes; this is independent of NO production but dependent on caspases. PMID:15958763

  14. Supercritical extract of Seabuckthorn Leaves (SCE200ET) inhibited endotoxemia by reducing inflammatory cytokines and nitric oxide synthase 2 expression.

    PubMed

    Jayashankar, Bindhya; Mishra, K P; Ganju, L; Singh, S B

    2014-05-01

    Endotoxins from infectious organisms lead to sepsis, a systemic inflammatory response, and a major cause of death. Numerous studies have shown the potential role of plants and plant-derived compounds in the suppression of LPS induced endotoxemia in vivo. In the present study, we have identified a plant namely Seabuckthorn (Hippophae rhamnoides L.) as a potent agent for the treatment of endotoxemia. The objective of the study was to investigate the influence of Supercritical Extract of Seabuckthorn Leaves (SCE200ET) and its active component Isorhamnetin (IR) on the LPS induced endotoxemia in Balb/c mice by measuring the level of nitric oxide (NO), TNF-α and IL-6. Expression of COX-2 and iNOS was measured to understand the involvement of various pathways in the mechanism of action of SCE200ET and IR. The results indicated that SCE200ET and IR inhibited LPS induced NO production by peritoneal macrophages. Cytokines mediated effector functions were influenced by the reduction of IL-6 and TNF-α production and CD40 expression was also markedly diminished in the extract or IR treated groups. In addition, the anti-inflammatory properties were further characterized by decreased expression of COX-2 and iNOS proteins. Fractionation and phytochemical analysis of the extract by RP-HPLC led to identification of isorhamnetin, as bioactive component. Thus, SCE200ET extract and its active component Isorhamnetin could be potential therapeutic agents for the treatment of endotoxin induced sepsis.

  15. Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway.

    PubMed

    Huang, Chuanshu; Li, Jingxia; Song, Lun; Zhang, Dongyun; Tong, Qiangsong; Ding, Min; Bowman, Linda; Aziz, Robeena; Stoner, Gary D

    2006-01-01

    Previous studies have shown that freeze-dried black raspberry extract fractions inhibit benzo(a)pyrene [B(a)P]-induced transformation of Syrian hamster embryo cells and benzo(a)pyrene diol-epoxide [B(a)PDE]-induced activator protein-1 (AP-1) activity in mouse epidermal Cl 41 cells. The phosphotidylinositol 3-kinase (PI-3K)/Akt pathway is critical for B(a)PDE-induced AP-1 activation in mouse epidermal Cl 41 cells. In the present study, we determined the potential involvement of PI-3K and its downstream kinases on the inhibition of AP-1 activation by black raspberry fractions, RO-FOO3, RO-FOO4, RO-ME, and RO-DM. In addition, we investigated the effects of these fractions on the expression of the AP-1 target genes, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Pretreatment of Cl 41 cells with fractions RO-F003 and RO-ME reduced activation of AP-1 and the expression of VEGF, but not iNOS. In contrast, fractions RO-F004 and RO-DM had no effect on AP-1 activation or the expression of either VEGF or iNOS. Consistent with inhibition of AP-1 activation, the RO-ME fraction markedly inhibited activation of PI-3K, Akt, and p70 S6 kinase (p70(S6k)). In addition, overexpression of the dominant negative PI-3K mutant delta p85 reduced the induction of VEGF by B(a)PDE. It is likely that the inhibitory effects of fractions RO-FOO3 and RO-ME on B(a)PDE-induced AP-1 activation and VEGF expression are mediated by inhibition of the PI-3K/Akt pathway. In view of the important roles of AP-1 and VEGF in tumor development, one mechanism for the chemopreventive activity of black raspberries may be inhibition of the PI-3K/Akt/AP-1/VEGF pathway.

  16. Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway.

    PubMed

    Huang, Chuanshu; Li, Jingxia; Song, Lun; Zhang, Dongyun; Tong, Qiangsong; Ding, Min; Bowman, Linda; Aziz, Robeena; Stoner, Gary D

    2006-01-01

    Previous studies have shown that freeze-dried black raspberry extract fractions inhibit benzo(a)pyrene [B(a)P]-induced transformation of Syrian hamster embryo cells and benzo(a)pyrene diol-epoxide [B(a)PDE]-induced activator protein-1 (AP-1) activity in mouse epidermal Cl 41 cells. The phosphotidylinositol 3-kinase (PI-3K)/Akt pathway is critical for B(a)PDE-induced AP-1 activation in mouse epidermal Cl 41 cells. In the present study, we determined the potential involvement of PI-3K and its downstream kinases on the inhibition of AP-1 activation by black raspberry fractions, RO-FOO3, RO-FOO4, RO-ME, and RO-DM. In addition, we investigated the effects of these fractions on the expression of the AP-1 target genes, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Pretreatment of Cl 41 cells with fractions RO-F003 and RO-ME reduced activation of AP-1 and the expression of VEGF, but not iNOS. In contrast, fractions RO-F004 and RO-DM had no effect on AP-1 activation or the expression of either VEGF or iNOS. Consistent with inhibition of AP-1 activation, the RO-ME fraction markedly inhibited activation of PI-3K, Akt, and p70 S6 kinase (p70(S6k)). In addition, overexpression of the dominant negative PI-3K mutant delta p85 reduced the induction of VEGF by B(a)PDE. It is likely that the inhibitory effects of fractions RO-FOO3 and RO-ME on B(a)PDE-induced AP-1 activation and VEGF expression are mediated by inhibition of the PI-3K/Akt pathway. In view of the important roles of AP-1 and VEGF in tumor development, one mechanism for the chemopreventive activity of black raspberries may be inhibition of the PI-3K/Akt/AP-1/VEGF pathway. PMID:16397275

  17. Matrine Exerts a Strong Anti-Arthritic Effect on Type II Collagen-Induced Arthritis in Rats by Inhibiting Inflammatory Responses.

    PubMed

    Pu, Jiang; Fang, Fan-Fu; Li, Xiu-Qing; Shu, Zhi-Heng; Jiang, Yi-Ping; Han, Ting; Peng, Wei; Zheng, Cheng-Jian

    2016-01-01

    To investigate anti-arthritic effects of matrine isolated from the roots of S. flavescens on type II collagen-induced arthritis (CIA) in rats and to explore its related potential mechanisms, CIA rats were established and administered with matrine (20, 40 or 80 mg/kg/days, for 30 days). Subsequently, blood was collected to determine serum levels of TNF-α, IL-1β, IL-6, IL-8, IL-17A, IL-10, MMP-2, MMP-3 and MMP-9, and hind paws and knee joints were collected for histopathological examination. Furthermore, indices of the thymus and spleen were determined, and synovial tissues were collected to determine the protein expressions of p-IκB, IκB, Cox-2 and iNOS. Our results indicated that matrine significantly suppressed inflammatory reactions and synovial tissue destruction. Matrine inhibited paw swelling, arthritis indices and weight loss in CIA rats. Additionally, matrine decreased the levels of TNF-α, IL-1β, IL-6, IL-8, IL-17A, MMP-2, MMP-3 and MMP-9. Matrine also down-regulated expressions of p-IκB, Cox-2, and iNOS but up-regulated IκB in synovial tissues in CIA rats. The results suggested matrine possesses an anti-arthritic effect in CIA rats via inhibiting the release of pro-inflammatory cytokines and proteins that promote the NF-κB pathway. PMID:27571073

  18. The Extract of Aster Koraiensis Prevents Retinal Pericyte Apoptosis in Diabetic Rats and Its Active Compound, Chlorogenic Acid Inhibits AGE Formation and AGE/RAGE Interaction

    PubMed Central

    Kim, Junghyun; Jo, Kyuhyung; Lee, Ik-Soo; Kim, Chan-Sik; Kim, Jin Sook

    2016-01-01

    Retinal capillary cell loss is a hallmark of early diabetic retinal changes. Advanced glycation end products (AGEs) are believed to contribute to retinal microvascular cell loss in diabetic retinopathy. In this study, the protective effects of Aster koraiensis extract (AKE) against damage to retinal vascular cells were investigated in streptozotocin (STZ)-induced diabetic rats. To examine this issue further, AGE accumulation, nuclear factor-kappaB (NF-κB) and inducible nitric oxide synthase (iNOS) were investigated using retinal trypsin digests from streptozotocin-induced diabetic rats. In the diabetic rats, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling)-positive retinal microvascular cells were markedly increased. Immunohistochemical studies revealed that AGEs were accumulated within the retinal microvascular cells, and this accumulation paralleled the activation of NF-κB and the expression of iNOS in the diabetic rats. However, AKE prevented retinal microvascular cell apoptosis through the inhibition of AGE accumulation and NF-κB activation. Moreover, to determine the active compounds of AKE, two major compounds, chlorogenic acid and 3,5-di-O-caffeoylquinic acid, were tested in an in vitro assay. Among these compounds, chlorogenic acid significantly reduced AGE formation as well as AGE/RAGE (receptor for AGEs) binding activity. These results suggest that AKE, particularly chlorogenic acid, is useful in inhibiting AGE accumulation in retinal vessels and exerts a preventive effect against the injuries of diabetic retinal vascular cells. PMID:27657123

  19. Matrine Exerts a Strong Anti-Arthritic Effect on Type II Collagen-Induced Arthritis in Rats by Inhibiting Inflammatory Responses.

    PubMed

    Pu, Jiang; Fang, Fan-Fu; Li, Xiu-Qing; Shu, Zhi-Heng; Jiang, Yi-Ping; Han, Ting; Peng, Wei; Zheng, Cheng-Jian

    2016-08-26

    To investigate anti-arthritic effects of matrine isolated from the roots of S. flavescens on type II collagen-induced arthritis (CIA) in rats and to explore its related potential mechanisms, CIA rats were established and administered with matrine (20, 40 or 80 mg/kg/days, for 30 days). Subsequently, blood was collected to determine serum levels of TNF-α, IL-1β, IL-6, IL-8, IL-17A, IL-10, MMP-2, MMP-3 and MMP-9, and hind paws and knee joints were collected for histopathological examination. Furthermore, indices of the thymus and spleen were determined, and synovial tissues were collected to determine the protein expressions of p-IκB, IκB, Cox-2 and iNOS. Our results indicated that matrine significantly suppressed inflammatory reactions and synovial tissue destruction. Matrine inhibited paw swelling, arthritis indices and weight loss in CIA rats. Additionally, matrine decreased the levels of TNF-α, IL-1β, IL-6, IL-8, IL-17A, MMP-2, MMP-3 and MMP-9. Matrine also down-regulated expressions of p-IκB, Cox-2, and iNOS but up-regulated IκB in synovial tissues in CIA rats. The results suggested matrine possesses an anti-arthritic effect in CIA rats via inhibiting the release of pro-inflammatory cytokines and proteins that promote the NF-κB pathway.

  20. Matrine Exerts a Strong Anti-Arthritic Effect on Type II Collagen-Induced Arthritis in Rats by Inhibiting Inflammatory Responses

    PubMed Central

    Pu, Jiang; Fang, Fan-Fu; Li, Xiu-Qing; Shu, Zhi-Heng; Jiang, Yi-Ping; Han, Ting; Peng, Wei; Zheng, Cheng-Jian

    2016-01-01

    To investigate anti-arthritic effects of matrine isolated from the roots of S. flavescens on type II collagen-induced arthritis (CIA) in rats and to explore its related potential mechanisms, CIA rats were established and administered with matrine (20, 40 or 80 mg/kg/days, for 30 days). Subsequently, blood was collected to determine serum levels of TNF-α, IL-1β, IL-6, IL-8, IL-17A, IL-10, MMP-2, MMP-3 and MMP-9, and hind paws and knee joints were collected for histopathological examination. Furthermore, indices of the thymus and spleen were determined, and synovial tissues were collected to determine the protein expressions of p-IκB, IκB, Cox-2 and iNOS. Our results indicated that matrine significantly suppressed inflammatory reactions and synovial tissue destruction. Matrine inhibited paw swelling, arthritis indices and weight loss in CIA rats. Additionally, matrine decreased the levels of TNF-α, IL-1β, IL-6, IL-8, IL-17A, MMP-2, MMP-3 and MMP-9. Matrine also down-regulated expressions of p-IκB, Cox-2, and iNOS but up-regulated IκB in synovial tissues in CIA rats. The results suggested matrine possesses an anti-arthritic effect in CIA rats via inhibiting the release of pro-inflammatory cytokines and proteins that promote the NF-κB pathway. PMID:27571073

  1. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells. PMID:27169820

  2. Coumarins from Angelica decursiva inhibit lipopolysaccharide-induced nitrite oxide production in RAW 264.7 cells.

    PubMed

    Ishita, Ishrat Jahan; Nurul Islam, Md; Kim, Yeong Shik; Choi, Ran Joo; Sohn, Hee Sook; Jung, Hyun Ah; Choi, Jae Sue

    2016-01-01

    Angelica decursiva has long been used in Korean traditional medicine as an antitussive, analgesic, antipyretic, and cough remedy. In this study, the anti-inflammatory activity of 9 coumarin derivatives isolated from a 90 % methanol fraction was evaluated via inhibition of production of nitric oxide (NO) and tumor necrosis factor-α (TNF-α), as well as the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Among the tested compounds, edulisin II (1) exhibited the most potent NO production inhibitory activity, followed by decursidin (2), Pd-C-III (3), 4-hydroxy Pd-C-III (4), Pd-C-I (5), and Pd-C-II (6). In contrast, (+)-trans-decursidinol (7) did not exhibit NO suppressive effects on LPS-stimulated RAW 264.7 cells. Structure-activity relationships revealed that esterification of the hydroxyl at C-3' or C-4' of 7 with an angeloyl/senecioyl/acetyl group is essential for its inhibitory activity against NO production, while the number of angeloyl or senecioyl groups, and their positions greatly affect the potency of these coumarins. Coumarins 1-6 also inhibited TNF-α production and iNOS protein expression, while compounds 1-4 inhibited COX-2 protein expression in LPS-stimulated RAW 264.7 cells. These results suggest that coumarins isolated from A. decursiva might be used as potential leads for the development of therapeutic agents for inflammation-associated disorders.

