Science.gov

Sample records for 80 foot wind

  1. Turbulence Intensity at Inlet of 80- by 120-Foot Wind Tunnel Caused by Upwind Blockage

    NASA Technical Reports Server (NTRS)

    Salazar, Denise; Yuricich, Jillian

    2014-01-01

    In order to estimate the magnitude of turbulence in the National Full-Scale Aerodynamics Complex (NFAC) 80- by 120-Foot Wind Tunnel (80 x 120) caused by buildings located upwind from the 80 x 120 inlet, a 150th-scale study was performed that utilized a nominal two-dimensional blockage placed ahead of the inlet. The distance of the blockage ahead of the inlet was varied. This report describes velocity measurements made in the plane of the 80 x 120 model inlet for the case of zero ambient (atmospheric) wind.

  2. Dynamic characteristics of the 40- by 80-/80- by 120-foot wind tunnel drive fan blades

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.

    1983-01-01

    The existing 40- by 80-Foot Wind Tunnel at Ames Research Center is being modified to upgrade and expand the research capabilty of the facility. The modification project includes an enhancement of the wind-tunnel drive power capability by installing large capacity electric motors and new drive fans to attain higher airspeeds in the existing 40- by 80-ft test section. It also involves the constructin of a new tunnel leg which includes a larger 80-- by 120-ft test section. The 40-by 80-ft test section will have a maximum airspeed approaching 300 knots. It was previously limited to about 200 knots. The maximum airspeed of the 80- by 120-ft test section will be about 100 knots. Becaue of the critical nature of the drive fans in the operation of the facility, an extensive effort was undertaken to verify, for each blade-retention system, its structural integrity and its dynamic characteristics.

  3. Reduction of Background Noise in the NASA Ames 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Jaeger, Stephen M.; Allen, Christopher S.; Soderman, Paul T.; Olson, Larry E. (Technical Monitor)

    1995-01-01

    Background noise in both open-jet and closed wind tunnels adversely affects the signal-to-noise ratio of acoustic measurements. To measure the noise of increasingly quieter aircraft models, the background noise will have to be reduced by physical means or through signal processing. In a closed wind tunnel, such as the NASA Ames 40- by 80- Foot Wind Tunnel, the principle background noise sources can be classified as: (1) fan drive noise; (2) microphone self-noise; (3) aerodynamically induced noise from test-dependent hardware such as model struts and junctions; and (4) noise from the test section walls and vane set. This paper describes the steps taken to minimize the influence of each of these background noise sources in the 40 x 80.

  4. Experimental study of flow deflectors designed to alleviate ground winds induced by exhaust of 80-by 120-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Rossow, V. J.; Schmidt, G. I.; Reinath, M. S.; Vanaken, J. M.; Parrish, C. L.; Schuler, R. F.

    1986-01-01

    An experimental study directed at finding a deflector ramp that will reduce to an acceptable level the ground winds under the exhaust jet of the 80 by 120 Foot Wind Tunnel at NASA Ames Center is described. A one-fifieth scale model of the full-scale facility was used to investigate how the jet flow field was modified by the various design parameters of the ramp. It was concluded that the ground winds were alleviated sufficiently by a ramp with end plates located next to the wind tunnel building along the ground edge of the exhaust opening. At full scale, the ramp should have a slant length of 7.62 m (25 ft) or more, and would be elevated at about 45 degrees to the ground plane. The material should have holes less than 15.2 (6 in) in diameter distributed uniformly over its surface to produce a porosity of about 30%.

  5. Airloads Correlation of the UH-60A Rotor Inside the 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Chang, I-Chung; Norman, Thomas R.; Romander, Ethan A.

    2013-01-01

    The presented research validates the capability of a loosely-coupled computational fluid dynamics (CFD) and comprehensive rotorcraft analysis (CRA) code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the full-scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The studied conditions include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed up to and including stall. For the speed sweep, wind tunnel modeling becomes important at advance ratios greater than 0.37 and test stand modeling becomes increasingly important as the advance ratio increases. For the thrust sweep, both the wind tunnel and test stand modeling become important as the rotor approaches stall. Despite the beneficial effects of modeling the wind tunnel and test stand, the new models do not completely resolve the current airload discrepancies between prediction and experiment.

  6. Simulation and control engineering studies of NASA-Ames 40 foot by 80 foot/80 foot by 120 foot wind tunnels

    NASA Technical Reports Server (NTRS)

    Bohn, J. G.; Jones, J. E.

    1978-01-01

    The development and use of a digital computer simulation of the proposed wind tunnel facility is described. The feasibility of automatic control of wind tunnel airspeed and other parameters was examined. Specifications and implementation recommendations for a computer based automatic control and monitoring system are presented.

  7. Sources and levels of background noise in the NASA Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    1988-01-01

    Background noise levels are measured in the NASA Ames Research Center 40- by 80-Foot Wind Tunnel following installation of a sound-absorbent lining on the test-section walls. Results show that the fan-drive noise dominated the empty test-section background noise at airspeeds below 120 knots. Above 120 knots, the test-section broadband background noise was dominated by wind-induced dipole noise (except at lower harmonics of fan blade-passage tones) most likely generated at the microphone or microphone support strut. Third-octave band and narrow-band spectra are presented for several fan operating conditions and test-section airspeeds. The background noise levels can be reduced by making improvements to the microphone wind screen or support strut. Empirical equations are presented relating variations of fan noise with fan speed or blade-pitch angle. An empirical expression for typical fan noise spectra is also presented. Fan motor electric power consumption is related to the noise generation. Preliminary measurements of sound absorption by the test-section lining indicate that the 152 mm thick lining will adequately absorb test-section model noise at frequencies above 300 Hz.

  8. Shake test results of the MDHC test stand in the 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Lau, Benton H.; Peterson, Randall

    1994-01-01

    A shake test was conducted to determine the modal properties of the MDHC (McDonnell Douglas Helicopter Company) test stand installed in the 40- by 80- Foot Wind Tunnel at Ames Research Center. The shake test was conducted for three wind-tunnel balance configurations with and without balance dampers, and with the snubber engagement to lock the balance frame. A hydraulic shaker was used to apply random excitation at the rotor hub in the longitudinal and lateral directions. A GenRad 2515 computer-aided test system computed the frequency response functions at the rotor hub and support struts. From these response functions, the modal properties, including the natural frequency, damping ratio, and mode shape were calculated. The critical modes with low damping ratios are identified as the test-stand second longitudinal mode for the dampers-off configuration, the test-stand yaw mode for the dampers-on configuration, and the test stand first longitudinal mode for the balance-frame locked configuration.

  9. Air-Loads Prediction of a UH-60A Rotor inside the 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Chang, I-Chung; Romander, Ethan A.; Potsdam, Mark; Yeo, Hyeonsoo

    2010-01-01

    The presented research extends the capability of a loose coupling computational fluid dynamics (CFD) and computational structure dynamics (CSD) code to calculate the flow-field around a rotor and test stand mounted inside a wind tunnel. Comparison of predicted air-load results for a full-scale UH-60A rotor recently tested inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at Ames Research Center and in free-air flight are made for three challenging flight data points from the earlier conducted UH-60A Air-loads Program. Overall results show that the extension of the coupled CFD/CSD code to the wind-tunnel environment is generally successful.

  10. Performance and test section flow characteristics of the National Full-Scale Aerodynamics Complex 80- by 120-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.

    1993-01-01

    Results from the performance and test section flow calibration of the 80- by 120-Foot Wind Tunnel are presented. Measurements indicating the 80- by 120-ft test section flow quality were obtained throughout the tunnel operational envelope and for atmospheric wind speeds up to approximately 20 knots. Tunnel performance characteristics and a dynamic pressure system calibration were also documented during the process of mapping the test section flow field. Experimental results indicate that the test section flow quality is relatively insensitive to dynamic pressure and the level of atmospheric winds experienced during the calibration. The dynamic pressure variation in the test section is within +/-75 percent of the average. The axial turbulence intensity is less than 0.5 percent up to the maximum test section speed of 100 knots, and the vertical and lateral flow angle variations are within +/-5 deg and +/-7 deg, respectively. Atmospheric winds were found to affect the pressure distribution in the test section only at high ratios of wind speed to test section speed.

  11. Flow direction measurement criteria and techniques planned for the 40- by 80-/80- x 120-foot wind tunnel integrated systems tests

    NASA Technical Reports Server (NTRS)

    Zell, P. T.; Hoffmann, J.; Sandlin, D. R.

    1985-01-01

    A study was performed in order to develop the criteria for the selection of flow direction indicators for use in the Integrated Systems Tests (ISTs) of the 40 by 80/80 by 120 Foot Wind Tunnel System. The problems, requirements, and limitations of flow direction measurement in the wind tunnel were investigated. The locations and types of flow direction measurements planned in the facility were discussed. A review of current methods of flow direction measurement was made and the most suitable technique for each location was chosen. A flow direction vane for each location was chosen. A flow direction vane that employs a Hall Effect Transducer was then developed and evaluated for application during the ISTs.

  12. Status and capabilities of the National Full Scale Facility 40- by 80-foot wind tunnel modification

    NASA Technical Reports Server (NTRS)

    Mort, K. W.; Engelbert, D. F.; Dusterberry, J. C.

    1982-01-01

    The background, requirements, and aerodynamic design of the modified NASA Ames 40 x 80 ft wind tunnel are reviewed, along with the systems integration and systems test results. Advancing vehicle sizes and airspeeds required a larger wind tunnel test section and a capability for 100 and 300 knots airspeed simulation. Acoustic mufflers at the inlet and exit of the nonreturn circuit provide noise suppression. The enlarged test section is intended to accomodate the complex flowfields of wings with high lift coefficients, and the drive system is designed with minimum residual swirl. Features of the fan blades are examined, along with characteristics of the test channels, control vanes and louvers, the exit, circuit losses, temperature rises during operation of the nonreturn circuit, and the facility acoustics. Specific construction problems and solutions for the conversion process are outlined, and it is noted that operational status is expected at the end of 1982.

  13. Large-scale V/STOL testing. [conducted in the Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.; Aiken, T. N.; Aoyagi, K.; Falarshi, M. D.

    1977-01-01

    Several facets of large-scale testing of V/STOL aircraft configurations are discussed with particular emphasis on test experience in the Ames 40- by 80-Foot Wind Tunnel. Examples of powered-lift test programs are presented in order to illustrate tradeoffs confronting the planner of V/STOL test programs. Large-scale V/STOL wind-tunnel testing can sometimes compete with small-scale testing in the effort required (overall test time) and program costs because of the possibility of conducting a number of different tests with a single large-scale model where several small-scale models would be required. The benefits of both high- or full-scale Reynolds numbers, more detailed configuration simulation, and number and type of onboard measurements are studied.

  14. Current Background Noise Sources and Levels in the NASA Ames 40- by 80-Foot Wind Tunnel: A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Jaeger, Stephen; Soderman, Paul; Koga, Dennis (Technical Monitor)

    1999-01-01

    Background noise measurements were made of the acoustic environment in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel (40x80) at NASA Ames Research Center. The measurements were acquired subsequent to the 40x80 Aeroacoustic Modernization Project, which was undertaken to improve the anechoic characteristics of the 40x80's closed test section as well as reduce the levels of background noise in the facility. The resulting 40x80 anechoic environment was described by Soderman et. al., and the current paper describes the resulting 40x80 background noise, discusses the sources of the noise, and draws comparisons to previous 40x80 background noise levels measurements. At low wind speeds or low frequencies, the 40x80 background noise is dominated by the fan drive system. To obtain the lowest fan drive noise for a given tunnel condition, it is possible in the 40x80 to reduce the fans' rotational speed and adjust the fans' blade pitch, as described by Schmidtz et. al. This idea is not new, but has now been operationally implemented with modifications for increased power at low rotational speeds. At low to mid-frequencies and at higher wind speeds, the dominant noise mechanism was thought to be caused by the surface interface of the previous test section floor acoustic lining. In order to reduce this noise mechanism, the new test section floor lining was designed to resist the pumping of flow in and out of the space between the grating slats required to support heavy equipment. In addition, the lining/flow interface over the entire test section was designed to be smoother and quieter than the previous design. At high wind speeds or high frequencies, the dominant source of background noise in the 40x80 is believed to be caused by the response of the in-flow microphone probes (required by the nature of the closed test section) to the fluctuations in the freestream flow. The resulting background noise levels are also different for probes of various

  15. Modification of the Ames 40- by 80-foot wind tunnel for component acoustic testing for the second generation supersonic transport

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.; Allmen, J. R.; Soderman, P. T.

    1994-01-01

    The development of a large-scale anechoic test facility where large models of engine/airframe/high-lift systems can be tested for both improved noise reduction and minimum performance degradation is described. The facility development is part of the effort to investigate economically viable methods of reducing second generation high speed civil transport noise during takeoff and climb-out that is now under way in the United States. This new capability will be achieved through acoustic modifications of NASA's second largest subsonic wind tunnel: the 40-by 80-Foot Wind Tunnel at the NASA Ames Research Center. Three major items are addressed in the design of this large anechoic and quiet wind tunnel: a new deep (42 inch (107 cm)) test section liner, expansion of the wind tunnel drive operating envelope at low rpm to reduce background noise, and other promising methods of improving signal-to-noise levels of inflow microphones. Current testing plans supporting the U.S. high speed civil transport program are also outlined.

  16. Acoustic Quality of the 40- by 80- Foot Wind Tunnel Test Section After Installation of a Deep Acoustic Lining

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Jaeger, Stephen M.; Hayes, Julie A.; Allen, Christopher S.

    2002-01-01

    A recessed, 42-inch deep acoustic lining has been designed and installed in the 40- by 80- Foot Wind Tunnel (40x80) test section to greatly improve the acoustic quality of the facility. This report describes the test section acoustic performance as determined by a detailed static calibration-all data were acquired without wind. Global measurements of sound decay from steady noise sources showed that the facility is suitable for acoustic studies of jet noise or similar randomly generated sound. The wall sound absorption, size of the facility, and averaging effects of wide band random noise all tend to minimize interference effects from wall reflections. The decay of white noise with distance was close to free field above 250 Hz. However, tonal sound data from propellers and fans, for example, will have an error band to be described that is caused by the sensitivity of tones to even weak interference. That error band could be minimized by use of directional instruments such as phased microphone arrays. Above 10 kHz, air absorption began to dominate the sound field in the large test section, reflections became weaker, and the test section tended toward an anechoic environment as frequency increased.

  17. Aero-acoustic experimental verification of optimum configuration of variable-pitch fans for 40 x 80 foot subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Lown, H.

    1977-01-01

    The aerodynamic and acoustic performance of two drive fan configurations (low-speed and high-speed variable pitch design) for a 40 x 80 foot wind tunnel were monitored. A 1/7-scale model was utilized. The necessary aero-acoustic data reduction computer program logic was supplied. Test results were evaluated, and the optimum configuration to be employed in the 40 foot full scale fan was recommended.

  18. Full-scale S-76 rotor performance and loads at low speeds in the NASA Ames 80- by 120-Foot Wind Tunnel. Vol. 1

    NASA Technical Reports Server (NTRS)

    Shinoda, Patrick M.

    1996-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.

  19. Comparison of acoustic data from a 102 mm conic nozzle as measured in the RAE 24-foot wind tunnel and the NASA Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Mckie, J.

    1982-01-01

    A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.

  20. Analysis of F/A-18 Tail Buffet Data Acquired in the 80- by 120-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    James, Kevin D.; Meyn, Larry A.; Schmitz, Fredric H. (Technical Monitor)

    1994-01-01

    Tail buffet studies were conducted on a full-scale, production, F/A-18 fighter aircraft in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center at Moffett Field, California. Tail buffet data were acquired over an angle-of-attack range of +20 deg to +40 deg, a side-slip range of -16 deg to + 16 deg, and at wind speeds up to 100 knots. The maximum speed corresponds to a Reynolds number of l2.3 x l0(exp 6) based on mean aerodynamic chord and a Mach number of 0. 15. The port, vertical tail fin was instrumented with ninety-six surface-pressure transducers, arranged in six by eight arrays, on each side of the fin. ne aircraft was also equipped with a removable Leading-Edge Extension (LEX) fence whose purpose is to reduce tail-buffet loads. Current analysis methods for the unsteady aerodynamic pressures and loads are described. Only results for the zero side-slip condition are to be presented, both with and without the LEX fence. Results of the time-averaged, power-spectral analysis are presented for the tail fin bending moments which are derived from the integrated pressure field. Local wave velocities on the tail surfaces are calculated from pressure correlations. It was found that the LEX fence significantly reduces the magnitude of the root-mean-square pressures and bending moments. Scaling and repeatability issues are addressed by comparing the present full scale results for pressures at the 60%-span and 45%-chord location with previous full-scale F/A-18 tail-buffet test in the 80- by 120- Foot Wind Tunnel, and with several small-scale tests. The comparisons show that the tail buffet frequency scales very well with tail chord and free-stream velocity, and that there is good agreement with the previous full-scale test. Root-mean-square pressures and power spectra do not scale as well as the frequency results. Addition of a LEX fence caused tail-buffet loads to be reduced at all model scales.

  1. Aerodynamic characteristics of the modified 40- by 80-foot wind tunnel as measured in a 1/50th-scale model

    NASA Technical Reports Server (NTRS)

    Smith, Brian E.; Naumowicz, Tim

    1987-01-01

    The aerodynamic characteristics of the 40- by 80-Foot Wind Tunnel at Ames Research Center were measured by using a 1/50th-scale facility. The model was configured to closely simulate the features of the full-scale facility when it became operational in 1986. The items measured include the aerodynamic effects due to changes in the total-pressure-loss characteristics of the intake and exhaust openings of the air-exchange system, total-pressure distributions in the flow field at locations around the wind tunnel circuit, the locations of the maximum total-pressure contours, and the aerodynamic changes caused by the installation of the acoustic barrier in the southwest corner of the wind tunnel. The model tests reveal the changes in the aerodynamic performance of the 1986 version of the 40- by 80-Foot Wind Tunnel compared with the performance of the 1982 configuration.

  2. Analytical study of the effects of wind tunnel turbulence on turbofan rotor noise. [NASA Ames 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Gliebe, P. R.; Kerschen, E. J.

    1979-01-01

    The influence of tunnel turbulence on turbofan rotor noise was carried out to evaluate the effectiveness of the NASA Ames 40 by 80 foot tunnel in simulating flight levels of fan noise. A previously developed theory for predicting rotor/turbulence interaction noise was refined and extended to include first-order effects of inlet turbulence anisotropy. This theory was then verified by carrying out extensive data/theory comparisons. The resulting model computer program was then employed to carry out a parametric study of the effects of fan size, blade number, and operating line on rotor/turbulence noise for outdoor test stand. NASA Ames wind tunnel, and flight inlet turbulence conditions. A major result of this study is that although wind tunnel rotor/turbulence noise levels are not as low as flight levels they are substantially lower than the outdoor test stand levels and do not mask other sources of fan noise.

  3. Acoustics Reflections of Full-Scale Rotor Noise Measurements in NFAC 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Barbely, Natasha Lydia; Kitaplioglu, Cahit; Sim, Ben W.

    2012-01-01

    The objective of current research is to identify the extent of acoustic time history distortions due to wind tunnel wall reflections. Acoustic measurements from the recent full-scale Boeing-SMART rotor test (Fig. 2) will be used to illustrate the quality of noise measurement in the NFAC 40- by 80-Foot Wind Tunnel test section. Results will be compared to PSU-WOPWOP predictions obtained with and without adjustments due to sound reflections off wind tunnel walls. Present research assumes a rectangular enclosure as shown in Fig. 3a. The Method of Mirror Images7 is used to account for reflection sources and their acoustic paths by introducing mirror images of the rotor (i.e. acoustic source), at each and every wall surface, to enforce a no-flow boundary condition at the position of the physical walls (Fig. 3b). While conventional approach evaluates the "combined" noise from both the source and image rotor at a single microphone position, an alternative approach is used to simplify implementation of PSU-WOPWOP for this reflection analysis. Here, an "equivalent" microphone position is defined with respect to the source rotor for each mirror image that effectively renders the reflection analysis to be a one rotor, multiple microphones problem. This alternative approach has the advantage of allowing each individual "equivalent" microphone, representing the reflection pulse from the associated wall surface, to be adjusted by the panel absorption coefficient illustrated in Fig. 1a. Note that the presence of parallel wall surfaces requires an infinite number of mirror images (Fig. 3c) to satisfy the no-flow boundary conditions. In the present analysis, up to four mirror images (per wall surface) are accounted to achieve convergence in the predicted time histories

  4. M2-F1 mounted in NASA Ames Research Center 40x80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    After the first attempted ground-tow tests of the M2-F1 in March 1963, the vehicle was taken to the Ames Research Center, Mountain View, CA, for wind-tunnel testing. During these tests, Milt Thompson and others were in the M2-F1 to position the control surfaces for each test. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C

  5. Time-averaged aerodynamic loads on the vane sets of the 40- by 80-foot and 80- by 120-foot wind tunnel complex

    NASA Technical Reports Server (NTRS)

    Aoyagi, Kiyoshi; Olson, Lawrence E.; Peterson, Randall L.; Yamauchi, Gloria K.; Ross, James C.; Norman, Thomas R.

    1987-01-01

    Time-averaged aerodynamic loads are estimated for each of the vane sets in the National Full-Scale Aerodynamic Complex (NFAC). The methods used to compute global and local loads are presented. Experimental inputs used to calculate these loads are based primarily on data obtained from tests conducted in the NFAC 1/10-Scale Vane-Set Test Facility and from tests conducted in the NFAC 1/50-Scale Facility. For those vane sets located directly downstream of either the 40- by 80-ft test section or the 80- by 120-ft test section, aerodynamic loads caused by the impingement of model-generated wake vortices and model-generated jet and propeller wakes are also estimated.

  6. Investigation of the Flying Mock-Up of the Consolidated Vultee XP-92 Airplane in the Ames 40- by 80-Foot Wind Tunnel. Force and Moment Characteristics

    NASA Technical Reports Server (NTRS)

    Wick, Bradford, H.; Graham, David

    1948-01-01

    This report contains the results of the investigation of the aerodynamic characteristics of the flying mock-up of the Consolidated Vultee XP-92 airplane as conducted in the Ames 40- by 80-foot wind tunnel, Data are presented for test conditions which would give information as to the limits of stability and controllability, and also, the effect of Reynolds number. No analysis of the data has been made.

  7. Shake test of rotor test apparatus with balance dampers in the 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W.; Biggers, J. G.

    1975-01-01

    A shake test was conducted to determine the dynamic characteristics of a rotor test apparatus on two strut systems with balance dampers in the Ames 40- by 80-ft wind tunnel. The rotor-off hub transfer function (acceleration per unit force as a function of frequency) was measured in the longitudinal and lateral directions, using a combination of broadband and discrete frequency excitation techniques. The dynamic data are summarized for the configurations tested, giving the following properties for each mode identified: the natural frequency, the hub response at resonance, the fixed system damping, the damping ratio, and the modal mass. The complete transfer functions are presented, and the detailed test results are included as an appendix.

  8. The design of test-section inserts for higher speed aeroacoustic testing in the Ames 80- by 120-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Olson, Larry E.

    1992-01-01

    An engineering feasibility study was made of aeroacoustic inserts designed for large-scale acoustic research on aircraft models in the 80- by 120 Foot Wind Tunnel at NASA Ames Research Center. The goal was to find test-section modifications that would allow improved aeroacoustic testing at airspeeds equal to and above the current 100 knots limit. Results indicate that the required maximum airspeed drives the design of a particular insert. Using goals of 200, 150, and 100 knots airspeed, the analysis led to a 30 x 60 ft open-jet test section, a 40 x 80 ft open-jet test section, and a 70 x 110 ft closed test section with enhanced wall lining respectively. The open-jet inserts would be composed of a nozzle, collector, diffuser, and acoustic wedges incorporated in the existing 80 x 120 ft test section. The closed test section would be composed of approximately 5-ft acoustic wedges covered by a porous plate attached to the test-section walls of the existing 80 x 120. All designs would require a double row of acoustic vanes between the test section and fan drive to attenuate fan noise and, in the case of the open-jet designs, to control flow separation at the diffuser downstream end. The inserts would allow virtually anechoic acoustics studies of large helicopter models, jets and V/STOL aircraft models in simulated flight. Model scale studies would be necessary to optimize the aerodynamic and acoustic performance of any of the designs.

  9. Acoustic Modifications of the Ames 40x80 Foot Wind Tunnel and Test Techniques for High-Speed Research Model Testing

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Olson, Larry (Technical Monitor)

    1995-01-01

    The NFAC 40- by 80- Foot Wind Tunnel at Ames is being refurbished with a new, deep acoustic lining in the test section which will make the facility nearly anechoic over a large frequency range. The modification history, key elements, and schedule will be discussed. Design features and expected performance gains will be described. Background noise reductions will be summarized. Improvements in aeroacoustic research techniques have been developed and used recently at NFAC on several wind tunnel tests of High Speed Research models. Research on quiet inflow microphones and struts will be described. The Acoustic Survey Apparatus in the 40x80 will be illustrated. A special intensity probe was tested for source localization. Multi-channel, high speed digital data acquisition is now used for acoustics. And most important, phased microphone arrays have been developed and tested which have proven to be very powerful for source identification and increased signal-to-noise ratio. Use of these tools for the HEAT model will be illustrated. In addition, an acoustically absorbent symmetry plane was built to satisfy the HEAT semispan aerodynamic and acoustic requirements. Acoustic performance of that symmetry plane will be shown.

  10. Flight effects on noise generated by the JT8D-17 engine in a quiet nacelle and a conventional nacelle as measured in the NASA-Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Strout, F. G.

    1976-01-01

    A JT8D-17 turbofan engine was tested in the NASA-Ames 40- by 80-foot wind tunnel to determine flight effects on jet and fan noise. Baseline, quiet nacelle with 20-lobe ejector/suppressor, and internal mixer configurations were tested over a range of engine power settings and tunnel velocities. Flight effects derived from the 40- by 80-foot wind tunnel test are compared with 727/JT8D flight test data and with model data obtained in a smaller wind tunnel. Procedures are defined for measuring noise data in a wind tunnel relatively near the sources and analyzing the results to obtain far-field flight effects. Wind tunnel and 727 flight test noise results compare favorably for both the baseline and quiet nacelle configurations. Two reports are provided, including a comprehensive version with extensive test results and analysis and the subject summary version that emphasizes data analysis and program finding.

  11. Comparison of aircraft noise measured in flight test and in the NASA Ames 40- by 80-foot wind tunnel.

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Soderman, P. T.

    1973-01-01

    A method to determine free-field aircraft noise spectra from wind-tunnel measurements has been developed. The crux of the method is the correction for reverberations. Calibrated loud speakers are used to simulate model sound sources in the wind tunnel. Corrections based on the difference between the direct and reverberant field levels are applied to wind-tunnel data for a wide range of aircraft noise sources. To establish the validity of the correction method, two research aircraft - one propeller-driven (YOV-10A) and one turbojet-powered (XV-5B) - were flown in free field and then tested in the wind tunnel. Corrected noise spectra from the two environments agree closely.

  12. Experimental investigation of inlet flow-control cascades for the NFAC 80- by 120-foot Indraft Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Van Aken, Johannes M.; Scheller, Nina M.

    1988-01-01

    The present investigation of aerodynamic performance for various inlet cascade configurations of an indraft wind tunnel with a short inlet and a low contraction ratio has given attention to the effects of inlet wall shape, antiturbulence screens, and horizontal flow straighteners on test-section flow quality. It is found that an inlet cascade with a tailored vane-splay distribution, antiturbulence screen, and horizontal splitters, will both yield good test section flow quality and furnish isolation from atmospheric winds and turbulence.

  13. Design and Development of a Deep Acoustic Lining for the 40-by 80-Foot Wind Tunnel Test Section

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Schmitz, Fredric H.; Allen, Christopher S.; Jaeger, Stephen M.; Sacco, Joe N.; Mosher, Marianne; Hayes, Julie A.

    2002-01-01

    The work described in this report has made effective use of design teams to build a state-of-the-art anechoic wind-tunnel facility. Many potential design solutions were evaluated using engineering analysis, and computational tools. Design alternatives were then evaluated using specially developed testing techniques, Large-scale coupon testing was then performed to develop confidence that the preferred design would meet the acoustic, aerodynamic, and structural objectives of the project. Finally, designs were frozen and the final product was installed in the wind tunnel. The result of this technically ambitious project has been the creation of a unique acoustic wind tunnel. Its large test section (39 ft x 79 ft x SO ft), potentially near-anechoic environment, and medium subsonic speed capability (M = 0.45) will support a full range of aeroacoustic testing-from rotorcraft and other vertical takeoff and landing aircraft to the take-off/landing configurations of both subsonic and supersonic transports.

  14. The design of test-section inserts for higher speed aeroacoustic testing in the Ames 80- by 120-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Olson, Larry E.

    1992-01-01

    An engineering feasibility study was made of aeroacoustic inserts designed for large-scale acoustic research on aircraft models in the 80- by 120-Foot Wind Tunnel at NASA Ames Research Center. The goal was to find test-section modifications that would allow improved aeroacoustic testing at airspeeds equal to and above the current 100 knots limit. Results indicate that the required maximum airspeed drives the design of a particular insert. Using goals of 200, 150, and 100 knots airspeed, the analysis led to a 30 x 60 ft open-jet test section, a 40 x 80 ft open-jet test section, and a 70 x 110 ft closed test section with enhanced wall lining respectively. The open-jet inserts would be composed of a nozzle, collector, diffuser, and acoustic wedges incorporated in the existing 80 x 120 ft test section. The closed test section would be composed of approximately 5-ft acoustic wedges covered by a porous plate attached to the test-section walls of the existing 80 x 120. All designs would require a double row of acoustic vanes between the test section and fan drive to attenuate fan noise and, in the case of the open-jet designs, to control flow separation at the diffuser downstream end. The inserts would allow virtually anechoic acoustics studies of large helicopter models, jets, and V/STOL aircraft models in simulated flight. Model scale studies would be necessary to optimize the aerodynamic and acoustic performance of any of the designs. Successful development of acoustically transparent walls, though not strictly necessary to the project, would lead to a porous-wall test section that could be substituted for any of the open-jet designs, and thereby eliminate many aerodynamic and acoustic problems characteristic of open-jet shear layers.

  15. Real-time computer data system for the 40- by 80-foot wind tunnel facility at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Cambra, J. M.; Tolari, G. P.

    1975-01-01

    The background material and operational concepts of a computer-based system for an operating wind tunnel are described. An on-line real-time computer system was installed in a wind tunnel facility to gather static and dynamic data. The computer system monitored aerodynamic forces and moments of periodic and quasi-periodic functions, and displayed and plotted computed results in real time. The total system is comprised of several off-the-shelf, interconnected subsystems that are linked to a large data processing center. The system includes a central processor unit with 32,000 24-bit words of core memory, a number of standard peripherals, and several special processors; namely, a dynamic analysis subsystem, a 256-channel PCM-data subsystem and ground station, a 60-channel high-speed data acquisition subsystem, a communication link, and static force and pressure subsystems. The role of the test engineer as a vital link in the system is also described.

  16. Tests of the Northrop XSSM-A-3 Missile in the Ames 40- by 80-Foot Wind Tunnel: Wing Modifications

    NASA Technical Reports Server (NTRS)

    Graham, David

    1950-01-01

    Wind-tunnel tests were conducted to determine the longitudinal stability characteristics of a full-scale Northrop XSSM-A-3 missile. Various wing modifications were investigated in an effort to provide a configuration that would maintain longitudinal stability to lift coefficients necessary for landing the missile during flight tests. The results of the tests led to the choice of a wing with an increased leading-edge radius. A short discussion of the results is presented, but no analysis of the data has been made in order to make the data available as soon as possible.

  17. Application of a Two Camera Video Imaging System to Three-Dimensional Vortex Tracking in the 80- by 120-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.; Bennett, Mark S.

    1993-01-01

    A description is presented of two enhancements for a two-camera, video imaging system that increase the accuracy and efficiency of the system when applied to the determination of three-dimensional locations of points along a continuous line. These enhancements increase the utility of the system when extracting quantitative data from surface and off-body flow visualizations. The first enhancement utilizes epipolar geometry to resolve the stereo "correspondence" problem. This is the problem of determining, unambiguously, corresponding points in the stereo images of objects that do not have visible reference points. The second enhancement, is a method to automatically identify and trace the core of a vortex in a digital image. This is accomplished by means of an adaptive template matching algorithm. The system was used to determine the trajectory of a vortex generated by the Leading-Edge eXtension (LEX) of a full-scale F/A-18 aircraft tested in the NASA Ames 80- by 120-Foot Wind Tunnel. The system accuracy for resolving the vortex trajectories is estimated to be +/-2 inches over distance of 60 feet. Stereo images of some of the vortex trajectories are presented. The system was also used to determine the point where the LEX vortex "bursts". The vortex burst point locations are compared with those measured in small-scale tests and in flight and found to be in good agreement.

  18. Large-scale aeroacoustic research feasibility and conceptual design of test-section inserts for the Ames 80- by 120-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Olsen, Larry E.

    1990-01-01

    An engineering feasibility study was made of aeroacoustic inserts designed for large-scale acoustic research on aircraft models in the 80 by 120 foot Wind Tunnel at NASA Ames Research Center. The advantages and disadvantages of likely designs were analyzed. Results indicate that the required maximum airspeed leads to the design of a particular insert. Using goals of 200, 150, and 100 knots airspeed, the analysis indicated a 30 x 60 ft open-jet test section, a 40 x 80 ft open jet test section, and a 70 x 100 ft closed test section with enhanced wall lining, respectively. The open-jet inserts would be composed of a nozzle, collector, diffuser, and acoutic wedges incorporated in the existing 80 x 120 test section. The closed test section would be composed of approximately 5 ft acoustic wedges covered by a porous plate attached to the test section walls of the existing 80 x 120. All designs would require a double row of acoustic vanes between the test section and fan drive to attenuate fan noise and, in the case of the open-jet designs, to control flow separation at the diffuser downstream end. The inserts would allow virtually anechoic acoustic studies of large helicopter models, jets, and V/STOL aircraft models in simulated flight. Model scale studies would be necessary to optimize the aerodynamic and acoustic performance of any of the designs. In all designs studied, the existing structure would have to be reinforced. Successful development of acoustically transparent walls, though not strictly necessary to the project, would lead to a porous-wall test section that could be substituted for any of the open-jet designs, and thereby eliminate many aerodynamic and acoustic problems characteristic of open-jet shear layers. The larger size of the facility would make installation and removal of the insert components difficult. Consequently, scheduling of the existing 80 x 120 aerodynamic test section and scheduling of the open-jet test section would likely be made on an

  19. Aeroacoustic Study of a 26%-Scale Semispan Model of a Boeing 777 Wing in the NASA Ames 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Burnside, Nathan J.; Soderman, Paul T.; Jaeger, Stephen M.; Reinero, Bryan R.; James, Kevin D.; Arledge, Thomas K.

    2004-01-01

    An acoustic and aerodynamic study was made of a 26%-scale unpowered Boeing 777 aircraft semispan model in the NASA Ames 40- by 80-Foot Wind Tunnel for the purpose of identifying and attenuating airframe noise sources. Simulated approach and landing configurations were evaluated at Mach numbers between 0.12 and 0.24. Cruise configurations were evaluated at Mach numbers between 0.24 and 0.33. The research team used two Ames phased-microphone arrays, a large fixed array and a small traversing array, mounted under the wing to locate and compare various noise sources in the wing high-lift system and landing gear. Numerous model modifications and noise alleviation devices were evaluated. Simultaneous with acoustic measurements, aerodynamic forces were recorded to document aircraft conditions and any performance changes caused by the geometric modifications. Numerous airframe noise sources were identified that might be important factors in the approach and landing noise of the full-scale aircraft. Several noise-control devices were applied to each noise source. The devices were chosen to manipulate and control, if possible, the flow around the various tips and through the various gaps of the high-lift system so as to minimize the noise generation. Fences, fairings, tip extensions, cove fillers, vortex generators, hole coverings, and boundary-layer trips were tested. In many cases, the noise-control devices eliminated noise from some sources at specific frequencies. When scaled to full-scale third-octave bands, typical noise reductions ranged from 1 to 10 dB without significant aerodynamic performance loss.

  20. Forward velocity effects on fan noise and the suppression characteristics of advanced inlets as measured in the NASA-Ames 40 by 80 foot wind tunnel

    NASA Astrophysics Data System (ADS)

    Moore, M. T.

    1980-05-01

    Forward velocity effects on the forward radiated fan noise and on the suppression characteristics of three advanced inlets relative to a baseline cylindrical inlet were measured in the NASA Ames Research Center 40 x 80 foot Wind Tunnel. A modified JT15D turbofan engine in a quiet nacelle was the source of fan noise; the advanced inlets were a Conventional Takeoff/Landing (CTOL) hybrid inlet, a Short Takeoff/Landing (STOL) hybrid inlet, and a treated deflector inlet. Also measured were the static to flight effects on the fan noise of canting the baseline inlet 4 deg downward to simulate typical wing mounted turbofan engines. The CTOL hybrid inlet suppressed the high tip speed fan noise as much as 18 PNdB on a 61 m (200 ft) sideline scaled to a CF6 size engine while the STOL hybrid inlet suppressed the low tip speed fan noise as much as 13 PNdB on a 61 m (200 ft) sideline scaled to a OCSEE size engine. The deflector inlet suppressed the high tip speed fan noise as much as 13 PNdB at 61 m (200 ft) overhead scaled to a CF6 size engine. No significant changes in fan noise suppression for the CTOL and STOL hybrid inlets occurred for forward velocity changes above 21 m/s (68 ft/s) or for angle of attack changes up to 15 deg. However, changes in both forward velocity and angle of attack changed the deflector inlet noise unpredictably due to the asymmetry of the inlet flow field into the fan.

  1. 20. 80 foot pony truss an upper chord pin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. 80 foot pony truss - an upper chord pin connection at a vertical post other than at the end post. Common to the five 80 foot trusses and similar to the 64 foot truss, there are two pairs per 80 foot truss and one pair on the 64 foot truss for a total of 22. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  2. 18. 80 foot pony truss detail of the lower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. 80 foot pony truss - detail of the lower cord pin connection, typical of the 80 foot trusses and similar to the 64 foot truss, where the vertical lace post joins the upper and lower chords. There are two pair of each 80 foot truss and a single pair on the 64 foot truss for a total of 22. The view also shows the chord eye bar and eye rod along with the diagonal bar and rod members. The rod hanging diagonally to the left is a broken lateral member. A four inch conduit is also in view. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  3. 19. 80 foot pony truss view of upper chord ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. 80 foot pony truss - view of upper chord pin connection at the end post, typical of the five 80 foot trusses and similar to the 64 foot tress. There are two pair per pony truss for a total of 24. Shown are the vertical lace post, end post, top chord member, and a diagonal member. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  4. Flight effects on JT8D engine jet noise as measured in the NASA Ames 40-by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Strout, F. G.; Atencio, A., Jr.

    1976-01-01

    A JT8D-17 turbofan engine was tested in a 40 x 80 ft wind tunnel to determine flight effects on jet noise. The engine was configured as a baseline with conical nozzle, a quiet nacelle 20-lobe ejector/suppressor, and an internal mixer with conical nozzle. Tunnel-off and tunnel-on noise tests were conducted over a range of nozzle pressure ratios (1.2 to 2.1), primary jet velocities (275 to 550 m/s), and tunnel velocities up to 100 m/s. Aft quadrant noise data were measured by a pair of traversing microphones located on a 3-m sideline relative to the engine centerline. Unique correlations and analysis procedures were developed in order to define far-field flight effects from the relatively near-field noise measurements. The ejector/suppressor experienced a significant loss of suppression relative to static measurements during flight while the internal mixer indicated a slight gain in suppression. It is concluded that the wind tunnel is a viable method for studying flight effects on engine jet noise.

  5. 17. 80 foot pony truss detail of the lower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. 80 foot pony truss - detail of the lower pin connection located where an end post joins the first and the last vertical post. There are two pair on each of the five 80 foot trusses for a total of 20. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  6. Initial Assessment of Acoustic Source Visibility with a 24-Element Microphone Array in the Arnold Engineering Development Center 80- by 120-Foot Wind Tunnel at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Horne, William C.

    2011-01-01

    Measurements of background noise were recently obtained with a 24-element phased microphone array in the test section of the Arnold Engineering Development Center 80- by120-Foot Wind Tunnel at speeds of 50 to 100 knots (27.5 to 51.4 m/s). The array was mounted in an aerodynamic fairing positioned with array center 1.2m from the floor and 16 m from the tunnel centerline, The array plate was mounted flush with the fairing surface as well as recessed in. (1.27 cm) behind a porous Kevlar screen. Wind-off speaker measurements were also acquired every 15 on a 10 m semicircular arc to assess directional resolution of the array with various processing algorithms, and to estimate minimum detectable source strengths for future wind tunnel aeroacoustic studies. The dominant background noise of the facility is from the six drive fans downstream of the test section and first set of turning vanes. Directional array response and processing methods such as background-noise cross-spectral-matrix subtraction suggest that sources 10-15 dB weaker than the background can be detected.

  7. 12. 80 foot pony truss looking east from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. 80 foot pony truss - looking east from the upstream side, view of a single pony truss showing its general arrangement on replacement piers, circa 1966. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  8. Flight effects on noise by the JT8D engine with inverted primary/fan flow as measured in the NASA-Ames 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Strout, F. G.

    1978-01-01

    A JT8D-17R engine with inverted primary and fan flows was tested under static conditions as well as in the NASA Ames 40 by 80 Foot Wind Tunnel to determine static and flight noise characteristics, and flow profile of a large scale engine. Test and analysis techniques developed by a previous model and JT8D engine test program were used to determine the in-flight noise. The engine with inverted flow was tested with a conical nozzle and with a plug nozzle, 20 lobe nozzle, and an acoustic shield. Wind tunnel results show that forward velocity causes significant reduction in peak PNL suppression relative to uninverted flow. The loss of EPNL suppression is relatively modest. The in-flight peak PNL suppression of the inverter with conical nozzle was 2.5 PNdb relative to a static value of 5.5 PNdb. The corresponding EPNL suppression was 4.0 EPNdb for flight and 5.0 EPNdb for static operation. The highest in-flight EPNL suppression was 7.5 EPNdb obtained by the inverter with 20 lobe nozzle and acoustic shield. When compared with the JT8D engine with internal mixer, the inverted flow configuration provides more EPNL suppression under both static and flight conditions.

  9. Investigation of the Flying Mock-Up of Consolidated Vultee XP-92 Airplane in the Ames 40- by 80-Foot Wind Tunnel: Pressure Distributions

    NASA Technical Reports Server (NTRS)

    Graham, David

    1948-01-01

    This report contains the results of the wind tunnel investigation of the pressure distribution on the flying mock-up of the Consolidated Vultee XP-92 airplane. Data are presented for the pressure distribution over the wing, vertical tail and the fuselage, and for the pressure loss and rate of flow through the ducted fuselage. Data are also presented for the calibration of two airspeed indicators, and for the calibration of angle-of-attack and sideslip-angle indicator vanes.

  10. An Investigation of the McDonnell XP-85 Airplane in the Ames 40- by 80-Foot Wind Tunnel: Pressure-Distribution Tests

    NASA Technical Reports Server (NTRS)

    Hunton, Lynn W.; James, Harry A.

    1948-01-01

    Pressure measurements were made during wind-tunnel tests of the McDonnell XP-85 parasite fighter. Static-pressure orifices were located over the fuselage nose, over the canopy, along the wing root, and along the upper and lower stabilizer roots. A total-pressure and static-pressure rake was located in the turbojet engine air-intake duct. It was installed at the station where the compressor face would be located. Pressure data were obtained for two airplane conditions, clean and with skyhook extended, through a range of angle of attack and a range of yaw.

  11. Forward velocity effects on fan noise and the suppression characteristics of advanced inlets as measured in the NASA Ames 40 by 80 foot wind tunnel: Acoustic data report

    NASA Astrophysics Data System (ADS)

    Moore, M. T.

    1981-01-01

    Forward velocity effects on the forward radiated fan noise and on the suppression characteristics of three advanced inlets relative to a baseline cylindrical inlet were measured in a wind tunnel. A modified JT15D turbofan engine in a quiet nacelle was the source of fan noise; the advanced inlets were a CTOL hybrid inlet, an STOL hybrid inlet, and a treated deflector inlet. Also measured were the static to flight effects on the baseline inlet noise and the effects on the fan noise of canting the baseline inlet 4 deg downward to simulate typical wing mounted turbofan engines. The 1/3 octave band noise data from these tests are given along with selected plots of 1/3 octave band spectra and directivity and full scale PNL directivities. The test facilities and data reduction techniques used are also described.

  12. 7. 80 foot pony truss underside of bridge, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. 80 foot pony truss - underside of bridge, looking north, showing the original pier and the outrigger type extension to raise and level the present-day support for the pony trusses. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  13. 11. GIRDER PARTIAL ELEVATION AND SECTIONS, 80 FOOT THROUGH PLATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. GIRDER PARTIAL ELEVATION AND SECTIONS, 80 FOOT THROUGH PLATE GIRDER SPAN. (Also includes a Marking Diagram and a schedule of parts.) American Bridge Company, Ambridge Plant No. 5, sheet no. 1, dated April 7, 1928, order no. F5073. For U.S. Steel Products Company, Pacific Coast Depot, order no. SF578. For Southern Pacific Company, order no. 8873-P-28746. Scale 1/4 inch to one foot. - Napa River Railroad Bridge, Spanning Napa River, east of Soscol Avenue, Napa, Napa County, CA

  14. 21. 80 foot pony truss view is from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. 80 foot pony truss - view is from the deck, looking down to the junction of the two pony trusses, showing the top of the lower chord pin connection on top of the replacement pier. Also shown is some deck surface and an electrical conduit. This is typical of the junction of all the pony trusses. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  15. Investigations of the 0.020-scale 88-OTS Integrated Space Shuttle Vehicle Jet-Plume Model in the NASA/Ames Research Center 11 by11-Foot Unitary Plan Wind Tunnel (IA80). Volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    The results are documented of jet plume effects wind tunnel test of the 0.020-scale 88-OTS launch configuration space shuttle vehicle model in the 11 x 11 foot leg of the NASA/Ames Research Center Unitary Plan Wind Tunnel. This test involved cold gas main propulsion system (MPS) and solid rocket motor (SRB) plume simulations at Mach numbers from 0.6 to 1.4. Integrated vehicle surface pressure distributions, elevon and rudder hinge moments, and wing and vertical tail root bending and torsional moments due to MPS and SRB plume interactions were determined. Nozzle power conditions were controlled per pretest nozzle calibrations. Model angle of attack was varied from -4 deg to +4 deg; model angle of sideslip was varied from -4 deg to +4 deg. Reynolds number was varied for certain test conditions and configurations, with the nominal freestream total pressure being 14.69 psia. Plotted force and pressure data are presented.