  3. Quantum chemical calculations on a selection of iodine-containing species (IO, OIO, INO3, (IO)2, I2O3, I2O4 and I2O5) of importance in the atmosphere.

    PubMed

    Kaltsoyannis, Nikolas; Plane, John M C

    2008-04-01

    The electronic and geometric structures of the title complexes are studied quantum chemically using ab initio and density functional approaches. Coupled cluster calculations at the scalar relativistic (basis set) level are performed, and the results are corrected for spin-orbit coupling using data from relativistic density functional theory studies. The heats of formation (kJ mol(-1)) at 298 K are found to be: IO3 147.8, INO3 33.1, OIO 110.1, I2O3 64.0, I2O4 111.3, I2O5 33.0, IOIO 141.3, IOOI 179.9 and OI(I)O 157.9. These data are used to draw a number of conclusions regarding three important aspects of iodine chemistry in the marine boundary layer. (i) Although the IO self reaction produces the asymmetric dimer, IOIO, it is unlikely that this species plays a further role in the atmosphere as it is short-lived. (ii) INO3 is sufficiently stable to explain the kinetics of the recombination reaction between IO and NO2, and the reaction between I2 and NO3 to produce I + INO3 is almost certainly the major source of iodine oxides at night. (iii) The higher iodine oxides I2O3 and I2O5 are very stable molecules, by contrast to the OIO dimer, I2O4, which is much less stable but which should still survive long enough in the marine boundary layer to provide a building block for iodine oxide particle formation.

  4. Variation de l'albuminémie au cours de la malnutrition protéino-energétique dans une zone urbano-rurale congolaise

    PubMed Central

    Musimwa, Aimée Mudekereza; Kanteng, Gray Wakamb; Mutoke, Gayllord Nkashama; Okito, Kristen Numbe; Shongo, Mick Ya Pongombo; Luboya, Oscar Numbi

    2015-01-01

    Introduction La malnutrition est à ce jour un problème de santé publique majeur, notamment dans les pays en voie de développement. Le diagnostic est fait cliniquement, mais l'intérêt de certains dosages paracliniques ont leur importance pour en évaluer la gravité ou faciliter un dépistage précoce, notamment de l'albuminémie. Cette étude a eu pour objectif de déterminer la variation de l'albuminémie au cours de la malnutrition protéino-calorique de l'enfant et de déterminer les facteurs associés. Méthodes Il s'agit d'une étude descriptive transversale, effectuée prospectivement de juillet 2013 à mars 2014. 154 cas ont été colligés, par échantillonnage de convenance, avec un dépistage actif des enfants malnutris. Résultats 72,7% d'enfants avaient un taux normal d'albuminémie, ce taux bas étant pour la plupart lié à un état inflammatoire et/ou infectieux au cours de la malnutrition. Le taux d'albuminémie a un lien étroit avec l’état nutritionnel, chez le malnutri chronique, l’émacié et chez ceux présentant un déficit pondéral avec respectivement 18,3%; 24,0% et 30,4% d'enfants qui ont présenté un taux bas en albumine plasmatique. Cette hypo albuminémie a été retrouvé chez les malnutris avec ou sans œdèmes. 30 enfants ont présentés des œdèmes et 63% avaient un taux bas d'albumine sérique; contre 124 enfants qui n'ont pas présentés des œdèmes et 18,3% ont présenté un taux bas en albumine sérique. Conclusion La malnutrition est une maladie dont les perturbations impliquent celle de l'albuminémie. Les variations de l'albuminémie sont statistiquement associées au tableau clinique. PMID:26161222

  5. Dietary ascorbic acid modulates the expression profile of stress protein genes in hepatopancreas of adult Pacific abalone Haliotis discus hannai Ino.

    PubMed

    Wu, Chenglong; Wang, Jia; Xu, Wei; Zhang, Wenbing; Mai, Kangsen

    2014-12-01

    This study was conducted to investigate the effects of dietary ascorbic acid (AA) on transcriptional expression patterns of antioxidant proteins, heat shock proteins (HSP) and nuclear factor kappa B (NF-κB) in the hepatopancreas of Pacific abalone Haliotis discus hannai Ino (initial average length: 84.36 ± 0.24 mm) using real-time quantitative PCR assays. L-ascorbyl-2-molyphosphate (LAMP) was added to the basal diet to formulate four experimental diets containing 0.0, 70.3, 829.8 and 4967.5 mg AA equivalent kg(-1) diets, respectively. Each diet was fed to triplicate groups of adult abalone in acrylic tanks (200 L) in a flow-through seawater system. Each tank was stocked with 15 abalone. Animals were fed once daily (17:00) to apparent satiation for 24 weeks. The results showed that the dietary AA (70.3 mg kg(-1)) could significantly up-regulate the expression levels of Cu/Zn superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), feritin (FT) and heat shock protein 26 (HSP26) in the hepatopancreas of abalone in this treatment compared to the controls. However, the expression levels of Mn-SOD, glutathione peroxidase (GPX), thioredoxin peroxidase (TPx), selenium-binding protein (SEBP), HSP70 and HSP90 were significantly down-regulated. Compared with those in the group with 70.3 mg kg(-1) dietary AA, the expression levels of CAT, GST and HSP26 were decreased in abalone fed with very high dietary AA (4967.5 mg kg(-1)). In addition, significant up-regulations of expression levels of Mn-SOD, GPX, TPx, SEBP, FT, HSP70, HSP90 and NF-κB were observed in abalone fed with apparently excessive dietary AA (829.8 and 4967.5 mg kg(-1)) as compared to those fed 70.3 mg kg(-1) dietary AA. These findings showed that dietary AA influenced the expression levels of antioxidant proteins, heat shock proteins and NF-κB in the hepatopancreas of abalone at transcriptional level. Levels of dietary AA that appeared adequate (70.3 mg kg(-1)) reduced the oxidative stress

  6. Molecular cloning, characterization and expression analysis of heat shock protein 90 from Pacific abalone, Haliotis discus hannai Ino in response to dietary selenium.

    PubMed

    Zhang, Wenbing; Wu, Chenglong; Mai, Kangsen; Chen, Qiyong; Xu, Wei

    2011-01-01

    In the present study, the cDNA of heat shock protein 90 from Pacific abalone Haliotis discus hannai Ino (HdhHSP90) was cloned by the combination of homology cloning and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of HdhHSP90 was of 2660 bp, including an open reading frame (ORF) of 2187 bp encoding a polypeptide of 728 amino acids with predicted molecular weight of 84.134 kDa and theoretical isoelectric point of 4.619. BLAST analysis revealed that HdhHSP90 shared high similarity with other known HSP90s, and the five conserved amino acid blocks defined as HSP90 protein family signatures were also identified in HdhHSP90, which indicated that HdhHSP90 should be a cytosolic member of the HSP90 family. The expression levels of HdhHSP90 in haemocytes and hepatopancreas were measured by real-time PCR after Pacific abalone were fed with semi-purified diets containing graded levels of selenium (0.15, 1.32 and 48.70 mg Kg(-1)) for 20 weeks, respectively. The results showed that the expression levels of HdhHSP90 transcript were significantly up-regulated and reached the maximum (0.47-fold) in hepatopancreas of Pacific abalone fed with optimal dietary Se (1.32 mg Kg(-1)) (p < 0.05). However, these levels significantly decreased in hepatopancreas at the excessive dietary Se (48.70 mg Kg(-1)) (p < 0.01). In haemocytes, the expression of HdhHSP90 mRNA increased and reached the maximum (0.96-fold) at the excessive dietary Se (48.70 mg Kg(-1)) (p < 0.01). It is implied that the expression levels of HdhHSP90 could be affected by dietary Se in hepatopancreas and haemocytes, and HdhHSP90 was potentially involved in the anti-oxidation responses in Pacific abalone H. discus hannai.

  7. Dietary ascorbic acid modulates the expression profile of stress protein genes in hepatopancreas of adult Pacific abalone Haliotis discus hannai Ino.

    PubMed

    Wu, Chenglong; Wang, Jia; Xu, Wei; Zhang, Wenbing; Mai, Kangsen

    2014-12-01

    This study was conducted to investigate the effects of dietary ascorbic acid (AA) on transcriptional expression patterns of antioxidant proteins, heat shock proteins (HSP) and nuclear factor kappa B (NF-κB) in the hepatopancreas of Pacific abalone Haliotis discus hannai Ino (initial average length: 84.36 ± 0.24 mm) using real-time quantitative PCR assays. L-ascorbyl-2-molyphosphate (LAMP) was added to the basal diet to formulate four experimental diets containing 0.0, 70.3, 829.8 and 4967.5 mg AA equivalent kg(-1) diets, respectively. Each diet was fed to triplicate groups of adult abalone in acrylic tanks (200 L) in a flow-through seawater system. Each tank was stocked with 15 abalone. Animals were fed once daily (17:00) to apparent satiation for 24 weeks. The results showed that the dietary AA (70.3 mg kg(-1)) could significantly up-regulate the expression levels of Cu/Zn superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), feritin (FT) and heat shock protein 26 (HSP26) in the hepatopancreas of abalone in this treatment compared to the controls. However, the expression levels of Mn-SOD, glutathione peroxidase (GPX), thioredoxin peroxidase (TPx), selenium-binding protein (SEBP), HSP70 and HSP90 were significantly down-regulated. Compared with those in the group with 70.3 mg kg(-1) dietary AA, the expression levels of CAT, GST and HSP26 were decreased in abalone fed with very high dietary AA (4967.5 mg kg(-1)). In addition, significant up-regulations of expression levels of Mn-SOD, GPX, TPx, SEBP, FT, HSP70, HSP90 and NF-κB were observed in abalone fed with apparently excessive dietary AA (829.8 and 4967.5 mg kg(-1)) as compared to those fed 70.3 mg kg(-1) dietary AA. These findings showed that dietary AA influenced the expression levels of antioxidant proteins, heat shock proteins and NF-κB in the hepatopancreas of abalone at transcriptional level. Levels of dietary AA that appeared adequate (70.3 mg kg(-1)) reduced the oxidative stress

  8. Saccadic Inhibition in Reading

    ERIC Educational Resources Information Center

    Reingold, Eyal M.; Stampe, Dave M.

    2004-01-01

    In 5 experiments, participants read text that was briefly replaced by a transient image for 33 ms at random intervals. A decrease in saccadic frequency, referred to as saccadic inhibition, occurred as early as 60-70 ms following the onset of abrupt changes in visual input. It was demonstrated that the saccadic inhibition was influenced by the…

  9. Inhibition of Raf-MEK-ERK and Hypoxia pathways by Phyllanthus prevents metastasis in human lung (A549) cancer cell line

    PubMed Central

    2013-01-01

    Background Lung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities. Methods Cancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus. Results Phyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1α that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity. Conclusions Phyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549

  10. Modulation of ENaC, CFTR, and iNOS expression in bronchial epithelial cells after stimulation with Staphylococcus epidermidis (94B080) and Staphylococcus aureus (90B083).

    PubMed

    Hussain, Rashida; Oliynyk, Igor; Roomans, Godfried M; Björkqvist, Maria

    2013-09-01

    Bacteria affect the respiratory epithelium, which is covered by airway surface liquid (ASL) and mucus. Ion concentrations in the ASL are determined by the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na(+) channel (ENaC). Neonatal sepsis is a major risk factor for subsequent pulmonary disease in preterm newborns. Predominating are coagulase-negative staphylococci (e.g., Staphylococccus epidermidis and Staphylococccus aureus). The aim of this study was to investigate modulation of CFTR, ENaC, mucins, proinflammatory cytokines, and inducible nitric oxide synthase (iNOS) in respiratory epithelial cells after S. epidermidis 94B080 and S. aureus 90B083 exposure. Bronchial epithelial cells were incubated with S. epidermidis 94B080 and S. aureus 90B083 (neonatal blood isolates) for 1-36 h. Expression of CFTR, ENaC, iNOS, and mucins was analyzed by real-time PCR and Western blotting. Release of cytokines was analyzed by ELISA, and production of NO by the Griess assay. Expression of CFTR significantly decreased after 36 h incubation with S. epidermidis and more prominently with S. aureus, whereas S. epidermidis caused a significant increase in the expression of β- and γ-ENaC. Expression of iNOS increased, but NO was not detected. Both staphylococci caused a decrease in the intracellular Ca(2+) concentration. S. aureus induced increased secretion of IL-6, IL-8, and transforming nuclear factor (TNF)-α in a time-dependent manner as compared with S. epidermidis. In conclusion, expression of ENaC, CFTR, and iNOS is modulated by exposure to S. aureus 90B083 and S. epidermidis 94B080. S. aureus is more potent in causing release of IL-6, IL-8, and TNF-α by bronchial epithelial cells as compared with S. epidermidis. The mRNA expression for the mucus proteins MUC2, MUC5AC, and MUC5B could not be measured, neither in the presence nor in the absence of bacteria.

  11. Diosgenin inhibits IL-1β-induced expression of inflammatory mediators in human osteoarthritis chondrocytes.

    PubMed

    Wang, Leisheng; Ma, Tian; Zheng, Yanpin; Lv, Shiqiao; Li, Yu; Liu, Shaoxian

    2015-01-01

    It is well known that the inflammatory cytokines play important roles in osteoarthritis (OA). Diosgenin is a steroidal saponin found in several plants including Solanum and Dioscorea species and possesses diverse biological activities including anti-inflammatory properties. However, the role of diosgenin in inflammatory responses in OA chondrocytes is still unclear. Therefore, in this study, we investigated the anti-inflammatory properties of diosgenin in human OA chondrocytes. We found that diosgenin inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) induced by interleukin-1-beta (IL-1β). Diosgenin significantly inhibited the IL-1β-stimulated expression of metalloproteinase-3 (MMP-3), MMP-13, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in human OA chondrocytes. In addition, diosgenin suppressed the degradation of IκB-α in IL-1β-induced human OA chondrocytes. Taken together, this study showed that diosgenin can effectively inhibit the IL-1β-induced expression of inflammatory mediators, suggesting that diosgenin may be a potential agent in the treatment of OA. PMID:26191174

  12. Different immunology mechanisms of Phellinus igniarius in inhibiting growth of liver cancer and melanoma cells.

    PubMed

    Zhou, Cui; Jiang, Song-Song; Wang, Cui-Yan; Li, Rong; Che, Hui-Lian

    2014-01-01

    To assess inhibition mechanisms of a Phellinus igniarius (PI) extract on cancer, C57BL/6 mice were orally treated with PI extractive after or before implanting H22 (hepatocellular carcinoma ) or B16 (melanoma) cells. Mice were orally gavaged with different doses of PI for 36 days 24h after introduction of H22 or B16 cells. Mice in another group were orally treated as above daily for 42 days and implanted with H22 cells on day 7. Then the T lymphocyte, antibody, cytokine, LAK, NK cell activity in spleen, tumor cell apoptosis status and tumor inhibition in related organs, as well as the expression of iNOS and PCNA in tumor tissue were examined. The PI extract could improve animal immunity as well as inhibit cancer cell growth and metastasis with a dose-response relationship. Notably, PI's regulation with the two kinds of tumor appeared to occur in different ways, since the antibody profile and tumor metastasis demonstrated variation between animals implanted with hepatocellular carcinoma and melanoma cells. PMID:24870774

  13. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Caroline

    1999-01-01

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  14. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Caroline

    2001-10-09

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  15. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Carolyn

    1999-10-05

    This invention provides a system for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, this system can be used to palliate certain inflammatory and immunological conditions.

  16. Antrodia camphorata Potentiates Neuroprotection against Cerebral Ischemia in Rats via Downregulation of iNOS/HO-1/Bax and Activated Caspase-3 and Inhibition of Hydroxyl Radical Formation.

    PubMed

    Yang, Po-Sheng; Lin, Po-Yen; Chang, Chao-Chien; Yu, Meng-Che; Yen, Ting-Lin; Lan, Chang-Chou; Jayakumar, Thanasekaran; Yang, Chih-Hao

    2015-01-01

    Antrodia camphorata (A. camphorata) is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO) rats. A selective occlusion of the middle cerebral artery (MCA) with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day) alone or combined with aspirin (5 mg/kg/day). To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS), haem oxygenase-1 (HO-1), and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P < 0.001), iNOS (P < 0.001), and Bax (P < 0.01) in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day). Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P < 0.01). Moreover, treatment of A. camphorata significantly (P < 0.05) reduced fenton reaction-induced hydroxyl radical (OH(•)) formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH(•) signals.

  17. Anti-inflammatory effects of guggulsterone on murine macrophage by inhibiting LPS-induced inflammatory cytokines in NF-κB signaling pathway.

    PubMed

    Zhang, Jin-Hua; Shangguan, Zhao-Shui; Chen, Chao; Zhang, Hui-Jie; Lin, Yi

    2016-01-01

    The present study was aimed to investigate the effects of guggulsterone (GS) on proinflammatory responses as well as the underlying molecular mechanisms in macrophage upon lipopolysaccharide (LPS) stimulation. Effects of GS on viability of Raw264.7 cells were examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Real-time polymerase chain reaction (PCR) was employed to examine the mRNA expression of cytokines, including interleukin 1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS). Phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinases (p38), and inhibitor of nuclear factor kappaB (IκB) were determined using immunoblotting. The results revealed that GS was not toxic to Raw264.7 cells at designated concentrations. We demonstrated that GS significantly suppressed the elevated mRNA expression of proinflammatory cytokines, including IL-1β, TNF-α, and iNOS in a dose-dependent manner. GS treatment reduced the level of IκB phosphorylation in LPS-stimulated macrophages in a dose-dependent manner. Use of BAY 11-7082, an inhibitor of nuclear factor-kappaB (NF-κB), led to significantly suppressing effects on IL-1β and TNF-α expression similar as that of GS-treated cells. Our findings suggest that GS possesses anti-inflammatory activity, which may be attributed to downregulation of iNOS and inhibition of NF-κB activity in LPS-stimulated Raw264.7 cells. PMID:27330276

  18. Anti-inflammatory effects of guggulsterone on murine macrophage by inhibiting LPS-induced inflammatory cytokines in NF-κB signaling pathway

    PubMed Central

    Zhang, Jin-Hua; Shangguan, Zhao-Shui; Chen, Chao; Zhang, Hui-Jie; Lin, Yi

    2016-01-01

    The present study was aimed to investigate the effects of guggulsterone (GS) on proinflammatory responses as well as the underlying molecular mechanisms in macrophage upon lipopolysaccharide (LPS) stimulation. Effects of GS on viability of Raw264.7 cells were examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Real-time polymerase chain reaction (PCR) was employed to examine the mRNA expression of cytokines, including interleukin 1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS). Phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinases (p38), and inhibitor of nuclear factor kappaB (IκB) were determined using immunoblotting. The results revealed that GS was not toxic to Raw264.7 cells at designated concentrations. We demonstrated that GS significantly suppressed the elevated mRNA expression of proinflammatory cytokines, including IL-1β, TNF-α, and iNOS in a dose-dependent manner. GS treatment reduced the level of IκB phosphorylation in LPS-stimulated macrophages in a dose-dependent manner. Use of BAY 11-7082, an inhibitor of nuclear factor-kappaB (NF-κB), led to significantly suppressing effects on IL-1β and TNF-α expression similar as that of GS-treated cells. Our findings suggest that GS possesses anti-inflammatory activity, which may be attributed to downregulation of iNOS and inhibition of NF-κB activity in LPS-stimulated Raw264.7 cells. PMID:27330276

  19. Antrodia camphorata Potentiates Neuroprotection against Cerebral Ischemia in Rats via Downregulation of iNOS/HO-1/Bax and Activated Caspase-3 and Inhibition of Hydroxyl Radical Formation

    PubMed Central

    Yang, Po-Sheng; Lin, Po-Yen; Chang, Chao-Chien; Yu, Meng-Che; Yen, Ting-Lin; Lan, Chang-Chou; Jayakumar, Thanasekaran; Yang, Chih-Hao

    2015-01-01

    Antrodia camphorata (A. camphorata) is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO) rats. A selective occlusion of the middle cerebral artery (MCA) with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day) alone or combined with aspirin (5 mg/kg/day). To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS), haem oxygenase-1 (HO-1), and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P < 0.001), iNOS (P < 0.001), and Bax (P < 0.01) in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day). Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P < 0.01). Moreover, treatment of A. camphorata significantly (P < 0.05) reduced fenton reaction-induced hydroxyl radical (OH•) formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH• signals. PMID:26379739

  20. AOP description: Acetylcholinesterase inhibition

    EPA Science Inventory

    This adverse outcome pathway (AOP) leverages existing knowledge in the open literature to describe the linkage between inhibition of acetylcholinesterase (AChE) and the subsequent mortality resulting from impacts at cholinergic receptors. The AOP takes a chemical category approa...

  1. Method for inhibiting corrosion

    SciTech Connect

    Wu, Y.; Stapp, P. R.

    1985-12-03

    A composition comprising the reaction adduct or neutralized product resulting from the reaction of a maleic anhydride and an oil containing a polynuclear aromatic compound is provided which, when applied to a metal surface, forms a corrosion-inhibiting film thereon. The composition is particularly useful in the treatment of down-hole metal surfaces in oil and gas wells to inhibit the corrosion of the metal.

  2. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways.

    PubMed

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Dai, Jin; Asha, Padmaja; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2014-12-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis.

  3. Inhibition of lipopolysaccharide-inducible nitric oxide synthase and IL-1beta through suppression of NF-kappaB activation by 3-(1'-1'-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin isolated from Ruta graveolens L.

    PubMed

    Raghav, Sunil Kumar; Gupta, Bhawna; Shrivastava, Anju; Das, Hasi Rani

    2007-03-29

    The Ruta graveolens L. plant is used in traditional medicine to treat a large number of diseases. The methanol (50%) extract of the whole plant was observed to inhibit the expression of inducible nitric oxide synthase (iNOS) and the cycloxygenase-2 (COX-2) gene in lipopolysaccharide (LPS)-induced macrophage cells (J774A.1, [Raghav, S.K., Gupta, B., Agrawal, C., Goswami, K., Das, H.R., 2006b. Anti-inflammatory effect of Ruta graveolens L. in murine macrophage cells. J. Ethnopharmacol. 104, 234-239]). The effect of whole plant extract on the expression of other pro-inflammatory genes such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-12, interferon-gamma (IFN-gamma) and the activation of nuclear factor-kB (NF-kappaB) were investigated in LPS stimulated macrophage cells. An active compound was isolated from this methanol extract by further solvent fractionation and reverse phase high performance liquid chromatography (RP-HPLC). The purified compound was identified as 3-(1'-1'-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin having IUPAC nomenclature of 6-hydroxy-7-methoxy-3-(2-methyl but-3-en-2yl)-2H-chromen-2-one by ESI-MS, MALDI, FT-IR and NMR. Effect of this purified compound was assessed on iNOS, COX-2 and various pro-inflammatory cytokine genes and was observed to inhibit both the protein and mRNA expression of iNOS and IL-1beta in LPS challenged macrophages. Electrophoretic mobility shift assay (EMSA) and Western blot analyses indicated that the plant extract and the isolated active compound blocked the LPS-induced activation of NF-kappaB through the prevention of inhibitor-kB (IkB) degradation. The purified compound also showed the anti-oxidant activity. The active compound at a dose of 40 mg/kg body weight was observed to inhibit the iNOS and IL-1beta gene expression significantly in endotoxin-induced inflammatory model of BALB/c mice. The low level of nitric oxide production was also observed in the sera of compound treated mice

  4. Protective role of propofol on the kidney during early unilateral ureteral obstruction through inhibition of epithelial-mesenchymal transition

    PubMed Central

    Song, Li; Shi, Sen; Jiang, Wei; Liu, Xueru; He, Yanzheng

    2016-01-01

    Unilateral ureteral obstruction (UUO) induces functional and pathological changes in the obstructed kidney. Inducible nitric oxide synthase (iNOS) expression is high inearly UUO mouse kidney, which is accompanied with fibrosis. Propofol has preventive effects against renal injury by downregulating iNOS expression in UUO mouse models. However, the role of propofol in kidney fibrosis progression has not been reported. We explored the therapeutic potential and possible mechanisms of action of propofol in kidney fibrosis using a UUO mouse model. Herein, mice anesthetized with propofol or sevoflurane underwent UUO induction. Serum and kidney sections were collected 5 and 28 days post-operation for histological, morphometric, immunofluorescence, microRNA analyses; quantitative PCR and western blotting. In vivo, the effect and mechanism of propofol on epithelial-mesenchymal transition (EMT), transforming growth factor β (TGF-β) signaling and miR-155 levels were detected in cultured HK-2 cells. We found that propofol significantly suppressed UUO-induced kidney fibrosis, which was associated with TGF-β/Smad3 signaling, EMT, and iNOS-NO production. MiR-155 levels were higher in UUO mouse kidneys; compared with sevoflurane, propofol suppressed miR-155 levels. However, in late UUO, propofol could not prevent kidney fibrosis or suppress EMT and miR-155. The in vitro results showed that propofol suppressed TGF-β1-induced EMT by regulating miR-155 levels. As a conclusion, in early UUO mice, propofol may inhibit TGF-β1 expression and NO-iNOS production, consequently inhibiting EMT and kidney fibrosis by regulating miR-155 levels, and might be a new protective agent against kidney injury during surgery and in therapy to prevent kidney fibrosis. PMID:27158339

  5. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 expression and inducible nitric oxide synthase by 4-[(2′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate from Moringa oleifera

    PubMed Central

    Park, Eun-Jung; Cheenpracha, Sarot; Chang, Leng Chee; Kondratyuk, Tamara P.; Pezzuto, John M.