  16. A Unique RCM Application at the NASA Ames Research Center (ARC) 12-Foot Pressure Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Bonagofski, James M.; Machala, Anthony C.; Smith, Anthony M.; Presley, Leroy L. (Technical Monitor)

    1996-01-01

    NASA Ames Research Center is known internationally as a center of excellence for its capabilities and achievements in the field of developmental aerodynamics. The Center has a variety of aerodynamic test facilities including the largest wind tunnel in the world (with 40 x 80 deg and 80 x 120 deg atmospheric test sections) and the 12-Foot Pressure Wind Tunnel which is the subject of this paper. Additional information is contained in the original extended abstract.

  17. Static and wind tunnel near-field/far-field jet noise measurements from model scale single-flow base line and suppressor nozzles. Summary report. [conducted in the Boeing large anechoic test chamber and the NASA-Ames 40by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1977-01-01

    A test program was conducted in the Boeing large anechoic test chamber and the NASA-Ames 40- by 80-foot wind tunnel to study the near- and far-field jet noise characteristics of six baseline and suppressor nozzles. Static and wind-on noise source locations were determined. A technique for extrapolating near field jet noise measurements into the far field was established. It was determined if flight effects measured in the near field are the same as those in the far field. The flight effects on the jet noise levels of the baseline and suppressor nozzles were determined. Test models included a 15.24-cm round convergent nozzle, an annular nozzle with and without ejector, a 20-lobe nozzle with and without ejector, and a 57-tube nozzle with lined ejector. The static free-field test in the anechoic chamber covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K. The wind tunnel flight effects test repeated these nozzle test conditions with ambient velocities of 0 to 92 m/s.

  18. 7 x 10 Foot Atmospheric Wind Tunnel (AWT)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction of 7 x 10 Foot Atmospheric Wind Tunnel (AWT). In 1928, the NACA decided to replace its original Atmospheric Wind Tunnel (AWT #1) with two tunnels--the 5-foot vertical tunnel and a 7 by 10 foot rectangular throat tunnel. Both were open-throat, closed-return-passage tunnels. While the 5 foot vertical tunnel was to be used mainly for spin tests, the 7x10 was an all-purpose tunnel although the main intent was to study stability and control problems. Construction was completed in the summer of 1930; calibration later that same year. The balance was installed and the tunnel went into operation in early 1931. The Warwick Machine Co. of Newport News, Virginia had the contract to fabricate and erection the 7x10 Foot tunnel for a total cost of $18,018.90. The balance was made by Fairbanks, Morse and Co., of Baltimore, Maryland for $2,544.00. The honeycomb was made by the Berkley Machine Works and Foundry Co., Inc. of Norfolk, Virginia for $1,580 and the control panel by Clark Controller Co. of Cleveland, OH for $1,153. Published in NACA TR No. 412, 'The 7 by 10 Foot Wind Tunnel of the National Advisory Committee for Aeronautics,' by Thomas A. Harris, 1932; Reference Notes on the 'Atmospheric Wind Tunnel' in the Langley Historical Archives (D. Baals notes on wind tunnels).

  19. 7 x 10-Foot Atmospheric Wind Tunnel (AWT)

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Smoke generator for 7 x 10-Foot Atmospheric Wind Tunnel (AWT) (left center); Force Test Set-Up in the center. In 1928, the NACA decided to replace its original Atmospheric Wind Tunnel (AWT #1) with two tunnels--the 5-foot vertical tunnel and a 7 by 10 foot rectangular throat tunnel. Both were open-throat, closed-return-passage tunnels. While the 5-foot vertical tunnel was to be used mainly for spin tests, the 7x10 was an all-purpose tunnel although the main intent was to study stability and control problems. Construction was completed in the summer of 1930; calibration later that same year. The balance was installed and the tunnel went into operation in early 1931.

  20. Large-Scale Wind Turbine Testing in the NASA 24.4m (80) by 36.6m(120) Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.; Imprexia, Cliff (Technical Monitor)

    2000-01-01

    The 80- by 120-Foot Wind Tunnel at NASA Ames Research Center in California provides a unique capability to test large-scale wind turbines under controlled conditions. This special capability is now available for domestic and foreign entities wishing to test large-scale wind turbines. The presentation will focus on facility capabilities to perform wind turbine tests and typical research objectives for this type of testing.

  1. 11. INTERIOR VIEW OF 8FOOT HIGH SPEED WIND TUNNEL. SAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF 8-FOOT HIGH SPEED WIND TUNNEL. SAME CAMERA POSITION AS VA-118-B-10 LOOKING IN THE OPPOSITE DIRECTION. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  2. 7 x 10-Foot Atmospheric Wind Tunnel (AWT)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Drawing of 7 x 10-Foot Atmospheric Wind Tunnel (AWT). In 1928, the NACA decided to replace its original Atmospheric Wind Tunnel (AWT #1) with two tunnels--the 5-foot vertical tunnel and a 7 by 10 foot rectangular throat tunnel. Both were open-throat, closed-return-passage tunnels. While the 5-foot vertical tunnel was to be used mainly for spin tests, the 7x10 was an all-purpose tunnel although the main intent was to study stability and control problems. Construction was completed in the summer of 1930; calibration later that same year. The balance was installed and the tunnel went into operation in early 1931. The Warwick Machine Co. of Newport News, Virginia had the contract to fabricate and erection the 7x10-Foot tunnel for a total cost of $18,018.90. The balance was made by Fairbanks, Morse and Co., of Baltimore, Maryland for 2,544.00. The honeycomb was made by the Berkley Machine Works and Foundry Co., Inc. of Norfolk, Virginia for $1,580 and the control panel by Clark Controller Co. of Cleveland, OH for $1,153.

  3. The 80 megawatt wind power project at Kahuku Point, Hawaii

    NASA Technical Reports Server (NTRS)

    Laessig, R. R.

    1982-01-01

    Windfarms Ltd. is developing the two largest wind energy projects in the world. Designed to produce 80 megawatts at Kahuku Point, Hawaii and 350 megawatts in Solano County, California, these projects will be the prototypes for future large-scale wind energy installations throughout the world.

  4. An Investigation of the Low-speed Stability and Control Characteristics of Swept-forward and Swept-back Wing in the Ames 40- by 80-foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Mccormack, Gerald M; Stevens, Victor I , Jr

    1947-01-01

    An investigation has been made at large scale of the characteristics of highly swept wings. Data were obtained at several angles of sideslip on wings having angles of sweep of plus or minus 45 degrees, plus or minus 30 degrees, and 0 degrees. The airfoil sections of the wings varied from approximately NACA 0015 at the root to NACA 23009 at the tip. Each wing was investigated with flaps under flection, partial-span split flaps deflected 60 degrees, full-span split flaps defected 60 degrees and split-flap-type ailerons deflected plus or minus 15 degrees. Values of maximum lift were obtained at Reynolds numbers raging from 5.7 to 9.2 times 10 to the 6th power. In this report the summarized results are compared with the predictions made by use of the simplified theory for the effect of sweep and with existing small-scale data. The basic wind-tunnel results from which these summary data were taken are included in an appendix. The primary problems accompanying the use of weep as revealed by this investigation are the loss in maximum lift, the high effective dihedral, and the sharp reduction in lateral-control effectiveness. In general, simple theory enables good predictions to be made of the gross effects of sweep but further refinements are necessary to obtain the accuracy required for design purposes. In cases where comparisons can be made, the indications are that, as sweep increases, scale effects diminish and large-scale results approach small-scale results.

  5. Acoustic measurement study 40 by 80 foot subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An acoustical study conducted during the period from September 1, 1973 to April 30, 1974 measured sound pressure levels and vibration amplitudes inside and outside of the subsonic tunnel and on the tunnel structure. A discussion of the technical aspects of the study, the field measurement and data reduction procedures, and results are presentd, and conclusions resulting from the study which bear upon near field and far field tunnel noise, upon the tunnel as an acoustical enclosure, and upon the sources of noise within the tunnel drive system are given.

  6. Design improvements to the ESI-80 wind turbine

    SciTech Connect

    Rogers, T.; Kleeman, A.; Manwell, J.; McGowan, J.

    1996-12-31

    This paper describes two investigations related to improvements to an ESI-80 wind turbine. One of them involved modeling the tip flaps during braking. The other was a study of the turbine behavior with various delta-3 angles. These topics are of interest since the turbine is a two-bladed, teetered, free-yaw machine with tip flaps and an adjustable delta-3 angle. Tip flaps are used for slowing the turbine during shutdown and as an emergency system to insure that the rotor does not go into an overspeed condition in the event of failure of other parts of the system. Upon deployment, the tip flaps are exposed to a number of varying forces including aerodynamic, damper, spring, centripetal, and gravitational forces and forces at the hinged connection to the blades. For maximum braking the angle of tip flap deployment needs to be as large as possible without striking the blades in overspeed conditions and when covered with ice. To investigate tip flap design tradeoffs, a dynamic model of the tip flaps on the modified ESI-80 turbine was developed. Results include a determination of the effect of the addition of weight to the flap, overspeed conditions, and changes in damping coefficient. Changes in the delta-3 angle can be used to couple pitching and flapping motions, affecting both teeter and yaw behavior. These effects have been investigated using a modified version of YawDyn. The effects of changes in the delta-3 angle on the teeter and yaw behavior of the modified ESI-80 wind turbine were investigated. Results show that increased teeter excursions in steady high winds can be reduced by increasing the delta-3 angle. Increasing the delta-3 angle may also increase yaw motion in low wind speeds. Results suggest that the optimum delta-3 angle for improved performance may be substantially greater than the presently used angle of zero degrees. 8 refs., 16 figs.

  7. The 6-foot-4-inch Wind Tunnel at the Washington Navy Yard

    NASA Technical Reports Server (NTRS)

    Desmond, G L; Mccrary, J A

    1935-01-01

    The 6-foot-4-inch wind tunnel and its auxiliary equipment has proven itself capable of continuous and reliable output of data. The real value of the tunnel will increase as experience is gained in checking the observed tunnel performance against full-scale performance. Such has been the case of the 8- by 8-foot tunnel, and for that reason the comparison in the calibration tests have been presented.

  8. An 80m Coastal Wind Power Assessment Using QuikSCAT

    NASA Astrophysics Data System (ADS)

    Capps, S.; Zender, C.

    2008-12-01

    Steadier and faster offshore winds provide a potentially higher and more continuous source of energy. Companies are actively pursuing technology which allows for wind turbines to be placed in deeper waters (>100 m) farther away from the coast. Typical hub heights of modern wind turbines are near 80 m. We use wind profile correction methods and bathymetric contours to highlight coastal regions where extraction of wind power at 80 m is feasible. Observed (2000--2006) 10 m surface winds from NASA's SeaWinds scatterometer measurements onboard QuikSCAT are extrapolated to 80 m using Monin- Obukhov similarity theory. A Weibull probability distribution function (PDF) is fitted to these twice-daily wind speed observations. 80 m wind power density is calculated using the full and truncated (between cut-in and cut-out speeds of typical wind turbines) PDF. Mean 2000--2006 80-10 m wind speed differences range from <2 m s-1 for unstable boundary layers to >3 m s-1 for stably stratified boundary layers over coastal waters near Nova Scotia and east of Argentina. Near Japan, climatological 80 m wind power densities are double 10 m wind power densities. Boreal wintertime wind power densities calculated for usable wind speeds are 15% and 17% lower than full PDF wind power densities for gap wind regions near Vladivostok and Japan, respectively.

  9. Preliminary Computational Study for Future Tests in the NASA Ames 9 foot' x 7 foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pearl, Jason M.; Carter, Melissa B.; Elmiligui, Alaa A.; WInski, Courtney S.; Nayani, Sudheer N.

    2016-01-01

    The NASA Advanced Air Vehicles Program, Commercial Supersonics Technology Project seeks to advance tools and techniques to make over-land supersonic flight feasible. In this study, preliminary computational results are presented for future tests in the NASA Ames 9 foot x 7 foot supersonic wind tunnel to be conducted in early 2016. Shock-plume interactions and their effect on pressure signature are examined for six model geometries. Near- field pressure signatures are assessed using the CFD code USM3D to model the proposed test geometries in free-air. Additionally, results obtained using the commercial grid generation software Pointwise Reigistered Trademark are compared to results using VGRID, the NASA Langley Research Center in-house mesh generation program.

  10. RM-10 INSTALLATION IN THE 8X6 FOOT WIND TUNNEL - OPERATIONS ENGINEER RAYMOND J KARABINUS AND TECHNIC

    NASA Technical Reports Server (NTRS)

    1949-01-01

    RM-10 INSTALLATION IN THE 8X6 FOOT WIND TUNNEL - OPERATIONS ENGINEER RAYMOND J KARABINUS AND TECHNICIAN GRADY S SPEER MAKE FINAL CHECK OF BOUNDARY LAYER RAKES AT READ OF STING MOUNTED LANGLEY RESEARCH MISSILE MODEL BEFORE TESTS IN THE 8X6 FOOT WIND

  11. Wind tunnel investigation of a 14 foot vertical axis windmill

    NASA Technical Reports Server (NTRS)

    Muraca, R. J.; Guillotte, R. J.

    1976-01-01

    A full scale wind tunnel investigation was made to determine the performance characteristics of a 14 ft diameter vertical axis windmill. The parameters measured were wind velocity, shaft torque, shaft rotation rate, along with the drag and yawing moment. A velocity survey of the flow field downstream of the windmill was also made. The results of these tests along with some analytically predicted data are presented in the form of generalized data as a function of tip speed ratio.

  12. Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements

    NASA Astrophysics Data System (ADS)

    Archer, Cristina L.; Jacobson, Mark Z.

    2003-05-01

    This is a study to quantify U.S. wind power at 80 m (the hub height of large wind turbines) and to investigate whether winds from a network of farms can provide a steady and reliable source of electric power. Data from 1327 surface stations and 87 soundings in the United States for the year 2000 were used. Several methods were tested to extrapolate 10-m wind measurements to 80 m. The most accurate, a least squares fit based on twice-a-day wind profiles from the soundings, resulted in 80-m wind speeds that are, on average, 1.3-1.7 m/s faster than those obtained from the most common methods previously used to obtain elevated data for U.S. wind power maps, a logarithmic law and a power law, both with constant coefficients. The results suggest that U.S. wind power at 80 m may be substantially greater than previously estimated. It was found that 24% of all stations (and 37% of all coastal/offshore stations) are characterized by mean annual speeds ≥6.9 m/s at 80 m, implying that the winds over possibly one quarter of the United States are strong enough to provide electric power at a direct cost equal to that of a new natural gas or coal power plant. The greatest previously uncharted reservoir of wind power in the continental United States is offshore and nearshore along the southeastern and southern coasts. When multiple wind sites are considered, the number of days with no wind power and the standard deviation of the wind speed, integrated across all sites, are substantially reduced in comparison with when one wind site is considered. Therefore a network of wind farms in locations with high annual mean wind speeds may provide a reliable and abundant source of electric power.

  13. Wind-Tunnel Tests of 10-foot-diameter Autogiro Rotors

    NASA Technical Reports Server (NTRS)

    Wheatley, John B; Bioletti, Carlton

    1937-01-01

    Report presents the results of a series of 10-foot-diameter autogiro rotor models tested in the NACA 20-foot wind tunnel. Four of the models differed only in the airfoil sections of the blades, the sections used being the NACA 0012, 0018, 4412, and 4418. Three additional models employing the NACA 0012 section were tested, in which a varying portion of the blade near the hub was replaced by a streamline tube with a chord of about one-fourth the blade chord.

  14. Construction of the 30 x 60 Foot Wind Tunnel at Langley

    NASA Technical Reports Server (NTRS)

    1930-01-01

    This photograph from 1930 shows the 30 x 60 Foot Tunnel during construction. Smith J. de France, a NACA engineer, was in charge of the design team for the new tunnel. Planning involved the construction of a 1/5 scale model of the tunnel. In 1929, the NACA received congresional approval and two year appropriation of $900,000 for construction. The tunnel was built by the J.A. Jones Construction Company. The framework is solid steel. Like many early wind tunnels, the 30 x 60 foot tunnel featured 'inside- out' construction, with structual supports on the outside. The circular frames indicate where the two 35 foot propellers are located today. Built to test full-scale models or actual aircraft, the 30 x 60 foot tunnel was an innovative concept in wind tunnel design. It proved especially valuable during World War II as a majority of the nation's bombers and fighters (as well as several foreign aircraft) were tested in this tunnel. Since the 1970s, one of the unique test techinques used in the 30 x 60 was free flight of dynamically scaled models in the test section. This technique allowed researchers to measure and assess flight characteristics as well as control options. The 30 x 60 is an example of a major facility adapted to serve a multitude of uses that its designers did not initially visualize. The 30 x 60 remained as one of NASA's largest wind tunnels until its closing in September 1995. In 1985 the 30 x 60 foot wind tunnel was designated a National Historic Landmark.

  15. Plume and Shock Interaction Effects on Sonic Boom in the 1-foot by 1-foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Elmiligui, Alaa; Cliff, Susan; Winski, Courtney

    2015-01-01

    The desire to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions are due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed by the aircraft. A study has been performed focused on reducing the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Testing was completed in the 1-foot by 1-foot supersonic wind tunnel to study the effects of an exhaust nozzle plume and shock wave interaction. The plume and shock interaction study was developed to collect data for computational fluid dynamics (CFD) validation of a nozzle plume passing through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedgeshaped shock generator. This test entry was the first of two phases to collect schlieren images and off-body static pressure profiles. Three wedge configurations were tested consisting of strut-mounted wedges of 2.5- degrees and 5-degrees. Three propulsion configurations were tested simulating the propulsion pod and aft deck from a low boom vehicle concept, which also provided a trailing edge shock and plume interaction. Findings include how the interaction of the jet plume caused a thickening of the shock generated by the wedge (or aft deck) and demonstrate how the shock location moved with increasing nozzle pressure ratio.

  16. AXIAL FLOW COMPRESSOR IN THE 8X6 FOOT SUPERSONIC WIND TUNNEL - ELECTRIC MOTORS OF 87,000 HORSEPOWER

    NASA Technical Reports Server (NTRS)

    1949-01-01

    AXIAL FLOW COMPRESSOR IN THE 8X6 FOOT SUPERSONIC WIND TUNNEL - ELECTRIC MOTORS OF 87,000 HORSEPOWER DRIVE THIS HUGE COMPRESSOR TO PRODUCE 1300 MILE PER HOUR AIRSPEEDS - THE 2 HALVES OF THE 18 FOOT DIAMETER CASING ARE SHOWN OPENED TO EXPOSE THE 7 ROW

  17. NASA Lewis 8- by 6-foot supersonic wind tunnel user manual

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1993-01-01

    The 8- by 6-Foot Supersonic Wind Tunnel (SWT) at Lewis Research Center is available for use by qualified researchers. This manual contains tunnel performance maps which show the range of total temperature, total pressure, static pressure, dynamic pressure, altitude, Reynolds number, and mass flow as a function of test section Mach number. These maps are applicable for both the aerodynamic and propulsion cycle. The 8- by 6-Foot Supersonic Wind Tunnel is an atmospheric facility with a test section Mach number range from 0.36 to 2.0. General support systems (air systems, hydraulic system, hydrogen system, infrared system, laser system, laser sheet system, and schlieren system are also described as are instrumentation and data processing and acquisition systems. Pretest meeting formats are outlined. Tunnel user responsibility and personal safety requirements are also stated.

  18. 9- by 15-Foot Low Speed Wind Tunnel Acoustic Improvements Expanded Overview

    NASA Technical Reports Server (NTRS)

    Stephens, David

    2016-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of V/STOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel been used principally for acoustic and performance testing of aircraft propulsion systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.

  19. ENTRANCE TO 8X6 FOOT WIND TUNNEL BUILDING SHOWING ENGINEERS LEAVING FOR CLASSES AFTER BEING GRANTED

    NASA Technical Reports Server (NTRS)

    1955-01-01

    ENTRANCE TO 8X6 FOOT WIND TUNNEL BUILDING SHOWING ENGINEERS LEAVING FOR CLASSES AFTER BEING GRANTED LEAVE TO ATTEND ADVANCED COURSES AT UNIVERSITY AWAY FROM THE LEWIS FLIGHT PROPULSION LABORATORY LFPL

  20. Design, fabrication, test, and evaluation of a prototype 150-foot long composite wind turbine blade

    NASA Technical Reports Server (NTRS)

    Gewehr, H. W.

    1979-01-01

    The design, fabrication, testing, and evaluation of a prototype 150 foot long composite wind turbine blade is described. The design approach and material selection, compatible with low cost fabrication methods and objectives, are highlighted. The operating characteristics of the blade during rotating and nonrotating conditions are presented. The tensile, compression, and shear properties of the blade are reported. The blade fabrication, tooling, and quality assurance are discussed.

  1. The 12-foot pressure wind tunnel restoration project model support systems

    NASA Technical Reports Server (NTRS)

    Sasaki, Glen E.

    1992-01-01

    The 12 Foot Pressure Wind Tunnel is a variable density, low turbulence wind tunnel that operates at subsonic speeds, and up to six atmospheres total pressure. The restoration of this facility is of critical importance to the future of the U.S. aerospace industry. As part of this project, several state of the art model support systems are furnished to provide an optimal balance between aerodynamic and operational efficiency parameters. Two model support systems, the Rear Strut Model Support, and the High Angle of Attack Model Support are discussed. This paper covers design parameters, constraints, development, description, and component selection.

  2. Operating manual holographic interferometry system for 2 x 2 foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Craig, J. E.

    1981-01-01

    A holographic interferometer system was installed in a 2X2 foot transonic wind tunnel. The system incorporates a modern, 10 pps, Nd:YAG pulsed laser which provides reliable operation and is easy to align. The spatial filtering requirements of the unstable resonator beam are described as well as the integration of the system into the existing Schieren system. A two plate holographic interferometer is used to reconstruct flow field data. For static wind tunnel models the single exposure holograms are recorded in the usual manner; however, for dynamic models such as oscillating airfoils, synchronous laser hologram recording is used.

  3. Abe Silverstein 10- by 10-Foot Supersonic Wind Tunnel Validated for Low-Speed (Subsonic) Operation

    NASA Technical Reports Server (NTRS)

    Hoffman, Thomas R.

    2001-01-01

    The NASA Glenn Research Center and Lockheed Martin Corporation tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Objectives of the test were to determine and document the similarities and uniqueness of the tunnels and to validate that Glenn's 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility. Results from two of Glenn's wind tunnels compare very favorably and show that the 10x10 SWT is a viable low-speed wind tunnel. The Subsonic Comparison Test was a joint effort by NASA and Lockheed Martin using the Lockheed Martin's Joint Strike Fighter Concept Demonstration Aircraft model. Although Glenn's 10310 and 836 SWT's have many similarities, they also have unique characteristics. Therefore, test data were collected for multiple model configurations at various vertical locations in the test section, starting at the test section centerline and extending into the ceiling and floor boundary layers.

  4. Results of tests using a 0.030-scale model (45-0) of space shuttle vehicle orbiter in the NASA/ARC 12-foot pressure wind tunnel (OA159)

    NASA Technical Reports Server (NTRS)

    Marroquin, J.

    1975-01-01

    An experimental investigation (test OA159) was conducted in the NASA/ARC 12-foot Pressure Wind Tunnel from June 23 through July 8, 1975. The objective was to obtain detailed strut tare and interference effects of the support system used in the NASA/ARC 40 x 80-foot wind tunnel during 0.36-scale orbiter testing (OA100). Six-component force and moment data were obtained through an angle-of-attack range from -9 through +18 degrees with 0 deg angle of sideslip and a sideslip angle range from -9 through +18 degrees at 9 deg angle of attack results are presented.

  5. Modernization and Activation of the NASA Ames 11- by 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Kmak, Frank J.

    2000-01-01

    The Unitary Plan Wind Tunnel (UPWT) was modernized to improve performance, capability, productivity, and reliability. Automation systems were installed in all three UPWT tunnel legs and the Auxiliaries facility. Major improvements were made to the four control rooms, model support systems, main drive motors, and main drive speed control. Pressure vessel repairs and refurbishment to the electrical distribution system were also completed. Significant changes were made to improve test section flow quality in the 11-by 11-Foot Transonic leg. After the completion of the construction phase of the project, acceptance and checkout testing was performed to demonstrate the capabilities of the modernized facility. A pneumatic test of the tunnel circuit was performed to verify the structural integrity of the pressure vessel before wind-on operations. Test section turbulence, flow angularity, and acoustic parameters were measured throughout the tunnel envelope to determine the effects of the tunnel flow quality improvements. The new control system processes were thoroughly checked during wind-off and wind-on operations. Manual subsystem modes and automated supervisory modes of tunnel operation were validated. The aerodynamic and structural performance of both the new composite compressor rotor blades and the old aluminum rotor blades was measured. The entire subsonic and supersonic envelope of the 11-by 11-Foot Transonic leg was defined up to the maximum total pressure.

  6. Phase 2 and 3 wind tunnel tests of the J-97 powered, external augmentor V/STOL model. [at Ames 40 by 80 wind tunnel

    NASA Technical Reports Server (NTRS)

    Garland, D. B.; Harris, J. L.

    1980-01-01

    Static and forward speed tests were made in a 40 multiplied by 80 foot wind tunnel of a large-scale, ejector-powered V/STOL aircraft model. Modifications were made to the model following earlier tests primarily to improve longitudinal acceleration capability during transition from hovering to wingborne flight. A rearward deflection of the fuselage augmentor thrust vector was shown to be beneficial in this regard. Other augmentor modifications were tested, notably the removal of both endplates, which improved acceleration performance at the higher transition speeds. The model tests again demonstrated minimal interference of the fuselage augmentor on aerodynamic lift. A flapped canard surface also showed negligible influence on the performance of the wing and of the fuselage augmentor.

  7. NASA Glenn 1-by 1-Foot Supersonic Wind Tunnel User Manual

    NASA Technical Reports Server (NTRS)

    Seablom, Kirk D.; Soeder, Ronald H.; Stark, David E.; Leone, John F. X.; Henry, Michael W.

    1999-01-01

    This manual describes the NASA Glenn Research Center's 1 - by 1 -Foot Supersonic Wind Tunnel and provides information for customers who wish to conduct experiments in this facility. Tunnel performance envelopes of total pressure, total temperature, and dynamic pressure as a function of test section Mach number are presented. For each Mach number, maps are presented of Reynolds number per foot as a function of the total air temperature at the test section inlet for constant total air pressure at the inlet. General support systems-such as the service air, combustion air, altitude exhaust system, auxiliary bleed system, model hydraulic system, schlieren system, model pressure-sensitive paint, and laser sheet system are discussed. In addition, instrumentation and data processing, acquisition systems are described, pretest meeting formats and schedules are outlined, and customer responsibilities and personnel safety are addressed.

  8. An experimental investigation of boundary layer and crossflow characteristics of the Ames 2 by 2 foot and 11 by 11 foot transonic wind-tunnel walls

    NASA Technical Reports Server (NTRS)

    Matyk, G.; Kobayashi, Y.

    1977-01-01

    The boundary layer and crossflow characteristics of 2- by 2-foot and 11- by 11-foot transonic wind-tunnel wall configurations have been studied for Mach numbers ranging from 0.5 to 1.2 and for various crossflow to free stream unit mass flow ratios. For the 2- by 2-ft and 11- by 11-ft wall configurations, these ratios ranged from 0 to 0.12 and from 0 to 0.07, respectively. Most notably, for both wall configurations, the pressure-drop coefficient across the wall was nonlinear with mass flow and invariant with Mach number.

  9. Flow quality studies of the NASA Lewis Research Center 8- by 6-foot supersonic/9- by 15-foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.

    1992-01-01

    A series of studies were conducted to determine the existing flow quality in the NASA Lewis 8 by 6 Foot Supersonic/9 by 15 Foot Low speed Wind Tunnel. The information gathered from these studies was used to determine the types and designs of flow manipulators which can be installed to improve overall tunnel flow quality and efficiency. Such manipulators include honeycomb flow straighteners, turbulence reduction screens, corner turning vanes, and acoustic treatments. The types of measurements, instrumentation, and results obtained from experiments conducted at several locations throughout the tunnel loop are described.

  10. Uncertainty Analysis of NASA Glenn's 8- by 6-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Stephens, Julia E.; Hubbard, Erin P.; Walter, Joel A.; McElroy, Tyler

    2016-01-01

    An analysis was performed to determine the measurement uncertainty of the Mach Number of the 8- by 6-foot Supersonic Wind Tunnel at the NASA Glenn Research Center. This paper details the analysis process used, including methods for handling limited data and complicated data correlations. Due to the complexity of the equations used, a Monte Carlo Method was utilized for this uncertainty analysis. A summary of the findings are presented as pertains to understanding what the uncertainties are, how they impact various research tests in the facility, and methods of reducing the uncertainties in the future.

  11. The Acoustic Environment of the NASA Glenn 9- by 15-foot Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Stephens, David B.

    2015-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel is an acoustic testing facility with a long history of aircraft propulsion noise research. Due to interest in renovating the facility to support future testing of advanced quiet engine designs, a study was conducted to document the background noise level in the facility and investigate the sources of contaminating noise. The anechoic quality of the facility was also investigated using an interrupted noise method. The present report discusses these aspects of the noise environment in this facility.

  12. An Investigation of the Drag of Windshields in the 8-foot High-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Robinson, Russell G; Delano, James B

    1942-01-01

    Report presents the results of tests made to determine the drag of closed-cockpit and transport-type windshields. The tests were made at speeds corresponding to a Mach number range of approximately 0.25 to 0.58 in the NACA 8-foot high-speed wind tunnel. This speed range corresponds to a test Reynolds number range of 2,510,000 to 4,830,000 based on the mean aerodynamic chord of the full-span model (17.29 in.). The shapes of the windshield proper, the hood, and the tail fairing were systematically varied to include common types and refined design.

  13. Propeller propulsion integration, phase 1. [conducted in langley 30 by 60 foot full scale wind tunnel

    NASA Technical Reports Server (NTRS)

    Bennett, G.; Koenig, K.; Miley, S. J.; Mcwhorter, J.; Wells, G.

    1981-01-01

    A bibliography was compiled of all readily available sources of propeller analytical and experimental studies conducted during the 1930 through 1960 period. A propeller test stand was developed for the measurement of thrust and torque characteristics of full scale general aviation propellers and installed in the LaRC 30 x 60 foot full scale wind tunnel. A tunnel entry was made during the January through February 1980 period. Several propellers were tested, but unforseen difficulties with the shaft thrust torque balance severely degraded the data quality.

  14. NASA Lewis 9- by 15-foot low-speed wind tunnel user manual

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1993-01-01

    This manual describes the 9- by 15-Foot Low-Speed Wind Tunnel at the Lewis Research Center and provides information for users who wish to conduct experiments in this atmospheric facility. Tunnel variables such as pressures, temperatures, available tests section area, and Mach number ranges (0.05 to 0.20) are discussed. In addition, general support systems such as air systems, hydraulic system, hydrogen system, laser system, flow visualization system, and model support systems are described. Instrumentation and data processing and acquisition systems are also discussed.

  15. Supersonic Retropropulsion Experimental Results from the NASA Ames 9- x 7-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Rhode, Matthew N.; Edquist, Karl T.

    2012-01-01

    Supersonic retropropulsion was experimentally examined in the Ames Research Center 9x7-Foot Supersonic Wind Tunnel at Mach 1.8 and 2.4. The experimental model, previously designed for and tested in the Langley Research Center Unitary Plan Wind Tunnel at Mach 2.4, 3.5 and 4.6, was a 5-in diameter 70-deg sphere-cone forebody with a 9.55-in long cylindrical aftbody. The forebody was designed to accommodate up to four 4:1 area ratio nozzles, one on the model centerline and the other three on the half radius spaced 120-deg apart. Surface pressure and flow visualization were the primary measurements, including high-speed data to investigate the dynamics of the interactions between the bow and nozzle shocks. Three blowing configurations were tested with thrust coefficients up to 10 and angles of attack up to 20-deg. Preliminary results and observations from the test are provided

  16. A Summary of the Experimental Results for a Generic Tractor-Trailer in the Ames Research Center 7- by 10-Foot and 12-Foot Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Storms, Bruce L.; Satran, Dale R.; Heineck, James T.; Walker, Stephen M.

    2006-01-01

    Experimental measurements of a generic tractor-trailer were obtained in two wind tunnels at Ames Research Center. After a preliminary study at atmospheric conditions in the 7- by 10-Foot Wind Tunnel, additional testing was conducted at Reynolds numbers corresponding to full-scale highway speeds in the 12-Foot Pressure Wind Tunnel. To facilitate computational modeling, the 1:8-scale geometry, designated the Generic Conventional Model, included a simplified underbody and omitted many small-scale details. The measurements included overall and component forces and moments, static and dynamic surface pressures, and three-component particle image velocimetry. This summary report highlights the effects of numerous drag reduction concepts and provides details of the model installation in both wind tunnels. To provide a basis for comparison, the wind-averaged drag coefficient was tabulated for all configurations tested. Relative to the baseline configuration representative of a modern class-8 tractor-trailer, the most effective concepts were the trailer base flaps and trailer belly box providing a drag-coefficient reduction of 0.0855 and 0.0494, respectively. Trailer side skirts were less effective yielding a drag reduction of 0.0260. The database of this experimental effort is publicly available for further analysis.

  17. Flow Quality Measurements in the NASA Ames Upgraded 11-by 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Amaya, Max A.; Murthy, Sreedhara V.; George, M. W. (Technical Monitor)

    2000-01-01

    Among the many upgrades designed and implemented in the NASA Ames 11-by 11-Foot Transonic Wind Tunnel over the past few years, several directly affect flow quality in the test section: a turbulence reduction system with a honeycomb and two screens, a flow smoothing system in the back leg diffusers, an improved drive motor control system, and a full replacement set of composite blades for the compressor. Prior to the shut-down of the tunnel for construction activities, an 8-foot span rake populated with flow instrumentation was traversed in the test section to fully document the flow quality and establish a baseline against which the upgrades could be characterized. A similar set of measurements was performed during the recent integrated system test trials, but the scope was somewhat limited in accordance with the primary objective of such tests, namely to return the tunnel to a fully operational status. These measurements clearly revealed substantial improvements in flow angularity and significant reductions in turbulence level for both full-span and semi-span testing configurations, thus making the flow quality of the tunnel one of the best among existing transonic facilities.

  18. User manual for NASA Lewis 10 by 10 foot supersonic wind tunnel. Revised

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1995-01-01

    This manual describes the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Lewis Research Center and provides information for users who wish to conduct experiments in this facility. Tunnel performance operating envelopes of altitude, dynamic pressure, Reynolds number, total pressure, and total temperature as a function of test section Mach number are presented. Operating envelopes are shown for both the aerodynamic (closed) cycle and the propulsion (open) cycle. The tunnel test section Mach number range is 2.0 to 3.5. General support systems, such as air systems, hydraulic system, hydrogen system, fuel system, and Schlieren system, are described. Instrumentation and data processing and acquisition systems are also described. Pretest meeting formats and schedules are outlined. Tunnel user responsibility and personnel safety are also discussed.

  19. New Model Exhaust System Supports Testing in NASA Lewis' 10- by 10-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Roeder, James W., Jr.

    1998-01-01

    In early 1996, the ability to run NASA Lewis Research Center's Abe Silverstein 10- by 10- Foot Supersonic Wind Tunnel (10x10) at subsonic test section speeds was reestablished. Taking advantage of this new speed range, a subsonic research test program was scheduled for the 10x10 in the fall of 1996. However, many subsonic aircraft test models require an exhaust source to simulate main engine flow, engine bleed flows, and other phenomena. This was also true of the proposed test model, but at the time the 10x10 did not have a model exhaust capability. So, through an in-house effort over a period of only 5 months, a new model exhaust system was designed, installed, checked out, and made ready in time to support the scheduled test program.

  20. Mean winds of the mesosphere (60-80 km), as measured by MF radars

    NASA Astrophysics Data System (ADS)

    Manson, A. H.; Meek, C. E.; Vincent, R. A.; Smith, M. J.

    1985-07-01

    Winds data obtained from medium frequency (MF) radars for heights of 60 to 80 km are discussed: locations are Saskatoon (52 N, 107 W), Christchurch (44 S, 173 W), Adelside (35 S, 183 E) and Townsville (20 S, 147 E). Whereas well defined summer easterly jets centered near 70 km develop in summer, no regular buildups and decays are observed in winter at midlatitudes. Part of this variability can be associated with stratospheric warmings, which develop into breakdown of the polar vortex in the Northern Hemisphere. Amplitude and phase profiles of the annual and semiannual oscillations are also presented. The radar winds from Saskatoon are compared and combined with rocket derived winds up to 60 km from Primrose Lake (54 N, 110 W) to give consistent cross sections from 20 to 110 km. The SH radar winds are compared with a model based on rocket winds which extends up to 80 km. The latter evidence considerable smoothing, as no winter variability is evident. The other consistent difference is that heights of the summer easterly maxima for the model are 5 to 10 km lower than the radar winds at all latitudes.

  1. Background Pressure Profiles for Sonic Boom Vehicle Testing in the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Shaw, Stephen; Adamson, Eric; Simerly, Stephanie

    2013-01-01

    In an effort to identify test facilities that offer sonic boom measurement capabilities, an exploratory test program was initiated using wind tunnels at NASA research centers. The subject of this report is the sonic boom pressure rail data collected in the Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel. The purpose is to summarize the lessons learned based on the test activity, specifically relating to collecting sonic boom data which has a large amount of spatial pressure variation. The wind tunnel background pressure profiles are presented as well as data which demonstrated how both wind tunnel Mach number and model support-strut position affected the wind tunnel background pressure profile. Techniques were developed to mitigate these effects and are presented.

  2. Calibration of the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel (1996 and 1997 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen

    2012-01-01

    There were several physical and operational changes made to the NASA Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel during the period of 1992 through 1996. Following each of these changes, a facility calibration was conducted to provide the required information to support the research test programs. Due to several factors (facility research test schedule, facility downtime and continued facility upgrades), a full test section calibration was not conducted until 1996. This calibration test incorporated all test section configurations and covered the existing operating range of the facility. However, near the end of that test entry, two of the vortex generators mounted on the compressor exit tailcone failed causing minor damage to the honeycomb flow straightener. The vortex generators were removed from the facility and calibration testing was terminated. A follow-up test entry was conducted in 1997 in order to fully calibrate the facility without the effects of the vortex generators and to provide a complete calibration of the newly expanded low speed operating range. During the 1997 tunnel entry, all planned test points required for a complete test section calibration were obtained. This data set included detailed in-plane and axial flow field distributions for use in quantifying the test section flow quality.

  3. Check Calibration of the NASA Glenn 10- by 10-Foot Supersonic Wind Tunnel (2014 Test Entry)

    NASA Technical Reports Server (NTRS)

    Johnson, Aaron; Pastor-Barsi, Christine; Arrington, E. Allen

    2016-01-01

    A check calibration of the 10- by 10-Foot Supersonic Wind Tunnel (SWT) was conducted in May/June 2014 using an array of five supersonic wedge probes to verify the 1999 Calibration. This check calibration was necessary following a control systems upgrade and an integrated systems test (IST). This check calibration was required to verify the tunnel flow quality was unchanged by the control systems upgrade prior to the next test customer beginning their test entry. The previous check calibration of the tunnel occurred in 2007, prior to the Mars Science Laboratory test program. Secondary objectives of this test entry included the validation of the new Cobra data acquisition system (DAS) against the current Escort DAS and the creation of statistical process control (SPC) charts through the collection of series of repeated test points at certain predetermined tunnel parameters. The SPC charts secondary objective was not completed due to schedule constraints. It is hoped that this effort will be readdressed and completed in the near future.

  4. New Test Section Installed in NASA Lewis' 1- by 1-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.

    1998-01-01

    NASA Lewis Research Center's 1- by 1-Foot Supersonic Wind Tunnel (1x1) is a critical facility that fulfills the needs of important national programs. This tunnel supports supersonic and hypersonic research test projects for NASA, for other Government agencies, and for industry, such as the High Speed Research (HSR) and Space Transportation Technologies (STT) programs. The 1x1, which is located in Lewis' Building 37, Cell 1NW, was built in 1954 and was upgraded to provide Mach 6.0 capability in 1989. Since 1954, only minor improvements had been made to the test section. To improve the 1x1's capabilities and meet the needs of these programs, Lewis recently redesigned and replaced the test section. The new test section has interchangeable window and wall inserts that allow easier and faster test configuration changes, thereby improving the adaptability and productivity of this highly utilized facility. In addition, both the wall and window areas are much larger. The larger walls provide more flexibility in how models are mounted and instrumented. The new window design vastly increases optical access to the research test hardware, which makes the use of advanced flow-visualization systems more effective.

  5. The Spatial and Temporal Distribution of U.S. Winds and Windpower at 80 m Derived from Measurements

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Jacobson, M. Z.

    2002-12-01

    This is a study to quantify U.S. wind power at 80 m (the hub height of large wind turbines) and to investigate whether winds from a network of farms can provide a steady and reliable source of electric power. Data from 1327 surface stations and 87 soundings in the United States for the year 2000 were used. Several methods were tested to extrapolate 10-m wind measurements to 80 m. The most accurate, a least-squares fit based on twice-a-day wind profiles from the soundings, resulted in 80-m wind speeds that are, on average, 1.3-1.7 m/s faster than those obtained from the most common methods previously used to obtain elevated data for U.S. windpower maps, a logarithmic law and a power law, both with constant coefficients. The implication is that U.S. windpower at 80 m is enormous and much greater than previously thought. It was found that 25.2 percent of all stations (and 44.6 percent of all coastal/offshore stations) are characterized by mean annual speeds >= 6.9 m/s at 80 m, implying that the winds over possibly one quarter of the U.S. are strong enough to provide electric power at a direct cost equal to that of a new natural gas or coal power plant. The greatest previously uncharted reservoir of windpower in the continental U.S. is offshore and near shore along the southeastern and southern coasts. The other great reservoirs, previously charted, are the north- and south-central regions. The five states with the highest percentage of stations with annual mean 80-m winds >= 6.9 m/s were Oklahoma, South Dakota, North Dakota, Kansas, and Nebraska. Other findings are (1) monthly and annual mean wind speed (and wind power) peaks in the afternoon, when electricity demand is usually high; (2) winds are Rayleigh in nature, and actual wind power at any hour of the day is close to Rayleigh wind power; (3) the standard deviation of the wind speed averaged over multiple locations is less than that at any individual location; (4) when multiple wind sites are considered, the

  6. One-fiftieth scale model studies of 40-by 80-foot and 80-by 120-foot wind tunnel complex at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Schmidt, Gene I.; Rossow, Vernon J.; Vanaken, Johannes M.; Parrish, Cynthia L.

    1987-01-01

    The features of a 1/50-scale model of the National Full-Scale Aerodynamics Complex are first described. An overview is then given of some results from the various tests conducted with the model to aid in the design of the full-scale facility. It was found that the model tunnel simulated accurately many of the operational characteristics of the full-scale circuits. Some characteristics predicted by the model were, however, noted to differ from previous full-scale results by about 10%.

  7. Parametric Inlet Tested in Glenn's 10- by 10-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Davis, David O.; Solano, Paul A.

    2005-01-01

    The Parametric Inlet is an innovative concept for the inlet of a gas-turbine propulsion system for supersonic aircraft. The concept approaches the performance of past inlet concepts, but with less mechanical complexity, lower weight, and greater aerodynamic stability and safety. Potential applications include supersonic cruise aircraft and missiles. The Parametric Inlet uses tailored surfaces to turn the incoming supersonic flow inward toward an axis of symmetry. The terminal shock spans the opening of the subsonic diffuser leading to the engine. The external cowl area is smaller, which reduces cowl drag. The use of only external supersonic compression avoids inlet unstart--an unsafe shock instability present in previous inlet designs that use internal supersonic compression. This eliminates the need for complex mechanical systems to control unstart, which reduces weight. The conceptual design was conceived by TechLand Research, Inc. (North Olmsted, OH), which received funding through NASA s Small-Business Innovation Research program. The Boeing Company (Seattle, WA) also participated in the conceptual design. The NASA Glenn Research Center became involved starting with the preliminary design of a model for testing in Glenn s 10- by 10-Foot Supersonic Wind Tunnel (10 10 SWT). The inlet was sized for a speed of Mach 2.35 while matching requirements of an existing cold pipe used in previous inlet tests. The parametric aspects of the model included interchangeable components for different cowl lip, throat slot, and sidewall leading-edge shapes and different vortex generator configurations. Glenn researchers used computational fluid dynamics (CFD) tools for three-dimensional, turbulent flow analysis to further refine the aerodynamic design.

  8. XV-3 in Ames Reseach Center 40x80ft wind tunnel with K. Edenborough and B. Ramsey, engineers

    NASA Technical Reports Server (NTRS)

    1966-01-01

    XV-3 in Ames Reseach Center 40x80ft wind tunnel with K. Edenborough and B. Ramsey, engineers Published in The History of the XV-15 Tilt Rotor Research Aircraft (from Concept to Flight NASA SP-2000-4517)

  9. Improving Large-Scale Testing Capability by Modifying the 40- by 80-ft Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Mort, Kenneth W.; Soderman, Paul T.; Eckert, William T.