    2011-01-01

    Moringa oleifera Lamarack is commonly consumed for nutritional or medicinal properties. We recently reported the isolation and structure elucidation of novel bioactive phenolic glycosides, including 4-[(2′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate (RBITC), which was found to suppress inducible nitric oxide synthase (iNOS) expression and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 mouse macrophage cells. Inhibitors of proteins such as cyclooxygenase-2 (COX-2) and iNOS are potential anti-inflammatory and cancer chemopreventive agents. The inhibitory activity of RBITC on NO production (IC50 = 0.96 ± 0.23 µM) was greater than that mediated by other well-known isothiocyanates such as sulforaphane (IC50 = 2.86 ± 0.39 µM) and benzyl isothiocyanate (IC50 = 2.08 ± 0.28 µM). RBITC inhibited expression of COX-2 and iNOS at both the protein and mRNA levels. Major upstream signaling pathways involved mitogen-activated protein kinases and nuclear factor-κB (NF-κB). RBITC inhibited phosphorylation of extracellular signal regulated kinase and stress-activated protein kinase, as well as ubiquitin-dependent degradation of inhibitor κBα (IκBα). In accordance with IκBα degradation, nuclear accumulation of NF-κB, and subsequent binding to NF-κB cis-acting element, was attenuated by treatment with RBITC. These data suggest RBITC should be included in the dietary armamentarium of isothiocyanates potentially capable of mediating anti-inflammatory or cancer chemopreventive activity. PMID:21774591

  6. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin

    SciTech Connect

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin; Divya, Sasidharan Padmaja; Joseph, Binoy; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Yin, Yuanqin; Roy, Ram Vinod; Lu, Jian; Zhang, Zhuo; Wang, Yitao; and others

    2014-10-01

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE{sub 2} and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2′-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. - Highlights: • C3G inhibited UVB-induced oxidative damage and inflammation. • C3G inhibited UVB-induced COX-2, iNOS and PGE{sub 2} production. • C3G

  7. Licoricidin, an Active Compound in the Hexane/Ethanol Extract of Glycyrrhiza uralensis, Inhibits Lung Metastasis of 4T1 Murine Mammary Carcinoma Cells

    PubMed Central

    Park, So Young; Kwon, Soo Jin; Lim, Soon Sung; Kim, Jin-Kyu; Lee, Ki Won; Park, Jung Han Yoon

    2016-01-01

    Licorice extracts containing glycyrrhizin exhibit anti-carcinogenic properties. Because glycyrrhizin induces severe hypokalemia and hypertension, we prepared a hexane/ethanol extract of Glycyrrhiza uralensis (HEGU) that lacks glycyrrhizin, and showed that HEGU induces apoptosis and G1 cell cycle arrest and inhibits migration of DU145 human prostate cancer cells. Our previous in vitro studies identified two active components in HEGU: isoangustone A, which induces apoptosis and G1 cycle arrest, and licoricidin, which inhibits metastasis. This study examined whether HEGU and licoricidin inhibit metastasis using the 4T1 mammary cancer model. Both HEGU and licoricidin treatment reduced pulmonary metastasis and the expression of CD45, CD31, HIF-1α, iNOS, COX-2, and VEGF-A in tumor tissues. Additionally, a decrease in protein expression of VEGF-R2, VEGF-C, VEGF-R3, and LYVE-1 was noted in tumor tissues of licoricidin-treated mice. Furthermore, the blood concentrations of MMP-9, ICAM-1, VCAM-1, and VEGF-A were decreased in HEGU-treated mice. In vitro 4T1 cell culture results showed that both HEGU and licoricidin inhibited cell migration, MMP-9 secretion, and VCAM expression. The present study demonstrates that the licoricidin in HEGU inhibits lung metastasis of 4T1 mammary carcinoma cells, which may be mediated via inhibition of cancer cell migration, tumor angiogenesis, and lymphangiogenesis. PMID:27314329

  8. Licoricidin, an Active Compound in the Hexane/Ethanol Extract of Glycyrrhiza uralensis, Inhibits Lung Metastasis of 4T1 Murine Mammary Carcinoma Cells.

    PubMed

    Park, So Young; Kwon, Soo Jin; Lim, Soon Sung; Kim, Jin-Kyu; Lee, Ki Won; Park, Jung Han Yoon

    2016-01-01

    Licorice extracts containing glycyrrhizin exhibit anti-carcinogenic properties. Because glycyrrhizin induces severe hypokalemia and hypertension, we prepared a hexane/ethanol extract of Glycyrrhiza uralensis (HEGU) that lacks glycyrrhizin, and showed that HEGU induces apoptosis and G1 cell cycle arrest and inhibits migration of DU145 human prostate cancer cells. Our previous in vitro studies identified two active components in HEGU: isoangustone A, which induces apoptosis and G1 cycle arrest, and licoricidin, which inhibits metastasis. This study examined whether HEGU and licoricidin inhibit metastasis using the 4T1 mammary cancer model. Both HEGU and licoricidin treatment reduced pulmonary metastasis and the expression of CD45, CD31, HIF-1α, iNOS, COX-2, and VEGF-A in tumor tissues. Additionally, a decrease in protein expression of VEGF-R2, VEGF-C, VEGF-R3, and LYVE-1 was noted in tumor tissues of licoricidin-treated mice. Furthermore, the blood concentrations of MMP-9, ICAM-1, VCAM-1, and VEGF-A were decreased in HEGU-treated mice. In vitro 4T1 cell culture results showed that both HEGU and licoricidin inhibited cell migration, MMP-9 secretion, and VCAM expression. The present study demonstrates that the licoricidin in HEGU inhibits lung metastasis of 4T1 mammary carcinoma cells, which may be mediated via inhibition of cancer cell migration, tumor angiogenesis, and lymphangiogenesis. PMID:27314329

  9. Modulation of the oscillatory mechanics of lung tissue and the oxidative stress response induced by arginase inhibition in a chronic allergic inflammation model

    PubMed Central

    2013-01-01

    Background The importance of the lung parenchyma in the pathophysiology of asthma has previously been demonstrated. Considering that nitric oxide synthases (NOS) and arginases compete for the same substrate, it is worthwhile to elucidate the effects of complex NOS-arginase dysfunction in the pathophysiology of asthma, particularly, related to distal lung tissue. We evaluated the effects of arginase and iNOS inhibition on distal lung mechanics and oxidative stress pathway activation in a model of chronic pulmonary allergic inflammation in guinea pigs. Methods Guinea pigs were exposed to repeated ovalbumin inhalations (twice a week for 4 weeks). The animals received 1400 W (an iNOS-specific inhibitor) for 4 days beginning at the last inhalation. Afterwards, the animals were anesthetized and exsanguinated; then, a slice of the distal lung was evaluated by oscillatory mechanics, and an arginase inhibitor (nor-NOHA) or vehicle was infused in a Krebs solution bath. Tissue resistance (Rt) and elastance (Et) were assessed before and after ovalbumin challenge (0.1%), and lung strips were submitted to histopathological studies. Results Ovalbumin-exposed animals presented an increase in the maximal Rt and Et responses after antigen challenge (p<0.001), in the number of iNOS positive cells (p<0.001) and in the expression of arginase 2, 8-isoprostane and NF-kB (p<0.001) in distal lung tissue. The 1400 W administration reduced all these responses (p<0.001) in alveolar septa. Ovalbumin-exposed animals that received nor-NOHA had a reduction of Rt, Et after antigen challenge, iNOS positive cells and 8-isoprostane and NF-kB (p<0.001) in lung tissue. The activity of arginase 2 was reduced only in the groups treated with nor-NOHA (p <0.05). There was a reduction of 8-isoprostane expression in OVA-NOR-W compared to OVA-NOR (p<0.001). Conclusions In this experimental model, increased arginase content and iNOS-positive cells were associated with the constriction of distal lung parenchyma

  10. Caffeic Acid Inhibits UVB-induced Inflammation and Photocarcinogenesis Through Activation of Peroxisome Proliferator-activated Receptor-γ in Mouse Skin.

    PubMed

    Balupillai, Agilan; Prasad, Rajendra N; Ramasamy, Karthikeyan; Muthusamy, Ganesan; Shanmugham, Mohana; Govindasamy, Kanimozhi; Gunaseelan, Srithar

    2015-11-01

    In this study, the effect of caffeic acid (CA) on both acute and chronic UVB-irradiation-induced inflammation and photocarcinogenesis was investigated in Swiss albino mice. Animals were exposed to 180 mJ cm(-2) of UVB once daily for 10 consecutive days and thrice weekly for 30 weeks for acute and chronic study respectively. UVB exposure for 10 consecutive days showed edema formation, increased lipid peroxidation and decreased antioxidant status with activation of inflammatory molecules such as TNF-α, IL-6, COX-2 and NF-κB. However, CA (15 mg per kg.b.wt.) administration before each UVB exposure decreased lipid peroxidation, inflammatory markers expression and enhanced antioxidant status probably through the activation of peroxisome proliferator-activated receptors (PPARγ) in the mice skin. PPARγ is considered a potential target for photochemoprevention because it inhibits UVB-mediated inflammatory responses. In this study, UVB exposure for 30 weeks caused squamous cell carcinoma and upregulation of iNOS, VEGF and TGF-β and downregulation of p53 and tumor incidence in the mice skin. Both topical (CAT) and intraperitoneal (CAIP) treatment before each UVB exposure downregulates iNOS, VEGF, TGF-β, upregulates p53 and reduces tumors multiplicity in the mice skin. Thus, CA offers protection against UVB-induced photocarcinogenesis probably through activation of anti-inflammatory transcription factor PPARγ in the mice.

  11. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB.

    PubMed

    Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang

    2012-01-01

    Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis.

  12. A novel compound DSC suppresses lipopolysaccharide-induced inflammatory responses by inhibition of Akt/NF-κB signalling in macrophages.

    PubMed

    Liu, Xin-Hua; Pan, Li-Long; Jia, Yao-Ling; Wu, Dan; Xiong, Qing-Hui; Wang, Yang; Zhu, Yi-Zhun

    2013-05-15

    A novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2-ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)], derived from Danshensu, exerted cytoprotective effects by anti-oxidative and anti-apoptotic activities in vitro. Herein, we reported the protective effects of DSC on lipopolysaccharide (LPS)-induced inflammatory responses in murine RAW264.7 macrophages and the underlying mechanisms. We showed that DSC concentration-dependently attenuated nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression with less cytotoxicity. Signal transduction studies indicated that DSC significantly inhibited LPS-induced phosphorylation of Akt, but not c-Jun N-terminal kinase 1/2, p38, or extracellular signal-regulated kinase 1/2. Meanwhile, LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) p65 was decreased by DSC. Furthermore, a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 significantly suppressed LPS-induced NF-κB p65 nuclear translocation, iNOS expression, and NO production, which was also mimicked by pretreatment with DSC. These results suggested that DSC attenuated LPS-induced inflammatory response in macrophages, at least in part, through suppression of PI3K/Akt signaling and NF-κB activation.

  13. Inhibition by 1'-acetoxychavicol acetate of lipopolysaccharide- and interferon-gamma-induced nitric oxide production through suppression of inducible nitric oxide synthase gene expression in RAW264 cells.

    PubMed

    Ohata, T; Fukuda, K; Murakami, A; Ohigashi, H; Sugimura, T; Wakabayashi, K

    1998-06-01

    Although nitric oxide (NO) is an important biological mediator, excessive production in inflammation is thought to be a causative factor of cellular injury and cancer in the long term. In the present study the effects of 1'-acetoxychavicol acetate (ACA), which has anticarcinogenic properties, on NO production in murine macrophage cell line RAW264 cells stimulated with lipopolysaccharide or interferon-gamma were examined. ACA suppressed NO production dose dependently with an IC50 of 160 ng/ml (680 nM). The decrease in NO production was shown to parallel reduced expression of iNOS mRNA and protein. The influence of ACA on transcription factors, such as NF-kappaB, AP-1 and Stat1, which are involved in expression of the iNOS gene was assessed. ACA was found to suppress degradation of IkappaB, an NF-kappaB inhibitory factor, and consequently inhibit NF-kappaB activation. Activation of AP-1 and Stat1 was also blocked by ACA treatment. Thus we demonstrate that ACA exerts potent inhibitory effects on NO production, apparently mediated by modulation of activation of several transcription factors. This could contribute to the anticarcinogenic properties of ACA.

  14. Dehydroandrographolide, an iNOS inhibitor, extracted from Andrographis paniculata (Burm.f.) Nees, induces autophagy in human oral cancer cells.

    PubMed

    Hsieh, Ming-Ju; Lin, Chiao-Wen; Chiou, Hui-Ling; Yang, Shun-Fa; Chen, Mu-Kuan

    2015-10-13

    Autophagy, which is constitutively executed at the basal level in all cells, promotes cellular homeostasis by regulating the turnover of organelles and proteins. Andrographolide and dehydroandrographolide (DA) are the two principle components of Andrographis paniculata (Burm.f.) Nees. and are the main contributors to its therapeutic properties. However, the pharmacological activities of dehydroandrographolide (DA) remain unclear. In this study, DA induces oral cancer cell death by activating autophagy. Treatment with autophagy inhibitors inhibited DA-induced human oral cancer cell death. In addition, DA increased LC3-II expression and reduced p53 expression in a time- and concentration-dependent manner. Furthermore, DA induced autophagy and decreased cell viability through modulation of p53 expression. DA-induced autophagy was triggered by an activation of JNK1/2 and an inhibition of Akt and p38. In conclusion, this study demonstrated that DA induced autophagy in human oral cancer cells by modulating p53 expression, activating JNK1/2, and inhibiting Akt and p38. Finally, an administration of DA effectively suppressed the tumor formation in the oral carcinoma xenograft model in vivo. This is the first study to reveal the novel function of DA in activating autophagy, suggesting that DA could serve as a new and potential chemopreventive agent for treating human oral cancer. PMID:26356821

  15. Pinoresinol from the fruits of Forsythia koreana inhibits inflammatory responses in LPS-activated microglia.

    PubMed

    Jung, Hyo Won; Mahesh, Ramalingam; Lee, Jong Gu; Lee, Seung Ho; Kim, Young Shik; Park, Yong-Ki

    2010-08-23

    The activation of microglia plays an important role in a variety of brain disorders by the excessive production of inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE(2)) and proinflammatory cytokines. We investigated here whether pinoresinol isolated from the fruits of Forsythia koreana Nakai inhibits the inflammatory responses in LPS-activated microglia. Pinoresinol inhibited the production of NO, PGE(2), TNF-alpha, IL-1beta and IL-6 in LPS-activated primary microglia. Also, pinoresinol attenuated mRNA and protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and proinflammatory cytokines in LPS-activation. However, most of these inhibitory effects of pinoresinol have been mediated by extracellular-signal-regulated kinase (ERK) 1/2 mitogen-activated protein kinase (MAPK) phosphorylation and the NF-kappaB dependent. The results suggest that pinoresinol attenuates inflammatory responses of microglia and could be potentially useful in modulation of inflammatory status in brain disorders.

  16. Zinc Inhibits Hedgehog Autoprocessing

    PubMed Central

    Xie, Jian; Owen, Timothy; Xia, Ke; Singh, Ajay Vikram; Tou, Emiley; Li, Lingyun; Arduini, Brigitte; Li, Hongmin; Wan, Leo Q.; Callahan, Brian; Wang, Chunyu

    2015-01-01

    Zinc is an essential trace element with wide-ranging biological functions, whereas the Hedgehog (Hh) signaling pathway plays crucial roles in both development and disease. Here we show that there is a mechanistic link between zinc and Hh signaling. The upstream activator of Hh signaling, the Hh ligand, originates from Hh autoprocessing, which converts the Hh precursor protein to the Hh ligand. In an in vitro Hh autoprocessing assay we show that zinc inhibits Hh autoprocessing with a Ki of 2 μm. We then demonstrate that zinc inhibits Hh autoprocessing in a cellular environment with experiments in primary rat astrocyte culture. Solution NMR reveals that zinc binds the active site residues of the Hh autoprocessing domain to inhibit autoprocessing, and isothermal titration calorimetry provided the thermodynamics of the binding. In normal physiology, zinc likely acts as a negative regulator of Hh autoprocessing and inhibits the generation of Hh ligand and Hh signaling. In many diseases, zinc deficiency and elevated level of Hh ligand co-exist, including prostate cancer, lung cancer, ovarian cancer, and autism. Our data suggest a causal relationship between zinc deficiency and the overproduction of Hh ligand. PMID:25787080

  17. Nitric oxide inhibition strategies

    PubMed Central

    Wong, Vivian (Wai Chong); Lerner, Ethan

    2015-01-01

    Nitric oxide is involved in many physiologic processes. There are efforts, described elsewhere in this volume, to deliver nitric oxide to tissues as a therapy. Nitric oxide also contributes to pathophysiologic processes. Inhibiting nitric oxide or its production can thus also be of therapeutic benefit. This article addresses such inhibitory strategies. PMID:26634146

  18. Houttuynia cordata Thunb. volatile oil exhibited anti-inflammatory effects in vivo and inhibited nitric oxide and tumor necrosis factor-α production in LPS-stimulated mouse peritoneal macrophages in vitro.

    PubMed

    Li, Weifeng; Fan, Ting; Zhang, Yanmin; Fan, Te; Zhou, Ping; Niu, Xiaofeng; He, Langchong

    2013-11-01

    Houttuynia cordata Thunb. (HC) is a medicinal herb that generally used in traditional Chinese medicine for treating allergic inflammation. The present study investigated the inhibitory effect of the volatile oil from HC Thunb. on animal models of inflammation and the production of inflammatory mediators in vivo and in vitro. In vivo, xylene-induced mouse ear edema, formaldehyde-induced paw edema and carrageenan-induced mice paw edema were significantly decreased by HC volatile oil. HC volatile oil showed pronounced inhibition of prostaglandin (PG) E2 and malondialdehyde production in the edematous exudates. In vitro exposure of mouse resident peritoneal macrophages to 1, 10, 100 and 1000 µg/mL of HC volatile oil significantly suppressed lipopolysaccharide (LPS)-stimulated production of NO and tumor necrosis factor-α (TNF-α) in a dose-dependent manner. Exposure to HC volatile oil had no effect on cell viability and systemic toxicity. Furthermore, HC volatile oil inhibited the production of NO and TNF-α by down-regulating LPS-stimulated iNOS and TNF-α mRNA expression. Western blot analysis showed that HC volatile oil attenuated LPS-stimulated synthesis of iNOS and TNF-α protein in the macrophages, in parallel. These findings add a novel aspect to the biological profile of HC and clarify its anti-inflammatory mechanism. PMID:23280586

  19. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    SciTech Connect

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Dai, Jin; Asha, Padmaja; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2014-12-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant transformation.

  20. A novel synthetic compound MCAP suppresses LPS-induced murine microglial activation in vitro via inhibiting NF-kB and p38 MAPK pathways

    PubMed Central

    Kim, Byung-Wook; More, Sandeep Vasant; Yun, Yo-Sep; Ko, Hyun-Myung; Kwak, Jae-Hwan; Lee, Heesoon; Suk, Kyoungho; Kim, In-Su; Choi, Dong-Kug

    2016-01-01

    Aim: To investigate the anti-neuroinflammatory activity of a novel synthetic compound, 7-methylchroman-2-carboxylic acid N-(2-trifluoromethyl) phenylamide (MCAP) against LPS-induced microglial activation in vitro. Methods: Primary mouse microglia and BV2 microglia cells were exposed to LPS (50 or 100 ng/mL). The expression of iNOS and COX-2, proinflammatory cytokines, NF-κB and p38 MAPK signaling molecules were analyzed by RT-PCR, Western blot and ELISA. The morphological changes of microglia and nuclear translocation of NF-ĸB were visualized using phase contrast and fluorescence microscopy, respectively. Results: Pretreatment with MCAP (0.1, 1, 10 μmol/L) dose-dependently inhibited LPS-induced expression of iNOS and COX-2 in BV2 microglia cells. Similar results were obtained in primary microglia pretreated with MCAP (0.1, 0.5 μmol/L). MCAP dose-dependently abated LPS-induced release of TNF-α, IL-6 and IL-1β, and mitigated LPS-induced activation of NF-κB by reducing the phosphorylation of IκBα in BV2 microglia cells. Moreover, MCAP attenuated LPS-induced phosphorylation of p38 MAPK, whereas SB203580, a p38 MAPK inhibitor, significantly potentiated MCAP-caused inhibition on the expression of MEF-2 (a transcription factor downstream of p38 MAPK). Conclusion: MCAP exerts anti-inflammatory effects in murine microglia in vitro by inhibiting the p38 MAPK and NF-κB signaling pathways and proinflammatory responses. MCAP may be developed as a novel agent for treating diseases involving activated microglial cells. PMID:26838070

  1. The effects of polymorphisms in IL-2, IFN-γ, TGF-β2, IgL, TLR-4, MD-2, and iNOS genes on resistance to Salmonella enteritidis in indigenous chickens.

    PubMed

    Tohidi, Reza; Idris, Ismail Bin; Panandam, Jothi Malar; Bejo, Mohd Hair

    2012-12-01

    Salmonella Enteritidis is a major cause of food poisoning worldwide, and poultry products are the main source of S. Enteritidis contamination for humans. Among the numerous strategies for disease control, improving genetic resistance to S. Enteritidis has been the most effective approach. We investigated the association between S. Enteritidis burden in the caecum, spleen, and liver of young indigenous chickens and seven candidate genes, selected on the basis of their critical roles in immunological functions. The genes included those encoding interleukin 2 (IL-2), interferon-γ (IFN-γ), transforming growth factor β2 (TGF-β2), immunoglobulin light chain (IgL), toll-like receptor 4 (TLR-4), myeloid differentiation protein 2 (MD-2), and inducible nitric oxide synthase (iNOS). Two Malaysian indigenous chicken breeds were used as sustainable genetic sources of alleles that are resistant to salmonellosis. The polymerase chain reaction restriction fragment-length polymorphism technique was used to genotype the candidate genes. Three different genotypes were observed in all of the candidate genes, except for MD-2. All of the candidate genes showed the Hardy-Weinberg equilibrium for the two populations. The IL-2-MnlI polymorphism was associated with S. Enteritidis burden in the caecum and spleen. The TGF-β2-RsaI, TLR-4-Sau 96I, and iNOS-AluI polymorphisms were associated with the caecum S. Enteritidis load. The other candidate genes were not associated with S. Enteritidis load in any organ. The results indicate that the IL-2, TGF-β2, TLR-4, and iNOS genes are potential candidates for use in selection programmes for increasing genetic resistance against S. Enteritidis in Malaysian indigenous chickens.

  2. Pedilanthus tithymaloides Inhibits HSV Infection by Modulating NF-κB Signaling

    PubMed Central

    Ojha, Durbadal; Das, Rashmi; Sobia, Parveen; Dwivedi, Vedprakash; Ghosh, Soma; Samanta, Amalesh; Chattopadhyay, Debprasad

    2015-01-01

    Pedilanthus tithymaloides (PT), a widely used ethnomedicinal plant, has been employed to treat a number of skin conditions. To extend its utility and to fully exploit its medicinal potential, we have evaluated the in vitro antiviral activity of a methanolic extract of PT leaves and its isolated compounds against Herpes Simplex Virus type 2 (HSV-2). Bioactivity-guided studies revealed that the extract and one of its constituents, luteolin, had potent antiviral activity against wild-type and clinical isolates of HSV-2 (EC50 48.5–52.6 and 22.4–27.5 μg/ml, respectively), with nearly complete inhibition at 86.5–101.8 and 40.2–49.6 μg/ml, respectively. The inhibitory effect was significant (p<0.001) when the drug was added 2 h prior to infection, and was effective up to 4 h post-infection. As viral replication requires NF-κB activation, we examined whether the observed extract-induced inhibition of HSV-2 was related to NF-κB inhibition. Interestingly, we observed that treatment of HSV-2-infected cells with extract or luteolin suppressed NF-κB activation. Although NF-κB, JNK and MAPK activation was compromised during HSV replication, neither the extract nor luteolin affected HSV-2-induced JNK1/2 and MAPK activation. Moreover, the PT leaf extract and luteolin potently down-regulated the expression of tumor necrosis factor (TNF)-α, Interleukin (IL)-1β, IL-6, NO and iNOS and the production of gamma interferon (IFN-γ), which are directly involved in controlling the NF-κB signaling pathway. Thus, our results indicate that both PT leaf extract and luteolin modulate the NF-κB signaling pathway, resulting in the inhibition of HSV-2 replication. PMID:26405764

  3. Toona sinensis Inhibits LPS-Induced Inflammation and Migration in Vascular Smooth Muscle Cells via Suppression of Reactive Oxygen Species and NF-κB Signaling Pathway

    PubMed Central

    Yang, Hsin-Ling; Huang, Pei-Jane; Liu, Yi-Ru; Kumar, K. J. Senthil; Hsu, Li-Sung; Lu, Te-Ling; Chia, Yi-Chen; Takajo, Tokuko; Kazunori, Anzai; Hseu, You-Cheng

    2014-01-01

    Toona sinensis is one of the most popular vegetarian cuisines in Taiwan and it has been shown to possess antioxidant, antiangiogenic, and anticancer properties. In this study, we investigated the antiatherosclerotic potential of aqueous leaf extracts from Toona sinensis (TS; 25–100 μg/mL) and its major bioactive compound, gallic acid (GA; 5 μg/mL), in LPS-treated rat aortic smooth muscle (A7r5) cells. We found that pretreatment with noncytotoxic concentrations of TS and GA significantly inhibited inflammatory NO and PGE2 production by downregulating their precursors, iNOS and COX-2, respectively, in LPS-treated A7r5 cells. Furthermore, TS and GA inhibited LPS-induced intracellular ROS and their corresponding mediator, p47phox. Notably, TS and GA pretreatment significantly inhibited LPS-induced migration in transwell assays. Gelatin zymography and western blotting demonstrated that treatment with TS and GA suppressed the activity or expression of MMP-9, MMP-2, and t-PA. Additionally, TS and GA significantly inhibited LPS-induced VEGF, PDGF, and VCAM-1 expression. Further investigation revealed that the inhibition of iNOS/COX-2, MMPs, growth factors, and adhesion molecules was associated with the suppression of NF-κB activation and MAPK (ERK1/2, JNK1/2, and p38) phosphorylation. Thus, Toona sinensis may be useful for the prevention of atherosclerosis. PMID:24723997

  4. Substrate inhibition of transketolase.

    PubMed

    Solovjeva, Olga N; Kovina, Marina V; Kochetov, German A

    2016-03-01

    We studied the influence of the acceptor substrate of transketolase on the activity of the enzyme in the presence of reductants. Ribose-5-phosphate in the presence of cyanoborohydride decreased the transketolase catalytic activity. The inhibition is caused by the loss of catalytic function of the coenzyme-thiamine diphosphate. Similar inhibitory effect was observed in the presence of NADPH. This could indicate its possible regulatory role not only towards transketolase, but also towards the pentose phosphate pathway of carbohydrate metabolism overall, taking into account the fact that it inhibits not only transketolase but also another enzyme of the pentose phosphate pathway--glucose 6-phosphate dehydrogenase [Eggleston L.V., Krebs H.A. Regulation of the pentose phosphate cycle, Biochem. J. 138 (1974) 425-435]. PMID:26708478

  5. HJB-1, a 17-hydroxy-jolkinolide B derivative, inhibits LPS-induced inflammation in mouse peritoneal macrophages.

    PubMed

    Pan, Lei-Chang; Xu, Xiao-Han; Zhang, Na-Na; Liu, Ning; Wu, Dong-Lin; Wang, Yang; Peng, Qi-Sheng; Vandenplas, Michel; Wang, Hong-Bing; Sun, Wan-Chun

    2014-08-01

    Jolkinolide B (JB) and 17-hydroxy-JB (HJB) are diterpenoids from plants and it has been reported that the presence of a C-17 hydroxy group in JB significantly enhances the anti-inflammatory potency of JB. In this study, two HJB derivatives HJB-1 and HJB-2 were generated by the chemical modification of a 17-hydroxy group of HJB. HJB-1 more effectively inhibited TNF-α, IL-1β and IL-6 release in LPS-stimulated mouse peritoneal macrophages. In addition, HJB-1 reduced LPS-induced mRNA expression of TNF-α, IL-1β, IL-6, COX-2 and iNOS in a concentration-dependent manner, but did not alter IL-10 mRNA expression. LPS-induced NF-κB activation and MAPK phosphorylation were also effectively inhibited by HJB-1. These results demonstrate that HJB-1 exerts anti-inflammatory effects on LPS-activated mouse peritoneal macrophages by inhibiting NF-κB activation and MAPK phosphorylation and modification of a 17-hydroxy group of HJB may enhance the anti-inflammatory potency of HJB derivatives.