    1979-01-01

    Interagency studies conducted during the last several years have indicated the need to Improve full-scale testing capabilities. The studies showed that the most effective trade between test capability and facility cost was provided by re-powering the existing Ames Research Center 40- by 80-ft Wind Tunnel to Increase the maximum speed from about 100 m/s (200 knots) lo about 150 m/s (300 knots) and by adding a new 24- by 37-m (80- by 120-ft) test section powered for about a 50-m/s (100-knot) maximum speed. This paper reviews the design of the facility, a few or its capabilities, and some of its unique features.

  10. An Experimental Evaluation of Advanced Rotorcraft Airfoils in the NASA Ames Eleven-foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Flemming, Robert J.

    1984-01-01

    Five full scale rotorcraft airfoils were tested in the NASA Ames Eleven-Foot Transonic Wind Tunnel for full scale Reynolds numbers at Mach numbers from 0.3 to 1.07. The models, which spanned the tunnel from floor to ceiling, included two modern baseline airfoils, the SC1095 and SC1094 R8, which have been previously tested in other facilities. Three advanced transonic airfoils, designated the SSC-A09, SSC-A07, and SSC-B08, were tested to confirm predicted performance and provide confirmation of advanced airfoil design methods. The test showed that the eleven-foot tunnel is suited to two-dimensional airfoil testing. Maximum lift coefficients, drag coefficients, pitching moments, and pressure coefficient distributions are presented. The airfoil analysis codes agreed well with the data, with the Grumman GRUMFOIL code giving the best overall performance correlation.

  11. Revalidation of the NASA Ames 11-by 11-Foot Transonic Wind Tunnel with a Commercial Airplane Model

    NASA Technical Reports Server (NTRS)

    Kmak, Frank J.; Hudgins, M.; Hergert, D.; George, Michael W. (Technical Monitor)

    2001-01-01

    The 11-By 11-Foot Transonic leg of the Unitary Plan Wind Tunnel (UPWT) was modernized to improve tunnel performance, capability, productivity, and reliability. Wind tunnel tests to demonstrate the readiness of the tunnel for a return to production operations included an Integrated Systems Test (IST), calibration tests, and airplane validation tests. One of the two validation tests was a 0.037-scale Boeing 777 model that was previously tested in the 11-By 11-Foot tunnel in 1991. The objective of the validation tests was to compare pre-modernization and post-modernization results from the same airplane model in order to substantiate the operational readiness of the facility. Evaluation of within-test, test-to-test, and tunnel-to-tunnel data repeatability were made to study the effects of the tunnel modifications. Tunnel productivity was also evaluated to determine the readiness of the facility for production operations. The operation of the facility, including model installation, tunnel operations, and the performance of tunnel systems, was observed and facility deficiency findings generated. The data repeatability studies and tunnel-to-tunnel comparisons demonstrated outstanding data repeatability and a high overall level of data quality. Despite some operational and facility problems, the validation test was successful in demonstrating the readiness of the facility to perform production airplane wind tunnel%, tests.

  12. The Aerodynamic Drag of Flying-boat Hull Model as Measured in the NACA 20-foot Wind Tunnel I.

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P

    1935-01-01

    Measurements of aerodynamic drag were made in the 20-foot wind tunnel on a representative group of 11 flying-boat hull models. Four of the models were modified to investigate the effect of variations in over-all height, contours of deck, depth of step, angle of afterbody keel, and the addition of spray strips and windshields. The results of these tests, which cover a pitch-angle range from -5 to 10 degrees, are presented in a form suitable for use in performance calculations and for design purposes.

  13. Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ardema, Mark

    2006-01-01

    This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch

  14. Space Launch System Liftoff and Transition Aerodynamic Characterization in the NASA Langley 14- by 22-Foot Subsonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.; Erickson, Gary E.; Paulson, John W.; Tomek, William G.; Bennett, David W.; Blevins, John A.

    2015-01-01

    A 1.75% scale force and moment model of the Space Launch System was tested in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel to quantify the aerodynamic forces that will be experienced by the launch vehicle during its liftoff and transition to ascent flight. The test consisted of two parts: the first was dedicated to measuring forces and moments for the entire range of angles of attack (0deg to 90deg) and roll angles (0 deg. to 360 deg.). The second was designed to measure the aerodynamic effects of the liftoff tower on the launch vehicle for ground winds from all azimuthal directions (0 deg. to 360 deg.), and vehicle liftoff height ratios from 0 to 0.94. This wind tunnel model also included a set of 154 surface static pressure ports. Details on the experimental setup, and results from both parts of testing are presented, along with a description of how the wind tunnel data was analyzed and post-processed in order to develop an aerodynamic database. Finally, lessons learned from experiencing significant dynamics in the mid-range angles of attack due to steady asymmetric vortex shedding are presented.

  15. Reflective Focused Schlieren System Improved for Use in 10- by 10-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Williamson, Gary Scott

    2000-01-01

    The reflective focused schlieren system that was developed for use in the 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) at the NASA Glenn Research Center at Lewis Field as part of the Unstart Test Program was improved this past year. In April 1999, the development and use of the system was presented at the Supersonic Tunnel Association International in Bedford, England. A focused schlieren system is similar to a standard schlieren system in that shock waves coming from an object in supersonic flow can be seen using a standard video camera. Unlike the standard schlieren system, which produces a two-dimensional schlieren image, a focused schlieren system can produce a threedimensional image. The preceding drawing shows the components of the reflective focused schlieren system being developed for use in the 10x10 SWT. Although the system worked well for the Unstart Test Program, it was not sensitive enough to be classified as a facility capability. Therefore, a program was implemented to improve the sensitivity of the reflective focused schlieren system so that it could be a facility capability for Glenn's 10x10 SWT. Several techniques were implemented to increase the sensitivity and to improve the overall operation of the system. These included refinement of the source grid, improvement in the cutoff grid production, improvement of the source grid and cutoff grid alignment, installation of an improved light source, and incorporation of an image-enhancing system. These changes are being implemented with the system set up in the laboratory. A checkout test of the system is planned in the 10x10 SWT in March 2000. Of these techniques, the most developed is the refinement of the source grid. The original system had a pattern of -in. by -in. squares on -in. centers (distance between the center points of adjacent squares). This gave a ratio of light to dark (reflective to nonreflective area) of 3:1. The recommended ratio is 1:1. In order to accomplish this, a pattern of

  16. Large-Scale Boundary-Layer Control Tests on Two Wings in the NACA 20-Foot Wind Tunnel, Special Report

    NASA Technical Reports Server (NTRS)

    Freeman, Hugh B.

    1935-01-01

    Tests were made in the N.A.C.A. 20-foot wind tunnel on: (1) a wing, of 6.5-foot span, 5.5-foot chord, and 30 percent maximum thickness, fitted with large end plates and (2) a 16-foot span 2.67-foot chord wing of 15 percent maximum thickness to determine the increase in lift obtainable by removing the boundary layer and the power required for the blower. The results of the tests on the stub wing appeared more favorable than previous small-scale tests and indicated that: (1) the suction method was considerably superior to the pressure method, (2) single slots were more effective than multiple slots (where the same pressure was applied to all slots), the slot efficiency increased rapidly for increasing slot widths up to 2 percent of the wing chord and remained practically constant for all larger widths tested, (3) suction pressure and power requirements were quite low (a computation for a light airplane showed that a lift coefficient of 3.0 could be obtained with a suction as low as 2.3 times the dynamic pressure and a power expenditure less than 3 percent of the rated engine power), and (4) the volume of air required to be drawn off was quite high (approximately 0.5 cubic feet per second per unit wing area for an airplane landing at 40 miles per hour with a lift coefficient of 3,0), indicating that considerable duct area must be provided in order to prevent flow losses inside the wing and insure uniform distribution of suction along the span. The results from the tests of the large-span wing were less favorable than those on the stub wing. The reasons for this were, probably: (1) the uneven distribution of suction along the span, (2) the flow losses inside the wing, (3) the small radius of curvature of the leading edge of the wing section, and (4) the low Reynolds Number of these tests, which was about one half that of the stub wing. The results showed a large increase in the maximum lift coefficient with an increase in Reynolds Number in the range of the tests. The

  17. Pratt & Whitney Two Dimensional HSR Nozzle Test in the NASA Lewis 9- By 15- Foot Low Speed Wind Tunnel: Aerodynamic Results

    NASA Technical Reports Server (NTRS)

    Wolter, John D.; Jones, Christopher W.

    1999-01-01

    This paper discusses a test that was conducted jointly by Pratt & Whitney Aircraft Engines and NASA Lewis Research Center. The test was conducted in NASA's 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT). The test setup, methods, and aerodynamic results of this test are discussed. Acoustical results are discussed in a separate paper by J. Bridges and J. Marino.

  18. Analysis of 7- X 10-foot high speed wind tunnel shaft loads in support of fan blade failure investigation

    NASA Technical Reports Server (NTRS)

    Faison, Richard W.

    1987-01-01

    This is a report of the investigation of the High-Speed 7- X 10-Foot Wind Tunnel at NASA Langley Research Center, which experienced a catastrophic failure of all 18 Sitka spruce fan blades during operation at 0.8 Mach number on 2 July 1985. The High-Speed Tunnel, a closed-circuit/single-return atmospheric wind tunnel, had been operated since 1945 to support a wide range of subsonic aerodynamic tests and studies. The failed blade set had been in use since 1975. In addition to blade loss, the most significant damage was a bent main drive shaft for a total estimated damage loss of 1.7 million dollars. An analysis of the natural frequency characteristics as well as loads, reactions, stresses, and deflections of the fan drive system resulting from steady-state and dynamic loads due to unbalance was performed. Transient load cases were simulated by step input and ramp input loading functions intended to simulate the loss of one to nine blades (maximum unbalance forces).

  19. 80 and 100 Meter Wind Energy Resource Potential for the United States (Poster)

    SciTech Connect

    Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Flowers, L.; Brower, M.; Hale, E.; Phelps, B.

    2010-05-01

    Accurate information about the wind potential in each state is required for federal and state policy initiatives that will expand the use of wind energy in the United States. The National Renewable Energy Laboratory (NREL) and AWS Truewind have collaborated to produce the first comprehensive new state-level assessment of wind resource potential since 1993. The estimates are based on high-resolution maps of predicted mean annual wind speeds for the contiguous 48 states developed by AWS Truewind. These maps, at spatial resolution of 200 meters and heights of 60 to 100 meters, were created with a mesoscale-microscale modeling technique and adjusted to reduce errors through a bias-correction procedure involving data from more than 1,000 measurement masts. NREL used the capacity factor maps to estimate the wind energy potential capacity in megawatts for each state by capacity factor ranges. The purpose of this presentation is to (1) inform state and federal policy makers, regulators, developers, and other stakeholders on the availability of the new wind potential information that may influence development, (2) inform the audience of how the new information was derived, and (3) educate the audience on how the information should be interpreted in developing state and federal policy initiatives.

  20. Experimental investigation of the subsonic high-altitude operation of the NASA Lewis 10- by 10-foot supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Jeracki, Robert J.

    1988-01-01

    An experimental investigation was conducted in the NASA Lewis 10- by 10-Foot Supersonic Wind Tunnel during subsonic tunnel operation in the aerodynamic cycle to determine the test section flow characteristics near the Advanced Turboprop Project propeller model plane of rotation. The investigation used an eight-probe pitot static flow survey rake to measure total and static pressures at two locations in the wind tunnel: the test section and the bellmouth section (upstream of the two-dimensional flexible-wall nozzle). A cone angularity probe was used to measure any flow angularity in the test section. The evaluation was conducted at tunnel Mach numbers from 0.10 to 0.35 and at three operating altitudes from 2,000 to 50,000 ft. which correspond to tunnel reference total pressures from 1960 to 245 psfa, respectively. The results of this experimental investigation indicate a total-pressure loss area in the center of the test section and a static-pressure gradient from the test section centerline to the wall. These total and static pressure differences were observed at all tunnel operating altitudes and diminished at lower tunnel velocities. The total-pressure loss area was also found in the bellmouth section, which indicates that the loss mechanism is not the tunnel flexible-wall nozzle. The flow in the test section is essentially axial since very small flow angles were measured. The results also indicate that a correction to the tunnel total and static pressures must be applied in order to determine accurate freestream conditions at the test section centerline.

  1. Gone with the Wind? Integrity and Hurricane Katrina

    ERIC Educational Resources Information Center

    Lucas, Frances; Katz, Brit

    2011-01-01

    Hurricane Katrina slammed into 80 miles of Mississippi shoreline on August 29, 2005. It was the nation's worst natural disaster, a perfect storm. One hundred sixty miles-per-hour winds sent 55-foot-tall waves and a 30-foot wall of water across the shore and miles inland. It displaced 400,000 residents along the coast of the Mississippi, and…

  2. Enabling Advanced Wind-Tunnel Research Methods Using the NASA Langley 12-Foot Low Speed Tunnel

    NASA Technical Reports Server (NTRS)

    Busan, Ronald C.; Rothhaar, Paul M.; Croom, Mark A.; Murphy, Patrick C.; Grafton, Sue B.; O-Neal, Anthony W.

    2014-01-01

    Design of Experiment (DOE) testing methods were used to gather wind tunnel data characterizing the aerodynamic and propulsion forces and moments acting on a complex vehicle configuration with 10 motor-driven propellers, 9 control surfaces, a tilt wing, and a tilt tail. This paper describes the potential benefits and practical implications of using DOE methods for wind tunnel testing - with an emphasis on describing how it can affect model hardware, facility hardware, and software for control and data acquisition. With up to 23 independent variables (19 model and 2 tunnel) for some vehicle configurations, this recent test also provides an excellent example of using DOE methods to assess critical coupling effects in a reasonable timeframe for complex vehicle configurations. Results for an exploratory test using conventional angle of attack sweeps to assess aerodynamic hysteresis is summarized, and DOE results are presented for an exploratory test used to set the data sampling time for the overall test. DOE results are also shown for one production test characterizing normal force in the Cruise mode for the vehicle.

  3. Foot Surgery

    MedlinePlus

    ... About Feet » Foot Health Information Surgery When is Foot Surgery Necessary? Many foot problems do not respond ... restore the function of your foot. Types of Foot Surgery Fusions: Fusions are usually performed to treat ...

  4. Acoustic evaluation of the Helmholtz resonator treatment in the NASA Lewis 8- by 6-foot supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.; Gordon, Elliot B.

    1989-01-01

    The acoustic consequences of sealing the Helmholtz resonators of the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT) were experimentally evaluated. This resonator sealing was proposed in order to avoid entrapment of hydrogen during tests of advanced hydrogen-fueled engines. The resonators were designed to absorb energy in the 4- to 20-Hz range; thus, this investigation is primarily concerned with infrasound. Limited internal and external noise measurements were made at tunnel Mach numbers ranging from 0.5 to 2.0. Although the resonators were part of the acoustic treatment installed because of a community noise problem their sealing did not seem to indicate a reoccurrence of the problem would result. Two factors were key to this conclusion: (1) A large bulk treatment muffler downstream of the resonators was able to make up for much of the attenuation originally provided by the resonators, and (2) there was no noise source in the tunnel test section. The previous community noise problem occurred when a large ramjet was tested in an open-loop tunnel configuration. If a propulsion system producing high noise levels at frequencies of less than 10 Hz were tested, the conclusion on community noise would have to be reevaluated.

  5. V/STOL Tandem Fan transition section model test. [in the Lewis Research Center 10-by-10 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Simpkin, W. E.

    1982-01-01

    An approximately 0.25 scale model of the transition section of a tandem fan variable cycle engine nacelle was tested in the NASA Lewis Research Center 10-by-10 foot wind tunnel. Two 12-inch, tip-turbine driven fans were used to simulate a tandem fan engine. Three testing modes simulated a V/STOL tandem fan airplane. Parallel mode has two separate propulsion streams for maximum low speed performance. A front inlet, fan, and downward vectorable nozzle forms one stream. An auxilliary top inlet provides air to the aft fan - supplying the core engine and aft vectorable nozzle. Front nozzle and top inlet closure, and removal of a blocker door separating the two streams configures the tandem fan for series mode operations as a typical aircraft propulsion system. Transition mode operation is formed by intermediate settings of the front nozzle, blocker door, and top inlet. Emphasis was on the total pressure recovery and flow distortion at the aft fan face. A range of fan flow rates were tested at tunnel airspeeds from 0 to 240 knots, and angles-of-attack from -10 to 40 deg for all three modes. In addition to the model variables for the three modes, model variants of the top inlet were tested in the parallel mode only. These lip variables were: aft lip boundary layer bleed holes, and Three position turning vane. Also a bellmouth extension of the top inlet side lips was tested in parallel mode.

  6. Acoustic Data Processing and Transient Signal Analysis for the Hybrid Wing Body 14- by 22-Foot Subsonic Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Bahr, Christopher J.; Brooks, Thomas F.; Humphreys, William M.; Spalt, Taylor B.; Stead, Daniel J.

    2014-01-01

    An advanced vehicle concept, the HWB N2A-EXTE aircraft design, was tested in NASA Langley's 14- by 22-Foot Subsonic Wind Tunnel to study its acoustic characteristics for var- ious propulsion system installation and airframe con gurations. A signi cant upgrade to existing data processing systems was implemented, with a focus on portability and a re- duction in turnaround time. These requirements were met by updating codes originally written for a cluster environment and transferring them to a local workstation while en- abling GPU computing. Post-test, additional processing of the time series was required to remove transient hydrodynamic gusts from some of the microphone time series. A novel automated procedure was developed to analyze and reject contaminated blocks of data, under the assumption that the desired acoustic signal of interest was a band-limited sta- tionary random process, and of lower variance than the hydrodynamic contamination. The procedure is shown to successfully identify and remove contaminated blocks of data and retain the desired acoustic signal. Additional corrections to the data, mainly background subtraction, shear layer refraction calculations, atmospheric attenuation and microphone directivity corrections, were all necessary for initial analysis and noise assessments. These were implemented for the post-processing of spectral data, and are shown to behave as expected.

  7. A three-dimensional orthogonal laser velocimeter for the NASA Ames 7- by 10-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Cooper, Donald L.

    1995-01-01

    A three-component dual-beam laser-velocimeter system has been designed, fabricated, and implemented in the 7-by 10-Foot Wind Tunnel at NASA Ames Research Center. The instrument utilizes optical access from both sides and the top of the test section, and is configured for uncoupled orthogonal measurements of the three Cartesian coordinates of velocity. Bragg cell optics are used to provide fringe velocity bias. Modular system design provides great flexibility in the location of sending and receiving optics to adapt to specific experimental requirements. Near-focus Schmidt-Cassegrain optic modules may be positioned for collection of forward or backward scattered light over a large solid angle, and may be clustered to further increase collection solid angle. Multimode fiber optics transmit collected light to the photomultiplier tubes for processing. Counters are used to process the photomultiplier signals and transfer the processed data digitally via buffered interface controller to the host MS-DOS computer. Considerable data reduction and graphical display programming permit on-line control of data acquisition and evaluation of the incoming data. This paper describes this system in detail and presents sample data illustrating the system's capability.

  8. Direct Validation of the Wall Interference Correction System of the Ames 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert; Boone, Alan R.

    2003-01-01

    Data from the test of a large semispan model was used to perform a direct validation of a wall interference correction system for a transonic slotted wall wind tunnel. At first, different sets of uncorrected aerodynamic coefficients were generated by physically changing the boundary condition of the test section walls. Then, wall interference corrections were computed and applied to all data points. Finally, an interpolation of the corrected aerodynamic coefficients was performed. This interpolation made sure that the corrected Mach number of a given run would be constant. Overall, the agreement between corresponding interpolated lift, drag, and pitching moment coefficient sets was very good. Buoyancy corrections were also investigated. These studies showed that the accuracy goal of one drag count may only be achieved if reliable estimates of the wall interference induced buoyancy correction are available during a test.

  9. Heat-transfer test results for a .0275-scale space shuttle external tank with a 10 deg/40 deg double cone-ogive nose in the NASA/AMES 3.5-foot hypersonic wind tunnel (FH14), volume 2

    NASA Technical Reports Server (NTRS)

    Carroll, H. R.

    1977-01-01

    A .0275 scale forebody model of the new baseline configuration of the space shuttle external tank vent cap configuration was tested to determine the flow field due to the double cone configuration. The tests were conducted in a 3.5 foot hypersonic wind tunnel at alpha = -5 deg, -4.59 deg, 0 deg, 5 deg, and 10 deg; beta = 0 deg, -3 deg, -5.51 deg, -6 deg, -9 deg, and +6 deg; nominal freestream Reynolds numbers per foot of 1.5 x 1 million, 3.0 x 1 million, and 5.0 x 1 million; and a nominal Mach number of 5. Separation and reattached flow from thermocouple data, shadowgraphs, and oil flows indicate that separation begins about 80% from the tip of the 10 deg cone, then reattaches on the vent cap and produces fully turbulent flow over most of the model forebody. The hardware disturbs the flow over a much larger area than present TPS application has assumed. A correction to the flow disturbance was experimentally suggested from the results of an additional test run.

  10. Two-Dimensional Bifurcated Inlet Variable Cowl Lip Test Completed in 10- by 10-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Hoffman, T. R.

    2000-01-01

    Researchers at the NASA Glenn Research Center at Lewis Field successfully tested a variable cowl lip inlet at simulated takeoff conditions in Glenn s 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) as part of the High-Speed Research Program. The test was a follow-on to the Two-Dimensional Bifurcated (2DB) Inlet/Engine test. At the takeoff condition for a High-Speed Civil Transport aircraft, the inlet must provide adequate airflow to the engine with an acceptable distortion level and high-pressure recovery. The test was conducted to study the effectiveness of installing two rotating lips on the 2DB Inlet cowls to increase mass flow rate and eliminate or reduce boundary layer flow separation near the lips. Hardware was mounted vertically in the test section so that it extended through the tunnel ceiling and that the 2DB Inlet was exposed to the atmosphere above the test section. The tunnel was configured in the aerodynamic mode, and exhausters were used to pump down the tunnel to vacuum levels and to provide a maximum flow rate of approximately 58 lb/sec. The test determined the (1) maximum flow in the 2DB Inlet for each variable cowl lip, (2) distortion level and pressure recovery for each lip configuration, (3) boundary layer conditions near variable lips inside the 2DB Inlet, (4) effects of a wing structure adjacent to the 2DB Inlet, and (5) effects of different 2DB Inlet exit configurations. It also employed flow visualization to generate enough qualitative data on variable lips to optimize the variable lip concept. This test was a collaborative effort between the Boeing Company and Glenn. Extensive inhouse support at Glenn contributed significantly to the progress and accomplishment of this test.

  11. Athlete's Foot

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Athlete's Foot KidsHealth > For Kids > Athlete's Foot Print A A ... a public shower. Why Is It Called Athlete's Foot? Athlete's foot gets its name because athletes often ...

  12. Boundary-Layer Transition on the N.A.C.A. 0012 and 23012 Airfoils in the 8-Foot High-Speed Wind Tunnel, Special Report

    NASA Technical Reports Server (NTRS)

    Becker, John V.

    1940-01-01

    Determinations of boundary-layer transition on the NACA 0012 and 2301 airfoils were made in the 8-foot high-speed wind tunnel over a range of Reynolds Numbers from 1,600,000 to 16,800,000. The results are of particular significance as compared with flight tests and tests in wind tunnels of appreciable turbulence because of the extremely low turbulence in the high-speed tunnel. A comparison of the results obtained on NACA 0012 airfoils of 2-foot and 5-foot chord at the same Reynolds Number permitted an evaluation of the effect of compressibility on transition. The local skin friction along the surface of the NACA 0012 airfoil was measured at a Reynolds Number of 10,000,000. For all the lift coefficient at which tests were made, transition occurred in the region of estimated laminar separation at the low Reynolds Numbers and approach the point of minimum static pressure as a forward limit at the high Reynolds Numbers. The effect of compressibility on transition was slight. None of the usual parameters describing the local conditions in the boundary layer near the transition point served as an index for locating the transition point. As a consequence of the lower turbulence in the 8-foot high-speed tunnel, the transition points occurred consistently farther back along the chord than those measured in the NACA full-scale tunnel. An empirical relation for estimating the location of the transition point for conventional airfoils on the basis of static-pressure distribution and Reynolds Number is presented.

  13. Comparison between design and installed acoustic characteristics of NASA Lewis 9- by 15-foot low-speed wind tunnel acoustic treatment

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Woodward, Richard P.

    1990-01-01

    The test section of the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel was acoustically treated to allow the measurement of sound under simulated free-field conditions. The treatment was designed for high sound absorption at frequencies above 250 Hz and for withstanding the environmental conditions in the test section. In order to achieve the design requirements, a fibrous, bulk-absorber material was packed into removable panel sections. Each section was divided into two equal-depth layers packed with material to different bulk densities. The lower density was next to the facing of the treatment. The facing consisted of a perforated plate and screening material layered together. Sample tests for normal-incidence acoustic absorption were also conducted in an impedance tube to provide data to aid in the treatment design. Tests with no airflow, involving the measurement of the absorptive properties of the treatment installed in the 9- by 15-foot wind tunnel test section, combined the use of time-delay spectrometry with a previously established free-field measurement method. This new application of time-delay spectrometry enabled these free-field measurements to be made in nonanechoic conditions. The results showed that the installed acoustic treatment had absorption coefficients greater than 0.95 over the frequency range 250 Hz to 4 kHz. The measurements in the wind tunnel were in good agreement with both the analytical prediction and the impedance tube test data.

  14. Short Takeoff and Vertical Landing Capability Upgraded in NASA Glenn's 9- by 15-Foot Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Stark, David E.

    2003-01-01

    The NASA Glenn Research Center supports short takeoff and vertical landing (STOVL) tests in its 9- by 15-Foot Low Speed Wind Tunnel (9 x 15 LSWT). As part of a facility capability upgrade, a dynamic actuation system (DAS) was fabricated to enhance the STOVL testing capabilities. The DAS serves as the mechanical interface between the 9 x 15 LSWT test section structure and the STOVL model to be tested. It provides vertical and horizontal translation of the model in the test section and maintains the model attitude (pitch, yaw, and roll) during translation. It also integrates a piping system to supply the model with exhaust and hot air to simulate the inlet suction and nozzle exhausts, respectively. Hot gas ingestion studies have been performed with the facility ground plane installed. The DAS provides vertical (ascent and descent) translation speeds of up to 48 in./s and horizontal translation speeds of up to 12 in./s. Model pitch variations of +/- 7, roll variations of +/- 5, and yaw variations of 0 to 180 deg can be accommodated and are maintained within 0.25 deg throughout the translation profile. The hot air supply, generated by the facility heaters and regulated by control valves, provides three separate temperature zones to the model for STOVL and hot gas ingestion testing. Channels along the supertube provide instrumentation paths from the model to the facility data system for data collection purposes. The DAS is supported by the 9 x 15 LSWT test section ceiling structure. A carriage that rides on two linear rails provides for horizontal translation of the system along the test section longitudinal axis. A vertical translation assembly, consisting of a cage and supertube, is secured to the carriage. The supertube traverses vertically through the cage on a set of linear rails. Both translation axes are hydraulically actuated and provide position and velocity profile control. The lower flange on the supertube serves as the model interface to the DAS. The

  15. A concept study of a carbon spar cap design for a 80m wind turbine blade

    NASA Astrophysics Data System (ADS)

    Rosemeier, M.; Bätge, M.

    2014-06-01

    The buckling resistance is a key design driver for large wind turbine blades with a significant influence on the material costs. During the structural design process the choice was made for carbon spar caps and two shear webs, which were set relatively far apart in order to stabilize the panels. This design presented a major challenge for the stability of the spar caps. The topology of these spar caps has been modified with regard to stability, comparing a continuous spar cap with split spar cap concepts and considering both lay-ups with hybrid carbon glass spar caps or sandwich concepts. Within those concepts, parametric studies were conducted varying different geometrical parameters of the spar caps and its layups. In order to determine the buckling resistance of the spar cap, an analytical model considering a 2D cross section discretized blade model was utilized to select the basic concept, after which a 3D numerical finite element model taking the whole blade into account was used to evaluate the chosen design concepts. The stability limit state analysis was conducted according to the certification scheme of GL guideline 2012. The various concepts were evaluated based on the blade's mass, tip deflection and modal properties. The results of this design process of the spar caps and the evaluation of the used analysis tools are presented within the paper.

  16. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5 foot hypersonic wind tunnel (IH3), volume 1

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat transfer data for the 0.0175-scale space shuttle vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-foot hypersonic wind tunnel at Mach 5.3 for nominal free stream Reynolds number per foot values of 1.5, and 5.0 million.

  17. STOL and STOVL hot gas ingestion and airframe heating tests in the NASA Lewis 9- by 15-foot low-speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.

    1989-01-01

    Short takeoff and landing (STOL) and advanced short takeoff and vertical landing (STOVL) aircraft are being pursued for deployment near the end of this century. These concepts offer unique capabilities not seen in conventional aircraft: for example, shorter takeoff distances and the ability to operate from damaged runways and remote sites. However, special technology is critical to the development of this unique class of aircraft. Some of the real issues that are associated with these concepts are hot gas ingestion and airframe heating while in ground effects. Over the past nine years, NASA Lewis Research Center has been involved in several cooperative programs in the 9- by 15 Foot Low-Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion and airframe heating. The modifications are presented that were made in the 9- by 15-Foot LSWT, including the evolution of the ground plane, model support system, and tunnel sidewalls; and flow visualization techniques, instrumentation, test procedures, and test results. The 9- by 15-Foot LSWT tests were conducted at full scale exhaust nozzle pressure ratios. The headwind velocities varied from 8 to 120 kn depending on the concept (STOL or STOVL). Typical compressor-face distortions (pressure and temperature), ground plane contours, and model surface temperature profiles are presented.

  18. Athlete's Foot

    MedlinePlus

    ... Home » Learn About Feet » Foot Health Information Athlete's Foot What is Athlete's Foot? Athlete's foot is a skin disease caused by a fungus, ... fungus growth. Not all fungus conditions are athlete's foot. Other conditions, such as disturbances of the sweat ...

  19. Athlete's foot

    MedlinePlus

    Tinea pedis; Fungal infection - feet; Tinea of the foot; Infection - fungal - feet; Ringworm - foot ... Athlete's foot is the most common type of tinea infection. The fungus or yeast thrives in warm, ...

  20. Foot pain

    MedlinePlus

    Pain - foot ... Foot pain may be due to: Aging Being on your feet for long periods of time Being overweight A ... sports activity Trauma The following can cause foot pain: Arthritis and gout . Common in the big toe, ...

  1. Foot Drop

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Foot Drop Information Page Table of Contents (click to ... research is being done? Clinical Trials What is Foot Drop? Foot drop describes the inability to raise ...

  2. Full scale wind tunnel investigation of a bearingless main helicopter rotor. [Ames 40 by 80 foot wind tunnel test using the BO-105 helicopter

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A stability test program was conducted to determine the effects of airspeed, collective pitch, rotor speed and shaft angle on stability and loads at speeds beyond that attained in the BMR/BO-105 flight test program. Loads and performance data were gathered at forward speeds up to 165 knots. The effect of cyclic pitch perturbations on rotor response was investigated at simulated level flight conditions. Two configuration variations were tested for their effect on stability. One variable was the control system stiffness. An axially softer pitch link was installed in place of the standard BO-105 pitch link. The second variation was the addition of elastomeric damper strips to increase the structural damping. The BMR was stable at all conditions tested. At fixed collective pitch, shaft angle and rotor speed, damping generally increased between hover and 60 knots, remained relatively constant from 60 to 90 knots, then decreased above 90 knots. Analytical predictions are in good agreement with test data up to 90 knots, but the trend of decreasing damping above 90 knots is contrary to the theory.

  3. Phase 2 and 3 wind tunnel tests of the J-97 powered, external augmentor V/STOL model. [conducted in Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Garland, D. B.

    1980-01-01

    Modifications were made to the model to improve longitudinal acceleration capability during transition from hovering to wing borne flight. A rearward deflection of the fuselage augmentor thrust vector is shown to be beneficial in this regard. Other agmentor modifications were tested, notably the removal of both endplates, which improved acceleration performance at the higher transition speeds. The model tests again demonstrated minimal interference of the fuselage augmentor on aerodynamic lift. A flapped canard surface also shows negligible influence on the performance of the wing and of the fuselage augmentor.

  4. Results of pressure distribution tests of a 0.010-scale space shuttle orbiter model (61-0) in the NASA/ARC 3.5-foot hypersonic wind tunnel (test OH38), volume 1

    NASA Technical Reports Server (NTRS)

    Dye, W. H.; Polek, T.

    1975-01-01

    Test results are presented of hypersonic pressure distributions at simulated atmospheric entry conditions. Pressure data were obtained at Mach numbers of 7.4 and 10.4 and Reynolds numbers of 3.0 and 6.5 million per foot. Data are presented in both plotted and tabulated data form. Photographs of wind tunnel apparatus and test configurations are provided.

  5. Hypersonic aeroheating test of space shuttle vehicle configuration 3 (model 22-OTS) in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH20), volume 1

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.; Lockman, W. K.

    1975-01-01

    The results of hypersonic wind tunnel testing of an 0.0175 scale version of the vehicle 3 space shuttle configuration are presented. Temperature measurements were made on the launch configuration, orbiter plus tank, orbiter alone, tank alone, and solid rocket booster alone to provide heat transfer data. The test was conducted at free-stream Mach numbers of 5.3 and 7.3 and at free-stream Reynolds numbers of 1.5 million, 3.7 million, 5.0 million, and 7.0 million per foot. The model was tested at angles of attack from -5 deg to 20 deg and side slip angles of -5 deg and 0 deg.

  6. Canard-body-tail missile test at angles of attack to 50 deg in the Ames 11-foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Allen, C. Q.; Schwind, R. G.; Malcolm, G. N.

    1978-01-01

    Blunted ogive cylinder missile models with a length-to-diameter ratio of 10.4 were tested at transonic speeds and large angles of attack in an 11 foot transonic wind tunnel. The configurations are: body, body with tail panels, body with canards, and body with canards and tails. Forces and moments from the entire model and each of the eight fins were measured over the pitch range of 20 deg to 50 deg, and roll angles of 0 deg to 45 deg and canard deflection angles between 0 deg and 15 deg. The Reynolds number ranged from 3.9 x 10 to the 6th power per meter. Large side forces and yawing moments were observed for some of the test cases involving a symmetric geometry.

  7. 13. 64 foot truss oblique view of the 64 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. 64 foot truss - oblique view of the 64 foot pony truss showing its general configuration. The 80 foot pony trusses are similar. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  8. Boundary layer separation on isolated boattail nozzles. M.S. Thesis; [conducted in the Langley 16-foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Abeyounis, W. K.

    1977-01-01

    The phenomenon of separated flow on a series of circular-arc afterbodies was investigated using the Langley 16-foot transonic tunnel at free-stream Mach numbers from 0.40 to 0.95 at 0 deg angle of attack. Both high-pressure air and solid circular cylinders with a diameter equal to the nozzle exit diameter were used to simulate jet exhausts. A detailed data base of boundary layer separation locations was obtained using oil-flow techniques. The results indicate that boundary layer separation is most extensive on steep boattails at high Mach numbers.

  9. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH3), volume 4

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat-transfer data for the 0.0175-scale Space Shuttle Vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of Orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-Foot Hypersonic Wind Tunnel at Mach 5.3 for nominal free-stream Reynolds number per foot values of 1.5 x 1,000,000 and 5.0 x 1,000,000.

  10. Athlete's Foot

    MedlinePlus

    Athlete's foot is a common infection caused by a fungus. It most often affects the space between the toes. ... skin between your toes. You can get athlete's foot from damp surfaces, such as showers, swimming pools, ...

  11. Foot Problems

    MedlinePlus

    ... the foot and take an over-the-counter anti-inflammatory medicine to relieve pain. See your doctor if ... foot. Use ice and an over-the-counter anti-inflammatory medicine. See your doctor if the pain doesn' ...

  12. Athlete's Foot

    MedlinePlus

    ... type of tinea, athlete's foot. The Basics on Tinea Infections Tinea (pronounced: TIH-nee-uh) is the medical name ... or scalp, including athlete's foot, jock itch , and ringworm (despite its name, ringworm is not a worm). ...

  13. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot Transonic wind tunnel (IA613A), volume 1

    NASA Astrophysics Data System (ADS)

    Marroquin, J.; Lemoine, P.

    1992-10-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e. top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  14. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot transonic wind tunnel, volume 2

    NASA Astrophysics Data System (ADS)

    Marroquin, J.; Lemoine, P.

    1992-10-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e., top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  15. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot transonic wind tunnel, volume 2

    NASA Technical Reports Server (NTRS)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e., top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  16. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot Transonic wind tunnel (IA613A), volume 1

    NASA Technical Reports Server (NTRS)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e. top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  17. Foot Health

    MedlinePlus

    ... straight across and not too short Your foot health can be a clue to your overall health. For example, joint stiffness could mean arthritis. Tingling ... foot checks are an important part of your health care. If you have foot problems, be sure ...

  18. The Real-Time Wall Interference Correction System of the NASA Ames 12-Foot Pressure Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert

    1998-01-01

    An improved version of the Wall Signature Method was developed to compute wall interference effects in three-dimensional subsonic wind tunnel testing of aircraft models in real-time. The method may be applied to a full-span or a semispan model. A simplified singularity representation of the aircraft model is used. Fuselage, support system, propulsion simulator, and separation wake volume blockage effects are represented by point sources and sinks. Lifting effects are represented by semi-infinite line doublets. The singularity representation of the test article is combined with the measurement of wind tunnel test reference conditions, wall pressure, lift force, thrust force, pitching moment, rolling moment, and pre-computed solutions of the subsonic potential equation to determine first order wall interference corrections. Second order wall interference corrections for pitching and rolling moment coefficient are also determined. A new procedure is presented that estimates a rolling moment coefficient correction for wings with non-symmetric lift distribution. Experimental data obtained during the calibration of the Ames Bipod model support system and during tests of two semispan models mounted on an image plane in the NASA Ames 12 ft. Pressure Wind Tunnel are used to demonstrate the application of the wall interference correction method.

  19. Investigations on an 0.030-scale space shuttle vehicle configuration 140A/B orbiter model in the Ames Research Center unitary plan 8 by 7-foot supersonic wind tunnel (0A53C)

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1974-01-01

    A wind tunnel test was conducted of an 0.030 scale model of the space shuttle orbiter in a supersonic wind tunnel. Tests were conducted at Mach numbers of 2.5, 3.0, and 3.5. Reynolds numbers ranged from 0.75 million per foot to 4.00 million per foot. The objective of the test was to establish and verify longitudinal and lateral-directional aerodynamic performance, stability, and control characteristics for the configuration 140 A/B SSV Orbiter. Six-component force and moment data, base and cavity pressures, body-flap, elevon, speedbrake, and rudder hinge moments, and vertical tail forces and moments were measured.

  20. Results of flutter test OS7 obtained using the 0.14-scale space shuttle orbiter fin/rudder model number 55-0 in the NASA LaRC 16-foot transonic dynamics wind tunnel

    NASA Technical Reports Server (NTRS)

    Berthold, C. L.

    1977-01-01

    A 0.14-scale dynamically scaled model of the space shuttle orbiter vertical tail was tested in a 16-foot transonic dynamic wind tunnel to determine flutter, buffet, and rudder buzz boundaries. Mach numbers between .5 and 1.11 were investigated. Rockwell shuttle model 55-0 was used for this investigation. A description of the test procedure, hardware, and results of this test is presented.

  1. Results of flutter test OS6 obtained using the 0.14-scale wing/elevon model (54-0) in the NASA LaRC 16-foot transonic dynamics wind tunnel

    NASA Technical Reports Server (NTRS)

    Berthold, C. L.

    1977-01-01

    A 0.14-scale dynamically scaled model of the space shuttle orbiter wing was tested in the Langley Research Center 16-Foot Transonic Dynamics Wind Tunnel to determine flutter, buffet, and elevon buzz boundaries. Mach numbers between 0.3 and 1.1 were investigated. Rockwell shuttle model 54-0 was utilized for this investigation. A description of the test procedure, hardware, and results of this test is presented.

  2. Acoustic Performance of the GEAE UPS Research Fan in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hughes, Christopher E.

    2012-01-01

    A model advanced turbofan was acoustically tested in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel in 1994. The Universal Propulsion Simulator fan was designed and manufactured by General Electric Aircraft Engines, and included an active core, as well as bypass, flow paths. The fan was tested with several rotors featuring unswept, forward-swept and aft-swept designs of both metal and composite construction. Sideline acoustic data were taken with both hard and acoustically treated walls in the flow passages. The fan was tested within an airflow at a Mach number of 0.20, which is representative of aircraft takeoff/approach conditions. All rotors showed similar aerodynamic performance. However, the composite rotors typically showed higher noise levels than did corresponding metal rotors. Aft and forward rotor sweep showed at most modest reductions of transonic multiple pure tone levels. However, rotor sweep often introduced increased rotor-stator interaction tone levels. Broadband noise was typically higher for the composite rotors and also for the aft-swept metal rotor. Transonic MPT generation was reduced with increasing fan axis angle of attack (AOA); however, higher downstream noise levels did increase with AOA resulting in higher overall Effective Perceived Noise Level.

  3. Hot gas ingestion testing of an advanced STOVL concept in the NASA Lewis 9- by 15-foot low speed wind tunnel with flow visualization

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Flood, Joseph D.; Strock, Thomas W.; Amuedo, Kurt C.

    1988-01-01

    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft capable of operating from remote sites, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, it is important that the technologies critical to this unique class of aircraft be developed. Recognizing this need, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-Foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results from a test program are presented along with a discussion of the facility modifications allowing this type of testing at model scale. These modifications to the tunnel include a novel ground plane, an elaborate model support which included 4 degrees of freedom, heated high pressure air for nozzle flow, a suction system exhaust for inlet flow, and tunnel sidewall modifications. Several flow visualization techniques were employed including water mist in the nozzle flows and tufts on the ground plane. Headwind (free-stream) velocity was varied from 8 to 23 knots.

  4. Hot gas ingestion testing of an advanced STOVL concept in the NASA Lewis 9- by 15-foot Low Speed Wind Tunnel with flow visualization

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Flood, Joseph D.; Strock, Thomas W.; Amuedo, Kurt C.

    1988-01-01

    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft capable of operating from remote sites, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, it is important that the technologies critical to this unique class of aircraft be developed. Recognizing this need, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results from a test program are presented along with a discussion of the facility modifications allowing this type of testing at modal scale. These modifications to the tunnel include a novel ground plane, an elaborate model support which included 4 degrees of freedom, heated high pressure air for nozzle flow, a suction system exhaust for inlet flow, and tunnel sidewall modifications. Several flow visualization techniques were employed including water mist in the nozzle flows and tufts on the ground plane. Headwind (free-stream) velocity was varied from 8 to 23 knots.

  5. Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9- by 15-foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.

    1990-01-01

    A 9.2 percent scale STOVL hot gas ingestion model was tested in the NASA Lewis 9 x 15-foot Low-Speed Wind Tunnel. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R and contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours, the model airframe heating, and the location of the ground flow separation.

  6. Wing pressure distributions from subsonic tests of a high-wing transport model. [in the Langley 14- by 22-Foot Subsonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.; Gentry, Garl L., Jr.; Takallu, M. A.

    1995-01-01

    A wind tunnel investigation was conducted on a generic, high-wing transport model in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data that document effects of various model configurations and free-stream conditions on wing pressure distributions. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a part-span, double-slotted trailing-edge flap system. The trailing-edge flap was tested at four different deflection angles (20 deg, 30 deg, 40 deg, and 60 deg). Four wing configurations were tested: cruise, flaps only, Krueger flap only, and high lift (Krueger flap and flaps deployed). Tests were conducted at free-stream dynamic pressures of 20 psf to 60 psf with corresponding chord Reynolds numbers of 1.22 x 10(exp 6) to 2.11 x 10(exp 6) and Mach numbers of 0.12 to 0.20. The angles of attack presented range from 0 deg to 20 deg and were determined by wing configuration. The angle of sideslip ranged from minus 20 deg to 20 deg. In general, pressure distributions were relatively insensitive to free-stream speed with exceptions primarily at high angles of attack or high flap deflections. Increasing trailing-edge Krueger flap significantly reduced peak suction pressures and steep gradients on the wing at high angles of attack. Installation of the empennage had no effect on wing pressure distributions. Unpowered engine nacelles reduced suction pressures on the wing and the flaps.

  7. A two-dimensional adaptive-wall test section with ventilated walls in the Ames 2- by 2-foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Lee, George; Mcdevitt, T. Kevin

    1989-01-01

    The first tests conducted in the adaptive-wall test section of the Ames Research Center's 2- by 2-Foot Transonic Wind Tunnel are described. A procedure was demonstrated for reducing wall interference in transonic flow past a two-dimensional airfoil by actively controlling flow through the slotted walls of the test section. Flow through the walls was controlled by adjusting pressures in compartments of plenums above and below the test section. Wall interference was assessed by measuring (with a laser velocimeter) velocity distributions along a contour surrounding the model, and then checking those measurements for their compatibility with free-air far-field boundary conditions. Plenum pressures for minimum wall interference were determined from empirical influence coefficients. An NACA 0012 airfoil was tested at angles of attach of 0 and 2, and at Mach numbers between 0.70 and 0.85. In all cases the wall-setting procedure greatly reduced wall interference. Wall interference, however, was never completely eliminated, primarily because the effect of plenum pressure changes on the velocities along the contour could not be accurately predicted.

  8. Floating frame grounding system. [for wind tunnel static force measurement

    NASA Technical Reports Server (NTRS)

    Forsyth, T. J.

    1987-01-01

    The development of a floating frame grounding system (FFGS) for the 40- by 80-foot low speed wind tunnel facility at the NASA Ames Research Center National Full Scale Aerodynamics Complex is addresssed. When electrical faults are detected, the FFGS ensures a ground path for the fault current. In addition, the FFGS alerts the tunnel operator when a mechanical foul occurs.