  6. Sargachromenol from Sargassum micracanthum Inhibits the Lipopolysaccharide-Induced Production of Inflammatory Mediators in RAW 264.7 Macrophages

    PubMed Central

    Yang, Eun-Jin; Ham, Young Min; Yang, Kyong-Wol; Lee, Nam Ho

    2013-01-01

    During our ongoing screening program designed to determine the anti-inflammatory potential of natural compounds, we isolated sargachromenol from Sargassum micracanthum. In the present study, we investigated the anti-inflammatory effects of sargachromenol on lipopolysaccharide (LPS)-induced inflammation in murine RAW 264.7 macrophage cells and the underlying mechanisms. Sargachromenol significantly inhibited the LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) in a dose-dependent manner. It also significantly inhibited the protein expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner in LPS-stimulated macrophage cells. Further analyses showed that sargachromenol decreased the cytoplasmic loss of inhibitor κBα (IκBα) protein. These results suggest that sargachromenol may exert its anti-inflammatory effects on LPS-stimulated macrophage cells by inhibiting the activation of the NF-κB signaling pathway. In conclusion, to our knowledge, this is the first study to show that sargachromenol isolated from S. micracanthum has an effective anti-inflammatory activity. Therefore, sargachromenol might be useful for cosmetic, food, or medical applications requiring anti-inflammatory properties. PMID:24194688

  7. Hypoxia-induced nitric oxide production and tumour perfusion is inhibited by pegylated arginine deiminase (ADI-PEG20)

    PubMed Central

    Burrows, Natalie; Cane, Gaelle; Robson, Mathew; Gaude, Edoardo; J. Howat, William; Szlosarek, Peter W.; Pedley, R. Barbara; Frezza, Christian; Ashcroft, Margaret; Maxwell, Patrick H.

    2016-01-01

    The hypoxic tumour microenvironment represents an aggressive, therapy-resistant compartment. As arginine is required for specific hypoxia-induced processes, we hypothesised that arginine-deprivation therapy may be useful in targeting hypoxic cancer cells. We explored the effects of the arginine-degrading agent ADI-PEG20 on hypoxia-inducible factor (HIF) activation, the hypoxia-induced nitric oxide (NO) pathway and proliferation using HCT116 and UMUC3 cells and xenografts. The latter lack argininosuccinate synthetase (ASS1) making them auxotrophic for arginine. In HCT116 cells, ADI-PEG20 inhibited hypoxic-activation of HIF-1α and HIF-2α, leading to decreased inducible-nitric oxide synthase (iNOS), NO-production, and VEGF. Interestingly, combining hypoxia and ADI-PEG20 synergistically inhibited ASS1. ADI-PEG20 inhibited mTORC1 and activated the unfolded protein response providing a mechanism for inhibition of HIF and ASS1. ADI-PEG20 inhibited tumour growth, impaired hypoxia-associated NO-production, and decreased vascular perfusion. Expression of HIF-1α/HIF-2α/iNOS and VEGF were reduced, despite an increased hypoxic tumour fraction. Similar effects were observed in UMUC3 xenografts. In summary, ADI-PEG20 inhibits HIF-activated processes in two tumour models with widely different arginine biology. Thus, ADI-PEG20 may be useful in the clinic to target therapy-resistant hypoxic cells in ASS1-proficient tumours and ASS1-deficient tumours. PMID:26972697

  8. Evidence for inhibition of nitric oxide and inducible nitric oxide synthase in Caco-2 and RAW 264.7 cells by a Maillard reaction product [5-(5,6-dihydro-4H-pyridin-3-ylidenemethyl)furan-2-yl]-methanol.

    PubMed

    Chen, Xiu-Min; Kitts, David D

    2015-08-01

    We have recently isolated and characterized the chemical structure of a bioactive Maillard reaction product, [5-(5,6-dihydro-4H-pyridin-3-ylidenemethyl)furan-2-yl]-methanol (F3-A), from an aqueous glucose (Glc) and lysine (Lys) Maillard reaction (MR) model system. Here, we investigate further the mechanisms for anti-inflammatory effects of this product in Caco-2 and RAW 264.7 cells. The anti-inflammatory capacity of F3-A recovered from Glc-Lys MR mixture and a synthesized product were compared with those of the specific inducible nitric oxide synthase (iNOS) inhibitor, aminoguanidine (AG), and the nuclear factor-kappa B (NF-κB) inhibitor, pyrrolidine dithiocarbamate (PDTC). F3-A produced a dose-dependent inhibition of extracellular nitric oxide (NO) production and iNOS translation in Caco-2 cells induced with interferon gamma (IFN-γ) and phorbol 12-myristate 13-acetate (PMA), and these effects were more potent than those obtained with AG. Moreover, a combination of F3-A and AG to attenuate intestinal inflammation was additive. However, F3-A inhibited only intracellular NO production in RAW 264.7 cells and did not inhibit COX-2 or NF-κB in either cell line. We conclude that the anti-inflammatory properties of F3-A are cell specific, working through different mechanism between macrophages and intestinal cells.

  9. A(1) and A(3) adenosine receptors inhibit LPS-induced hypoxia-inducible factor-1 accumulation in murine astrocytes.

    PubMed

    Gessi, Stefania; Merighi, Stefania; Stefanelli, Angela; Fazzi, Debora; Varani, Katia; Borea, Pier Andrea

    2013-10-01

    Adenosine (Ado) exerts neuroprotective and anti-inflammatory functions by acting through four receptor subtypes A1, A2A, A2B and A3. Astrocytes are one of its targets in the central nervous system. Hypoxia-inducible factor-1 (HIF-1), a master regulator of oxygen homeostasis, is induced after hypoxia, ischemia and inflammation and plays an important role in brain injury. HIF-1 is expressed by astrocytes, however the regulatory role played by Ado on HIF-1α modulation induced by inflammatory and hypoxic conditions has not been investigated. Primary murine astrocytes were activated with lipopolysaccharide (LPS) with or without Ado, Ado receptor agonists, antagonists and receptor silencing, before exposure to normoxia or hypoxia. HIF-1α accumulation and downstream genes regulation were determined. Ado inhibited LPS-increased HIF-1α accumulation under both normoxic and hypoxic conditions, through activation of A1 and A3 receptors. In cells incubated with the blockers of p44/42 MAPK and Akt, LPS-induced HIF-1α accumulation was significantly decreased in normoxia and hypoxia, suggesting the involvement of p44/42 MAPK and Akt in this effect and Ado inhibited kinases phosphorylation. A series of angiogenesis and metabolism related genes were modulated by hypoxia in an HIF-1 dependent way, but not further increased by LPS, with the exception of GLUT-1 and hexochinase II that were elevated by LPS only in normoxia and inhibited by Ado receptors. Instead, genes involved in inflammation, like inducible nitric-oxide synthase (iNOS) and A2B receptors, were increased by LPS in normoxia, strongly stimulated by LPS in concert with hypoxia and inhibited by Ado, through A1 and A3 receptor subtypes. In conclusion A1 and A3 receptors reduce the LPS-mediated HIF-1α accumulation in murine astrocytes, resulting in a downregulation of genes involved in inflammation and hypoxic injury, like iNOS and A2B receptors, in both normoxic and hypoxic conditions.

  10. Beneficial bacteria inhibit cachexia

    PubMed Central

    Varian, Bernard J.; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R.; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M.; Mirabal, Sheyla; Erdman, Susan E.

    2016-01-01

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  11. Beneficial bacteria inhibit cachexia.

    PubMed

    Varian, Bernard J; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M; Mirabal, Sheyla; Erdman, Susan E

    2016-03-15

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  12. Pharmacological Inhibition of FTO

    PubMed Central

    McMurray, Fiona; Demetriades, Marina; Aik, WeiShen; Merkestein, Myrte; Kramer, Holger; Andrew, Daniel S.; Scudamore, Cheryl L.; Hough, Tertius A.; Wells, Sara; Ashcroft, Frances M.; McDonough, Michael A.; Schofield, Christopher J.; Cox, Roger D.

    2015-01-01

    In 2007, a genome wide association study identified a SNP in intron one of the gene encoding human FTO that was associated with increased body mass index. Homozygous risk allele carriers are on average three kg heavier than those homozygous for the protective allele. FTO is a DNA/RNA demethylase, however, how this function affects body weight, if at all, is unknown. Here we aimed to pharmacologically inhibit FTO to examine the effect of its demethylase function in vitro and in vivo as a first step in evaluating the therapeutic potential of FTO. We showed that IOX3, a known inhibitor of the HIF prolyl hydroxylases, decreased protein expression of FTO (in C2C12 cells) and reduced maximal respiration rate in vitro. However, FTO protein levels were not significantly altered by treatment of mice with IOX3 at 60 mg/kg every two days. This treatment did not affect body weight, or RER, but did significantly reduce bone mineral density and content and alter adipose tissue distribution. Future compounds designed to selectively inhibit FTO’s demethylase activity could be therapeutically useful for the treatment of obesity. PMID:25830347

  13. Papaverine inhibits lipopolysaccharide-induced microglial activation by suppressing NF-κB signaling pathway

    PubMed Central

    Dang, Yalong; Mu, Yalin; Wang, Kun; Xu, Ke; Yang, Jing; Zhu, Yu; Luo, Bin

    2016-01-01

    Objective To investigate the effects of papaverine (PAP) on lipopolysaccharide (LPS)-induced microglial activation and its possible mechanisms. Materials and methods BV2 microglial cells were first pretreated with PAP (0, 0.4, 2, 10, and 50 μg/mL) and then received LPS stimulation. Transcription and production of proinflammatory factors (IL1β, TNFα, iNOS, and COX-2) were used to evaluate microglial activation. The transcriptional changes undergone by M1/M2a/M2b markers were used to evaluate phenotype transformation of BV2 cells. Immunofluorescent staining and Western blot were used to detect the location and expression of P65 and p-IKK in the presence or absence of PAP pretreatment. Results Pretreatment with PAP significantly inhibited the expression of IL1β and TNFα, and suppressed the transcription of M1/M2b markers Il1rn, Socs3, Nos2 and Ptgs2, but upregulated the transcription of M2a markers (Arg1 and Mrc1) in a dose-dependent manner. In addition, PAP pretreatment significantly decreased the expression of p-IKK and inhibited the nuclear translocation of P65 after LPS stimulation. Conclusion PAP not only suppressed the LPS-induced microglial activity by inhibiting transcription/production of proinflammatory factors, but also promoted the transformation of activated BV2 cells from cytotoxic phenotypes (M1/M2b) to a neuroprotective phenotype (M2a). These effects were probably mediated by NF-κB signaling pathway. Thus, it would be a promising candidate for the treatment of neurodegenerative diseases. PMID:27013863

  14. Saikosaponin a inhibits lipopolysaccharide-oxidative stress and inflammation in Human umbilical vein endothelial cells via preventing TLR4 translocation into lipid rafts.