  9. Noise measurements from an ejector suppressor nozzle in the NASA Lewis 9- by 15-foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Krejsa, Eugene A.; Cooper, Beth A.; Hall, David G.; Khavaran, Abbas

    1990-01-01

    Acoustic results are presented of a cooperative nozzle test program between NASA and Pratt and Whitney, conducted in the NASA-Lewis 9 x 15 ft Anechoic Wind Tunnel. The nozzle tested was the P and W Hypermix Nozzle concept, a 2-D lobed mixer nozzle followed by a short ejector section made to promote rapid mixing of the induced ejector nozzle flow. Acoustic and aerodynamic measurements were made to determine the amount of ejector pumping, degree of mixing, and noise reduction achieved. A series of tests were run to verify the acoustic quality of this tunnel. The results indicated that the tunnel test section is reasonably anechoic but that background noise can limit the amount of suppression observed from suppressor nozzles. Also, a possible internal noise was observed in the air supply system. The P and W ejector suppressor nozzle demonstrated the potential of this concept to significantly reduce jet noise. Significant reduction in low frequency noise was achieved by increasing the peak jet noise frequency. This was accomplished by breaking the jet into segments with smaller dimensions than those of the baseline nozzle. Variations in ejector parameters had little effect on the noise for the geometries and the range of temperatures and pressure ratios tested.

  10. Turbulence and pressure loss characteristics of the inlet vanes for the 80- by 120-ft wind tunnel

    NASA Technical Reports Server (NTRS)

    Dudley, Michael R.

    1990-01-01

    A series of wind tunnel investigations were conducted to determine the flow characteristics downstream of a set of wind tunnel inlet flow conditioning vanes. The purpose was to develop an understanding of the flow mechanisms that contributed to the pressure loss and turbulence generated by the vane set. The near-field characteristics and flow field development were investigated with a 1/3 scale two dimensional model of the vane set at near full-scale Reynolds numbers. In a second series of tests, the global flow field characteristics were investigated by means of a 1/15 scale model of the full vane set and the 5:1 contraction leading to the model's test section. Scale effects due to Reynolds number mismatch were identified and their significance noted and accounted for when possible. Scaling parameters were adopted that allowed predictions to be made of the expected turbulence and pressure distributions in the full-scale wind tunnel test section, based on the small-scale test results. The predictions were found to be in good agreement with actual measurements made in the full-scale facility.

  11. 2. VIEW LOOKING NORTHWEST AT SETTLING CHAMBER OF 8FOOT HIGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW LOOKING NORTHWEST AT SETTLING CHAMBER OF 8-FOOT HIGH SPEED WIND TUNNEL. Jet Lowe, HAER Photographer, December 1995. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  12. Investigations on an 0.030-scale space shuttle vehicle configuration 140A/B orbiter model in the Ames Research Center 9 by 7-foot supersonic wind tunnel (OA53B)

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1974-01-01

    A wind tunnel test of an 0.030-scale space shuttle vehicle orbiter configuration 140A/B model was conducted in the Ames Research Center 9- by 7-foot supersonic wind tunnel. This part of test series OA53 was conducted at Mach numbers of 1.60 and 2.00 and at Reynolds numbers ranging from 1.0 million per foot to 4.0 million per foot. The objective was to establish and verify longitudinal and lateral-directional aerodynamic performance, stability, and control characteristics for the configuration 140A/B SSV orbiter. Reynolds number studies were performed on certain nominal control-setting configurations, and examinations were made of the incremental effects of an alternate wing leading-edge configuration and of a sealed elevon-split construction. Six-component force and moment data, base and cavity pressures, bodyflap, elevon, speedbrake, and rudder hinge moments, and vertical tail forces and moments were measured for the orbiter.

  13. Wind tunnel test of the 0.015-scale Rockwell International space shuttle vehicle orbiter in the Ames 6 by 6 foot supersonic wind tunnel. [to determine longitudinal and lateral-directional characteristics

    NASA Technical Reports Server (NTRS)

    Milam, M. D.; Dziubala, T. J.

    1973-01-01

    Experimental investigations were performed in a 6- by 6-Foot Supersonic wind tunnel on a 0.015-scale model of the Rockwell International space shuttle vehicle (SSV) 2A orbiter. The purpose of the test was to investigate the longitudinal and lateral-directional characteristics of the vehicle. In addition, hinge moments were measured on the rudder and elevons. Buffet onset was investigated using wing trailing edge pressures and a strain gauge instrumented panel mounted in the wing. The model was tested through a Mach range from 0.6 to 2.0 at a constant unit Reynolds number of 2.5 million. Pitch runs were made at angles of attack from minus 2 deg to +26 deg with beta = 0 deg and 5 deg; yaw runs were made in the range from minus 5 deg to 10 deg of sideslip at angles of attack of 0 deg and 10 deg. Static pressures were measured at the fuselage base and the trailing edges of the wing and rudder. Boundary layer transition was fixed for some runs using distributed roughness strips.

  14. Wind tunnel tests of the 0.010-scale space shuttle integrated vehicle (model 52-QT) in the NASA/Ames 3.5-foot hypersonic wind tunnel (IA18)

    NASA Technical Reports Server (NTRS)

    Esparza, V.; Chee, E.; Stone, J.; Mellenthin, J. A.

    1975-01-01

    Experimental aerodynamic investigations were conducted in the NASA/Ames Research Center 3.5-foot hypersonic wind tunnel on an 0.010-scale model of the space shuttle integrated vehicle consisting of an orbiter and external tank. The basic hypersonic stability characteristics of the orbiter attached rigidly to the external tank and the basic hypersonic stability characteristics of external tank alone simulating RTLS abort conditions were evaluated. The integrated vehicle was tested at angles of attack from- 8 deg through +30 deg and angles of sideslip of- 8 deg through +8 deg at fixed angles of attack of -4 deg, 0 deg, and +4 deg. A maximum angle of attack range of +15 deg through +40 deg was obtained for this configuration, at Mach number 7.3, for one run only. External tank alone testing was conducted at angles of attack from +8 deg through -30 deg and angles of sideslip of -8 deg at fixed angles of attack of -4 deg, 0 deg and +4 deg. Six-component force data and static base pressures were recorded during the test.

  15. Forward velocity effects on fan noise and the influence of inlet aeroacoustic design as measured in the NASA Ames 40 x 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Holm, R. G.; Langenbrunner, L. E.; Mccann, E. O.

    1981-01-01

    The inlet radiated noise of a turbofan engine was studied. The principal research objectives were to characterize or suppress such noise with particular regard to its tonal characteristics. The major portion of this research was conducted by using ground-based static testing without simulation of aircraft forward speed or aircraft installation-related aeroacoustic effects.

  16. Results of a FRSI material test under Space Shuttle ascent conditions in the Ames Research Center 9x7 foot supersonic wind tunnel (OS13). Space Shuttle aerothermodynamic data report

    NASA Technical Reports Server (NTRS)

    Lemoine, P. L.; Collette, J. G. R.

    1992-01-01

    A test was conducted in the NASA/ARC 9 x 7 foot supersonic wind tunnel to verify the integrity of Felt Reusable Surface Insulation (FRSI) material in a panel flutter environment. A FRSI sample panel was subjected to the shocks, pressure gradients, and turbulence characteristics encountered at dynamic pressure 1.5 times the 3(sigma) dispersed trajectory flight conditions of the Space Shuttle. Static and fluctuating pressure data were obtained for Mach numbers ranging from 1.55 to 2.5 with dynamic pressures of 625 to 1250 psf. The FRSI panel suffered no appreciable damage as a result of the test.

  17. Advanced Canard in 12 Foot Tunnel

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Advanced-concepts model plane with front canards, winglets and pusher propellers, in 12 Foot Low-Speed Tunnel. Photograph published in Winds of Change, 75th Anniversary NASA publication, (page 12), by James Schultz.

  18. Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9- x 15-foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.

    1990-01-01

    A 9.2 percent scale Short Takeoff and Vertical Landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the Lewis Research Center 9 x 15 foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issure for advanced short takeoff and vertical landing aircraft. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The model support system had four degrees of freedom - pitch, roll, yaw, and vertical height variation. The model support system also provided heated high-pressure air for nozzle flow and a suction system exhaust for inlet flow. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Test and data analysis results from Phase 2 and flow visualization from both Phase 1 and 2 are documented. A description of the model and facility modifications is also provided. Headwind velocity was varied from 10 to 23 kn. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R. These results will contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours

  19. Aeroheating (pressure) characteristics on a 0.10-scale version of the vehicle 3 space shuttle configuration (26-OTS) in the Langley Research Center 4-foot wind tunnel (IH4)

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.

    1976-01-01

    Results of wind tunnel tests, conducted at the Langley Research Center Unitary Plan Wind Tunnel, are presented. The model tested was an 0.010-scale version of the Vehicle 3 Space Shuttle Configuration. Pressure measurements were made on the launch configuration, Orbiter alone, external tank alone, and solid rocket booster alone, to provide heat transfer pressure data. The tests were conducted for a Mach number range from 2.36 to 4.6 and Reynolds number range from 1.2 to 5 million per foot. The model was tested at angles of attack from -10 to 20 deg for a sideslip angle range from -5 to +5 deg, and at sideslip angles from -5 to 48 deg for 0 deg angle of attack. Tabulated data are given and photographs of the test configuration are shown.

  20. Green foot.

    PubMed

    LeFeber, W P; Golitz, L E

    1984-07-01

    Pseudomonas aeruginosa may infect the skin surface, nails, hair follicles, or deeper tissues. We report a 13-year-old male with an asymptomatic green discoloration of the toenails and sole of the right foot. Pseudomonas aeruginosa was cultured from the shoe, but not from the discolored skin. We suspect that constant wearing of occlusive, rubber-soled, basketball shoes associated with hyperhidrosis allowed colonization of his shoe with pseudomonas. This case is unique in that colonization resulted in a green color of the foot not associated with infection of the skin.

  1. Diabetic Foot

    MedlinePlus

    ... can cause you to lose feeling in your feet. You may not feel a cut, a blister or a sore. Foot injuries such as these can cause ulcers and ... the blood vessels can also mean that your feet do not get enough blood and oxygen. It ...

  2. 6. VIEW OF FIVEFOOT WIND TUNNEL WITH AIR STRAIGHTENER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF FIVE-FOOT WIND TUNNEL WITH AIR STRAIGHTENER AND OPERATOR STATION IN FOREGROUND (1991). - Wright-Patterson Air Force Base, Area B, Building No. 19, Five-Foot Wind Tunnel, Dayton, Montgomery County, OH

  3. Ceramic and coating applications in the hostile environment of a high temperature hypersonic wind tunnel. [Langley 8-foot high temperature structures tunnel

    NASA Technical Reports Server (NTRS)

    Puster, R. L.; Karns, J. R.; Vasquez, P.; Kelliher, W. C.

    1981-01-01

    A Mach 7, blowdown wind tunnel was used to investigate aerothermal structural phenomena on large to full scale high speed vehicle components. The high energy test medium, which provided a true temperature simulation of hypersonic flow at 24 to 40 km altitude, was generated by the combustion of methane with air at high pressures. Since the wind tunnel, as well as the models, must be protected from thermally induced damage, ceramics and coatings were used extensively. Coatings were used both to protect various wind tunnel components and to improve the quality of the test stream. Planned modifications for the wind tunnel included more extensive use of ceramics in order to minimize the number of active cooling systems and thus minimize the inherent operational unreliability and cost that accompanies such systems. Use of nonintrusive data acquisition techniques, such as infrared radiometry, allowed more widespread use of ceramics for models to be tested in high energy wind tunnels.

  4. Effects of reaction control system jet simulation on the stability and control characteristics of a 0.015-scale space shuttle orbiter model in the Ames Research Center 3.5-foot hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Dziubala, T. J.; Marroquin, J.; Cleary, J. W.; Mellenthin, J. A.

    1973-01-01

    An experimental investigation was performed in the Ames Research Center 3.5-Foot Hypersonic Wind Tunnel to obtain detailed effects which interactions between the RCS jet flow field and the local orbiter flow field have on orbiter hypersonic stability and control characteristics. Six-component force data were obtained through an angle-of-attack range of 15 to 35 deg with 0 deg angle of sideslip. The test was conducted with yaw, pitch and roll jet simulation at a free-stream Mach number of 10.3. These data simulate two SSV reentry flight conditions at Mach numbers of 28.3 and 10.3. Fuselage base pressures and pressures on the nonmetric RCS pods were obtained in addition to the basic force measurements. Model 42-0 was used for these tests.

  5. Results of tests OA63 and IA29 on an 0.015 scale model of the space shuttle configuration 140 A/B in the NASA/ARC 6- by 6-foot transonic wind tunnel, volume 1

    NASA Technical Reports Server (NTRS)

    Spangler, R. H.; Thornton, D. E.

    1974-01-01

    Tests were conducted in the NASA/ARC 6- by 6-foot transonic wind tunnel from September 12 to September 28, 1973 on an 0.015-scale model of the space shuttle configuration 140 A/B. Surface pressure data were obtained for the orbiter for both launch and entry configuration at Mach numbers from 0.6 to 2.0. The surface pressures were obtained in the vicinity of the cargo bay door hinge and parting lines, the side of the fuselage at the crew compartment and below the OMS pods at the aft compartment. Data were obtained at angles of attack and sideslip consistent with the expected divergencies along the nominal trajectory. These tests were first in a series of tests supporting the orbiter venting analysis. The series will include tests in three facilities covering a total Mach number range from 0.6 to 10.4.

  6. Aerodynamic characteristics of a canard-controlled missile at Mach numbers of 0.8, 1.3, and 1.75. [in the Ames 6 by 6 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Kassner, D. L.; Wettlaufer, B.

    1977-01-01

    A typical missile model with nose-mounted canards and cruciform tail surfaces was tested in the Ames 6- by 6-Foot Wind Tunnel to determine the contributions of the component aerodynamic surfaces to the static aerodynamic characteristics at Mach numbers of 0.8, 1.3, and 1.75 and Reynolds number of 625,000 based on body diameter. Data were obtained at angles of attack ranging from 0 deg to 24 deg for various stages of model build-up (i.e., with and without canard and/or tail surfaces). In addition, two different sets of canards and tail surfaces were investigated. For the canard and tail arrangements investigated, the model was trimmable at angles of attack up to about 7 deg with canard deflections of about 10 deg. Also, the tail arrangements studied provided ample pitch stability.

  7. Investigation of space shuttle vehicle 140C configuration orbiter (model 16-0) wheel well pressure loads in the Rockwell International 7.75 x 11 foot wind tunnel (OA143)

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1975-01-01

    Experimental aerodynamic investigations were conducted on a sting mounted .0405-scale representation of the 140C outer mold line space shuttle orbiter configuration in the Rockwell International 7.75 x 11.00 foot low speed wind tunnel. The primary test objectives were to define the orbiter wheel well pressure loading and its effects on landing gear thermal insulation and to investigate the pressure environment experienced by both the horizontal flight nose probe and air vent door probes. Steady state and dynamic pressure values were recorded in the orbiter nose gear well, left main landing gear well, horizontal flight nose probe, and both left and right air vent door probe. All steady state pressure levels were measured by Statham differential pressure transducers while dynamic pressure levels were recorded by Kulite high frequency response pressure sensors.

  8. Results of test IA137 in the NASA/ARC 14 foot transonic wind tunnel of the 0.07 scale external tank forebody (model 68-T) to determine auxiliary aerodynamic data system feasibility

    NASA Technical Reports Server (NTRS)

    Thornton, D. E.

    1976-01-01

    Tests were conducted in a 14 foot transonic wind tunnel to examine the feasibility of the auxiliary aerodynamic data system (AADS) for determining angles of attack and sideslip during boost flight. The model used was a 0.07 scale replica of the external tank forebody consisting of the nose portion and a 60 inch (full scale) cylindrical section of the ogive cylinder tangency point. The model terminated in a blunt base with a 320.0 inch diameter at external tank (ET) station 1120.37. Pressure data were obtained from five pressure orifices (one total and four statics) on the nose probe, and sixteen surface static pressure orifices along the ET forebody.

  9. Aeroheating (pressure) characteristics on a 0.010-scale version of the vehicle 3 space shuttle configuration (26-OTS) in the Langley Research Center 4-foot wind tunnel (IH4), volume 1

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.

    1976-01-01

    The results of wind tunnel tests conducted on a 0.010-scale version of the Vehicle 3 Space Shuttle Configuration were presented. Pressure measurements were made on the launch configuration, orbiter alone, external tank alone, and solid rocket booster alone, to provide heat transfer pressure data. The tests were conducted for a Mach number range from 2.36 to 4.6 and Reynolds number range from 1.2 to 5 million per foot. The model was tested at angles of attack from -10 deg to 20 deg for a sideslip angle range from -5 deg to +5 deg and at sideslip angles from -5 deg to 48 deg for 0 deg angle of attack.

  10. Cavus Foot Surgery

    MedlinePlus

    ... Toes All Site Content AOFAS / FootCareMD / Treatments Cavus Foot Surgery Page Content What is a cavus foot? A cavus or high-arched foot may have ... related problems. What are the goals of cavus foot surgery? The main goal of surgery is to ...

  11. 6. FAN HOUSE OF 8FOOT HIGH SPEED TUNNEL. AIR INTAKES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FAN HOUSE OF 8-FOOT HIGH SPEED TUNNEL. AIR INTAKES AND FILTERS ARE ENCLOSED IN THE UPPER LEVEL STRUCTURE. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  12. Wind sensitivity studies of a non-return wind tunnel with a 216- by 432-mm (8.5- by 17.0-inches) test section, phase 2

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Mort, K. W.; Piazza, J. E.

    1973-01-01

    The refinement of inlet and exit treatments were studied which would minimize the effect of external wind on the test-section flow quality of a nonreturn wind tunnel. The investigation was conducted in the Ames Research Center 40- by 80-foot Wind Tunnel which served as the wind source. Several inlets and two exits were tested at wind directions ranging from 0 to 180 degrees and at wind-to-test-section velocity ratios from zero to somewhat greater than one. For the best inlet configuration the flow quality was good, with a velocity deviation in each of the three component directions generally less. The loss in total pressure due to the inlet treatment was low: about 0.035 of the test-section dynamic pressure for the no-wind case.

  13. Hypersonic aeroheating test of space shuttle vehicle: Configuration 3 (model 22 OTS) in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH20), volume 2

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.; Lockman, W. K.

    1975-01-01

    The model tested was an 0.0175-scale version of the vehicle 3 space shuttle configuration. Temperature measurements were made on the launch configuration, orbiter plus tank, orbiter alone, tank alone, and solid rocket booster (SRB) alone to provide heat transfer data. The test was conducted at free stream Mach numbers of 5.3 and 7.3 and at free stream Reynolds numbers of 1.5, 3.7, 5.0, and 7.0 million per foot. The model was tested at angles of attack from -5 deg to 20 deg and side slip angles of -5 deg and 0 deg.

  14. 40 CFR 80.126 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FUELS AND FUEL ADDITIVES Attest Engagements § 80.126 Definitions. The following definitions shall apply... the CPA or CIA performing the agreed-upon procedures engagement under this subpart. (i) Foot...

  15. Results of a M = 5.3 heat transfer test of the integrated vehicle using phase-change paint techniques on the 0.0175-scale model 56-OTS in the NASA/Ames Research Center 3.5-foot hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Marroquin, J.

    1985-01-01

    An experimental investigation was performed in the NASA/Ames Research Center 3.5-foot Hypersonic Wind Tunnel to obtain supersonic heat-distribution data in areas between the orbiter and external tank using phase-change paint techniques. The tests used Novamide SSV Model 56-OTS in the first and second-stage ascent configurations. Data were obtained at a nominal Mach number of 5.3 and a Reynolds number per foot of 5 x 10 to the 6th power with angles of attack of 0 deg, +/- 5 deg, and sideslip angles of 0 deg and +/- 5 deg.

  16. Investigation of configuration effects on entry heating distributions at Mach no. equal 8.0 (OH41). [for wind tunnel model of space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Gorowitz, H.; White, R.; Derrico, A.

    1973-01-01

    Aerodynamic heating data were obtained on 0.006 scale models of four Rockwell International SSV double delta wing Orbiters in the Mach 8 variable density tunnel. A model of two previously tested Rockwell International Orbiters which are identified in the Configuration Description of this report were also tested. Orbiter surfaces were thermally mapped from the laminar through turbulent flight regimes during re-entry. Various modifications were made to model lower surfaces to determine the cause of transition in the vicinity of 3.0 million Reynolds number per foot. Re-entry data were acquired for angles of attack from 25 through 35 degrees at nominal Reynolds numbers per foot of 1.0, 2.0, 2.3, 2.5, 3.0, 3.5, 4.5 and 6.0 million utilizing the phase change paint technique. Launch data were acquired on the model upper surfaces for angles of attack of 0 and -5 degrees at nominal Reynolds numbers per foot of 3.0 and 6.0 million. A total of 70 orbiter heating runs and 6 material sample sphere runs were completed.

  17. Planus Foot Posture and Pronated Foot Function are Associated with Foot Pain: The Framingham Foot Study

    PubMed Central

    Menz, Hylton B.; Dufour, Alyssa B.; Riskowski, Jody L.; Hillstrom, Howard J.; Hannan, Marian T.

    2014-01-01

    Objective To examine the associations of foot posture and foot function to foot pain. Methods Data were collected on 3,378 members of the Framingham Study who completed foot examinations in 2002–2008. Foot pain (generalized and at six locations) was based on the response to the question “On most days, do you have pain, aching or stiffness in either foot?” Foot posture was categorized as normal, planus or cavus using static pressure measurements of the arch index. Foot function was categorized as normal, pronated or supinated using the center of pressure excursion index from dynamic pressure measurements. Sex-specific multivariate logistic regression models were used to examine the effect of foot posture and function on generalized and location-specific foot pain, adjusting for age and weight. Results Planus foot posture was significantly associated with an increased likelihood of arch pain in men (odds ratio [OR] 1.38, 95% confidence interval [CI] 1.01 – 1.90), while cavus foot posture was protective against ball of foot pain (OR 0.74, 95% CI 0.55 – 1.00) and arch pain (OR 0.64, 95% CI 0.48 – 0.85) in women. Pronated foot function was significantly associated with an increased likelihood of generalized foot pain (OR 1.28, 95% CI 1.04 – 1.56) and heel pain (OR 1.54, 95% CI 1.04 – 2.27) in men, while supinated foot function was protective against hindfoot pain in women (OR 0.74, 95% CI 0.55 – 1.00). Conclusion Planus foot posture and pronated foot function are associated with foot symptoms. Interventions that modify abnormal foot posture and function may therefore have a role in the prevention and treatment of foot pain. PMID:23861176

  18. Horizontal wind and temperature in the lower thermosphere (80-140 km) measured by a Na Lidar at Andes Lidar Observatory

    NASA Astrophysics Data System (ADS)

    Liu, Alan Z.; Vargas, F.; Guo, Yafang; Swenson, Gary

    2016-07-01

    We report the first measurement of nighttime atmospheric temperature and horizontal wind profiles in the lower thermosphere up to 140 km with the Na lidar at Andes Lidar Observatory in Cerro Pachón, Chile (30.3S, 70.7W), when enhanced thermospheric Na was observed. Temperature and horizontal wind were derived up to 140 km using various resolutions, with the lowest resolution of about 2.7 hr and 15 km above 130 km. Thus the measurements span 60 km in vertical, more than double the traditional 25 km. On the night of 17 April 2015, the horizontal wind magnitude in the thermosphere exceeds 150 m/s, consistent with past rocket measurements. The meridional wind shows a clear transition from the diurnal-tide-dominant mesopause to the semidiurnal-tide-dominant lower thermosphere. A lidar with a 100 times the power-aperture product will be able to measure wind and temperature above 160 km and cover longer time span, providing key measurements for the study of atmosphere-space interactions in this region.

  19. Results of a jet plume effects test on Rockwell International integrated space shuttle vehicle using a vehicle 5 configuration 0.02-scale model (88-OTS) in the 11 by 11 foot leg of the NASA/Ames Research Center unitary plan wind tunnel (IA19), volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1975-01-01

    Results are presented of jet plume effects test IA19 using a vehicle 5 configuration integrated space shuttle vehicle 0.02-scale model in the NASA/Ames Research Center 11 x 11-foot leg of the unitary plan wind tunnel. The jet plume power effects on the integrated vehicle static pressure distribution were determined along with elevon, main propulsion system nozzle, and solid rocket booster nozzle effectiveness and elevon hinge moments.

  20. 14. EXTERIOR VIEW OF OLD TENFOOT WIND TUNNEL (1991). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. EXTERIOR VIEW OF OLD TEN-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  1. 13. EXTERIOR VIEW OF OLD TENFOOT WIND TUNNEL (1991). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. EXTERIOR VIEW OF OLD TEN-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  2. Investigation of airborne foot-and-mouth disease virus transmission during low-wind conditions in the early phase of the UK 2001 epidemic

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T.; Alexandersen, S.; Astrup, P.; Champion, H. J.; Donaldson, A. I.; Dunkerley, F. N.; Gloster, J.; Sørensen, J. H.; Thykier-Nielsen, S.

    2003-02-01

    Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed domesticated and wild animals. The highly contagious nature of FMD is a reflection of the wide range of host species, the enormous quantities of virus liberated by infected animals, the range of excretions and secretions which can be infectious, the stability of the virus in the environment, the multiplicity of routes of infection and the very small doses of the virus that can initiate infection. One of the mechanisms of spread is the carriage of droplets and droplet nuclei exhaled in the breath of infected animals. Such spread can be rapid and extensive, and it is known in certain circumstances to have transmitted disease over a distance of several hundred kilometres. During the 2001 FMD epidemic in the United Kingdom (UK), atmospheric dispersion models were applied in real time in order to assess the potential for atmospheric dispersion of the disease. The operational value of such modelling is primarily to identify premises which may have been exposed so that the human resources for surveillance and disease control purposes are employed most effectively. The paper describes the combined modelling techniques and presents the results obtained of detailed analyses performed during the early stages of the UK 2001 epidemic. This paper investigates the potential for disease spread in relation to two outbreaks (Burnside Farm, Heddon-on-the-Wall and Prestwick Hall Farm, Ponteland, Northumberland). A separate paper (Gloster et al., 2002) provides a more detailed analysis of the airborne disease transmission in the vicinity of Burnside Farm. The combined results are consistent with airborne transmission of disease to livestock in the Heddon-on-the Wall area. Local topography may have played a significant role in influencing the pattern of disease spread.

  3. Investigation of airborne foot-and-mouth disease virus transmission during low-wind conditions in the early phase of the UK 2001 epidemic

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T.; Alexandersen, S.; Astrup, P.; Champion, H. J.; Donaldson, A. I.; Dunkerley, F. N.; Gloster, J.; Sørensen, J. H.; Thykier-Nielsen, S.

    2003-11-01

    Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed domesticated and wild animals. The highly contagious nature of FMD is a reflection of the wide range of host species, the enormous quantities of virus liberated by infected animals, the range of excretions and secretions which can be infectious, the stability of the virus in the environment, the multiplicity of routes of infection and the very small doses of the virus that can initiate infection. One of the mechanisms of spread is the carriage of droplets and droplet nuclei exhaled in the breath of infected animals. Such spread can be rapid and extensive, and it is known in certain circumstances to have transmitted disease over a distance of several hundred kilometres. During the 2001 FMD epidemic in the United Kingdom (UK), atmospheric dispersion models were applied in real time in order to assess the potential for atmospheric dispersion of the disease. The operational value of such modelling is primarily to identify premises which may have been exposed so that the human resources for surveillance and disease control purposes are employed most effectively.

    The paper describes the combined modelling techniques and presents the results obtained of detailed analyses performed during the early stages of the UK 2001 epidemic. This paper investigates the potential for disease spread in relation to two outbreaks (Burnside Farm, Heddon-on-the-Wall and Prestwick Hall Farm, Ponteland, Northumberland). A separate paper (Gloster et al., 2002) provides a more detailed analysis of the airborne disease transmission in the vicinity of Burnside Farm.

    The combined results are consistent with airborne transmission of disease to livestock in the Heddon-on-the-Wall area. Local topography may have played a significant role in influencing the pattern of disease spread.

  4. Space Shuttle AFRSI OMS pod environment test using model 81-0 test fixture in the Ames Research Center 9x7-foot supersonic wind tunnel (OS-314A/B/C)

    NASA Technical Reports Server (NTRS)

    Collette, J. G. R.

    1984-01-01

    A test was conducted in the NASA/Ames Research Center 9x7-foot Supersonic Wind Tunnel to help resolve an anomaly that developed during the STS-6 orbiter flight wherein sections of the Advanced Flexible Reusable Surface Insulation (AFRSI) covering the OMS pods suffered some damage. A one-third scale two-dimensional shell structure model of an OMS pod cross-section was employed to support the test articles. These consisted of 15 AFRSI blanket panels form-fitted over the shell structures for exposure to simulated flight conditions. Of six baseline blankets, two were treated with special surface coatings. Two other panels were configured with AFRSI sections removed from the OV099 orbiter vehicle after the STS-6 flight. Seven additional specimens incorporated alternative designs and repairs. Following a series of surface pressure calibration runs, the specimens were exposed to simulated ascent and entry dynamic pressure profiles. Entry conditions included the use of a vortex generator to evaluate the effect of shed vortices on the AFRSI located in the area of concern.

  5. Athlete's Foot (Tinea Pedis)

    MedlinePlus

    ... The most common locations for athlete's foot include: Spaces (webs) between the toes, especially between the 4th ... no worm involved.) Between the toes (the interdigital spaces), athlete's foot may appear as inflamed, scaly, and ...

  6. Management of Foot Pain

    PubMed Central

    Godfrey, Charles M.

    1987-01-01

    This paper deals chiefly with the young adult foot, the older adult foot, and pain of mechanical origin. It does not discuss treatment by surgical methods, but rather by the use of exercises, foot supports and shoe corrections. Foot pain resulting from mechanical disorders can be treated effectively by determination of the biomechanical causative factors, usually by simple physical examination. Relief can often be gained with simple mechanical devices, provided at low cost. ImagesFigure 1Figure 2Figure 4 PMID:21263862

  7. Prevention of foot blisters.

    PubMed

    Knapik, Joseph J

    2014-01-01

    Foot blisters are the most common medical problem faced by Soldiers during foot march operations and, if untreated, they can lead to infection. Foot blisters are caused by boots rubbing on the foot (frictional forces), which separates skin layers and allows fluid to seep in. Blisters can be prevented by wearing properly sized boots, conditioning feet through regular road marching, wearing socks that reduce reduce friction and moisture, and possibly applying antiperspirants to the feet. PMID:24952049

  8. Laser velocimeter optical traverse scheme: An investigation of a proposed optical scanning technique for Arnold Engineering and Development Center's four-foot transonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Krajci, G. S.

    1983-12-01

    This investigation analyzed a nonstandard laser velocimeter setup proposed for use in AEDC Wind Tunnel 4T. The setup uses a gimballed mirror to move the probe volume from point to point, and the translation of a lens to control the distance in the tunnel the probe volume reaches. Results show that for equal indices of refraction inside and outside the tunnel, the laser beams of a converging pair do not totally converge with its associated beam except under certain conditions, and the probe volumes created by each pair of overlapping laser beams do not always coincide. This work then provides the conditions necessary for total convergence of a pair of laser beams for this setup. A solution is then proposed to insure convergence of each laser beam pair and overlap of the two probe volumes. More than a solution to the above problems, a method is given to determine the azimuth and elevation angles for a mirror such that the reflected beam off the mirror passes through a given point in the tunnel after traversing a window. To carry out these investigations, a computer code was written to simulate the nonstandard laser velocimeter setup, and a second code was written to determine the azimuth and elevation angles for a mirror such that the reflected beam off the mirror passes through a given point in the tunnel after traversing a window. Both codes were written in FORTRAN 77, implemented on a CDC 6000-CYBER 74.

  9. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. [Lewis 8 by 6-foot supersonic wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1980-01-01

    Wind tunnel tests were conducted to evaluate the aerodynamic performance of a coannular exhaust nozzle for a proposed variable stream control supersonic propulsion system. Tests were conducted with two simulated configurations differing primarily in the fan duct flowpaths: a short flap mechanism for fan stream control with an isentropic contoured flow splitter, and an iris fan nozzle with a conical flow splitter. Both designs feature a translating primary plug and an auxiliary inlet ejector. Tests were conducted at takeoff and simulated cruise conditions. Data were acquired at Mach numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operating conditions. At simulated supersonic cruise, both configurations demonstrated good performance, comparable to levels assumed in earlier advanced supersonic propulsion studies. However, at subsonic cruise, both configurations exhibited performance that was 6 to 7.5 percent less than the study assumptions. At take off conditions, the iris configuration performance approached the assumed levels, while the short flap design was 4 to 6 percent less.

  10. 8-Foot High Speed Tunnel (HST)

    NASA Technical Reports Server (NTRS)

    1953-01-01

    Semi-automatic readout equipment installed in the 1950s used for data recording and reduction in the 8-Foot High Speed Tunnel (HST). A 1957 NACA report on wind tunnel facilities at Langley included these comments on the data recording and reduction equipment for the 8-foot HST: 'The data recording and reduction equipment used for handling steady force and pressure information at the Langley 8-foot transonic tunnel is similar to that described for the Langley 16-foot transonic tunnel. Very little dynamic data recording equipment, however, is available.' The description of the 16-foot transonic tunnel equipment is as follows: 'A semiautomatic force data readout system provides tabulated raw data and punch card storage of raw data concurrent with the operation of the wind tunnel. Provision is made for 12 automatic channels of strain gage-data output, and eight channels of four-digit manually operated inputs are available for tabulating and punching constants, configuration codes, and other information necessary for data reduction and identification. The data are then processed on electronic computing machines to obtain the desired coefficients. These coefficients and their proper identification are then machine tabulated to provide a printed record of the results. The punched cards may also be fed into an automatic plotting device for the preparation of plots necessary for data analysis.'

  11. A directional microphone array for acoustic studies of wind tunnel models

    NASA Technical Reports Server (NTRS)

    Soderman, P. T.; Noble, S. C.

    1974-01-01

    An end-fire microphone array that utilizes a digital time delay system has been designed and evaluated for measuring noise in wind tunnels. The directional response of both a four- and eight-element linear array of microphones has enabled substantial rejection of background noise and reverberations in the NASA Ames 40- by 80-foot wind tunnel. In addition, it is estimated that four- and eight-element arrays reject 6 and 9 dB, respectively, of microphone wind noise, as compared with a conventional omnidirectional microphone with nose cone. Array response to two types of jet engine models in the wind tunnel is presented. Comparisons of array response to loudspeakers in the wind tunnel and in free field are made.

  12. SKITTER foot design

    NASA Technical Reports Server (NTRS)

    Choi, Gene; Jones, David L.; Morris, James; Parham, Martin; Stephens, Jim; Yancey, Gregg

    1987-01-01

    A mechanical design team was formed to design a foot for the lunar utility vehicle SKITTER. The primary design was constrained to be a ski pole design compatible with the existing femur-tibia design legs. The lunar environment had several important effects on the foot design. Three materials were investigated for the SKITTER foot: aluminum alloys, cold worked stainless steel alloys, and titanium alloys. Thin film coatings were investigated as a method of wear reduction for the foot. The performance of the foot is dependent on the action of the legs. The range of motion for the legs was determined to be vertical to 15 degrees above horizontal. An impact analysis was performed for the foot movement, but the results were determined to be inconclusive due to unknown soil parameters. The initial foot design configuration consisted of an annulus attached to the pointed pole. The annulus was designed to prevent excess sinkage. Later designs call for a conical shaped foot with a disk at the point of the tibia attachment. The conical design was analyzed for strength and deflection by two different approaches. A deformable body analysis was performed for the foot under crane load in crane position, and also under actuator load in the vertical position. In both cases, the deflection of the foot was insignificant and the stresses well below the strength of the titanium alloy.

  13. Pediatric foot fractures.

    PubMed

    Ribbans, William J; Natarajan, Ramanathan; Alavala, Sairam

    2005-03-01

    Fractures of the foot in children usually have a good prognosis and generally are treated nonoperatively. Displaced fractures of the talus and calcaneus and tarsometatarsal dislocations are rare in children and their outcome is generally good in the younger child. Older adolescents with these injuries need treatment similar to how an adult would be treated for the same injury in order to achieve a good result. Foot fractures in children may pose a diagnostic challenge particularly in the absence of obvious radiographic changes. Repeated clinical examination and judicious use of imaging techniques such as isotope bone scans and magnetic resonance imaging are needed to establish a diagnosis. Knowledge of the anatomy and significance of accessory bones of the foot and disorders of the growing foot skeleton are helpful in managing injuries of child's foot. In this study, we review common injuries of a child's foot and include a discussion on differential diagnosis.

  14. A shift in priority in diabetic foot care and research: 75% of foot ulcers are preventable.

    PubMed

    Bus, Sicco A; van Netten, Jaap J

    2016-01-01

    Diabetic foot ulceration poses a heavy burden on the patient and the healthcare system, but prevention thereof receives little attention. For every euro spent on ulcer prevention, ten are spent on ulcer healing, and for every randomized controlled trial conducted on prevention, ten are conducted on healing. In this article, we argue that a shift in priorities is needed. For the prevention of a first foot ulcer, we need more insight into the effect of interventions and practices already applied globally in many settings. This requires systematic recording of interventions and outcomes, and well-designed randomized controlled trials that include analysis of cost-effectiveness. After healing of a foot ulcer, the risk of recurrence is high. For the prevention of a recurrent foot ulcer, home monitoring of foot temperature, pressure-relieving therapeutic footwear, and certain surgical interventions prove to be effective. The median effect size found in a total of 23 studies on these interventions is large, over 60%, and further increases when patients are adherent to treatment. These interventions should be investigated for efficacy as a state-of-the-art integrated foot care approach, where attempts are made to assure treatment adherence. Effect sizes of 75-80% may be expected. If such state-of-the-art integrated foot care is implemented, the majority of problems with foot ulcer recurrence in diabetes can be resolved. It is therefore time to act and to set a new target in diabetic foot care. This target is to reduce foot ulcer incidence with at least 75%.

  15. Airloads investigation of an 0.030-scale model of the space shuttle vehicle 140A/B launch configuration (model 47-OTS) in the arc 11-foot unitary plan wind tunnel for Mach range 0.6 to 1.4 (IA14A), Volume 2

    NASA Technical Reports Server (NTRS)

    Gillins, R. L.

    1975-01-01

    Results of tests conducted on an 0.030-scale launch configuration model of the space shuttle vehicle 140A/B in the NASA/ARC 11-foot unitary plan wind tunnel are presented. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 1.4. Surface pressure distributions were obtained simultaneously with six-component stability and control force data on the complete launch configuration. The configuration consisted of the orbiter, an external tank, two solid rocket boosters, and associated intercomponent attach hardware. Angles of attack and sideslip from -10 degrees to +10 degrees were investigated.

  16. Foot Health Facts for Athletes

    MedlinePlus

    ... pounding their feet endure from... Foot Injuries in Olympic Athletes and Beyond Foot and ankle surgeons offer ... for athletes of all levels. The 2012 Summer Olympics have arrived, and according to foot and ankle ...

  17. Malignant Melanoma of the Foot

    MedlinePlus

    ... Javascript in your browser. Malignant Melanoma of the Foot What is Malignant Melanoma? Melanoma is a cancer ... age groups, even the young. Melanoma in the Foot Melanoma that occurs in the foot or ankle ...

  18. High-Speed Wind-Tunnel Tests of a Model of the Lockheed YP-80A Airplane Including Correlation with Flight Tests and Tests of Dive-Recovery Flaps

    NASA Technical Reports Server (NTRS)

    Cleary, Joseph W.; Gray, Lyle J.

    1947-01-01

    This report contains the results of tests of a 1/3-scale model of the Lockheed YP-90A "Shooting Star" airplane and a comparison of drag, maximum lift coefficient, and elevator angle required for level flight as measured in the wind tunnel and in flight. Included in the report are the general aerodynamic characteristics of the model and of two types of dive-recovery flaps, one at several positions along the chord on the lower surface of the wing and the other on the lower surface of the fuselage. The results show good agreement between the flight and wind-tunnel measurements at all Mach numbers. The results indicate that the YP-80A is controllable in pitch by the elevators to a Mach number of at least 0.85. The fuselage dive-recovery flaps are effective for producing a climbing moment and increasing the drag at Mach numbers up to at least 0.8. The wing dive-recovery flaps are most effective for producing a climbing moment at 0.75 Mach number. At 0.85 Mach number, their effectiveness is approximately 50 percent of the maximum. The optimum position for the wing dive-recovery flaps to produce a climbing moment is at approximately 35 percent of the chord.

  19. Diabetic foot infections.

    PubMed

    Gemechu, Fassil W; Seemant, Fnu; Curley, Catherine A

    2013-08-01

    Diabetic foot infection, defined as soft tissue or bone infection below the malleoli, is the most common complication of diabetes mellitus leading to hospitalization and the most frequent cause of nontraumatic lower extremity amputation. Diabetic foot infections are diagnosed clinically based on the presence of at least two classic findings of inflammation or purulence. Infections are classified as mild, moderate, or severe. Most diabetic foot infections are polymicrobial. The most common pathogens are aerobic gram-positive cocci, mainly Staphylococcus species. Osteomyelitis is a serious complication of diabetic foot infection that increases the likelihood of surgical intervention. Treatment is based on the extent and severity of the infection and comorbid conditions. Mild infections are treated with oral antibiotics, wound care, and pressure off-loading in the outpatient setting. Selected patients with moderate infections and all patients with severe infections should be hospitalized, given intravenous antibiotics, and evaluated for possible surgical intervention. Peripheral arterial disease is present in up to 40% of patients with diabetic foot infections, making evaluation of the vascular supply critical. All patients with diabetes should undergo a systematic foot examination at least once a year, and more frequently if risk factors for diabetic foot ulcers exist. Preventive measures include patient education on proper foot care, glycemic and blood pressure control, smoking cessation, use of prescription footwear, intensive care from a podiatrist, and evaluation for surgical interventions as indicated.

  20. Diabetes - foot ulcers

    MedlinePlus

    ... 33. Kim PJ, Steinberg JS. Complications of the diabetic foot. Endocrinol Metab Clin N Am. 2013;42:833-847. PMID: 24286952 www.ncbi.nlm.nih.gov/pubmed/24286952 . Read More Diabetes Diabetes and nerve damage Leg or foot amputation Type 1 diabetes Type 2 diabetes Patient Instructions Diabetes and ...

  1. 6. CLOSEUP VIEW OF TENFOOT WIND TUNNEL (1991). WrightPatterson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. CLOSE-UP VIEW OF TEN-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  2. Analytical study of the effects of wind tunnel turbulence on turbofan rotor noise

    NASA Astrophysics Data System (ADS)

    Gliebe, P. R.

    1980-06-01

    An analytical study of the effects of wind tunnel turbulence on turbofan rotor noise was carried out to evaluate the effectiveness of the NASA Ames 40 by 80-foot wind tunnel in simulating flight levels of fan noise. A previously developed theory for predicting rotor/turbulence interaction noise, refined and extended to include first-order effects of inlet turbulence anisotropy, was employed to carry out a parametric study of the effects of fan size, blade number, and operating line for outdoor test stand, NASA Ames wind tunnel, and flight inlet turbulence conditions. A major result of this study is that although wind tunnel rotor/turbulence noise levels are not as low as flight levels, they are substantially lower than the outdoor test stand levels and do not mask other sources of fan noise.

  3. Drop foot corrective device

    NASA Technical Reports Server (NTRS)

    Deis, B. C. (Inventor)

    1986-01-01

    A light weight, economical device to alleviate a plurality of difficulties encountered in walking by a victim suffering from a drop foot condition is discussed. A legband girdles the leg below the knee and above the calf providing an anchor point for the upper end of a ligament having its lower end attached to a toe of a shoe or a toe on the foot. The ligament is of such length that the foot is supported thereby and retained in a normal position during walking.

  4. Insights into Airframe Aerodynamics and Rotor-on-Wing Interactions from a 0.25-Scale Tiltrotor Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Young, L. A.; Lillie, D.; McCluer, M.; Yamauchi, G. K.; Derby, M. R.

    2001-01-01

    A recent experimental investigation into tiltrotor aerodynamics and acoustics has resulted in the acquisition of a set of data related to tiltrotor airframe aerodynamics and rotor and wing interactional aerodynamics. This work was conducted in the National Full-scale Aerodynamics Complex's (NFAC) 40-by-80 Foot Wind Tunnel, at NASA Ames Research Center, on the Full-Span Tilt Rotor Aeroacoustic Model (TRAM). The full-span TRAM wind tunnel test stand is nominally based on a quarter-scale representation of the V-22 aircraft. The data acquired will enable the refinement of analytical tools for the prediction of tiltrotor aeromechanics and aeroacoustics.

  5. Foot amputation - discharge

    MedlinePlus

    ... 2016. Richardson DR. Amputations of the foot. In: Canale ST, Beaty JH, eds. Campbell's Operative Orthopaedics . 12th ... 15. Toy PC. General principles of amputations. In: Canale ST, Beaty JH, eds. Campbell's Operative Orthopaedics . 12th ...

  6. Diabetes and Foot Problems

    MedlinePlus

    ... Disease, and Other Dental Problems Diabetic Eye Disease Diabetes and Foot Problems How can diabetes affect my feet? Too much glucose, also called ... you have any of these signs. How can diabetes change the shape of my feet? Nerve damage ...

  7. Fancy Foot Work!

    ERIC Educational Resources Information Center

    Blattner, Bunny; And Others

    1979-01-01

    Seventy-six Fort Lauderdale third, fourth, and fifth graders spent an entire day researching, measuring, comparing, and creating fantasies about feet. This article describes "Foot Day" and presents the activity sheets used by the students. (Author/SJL)

  8. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH3), volume 3

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat-transfer data for the 0.0175-scale space shuttle vehicle 3 are presented, and interference heating effects were investigated by a model build-up technique of the orbiter. The test program was conducted at Mach 5.3 for nominal free-stream Reynolds number per foot values of 1,500,000 and 5,000,000.

  9. 16. Pony trusses pier between the 64 foot truss ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Pony trusses - pier between the 64 foot truss and the first 80 foot truss. View of the lower chord pin connection at the juncture of the two pony trusses as they sit on the replacement pier added, circa 1966. Shows the floor beam, chord eye bars. There are 10 of these similar connections for the six pony trusses. A 1 1/2 conduit is also shown. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  10. 4. PACK TRAIN WAITING TO BE UNLOADED AT FOOT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PACK TRAIN WAITING TO BE UNLOADED AT FOOT OF YAKI TRAIL. APPROXIMATELY TWO-AND-ONE-HALF TONS OF STEEL ON ANIMALS SHOWN. NOTE COIL OF 1-1/2' WIND CABLE IN FOREGROUND. - Kaibab Trail Suspension Bridge, Spanning Colorado River, Grand Canyon, Coconino County, AZ

  11. Charcot foot syndrome.

    PubMed

    Jeffcoate, W J

    2015-06-01

    Charcot foot syndrome is an uncommon complication of diabetes but is potentially devastating in its consequences. Outcome is made worse by widespread professional ignorance leading to delayed diagnosis, but it is also hampered by lack of understanding of its causes and lack of treatments with proven effectiveness, other than offloading. There remains a desperate need for studies into its causes as well as comparative audit and trials designed to determine the best treatment for this difficult condition. Such work can probably only be effectively carried out through the establishment of multicentre networks. Nevertheless, improved understanding in recent years of the likely role of inflammatory pathways has raised awareness of the multiple ways in which the effects of neuropathy may be manifest in the development of the Charcot foot. This awareness is also leading to the realization that similar processes may conceivably contribute to the refractoriness of other foot diseases in diabetes, including both chronic unhealing ulcers and osteomyelitis.

  12. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect

    Robichaud, R.

    2014-09-01

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  13. Effectiveness of foot care education among people with type 2 diabetes in rural Puducherry, India

    PubMed Central

    Saurabh, Suman; Sarkar, Sonali; Selvaraj, Kalaiselvi; Kar, Sitanshu Sekhar; Kumar, S. Ganesh; Roy, Gautam

    2014-01-01

    Background: The burden of diabetes and its foot complications is increasing in India. Prevention of these complications through foot care education should be explored. The objective of our study was to assess the risk factors of poor diabetic foot care and to find the effectiveness of health education in improving foot care practice among diabetes patients. Materials and Methods: A structured pre-tested questionnaire was administered to the outpatients of a rural health center with type 2 diabetes. Awareness regarding diabetes, care of diabetes and foot care practice ware assessed and scored. Individual and group health education focusing on foot care was performed. Foot care practice was reassessed after 2 weeks of education. Results: Only 54% were aware that diabetes could lead to reduced foot sensation and foot ulcers. Nearly 53% and 41% of the patients had good diabetes awareness and good diabetes care respectively. Only 22% of the patients had their feet examined by a health worker or doctor. The patients with poor, satisfactory and good practice scores were 44.7%, 35.9% and 19.4% respectively. Low education status, old age and low awareness regarding diabetes were the risk factors for poor practice of foot care. Average score for practice of foot care improved from 5.90 ± 1.82 to 8.0 ± 1.30 after 2 weeks of health education. Practice related to toe space examination, foot inspection and foot wear inspection improved maximally. Conclusion: Foot care education for diabetics in a primary care setting improves their foot care practice and is likely to be effective in reducing the burden of diabetic foot ulcer. PMID:24701439

  14. Terminal area energy management regime investigations utilizing an 0.030-scale model (47-0) of the space shuttle vehicle orbiter configuration 140A/B/C/R in the Ames Research Center 11 x 11 foot transonic wind tunnel (0A148), volume 1

    NASA Technical Reports Server (NTRS)

    Hawthorne, P. J.

    1976-01-01

    Data obtained in wind tunnel tests are presented. The objectives of the tests were to: (1) obtain pressure distributions, forces and moments over the vehicle 5 Orbiter in the terminal area energy management (TAEM) and approach phases of flight; (2) obtain elevon and rudder hinge moments in the TAEM and approach phases of flight; (3) obtain body flap and elevon loads for verification of loads balancing with integrated pressure distributions; and (4) obtain pressure distributions near the short OMS pods in the high subsonic, transonic and low supersonic Mach number regimes. Testing was conducted over a Mach number range from 0.6 to 1.4 with Reynolds number variations from 4.57 million to 2.74 million per foot. Model angle-of-attack was varied from -4 to 16 degrees and angles of side slip ranged from -8 to 8 degrees.

  15. Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 1

    NASA Technical Reports Server (NTRS)

    Gillins, R. L.

    1976-01-01

    Results of tests conducted on a 0.0125-scale model of the Space Shuttle Orbiter and a 0.0125-scale model of the 747 CAM configuration in a 4 x 4-foot High Speed Wind Tunnel were presented. Force and moment data were obtained for each vehicle separately at a Mach number of 0.6 and for each vehicle in proximity to the other at Mach numbers of 0.3, 0.5, 0.6 and 0.7. The proximity effects of each vehicle on the other at separation distances (from the mated configuration) ranging from 1.5 feet to 75 feet were presented; 747 Carrier angles of attack from 0 deg to 6 deg and angles of sideslip of 0 deg and -5 deg were tested. Model variables included orbiter elevon, aileron and body flap deflections, orbiter tailcone on and off, and 747 stabilizer and rudder deflections.

  16. The NASA Langley 8-foot Transonic Pressure Tunnel calibration

    NASA Technical Reports Server (NTRS)

    Brooks, Cuyler W., Jr.; Harris, Charles D.; Reagon, Patricia G.

    1994-01-01

    The NASA Langley 8-Foot Transonic Pressure Tunnel is a continuous-flow, variable-pressure wind tunnel with control capability to independently vary Mach number, stagnation pressure, stagnation temperature, and humidity. The top and bottom walls of the test section are axially slotted to permit continuous variation of the test section Mach number from 0.2 to 1.2, the slot-width contour provides a gradient-free test section 50 in. long for Mach numbers equal to or greater than 1.0 and 100 in. long for Mach numbers less than 1.0. The stagnation pressure may be varied from 0.25 to 2.0 atm. The tunnel test section has been recalibrated to determine the relationship between the free-stream Mach number and the test chamber reference Mach number. The hardware was the same as that of an earlier calibration in 1972 but the pressure measurement instrumentation available for the recalibration was about an order of magnitude more precise. The principal result of the recalibration was a slightly different schedule of reentry flap settings for Mach numbers from 0.80 to 1.05 than that determined during the 1972 calibration. Detailed tunnel contraction geometry, test section geometry, and limited test section wall boundary layer data are presented.

  17. Neuropathy and Diabetic Foot Syndrome

    PubMed Central

    Volmer-Thole, Maren; Lobmann, Ralf

    2016-01-01

    Diabetic foot ulceration is a serious complication of diabetes mellitus worldwide and the most common cause of hospitalization in diabetic patients. The etiology of diabetic foot ulcerations is complex due to their multifactorial nature; in the pathophysiology of diabetic foot ulceration polyneuropathy is important. Proper adherence to standard treatment strategies and interdisciplinary cooperation can reduce the still high rates of major amputations. PMID:27294922

  18. [Mycetoma pedis (Madura foot)].

    PubMed

    Vogel, H; Gonzales Echazarreta, R; Kniha, H; Vogel-Karl, B

    1983-01-01

    Mycetoma pedis or Madura foot is rare in central Europe but has a wide distribution in the tropics. In roentgendiagnostic there are a destruction of the cortical margin and lytic zones in the spongiosa. Older bone manifestations show sclerosis. Periosteal reaction provokes spicules and only seldom "onion peel" patterns. PMID:6666256

  19. [Congenital foot abnormalities].

    PubMed

    Delpont, M; Lafosse, T; Bachy, M; Mary, P; Alves, A; Vialle, R

    2015-03-01

    The foot may be the site of birth defects. These abnormalities are sometimes suspected prenatally. Final diagnosis depends on clinical examination at birth. These deformations can be simple malpositions: metatarsus adductus, talipes calcaneovalgus and pes supinatus. The prognosis is excellent spontaneously or with a simple orthopedic treatment. Surgery remains outstanding. The use of a pediatric orthopedist will be considered if malposition does not relax after several weeks. Malformations (clubfoot, vertical talus and skew foot) require specialized care early. Clubfoot is characterized by an equine and varus hindfoot, an adducted and supine forefoot, not reducible. Vertical talus combines equine hindfoot and dorsiflexion of the forefoot, which is performed in the midfoot instead of the ankle. Skew foot is suspected when a metatarsus adductus is resistant to conservative treatment. Early treatment is primarily orthopedic at birth. Surgical treatment begins to be considered after walking age. Keep in mind that an abnormality of the foot may be associated with other conditions: malposition with congenital hip, malformations with syndromes, neurological and genetic abnormalities. PMID:25524290

  20. Foot posture, foot function and low back pain: the Framingham Foot Study

    PubMed Central

    Menz, Hylton B.; Dufour, Alyssa B.; Riskowski, Jody L.; Hillstrom, Howard J.

    2013-01-01

    Objective. Abnormal foot posture and function have been proposed as possible risk factors for low back pain, but this has not been examined in detail. The objective of this study was to explore the associations of foot posture and foot function with low back pain in 1930 members of the Framingham Study (2002–05). Methods. Low back pain, aching or stiffness on most days was documented on a body chart. Foot posture was categorized as normal, planus or cavus using static weight-bearing measurements of the arch index. Foot function was categorized as normal, pronated or supinated using the centre of pressure excursion index derived from dynamic foot pressure measurements. Sex-specific multivariate logistic regression models were used to examine the associations of foot posture, foot function and asymmetry with low back pain, adjusting for confounding variables. Results. Foot posture showed no association with low back pain. However, pronated foot function was associated with low back pain in women [odds ratio (OR) = 1.51, 95% CI 1.1, 2.07, P = 0.011] and this remained significant after adjusting for age, weight, smoking and depressive symptoms (OR = 1.48, 95% CI 1.07, 2.05, P = 0.018). Conclusion. These findings suggest that pronated foot function may contribute to low back symptoms in women. Interventions that modify foot function, such as orthoses, may therefore have a role in the prevention and treatment of low back pain. PMID:24049103

  1. Aerodynamic results of an abort separation effects test (IA8) conducted in the NASA/ARC 14-foot transonic wind tunnel on a model (6-OTS) of the Rockwell International launch configuration integrated vehicle

    NASA Technical Reports Server (NTRS)

    Campbell, J. H.

    1974-01-01

    Experimental aerodynamic investigations were conducted on a 6-OTS 0.015-scale model. The Ames dual sting support separation rig was used to obtain grid-type data for tank-booster abort from orbiter (SSV). Freestream data were obtained for the orbiter to provide a baseline for evaluation of proximity effects. Data were obtained at Mach numbers from 0.32 to 1.1, and Reynolds number per foot varying from 2.1 million to 3.9 million. Data are not presented. Because of balance failure, a very substantial portion of the test was run with a dummy balance in the tank boosters configuration.

  2. Results of heat transfer tests of a 0.0175-scale space shuttle vehicle 5 model (60-OTS) in the NASA-Ames Research Center 3.5-foot hypersonic wind tunnel (test IH48)

    NASA Technical Reports Server (NTRS)

    Dye, W. H.; Lockman, W. K.

    1976-01-01

    Heat transfer data are presented for a .0175-scale model of the Rockwell International Space Shuttle Vehicle 5. The primary purpose of these tests was to obtain aerodynamic interference heating data on the external tank in the tank alone, second-, and first-stage configurations. Data were also obtained on the Orbiter and solid rocket boosters. Nominal Mach Nos. of 5.2 and 5.3 at nominal freestream unit Reynolds numbers of 1.5 and 5.0 million per foot, respectively, were investigated. Photographs of the tested configurations and test equipment are shown.

  3. [Prevention of diabetic foot].

    PubMed

    Metelko, Zeljko; Brkljacić Crkvencić, Neva

    2013-10-01

    Diabetic foot (DF) is the most common chronic complication, which depends mostly on the duration and successful treatment of diabetes mellitus. Based on epidemiological studies, it is estimated that 25% of persons with diabetes mellitus (PwDM) will develop the problems with DF during lifetime, while 5% do 15% will be treated for foot or leg amputation. The treatment is prolonged and expensive, while the results are uncertain. The changes in DF are influenced by different factors usually connected with the duration and regulation of diabetes mellitus. The first problems with DF are the result of misbalance between nutritional, defensive and reparatory mechanisms on the one hand and the intensity of damaging factors against DF on the other hand. Diabetes mellitus is a state of chronic hyperglycemia, consisting of changes in carbohydrate, protein and fat metabolism. As a consequence of the long duration of diabetes mellitus, late complications can develop. Foot is in its structure very complex, combined with many large and small bones connected with ligaments, directed by many small and large muscles, interconnected with many small and large blood vessels and nerves. Every of these structures can be changed by nutritional, defensive and reparatory mechanisms with consequential DE Primary prevention of DF includes all measures involved in appropriate maintenance of nutrition, defense and reparatory mechanisms.First, it is necessary to identify the high-risk population for DF, in particular for macrovascular, microvascular and neural complications. The high-risk population of PwDM should be identified during regular examination and appropriate education should be performed. In this group, it is necessary to include more frequent and intensified empowerment for lifestyle changes, appropriate diet, regular exercise (including frequent breaks for short exercise during sedentary work), regular self control of body weight, quit smoking, and appropriate treatment of glycemia

  4. The foot of Homo naledi.

    PubMed

    Harcourt-Smith, W E H; Throckmorton, Z; Congdon, K A; Zipfel, B; Deane, A S; Drapeau, M S M; Churchill, S E; Berger, L R; DeSilva, J M

    2015-01-01

    Modern humans are characterized by a highly specialized foot that reflects our obligate bipedalism. Our understanding of hominin foot evolution is, although, hindered by a paucity of well-associated remains. Here we describe the foot of Homo naledi from Dinaledi Chamber, South Africa, using 107 pedal elements, including one nearly-complete adult foot. The H. naledi foot is predominantly modern human-like in morphology and inferred function, with an adducted hallux, an elongated tarsus, and derived ankle and calcaneocuboid joints. In combination, these features indicate a foot well adapted for striding bipedalism. However, the H. naledi foot differs from modern humans in having more curved proximal pedal phalanges, and features suggestive of a reduced medial longitudinal arch. Within the context of primitive features found elsewhere in the skeleton, these findings suggest a unique locomotor repertoire for H. naledi, thus providing further evidence of locomotor diversity within both the hominin clade and the genus Homo. PMID:26439101

  5. The foot of Homo naledi.

    PubMed

    Harcourt-Smith, W E H; Throckmorton, Z; Congdon, K A; Zipfel, B; Deane, A S; Drapeau, M S M; Churchill, S E; Berger, L R; DeSilva, J M

    2015-10-06

    Modern humans are characterized by a highly specialized foot that reflects our obligate bipedalism. Our understanding of hominin foot evolution is, although, hindered by a paucity of well-associated remains. Here we describe the foot of Homo naledi from Dinaledi Chamber, South Africa, using 107 pedal elements, including one nearly-complete adult foot. The H. naledi foot is predominantly modern human-like in morphology and inferred function, with an adducted hallux, an elongated tarsus, and derived ankle and calcaneocuboid joints. In combination, these features indicate a foot well adapted for striding bipedalism. However, the H. naledi foot differs from modern humans in having more curved proximal pedal phalanges, and features suggestive of a reduced medial longitudinal arch. Within the context of primitive features found elsewhere in the skeleton, these findings suggest a unique locomotor repertoire for H. naledi, thus providing further evidence of locomotor diversity within both the hominin clade and the genus Homo.

  6. The foot of Homo naledi

    PubMed Central

    Harcourt-Smith, W. E. H.; Throckmorton, Z.; Congdon, K. A.; Zipfel, B.; Deane, A. S.; Drapeau, M. S. M.; Churchill, S. E.; Berger, L. R.; DeSilva, J. M.

    2015-01-01

    Modern humans are characterized by a highly specialized foot that reflects our obligate bipedalism. Our understanding of hominin foot evolution is, although, hindered by a paucity of well-associated remains. Here we describe the foot of Homo naledi from Dinaledi Chamber, South Africa, using 107 pedal elements, including one nearly-complete adult foot. The H. naledi foot is predominantly modern human-like in morphology and inferred function, with an adducted hallux, an elongated tarsus, and derived ankle and calcaneocuboid joints. In combination, these features indicate a foot well adapted for striding bipedalism. However, the H. naledi foot differs from modern humans in having more curved proximal pedal phalanges, and features suggestive of a reduced medial longitudinal arch. Within the context of primitive features found elsewhere in the skeleton, these findings suggest a unique locomotor repertoire for H. naledi, thus providing further evidence of locomotor diversity within both the hominin clade and the genus Homo. PMID:26439101

  7. 9. BUILDING NO. 620B, FRICTION PENDULUM BUILDING. 29FOOT DROP TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. BUILDING NO. 620-B, FRICTION PENDULUM BUILDING. 29-FOOT DROP TOWER SITS BEHIND BLAST SHIELD IN FRONT OF BUILDING. - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ

  8. Chondroblastoma of the foot.

    PubMed

    Fink, B R; Temple, H T; Chiricosta, F M; Mizel, M S; Murphey, M D

    1997-04-01

    A total of 322 cases of chondroblastoma were referred to the Armed Forces Institute of Pathology between 1960 and 1990. Ten additional cases of chondroblastoma were treated at Walter Reed Army Medical Center between 1985 and 1993. Forty-two of these involved the foot, two of which were treated at Walter Reed Army Medical Center. Patients with chondroblastoma of the foot were male in 35 (81%) cases, with a mean age of 25.5 years, which was significantly different from the mean age of 17.3 years in patients with chondroblastoma of the long bones (P < 0.0001). Chondroblastoma of the foot is most commonly found in the posterior subchondral areas of the talus and calcaneus as well as in the calcaneal apophysis. Radiographically, the lesion was associated with an articular surface or apophyseal area in all cases and appeared radiolucent, with little to no matrix production. The margins were generally well defined. Cystic features were noted grossly and histologically in 24 (57%) specimens, a feature seen in only 21% of all chondroblastomas overall. Treatment consists of thorough curetting and bone grafting with good oncologic and functional results.

  9. The neuropathic diabetic foot.

    PubMed

    Rathur, Haris M; Boulton, Andrew J M

    2007-01-01

    Diabetic foot problems are common throughout the world, and result in major medical, social and economic consequences for the patients, their families, and society. Foot ulcers are likely to be of neuropathic origin and, therefore, are eminently preventable. Individuals with the greatest risk of ulceration can easily be identified by careful clinical examination of their feet: education and frequent follow-up is indicated for these patients. When infection complicates a foot ulcer, the combination can be limb-threatening, or life-threatening. Infection is defined clinically, but wound cultures assist in identification of causative pathogens. Tissue specimens are strongly preferred to wound swabs for wound cultures. Antimicrobial therapy should be guided by culture results, and although such therapy may cure the infection, it does not heal the wound. Alleviation of the mechanical load on ulcers (offloading) should always be a part of treatment. Plantar neuropathic ulcers typically heal in 6 weeks with nonremovable casts, because pressure at the ulcer site is mitigated and compliance is enforced. The success of other approaches to offloading similarly depends on the patient's adherence to the strategy used for pressure relief.

  10. The diabetic foot.

    PubMed

    Rathur, Haris M; Boulton, Andrew J M

    2007-01-01

    Diabetic foot problems are common throughout the world, resulting in major medical, social and economic consequences for the patients, their families, and society. Foot ulcers are more likely to be of neuropathic origin, and therefore eminently preventable. People at greatest risk of ulceration can easily be identified by careful clinical examination of the feet: education and frequent follow-up is indicated for these patients. When infection complicates a foot ulcer, the combination can be limb or life-threatening. Infection is defined clinically, but wound cultures assist in identifying the causative pathogens. Tissue specimens are strongly preferred to wound swabs for wound cultures. Antimicrobial therapy should be guided by culture results, and although such therapy may cure the infection, it does not heal the wound. Alleviation of the mechanical load on ulcers (offloading) should always be a part of treatment. Plantar neuropathic ulcers typically heal in 6 weeks with irremovable casting, because pressure at the ulcer site is mitigated and compliance is enforced. The success of other approaches to offloading similarly depends on the patients' adherence to the effectiveness of pressure relief.

  11. 93. View showing erection traveler erecting 190 foot span over ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. View showing erection traveler erecting 190 foot span over Southern Pacific Company's main line track. This is the last span of the steel approach to the main bridge spans. - Carquinez Bridge, Spanning Carquinez Strait at Interstate 80, Vallejo, Solano County, CA

  12. Results of investigations on an 0.015-scale 140A/B configuration of the Rockwell International space shuttle orbiter (model 49-O) in the NASA/Ames Research Center 3.5-foot hypersonic wind tunnel (OA36)

    NASA Technical Reports Server (NTRS)

    Milam, M. D.; Gillins, R. L.; Cleary, J. W.

    1974-01-01

    The results of wind tunnel tests of the 140A/B configuration components are reported for the fuselage, canopy, elevons, bodyflaps, pods, engine nozzles, rudder, vertical tail, and wing. The test facility, and data reduction procedures are described. Test results for each component are graphed, and tabulated source data are included.

  13. Transition heating rates determined on a 0.006 scale space shuttle orbiter model (no. 50-0) in the NASA/LaRC Mach 8 variable density wind tunnel test (OH14)

    NASA Technical Reports Server (NTRS)

    Cummings, J.

    1976-01-01

    Data obtained from wind tunnel tests of an .006-scale space shuttle orbiter model in the 18 in. Variable Density Wind Tunnel are presented. The tests, denoted as OH14, were performed to determine transition heating rates using thin skin thermocouples located at various locations on the space shuttle orbiter. The model was tested at M = 8.0 for a range of Reynolds numbers per foot varying from 1.0 to 10.0 million with angles-of-attack from 20 to 35 degrees incremented by 5 degrees.

  14. [Prevention of diabetic foot].

    PubMed

    Metelko, Zeljko; Brkljacić Crkvencić, Neva

    2013-10-01

    Diabetic foot (DF) is the most common chronic complication, which depends mostly on the duration and successful treatment of diabetes mellitus. Based on epidemiological studies, it is estimated that 25% of persons with diabetes mellitus (PwDM) will develop the problems with DF during lifetime, while 5% do 15% will be treated for foot or leg amputation. The treatment is prolonged and expensive, while the results are uncertain. The changes in DF are influenced by different factors usually connected with the duration and regulation of diabetes mellitus. The first problems with DF are the result of misbalance between nutritional, defensive and reparatory mechanisms on the one hand and the intensity of damaging factors against DF on the other hand. Diabetes mellitus is a state of chronic hyperglycemia, consisting of changes in carbohydrate, protein and fat metabolism. As a consequence of the long duration of diabetes mellitus, late complications can develop. Foot is in its structure very complex, combined with many large and small bones connected with ligaments, directed by many small and large muscles, interconnected with many small and large blood vessels and nerves. Every of these structures can be changed by nutritional, defensive and reparatory mechanisms with consequential DE Primary prevention of DF includes all measures involved in appropriate maintenance of nutrition, defense and reparatory mechanisms.First, it is necessary to identify the high-risk population for DF, in particular for macrovascular, microvascular and neural complications. The high-risk population of PwDM should be identified during regular examination and appropriate education should be performed. In this group, it is necessary to include more frequent and intensified empowerment for lifestyle changes, appropriate diet, regular exercise (including frequent breaks for short exercise during sedentary work), regular self control of body weight, quit smoking, and appropriate treatment of glycemia

  15. A Study of Acoustic Reflections in Full-Scale Rotor Low Frequency Noise Measurements Acquired in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Barbely, Natasha L.; Sim, Ben W.; Kitaplioglu, Cahit; Goulding, Pat, II

    2010-01-01

    Difficulties in obtaining full-scale rotor low frequency noise measurements in wind tunnels are addressed via residual sound reflections due to non-ideal anechoic wall treatments. Examples illustrated with the Boeing-SMART rotor test in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel facility demonstrated that these reflections introduced distortions in the measured acoustic time histories that are not representative of free-field rotor noise radiation. A simplified reflection analysis, based on the method of images, is used to examine the sound measurement quality in such "less-than-anechoic" environment. Predictions of reflection-adjusted acoustic time histories are qualitatively shown to account for some of the spurious fluctuations observed in wind tunnel noise measurements

  16. Effects of wing-leading-edge modifications on a full-scale, low-wing general aviation airplane: Wind-tunnel investigation of high-angle-of-attack aerodynamic characteristics. [conducted in Langley 30- by 60-foot tunnel

    NASA Technical Reports Server (NTRS)

    Newsom, W. A., Jr.; Satran, D. R.; Johnson, J. L., Jr.

    1982-01-01

    Wing-leading-edge modifications included leading-edge droop and slat configurations having full-span, partial-span, or segmented arrangements. Other devices included wing-chord extensions, fences, and leading-edge stall strips. Good correlation was apparent between the results of wind-tunnel data and the results of flight tests, on the basis of autorotational stability criterion, for a wide range of wing-leading-edge modifications.

  17. Testing a Parachute for Mars in World's Largest Wind Tunnel

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The team developing the landing system for NASA's Mars Science Laboratory tested the deployment of an early parachute design in mid-October 2007 inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, California.

    In this image, two engineers are dwarfed by the parachute, which holds more air than a 280-square-meter (3,000-square-foot) house and is designed to survive loads in excess of 36,000 kilograms (80,000 pounds).

    The parachute, built by Pioneer Aerospace, South Windsor, Connecticut, has 80 suspension lines, measures more than 50 meters (165 feet) in length, and opens to a diameter of nearly 17 meters (55 feet). It is the largest disk-gap-band parachute ever built and is shown here inflated in the test section with only about 3.8 meters (12.5 feet) of clearance to both the floor and ceiling.

    The wind tunnel, which is 24 meters (80 feet) tall and 37 meters (120 feet) wide and big enough to house a Boeing 737, is part of the National Full-Scale Aerodynamics Complex, operated by the U.S. Air Force, Arnold Engineering Development Center.

    NASA's Jet Propulsion Laboratory, Pasadena, California, is building and testing the Mars Science Laboratory spacecraft for launch in 2009. The mission will land a roving analytical laboratory on the surface of Mars in 2010. JPL is a division of the California Institute of Technology.

  18. 3. VIEW OF WIND TUNNEL, LOOKING NORTHWEST (1991). WrightPatterson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF WIND TUNNEL, LOOKING NORTHWEST (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  19. 9. INTERIOR VIEW OF WIND TUNNEL (1991). WrightPatterson Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. INTERIOR VIEW OF WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  20. 11. INTERIOR VIEW OF WIND TUNNEL (1991). WrightPatterson Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  1. 10. INTERIOR VIEW OF WIND TUNNEL (1991). WrightPatterson Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. INTERIOR VIEW OF WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  2. Results of the Low Speed Aeroelastic Buffet Test with a 0.046-scale Model (747-ax1322-d-3/orbiter 8-0) of the 747 Cam/orbiter in the University of Washington Wind Tunnel (CS 3)

    NASA Technical Reports Server (NTRS)

    Gillins, R. L.

    1976-01-01

    A series of wind tunnel studies designed to assess the potential buffet problems resulting from orbiter wake characteristics with its tailcone removed are presented to provide design loads and acceleration environments, and to develop data on buffet sensitivity to various aerodynamic configurations and flight parameters. Data are intended to support subsequent analyses of structural fatigue life, crew efficiency, and equipment vibrations.

  3. Subsonic aerodynamic characteristic of semispan commercial transport model with wing-mounted advanced ducted propeller operating in reverse thrust. [conducted in the Langley 14 by 22 foot subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.; Jones, Kenneth M.; Gile, Brenda E.; Quinto, P. Frank

    1994-01-01

    A test was conducted in the Langley 14 by 22 Foot Subsonic Tunnel to determine the effect of the reverse-thrust flow field of a wing-mounted advanced ducted propeller on the aerodynamic characteristics of a semispan subsonic high-lift transport model. The advanced ducted propeller (ADP) model was mounted separately in position alongside the wing so that only the aerodynamic interference of the propeller and nacelle affected the aerodynamic performance of the transport model. Mach numbers ranged from 0.14 to 0.26; corresponding Reynolds numbers ranged from 2.2 to 3.9 x 10(exp 6). The reverse-thrust flow field of the ADP shielded a portion of the wing from the free-stream airflow and reduced both lift and drag. The reduction in lift and drag was a function of ADP rotational speed and free-stream velocity. Test results included ground effects data for the transport model and ADP configuration. The ground plane caused a beneficial increase in drag and an undesirable slight increase in lift. The ADP and transport model performance in ground effect was similar to performance trends observed for out of ground effect. The test results form a comprehensive data set that supports the application of the ADP engine and airplane concept on the next generation of advanced subsonic transports. Before this investigation, the engine application was predicted to have detrimental ground effect characteristics. Ground effect test measurements indicated no critical problems and were the first step in proving the viability of this engine and airplane configuration.

  4. Experience with scale effects in non-airplane wind tunnel testing

    NASA Technical Reports Server (NTRS)

    Ross, J. C.; Olson, M. E.

    1990-01-01

    The aerodynamics results of two tests performed in the 80- by 120-Foot Wind Tunnel at NASA Ames Research Center are discussed with particular emphasis on the effects of model scale. The tests are unusual for this facility in that they were performed on non-airplane configurations: a full-scale tractor/trailer and large ramair inflated wings. For the truck drag measurements, comparisons with 1/8th-scale drag data taken at the Low Speed Wind Tunnel at Texas A&M indicate that small scale measurements can provide adequate accuracy if care is taken to test at high enough Reynolds numbers and if large regions of separated flow and reattachment are avoided. Some of the important aerodynamic and structural aspects of parafoil testing are also discussed. These include the effects of Reynolds number and aeroelastic effects such as fabric and support line stretch.

  5. Foot posture, range of motion and plantar pressure characteristics in obese and non-obese individuals.

    PubMed

    Butterworth, Paul A; Urquhart, Donna M; Landorf, Karl B; Wluka, Anita E; Cicuttini, Flavia M; Menz, Hylton B

    2015-02-01

    Obesity is a world-wide health problem and is strongly associated with musculoskeletal disorders of the lower limb. The aim of this study was to evaluate plantar loading patterns in obese and non-obese individuals, while accounting for the contribution of foot structure, range of motion and walking speed. Sixty-eight participants (mean±SD age, 52.6±8.0 years), including 47 females (69%), underwent assessments of body mass index, foot pain and foot structure. Plantar pressures were also obtained, using a floor-mounted resistive sensor mat system. Multiple regression analysis was used to determine which variables were most strongly associated with plantar loading patterns. Obese individuals exhibited flatter feet, reduced inversion-eversion range of motion, and higher peak plantar pressures when walking. After accounting for foot structure and walking speed, bodyweight was found to be significantly associated with elevated loading of the foot, particularly the forefoot and midfoot. These findings suggest that obesity increases the stresses applied to the foot directly, via increased bodyweight, and indirectly, via alterations to foot structure, which may partly explain the link between obesity and the development of foot pain. Clinicians dealing with foot problems should consider the effect of increased bodyweight on plantar loading in obese patients.

  6. Wind speed forecasting for wind energy applications

    NASA Astrophysics Data System (ADS)

    Liu, Hong

    With more wind energy being integrated into our grid systems, forecasting wind energy has become a necessity for all market participants. Recognizing the market demands, a physical approach to site-specific hub-height wind speed forecasting system has been developed. This system is driven by the outputs from the Canadian Global Environmental Multiscale (GEM) model. A simple interpolation approach benchmarks the forecasting accuracy inherited from GEM. Local, site specific winds are affected on a local scale by a variety of factors including representation of the land surface and local boundary-layer process over heterogeneous terrain which have been a continuing challenge in NWP models like GEM with typical horizontal resolution of order 15-km. In order to resolve these small scale effects, a wind energy industry standard model, WAsP, is coupled with GEM to improve the forecast. Coupling the WAsP model with GEM improves the overall forecasts, but remains unsatisfactory for forecasting winds with abrupt surface condition changes. Subsequently in this study, a new coupler that uses a 2-D RANS model of boundary-layer flow over surface condition changes with improved physics has been developed to further improve the forecasts when winds coming from a water surface to land experience abrupt changes in surface conditions. It has been demonstrated that using vertically averaged wind speeds to represent geostrophic winds for input into the micro-scale models could reduce forecast errors. The hub-height wind speed forecasts could be further improved using a linear MOS approach. The forecasting system has been evaluated, using a wind energy standard evaluation matrix, against data from an 80-m mast located near the north shore of Lake Erie. Coupling with GEM-LAM and a power conversion model using a theoretical power curve have also been investigated. For hub-height wind speeds GEM appears to perform better with a 15-Ian grid than the high resolution GEM-2.5Ian version at the

  7. SMART Rotor Development and Wind-Tunnel Test

    NASA Technical Reports Server (NTRS)

    Lau, Benton H.; Straub, Friedrich; Anand, V. R.; Birchette, Terry

    2009-01-01

    Boeing and a team from Air Force, NASA, Army, Massachusetts Institute of Technology, University of California at Los Angeles, and University of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center, figure 1. The SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing-edge flap on each blade. The development effort included design, fabrication, and component testing of the rotor blades, the trailing-edge flaps, the piezoelectric actuators, the switching power amplifiers, the actuator control system, and the data/power system. Development of the smart rotor culminated in a whirl-tower hover test which demonstrated the functionality, robustness, and required authority of the active flap system. The eleven-week wind tunnel test program evaluated the forward flight characteristics of the active-flap rotor, gathered data to validate state-of-the-art codes for rotor noise analysis, and quantified the effects of open- and closed-loop active-flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness and the reliability of the flap actuation system were successfully demonstrated in more than 60 hours of wind-tunnel testing. The data acquired and lessons learned will be instrumental in maturing this technology and transitioning it into production. The development effort, test hardware, wind-tunnel test program, and test results will be presented in the full paper.

  8. Results of an experimental investigation to determine separation characteristics for the Orbiter/747 using a 0.0125-scale model (48-0 AX1318I-1 747) in the Ames Research Center 14-foot wind tunnel (CA23B)

    NASA Technical Reports Server (NTRS)

    Esparza, V.

    1976-01-01

    Aerodynamic separation data obtained from a wind tunnel test of an 0.0125-scale SSV Orbiter model of a VC70-000002 Configuration and a 0.0125-scale 747 model was presented. Separation data was obtained at a Mach number of 0.6 and three incidence angles of 4, 6, and 8 degrees. The orbiter angle of attack was varied from 0 to 14 degrees. Longitudinal, lateral and normal separation increments were obtained for fixed 747 angles of attack of 0, 2, and 4 degrees while varying the orbiter angle of attack. Control surface settings on the 747 carrier included rudder deflections of 0 and 10 degrees and horizontal stabilizer deflections of -1 and +5 degrees.

  9. Results of transonic wind tunnel tests on an 0.015-scale space shuttle mated vehicle model (67-ots) in the LaRC 8 foot TPT (IA41)

    NASA Technical Reports Server (NTRS)

    Hardin, R.; Burrows, R. R.

    1974-01-01

    Wind tunnel tests were conducted to obtain aerodynamic force data for Mach numbers from 0.60 to 1.20. Data were obtained for an alpha range of -10 deg to +10 deg (beta = 0 deg beta = 5 deg) and beta range of -10 deg to +10 deg (alpha = 0 deg). Longitudinal and lateral-directional stability and control data were obtained for tank alone, tank plus SRB's, tank plus Orbiter, and mated configuration of tank + Orbiter + SRB's. Also, single-component rudder hinge moment data were obtained at rudder deflections of 0 and -20 deg for each Mach number tested. Plots of aerodynamic coefficients vs. Mach number are presented, using data from both test IA41 and tests LRC-UPWT-1056, 1073 (IA42A/B) for Mach numbers of 1.60 to 4.63. The model tested in IA42A/B was the same model as tested in IA41.

  10. Results of investigations on an 0.015-scale model (49-0) of the Rockwell International Space Shuttle orbiter in the NASA-Ames Research Center 3.5-foot hypersonic wind tunnel (0A98)

    NASA Technical Reports Server (NTRS)

    Milam, M. D.; Dzuibala, T. J.

    1975-01-01

    The results of a wind tunnel test are presented; the model used for this test was 0.015-scale 140 A/B hybrid configuration of the space shuttle orbiter. The primary test objectives were to obtain incremental data on the effects of a sting mount on base pressures and force and moment data. The increments obtained included the addition of MPS nozzles as well as the deletion of the simulated sting mount. Six-component aerodynamic force and moment data were recorded over an angle of attack range from 12 to 42 degrees at 0 and 5 degrees angles of sideslip. The testing was accomplished at Mach 5.3 and Mach 10.3. The effects of various elevon, body flap, and speed brake settings were investigated, and static pressures were measured at the fuselage base for use in force-data reduction.

  11. Results of the space shuttle vehicle ascent air data system probe calibration test using a 0.07-scale external tank forebody model (68T) in the AEDC 16-foot transonic wind tunnel (IA-310), volume 1

    NASA Technical Reports Server (NTRS)

    Collette, J. G. R.

    1991-01-01

    A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Data is given in graphical and tabular form.

  12. Results of the space shuttle vehicle ascent air data system probe calibration test using a 0.07-scale external tank forebody model (68T) in the AEDC 16-foot transonic wind tunnel (IA-310), volume 2

    NASA Technical Reports Server (NTRS)

    Collette, J. G. R.

    1991-01-01

    A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering and Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Additional information is given in tabular form.

  13. Foot landmarking for footwear customization.

    PubMed

    Luximon, Ameersing; Goonetilleke, Ravindra S; Tsui, Kwok L

    2003-03-15

    As consumers are becoming increasingly selective of what they wear on their feet, manufacturers are experiencing problems developing and fitting the right footwear. Literature suggests that shoes with a shape similar to feet may be comfortable because they attempt to maintain the feet in a neutral posture. The objective of this paper is to develop a metric to quantify mismatches between feet and lasts and also to be able to generate the two-dimensional outline of the foot using the minimum number of landmarks. Fifty Hong Kong Chinese were participants in the experiment. In addition to subject weight, height, foot length and foot width, the left foot outlines were drawn and 18 landmarks were marked on each of the two-dimensional foot outlines. A step-wise procedure was used to reduce the chosen 18 landmarks to eight, such that the mean absolute negative error (an indicator of 'tightness') between the foot outline and the modelled curve was 1.3 mm. These eight landmarks seem to show an improvement over those proposed by other researchers, thus showing the importance of choosing the right landmarks for modelling the foot. The positive and negative absolute errors were on average 1.8 mm and 1.3 mm respectively. Moreover, the mean errors for the toe region and for the rest of the foot were 1.7 mm and 1.6 mm respectively. The results indicate that the foot outline, an important component for footwear functionality and fitting, may be modelled using eight critical landmarks.

  14. 2010 Wind Program Peer Review Report

    SciTech Connect

    Swisher, Randy; Clark, Charlton; Beaudry-Losique, Jacques

    2010-12-01

    This report documents the evaluation of the technical, scientific, and business results of over 80 projects of the Wind Program, as well as the productivity and management effectiveness of the Wind Program itself.

  15. Foot abnormalities of wild birds

    USGS Publications Warehouse

    Herman, C.M.; Locke, L.N.; Clark, G.M.

    1962-01-01

    The various foot abnormalities that occur in birds, including pox, scaly-leg, bumble-foot, ergotism and freezing are reviewed. In addition, our findings at the Patuxent Wildlife Research Center include pox from dove, mockingbird, cowbird, grackle and several species of sparrows. Scaly-leg has been particularly prevalent on icterids. Bumble foot has been observed in a whistling swan and in a group of captive woodcock. Ergotism is reported from a series of captive Canada geese from North Dakota. Several drug treatments recommended by others are presented.

  16. Complications of the diabetic foot.

    PubMed

    Kim, Paul J; Steinberg, John S

    2013-12-01

    The diabetic foot is at high risk for complications because of its role in ambulation. Peripheral neuropathy and peripheral vascular disease can lead to chronic foot ulcers, which are at high risk for infection, in part attributable to areas of high pressure caused by lack of tolerance of the soft tissue and bone and joint deformity. If left untreated, infection and ischemia lead to tissue death, culminating in amputation. Treatment strategies include antibiosis, topical therapies, offloading, debridement, and surgery. A multidisciplinary team approach is necessary in the prevention and treatment of complications of the diabetic foot.

  17. Freeing the foot: integrating the foot core system into rehabilitation for lower extremity injuries.

    PubMed

    McKeon, Patrick O; Fourchet, François

    2015-04-01

    The intrinsic muscles of the foot play a critical role in the regulation of absorption and propulsion during dynamic activities. Dysfunction of these may lead to an increased demand on the remaining components within the foot core system to maintain dynamic foot control, leading to a more rapid breakdown of these contributors and those proximal to the foot. Training the intrinsic foot muscles through a systematic progression of isolation via the short foot exercise offers the opportunity to reincorporate their contribution into the foot core system. This article discusses the function of the intrinsic foot muscles, their contributions to dynamic foot control, and a progressive training paradigm.

  18. 7 CFR 1217.4 - Board foot.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Board foot. 1217.4 Section 1217.4 Agriculture..., and Industry Information Order Definitions § 1217.4 Board foot. Board foot or BF means a unit of... cubic equivalent. A board foot calculation for softwood lumber 1 inch or more in thickness is based...

  19. 7 CFR 1217.4 - Board foot.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Board foot. 1217.4 Section 1217.4 Agriculture..., and Industry Information Order Definitions § 1217.4 Board foot. Board foot or BF means a unit of... cubic equivalent. A board foot calculation for softwood lumber 1 inch or more in thickness is based...

  20. 7 CFR 1217.4 - Board foot.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Board foot. 1217.4 Section 1217.4 Agriculture..., and Industry Information Order Definitions § 1217.4 Board foot. Board foot or BF means a unit of... cubic equivalent. A board foot calculation for softwood lumber 1 inch or more in thickness is based...

  1. 24 CFR 3285.312 - Footings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (incorporated by reference, see § 3285.4). (3) ABS footing pads. (i) ABS footing pads are permitted, provided... density. A footing must support every pier. Footings are to be either: (1) Concrete. (i) Four inch nominal precast concrete pads meeting or exceeding ASTM C 90-02a, Standard Specification for Loadbearing...

  2. 24 CFR 3285.312 - Footings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (incorporated by reference, see § 3285.4). (3) ABS footing pads. (i) ABS footing pads are permitted, provided... density. A footing must support every pier. Footings are to be either: (1) Concrete. (i) Four inch nominal precast concrete pads meeting or exceeding ASTM C 90-02a, Standard Specification for Loadbearing...

  3. Living with Diabetes: Foot Complications

    MedlinePlus

    ... area and to prevent the ulcer from returning. Poor Circulation Poor circulation (blood flow) can make your foot less ... can control some of the things that cause poor blood flow. Don't smoke; smoking makes arteries ...

  4. Foot evaluation by infrared imaging.

    PubMed

    DiBenedetto, Margarete; Yoshida, Michael; Sharp, Mark; Jones, Bruce

    2002-05-01

    For better assessment of foot injury severity during basic military training, we evaluated a simple noninvasive technique: thermography. With this infrared imaging method, we determined normal foot parameters (from 30 soldiers before training), thermographic findings in different foot stress fractures (from 30 soldiers so diagnosed), and normal responses to abnormal stresses in 30 trainees who underwent the same training as the previous group but did not have musculoskeletal complaints. We found that normal foot thermograms show onion peel-like progressive cooling on the plantar surface, with a medially located warm center at the instep. Thermograms of injured feet show areas of increased heat, but excessive weight-bearing pressures on feet, new shoes, or boots also cause increased infrared emission even without discomfort. Differentiation remains difficult; however, thermography can detect injury early. It does not reveal exact diagnoses, but its greatest benefit is easy follow-up to monitor severity and healing. PMID:12053846

  5. Sesamoid Injuries in the Foot

    MedlinePlus

    ... the big toe “pushes off” during walking and running. The sesamoids also serve as a weight-bearing ... on the ball of the foot when walking, running, and jumping. Sesamoid injuries can involve the bones, ...

  6. Foot, leg, and ankle swelling

    MedlinePlus

    Swelling of the ankles - feet - legs; Ankle swelling; Foot swelling; Leg swelling; Edema - peripheral; Peripheral edema ... Painless swelling may affect both legs and may include the calves or ... of gravity makes the swelling most noticeable in the lower ...

  7. Design, fabrication, and test of a composite material wind turbine rotor blade

    NASA Technical Reports Server (NTRS)

    Griffee, D. G., Jr.; Gustafson, R. E.; More, E. R.

    1977-01-01

    The aerodynamic design, structural design, fabrication, and structural testing is described for a 60 foot long filament wound, fiberglass/epoxy resin matrix wind turbine rotor blade for a 125 foot diameter, 100 kW wind energy conversion system. One blade was fabricated which met all aerodynamic shape requirements and was structurally capable of operating under all specified design conditions. The feasibility of filament winding large rotor blades was demonstrated.

  8. Flexible Foot Test Assembly

    SciTech Connect

    Kurita, C.H.; /Fermilab

    1987-04-27

    A test model of the flexible foot support was constructed early in the design stages to check its reactions to applied loads. The prototype was made of SS 304 and contained four vertical plates as opposed to the fourteen Inconel 718 plates which comprise the actual structure. Due to the fact that the prototype was built before the design of the support was finalized, the plate dimensions are different from those of the actual proposed design (i.e. model plate thickness is approximately one-half that of the actual plates). See DWG. 3740.210-MC-222376 for assembly details of the test model and DWG. 3740.210-MB-222377 for plate dimensions. This stanchion will be required to not only support the load of the inner vessel of the cryostat and its contents, but it must also allow for the movement of the vessel due to thermal contraction. Assuming that each vertical plate acts as a column, then the following formula from the Manual of Steel Construction (American Institute of Steel Construction, Inc., Eigth edition, 1980) can be applied to determine whether or not such columns undergoing simultaneous axial compression and transverse loading are considered safe for the given loading. The first term is representative of the axially compressive stress, and the second term, the bending stress. If the actual compressive stress is greater than 15% of the allowable compressive stress, then there are additional considerations which must be accounted for in the bending stress term.

  9. Diurnal stratospheric tide in meridional wind, 30 to 60 KM, by season and monthly mean temperatures, 20 to 60 KM, at 80 deg N and to 0 deg N

    NASA Technical Reports Server (NTRS)

    Nastrom, G. D.; Belmont, A. D.