    PubMed

    Fu, Yunhe; Hu, Xiaoyu; Cao, Yongguo; Zhang, Zecai; Zhang, Naisheng

    2015-12-01

    Saikosaponin a (SSa), the major triterpenoid saponin derivatives from Radix bupleuri (RB), has been reported to have anti-inflammatory effects. The aim of this study was to investigate the effects of SSa on lipopolysaccharide (LPS)-induced oxidative stress and inflammatory response in human umbilical vein endothelial cells (HUVECs). HUVECs were stimulated with LPS in the presence or absence of SSa. The levels of TNF-α and IL-8 were detected by ELISA. The expression of COX-2 and iNOS, NF-κB and IκB protein were determined by Western blotting. To investigate the protective mechanisms of SSa, TLR4 expression was detected by Western blotting and membrane lipid rafts were separated by density gradient ultracentrifugation and analyzed by immunoblotting with anti-TLR4 antibody. The results showed that SSa dose-dependently inhibited the production of ROS, TNF-α, IL-8, COX-2 and iNOS in LPS-stimulated HUVECs. Western blot analysis showed that SSa suppressed LPS-induced NF-κB activation. SSa did not affect the expression of TLR4 induced by LPS. However, translocation of TLR4 into lipid rafts and oligomerization of TLR4 induce by LPS was inhibited by SSa. Furthermore, SSa disrupted the formation of lipid rafts by depleting cholesterol. Moreover, SSa activated LXRα-ABCA1 signaling pathway, which could induce cholesterol efflux from lipid rafts. Knockdown of LXRα abrogated the anti-inflammatory effects of SSa. In conclusion, the effects of SSa is associated with activating LXRα-ABCA1 signaling pathway which results in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts and oligomerization of TLR4, thereby attenuating LPS mediated oxidative and inflammatory responses. PMID:26475038

  15. Saikosaponin a inhibits lipopolysaccharide-oxidative stress and inflammation in Human umbilical vein endothelial cells via preventing TLR4 translocation into lipid rafts.

    PubMed

    Fu, Yunhe; Hu, Xiaoyu; Cao, Yongguo; Zhang, Zecai; Zhang, Naisheng

    2015-12-01

    Saikosaponin a (SSa), the major triterpenoid saponin derivatives from Radix bupleuri (RB), has been reported to have anti-inflammatory effects. The aim of this study was to investigate the effects of SSa on lipopolysaccharide (LPS)-induced oxidative stress and inflammatory response in human umbilical vein endothelial cells (HUVECs). HUVECs were stimulated with LPS in the presence or absence of SSa. The levels of TNF-α and IL-8 were detected by ELISA. The expression of COX-2 and iNOS, NF-κB and IκB protein were determined by Western blotting. To investigate the protective mechanisms of SSa, TLR4 expression was detected by Western blotting and membrane lipid rafts were separated by density gradient ultracentrifugation and analyzed by immunoblotting with anti-TLR4 antibody. The results showed that SSa dose-dependently inhibited the production of ROS, TNF-α, IL-8, COX-2 and iNOS in LPS-stimulated HUVECs. Western blot analysis showed that SSa suppressed LPS-induced NF-κB activation. SSa did not affect the expression of TLR4 induced by LPS. However, translocation of TLR4 into lipid rafts and oligomerization of TLR4 induce by LPS was inhibited by SSa. Furthermore, SSa disrupted the formation of lipid rafts by depleting cholesterol. Moreover, SSa activated LXRα-ABCA1 signaling pathway, which could induce cholesterol efflux from lipid rafts. Knockdown of LXRα abrogated the anti-inflammatory effects of SSa. In conclusion, the effects of SSa is associated with activating LXRα-ABCA1 signaling pathway which results in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts and oligomerization of TLR4, thereby attenuating LPS mediated oxidative and inflammatory responses.

  16. A pseudopterane diterpene isolated from the octocoral Pseudopterogorgia acerosa inhibits the inflammatory response mediated by TLR-ligands and TNF-alpha in macrophages.

    PubMed

    González, Yisett; Doens, Deborah; Santamaría, Ricardo; Ramos, Marla; Restrepo, Carlos M; Barros de Arruda, Luciana; Lleonart, Ricardo; Gutiérrez, Marcelino; Fernández, Patricia L

    2013-01-01

    Several diterpenoids isolated from terrestrial and marine environments have been identified as important anti-inflammatory agents. Although considerable progress has been made in the area of anti-inflammatory treatment, the search for more effective and safer compounds is a very active field of research. In this study we investigated the anti-inflammatory effects of a known pseudopterane diterpene (referred here as compound 1) isolated from the octocoral Pseudopterogorgia acerosa on the tumor necrosis factor- alpha (TNF-α) and TLRs- induced response in macrophages. Compound 1 inhibited the expression and secretion of the inflammatory mediators TNF-α, interleukin (IL)-6, IL-1β, nitric oxide (NO), interferon gamma-induced protein 10 (IP-10), ciclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and monocyte chemoattractant protein-1 (MCP-1) induced by LPS in primary murine macrophages. This effect was associated with the inhibition of IκBα degradation and subsequent activation of NFκB. Compound 1 also inhibited the expression of the co-stimulatory molecules CD80 and CD86, which is a hallmark of macrophage activation and consequent initiation of an adaptive immune response. The anti-inflammatory effect was not exclusive to LPS because compound 1 also inhibited the response of macrophages to TNF-α and TLR2 and TLR3 ligands. Taken together, these results indicate that compound 1 is an anti-inflammatory molecule, which modulates a variety of processes occurring in macrophage activation. PMID:24358331

  17. A Pseudopterane Diterpene Isolated From the Octocoral Pseudopterogorgia acerosa Inhibits the Inflammatory Response Mediated by TLR-Ligands and TNF-Alpha in Macrophages

    PubMed Central

    González, Yisett; Doens, Deborah; Santamaría, Ricardo; Ramos, Marla; Restrepo, Carlos M.; Barros de Arruda, Luciana; Lleonart, Ricardo; Gutiérrez, Marcelino; Fernández, Patricia L.

    2013-01-01

    Several diterpenoids isolated from terrestrial and marine environments have been identified as important anti-inflammatory agents. Although considerable progress has been made in the area of anti-inflammatory treatment, the search for more effective and safer compounds is a very active field of research. In this study we investigated the anti-inflammatory effects of a known pseudopterane diterpene (referred here as compound 1) isolated from the octocoral Pseudopterogorgia acerosa on the tumor necrosis factor- alpha (TNF-α) and TLRs- induced response in macrophages. Compound 1 inhibited the expression and secretion of the inflammatory mediators TNF-α, interleukin (IL)-6, IL-1β, nitric oxide (NO), interferon gamma-induced protein 10 (IP-10), ciclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and monocyte chemoattractant protein-1 (MCP-1) induced by LPS in primary murine macrophages. This effect was associated with the inhibition of IκBα degradation and subsequent activation of NFκB. Compound 1 also inhibited the expression of the co-stimulatory molecules CD80 and CD86, which is a hallmark of macrophage activation and consequent initiation of an adaptive immune response. The anti-inflammatory effect was not exclusive to LPS because compound 1 also inhibited the response of macrophages to TNF-α and TLR2 and TLR3 ligands. Taken together, these results indicate that compound 1 is an anti-inflammatory molecule, which modulates a variety of processes occurring in macrophage activation. PMID:24358331

  18. Immunomodulatory activity of Melaleuca alternifolia concentrate (MAC): inhibition of LPS-induced NF-κB activation and cytokine production in myeloid cell lines.

    PubMed

    Low, Pauline; Clark, Amanda M; Chou, Tz-Chong; Chang, Tsu-Chung; Reynolds, Maxwell; Ralph, Stephen J

    2015-05-01

    Melaleuca alternifolia concentrate (MAC) is a mixture predominantly composed of monoterpenoids and sesquiterpenes, refined from the essential oil of the tea tree by removing up to 99% of the more toxic, hydrophobic monoterpenes. MAC was examined here for its immunomodulatory effects on the human THP1 and murine RAW264.7 myeloid leukemic cell lines as models for macrophage-like cells. Firstly, MAC levels were determined that did not affect either the survival or proliferation of these cell lines in vitro. Next, the levels of lipopolysaccharide (LPS)-induced production of cytokines (IL-6, TNFα, IL-10, GM-CSF, IFNγ and IL-3) were examined from the myeloid cell lines using multiplex assays. Many of the LPS-inducible cytokines produced by either cell lines could be significantly inhibited by MAC. Closer examination of the mechanism of action of MAC showed that it inhibited the LPS-induced activation of IκB phosphorylation and nuclear factor (NF)-κB signalling and translocation, inhibiting iNOS protein expression and NO production. These results demonstrate that MAC exerts its immunomodulatory effects by inhibiting NF-κB signalling activation and levels of cytokine production by macrophage-like cell lines.

  19. Anti-Inflammatory Effect of Rhapontici Radix Ethanol Extract via Inhibition of NF-κB and MAPK and Induction of HO-1 in Macrophages

    PubMed Central

    Oh, You-Chang; Cho, Won-Kyung; Yim, Nam-Hui

    2016-01-01

    Rhapontici Radix (RR) has been used in traditional medicine in East Asia and has been shown to have various beneficial effects. However, its biological properties or mechanism on inflammation-related diseases is unknown. The goal of this study was to determine the anti-inflammatory activity and underlying molecular mechanisms of Rhapontici Radix ethanol extract (RRE). The inhibitory effect of RRE on the production of NO, cytokines, inflammatory-related proteins, and mRNAs in LPS-stimulated macrophages was determined by the Griess assay, ELISA, Western blot analysis, and real-time RT-PCR, respectively. Our results indicate that treatment with RRE significantly inhibited the secretion of NO and inflammatory cytokines in RAW 264.7 cells and mouse peritoneal macrophages without cytotoxicity. We also found that RRE strongly suppressed the expression of iNOS and COX-2 and induced HO-1 expression. It also prevented nuclear translocation of NF-κB by inhibiting the phosphorylation and degradation of IκBα. Furthermore, the phosphorylation of MAPKs in LPS-stimulated RAW 264.7 cells was significantly inhibited by RRE. These findings suggest that RRE may operate as an effective anti-inflammatory agent by inhibiting the activation of NF-κB and MAPK signaling pathways and inducing HO-1 expression in macrophages. Our results suggest that RRE has potential value as candidate to inflammatory therapeutic phytomedicine. PMID:27524868

  20. Moracin M inhibits airway inflammation by interrupting the JNK/c-Jun and NF-κB pathways in vitro and in vivo.

    PubMed

    Lee, Ju Hee; Ko, Hae Ju; Woo, Eun-Rhan; Lee, Sang Kook; Moon, Bong Soo; Lee, Chan Woo; Mandava, Suresh; Samala, Mallesham; Lee, Jongkook; Kim, Hyun Pyo

    2016-07-15

    The therapeutic effectiveness of moracins as 2-arylbenzofuran derivatives against airway inflammation was examined. Moracin M, O, and R were isolated from the root barks of Morus alba, and they inhibited interleukin (IL)-6 production from IL-1β-treated lung epithelial cells (A549) at 101-00μM. Among them, moracin M showed the strongest inhibitory effect (IC50=8.1μM). Downregulation of IL-6 expression by moracin M was mediated by interrupting the c-Jun N-terminal kinase (JNK)/c-Jun pathway. Moracin derivatives inhibited inducible nitric oxide synthase (iNOS)-catalyzed NO production from lipopolysaccharide (LPS)-treated alveolar macrophages (MH-S) at 50-100μM. In particular, moracin M inhibited NO production by downregulating iNOS. When orally administered, moracin M (20-60mg/kg) showed comparable inhibitory action with dexamethasone (30mg/kg) against LPS-induced lung inflammation, acute lung injury, in mice with that of dexamethasone (30mg/kg). The action mechanism included interfering with the activation of nuclear transcription factor-κB in inflamed lungs. Therefore, it is concluded that moracin M inhibited airway inflammation in vitro and in vivo, and it has therapeutic potential for treating lung inflammatory disorders. PMID:27138708

  1. Mustard NPR1, a mammalian I{kappa}B homologue inhibits NF-{kappa}B activation in human GBM cell lines

    SciTech Connect

    Kesanakurti, Divya; Sareddy, Gangadhara Reddy; Babu, Phanithi Prakash; Kirti, Pulugurtha Bharadwaja

    2009-12-18

    NF-{kappa}B activity is tightly regulated by I{kappa}B class of proteins. I{kappa}B proteins possess ankyrin repeats for binding to and inhibiting NF-{kappa}B. The regulatory protein, NPR1 from Brassica juncea possesses ankyrin repeats with sequence similarity to I{kappa}B{alpha} subgroup. Therefore, we examined whether stably expressed BjNPR1 could function as I{kappa}B in inhibiting NF-{kappa}B in human glioblastoma cell lines. We observed that BjNPR1 bound to NF-{kappa}B and inhibited its nuclear translocation. Further, BjNPR1 expression down-regulated the NF-{kappa}B target genes iNOS, Cox-2, c-Myc and cyclin D1 and reduced the proliferation rate of U373 cells. Finally, BjNPR1 decreased the levels of pERK, pJNK and PKC{alpha} and increased the Caspase-3 and Caspase-8 activities. These results suggested that inhibition of NF-{kappa}B activation by BjNPR1 can be a promising therapy in NF-{kappa}B dependent pathologies.

  2. Immunomodulatory activity of Melaleuca alternifolia concentrate (MAC): inhibition of LPS-induced NF-κB activation and cytokine production in myeloid cell lines.