    1975-01-01

    The diurnal component in meridional wind was observed for each season at twelve rocket stations. Amplitudes and phases are presented as a function of height-latitude or as vertical profiles. Many of the gross features of the tide persist throughout the year, but as they migrate in height and latitude the amplitude or phase at a given location may undergo large changes with season. Longitudinal variations in the diurnal tide are found in the mid-stratosphere, and it is suggested they are coupled with longitudinal variations in the tropospheric temperature structure.

  10. Behaviour of Solitary Adult Scandinavian Brown Bears (Ursus arctos) when Approached by Humans on Foot

    PubMed Central

    Moen, Gro Kvelprud; Støen, Ole-Gunnar; Sahlén, Veronica; Swenson, Jon E.

    2012-01-01

    Successful management has brought the Scandinavian brown bear (Ursus arctos L.) back from the brink of extinction, but as the population grows and expands the probability of bear-human encounters increases. More people express concerns about spending time in the forest, because of the possibility of encountering bears, and acceptance for the bear is decreasing. In this context, reliable information about the bear's normal behaviour during bear-human encounters is important. Here we describe the behaviour of brown bears when encountering humans on foot. During 2006–2009, we approached 30 adult (21 females, 9 males) GPS-collared bears 169 times during midday, using 1-minute positioning before, during and after the approach. Observer movements were registered with a handheld GPS. The approaches started 869±348 m from the bears, with the wind towards the bear when passing it at approximately 50 m. The bears were detected in 15% of the approaches, and none of the bears displayed any aggressive behaviour. Most bears (80%) left the initial site during the approach, going away from the observers, whereas some remained at the initial site after being approached (20%). Young bears left more often than older bears, possibly due to differences in experience, but the difference between ages decreased during the berry season compared to the pre-berry season. The flight initiation distance was longer for active bears (115±94 m) than passive bears (69±47 m), and was further affected by horizontal vegetation cover and the bear's age. Our findings show that bears try to avoid confrontations with humans on foot, and support the conclusions of earlier studies that the Scandinavian brown bear is normally not aggressive during encounters with humans. PMID:22363710

  11. Large-scale wind tunnel tests of a sting-supported V/STOL fighter model at high angles of attack

    NASA Technical Reports Server (NTRS)

    Stoll, F.; Minter, E. A.

    1981-01-01

    A new sting model support has been developed for the NASA/Ames 40- by 80-Foot Wind Tunnel. This addition to the facility permits testing of relatively large models to large angles of attack or angles of yaw depending on model orientation. An initial test on the sting is described. This test used a 0.4-scale powered V/STOL model designed for testing at angles of attack to 90 deg and greater. A method for correcting wake blockage was developed and applied to the force and moment data. Samples of this data and results of surface-pressure measurements are presented.

  12. Wind resource in Iceland

    NASA Astrophysics Data System (ADS)

    Jonasson, K.; Bjornsson, H.; Birgisson, T.; Blondal, J.

    2010-12-01

    Iceland has considerable renewable energy resources. While hydropower and geothermal power have been exploited on a significant scale, less attention has been paid to wind power. In preparation for the Nordic IceWind project, this study aims to build up a quality controlled data base of wind observations, and make a preliminary map of the wind resource. The data used come from 130 automatic weather stations distributed around Iceland, and consists of wind measurements every ten minutes in the period 1999 - 2010. The operational period for the stations varies from 5 to 10 years, and in total there were 55 million observations to quality check (QC). In 80 stations more than 99% of the data passed QC. Most problems occurred during winter, especially in harsh climate mountain stations. These problems involved anemometer freezing and faults and electrostatic spikes. The wind speeds were transferred to 90 m agl using a standard power law profile. The resulting data was then averaged for extended winter (Sep-Apr) and summer (May - Aug) seasons. Furthermore, a generic production curve for wind turbines was used to estimate the annual energy production (AEP) per installed megawatt for each season at each station. These results have been interpolated to intra-station locations, thus producing a preliminary wind atlas of for Iceland, which will aid in the selection of sites for potential wind farms. Although the data base has been completed, the analysis of of the data and the production of the wind atlas is ongoing. The inclusion of topographic effects, wind profile measurements and more detailed power production modeling will be further studied within the IceWind project, as well as incorporation of wind from a reanalysis downscaled with a numerical weather prediction model (NWP).

  13. Transonic stability and control characteristics of a 0.015-scale (remotely controlled elevon) model 44-0 of the space shuttle orbiter tested in the NASA/LaRC 8 foot TPT (LA62). [wind tunnel stability tests in transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Gamble, J. D.; Buhl, M. L., Jr.; Parrell, H.

    1975-01-01

    The objective of the test was to generate a detailed aerodynamic data base which can be used to substantiate the aerodynamic design data book for the current shuttle orbiter configuration. Special attention was directed to definition of nonlinear aerodynamic characteristics by taking data at small increments in Mach number, angle of attack, and elevon position. Six-component aerodynamic force and moment and elevon position data were recorded over an angle-of-attack range from -4 deg to 20 deg, at angles of sideslip of 0 deg and 2 deg. The test Mach numbers were from 0.35 to 1.20. The Reynolds number for most of the test was held at a constant 3.5 million per foot.

  14. Generation, saturation, and convection of electrostatic waves in Jupiter's shock foot

    NASA Technical Reports Server (NTRS)

    Moses, S. L.; Coroniti, F. V.; Kennel, C. F.; Scarf, F. L.

    1988-01-01

    In this paper, a model is developed for the analysis of the electrostatic waves produced in the shock foot at Jupiter. It is shown that an ion beam instability involving the ions reflected at the shock ramp and the incoming solar-wind electrons produces waves at the observed frequencies and that saturation via orbit diffusion limits the waves to amplitudes near to what is observed. Results from a two-dimensional model of the reflected beam in the foot indicate that the waves propagate against the solar wind away from the shock ramp and are amplified up to their saturation amplitudes. The saturation results, combined with the electron temperature profile due to wave-particle interactions predicted by quasi-linear theory, reproduce a wave amplitude profile for the shock foot that is in reasonable agreement with the observations.

  15. A laser-sheet flow visualization technique for the large wind tunnels of the National Full-Scale Aerodynamics Complex

    NASA Technical Reports Server (NTRS)

    Reinath, M. S.; Ross, J. C.

    1990-01-01

    A flow visualization technique for the large wind tunnels of the National Full Scale Aerodynamics Complex (NFAC) is described. The technique uses a laser sheet generated by the NFAC Long Range Laser Velocimeter (LRLV) to illuminate a smoke-like tracer in the flow. The LRLV optical system is modified slightly, and a scanned mirror is added to generate the sheet. These modifications are described, in addition to the results of an initial performance test conducted in the 80- by 120-Foot Wind Tunnel. During this test, flow visualization was performed in the wake region behind a truck as part of a vehicle drag reduction study. The problems encountered during the test are discussed, in addition to the recommended improvements needed to enhance the performance of the technique for future applications.

  16. A laser-sheet flow visualization technique for the large wind tunnels of the National Full-Scale Aerodynamics Complex

    NASA Astrophysics Data System (ADS)

    Reinath, M. S.; Ross, J. C.

    1990-09-01

    A flow visualization technique for the large wind tunnels of the National Full Scale Aerodynamics Complex (NFAC) is described. The technique uses a laser sheet generated by the NFAC Long Range Laser Velocimeter (LRLV) to illuminate a smoke-like tracer in the flow. The LRLV optical system is modified slightly, and a scanned mirror is added to generate the sheet. These modifications are described, in addition to the results of an initial performance test conducted in the 80- by 120-Foot Wind Tunnel. During this test, flow visualization was performed in the wake region behind a truck as part of a vehicle drag reduction study. The problems encountered during the test are discussed, in addition to the recommended improvements needed to enhance the performance of the technique for future applications.

  17. Calibration of the Langley 16-foot transonic tunnel with test section air removal

    NASA Technical Reports Server (NTRS)

    Corson, B. W., Jr.; Runckel, J. F.; Igoe, W. B.

    1974-01-01

    The Langley 16-foot transonic tunnel with test section air removal (plenum suction) was calibrated to a Mach number of 1.3. The results of the calibration, including the effects of slot shape modifications, test section wall divergence, and water vapor condensation, are presented. A complete description of the wind tunnel and its auxiliary equipment is included.

  18. Comparison of the 10x10 and the 8x6 Supersonic Wind Tunnels at the NASA Glenn Research Center for Low-Speed (Subsonic) Operation

    NASA Technical Reports Server (NTRS)

    Hoffman, Thomas R.; Johns, Albert L.; Bury, Mark E.

    2002-01-01

    NASA Glenn Research Center and Lockheed Martin tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Test objectives were to determine and document similarities and uniqueness of the tunnels and to verify that the 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility when compared to the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). Conclusions are that the data from the two facilities compares very favorably and that the 10-by 10-Foot Supersonic Wind Tunnel at NASA Glenn Research Center is a viable low-speed wind tunnel.

  19. Foot Comfort for the Fashionable

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Modellista Footwear's new shoe line uses Tempur(TM) material, which conforms to each wearer's unique foot shape to absorb shock and cushion the foot. The foam's properties allow the shoe to change with the wearer's foot as it shrinks and swells throughout the day. Scientists at NASA's Ames Research Center originally developed temper foam in the early 1970s to relieve the intense pressure of G-forces experienced by astronauts during rocket launches. Tempur-Pedic, Inc., further developed the foam and granted Modellista a license to use it in footwear. The Modellista collection is the first shoe design and construction to be certified by the Space Awareness Alliance. The shoes, with designs ranging from traditional clog shapes to sling backs and open-toe sandals, are currently available nationwide at select specialty shoe stores and through catalogs. Tempur(TM) is a registered trademark of Tempur-Pedic, Inc.

  20. Hand, Foot and Mouth Disease in Hong Kong: A Time-Series Analysis on Its Relationship with Weather

    PubMed Central

    Wang, Pin; Goggins, William B.; Chan, Emily Y. Y.

    2016-01-01

    Background Hand, foot and mouth disease (HFMD) is an emerging enterovirus-induced infectious disease for which the environmental risk factors promoting disease circulation remain inconclusive. This study aims to quantify the association of daily weather variation with hospitalizations for HFMD in Hong Kong, a subtropical city in China. Methods A time series of daily counts of HFMD public hospital admissions from 2008 through 2011 in Hong Kong was regressed on daily mean temperature, relative humidity, wind speed, solar radiation and total rainfall, using a combination of negative binomial generalized additive models and distributed lag non-linear models, adjusting for trend, season, and day of week. Results There was a positive association between temperature and HFMD, with increasing trends from 8 to 20°C and above 25°C with a plateau in between. A hockey-stick relationship of relative humidity with HFMD was found, with markedly increasing risks over 80%. Moderate rainfall and stronger wind and solar radiation were also found to be associated with more admissions. Conclusions The present study provides quantitative evidence that short-term meteorological variations could be used as early indicators for potential HFMD outbreaks. Climate change is likely to lead to a substantial increase in severe HFMD cases in this subtropical city in the absence of further interventions. PMID:27532865

  1. Diabetic foot ulcers: practical treatment recommendations.

    PubMed

    Edmonds, Michael

    2006-01-01

    When treating diabetic foot ulcers it is important to be aware of the natural history of the diabetic foot, which can be divided into five stages: stage 1, a normal foot; stage 2, a high risk foot; stage 3, an ulcerated foot; stage 4, an infected foot; and stage 5, a necrotic foot. This covers the entire spectrum of foot disease but emphasises the development of the foot ulcer as a pivotal event in stage 3, which demands urgent and aggressive management. Diabetic foot care in all stages needs multidisciplinary management to control mechanical, wound, microbiological, vascular, metabolic and educational aspects. Achieving good metabolic control of blood glucose, lipids and blood pressure is important in each stage, as is education to teach proper foot care appropriate for each stage. Ideally, it is important to prevent the development of ulcers in stages 1 and 2. In stage 1, the normal foot, it is important to encourage the use of suitable footwear, and to educate the patient to promote healthy foot care and footwear habits. In stage 2, the foot has developed one or more of the following risk factors for ulceration: neuropathy, ischaemia, deformity, swelling and callus. The majority of deformities can be accommodated in special footwear and as callus is an important precursor of ulceration it should be treated aggressively, especially in the neuropathic foot. In stage 3, ulcers can be divided into two distinct entities: those in the neuropathic foot and those in the neuroischaemic foot. In the neuropathic foot, ulcers commonly develop on the plantar surface of the foot and the toes, and are associated with neglected callus and high plantar pressures. In the neuroischaemic foot, ulcers are commonly seen around the edges of the foot, including the apices of the toes and back of the heel, and are associated with trauma or wearing unsuitable shoes. Ulcers in stage 3 need relief of pressure (mechanical control), sharp debridement and dressings (wound control), and

  2. The architecture and contraction time of intrinsic foot muscles.

    PubMed

    Tosovic, Danijel; Ghebremedhin, Estifanos; Glen, Christopher; Gorelick, Mark; Mark Brown, J

    2012-12-01

    Although critical for effective human locomotion and posture, little data exists regarding the segmentation, architecture and contraction time of the human intrinsic foot muscles. To address this issue, the Abductor Hallucis (AH), Abductor Digiti Minimi (ADM), Flexor Digitorum Brevis (FDB) and Extensor Digitorum Brevis (EDB) were investigated utilizing a cadaveric dissection and a non-invasive whole muscle mechanomyographic (wMMG) technique. The segmental structure and architecture of formaldehyde-fixed foot specimens were determined in nine cadavers aged 60-80 years. The wMMG technique was used to determine the contraction time (Tc) of individual muscle segments, within each intrinsic foot muscle, in 12 volunteers of both genders aged between 19 and 24 years. While the pattern of segmentation and segmental -architecture (e.g. fibre length) and -Tc of individual muscle segments within the same muscle were similar, they varied between muscles. Also, the average whole muscle Tc of FDB was significantly (p < 0.05) shorter (faster) (Tc = 58 ms) than in all other foot muscles investigated (ADM Tc = 72 ms, EDB Tc = 72 ms and ABH Tc = 69 ms). The results suggest that the architecture and contraction time of the FDB reflect its unique direct contribution, through toe flexion, to postural stability and the rapid development of ground reaction forces during forceful activities such as running and jumping.

  3. The Charcot Foot in Diabetes

    PubMed Central

    Frykberg, Robert G.; Armstrong, David G.; Boulton, Andrew J.M.; Edmonds, Michael; Van, Georges Ha; Hartemann, Agnes; Game, Frances; Jeffcoate, William; Jirkovska, Alexandra; Jude, Edward; Morbach, Stephan; Morrison, William B.; Pinzur, Michael; Pitocco, Dario; Sanders, Lee; Wukich, Dane K.; Uccioli, Luigi

    2011-01-01

    The diabetic Charcot foot syndrome is a serious and potentially limb-threatening lower-extremity complication of diabetes. First described in 1883, this enigmatic condition continues to challenge even the most experienced practitioners. Now considered an inflammatory syndrome, the diabetic Charcot foot is characterized by varying degrees of bone and joint disorganization secondary to underlying neuropathy, trauma, and perturbations of bone metabolism. An international task force of experts was convened by the American Diabetes Association and the American Podiatric Medical Association in January 2011 to summarize available evidence on the pathophysiology, natural history, presentations, and treatment recommendations for this entity. PMID:21868781

  4. The foot and ankle examination.

    PubMed

    Papaliodis, Dean N; Vanushkina, Maria A; Richardson, Nicholas G; DiPreta, John A

    2014-03-01

    Most foot and ankle disorders can be diagnosed after a proper history and clinical examination and can be effectively managed in a primary care setting. It is important to assess the entirety of patient disorders that present as they can be multifactorial in cause. A broad differential should include disorders of bones, joints, muscles, neurovasculature, and surrounding soft tissue structures. Physical examination should be thorough and focused on inspection, palpation, range of motion, and appropriate special tests when applicable. This article highlights some of the salient features of the foot and ankle examination and diagnostic considerations.

  5. Peroneal nerve injury with foot drop complicating ankle sprain--a series of four cases with review of the literature.

    PubMed

    Brief, James M; Brief, Rochelle; Ergas, Enrique; Brief, L Paul; Brief, Andrew A

    2009-01-01

    Foot drop has many etiologies. One rarely mentioned and often neglected reason for foot drop is an acute inversion sprain of the ankle. Over the past 14 years, a collection of 32 cases of foot drop have been compiled in our orthopaedic and physiatric practices. All cases had appropriate evaluations, including electrodiagnostic studies (electromyography and nerve conduction studies) to determine the location and type of injury. Treatment and follow-up are also discussed. Of the 32 case studies, four were caused by a straightforward acute inversion sprain of the ankle. These cases are described with the electrodiagnostic evaluations, treatments, and outcomes. Proposed mechanisms for this type of foot drop are discussed, including traction and compression of the common peroneal nerve as it winds around the neck of the fibula, and possible compression by hematoma. Surgical versus conservative treatment is described. The functional impairment associated with foot drop is detailed.

  6. Wind Simulation

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  7. Find an Orthopaedic Foot and Ankle MD/DO

    MedlinePlus

    ... AOFAS / FootCareMD / Find a Surgeon Find an Orthopaedic Foot & Ankle Surgeon Page Content The Orthopaedic Distinction Who are Orthopaedic Foot & Ankle Surgeons? Orthopaedic foot and ankle surgeons are ...

  8. Hand, Foot, and Mouth Disease (HFMD)

    MedlinePlus

    ... can sometimes occur in adults. Symptoms of hand, foot, and mouth disease include fever, mouth sores, and a skin rash. More About Hand, Foot, and Mouth Disease (HFMD) Describes causes of the disease, its symptoms, ...

  9. Diabetic Foot - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Diabetic Foot URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Diabetic Foot - Multiple Languages To use the sharing features on ...

  10. Sports Injuries to the Foot and Ankle

    MedlinePlus

    ... Field Hockey Football Injuries Golf Injuries Lacrosse Rugby Running Soccer Softball Tennis Volleyball Find an ACFAS Physician ... Foot and Ankle Although golf does not involve running or jumping, injuries can occur to the foot ...

  11. 40 CFR 80.142-80.154 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false 80.142-80.154 Section 80.142-80.154 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline §§ 80.142-80.154...

  12. 40 CFR 80.134-80.135 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false 80.134-80.135 Section 80.134-80.135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Attest Engagements §§ 80.134-80.135...

  13. 40 CFR 80.1200-80.1219 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false 80.1200-80.1219 Section 80.1200-80.1219 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene §§ 80.1200-80.1219 General Information...

  14. 40 CFR 80.1200-80.1219 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false 80.1200-80.1219 Section 80.1200-80.1219 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene §§ 80.1200-80.1219 General Information...

  15. 40 CFR 80.1200-80.1219 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false 80.1200-80.1219 Section 80.1200-80.1219 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene §§ 80.1200-80.1219 General Information...

  16. Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot

    PubMed Central

    Wang, Yan; Li, Zengyong; Wong, Duo Wai-Chi; Zhang, Ming

    2015-01-01

    Background/Methodology Ankle arthrodesis is one popular surgical treatment for ankle arthritis, chronic instability, and degenerative deformity. However, complications such as foot pain, joint arthritis, and bone fracture may cause patients to suffer other problems. Understanding the internal biomechanics of the foot is critical for assessing the effectiveness of ankle arthrodesis and provides a baseline for the surgical plan. This study aimed to understand the biomechanical effects of ankle arthrodesis on the entire foot and ankle using finite element analyses. A three-dimensional finite element model of the foot and ankle, involving 28 bones, 103 ligaments, the plantar fascia, major muscle groups, and encapsulated soft tissue, was developed and validated. The biomechanical performances of a normal foot and a foot with ankle arthrodesis were compared at three gait instants, first-peak, mid-stance, and second-peak. Principal Findings/Conclusions Changes in plantar pressure distribution, joint contact pressure and forces, von Mises stress on bone and foot deformation were predicted. Compared with those in the normal foot, the peak plantar pressure was increased and the center of pressure moved anteriorly in the foot with ankle arthrodesis. The talonavicular joint and joints of the first to third rays in the hind- and mid-foot bore the majority of the loading and sustained substantially increased loading after ankle arthrodesis. An average contact pressure of 2.14 MPa was predicted at the talonavicular joint after surgery and the maximum variation was shown to be 80% in joints of the first ray. The contact force and pressure of the subtalar joint decreased after surgery, indicating that arthritis at this joint was not necessarily a consequence of ankle arthrodesis but rather a progression of pre-existing degenerative changes. Von Mises stress in the second and third metatarsal bones at the second-peak instant increased to 52 MPa and 34 MPa, respectively, after

  17. Perceived standing position after reduction of foot-pressure sensation by cooling the sole.

    PubMed

    Fujiwara, Katsuo; Asai, Hitoshi; Miyaguchi, Akiyoshi; Toyama, Hiroshi; Kunita, Kenji; Inoue, Katsumi

    2003-04-01

    We investigated the influence of the reduction of foot-pressure sensation by cooling the sole of the foot, at 1 degree C for 30 or 40 minutes, on the perception of standing position varied in the anteroposterior direction. The subjects were 16 healthy undergraduates. Firstly, for 4 of the subjects, cooling the sole of the foot decreased sensory information from the mechanoreceptors in the sole, by testing for an increase in the threshold for two-point discrepancy discrimination on the sole of the foot and for the disappearance of postural change with vibration to the sole. Next, the perception of standing position was measured by reproduction of a given standing reference position involving forward or backward leaning under both normal and cooled conditions of the feet. Standing position was varied in relation to the location of the center of foot pressure, defined as distance from the heel in percentage of the length of the foot. The reference positions, representing various locations of the center of foot pressure, were set at 10% increments from 20% to 80% of the length of the foot. With eyes closed, the subject first experienced the reference position and then attempted to reproduce it. The mean location of the center of foot pressure in the quiet standing posture was 45.7%. At the 40%, 50%, and 60% reference positions, those closest to quiet standing, absolute errors of reproduction were significantly larger than at other reference positions in both the normal and the cooled conditions. They were significantly larger in the cooled than in the normal condition. The 50% and 60% reference positions were reproduced significantly further forward in the cooled than in the normal condition. These results may be explained as due to an absence of marked changes in sensory information from both muscular activity and foot pressure when moving to reference positions close to the quiet standing posture.

  18. Aeroacoustic research in wind tunnels: A status report

    NASA Technical Reports Server (NTRS)

    Bender, J.; Arndt, R. E. A.

    1973-01-01

    The increasing attention given to aerodynamically generated noise brings into focus the need for quality experimental research in this area. To meet this need several specialized anechoic wind tunnels have been constructed. In many cases, however, budgetary constraints and the like make it desirable to use conventional wind tunnels for this work. Three basic problems are inherent in conventional facilities: (1) high background noise, (2) strong frequency dependent reverberation effects, and (3) unique instrumentation problems. The known acoustic characteristics of several conventional wind tunnels are evaluated and data obtained in a smaller 4- x 5-foot wind tunnel which is convertible from a closed jet to an open jet mode are presented. The data from these tunnels serve as a guideline for proposed modifications to a 7- x 10-foot wind tunnel. Consideration is given to acoustic treatment in several different portions of the wind tunnel.

  19. 29 CFR 1910.136 - Foot protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Foot protection. 1910.136 Section 1910.136 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Personal Protective Equipment § 1910.136 Foot protection. (a) General... areas where there is a danger of foot injuries due to falling or rolling objects, or objects...

  20. 29 CFR 1918.104 - Foot protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Foot protection. 1918.104 Section 1918.104 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Personal Protective Equipment § 1918.104 Foot... in areas where there is a danger of foot injuries due to falling or rolling objects or...

  1. 29 CFR 1910.136 - Foot protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Foot protection. 1910.136 Section 1910.136 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Personal Protective Equipment § 1910.136 Foot protection. (a) General... areas where there is a danger of foot injuries due to falling or rolling objects, or objects...

  2. 29 CFR 1915.156 - Foot protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Foot protection. 1915.156 Section 1915.156 Labor... (PPE) § 1915.156 Foot protection. (a) Use. The employer shall ensure that each affected employee wears protective footwear when working in areas where there is a danger of foot injuries due to falling or...

  3. 29 CFR 1918.104 - Foot protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Foot protection. 1918.104 Section 1918.104 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Personal Protective Equipment § 1918.104 Foot... in areas where there is a danger of foot injuries due to falling or rolling objects or...

  4. 29 CFR 1915.156 - Foot protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Foot protection. 1915.156 Section 1915.156 Labor... (PPE) § 1915.156 Foot protection. (a) Use. The employer shall ensure that each affected employee wears protective footwear when working in areas where there is a danger of foot injuries due to falling or...

  5. 29 CFR 1910.136 - Foot protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Foot protection. 1910.136 Section 1910.136 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Personal Protective Equipment § 1910.136 Foot protection. (a) General... areas where there is a danger of foot injuries due to falling or rolling objects, or objects...

  6. 29 CFR 1917.94 - Foot protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Foot protection. 1917.94 Section 1917.94 Labor Regulations...) MARINE TERMINALS Personal Protection § 1917.94 Foot protection. (a) The employer shall ensure that each affected employee wears protective footwear when working in areas where there is a danger of foot...

  7. 29 CFR 1918.104 - Foot protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Foot protection. 1918.104 Section 1918.104 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Personal Protective Equipment § 1918.104 Foot... in areas where there is a danger of foot injuries due to falling or rolling objects or...

  8. Billet planting, 8-foot rows, residue updates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultural practices are continually tested and upgraded to maximize sugarcane yield in Louisiana. Over the past 3 years extensive research went in to comparing the industry standard 6-foot row spacing to a wider, 8 foot row. Each 8 foot row was double drilled with seed canes that were 2-3 feet apart....

  9. 29 CFR 1915.156 - Foot protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Foot protection. 1915.156 Section 1915.156 Labor... (PPE) § 1915.156 Foot protection. (a) Use. The employer shall ensure that each affected employee wears protective footwear when working in areas where there is a danger of foot injuries due to falling or...

  10. 29 CFR 1910.136 - Foot protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Foot protection. 1910.136 Section 1910.136 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Personal Protective Equipment § 1910.136 Foot protection. (a) General... areas where there is a danger of foot injuries due to falling or rolling objects, or objects...

  11. 33 CFR 142.33 - Foot protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Foot protection. 142.33 Section... CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.33 Foot... for foot injury to occur shall wear footwear meeting the specifications of ANSI Z41, except...

  12. 29 CFR 1917.94 - Foot protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Foot protection. 1917.94 Section 1917.94 Labor Regulations...) MARINE TERMINALS Personal Protection § 1917.94 Foot protection. (a) The employer shall ensure that each affected employee wears protective footwear when working in areas where there is a danger of foot...

  13. 29 CFR 1918.104 - Foot protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Foot protection. 1918.104 Section 1918.104 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Personal Protective Equipment § 1918.104 Foot... in areas where there is a danger of foot injuries due to falling or rolling objects or...

  14. 29 CFR 1917.94 - Foot protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Foot protection. 1917.94 Section 1917.94 Labor Regulations...) MARINE TERMINALS Personal Protection § 1917.94 Foot protection. (a) The employer shall ensure that each affected employee wears protective footwear when working in areas where there is a danger of foot...

  15. 29 CFR 1918.104 - Foot protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Foot protection. 1918.104 Section 1918.104 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Personal Protective Equipment § 1918.104 Foot... in areas where there is a danger of foot injuries due to falling or rolling objects or...

  16. 29 CFR 1910.136 - Foot protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Foot protection. 1910.136 Section 1910.136 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Personal Protective Equipment § 1910.136 Foot protection. (a) General... areas where there is a danger of foot injuries due to falling or rolling objects, or objects...

  17. 29 CFR 1917.94 - Foot protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Foot protection. 1917.94 Section 1917.94 Labor Regulations...) MARINE TERMINALS Personal Protection § 1917.94 Foot protection. (a) The employer shall ensure that each affected employee wears protective footwear when working in areas where there is a danger of foot...

  18. 33 CFR 142.33 - Foot protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Foot protection. 142.33 Section... CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.33 Foot... for foot injury to occur shall wear footwear meeting the specifications of ANSI Z41, except...

  19. 33 CFR 142.33 - Foot protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Foot protection. 142.33 Section... CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.33 Foot... for foot injury to occur shall wear footwear meeting the specifications of ANSI Z41, except...

  20. 29 CFR 1915.156 - Foot protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Foot protection. 1915.156 Section 1915.156 Labor... (PPE) § 1915.156 Foot protection. (a) Use. The employer shall ensure that each affected employee wears protective footwear when working in areas where there is a danger of foot injuries due to falling or...

  1. 33 CFR 142.33 - Foot protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Foot protection. 142.33 Section... CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.33 Foot... for foot injury to occur shall wear footwear meeting the specifications of ANSI Z41, except...

  2. 29 CFR 1915.156 - Foot protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Foot protection. 1915.156 Section 1915.156 Labor... (PPE) § 1915.156 Foot protection. (a) Use. The employer shall ensure that each affected employee wears protective footwear when working in areas where there is a danger of foot injuries due to falling or...

  3. 33 CFR 142.33 - Foot protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Foot protection. 142.33 Section... CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.33 Foot... for foot injury to occur shall wear footwear meeting the specifications of ANSI Z41, except...

  4. 29 CFR 1917.94 - Foot protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Foot protection. 1917.94 Section 1917.94 Labor Regulations...) MARINE TERMINALS Personal Protection § 1917.94 Foot protection. (a) The employer shall ensure that each affected employee wears protective footwear when working in areas where there is a danger of foot...

  5. Why Does My Foot Fall Asleep?

    MedlinePlus

    ... Help White House Lunch Recipes Why Does My Foot Fall Asleep? KidsHealth > For Kids > Why Does My Foot Fall Asleep? Print A A A Text Size ... while you might have lost feeling in your foot, it might have felt heavy, or you might ...

  6. 2014 Distributed Wind Market Report

    SciTech Connect

    Orell, A.; Foster, N.

    2015-08-01

    The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted for nearly 80% of United States-based manufacturers' sales.

  7. Wind Tunnel Interference Effects on Tilt Rotor Testing Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Koning, Witold J. F.

    2015-01-01

    variable. Power differences between free field and wind tunnel cases were found from -7 % to 0 % in the 80- by 120-Foot Wind Tunnel test section and -1.6 % to 4.8 % in the 40- by 80-Foot Wind Tunnel, depending on the TTR orientation, tunnel velocity and blade setting. The TTR will be used in 2016 to test the Bell 609 rotor in a similar fashion to the research in this report.

  8. National Wind Technology Center (Fact Sheet)

    SciTech Connect

    Not Available

    2011-12-01

    This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

  9. A user's guide to the Langley 16-foot transonic tunnel complex. Revision 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The operational characteristics and equipment associated with the Langley 16-foot transonic tunnel complex which is located in buildings 1146 and 1234 at the Langley Research Center are described in detail. This complex consists of the 16-foot transonic wind tunnel, the static test facility, and the 16- by 24-inch water tunnel research facilities. The 16-foot transonic tunnel is a single-return atmospheric wind tunnel with a 15.5 foot diameter test section and a Mach number capability from 0.20 to 1.30. The emphasis for research conducted in this research complex is on the integration of the propulsion system into advanced aircraft concepts. In the past, the primary focus has been on the integration of nozzles and empennage into the afterbody of fighter aircraft. During the last several years this experimental research has been expanded to include developing the fundamental data base necessary to verify new theoretical concepts, inlet integration into fighter aircraft, nozzle integration for supersonic and hypersonic transports, nacelle/pylon/wing integration for subsonic transport configurations, and the study of vortical flows (in the 16- by 24-inch water tunnel). The purpose here is to provide a comprehensive description of the operational characteristics of the research facilities of the 16-foot transonic tunnel complex and their associated systems and equipments.

  10. Vicmico algogas '80 project

    SciTech Connect

    De Luzuriaga, E.R.

    1980-12-01

    The conversion of the Victorias Milling Co. distillery into an anhydrous alcohol distillery as part of the Alcogas '80 Project is reported. The company received a loan of 7.5 million for the purchase of molasses and for the production of anhydrous alcohol which will be sold to PNOC for blending with gasoline for alcogas fuel.

  11. Wind tunnel pressurization and recovery system

    NASA Technical Reports Server (NTRS)

    Pejack, Edwin R.; Meick, Joseph; Ahmad, Adnan; Lateh, Nordin; Sadeq, Omar

    1988-01-01

    The high density, low toxicity characteristics of refrigerant-12 (dichlorofluoromethane) make it an ideal gas for wind tunnel testing. Present limitations on R-12 emissions, set to slow the rate of ozone deterioration, pose a difficult problem in recovery and handling of large quantities of R-12. This preliminary design is a possible solution to the problem of R-12 handling in wind tunnel testing. The design incorporates cold temperature condensation with secondary purification of the R-12/air mixture by adsorption. Also discussed is the use of Freon-22 as a suitable refrigerant for the 12 foot wind tunnel.

  12. [Orthopaedic footwear against foot ulcers in diabetes].

    PubMed

    Bus, Sicco A

    2014-01-01

    In people with diabetes mellitus, foot ulcers are a major problem because they increase the risk of a foot infection and amputation and reduce quality of life. After a foot ulcer has healed, the risk of recurrence is high. Orthopaedic shoes and orthotics are often prescribed to high risk patients and aim to reduce the mechanical pressure on the plantar surface of the foot. Orthopaedic footwear that is modified to reduce pressure is not much more effective in preventing foot ulcer recurrence than orthopaedic footwear that did not undergo such modification, unless the shoes are worn as recommended. In that case, the risk of ulcer recurrence is reduced by 46%. In patients with a history of ulceration, compliance in wearing orthopaedic shoes at home is low, while these patients walk more inside the house than outside the house. Foot pressure measurements should be part of the prescription and evaluation of orthopaedic footwear for patients at high risk for foot ulceration.

  13. Strength of footing with punching shear preventers.

    PubMed

    Lee, Sang-Sup; Moon, Jiho; Park, Keum-Sung; Bae, Kyu-Woong

    2014-01-01

    The punching shear failure often governs the strength of the footing-to-column connection. The punching shear failure is an undesirable failure mode, since it results in a brittle failure of the footing. In this study, a new method to increase the strength and ductility of the footing was proposed by inserting the punching shear preventers (PSPs) into the footing. The validation and effectiveness of PSP were verified through a series of experimental studies. The nonlinear finite element analysis was then performed to demonstrate the failure mechanism of the footing with PSPs in depth and to investigate the key parameters that affect the behavior of the footing with PSPs. Finally, the design recommendations for the footing with PSPs were suggested. PMID:25401141

  14. Strength of Footing with Punching Shear Preventers

    PubMed Central

    Lee, Sang-Sup; Moon, Jiho; Park, Keum-Sung; Bae, Kyu-Woong

    2014-01-01

    The punching shear failure often governs the strength of the footing-to-column connection. The punching shear failure is an undesirable failure mode, since it results in a brittle failure of the footing. In this study, a new method to increase the strength and ductility of the footing was proposed by inserting the punching shear preventers (PSPs) into the footing. The validation and effectiveness of PSP were verified through a series of experimental studies. The nonlinear finite element analysis was then performed to demonstrate the failure mechanism of the footing with PSPs in depth and to investigate the key parameters that affect the behavior of the footing with PSPs. Finally, the design recommendations for the footing with PSPs were suggested. PMID:25401141

  15. Migratory routes and at-sea threats to Pink-footed Shearwaters

    USGS Publications Warehouse

    Adams, Josh; Felis, Jonathan J.; Hodum, Peter; Colodro, Valentina; Carle, Ryan; López, Verónica

    2016-01-01

    The Pink-footed Shearwater (Ardenna creatopus) is a seabird with a breeding range restricted to three islands in Chile and an estimated world population of approximately 56,000 breeding individuals (Muñoz 2011, Oikonos unpublished data). Due to multiple threats on breeding colonies and at-sea, Pink-footed Shearwaters are listed as Endangered by the government of Chile (Reglamento de Clasificación de Especies, 2011), Threatened by the government of Canada (Environment Canada 2008), and are listed under Appendix 1 of the Agreement on the Conservation of Albatrosses and Petrels (ACAP 2013). A principal conservation concern for the species is mortality from fisheries bycatch during the breeding and non-breeding seasons; thus, identification of areas of overlap between at-sea use by Pink-footed Shearwaters and fisheries is a high priority conservation objective (Hinojosa Sáez and Hodum 1997, Mangel et al. 2013, ACAP 2013). During the non-breeding period, Pink-footed Shearwaters range as far north as Canada, although little was known until recently about migration routes and important wintering areas where fisheries bycatch could be a risk. Additionally, Pink-footed Shearwaters face at-sea threats during the non-breeding season off the west coast of North America. Recently, areas used by wintering Pink-footed Shearwaters have been identified as areas of interest for developing alternative energy offshore in North America (e.g., floating wind generators; Trident Winds 2016). The goal of our study was to track Pink-footed Shearwater post-breeding movements with satellite tags to identify timing and routes of migration, locate important non-breeding foraging habitats, and determine population distribution among different wintering regions.

  16. Overview of advanced wing design. [Ames 12-Foot Pressure Tunnel and 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Hicks, R. M.

    1981-01-01

    Examples of experiment theory correlation are presented to give an indication of the capabilities and limitations of wing design and analysis for transonic applications by potential flow theory. The examples include correlations of experimental pressure distributions with theoretical results from isolated wing codes and wing-body codes. Both conservative and non conservative differencing as well as body and boundary layer corrections are considered. A full potential isolated wing code correlates well with data from an isolated wing test but may give poor prediction of the aerodynamic characteristics of some wing-body configurations. Potential flow wing body codes were found to improve the correlation for the wing-body configurations considered.

  17. Unsteady density and velocity measurements in the 6 foot x 6 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Rose, W. C.; Johnson, D. A.

    1980-01-01

    The methods used and the results obtained in four aero-optic tests are summarized. It is concluded that the rather large values of density fluctuation appear to be the result of much higher Mach number than freestream and the violent turbulence in the flow as it separates from the turret. A representative comparison of fairing on-fairing off rms density fluctuation indicates essentially no effect at M = 0.62 and a small effect at M = 0.95. These data indicate that some slight improvement in optical quality can be expected with the addition of a fairing, although at M = 0.62 its effect would be nil. Fairings are very useful in controlling pressure loads on turrets, but will not have first order effects on optical quality. Scale sizes increase dramatically with increasing azimuth angle for a reprensentative condition. Since both scale sizes and fluctuation levels increase (total turbulence path length also increases) with azimuth angle, substantial optical degradation might be expected. For shorter wave lengths, large degradations occur.

  18. Space Shuttle Model In The 16 Foot Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    1978-01-01

    What may appear at first glance to be a swimming shark is a wind tunnel model of the Space Shuttle Orbiter, being tested at NASA's Langley Research Center in Hampton,VA. The Orbiter model is 5.5 feet long (1/20th of the real Orbiter's length) and has remotely operated control surfaces. Inside Langley's 16 foot Transonic Wind Tunnel, the model simulated Orbiter re-entry into the Earth's atmosphere, when it must fly through the transonic speed range (the range that crosses the sound barrier). Information on Orbiter stability and control, collected and analyzed during the tests, were integrated with other data to become part of computerized flight simulation programs.

  19. Obese older adults suffer foot pain and foot-related functional limitation.

    PubMed

    Mickle, Karen J; Steele, Julie R

    2015-10-01

    There is evidence to suggest being overweight or obese places adults at greater risk of developing foot complications such as osteoarthritis, tendonitis and plantar fasciitis. However, no research has comprehensively examined the effects of overweight or obesity on the feet of individuals older than 60 years of age. Therefore we investigated whether foot pain, foot structure, and/or foot function is affected by obesity in older adults. Three hundred and twelve Australian men and women, aged over 60 years, completed validated questionnaires to establish the presence of foot pain and health related quality of life. Foot structure (anthropometrics and soft tissue thickness) and foot function (ankle dorsiflexion strength and flexibility, toe flexor strength, plantar pressures and spatiotemporal gait parameters) were also measured. Obese participants (BMI >30) were compared to those who were overweight (BMI=25-30) and not overweight (BMI <25). Obese participants were found to have a significantly higher prevalence of foot pain and scored significantly lower on the SF-36. Obesity was also associated with foot-related functional limitation whereby ankle dorsiflexion strength, hallux and lesser toe strength, stride/step length and walking speed were significantly reduced in obese participants compared to their leaner counterparts. Therefore, disabling foot pain and altered foot structure and foot function are consequences of obesity for older adults, and impact upon their quality of life. Interventions designed to reduce excess fat mass may relieve loading of the foot structures and, in turn, improve foot pain and quality of life for older obese individuals. PMID:26260010

  20. The foot core system: a new paradigm for understanding intrinsic foot muscle function.

    PubMed

    McKeon, Patrick O; Hertel, Jay; Bramble, Dennis; Davis, Irene

    2015-03-01

    The foot is a complex structure with many articulations and multiple degrees of freedom that play an important role in static posture and dynamic activities. The evolutionary development of the arch of the foot was coincident with the greater demands placed on the foot as humans began to run. The movement and stability of the arch is controlled by intrinsic and extrinsic muscles. However, the intrinsic muscles are largely ignored by clinicians and researchers. As such, these muscles are seldom addressed in rehabilitation programmes. Interventions for foot-related problems are more often directed at externally supporting the foot rather than training these muscles to function as they are designed. In this paper, we propose a novel paradigm for understanding the function of the foot. We begin with an overview of the evolution of the human foot with a focus on the development of the arch. This is followed by a description of the foot intrinsic muscles and their relationship to the extrinsic muscles. We draw the parallels between the small muscles of the trunk region that make up the lumbopelvic core and the intrinsic foot muscles, introducing the concept of the foot core. We then integrate the concept of the foot core into the assessment and treatment of the foot. Finally, we call for an increased awareness of the importance of the foot core stability to normal foot and lower extremity function. PMID:24659509

  1. The foot core system: a new paradigm for understanding intrinsic foot muscle function.

    PubMed

    McKeon, Patrick O; Hertel, Jay; Bramble, Dennis; Davis, Irene

    2015-03-01

    The foot is a complex structure with many articulations and multiple degrees of freedom that play an important role in static posture and dynamic activities. The evolutionary development of the arch of the foot was coincident with the greater demands placed on the foot as humans began to run. The movement and stability of the arch is controlled by intrinsic and extrinsic muscles. However, the intrinsic muscles are largely ignored by clinicians and researchers. As such, these muscles are seldom addressed in rehabilitation programmes. Interventions for foot-related problems are more often directed at externally supporting the foot rather than training these muscles to function as they are designed. In this paper, we propose a novel paradigm for understanding the function of the foot. We begin with an overview of the evolution of the human foot with a focus on the development of the arch. This is followed by a description of the foot intrinsic muscles and their relationship to the extrinsic muscles. We draw the parallels between the small muscles of the trunk region that make up the lumbopelvic core and the intrinsic foot muscles, introducing the concept of the foot core. We then integrate the concept of the foot core into the assessment and treatment of the foot. Finally, we call for an increased awareness of the importance of the foot core stability to normal foot and lower extremity function.

  2. Obese older adults suffer foot pain and foot-related functional limitation.

    PubMed

    Mickle, Karen J; Steele, Julie R

    2015-10-01

    There is evidence to suggest being overweight or obese places adults at greater risk of developing foot complications such as osteoarthritis, tendonitis and plantar fasciitis. However, no research has comprehensively examined the effects of overweight or obesity on the feet of individuals older than 60 years of age. Therefore we investigated whether foot pain, foot structure, and/or foot function is affected by obesity in older adults. Three hundred and twelve Australian men and women, aged over 60 years, completed validated questionnaires to establish the presence of foot pain and health related quality of life. Foot structure (anthropometrics and soft tissue thickness) and foot function (ankle dorsiflexion strength and flexibility, toe flexor strength, plantar pressures and spatiotemporal gait parameters) were also measured. Obese participants (BMI >30) were compared to those who were overweight (BMI=25-30) and not overweight (BMI <25). Obese participants were found to have a significantly higher prevalence of foot pain and scored significantly lower on the SF-36. Obesity was also associated with foot-related functional limitation whereby ankle dorsiflexion strength, hallux and lesser toe strength, stride/step length and walking speed were significantly reduced in obese participants compared to their leaner counterparts. Therefore, disabling foot pain and altered foot structure and foot function are consequences of obesity for older adults, and impact upon their quality of life. Interventions designed to reduce excess fat mass may relieve loading of the foot structures and, in turn, improve foot pain and quality of life for older obese individuals.

  3. FUN3D Airload Predictions for the Full-Scale UH-60A Airloads Rotor in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Biedron, Robert T.

    2013-01-01

    An unsteady Reynolds-Averaged Navier-Stokes solver for unstructured grids, FUN3D, is used to compute the rotor performance and airloads of the UH-60A Airloads Rotor in the National Full-Scale Aerodynamic Complex (NFAC) 40- by 80-foot Wind Tunnel. The flow solver is loosely coupled to a rotorcraft comprehensive code, CAMRAD-II, to account for trim and aeroelastic deflections. Computations are made for the 1-g level flight speed-sweep test conditions with the airloads rotor installed on the NFAC Large Rotor Test Apparatus (LRTA) and in the 40- by 80-ft wind tunnel to determine the influence of the test stand and wind-tunnel walls on the rotor performance and airloads. Detailed comparisons are made between the results of the CFD/CSD simulations and the wind tunnel measurements. The computed trends in solidity-weighted propulsive force and power coefficient match the experimental trends over the range of advance ratios and are comparable to previously published results. Rotor performance and sectional airloads show little sensitivity to the modeling of the wind-tunnel walls, which indicates that the rotor shaft-angle correction adequately compensates for the wall influence up to an advance ratio of 0.37. Sensitivity of the rotor performance and sectional airloads to the modeling of the rotor with the LRTA body/hub increases with advance ratio. The inclusion of the LRTA in the simulation slightly improves the comparison of rotor propulsive force between the computation and wind tunnel data but does not resolve the difference in the rotor power predictions at mu = 0.37. Despite a more precise knowledge of the rotor trim loads and flight condition, the level of comparison between the computed and measured sectional airloads/pressures at an advance ratio of 0.37 is comparable to the results previously published for the high-speed flight test condition.