    PubMed

    Low, Pauline; Clark, Amanda M; Chou, Tz-Chong; Chang, Tsu-Chung; Reynolds, Maxwell; Ralph, Stephen J

    2015-05-01

    Melaleuca alternifolia concentrate (MAC) is a mixture predominantly composed of monoterpenoids and sesquiterpenes, refined from the essential oil of the tea tree by removing up to 99% of the more toxic, hydrophobic monoterpenes. MAC was examined here for its immunomodulatory effects on the human THP1 and murine RAW264.7 myeloid leukemic cell lines as models for macrophage-like cells. Firstly, MAC levels were determined that did not affect either the survival or proliferation of these cell lines in vitro. Next, the levels of lipopolysaccharide (LPS)-induced production of cytokines (IL-6, TNFα, IL-10, GM-CSF, IFNγ and IL-3) were examined from the myeloid cell lines using multiplex assays. Many of the LPS-inducible cytokines produced by either cell lines could be significantly inhibited by MAC. Closer examination of the mechanism of action of MAC showed that it inhibited the LPS-induced activation of IκB phosphorylation and nuclear factor (NF)-κB signalling and translocation, inhibiting iNOS protein expression and NO production. These results demonstrate that MAC exerts its immunomodulatory effects by inhibiting NF-κB signalling activation and levels of cytokine production by macrophage-like cell lines. PMID:25858876

  3. Limitations of angiotensin inhibition.

    PubMed

    Nobakht, Niloofar; Kamgar, Mohammad; Rastogi, Anjay; Schrier, Robert W

    2011-06-01

    Angiotensin-converting-enzyme (ACE) inhibitors and angiotensin-receptor blockers (ARBs) have beneficial effects in patients with cardiovascular disease and in those with diabetes-related and diabetes-independent chronic kidney diseases. These beneficial effects are independent of the antihypertensive properties of these drugs. However, ACE inhibitors, ARBs, and combinations of agents in these two classes are limited in the extent to which they inhibit the activity of the renin-angiotensin-aldosterone system (RAAS). Angiotensin breakthrough and aldosterone breakthrough may be important mechanisms involved in limiting the effects of ACE inhibitors and ARBs. Whether direct renin inhibitors will overcome some of the limitations of ACE-inhibitor and ARB therapy by blocking the deleterious effects of the RAAS remains to be proven. This important area is, however, in need of further investigation.

  4. Checkpoint inhibition in meningiomas.

    PubMed

    Bi, Wenya Linda; Wu, Winona W; Santagata, Sandro; Reardon, David A; Dunn, Ian F

    2016-06-01

    Meningiomas are increasingly appreciated to share similar features with other intra-axial central nervous system neoplasms as well as systemic cancers. Immune checkpoint inhibition has emerged as a promising therapy in a number of cancers, with durable responses of years in a subset of patients. Several lines of evidence support a role for immune-based therapeutic strategies in the management of meningiomas, especially high-grade subtypes. Meningiomas frequently originate juxtaposed to venous sinuses, where an anatomic conduit for lymphatic drainage resides. Multiple populations of immune cells have been observed in meningiomas. PD-1/PD-L1 mediated immunosuppression has been implicated in high-grade meningiomas, with association between PD-L1 expression with negative prognostic outcome. These data point to the promise of future combinatorial therapeutic strategies in meningioma. PMID:27197540

  5. Firefly luciferase inhibition.

    PubMed

    Leitão, João M M; Esteves da Silva, Joaquim C G

    2010-10-01

    Firefly luciferase (Luc) is the most studied of the luciferase enzymes and the mechanism and kinetics of the reactions catalyzed by this enzyme have been relatively well characterized. Luc catalyzes the bioluminescent reaction involving firefly luciferin (D-LH(2)), adenosine triphosphate (ATP), magnesium ion and molecular oxygen with the formation of an electronically excited species (oxyluciferin), inorganic pyrophosphate (PPi), carbon dioxide and adenosine monophosphate (AMP). Luc also catalyzes other non-luminescent reactions, which can interfere with the light production mechanism. Following electronic relaxation, the excited oxyluciferin emits radiation in the visible region of the electromagnetic spectrum (550-570 nm). Among the various possible compounds, several classes of inhibitory substances interfere with the activity of this enzyme: here, we consider substrate-related compounds, intermediates or products of the Luc catalyzed reactions, in addition to anesthetics and, fatty acids. This review summarizes the main inhibitors of Luc and the corresponding inhibition kinetic parameters.

  6. Alginate-Derived Oligosaccharide Inhibits Neuroinflammation and Promotes Microglial Phagocytosis of β-Amyloid.

    PubMed

    Zhou, Rui; Shi, Xu-Yang; Bi, De-Cheng; Fang, Wei-Shan; Wei, Gao-Bin; Xu, Xu

    2015-09-16

    Alginate from marine brown algae has been widely applied in biotechnology. In this work, the effects of alginate-derived oligosaccharide (AdO) on lipopolysaccharide (LPS)/β-amyloid (Aβ)-induced neuroinflammation and microglial phagocytosis of Aβ were studied. We found that pretreatment of BV2 microglia with AdO prior to LPS/Aβ stimulation led to a significant inhibition of production of nitric oxide (NO) and prostaglandin E₂ (PGE₂), expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and secretion of proinflammatory cytokines. We further demonstrated that AdO remarkably attenuated the LPS-activated overexpression of toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB in BV2 cells. In addition to the impressive inhibitory effect on neuroinflammation, we also found that AdO promoted the phagocytosis of Aβ through its interaction with TLR4 in microglia. Our results suggested that AdO exerted the inhibitory effect on neuroinflammation and the promotion effect on microglial phagocytosis, indicating its potential as a nutraceutical or therapeutic agent for neurodegenerative diseases, particularly Alzheimer's disease (AD).

  7. Safflower Yellow regulates microglial polarization and inhibits inflammatory response in LPS-stimulated Bv2 cells.

    PubMed

    Yang, Xing-Wang; Li, Yan-Hua; Zhang, Hui; Zhao, Yong-Fei; Ding, Zhi-Bin; Yu, Jie-Zhong; Liu, Chun-Yun; Liu, Jian-Chun; Jiang, Wei-Jia; Feng, Qian-Jin; Xiao, Bao-Guo; Ma, Cun-Gen

    2016-03-01

    Activated microglia, especially polarized M1 cells, produce pro-inflammatory cytokines and free radicals, thereby contributing directly to neuroinflammation and various brain disorders. Given that excessive or chronic neuroinflammation within the central nervous system (CNS) exacerbates neuronal damage, molecules that modulate neuroinflammation are candidates as neuroprotective agents. In this study, we provide evidence that Safflor yellow (SY), the main active component in the traditional Chinese medicine safflower, modulates inflammatory responses by acting directly on BV2 microglia. LPS stimulated BV2 cells to upregulate expression of TLR4-Myd88 and MAPK-NF-κB signaling pathways and to release IL-1β, IL-6, TNF-α, and COX-2. However, SY treatment inhibited expression of TLR4-Myd88 and p-38/p-JNK-NF-κB, downregulated expression of iNOS, CD16/32, and IL-12, and upregulated CD206 and IL-10. In conclusion, our results demonstrate that SY exerts an anti-inflammatory effect on BV2 microglia, possibly through TLR-4/p-38/p-JNK/NF-κB signaling pathways and the conversion of microglia from inflammatory M1 to an anti-inflammatory M2 phenotype. PMID:26634402

  8. Paeoniflorin inhibits skin lesions in imiquimod-induced psoriasis-like mice by downregulating inflammation.

    PubMed

    Sun, Yue; Zhang, Jie; Huo, Rongfen; Zhai, Tianhang; Li, Huidan; Wu, Pinru; Zhu, Xianjin; Zhou, Zhou; Shen, Baihua; Li, Ningli

    2015-02-01

    Psoriasis is a common chronic immune-mediated inflammatory disease. It is well known that macrophages, neutrophils and T-helper 1 (Th1)/T-helper 17 (Th17) cells play important roles in skin lesions by provoking inflammation. Paeoniflorin (PF) is the major effective component extracted from the root of Paeonia lactiflora, which has been widely used in China to treat inflammatory and autoimmune diseases, including psoriasis. Although PF shows a clinical therapeutic effect on psoriasis patients, how PF affects infiltrated immune cells in psoriasis skin lesions is still unknown. In this study, using a generated imiquimod (IMQ)-induced psoriasis-like mouse model, we found that PF ameliorates inflammation and skin lesions. Subsequent analyses showed that PF decreases the number of F4/80(+)CD68(+) macrophages and their related cytokine production (TNF-α, IL-1β, IL-6, IL-12 and inducible nitric oxide synthase (iNOS)) in the skin of IMQ-challenged mice. Moreover, PF suppresses the number of CD11b(+)Gr-1(+) neutrophils and the expression of macrophage inflammatory protein-2 (MIP-2; a counterpart of human IL-8, which is responsible for the recruitment of neutrophils in mice). Finally, PF also down-regulates Th1- and Th17-related cytokine expression. Therefore, our new findings reveal that PF alleviates psoriatic skin lesions by inhibiting inflammation, which provides new insights into the immunomodulatory effect of PF in psoriasis treatment. PMID:25576402

  9. Inhibition of Pro-inflammatory Mediators and Cytokines by Chlorella Vulgaris Extracts

    PubMed Central

    Sibi, G.; Rabina, Santa

    2016-01-01

    Objective: The aim of this study was to determine the in vitro anti-inflammatory activities of solvent fractions from Chlorella vulgaris by inhibiting the production of pro-inflammatory mediators and cytokines. Methods: Methanolic extracts (80%) of C. vulgaris were prepared and partitioned with solvents of increasing polarity viz., n-hexane, chloroform, ethanol, and water. Various concentrations of the fractions were tested for cytotoxicity in RAW 264.7 cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and the concentrations inducing cell growth inhibition by about 50% (IC50) were chosen for further studies. Lipopolysaccharide (LPS) stimulated RAW 264.7 cells were treated with varying concentrations of C. vulgaris fractions and examined for its effects on nitric oxide (NO) production by Griess assay. The release of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) were quantified using enzyme-linked immunosorbent assay using Celecoxib and polymyxin B as positive controls. Results: MTT assay revealed all the solvent fractions that inhibited cell growth in a dose-dependent manner. Of all the extracts, 80% methanolic extract exhibited the strongest anti-inflammatory activity by inhibiting NO production (P < 0.01), PGE2 (P < 0.05), TNF-α, and IL-6 (P < 0.001) release in LPS induced RAW 264.7 cells. Both hexane and chloroform fractions recorded a significant (P < 0.05) and dose-dependent inhibition of LPS induced inflammatory mediators and cytokines in vitro. The anti-inflammatory effect of ethanol and aqueous extracts was not significant in the study. Conclusion: The significant inhibition of inflammatory mediators and cytokines by fractions from C. vulgaris suggests that this microalga would be a potential source of developing anti-inflammatory agents and a good alternate for conventional steroidal and nonsteroidal anti-inflammatory drugs. SUMMARY C. vulgaris extracts have potential anti

  10. A Prenylated Xanthone, Cudratricusxanthone A, Isolated from Cudrania tricuspidata Inhibits Lipopolysaccharide-Induced Neuroinflammation through Inhibition of NF-κB and p38 MAPK Pathways in BV2 Microglia.

    PubMed

    Yoon, Chi-Su; Kim, Dong-Cheol; Quang, Tran Hong; Seo, Jungwon; Kang, Dae Gill; Lee, Ho Sub; Oh, Hyuncheol; Kim, Youn-Chul

    2016-01-01

    Cudrania tricuspidata Bureau (Moraceae) is an important source of traditional Korean and Chinese medicines used to treat neuritis and inflammation. Cudratricusxanthone A (1), a prenylated xanthone, isolated from C. tricuspidata, has a variety of biological and therapeutic activities. The goal of this study was to examine the effects of compound 1 on neuroinflammation and characterize its mechanism of action in lipopolysaccharide (LPS)-stimulated BV2 microglia. Cudratricusxanthone A (1) suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 enzymes and decreased the production of iNOS-derived nitric oxide and COX-2-derived prostaglandin E2 in LPS-stimulated mouse BV2 microglia. The compound also decreased tumor necrosis factor-α, interleukin (IL)-1β, and IL-12 production; inhibited the phosphorylation and degradation of IκB-α; and blocked the nuclear translocation of p50 and p65 in mouse BV2 microglia induced by LPS. Cudratricusxanthone A (1) had inhibitory effects on nuclear factor kappa B DNA-binding activity. Additionally, it inhibited the p38 mitogen-activated protein kinase signaling pathway. Our data suggests that cudratricusxanthone A (1) may be a useful therapeutic agent in the treatment of neurodegenerative diseases caused by neuroinflammation. PMID:27649130

  11. Cytokine and iNOS profiles in lymph nodes of dogs naturally infected with Leishmania infantum and their association with the parasitic DNA load and clinical and histopathological features.

    PubMed

    de Vasconcelos, Tassia Cristina Bello; Doyen, Noelle; Cavaillon, Jean-Marc; Bruno, Sávio Freire; de Campos, Monique Paiva; de Miranda, Luisa Helena Monteiro; Madeira, Maria de Fátima; Belo, Vinícius Silva; Figueiredo, Fabiano Borges

    2016-08-30

    In South America, visceral leishmaniasis is a zoonotic disease with severe evolution characteristics in humans, and dogs are its main reservoir. In this context, this study aimed to evaluate the clinical status of dogs from a Brazilian endemic area naturally, at Barra Mansa municipality, infected with Leishmania infantum, in conjunction with their histopathological profile and, in order to determine possible markers of susceptibility or resistance to the disease, parasitic DNA load, cytokine and iNOS mRNA expression profiles were investigated in lymph nodes. High levels of IFN-ɣ and IL-6 mRNA were detected. Both IFN-ɣ and IL-6 mRNA were associated with disorganization of the corticomedullary region. IFN-ɣ and TNF-α mRNA were associated with the absence of follicular hyperplasia. The re