  4. Weigh-in-motion scale with foot alignment features

    SciTech Connect

    Abercrombie, Robert Knox; Richardson, Gregory David; Scudiere, Matthew Bligh

    2013-03-05

    A pad is disclosed for use in a weighing system for weighing a load. The pad includes a weighing platform, load cells, and foot members. Improvements to the pad reduce or substantially eliminate rotation of one or more of the corner foot members. A flexible foot strap disposed between the corner foot members reduces rotation of the respective foot members about vertical axes through the corner foot members and couples the corner foot members such that rotation of one corner foot member results in substantially the same amount of rotation of the other corner foot member. In a strapless variant one or more fasteners prevents substantially all rotation of a foot member. In a diagonal variant, a foot strap extends between a corner foot member and the weighing platform to reduce rotation of the foot member about a vertical axis through the corner foot member.

  5. RANZCR Celebrates 80 Years.

    PubMed

    Milross, Chris

    2015-12-01

    2015 marks the 80th anniversary of the formation of the Australian and New Zealand Association of Radiology (ANZAR) in 1935. The association underwent several name changes over the following decades, finally becoming The Royal Australian and New Zealand College of Radiologists (RANZCR) in 1998. The following is the text from the speech given by the President of the College, A/Prof Chris Milross, at the 2015 RANZCR Annual Scientific Meeting to mark the anniversary.

  6. JCE: 80 Years New

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    2003-01-01

    Participating in the National Science, Technology, Engineering, and Mathematics Education Digital Library project is an exciting prospect for JCE. We expect to be able to make major contributions to the project and derive major benefits from participating in it. Your help in this important undertaking would be most welcome and greatly appreciated. Help us demonstrate that an 80-year-old can dance to a new tune!

  7. Investigation of correlation between full-scale and fifth-scale wind tunnel tests of a Bell helicopter Textron Model 222

    NASA Technical Reports Server (NTRS)

    Squires, P. K.

    1982-01-01

    Reasons for lack of correlation between data from a fifth-scale wind tunnel test of the Bell Helicopter Textron Model 222 and a full-scale test of the model 222 prototype in the NASA Ames 40-by 80-foot tunnel were investigated. This investigation centered around a carefully designed fifth-scale wind tunnel test of an accurately contoured model of the Model 222 prototype mounted on a replica of the full-scale mounting system. The improvement in correlation for drag characteristics in pitch and yaw with the fifth-scale model mounted on the replica system is shown. Interference between the model and mounting system was identified as a significant effect and was concluded to be a primary cause of the lack of correlation in the earlier tests.

  8. ENERGY SAVINGS IN FORMATION FLIGHT OF PINK-FOOTED GEESE

    PubMed

    Cutts; Speakman

    1994-04-01

    Fifty-four skeins of pink-footed geese (Anser brachyrhynchus) were photographed from directly underneath to eliminate the effects of perspective distortion, and the wing-tip spacings (the distance between adjacent birds' wing tips perpendicular to the flight path at maximum wingspan) and depths (the distance between adjacent birds' body centres parallel to the flight path) were measured at the same time as local wind speeds. The photographs were used to test for savings in induced power from wing positioning relative to the predicted positions of vortices generated by other wings, using a theoretical model. The mean wing-tip spacing corresponded to a saving in induced power of 14 %, less than one-third of the maximum possible. The saving in total power might be as low as 2.4 %. The high variation in wing-tip spacing suggests that pink-footed geese found difficulty maintaining position and thus adopted a strategy of flying outboard of the optimal position that maximises savings. This may minimise the risk of straying into a zone where savings are negative. There was a significant correlation between depth and wing-tip spacing, supporting an alternative communication hypothesis, whereby the birds position themselves to obtain maximum information on their neighbour's position. In high winds, there was little change in wing-tip spacing variation but a decrease in depth variation, suggesting a shift towards more regularly spaced skeins.

  9. A computer-controlled, on-board data acquisition system for wind-tunnel testing

    NASA Technical Reports Server (NTRS)

    Finger, H. J.; Cambra, J. M.

    1974-01-01

    A computer-controlled data acquisition system has been developed for the 40x80-foot wind tunnel at Ames Research Center. The system, consisting of several small onboard units installed in the model and a data-managing, data-displaying ground station, is capable of sampling up to 256 channels of raw data at a total sample rate of 128,000 samples/sec. Complete signal conditioning is contained within the on-board units. The sampling sequence and channel gain selection is completely random and under total control of the ground station. Outputs include a bar-graph display, digital-to-analog converters, and digital interface to the tunnel's central computer, an SEL 840MP. The system can be run stand-alone or under the control of the SEL 840MP.

  10. Wind Tunnel Visualization of the Flow Over a Full-Scale F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lanser, Wendy R.; Botha, Gavin J.; James, Kevin D.; Crowder, James P.; Schmitz, Fredric H. (Technical Monitor)

    1994-01-01

    The proposed paper presents flow visualization performed during experiments conducted on a full-scale F/A-18 aircraft in the 80- by 120-Foot Wind-Tunnel at NASA Ames Research Center. This investigation used both surface and off-surface flow visualization techniques to examine the flow field on the forebody, canopy, leading edge extensions (LEXs), and wings. The various techniques used to visualize the flow field were fluorescent tufts, flow cones treated with reflective material, smoke in combination with a laser light sheet, and a video imaging system. The flow visualization experiments were conducted over an angle of attack range from 20deg to 45deg and over a sideslip range from -10deg to 10deg. The results show regions of attached and separated flow on the forebody, canopy, and wings. Additionally, the vortical flow is clearly visible over the leading-edge extensions, canopy, and wings.

  11. 40 CFR 80.528-80.529 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false 80.528-80.529 Section 80.528-80.529 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and...

  12. 40 CFR 80.587-80.589 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false 80.587-80.589 Section 80.587-80.589 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and...

  13. 40 CFR 80.541-80.549 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false 80.541-80.549 Section 80.541-80.549 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and...

  14. 40 CFR 80.556-80.559 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false 80.556-80.559 Section 80.556-80.559 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and...

  15. 40 CFR 80.503-80.509 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false 80.503-80.509 Section 80.503-80.509 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and...

  16. 40 CFR 80.541-80.549 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false 80.541-80.549 Section 80.541-80.549 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and...

  17. 40 CFR 80.537-80.539 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false 80.537-80.539 Section 80.537-80.539 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and...

  18. 40 CFR 80.556-80.559 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false 80.556-80.559 Section 80.556-80.559 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and...

  19. 40 CFR 80.575-80.579 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false 80.575-80.579 Section 80.575-80.579 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and...

  20. 40 CFR 80.575-80.579 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false 80.575-80.579 Section 80.575-80.579 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and...

  1. 40 CFR 80.537-80.539 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false 80.537-80.539 Section 80.537-80.539 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and...

  2. 40 CFR 80.587-80.589 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false 80.587-80.589 Section 80.587-80.589 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and...

  3. 40 CFR 80.562-80.569 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false 80.562-80.569 Section 80.562-80.569 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and...

  4. 40 CFR 80.503-80.509 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false 80.503-80.509 Section 80.503-80.509 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and...

  5. 40 CFR 80.562-80.569 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false 80.562-80.569 Section 80.562-80.569 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and...

  6. 47 CFR 80.80 - Operating controls for ship stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operating controls for ship stations. 80.80... SERVICES STATIONS IN THE MARITIME SERVICES Operating Requirements and Procedures Station Requirements-Ship Stations § 80.80 Operating controls for ship stations. (a) Each control point must be capable of:...

  7. 47 CFR 80.80 - Operating controls for ship stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Operating controls for ship stations. 80.80... SERVICES STATIONS IN THE MARITIME SERVICES Operating Requirements and Procedures Station Requirements-Ship Stations § 80.80 Operating controls for ship stations. (a) Each control point must be capable of:...

  8. 47 CFR 80.80 - Operating controls for ship stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Operating controls for ship stations. 80.80... SERVICES STATIONS IN THE MARITIME SERVICES Operating Requirements and Procedures Station Requirements-Ship Stations § 80.80 Operating controls for ship stations. (a) Each control point must be capable of:...

  9. 47 CFR 80.80 - Operating controls for ship stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Operating controls for ship stations. 80.80... SERVICES STATIONS IN THE MARITIME SERVICES Operating Requirements and Procedures Station Requirements-Ship Stations § 80.80 Operating controls for ship stations. (a) Each control point must be capable of:...

  10. 47 CFR 80.80 - Operating controls for ship stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Operating controls for ship stations. 80.80... SERVICES STATIONS IN THE MARITIME SERVICES Operating Requirements and Procedures Station Requirements-Ship Stations § 80.80 Operating controls for ship stations. (a) Each control point must be capable of:...

  11. Laboratory evaluation of footings for lunar telescopes

    NASA Technical Reports Server (NTRS)

    Chua, Koon M.; Golis, Kelly M.; Johnson, Stewart W.

    1992-01-01

    Presented here are the results of laboratory experiments with diffferent footing shapes for lunar telescopes. These experiments used a variety of soils including some to simulate regolith response. Based on what is known of regolith and regolith-structure interaction, a shallow-multiple-contact points footing foundation can be adequately designed to support lunar telescopes. Plane-strain load-displacement tests were conducted with different footings and different lunar simulants in a deep transparent plexiglass container. The model footings considered include the rectangular, hemispherical, and spudcan designs. Simulants used to reproduce the mechanical properties of the lunar regolith were fly ash, crushed basalt with and without glass, and a processed lunar simulant. Load-displacement curves were obtained for the different footings in Ottawa sand and in the crushed basalt with glass. The spudcan footing was found to be self-digging and yet stiff, thus providing excellent lateral stability in a large variety of soils.

  12. Diabetic foot ulcer: assessment and management.

    PubMed

    Saraogi, Ravi Kant

    2008-02-01

    Diabetic foot ulcer is a rising health problem with rising prevalence of diabetes. It is the most important cause of non-traumatic foot amputations. Diabetic foot ulcers are primarily due to neuropathy and/or ischaemia, and are frequently complicated by infection. Up to 85% of all diabetic foot related problems are preventable through a combination of good foot care and appropriate education for patients and healthcare providers. The holistic care of diabetic foot ulcer patients requires a multidisciplinary team approach. Apart from blood sugar control, treatment of ulcer involves debridement, offloading, appropriate dressings, vascular maintenance and infection control. Use of adjunctive treatments such as various growth factors, skin replacement dressings and vacuum assisted closure will accelerate healing in selected cases.

  13. Recognizing familiar objects by hand and foot: Haptic shape perception generalizes to inputs from unusual locations and untrained body parts.

    PubMed

    Lawson, Rebecca

    2014-02-01

    The limits of generalization of our 3-D shape recognition system to identifying objects by touch was investigated by testing exploration at unusual locations and using untrained effectors. In Experiments 1 and 2, people found identification by hand of real objects, plastic 3-D models of objects, and raised line drawings placed in front of themselves no easier than when exploration was behind their back. Experiment 3 compared one-handed, two-handed, one-footed, and two-footed haptic object recognition of familiar objects. Recognition by foot was slower (7 vs. 13 s) and much less accurate (9 % vs. 47 % errors) than recognition by either one or both hands. Nevertheless, item difficulty was similar across hand and foot exploration, and there was a strong correlation between an individual's hand and foot performance. Furthermore, foot recognition was better with the largest 20 of the 80 items (32 % errors), suggesting that physical limitations hampered exploration by foot. Thus, object recognition by hand generalized efficiently across the spatial location of stimuli, while object recognition by foot seemed surprisingly good given that no prior training was provided. Active touch (haptics) thus efficiently extracts 3-D shape information and accesses stored representations of familiar objects from novel modes of input.

  14. Assessing diabetic foot ulcer development risk with hyperspectral tissue oximetry

    NASA Astrophysics Data System (ADS)

    Yudovsky, Dmitry; Nouvong, Aksone; Schomacker, Kevin; Pilon, Laurent

    2011-02-01

    Foot ulceration remains a serious health concern for diabetic patients and has a major impact on the cost of diabetes treatment. Early detection and preventive care, such as offloading or improved hygiene, can greatly reduce the risk of further complications. We aim to assess the use of hyperspectral tissue oximetry in predicting the risk of diabetic foot ulcer formation. Tissue oximetry measurements are performed during several visits with hyperspectral imaging of the feet in type 1 and 2 diabetes mellitus subjects that are at risk for foot ulceration. The data are retrospectively analyzed at 21 sites that ulcerated during the course of our study and an ulceration prediction index is developed. Then, an image processing algorithm based on this index is implemented. This algorithm is able to predict tissue at risk of ulceration with a sensitivity and specificity of 95 and 80%, respectively, for images taken, on average, 58 days before tissue damage is apparent to the naked eye. Receiver operating characteristic analysis is also performed to give a range of sensitivity/specificity values resulting in a Q-value of 89%.

  15. Assessing diabetic foot ulcer development risk with hyperspectral tissue oximetry.

    PubMed

    Yudovsky, Dmitry; Nouvong, Aksone; Schomacker, Kevin; Pilon, Laurent

    2011-02-01

    Foot ulceration remains a serious health concern for diabetic patients and has a major impact on the cost of diabetes treatment. Early detection and preventive care, such as offloading or improved hygiene, can greatly reduce the risk of further complications. We aim to assess the use of hyperspectral tissue oximetry in predicting the risk of diabetic foot ulcer formation. Tissue oximetry measurements are performed during several visits with hyperspectral imaging of the feet in type 1 and 2 diabetes mellitus subjects that are at risk for foot ulceration. The data are retrospectively analyzed at 21 sites that ulcerated during the course of our study and an ulceration prediction index is developed. Then, an image processing algorithm based on this index is implemented. This algorithm is able to predict tissue at risk of ulceration with a sensitivity and specificity of 95 and 80%, respectively, for images taken, on average, 58 days before tissue damage is apparent to the naked eye. Receiver operating characteristic analysis is also performed to give a range of sensitivity/specificity values resulting in a Q-value of 89%.

  16. Meteorology (Wind)

    Atmospheric Science Data Center

    2014-09-25

    Wind speed at 50 m (m/s) The average and percent difference minimum and ... are given.   Percent of time for ranges of wind speed at 50 m (percent) Percentage [frequency] of time that wind speed is in each range (0-2, 3-6, 7-10, 11-14, 15-18, 19-25 m/s).   ...

  17. Extracorporeal shockwave therapy in diabetic foot ulcers.

    PubMed

    Wang, Ching-Jen; Cheng, Jai-Hong; Kuo, Yur-Ren; Schaden, Wolfgang; Mittermayr, Rainer

    2015-12-01

    Diabetic foot ulcers (DFUs) are among the most common foot disorders with ulceration, infection, and gangrene that may ultimately lead to lower extremity amputation. The goals of treatment include the control of diabetes and proper shoe wear. An effective therapy and appropriate foot care are important in wound healing in DFUs. Recently, extracorporeal shockwave therapy (ESWT) was reported to significantly promote and accelerate the healing of complex soft tissue wounds as compared to the standard methods of treatment in DFUs. ESWT showed positive results in short-term and long-term outcomes in diabetic patients suffering from foot ulcers. In this article, we review the clinical results of ESWT in DFUs.

  18. Priorities in offloading the diabetic foot.

    PubMed

    Bus, Sicco A

    2012-02-01

    Biomechanical factors play an important role in diabetic foot disease. Reducing high foot pressures (i.e. offloading) is one of the main goals in healing and preventing foot ulceration. Evidence-based guidelines show the strong association between the efficacy to offload the foot and clinical outcome. However, several aspects related to offloading are underexposed. First, in the management of foot complications, offloading is mostly studied as a single entity, whereas it should be analysed in a broader perspective of contributing factors to better predict clinical outcome. This includes assessment of patient behavioural factors such as type and intensity of daily physical activity and adherence to prescribed treatment. Second, a large gap exists between evidence-based recommendations and clinical practice in the use of offloading for ulcer treatment, and this gap needs to be bridged. Possible ways to achieve this are discussed in this article. Third, our knowledge about the efficacy and role of offloading in treating complicated and non-plantar neuropathic foot ulcers needs to be expanded because these ulcers currently dominate presentation in multidisciplinary foot practice. Finally, foot ulcer prevention is underexposed when compared with ulcer treatment. Prevention requires a larger focus, in particular regarding the efficacy of therapeutic footwear and its relative role in comparison with other preventative strategies. These priorities need the attention of clinicians, scientists and professional societies to improve our understanding of offloading and to improve clinical outcome in the management of the diabetic foot.

  19. March 1971 wind tunnel tests of the Dorand DH 2011 jet flap rotor, volume 1

    NASA Technical Reports Server (NTRS)

    Kretz, M.; Aubrun, J.; Larche, M.

    1973-01-01

    The results of wind tunnel tests, second series of tests performed in the NASA Ames 40 x 80 foot wind tunnel, of the DH 2011 jet-flap rotor are presented and analyzed. The tests have been focused on multicyclic effects and the capability of this rotor to reduce the vibratory loads and stresses in the blades. The reductions of the vibrations and stresses at tip speed ratio of 0.4 have attained 50%. The theory shows further reductions possible, reaching 80%. The results show that the performance characteristics after the modifications introduced since 1965 remained unchanged. The domain of investigation has been enlarged to include the tip speed ratios of 0.6 and 0.7. To analyze the complex aeroelastic phenomena a new analytical technique has been utilized to represent the mathematical model of the rotor. This technique, based on transfer matrices and transfer functions, appears very simple and it is believed that this analysis is applicable to many kinds of investigations involving large numbers of variables.

  20. The diabetic foot: a review.

    PubMed

    Ricco, J B; Thanh Phong, L; Schneider, F; Illuminati, G; Belmonte, R; Valagier, A; Régnault De La Mothe, G

    2013-12-01

    Diabetic foot ulceration (DFU) is among the most frequent complications of diabetes. Neuropathy and ischaemia are the initiating factors and infection is mostly a consequence. We have shown in this review that any DFU should be considered to have vascular impairment. DFU will generally heal if the toe pressure is >55 mmHg and a transcutaneous oxygen pressure (TcPO2) <30 mmHg has been considered to predict that a diabetic ulcer may not heal. The decision to intervene is complex and made according to the symptoms and clinical findings. If both an endovascular and a bypass procedure are possible with an equal outcome to be expected, endovascular treatments should be preferred. Primary and secondary mid-term patency rates are better after bypass, but there is no difference in limb salvage. Bedridden patients with poor life expectancy and a non-revascularisable leg are indications for performing a major amputation. A deep infection is the immediate cause of amputation in 25% to 50% of diabetic patients. Patients with uncontrolled abscess, bone or joint involvement, gangrene, or necrotising fasciitis have a "foot-at risk" and need prompt surgical intervention with debridement and revascularisation. As demonstrated in this review, foot ulcer in diabetic is associated with high mortality and morbidity. Early referral, non-invasive vascular testing, imaging and intervention are crucial to improve DFU healing and to prevent amputation. Diabetics are eight to twenty-four times more likely than non-diabetics to have a lower limb amputation and it has been suggested that a large part of those amputations could be avoided by an early diagnosis and a multidisciplinary approach.

  1. The diabetic foot: a review.

    PubMed

    Ricco, J B; Thanh Phong, L; Schneider, F; Illuminati, G; Belmonte, R; Valagier, A; Régnault De La Mothe, G

    2013-12-01

    Diabetic foot ulceration (DFU) is among the most frequent complications of diabetes. Neuropathy and ischaemia are the initiating factors and infection is mostly a consequence. We have shown in this review that any DFU should be considered to have vascular impairment. DFU will generally heal if the toe pressure is >55 mmHg and a transcutaneous oxygen pressure (TcPO2) <30 mmHg has been considered to predict that a diabetic ulcer may not heal. The decision to intervene is complex and made according to the symptoms and clinical findings. If both an endovascular and a bypass procedure are possible with an equal outcome to be expected, endovascular treatments should be preferred. Primary and secondary mid-term patency rates are better after bypass, but there is no difference in limb salvage. Bedridden patients with poor life expectancy and a non-revascularisable leg are indications for performing a major amputation. A deep infection is the immediate cause of amputation in 25% to 50% of diabetic patients. Patients with uncontrolled abscess, bone or joint involvement, gangrene, or necrotising fasciitis have a "foot-at risk" and need prompt surgical intervention with debridement and revascularisation. As demonstrated in this review, foot ulcer in diabetic is associated with high mortality and morbidity. Early referral, non-invasive vascular testing, imaging and intervention are crucial to improve DFU healing and to prevent amputation. Diabetics are eight to twenty-four times more likely than non-diabetics to have a lower limb amputation and it has been suggested that a large part of those amputations could be avoided by an early diagnosis and a multidisciplinary approach. PMID:24126512

  2. Optical imagery and spectrophotometry of CTB 80

    NASA Technical Reports Server (NTRS)

    Hester, J. Jeff; Kulkarni, Shrinivas R.

    1989-01-01

    Narrow-band imagery and spectrophotometry of the central region of CTB 80 are presented. The images show weak forbidden O III and ubiquitous filamentary forbidden S II and H-alpha emission from the extended radio lobes in which the core is embedded. The data indicate that the extended component is shock heated. Balmer line-dominated emission is observed around the perimeter of the core. Assuming that the volume of the radio shell is similar to the volume of the thermal shell, it is found that a magnetic field of about 600 microG and a cosmic-ray proton-to-electron ratio of about 200 are required to explain the pressure and synchrotron volume emissivity in the radio shell. It is suggested that the optical emission form the core of CTB 80 arises behind shocks which are being driven into a magnetized thermal plasma by the confined relativistic wind from PSR 1951+32.

  3. Stress Fractures of the Foot.

    PubMed

    Hossain, Munier; Clutton, Juliet; Ridgewell, Mark; Lyons, Kathleen; Perera, Anthony

    2015-10-01

    Stress fractures of the foot and ankle may be more common among athletes than previously reported. A low threshold for investigation is warranted and further imaging may be appropriate if initial radiographs remain inconclusive. Most of these fractures can be treated conservatively with a period of non-weight-bearing mobilization followed by gradual return to activity. Early surgery augmented by bone graft may allow athletes to return to sports earlier. Risk of delayed union, nonunion, and recurrent fracture is high. Many of the patients may also have risk factors for injury that should be modified for a successful outcome.

  4. A Positive Association Between Foot Posture Index and Medial Compartment Knee Osteoarthritis in Moroccan People

    PubMed Central

    F.E, Abourazzak; N, Kadi; H, Azzouzi; F, Lazrak; A, Najdi; C, Nejjari; T, Harzy

    2014-01-01

    Objectives : To compare foot posture in people with and without medial compartment knee osteoarthritis (OA), and to assess association between its abnormalities and medial compartment knee OA. Methods : We compared the foot posture of patients with clinically and radiographically-confirmed medial compartment knee OA and asymptomatic healthy controls using the foot posture index (FPI), navicular height, and the medial arch. Results : We included 100 patients and 80 asymptomatic controls. The mean age of patients was 59 ± 7 (44-76) years and 48 ± 9 (28-60) years in the control (p=0.06). Patients group have more pronated foot for FPI (1.50 ± 2.68 vs 0.72 ± 2.63; p=0.05), more flat foot (42% vs 22%; p=0.03), and less pes cavus than the control group (58% vs 77%; p=0.004). However, there was no significant difference between the groups in the navicular height (3.90 ± 0.85 cm vs 4.00 ± 0.76 cm; p=0.41). In multivariate statistical analysis, after adjusting for age and body mass index, pronated foot in FPI (OR=1.22, 95%IC= [1.06-1.40], p=0.005), and pes cavus (OR=0.32, 95%IC= [0.11-0.93], p=0.03) had a significant correlation with the knee osteoarthritis. Conclusion : Pronated foot posture and flat foot are significantly associated with medial compartment knee osteoarthritis. PMID:25553141

  5. On Sound Footing: The Health of Your Feet

    MedlinePlus

    ... link, please review our exit disclaimer . Subscribe On Sound Footing The Health of Your Feet Your feet ... search Features A Bang to the Brain On Sound Footing Wise Choices Links Foot Health Tips Use ...

  6. Genetics Home Reference: hand-foot-genital syndrome

    MedlinePlus

    ... Genetics Home Health Conditions hand-foot-genital syndrome hand-foot-genital syndrome Enable Javascript to view the ... boxes. Download PDF Open All Close All Description Hand-foot-genital syndrome is a rare condition that ...

  7. Classification of diabetic foot ulcers.

    PubMed

    Game, Frances

    2016-01-01

    It is known that the relative importance of factors involved in the development of diabetic foot problems can vary in both their presence and severity between patients and lesions. This may be one of the reasons why outcomes seem to vary centre to centre and why some treatments may seem more effective in some people than others. There is a need therefore to classify and describe lesions of the foot in patients with diabetes in a manner that is agreed across all communities but is simple to use in clinical practice. No single system is currently in widespread use, although a number have been published. Not all are well validated outside the system from which they were derived, and it has not always been made clear the clinical purposes to which such classifications should be put to use, whether that be for research, clinical description in routine clinical care or audit. Here the currently published classification systems, their validation in clinical practice, whether they were designed for research, audit or clinical care, and the strengths and weaknesses of each are explored.

  8. Robust Foot Clearance Estimation Based on the Integration of Foot-Mounted IMU Acceleration Data.

    PubMed

    Benoussaad, Mourad; Sijobert, Benoît; Mombaur, Katja; Coste, Christine Azevedo

    2015-01-01

    This paper introduces a method for the robust estimation of foot clearance during walking, using a single inertial measurement unit (IMU) placed on the subject's foot. The proposed solution is based on double integration and drift cancellation of foot acceleration signals. The method is insensitive to misalignment of IMU axes with respect to foot axes. Details are provided regarding calibration and signal processing procedures. Experimental validation was performed on 10 healthy subjects under three walking conditions: normal, fast and with obstacles. Foot clearance estimation results were compared to measurements from an optical motion capture system. The mean error between them is significantly less than 15 % under the various walking conditions. PMID:26703622

  9. Robust Foot Clearance Estimation Based on the Integration of Foot-Mounted IMU Acceleration Data.

    PubMed

    Benoussaad, Mourad; Sijobert, Benoît; Mombaur, Katja; Coste, Christine Azevedo

    2015-12-23

    This paper introduces a method for the robust estimation of foot clearance during walking, using a single inertial measurement unit (IMU) placed on the subject's foot. The proposed solution is based on double integration and drift cancellation of foot acceleration signals. The method is insensitive to misalignment of IMU axes with respect to foot axes. Details are provided regarding calibration and signal processing procedures. Experimental validation was performed on 10 healthy subjects under three walking conditions: normal, fast and with obstacles. Foot clearance estimation results were compared to measurements from an optical motion capture system. The mean error between them is significantly less than 15 % under the various walking conditions.

  10. 40 CFR 80.528-80.529 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements §§ 80.528-80.529 Temporary...

  11. 40 CFR 80.528-80.529 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements §§ 80.528-80.529 Temporary...

  12. 40 CFR 80.514-80.519 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information §§ 80.514-80.519 Motor Vehicle Diesel Fuel Standards and Requirements...

  13. 40 CFR 80.514-80.519 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information §§ 80.514-80.519 Motor Vehicle Diesel Fuel Standards and Requirements...

  14. Langley 14- by 22-foot subsonic tunnel test engineer's data acquisition and reduction manual

    NASA Technical Reports Server (NTRS)

    Quinto, P. Frank; Orie, Nettie M.

    1994-01-01

    The Langley 14- by 22-Foot Subsonic Tunnel is used to test a large variety of aircraft and nonaircraft models. To support these investigations, a data acquisition system has been developed that has both static and dynamic capabilities. The static data acquisition and reduction system is described; the hardware and software of this system are explained. The theory and equations used to reduce the data obtained in the wind tunnel are presented; the computer code is not included.

  15. Data reduction formulas for the 16-foot transonic tunnel: NASA Langley Research Center, revision 2

    NASA Technical Reports Server (NTRS)

    Mercer, Charles E.; Berrier, Bobby L.; Capone, Francis J.; Grayston, Alan M.

    1992-01-01

    The equations used by the 16-Foot Transonic Wind Tunnel in the data reduction programs are presented in nine modules. Each module consists of equations necessary to achieve a specific purpose. These modules are categorized in the following groups: (1) tunnel parameters; (2) jet exhaust measurements; (3) skin friction drag; (4) balance loads and model attitudes calculations; (5) internal drag (or exit-flow distribution); (6) pressure coefficients and integrated forces; (7) thrust removal options; (8) turboprop options; and (9) inlet distortion.

  16. An optical flameout detection system for NASA Langley's 8-Foot High Temperature Tunnel

    NASA Technical Reports Server (NTRS)

    Borg, S. E.; West, J. W.; Lawrence, R. M.; Harper, S. E.; Alderfer, D. W.; Connelly, J. M.

    1993-01-01

    A brief description is presented of an optical flameout detection system under development at NASA Langley's 8-Foot High Temperature Wind Tunnel. The system design, theory of operation, and performance are addressed. The system can respond quickly to sudden changes in combustor light intensity and is a reliable indicator of flame activity within the combustor. Deviations of the system could provide more detailed information on various aspects of the combustion process.

  17. Strut Supported Bell XS-2 in 7 x 10 Foot Tunnel

    NASA Technical Reports Server (NTRS)

    1946-01-01

    The strut system used conventionally into the 1940s to support models in large wind tunnels disturbed airflow so much that many test results were questionable, especially at higher Mach numbers. In this photo from August 1946, a strut-supported model of the Bell XS-2 is being tested in the 7x10 Foot Tunnel. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 313.

  18. [The "diabetic foot" syndrome. An overview].

    PubMed

    Chantelau, E

    1999-01-01

    Amputation has been used most frequently to treat the diabetic foot syndrome, occlusive microangiopathy being suspected as the underlying cause. This paradigm is obsolete: most diabetic foot lesions are due to traumatic painless (neuropathic) infections. Evidence is presented for alternative treatment strategies to effectively reduce exorbitant amputation rates in diabetic patients.

  19. Comparative Anatomy of the Hand and Foot.

    ERIC Educational Resources Information Center

    Postiglione, Ralph A.

    1983-01-01

    Presents an activity to articulate comparison of the hand and foot. Students carefully cut out corresponding hand/foot parts (carpals, tarsals, metacarpals, metatarsals, and phalanges) from enlarged diagrams and paste them on paper for comparative analysis. Sample student inferences and diagrams used for the activity are provided. (JN)

  20. Efficient foot motor control by Neymar's brain.

    PubMed

    Naito, Eiichi; Hirose, Satoshi

    2014-01-01

    How very long-term (over many years) motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer) recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI) while he rotated his right ankle at 1 Hz. We also scanned brain activity when three other age-controlled professional footballers, two top-athlete swimmers and one amateur footballer performed the identical task. A comparison was made between Neymar's brain activity with that obtained from the others. We found activations in the left medial-wall foot motor regions during the foot movements consistently across all participants. However, the size and intensity of medial-wall activity was smaller in the four professional footballers than in the three other participants, despite no difference in amount of foot movement. Surprisingly, the reduced recruitment of medial-wall foot motor regions became apparent in Neymar. His medial-wall activity was smallest among all participants with absolutely no difference in amount of foot movement. Neymar may efficiently control given foot movements probably by largely conserving motor-cortical neural resources. We discuss this possibility in terms of over-years motor skill training effect, use-dependent plasticity, and efficient motor control.

  1. 24 CFR 3285.312 - Footings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... density. A footing must support every pier. Footings are to be either: (1) Concrete. (i) Four inch nominal precast concrete pads meeting or exceeding ASTM C 90-02a, Standard Specification for Loadbearing Concrete... compressive strength of 1,200 pounds per square inch (psi); or (ii) Six inch minimum poured-in-place...

  2. 24 CFR 3285.312 - Footings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... density. A footing must support every pier. Footings are to be either: (1) Concrete. (i) Four inch nominal precast concrete pads meeting or exceeding ASTM C 90-02a, Standard Specification for Loadbearing Concrete... compressive strength of 1,200 pounds per square inch (psi); or (ii) Six inch minimum poured-in-place...

  3. Cosmetic Foot Surgery: Fashion's Pandora's Box

    MedlinePlus

    ... Fashion’s Pandora’s Box? A A A | Print | Share Cosmetic Foot Surgery: Fashion’s Pandora’s Box? Foot and ankle ... extreme and imprudent as it may sound, the cosmetic surgery craze isn't just for faces anymore- ...

  4. Louisiana farm discussion: 8 foot row spacing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This year several tests in growers’ fields were used to compare traditional 6-foot row spacing to 8-foot row spacing. Cane is double-drilled in the wider row spacing. The wider row spacing would accommodate John Deere 3522 harvester. Field data indicate the sugarcane yields are very comparable in 8-...

  5. 24 CFR 3285.312 - Footings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methods and practices that prevent the effects of frost heave by one of the following methods: (1) Conventional footings. Conventional footings must be placed below the frost line depth for the site unless an... frost line depth is not available from the LAHJ, a registered professional engineer,...

  6. Basketball injuries of the foot and ankle.

    PubMed

    McDermott, E P

    1993-04-01

    Foot and ankle injuries in basketball are discussed in three unrelated categories in this article. This includes a practical differential diagnosis of ankle sprains, acute conditions of the mid and hindfoot, overuse syndromes of nerve entrapment, fascial strain, synovitis, joint subluxation, and inflammation resulting from repetitive stress. The diagnosis and treatment of tendon inflammation of the extrinsic foot musculature is also reviewed.

  7. STS-80 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This mission patch for mission STS-80 depicts the Space Shuttle Columbia and the two research satellites its crew deployed into the blue field of space. The uppermost satellite is the Orbiting Retrievable Far and Extreme Ultraviolet Spectrograph-Shuttle Pallet Satellite (ORFEUS-SPAS), a telescope aimed at unraveling the life cycles of stars and understanding the gases that drift between them. The lower satellite is the Wake Shield Facility (WSF), flying for the third time. It will use the vacuum of space to create advanced semiconductors for the nation's electronics industry. ORFEUS and WSF are joined by the symbol of the Astronaut Corps, representing the human contribution to scientific progress in space. The two bright blue stars represent the mission's Extravehicular Activities (EVA), final rehearsals for techniques and tools to be used in assembly of the International Space Station (ISS). Surrounding Columbia is a constellation of 16 stars, one for each day of the mission, representing the stellar talents of the ground and flight teams that share the goal of expanding knowledge through a permanent human presence in space.

  8. A national approach to diabetes foot risk stratification and foot care.

    PubMed

    Leese, G P; Stang, D; Pearson, D W

    2011-08-01

    The Scottish Diabetes Foot Action Group (SDG) has developed and introduced a national strategy plan for diabetic foot care across Scotland. This has involved the implementation of an evidence-based national foot screening and risk stratification programme that has already covered 61% of the population in just the first two years. Nationally agreed patient information foot leaflets and professional education material have been introduced, and a consensus for antibiotic use in the diabetic foot has been published. Information on multidisciplinary specialist foot services has been collected, indicating that 58% of Health Board areas have consultants with dedicated sessions in their job plan to a foot clinic, and 42% had integrated orthotic involvement. The SDG aims to increase these figures. Work has been undertaken to support local podiatry networks and improve communication between the specialist centre and the community. At a national level the SDG is working with Foot in Diabetes UK (FDUK) to recognize key podiatry skills by developing core competencies and a competency framework for the diabetes podiatrist and diabetes orthotist. The annual Scottish Diabetes Survey indicates some improvement in amputation rates with prevalence decreasing from 0.8% to 0.5%, and improved recording of foot ulceration at a national level. This national strategy has helped highlight the importance and difficulties facing diabetes foot care and should help to continue to improve the quality of care of people with diabetes who have foot-related problems.

  9. The diabetic foot management - recent advance.

    PubMed

    Sinwar, Prabhu Dayal

    2015-03-01

    Diabetic ulceration of the foot represents a major global medical, social and economic problem. It is the commonest major end-point of diabetic complications. Diabetic neuropathy and peripheral vascular disease are the main etiological factors in foot ulceration and may act alone, together, or in combination with other factors such as microvascular disease, biomechanical abnormalities, limited joint mobility and increased susceptibility to infection. In the diabetic foot, distal sensory polyneuropathy is seen most commonly. The advent of insulin overcame the acute problems of ketoacidosis and infection, but could not prevent the vascular and neurological complications. Management of diabetic neuropathic ulcer by appropriate and timely removal of callus, control of infection and reduction of weight bearing forces. Management of diabetic ischaemic foot are medical management, surgical management and percutaneous transluminal angioplasty of stenosed and occluded lower extremity arteries. Foot ulceration in persons with diabetes is the most frequent precursor to amputation. PMID:25638739

  10. An overview of the Charcot foot pathophysiology

    PubMed Central

    Kaynak, Gökhan; Birsel, Olgar; Güven, Mehmet Fatih; Öğüt, Tahir

    2013-01-01

    Charcot arthropathy of the foot is a rare but devastating complication of diabetes that remains to be a challenging issue for the foot and ankle surgeons. Charcot foot fails to be an obvious diagnostic option that comes to mind, even in a pathognomonic clinical appearance. The rarity of the disorder, more common pathologies that mimic the condition, and the self-limiting prognosis deviate the clinician from the right diagnosis. The clinical challenges in the diagnosis of Charcot foot require in-depth investigations of its enigmatic nature to establish useful guidelines. Yet, this goal seems to be beyond reach, without a holistic view of the immense literature concerning the pathophysiology of the disorder. The primary objective of this article is to put together and review the recent advancements about the etiology and intrinsic mechanisms of diabetic Charcot foot. PMID:23919113

  11. Tumours of the foot and ankle.

    PubMed

    Khan, Zeeshan; Hussain, Shakir; Carter, Simon R

    2015-09-01

    Sarcomas are rare tumours and particularly rarer in the foot and ankle region. The complex anatomy of the foot and ankle makes it unique and hence poses a challenge to the surgeon for limb salvage surgery. Other lesions found in the foot and ankle region are benign bone and soft tissue tumours, metastasis and infection. The purpose of this article is to discuss the relevance of the complex anatomy of the foot and ankle in relation to tumours, clinical features, their general management principles and further discussion about some of the more common bone and soft tissue lesions. Discussion of every single bone and soft tissue lesion in the foot and ankle region is beyond the scope of this article.

  12. Full Scale Wind Tunnel and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction progress, Full Scale entrance cone looking north, exit cone looking south, wind vanes north end, wind vanes north end of east return passage, wind vanes south end of west exit cone looking north east, wind vanes at south end of east exit cone looking north west, entrance cone looking south from north end. Full-Scale Tunnel (FST) entrance cone under construction. Smith DeFrance describes the entrance cone in NACA TR 459 as follows: 'The entrance cone is 75 feet in length and in this distance the cross section changes from a rectangle 72 by 110 feet to a 30 by 60 foot elliptic section. The area reduction in the entrance cone is slightly less than 5:1. The shape of the entrance cone was chosen to give as fas as possible a constant acceleration to the air stream and to retain a 9-foot length of nozzle for directing the flow.' (p. 293)

  13. Towers for Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kurian, V. J.; Narayanan, S. P.; Ganapathy, C.

    2010-06-01

    Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings, for better efficiency, turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate, the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today, more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines, offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases, the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore, turbines build father

  14. Python Engine Installed in Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1949-01-01

    An engine mechanic checks instrumentation prior to an investigation of engine operating characteristics and thrust control of a large turboprop engine with counter-rotating propellers under high-altitude flight conditions in the 20-foot-dianieter test section of the Altitude Wind Tunnel at the Lewis Flight Propulsion Laboratory of the National Advisory Committee for Aeronautics, Cleveland, Ohio, now known as the John H. Glenn Research Center at Lewis Field.

  15. Results of a landing gear loads test using a 0.0405-scale model (16-0) of the space shuttle orbiter in the Rockwell International NAAL wind tunnel (OA163), volume 1

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1976-01-01

    Experimental aerodynamic investigations were conducted on a sting mounted scale representation of the 140C outer mold line space shuttle orbiter configuration in the low speed wind tunnel. The primary test objectives were to define the orbiter landing gear system pressure loading and to record landing gear door and strut hingemoment levels. Secondary objectives included recording the aerodynamic influence of various landing gear configurations on orbiter force data as well as investigating 40 x 80 ft. Ames Wind Tunnel strut simulation effects on both orbiter landing gear loads and aerodynamic characteristics. Testing was conducted at a Mach number of 0.17, free stream dynamic pressure of 42.5 PSF, and Reynolds number per unit length of 1.2 million per foot. Angle of attack variation was 0 to 20 while yaw angles ranged from -10 to 10 deg.

  16. Bacteriology of diabetic foot lesions.

    PubMed

    Anandi, C; Alaguraja, D; Natarajan, V; Ramanathan, M; Subramaniam, C S; Thulasiram, M; Sumithra, S

    2004-01-01

    Clinical grading and bacteriological study of 107 patients with diabetic foot lesions revealed polymicrobial aetiology in 69 (64.4%) and single aetiology in 21 (19.6%). Among 107 patients 62 had ulcer. Of these 31 had mixed aerobes. Twenty six patients with cellulitis and 12 with gangrene had more than 5 types of aerobes and anaerobes such as E. coli, Klebsiella spp., Pseudomonas spp., Proteus spp., Enterobactor spp., Enterococci spp., Clostridium perfringens, Bacteroides spp., Prevotella spp. and Peptostreptococcus spp. It was noted that 50 out of 62 patients with ulcer, and all the patients with cellulitis and gangrene were given surgical management and treated with appropriate antibiotics based on antimicrobial susceptibility testing. PMID:17642727

  17. The immersion foot syndrome. 1946.

    PubMed

    Ungley, C C; Channell, G D; Richards, R L

    2003-01-01

    1. Prolonged exposure of the extremities to cold insufficient to cause tissue freezing produces a well-defined syndrome. 'Immersion foot' is one of the descriptive but inaccurate terms applied to this syndrome. The clinical features, aetiology, pathology, prevention, and treatment of immersion foot are considered in detail. A discussion on pathogenesis is also included. 2. In the natural history of a typical case of immersion foot there are four stages: the period of exposure and the pre-hyperaemic, hyperaemic, and post-hyperaemic stages. 3. During exposure and immediately after rescue the feet are cold, numb, swollen, and pulseless. Intense vasoconstriction sufficient to arrest blood-flow is believed to be the predominant factor during this phase. 4. This is followed by a period of intense hyperaemia, increased swelling, and severe pain. Hyperaemia is due to the release in chilled and ischaemic tissues of relatively stable vasodilator metabolites; pain may be the result of relative anoxia of sensory nerve-endings. 5. Within 7-10 days of rescue the intense hyperaemia and swelling subside and pain diminishes in intensity. A lesser degree of hyperaemia may persist for several weeks. Objective disturbances of sensation and sweating and muscular atrophy and paralysis now become apparent. These findings are correlated with damage to the peripheral nerves. 6. After several weeks the feet become cold-sensitive; when exposed to low temperature they cool abnormally and may remain cold for several hours. Hyperhidrosis frequently accompanies this cold-sensitivity. The factors responsible for these phenomena are incompletely understood; several possible explanations are considered. 7. Severe cases may develop blisters and gangrene. The latter is usually superficial and massive loss of tissue is rare. 8. The hands may be affected but seldom as severely as the feet. The essential features of immersion hand are the same as those of immersion foot. 9. Prognosis depends upon

  18. Performance and loads data from a wind tunnel test of a full-scale, coaxial, hingeless rotor helicopter

    NASA Technical Reports Server (NTRS)

    Felker, F. F., III

    1981-01-01

    A full-scale XH-59A advancing blade concept helicopter was tested in Ames Research Center's 40 by 80 foot wind tunnel. The helicopter was tested with the rotor on and off, rotor hub fairings on and off, interrotor shaft fairing on and off, rotor instrumentation module on and off, and auxiliary propulsion thrust on and off. An advance ratio range of 0.25 and 0.45 with the rotor on and from 60 to 180 knots with the rotor off was investigated. Data on aerodynamic forces and moments, rotor loads, rotor control positions and vibration for the XH-59A as well as the aerodynamic performance of the isolated rotor are presented.

  19. Hover test of a full-scale hingeless helicopter rotor: Aeroelastic stability, performance and loads data. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.; Warmbrodt, W.

    1984-01-01

    A hover test of a full-scale, hingeless rotor system was conducted in the NASA Ames 40- by 80-foot wind tunnel. The rotor was tested on the Ames rotor test apparatus. Rotor aeroelastic stability, performance, and loads at various rotational speeds and thrust coefficients were investigated. The primary objective was to determine the inplane stability characteristics of the rotor system. Rotor inplane damping data were obtained for operation between 350 and 425 rpm (design speed), and for thurst coefficients between 0.0 and 0.12. The rotor was stable for all conditions tested. At constant rotor rotational speed, a minimum inplane dampling level was obtained at a thrust coefficient approximately = 0.02. At constant rotor lift, a minimum in rotor inplane damping was measured at 400 rpm.

  20. Wind-Tunnel Investigation of the Effect of Porous Spoilers on the Wake of a Subsonic Transport Model

    NASA Technical Reports Server (NTRS)

    Corsiglia, V. R.; Rossow, V. J.

    1976-01-01

    Tests were conducted in the Ames Research Center 40- by 80-Foot Wind Tunnel to determine how porosity of wing spoilers on a B-747 airplane would affect the rolling moments imposed on an aircraft following in the wake. It was found that spoilers with 40 percent porosity and hole diameter to thickness ratio of 1.1 were just as effective in reducing the rolling moment imposed on the follower as solid spoilers, for the case of two spoilers per wing panel (6.4 percent semispan each) with a following model whose span was 20 percent of the span of the generator. When a larger following model was tested, whose span was 50 percent of that of the generator, the effectiveness of the two spoilers per wing was substantially reduced.

  1. Diabetic foot ulcers. Pathophysiology, assessment, and therapy.

    PubMed Central

    Bowering, C. K.

    2001-01-01

    OBJECTIVE: To review underlying causes of diabetic foot ulceration, provide a practical assessment of patients at risk, and outline an evidence-based approach to therapy for diabetic patients with foot ulcers. QUALITY OF EVIDENCE: A MEDLINE search was conducted for the period from 1979 to 1999 for articles relating to diabetic foot ulcers. Most studies found were case series or small controlled trials. MAIN MESSAGE: Foot ulcers in diabetic patients are common and frequently lead to lower limb amputation unless a prompt, rational, multidisciplinary approach to therapy is taken. Factors that affect development and healing of diabetic patients' foot ulcers include the degree of metabolic control, the presence of ischemia or infection, and continuing trauma to feet from excessive plantar pressure or poorly fitting shoes. Appropriate wound care for diabetic patients addresses these issues and provides optimal local ulcer therapy with débridement of necrotic tissue and provision of a moist wound-healing environment. Therapies that have no known therapeutic value, such as foot soaking and topical antiseptics, can actually be harmful and should be avoided. CONCLUSION: Family physicians are often primary medical contacts for patients with diabetes. Patients should be screened regularly for diabetic foot complications, and preventive measures should be initiated for those at risk of ulceration. PMID:11398715

  2. Quantifying foot deformation using finite helical angle.

    PubMed

    Pothrat, Claude; Goislard de Monsabert, Benjamin; Vigouroux, Laurent; Viehweger, Elke; Berton, Eric; Rao, Guillaume

    2015-10-15

    Foot intrinsic motion originates from the combination of numerous joint motions giving this segment a high adaptive ability. Existing foot kinematic models are mostly focused on analyzing small scale foot bone to bone motions which require both complex experimental methodology and complex interpretative work to assess the global foot functionality. This study proposes a method to assess the total foot deformation by calculating a helical angle from the relative motions of the rearfoot and the forefoot. This method required a limited number of retro-reflective markers placed on the foot and was tested for five different movements (walking, forefoot impact running, heel impact running, 90° cutting, and 180° U-turn) and 12 participants. Overtime intraclass correlation coefficients were calculated to quantify the helical angle pattern repeatability for each movement. Our results indicated that the method was suitable to identify the different motions as different amplitudes of helical angle were observed according to the flexibility required in each movement. Moreover, the results showed that the repeatability could be used to identify the mastering of each motion as this repeatability was high for well mastered movements. Together with existing methods, this new protocol could be applied to fully assess foot function in sport or clinical contexts.

  3. Reconstruction of Mirror Foot with Dysplastic Tibia

    PubMed Central

    Deshmukh, Ranjit; Shyam, Ashok K

    2015-01-01

    Introduction: The Mirror foot is a rare congenital anomaly associated with duplication of the structures of the foot. Verghese et al have classified these feet into three types. Type three is associated with a Dysplastic tibia of which only 5 have been reported. Surgical management has been reported in only two of these five cases which are in the form of amputation. Case Report: We would like to present the reconstruction of a Mirror foot associated with a dysplastic tibia. Our case which is only the sixth reported case attempts to present a surgical reconstruction to a plantigrade foot. Reconstruction was attempted in this case since the child showed a good quadriceps function at the knee. Reconstruction consisted of excision of the preaxial polydactyly to achieve a more cosmetic appearance to the foot as well as improve the ability to wear foot wear. The dysplastic tibia was osteotomized to correct the varus deformity and achieve a plantigtade foot. This helped the child to ambulate more easily with a shoe raise and a brace to maintain the correction achieved. At a five year follow up the child was walking and running with a shoe raise for a 9 cm limb length discrepancy. There was however recurrence of the deformity due to fibular overgrowth. The child’s parents refused further reconstruction and were satisfied with the present function and appearance of the child. Conclusion: Reconstruction can therefore be attempted in these limbs associated with good quadriceps function. PMID:27299070

  4. Amputation and reamputation of the diabetic foot.

    PubMed

    Armstrong, D G; Lavery, L A; Harkless, L B; Van Houtum, W H

    1997-06-01

    The authors compare the level of foot amputation by age, prevalence of arterial disease as a precipitating factor, gender, and ethnicity in persons with diabetes mellitus. Medical records were abstracted for each hospitalization for a lower extremity amputation from January 1 to December 31, 1993, in six metropolitan statistical areas in south Texas. Amputation level was defined by ICD-9-CM codes and were categorized as foot, leg, and thigh amputations. Foot-level amputations were further subcategorized as hallux or first ray, middle, fifth, multiple digit or ray, and midfoot amputations. Only the highest amputation level for each individual was used in the analysis. Of 1,043 subjects undergoing a lower extremity amputation in south Texas in the year 1993, 477 received their amputation at the level of the foot. African-Americans requiring a foot-level amputation were at significantly higher risk to undergo a midfoot-level amputation than was the rest of the population. Nearly 40% of all subjects undergoing a foot-level amputation had a previous history of amputation. However, nearly 40% of subjects undergoing foot amputations had not been diagnosed either before or during admission with peripheral arterial occlusive disease, suggesting a causal pathway dependent primarily on neuropathy. This implies that better screening of diabetic patients with appropriate risk-directed treatment at the primary care level may significantly impact the large number of preventable diabetes-related lower extremity amputations.

  5. Wind generator

    SciTech Connect

    Wurtz, F.R.

    1980-01-29

    A wind operated generator is disclosed herein having a stationary frame or base rotatably supporting at least four sets of pivotal blades intended to be driven by impinging wind currents. Each set of blades operates in unison for opening and closing air passageways between adjacent ones of the blades as the sets of blades rotate about a common vertical axis. A wind direction sensor is provided which moves into the direction of the wind, and electro-mechanical or mechanical interface networks operably couple the wind direction sensor to the respective sets of blades whereby the blades are responsive to wind direction so as to be properly feathered to propel the sets of blades. By employment of the interface network, those blades that are in position to actuate or rotate the windmill will receive the full force of the wind while other blades which are not in a position to accomplish the proper operation will be turned to permit passage of the wind thereby.

  6. Foot and ankle problems in dancers.

    PubMed

    Kadel, Nancy

    2014-11-01

    The dancer's foot and ankle are subjected to high forces and unusual stresses in training and performance. Injuries are common in dancers, and the foot and ankle are particularly vulnerable. Ankle sprains, ankle impingement syndromes, flexor hallucis longus tendonitis, cuboid subluxation, stress fractures, midfoot injuries, heel pain, and first metatarsophalangeal joint problems including hallux valgus, hallux rigidus, and sesamoid injuries will be reviewed. This article will discuss these common foot and ankle problems in dancers and give typical clinical presentation and diagnostic and treatment recommendations.

  7. The Bacteriology of Diabetic Foot Ulcers, with a Special Reference to Multidrug Resistant Strains

    PubMed Central

    Shanmugam, Priyadarshini; M, Jeya; Susan S, Linda

    2013-01-01

    Introduction: A diabetic foot infection is one of the most feared complications of Diabetes mellitus. Many studies have reported on the bacteriology of Diabetic Foot Infections (DFIs) over the past 25 years, but the results have been varied and often contradictory. Aims and Objectives: This study was carried out to determine the bacterial profiles of infected ulcers and the antibiotic resistance pattern of the isolates. Materials and Methods: Samples were collected from 50 patients with diabetic foot ulcers by using sterile swabs and they were processed. Results: A total of 75 bacterial isolates were obtained from 50 patients with diabetic foot ulcers. The age group of these patients ranged from 35 to 80 years and the maximum number of patients was in the age group of 60 to 65 years. Gram negative bacilli were more prevalent (65.1%) than gram positive cocci (34.9%). The commonest isolate was Pseudomonas spp (16%), followed by Escherichia coli (14.6%) and Staphylococcus aureus (13.3%).The antibiotic sensivity profiles of the bacteria were also studied. 37.5% of the gram negative bacilli were ESBL producers and 31% were carbapenemase producers. Conclusion: This study showed a preponderance of gram negative bacilli among the isolates from the diabetic foot ulcers. Knowledge on the antibiotic sensitivity pattern of the isolates will be helpful in determining the drugs for the empirical treatment of diabetic ulcers. PMID:23634392

  8. Wind energy.

    PubMed

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented.

  9. Wind energy.

    PubMed

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented. PMID:17272245

  10. The diabetic foot in 2015: an overview.

    PubMed

    Markakis, K; Bowling, F L; Boulton, A J M

    2016-01-01

    In 2015, it can be said that the diabetic foot is no longer the Cinderella of diabetic complications. Thirty years ago there was little evidence-based research taking place on the diabetic foot, and there were no international meetings addressing this topic. Since then, the biennial Malvern Diabetic Foot meetings started in 1986, the American Diabetes Association founded their Foot Council in 1987, and the European Association for the Study of Diabetes established a Foot Study Group in 1998. The first International Symposium on the Diabetic Foot in The Netherlands was convened in 1991, and this was soon followed by the establishment of the International Working Group on the Diabetic Foot that has produced useful guidelines in several areas of investigation and the management of diabetic foot problems. There has been an exponential rise in publications on diabetic foot problems in high impact factor journals, and a comprehensive evidence-base now exists for many areas of treatment. Despite the extensive evidence available, it, unfortunately, remains difficult to demonstrate that most types of education are efficient in reducing the incidence of foot ulcers. However, there is evidence that education as part of a multi-disciplinary approach to diabetic foot ulceration plays a pivotal role in incidence reduction. With respect to treatment, strong evidence exists that offloading is the best modality for healing plantar neuropathic foot ulcers, and there is also evidence from two randomized controlled trials to support the use of negative-pressure wound therapy in complex post-surgical diabetic foot wounds. Hyperbaric oxygen therapy exhibits the same evidence level and strength of recommendation. International guidelines exist on the management of infection in the diabetic foot. Many randomized trials have been performed, and these have shown that the agents studied generally produced comparable results, with the exception of one study in which tigecycline was shown to

  11. Hand-foot-mouth disease (image)

    MedlinePlus

    Hand-foot-and-mouth disease is a viral infection caused by Coxsackievirus that usually begins in the throat. Symptoms include; fever, sore throat, ulcers in the throat, headache, and a rash with blisters on the palms of the ...

  12. Osteoarthritis of the Foot and Ankle

    MedlinePlus

    ... osteoarthritis develops as a result of abnormal foot mechanics such as flat feet or high arches. A ... prescribed to provide support to improve the foot’s mechanics or cushioning to help minimize pain. Bracing. Bracing, ...

  13. [Diabetic, neuropathic, arteriopathic foot and dressing choice].

    PubMed

    Lowe, S; Kayoumi, M

    2012-11-14

    The definition for the diabetic foot is infection, ulceration or destruction of deep tissues of the foot associated with neuropathy or peripheral vascular disease in the lower extremity of people with diabetes. Non-diabetic patients may suffer the same risks when neuropathy and arteriopathy are present. Knowing that 85% of amputations are preceded by foot ulcers, prevention is primordial. At the onset of an ulcer, immediate treatment must be undertaken and preferably by an interdisciplinary team. Delayed healing and increased risk of infection are often due to an associated vascular disease. While the array of dressings is expansive there is no «gold standard» treatment or «miracle dressing» described for foot ulcers. The management consists of wound analysis, debridement, woundcare and especially offloading.

  14. Diabetic foot ulcer management: the podiatrist's perspective.

    PubMed

    Turns, Martin

    2013-12-01

    Diabetic foot complications result from two broad pathologies-neuropathic and neuro-ischaemic feet. It is important for diabetic patients to have at least a yearly review of foot ulcer risk factors, and they should have a corresponding risk classification agreed based on this assessment. Diabetic foot ulcer assessment should include a wound classification tool, which can give an indication of wounds at greater risk of non-healing or amputation. The treatment of diabetic foot ulcers should be part of a comprehensive care plan that should also include treatment of infection, frequent debridement (if deemed appropriate by a skilled specialist clinician), biomechanical offloading, blood glucose control and treatment of comorbidities. Clinicians should base dressing selection on the wound's location, size and depth, amount of exudate, presence of infection or necrosis and the condition of the surrounding tissue.

  15. Results of a pressure loads investigation on a 0.030-scale model (47-OTS) of the integrated space shuttle vehicle configuration 5 in the NASA Ames Research Center 9 by 7 foot leg of the unitary plan wind tunnel (IA81B), volume 1

    NASA Technical Reports Server (NTRS)

    Chee, E.

    1975-01-01

    The investigations of pressure distributions are presented for aeroloads analysis at Mach numbers from 1.55 through 2.5. Angles of attack and sideslip varied from -6 to +6 degrees. Photographs of wind tunnel models are shown.

  16. INL Wind Farm Project Description Document

    SciTech Connect

    Gary Siefert

    2009-07-01

    The INL Wind Farm project proposes to install a 20 MW to 40 MW wind farm on government property, consisting of approximately ten to twenty full-sized (80-meter hub height) towers with 2 MW turbines, and access roads. This includes identifying the optimal turbine locations, building access roads, and pouring the tower foundations in preparation for turbine installation. The project successfully identified a location on INL lands with commercially viable wind resources (i.e., greater than 11 mph sustained winds) for a 20 to 40 MW wind farm. Additionally, the proposed Wind Farm was evaluated against other General Plant Projects, General Purpose Capital Equipment projects, and Line Item Construction Projects at the INL to show the relative importance of the proposed Wind Farm project.

  17. A dynamic 3D foot reconstruction system.

    PubMed

    Thabet, Ali K; Trucco, Emanuele; Salvi, Joaquim; Wang, Weijie; Abboud, Rami J

    2011-01-01

    Foot problems are varied and range from simple disorders through to complex diseases and joint deformities. Wherever possible, the use of insoles, or orthoses, is preferred over surgery. Current insole design techniques are based on static measurements of the foot, despite the fact that orthoses are prevalently used in dynamic conditions while walking or running. This paper presents the design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion, and its use to show that foot measurements in dynamic conditions differ significantly from their static counterparts. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Engineering and clinical tests were carried out for the validation of the system. The accuracy of the system was found to be 0.34 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.44 mm (static case) and 2.81 mm (dynamic case). Furthermore, a study was performed to compare the effective length of the foot between static and dynamic reconstructions using the 4D system. Results showed an average increase of 9 mm for the dynamic case. This increase is substantial for orthotics design, cannot be captured by a static system, and its subject-specific measurement is crucial for the design of effective foot orthoses.

  18. 40 CFR 80.618-80.619 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Violation Provisions §§ 80.618-80.619 Provisions for Foreign Refiners and Importers for Motor Vehicle Diesel Fuel Subject to a Temporary Compliance Option or Hardship Provision...

  19. 40 CFR 80.618-80.619 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Violation Provisions §§ 80.618-80.619 Provisions for Foreign Refiners and Importers for Motor Vehicle Diesel Fuel Subject to a Temporary Compliance Option or Hardship Provision...

  20. Some anomalies observed in wind-tunnel tests of a blunt body at transonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Brooks, J. D.

    1976-01-01

    An investigation of anomalies observed in wind tunnel force tests of a blunt body configuration was conducted at Mach numbers from 0.20 to 1.35 in the Langley 8-foot transonic pressure tunnel and at Mach numbers of 1.50, 1,80, and 2.16 in the Langley Unitary Plan wind tunnel. At a Mach number of 1.35, large variations occurred in axial force coefficient at a given angle of attack. At transonic and low supersonic speeds, the total drag measured in the wind tunnel was much lower than that measured during earlier ballistic range tests. Accurate measurements of total drag for blunt bodies will require the use of models smaller than those tested thus far; however, it appears that accurate forebody drag results can be obtained by using relatively large models. Shock standoff distance is presented from experimental data over the Mach number range from 1.05 to 4.34. Theory accurately predicts the shock standoff distance at Mach numbers up to 1.75.

  1. A method for data base management and analysis for wind tunnel data

    NASA Technical Reports Server (NTRS)

    Biser, Aileen O.

    1987-01-01

    To respond to the need for improved data base management and analysis capabilities for wind-tunnel data at the Langley 16-Foot Transonic Tunnel, research was conducted into current methods of managing wind-tunnel data and a method was developed as a solution to this need. This paper describes the development of the data base management and analysis method for wind-tunnel data. The design and implementation of the software system are discussed and examples of its use are shown.

  2. Stellar Winds

    NASA Astrophysics Data System (ADS)

    Owocki, Stan

    A "stellar wind" is the continuous, supersonic outflow of matter from the surface layers of a star. Our sun has a solar wind, driven by the gas-pressure expansion of the hot (T > 106 K) solar corona. It can be studied through direct in situ measurement by interplanetary spacecraft; but analogous coronal winds in more distant solar-type stars are so tenuous and transparent that that they are difficult to detect directly. Many more luminous stars have winds that are dense enough to be opaque at certain wavelengths of the star's radiation, making it possible to study their wind outflows remotely through careful interpretation of the observed stellar spectra. Red giant stars show slow, dense winds that may be driven by the pressure from magnetohydrodyanmic waves. As stars with initial mass up to 8 M ⊙ evolve toward the Asymptotic Giant Branch (AGB), a combination of stellar pulsations and radiative scattering off dust can culminate in "superwinds" that strip away the entire stellar envelope, leaving behind a hot white dwarf stellar core with less than the Chandrasekhar mass of ˜ ​​ 1. 4M ⊙. The winds of hot, luminous, massive stars are driven by line-scattering of stellar radiation, but such massive stars can also exhibit superwind episodes, either as Red Supergiants or Luminous Blue Variable stars. The combined wind and superwind mass loss can strip the star's hydrogen envelope, leaving behind a Wolf-Rayet star composed of the products of earlier nuclear burning via the CNO cycle. In addition to such direct effects on a star's own evolution, stellar winds can be a substantial source of mass, momentum, and energy to the interstellar medium, blowing open large cavities or "bubbles" in this ISM, seeding it with nuclear processed material, and even helping trigger the formation of new stars, and influencing their eventual fate as white dwarves or core-collapse supernovae. This chapter reviews the properties of such stellar winds, with an emphasis on the various

  3. The Charcot foot: pathophysiology, diagnosis and classification.

    PubMed

    Trieb, K

    2016-09-01

    Neuropathic changes in the foot are common with a prevalence of approximately 1%. The diagnosis of neuropathic arthropathy is often delayed in diabetic patients with harmful consequences including amputation. The appropriate diagnosis and treatment can avoid an extensive programme of treatment with significant morbidity for the patient, high costs and delayed surgery. The pathogenesis of a Charcot foot involves repetitive micro-trauma in a foot with impaired sensation and neurovascular changes caused by pathological innervation of the blood vessels. In most cases, changes are due to a combination of both pathophysiological factors. The Charcot foot is triggered by a combination of mechanical, vascular and biological factors which can lead to late diagnosis and incorrect treatment and eventually to destruction of the foot. This review aims to raise awareness of the diagnosis of the Charcot foot (diabetic neuropathic osteoarthropathy and the differential diagnosis, erysipelas, peripheral arterial occlusive disease) and describe the ways in which the diagnosis may be made. The clinical diagnostic pathways based on different classifications are presented. Cite this article: Bone Joint J 2016;98-B:1155-9.

  4. The management of the infected diabetic foot.

    PubMed

    Caravaggi, Carlo; Sganzaroli, Adriana; Galenda, Paolo; Bassetti, Matteo; Ferraresi, Roberto; Gabrielli, Livio

    2013-01-01

    Diabetes is a chronic disease with a worldwide increasing trend. Foot complications, closely related to neuropathy and obstructive peripheral vascular disease, are responsible for more than 1 million of leg amputations every year. Foot infection can dramatically increase the risk of amputation. Although many ulcer classification systems have been proposed to stratify the severity of the infectious process, the definition of a specific therapeutic approach still remains an unsolved problem. A Diabetic Foot Triage and an Integrated Surgical Protocol are proposed to identify a diagnostic flowchart and a step-by-step surgical protocol that can be applied in the treatment of diabetic foot infection. Considering the rapid climbing of multidrug resistant strains it is very important to rationalize the use of antibiotics utilizing them only for the treatment of true infected ulcers. PAD is widely considered the most important factor conditioning the outcome of a diabetic foot ulcer. Currently no randomized control trials are reported in the international literature directly comparing open versus endovascular revascularisation in diabetic patients with CLI. Insufficient data are available to demonstrate whether open bypass surgery or endovascular interventions are more effective in these patients. A decisional flow chart in choosing the best revascularization strategy in diabetic patients with CLI is proposed. Goals and technical aspects of emergency and elective surgical procedures in diabetic foot are analysed to evaluate critical aspects and to suggest proper surgical choices.

  5. The Charcot foot: pathophysiology, diagnosis and classification.

    PubMed

    Trieb, K

    2016-09-01

    Neuropathic changes in the foot are common with a prevalence of approximately 1%. The diagnosis of neuropathic arthropathy is often delayed in diabetic patients with harmful consequences including amputation. The appropriate diagnosis and treatment can avoid an extensive programme of treatment with significant morbidity for the patient, high costs and delayed surgery. The pathogenesis of a Charcot foot involves repetitive micro-trauma in a foot with impaired sensation and neurovascular changes caused by pathological innervation of the blood vessels. In most cases, changes are due to a combination of both pathophysiological factors. The Charcot foot is triggered by a combination of mechanical, vascular and biological factors which can lead to late diagnosis and incorrect treatment and eventually to destruction of the foot. This review aims to raise awareness of the diagnosis of the Charcot foot (diabetic neuropathic osteoarthropathy and the differential diagnosis, erysipelas, peripheral arterial occlusive disease) and describe the ways in which the diagnosis may be made. The clinical diagnostic pathways based on different classifications are presented. Cite this article: Bone Joint J 2016;98-B:1155-9. PMID:27587513

  6. [Charcot arthropathy and diabetic foot].

    PubMed

    López-Gavito, E; Parra-Téllez, P; Vázquez-Escamilla, J

    2016-01-01

    Diabetes mellitus is a major chronic degenerative disease, which currently is taking on alarming proportions in the population of our country. Neuropathic arthropathy is one of the most interesting degenerative joint disorders and increasingly common within the orthopedic pathology. It is defined as a progressive degenerative arthropathy, chronic and affecting one or more peripheral joints, and develops as a result of the lack of sensory perception normal in the innervation of joints. As a result the joints of the feet are subjected to trauma and repetitive injury causing a neurotraumatic effect with progressive damage to the joints of the hindfoot, midfoot and forefoot. Diagnosis includes a proper medical history, careful examination of the affected limb, conventional X-ray, scintigraphy, computed tomography and magnetic resonance imaging in some cases. Conservative treatment includes: drugs, rest of the affected limb, and the use of appliances like total-contact cast, orthotics or special shoes. Surgical treatment depends on the stage of the disease, and may require one or more surgical procedures, in order to achieve a full foot plantar support to prevent ulcers. One of the surgeries performed most often is the fusion of damaged joints. Surgery must be performed only in the coalescence phase of the disease, using internal, or external fixation or both. PMID:27627777

  7. [Charcot arthropathy and diabetic foot].

    PubMed

    López-Gavito, E; Parra-Téllez, P; Vázquez-Escamilla, J

    2016-01-01

    Diabetes mellitus is a major chronic degenerative disease, which currently is taking on alarming proportions in the population of our country. Neuropathic arthropathy is one of the most interesting degenerative joint disorders and increasingly common within the orthopedic pathology. It is defined as a progressive degenerative arthropathy, chronic and affecting one or more peripheral joints, and develops as a result of the lack of sensory perception normal in the innervation of joints. As a result the joints of the feet are subjected to trauma and repetitive injury causing a neurotraumatic effect with progressive damage to the joints of the hindfoot, midfoot and forefoot. Diagnosis includes a proper medical history, careful examination of the affected limb, conventional X-ray, scintigraphy, computed tomography and magnetic resonance imaging in some cases. Conservative treatment includes: drugs, rest of the affected limb, and the use of appliances like total-contact cast, orthotics or special shoes. Surgical treatment depends on the stage of the disease, and may require one or more surgical procedures, in order to achieve a full foot plantar support to prevent ulcers. One of the surgeries performed most often is the fusion of damaged joints. Surgery must be performed only in the coalescence phase of the disease, using internal, or external fixation or both.

  8. Filament winding

    NASA Astrophysics Data System (ADS)

    Shibley, A. M.

    The major aspects of filament winding are discussed, emphasizing basic reinforcement and matrix materials, winding procedures, process controls, and cured composite properties. Fiberglass (E-glass and S-glass strengths are 500,000 and 665,000 psi respectively) and polyester resins are the principal reinforcement constituent materials. Graphite and aramid reinforcements are being used more frequently, primarily for the more critical pressure vessels. Matrix systems are most commonly based on epoxy as it has superior mechanical properties, fatigue behavior, and heat resistance as compard with polyesters. A fiberglass overwrap of PVC pipe is an anticipated development in on-site winding and combination winding, and the compression molding of filament wound lay-ups will be investigated. The fabrication of weight-sensitive structural components may be achieved by using such moldings.

  9. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect

    Simley, E.; Pao, L. Y.; Kelley, N.; Jonkman, B.; Frehlich, R.

    2012-01-01

    is the spatial averaging caused by the LIDAR's sampling volume. However, by introducing wind evolution, the dominant source of error for large preview distances was found to be the coherence loss caused by evolving turbulence. Different measurement geometries were compared using the bandwidth for which the measurement coherence remained above 0.5 and also the area under the measurement coherence curve. Results showed that, by increasing the intensity of wind evolution, the measurement coherence decreases. Using the coherence bandwidth metric, the optimal preview distance for a fixed-scan radius remained almost constant for low and moderate amounts of wind evolution. For the wind field with the simple wind evolution model introduced, the optimal preview distance for a scan radius of 75% blade span (47.25 meters) was found to be 80 meters. Using the LES wind field, the optimal preview distance was 65 meters. When comparing scan geometries using the area under the coherence curve, results showed that, as the intensity of wind evolution increases, the optimal preview distance decreases.

  10. Wind Development on Tribal Lands

    SciTech Connect

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  11. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ...-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel...

  12. Low-speed wind tunnel test results of the Canard Rotor/Wing concept

    NASA Technical Reports Server (NTRS)

    Bass, Steven M.; Thompson, Thomas L.; Rutherford, John W.; Swanson, Stephen

    1993-01-01

    The Canard Rotor/Wing (CRW), a high-speed rotorcraft concept, was tested at the National Aeronautics and Space Administration (NASA) Ames Research Center's 40- by 80-Foot Wind Tunnel in Mountain View, California. The 1/5-scale model was tested to identify certain low-speed, fixed-wing, aerodynamic characteristics of the configuration and investigate the effectiveness of two empennages, an H-Tail and a T-Tail. The paper addresses the principal test objectives and the results achieved in the wind tunnel test. These are summarized as: i) drag build-up and differences between the H-Tail and T-Tail configuration, ii) longitudinal stability of the H-Tail and T-Tail configurations in the conversion and cruise modes, iii) control derivatives for the canard and elevator in the conversion and cruise modes, iv) aerodynamic characteristics of varying the rotor/wing azimuth position, and v) canard and tail lift/trim capability for conversion conditions.

  13. Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking.

    PubMed

    Wang, Yang; Srinivasan, Manoj

    2014-09-01

    During human walking, perturbations to the upper body can be partly corrected by placing the foot appropriately on the next step. Here, we infer aspects of such foot placement dynamics using step-to-step variability over hundreds of steps of steady-state walking data. In particular, we infer dependence of the 'next' foot position on upper body state at different phases during the 'current' step. We show that a linear function of the hip position and velocity state (approximating the body center of mass state) during mid-stance explains over 80% of the next lateral foot position variance, consistent with (but not proving) lateral stabilization using foot placement. This linear function implies that a rightward pelvic deviation during a left stance results in a larger step width and smaller step length than average on the next foot placement. The absolute position on the treadmill does not add significant information about the next foot relative to current stance foot over that already available in the pelvis position and velocity. Such walking dynamics inference with steady-state data may allow diagnostics of stability and inform biomimetic exoskeleton or robot design.

  14. Detection of wind wakes offshore from satellite SAR

    NASA Astrophysics Data System (ADS)

    Christiansen, M. B.; Hasager, C. B.

    A study is presented on the mapping of ocean wind fields for detection of wind wakes downstream of an offshore wind farm. The study is based on ERS-2 Synthetic Aperture Radar (SAR) scenes obtained in 2003 over Horns Reef in the North Sea. A large offshore wind farm (80 wind turbines) is located 14-20 km offshore of Denmark on this submerged reef. Meteorological observations are available from an offshore mast; wind speed is measured at four heights up to 62 m and wind direction is measured at 60 m. Maps of wind speed are generated from geophysical model functions (CMOD-4, CMOD-IFR2) with a resolution of 400 m by 400 m using wind direction obtained from in-situ measurements as model input. The wind maps display zones of reduced mean wind speed downstream of the wind farm compared to upwind conditions. The reduction is approximately 10 % immediately behind the wind farm and the wake effect is vanishing over distances in the order of 10 km downstream. This is consistent with wake model predictions. Satellite SAR provides a good estimate of the propagation of wind wakes. Information on how structures affect the local wind climate is useful for wind energy purposes, particularly for siting of future offshore wind farms.

  15. Diagnostics and treatment of the diabetic foot.

    PubMed

    Apelqvist, Jan

    2012-06-01

    Every 30 s, a lower limb is amputated due to diabetes. Of all amputations in diabetic patients 85% are preceded by a foot ulcer which subsequently deteriorates to a severe infection or gangrene. There is a complexity of factors related to healing of foot ulcers including strategies for treatment of decreased perfusion, oedema, pain, infection, metabolic disturbances, malnutrition, non-weight bearing, wound treatment, foot surgery, and management of intercurrent disease. Patients with diabetic foot ulcer and decreased perfusion do often not have rest pain or claudication and as a consequence non-invasive vascular testing is recommended for early recognition of ulcers in need of revascularisation to achieve healing. A diabetic foot infection is a potentially limb-threatening condition. Infection is diagnosed by the presence or increased rate of signs inflammation. Often these signs are less marked than expected. Imaging studies can diagnose or better define deep, soft tissue purulent collections and are frequently needed to detect pathological findings in bone. The initial antimicrobial treatment as well as duration of treatment is empiric. There is a substantial delay in wound healing in diabetic foot ulcer which has been related to various abnormalities. Several new treatments related to these abnormalities have been explored in wound healing with various successes. An essential part of the strategy to achieve healing is an effective offloading. Many interventions with advanced wound management have failed due to not recognizing the need for effective offloading. A multidisciplinary approach to wounds and foot ulcer has been successfully implemented in different centres with a substantial decrease in amputation rate.

  16. Laser velocimeter data acquisition system for the Langley 14- by 22-foot subsonic tunnel. Software reference guide version 3.3

    NASA Technical Reports Server (NTRS)

    Jumper, Judith K.

    1994-01-01

    The Laser Velocimeter Data Acquisition System (LVDAS) in the Langley 14- by 22-Foot Tunnel is controlled by a comprehensive software package. The software package was designed to control the data acquisition process during wind tunnel tests which employ a laser velocimeter measurement system. This report provides detailed explanations on how to configure and operate the LVDAS system to acquire laser velocimeter and static wind tunnel data.

  17. Diagnostic considerations of lateral column foot pain in athletes.

    PubMed

    Traister, Eric; Simons, Stephen

    2014-01-01

    Foot maladies are often classified descriptively by general foot locations, i.e., forefoot, midfoot, and rearfoot. However, common vernacular verbiage, implicating a common biomechanical purpose, also applies pathology to the medial or lateral foot column. Although imprecisely defined, lateral column injuries to the foot encompass conditions that affect any of the lateral side of the foot from the calcaneus to the toes. The lateral column of the foot includes the calcaneus, the cuboid, the fourth and fifth metatarsals as well as the calcaneocuboid, cuboido-metatarsal, and intermetatarsal joints. It may be helpful to think in a "lateral column" fashion when evaluating and treating certain lateral foot injuries, load patterns, and biomechanical or anatomical faults. Misdiagnosed injuries in this area of the foot can be a source of great morbidity to the athlete. It is important for the clinician to be aware of common conditions presenting as pain to the lateral side of the foot.

  18. Nineteen-Foot Diameter Explosively Driven Blast Simulator

    SciTech Connect

    VIGIL,MANUEL G.

    2001-07-01

    This report describes the 19-foot diameter blast tunnel at Sandia National Laboratories. The blast tunnel configuration consists of a 6 foot diameter by 200 foot long shock tube, a 6 foot diameter to 19 foot diameter conical expansion section that is 40 feet long, and a 19 foot diameter test section that is 65 feet long. Therefore, the total blast tunnel length is 305 feet. The development of this 19-foot diameter blast tunnel is presented. The small scale research test results using 4 inch by 8 inch diameter and 2 foot by 6 foot diameter shock tube facilities are included. Analytically predicted parameters are compared to experimentally measured blast tunnel parameters in this report. The blast tunnel parameters include distance, time, static, overpressure, stagnation pressure, dynamic pressure, reflected pressure, shock Mach number, flow Mach number, shock velocity, flow velocity, impulse, flow duration, etc. Shadowgraphs of the shock wave are included for the three different size blast tunnels.

  19. Unsafe at Any (Wind) Speed?.

    NASA Astrophysics Data System (ADS)

    Schmidlin, Thomas; Hammer, Barbara; King, Paul; Ono, Yuichi; Miller, L. Scott; Thumann, Gregory

    2002-12-01

    The goal of this research was to examine the relative safety and stability of stationary motor vehicles exposed to severe winds. The focus was on private passenger vehicles. 1) The behavior of two instrumented storm-chase vehicles that were exposed to severe winds, 2) the behavior of 291 vehicles exposed to a tornado, and 3) the wind speed required to upset a sedan and a minivan exposed to winds in a wind tunnel were studied. A wind as strong as 47 m s1 (105 mph) has been measured by a storm-chase pickup truck and 44 m s1 (98 mph) by a storm chase sedan. The vehicles were not adversely affected by the wind. Also studied were 291 vehicles parked outdoors at homes struck by tornadoes, and the behavior of the vehicles was compared to the F-scale damage to the house. At sites with F1 or F2 damage, 72% of the vehicles were not moved by the wind and 96% were not tipped over. At sites with F3 or F4 damage, 50% were not moved by the wind and 82% were not tipped over. Wind tunnel tests on a sedan and minivan showed they were most vulnerable to upset (lifting of one tire from the ground) with wind directions near 45° and 135°, as measured from the front. When modeled with 5° of suspension tilt to the side, the sedan was found to be upset at wind speeds of 51-67 m s1 (115-150 mph), and the minivan was upset at wind speeds of 58-80 m s1 (130-180 mph). Although an underground shelter or sturdy building offer the best protection from severe winds, it is found that a vehicle may be a relatively stable place and may be safer than a mobile home or the outdoors. These findings may warrant changes to public recommendations made during tornado warnings and other severe storm situations.

  20. Foot care and footwear practices among patients attending a specialist diabetes clinic in Jamaica.

    PubMed

    Gayle, Krystal A T; Tulloch Reid, Marshall K; Younger, Novie O; Francis, Damian K; McFarlane, Shelly R; Wright-Pascoe, Rosemarie A; Boyne, Michael S; Wilks, Rainford J; Ferguson, Trevor S

    2012-10-12

    This study aimed to estimate the proportion of patients at the University Hospital of the West Indies (UHWI) Diabetes Clinic who engage in recommended foot care and footwear practices. Seventy-two participants from the UHWI Diabetes Clinic completed an interviewer-administered questionnaire on foot care practices and types of footwear worn. Participants were a subset of a sex-stratified random sample of clinic attendees and were interviewed in 2010. Data analysis included frequency estimates of the various foot care practices and types of footwear worn. Participants had a mean age of 57.0±14.3 years and mean duration of diabetes of 17.0±10.3 years. Fifty-three percent of participants reported being taught how to care for their feet, while daily foot inspection was performed by approximately 60% of participants. Most participants (90%) reported daily use of moisturizing lotion on the feet but almost 50% used lotion between the toes. Approximately 85% of participants reported wearing shoes or slippers both indoors and outdoors but over 40% reported walking barefoot at some time. Thirteen percent wore special shoes for diabetes while over 80% wore shoes without socks at some time. Although much larger proportions reported wearing broad round toe shoes (82%) or leather shoes (64%), fairly high proportions reported wearing pointed toe shoes (39%), and 43% of women wore high heel shoes. In conclusion, approximately 60% of patients at the UHWI diabetic clinic engage in daily foot inspection and other recommended practices, but fairly high proportions reported foot care or footwear choices that should be avoided.

  1. Effect of Custom-Made Footwear on Foot Ulcer Recurrence in Diabetes

    PubMed Central

    Bus, Sicco A.; Waaijman, Roelof; Arts, Mark; de Haart, Mirjam; Busch-Westbroek, Tessa; van Baal, Jeff; Nollet, Frans

    2013-01-01

    OBJECTIVE Custom-made footwear is the treatment of choice to prevent foot ulcer recurrence in diabetes. This footwear primarily aims to offload plantar regions at high ulcer risk. However, ulcer recurrence rates are high. We assessed the effect of offloading-improved custom-made footwear and the role of footwear adherence on plantar foot ulcer recurrence. RESEARCH DESIGN AND METHODS We randomly assigned 171 neuropathic diabetic patients with a recently healed plantar foot ulcer to custom-made footwear with improved and subsequently preserved offloading (∼20% peak pressure relief by modifying the footwear) or to usual care (i.e., nonimproved custom-made footwear). Primary outcome was plantar foot ulcer recurrence in 18 months. Secondary outcome was ulcer recurrence in patients with an objectively measured adherence of ≥80% of steps taken. RESULTS On the basis of intention-to-treat, 33 of 85 patients (38.8%) with improved footwear and 38 of 86 patients (44.2%) with usual care had a recurrent ulcer (relative risk −11%, odds ratio 0.80 [95% CI 0.44–1.47], P = 0.48). Ulcer-free survival curves were not significantly different between groups (P = 0.40). In the 79 patients (46% of total group) with high adherence, 9 of 35 (25.7%) with improved footwear and 21 of 44 (47.8%) with usual care had a recurrent ulcer (relative risk −46%, odds ratio 0.38 [0.15–0.99], P = 0.045). CONCLUSIONS Offloading-improved custom-made footwear does not significantly reduce the incidence of plantar foot ulcer recurrence in diabetes compared with custom-made footwear that does not undergo such improvement, unless it is worn as recommended. PMID:24130357

  2. The diabetic foot--an update.

    PubMed

    Boulton, Andrew J M

    2008-01-01

    Despite an improvement in our understanding of the aetiopathogenesis of diabetic foot problems in the last 2 decades, the 21st Century epidemic of type 2 diabetes will ensure that the incidence of foot problems will continue to increase in the diabetic population. In the aetiopathogenesis it is important to understand that a number of factors working together usually result in foot ulceration: the commonest trio is neuropathy, deformity and trauma. In Western countries, the incidence of neuroischaemic ulcers is now increasing making early detection of those at risk even more important. In the pathogenesis of Charcot neuroarthropathy, recent advances in our understanding of the mechanisms underlying the development of osteopenia and osteoporosis include the central role of the RANK-L OPG signalling system. Finally, in terms of wound healing, the most frequently neglected aspect of care is appropriate offloading of neuropathic or neuroischaemic foot ulcers. The next decades will undoubtedly see the application of stem cell therapy in the management of diabetic foot ulceration.

  3. How visual perceptual grouping influences foot placement

    PubMed Central

    Fennell, John; Goodwin, Charlotte; Burn, Jeremy F.; Leonards, Ute

    2015-01-01

    Everybody would agree that vision guides locomotion; but how does vision influence choice when there are different solutions for possible foot placement? We addressed this question by investigating the impact of perceptual grouping on foot placement in humans. Participants performed a stepping stone task in which pathways consisted of target stones in a spatially regular path of foot falls and visual distractor stones in their proximity. Target and distractor stones differed in shape and colour so that each subset of stones could be easily grouped perceptually. In half of the trials, one target stone swapped shape and colour with a distractor in its close proximity. We show that in these ‘swapped’ conditions, participants chose the perceptually groupable, instead of the spatially regular, stepping location in over 40% of trials, even if the distance between perceptually groupable steps was substantially larger than normal step width/length. This reveals that the existence of a pathway that could be traversed without spatial disruption to periodic stepping is not sufficient to guarantee participants will select it and suggests competition between different types of visual input when choosing foot placement. We propose that a bias in foot placement choice in favour of visual grouping exists as, in nature, sudden changes in visual characteristics of the ground increase the uncertainty for stability. PMID:26587273

  4. 11 Foot Unitary Plan Tunnel Facility Optical Improvement Large Window Analysis

    NASA Technical Reports Server (NTRS)

    Hawke, Veronica M.

    2015-01-01

    The test section of the 11 by 11-foot Unitary Plan Transonic Wind Tunnel (11-foot UPWT) may receive an upgrade of larger optical windows on both the North and South sides. These new larger windows will provide better access for optical imaging of test article flow phenomena including surface and off body flow characteristics. The installation of these new larger windows will likely produce a change to the aerodynamic characteristics of the flow in the Test Section. In an effort understand the effect of this change, a computational model was employed to predict the flows through the slotted walls, in the test section and around the model before and after the tunnel modification. This report documents the solid CAD model that was created and the inviscid computational analysis that was completed as a preliminary estimate of the effect of the changes.

  5. Galactic Winds

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  6. Effect of Custom-Molded Foot Orthoses on Foot Pain and Balance in Children With Symptomatic Flexible Flat Feet

    PubMed Central

    Lee, Hong-Jae; Lim, Kil-Byung; Yoo, JeeHyun; Yun, Hyun-Ju; Jeong, Tae-Ho

    2015-01-01

    Objective To evaluate the effect of custom-molded foot orthoses on foot pain and balance in children with symptomatic flexible flat foot 1 month and 3 months after fitting foot orthosis. Method A total of 24 children over 6 years old with flexible flat feet and foot pain for at least 6 months were recruited for this study. Their resting calcaneal stance position and calcaneal pitch angle were measured. Individual custom-molded rigid foot orthoses were prescribed using inverted orthotic technique to control foot overpronation. Pain questionnaire was used to obtain pain sites, degree, and frequency. Balancing ability was determined using computerized posturography. These evaluations were performed prior to custom-molded foot orthoses, 1 month, and 3 months after fitting foot orthoses. Result Of 24 children with symptomatic flexible flat feet recruited for this study, 20 completed the study. Significant (p<0.001) improvements in pain degree and frequency were noted after 1 and 3 months of custom-molded foot orthoses. In addition, significant (p<0.05) improvement in balancing ability was found after 3 months of custom-molded foot orthoses. Conclusion Short-term use of custom-molded foot orthoses significantly improved foot pain and balancing ability in children with symptomatic flexible flat foot. PMID:26798604

  7. Drive System Enhancement in the NASA Lewis Research Center Supersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Becks, Edward A.

    1998-01-01

    An overview of NASA Lewis' Aeropropulsion Wind Tunnel Productivity Improvements was presented at the 19th AIAA Advanced Measurement & Ground Testing Technology Conference. Since that time Lewis has implemented subsonic operation in their 10- by 10-Foot Supersonic Wind Tunnel as had been proven viable in the 8- by 6 and 9- by 15-Foot Wind Tunnel Complex and discussed at the aforementioned conference. In addition, two more years of data have been gathered to help quantify the true productivity increases in these facilities attributable to the drive system and operational improvements. This paper was invited for presentation at the 20th Advanced Measurement and Ground Testing Conference to discuss and quantify the productivity improvements in the 10- by 10 SWT since the implementation of less than full complement motor operation. An update on the increased productivity at the 8- by 6 and 9- by 15-Foot facility due to drive system enhancements will also be presented.

  8. Wind Generators

    NASA Astrophysics Data System (ADS)

    1989-01-01

    When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.

  9. Wind turbine

    DOEpatents

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  10. Macrodystrophia lipomatosa of foot involving great toe.

    PubMed

    Gaur, A K; Mhambre, A S; Popalwar, H; Sharma, R

    2014-06-01

    Macrodystrophia lipomatosa is a rare form of congenital disorder in which there is localized gigantism characterized by progressive overgrowth of all mesenchymal elements with a disproportionate increase in the fibroadipose tissues. The adipose tissue infiltration involves subcutaneous tissue, periosteum, nerves and bone marrow. Most of the cases reported have hand or foot involvement. Patient seeks medical help for improving cosmesis or to get the size of the involved part reduced in order to reduce mechanical problems. We report a case of macrodystrophia lipomatosa involving medial side of foot with significant enlargement of great toe causing concern for cosmesis and inconvenience due to mechanical problems. The X-rays showed increased soft tissue with more of adipose tissue and increased size of involved digits with widening of ends. Since the patient's mother did not want any surgical intervention he was educated about foot care and proper footwear design was suggested. PMID:24703060

  11. Approach to managing diabetic foot ulcers.

    PubMed Central

    Nesbitt, John A. A.

    2004-01-01

    INTRODUCTION: Of an estimated 1.7 to 2 million Canadians with diabetes, approximately 10% will present each year to their family doctors with plantar ulcers. Nearly 3500 will require major lower extremity amputations. SOURCES OF INFORMATION: Most of the recommendations outlined in this paper are based on level I evidence from excellent bench research and epidemiologic studies. MAIN MESSAGE: Both insulin-dependent and non-insulin-dependent diabetics develop foot infections. These patients are on average 60 years old and have had diabetes for more than 10 years. Physicians who insist on excellent blood sugar control, provide ongoing patient education on diabetic foot care, prescribe appropriate shoes, and practise an aggressive multidisciplinary approach to wound care can reduce the rate of lower extremity amputations by more than 50%. CONCLUSION: Foot problems remain one of the main challenges associated with diabetes, but family physicians can manage them successfully. PMID:15116801

  12. Macrodystrophia lipomatosa of foot involving great toe.

    PubMed

    Gaur, A K; Mhambre, A S; Popalwar, H; Sharma, R

    2014-06-01

    Macrodystrophia lipomatosa is a rare form of congenital disorder in which there is localized gigantism characterized by progressive overgrowth of all mesenchymal elements with a disproportionate increase in the fibroadipose tissues. The adipose tissue infiltration involves subcutaneous tissue, periosteum, nerves and bone marrow. Most of the cases reported have hand or foot involvement. Patient seeks medical help for improving cosmesis or to get the size of the involved part reduced in order to reduce mechanical problems. We report a case of macrodystrophia lipomatosa involving medial side of foot with significant enlargement of great toe causing concern for cosmesis and inconvenience due to mechanical problems. The X-rays showed increased soft tissue with more of adipose tissue and increased size of involved digits with widening of ends. Since the patient's mother did not want any surgical intervention he was educated about foot care and proper footwear design was suggested.

  13. A review of the biomechanics of the diabetic foot.

    PubMed

    van Schie, C H M

    2005-09-01

    In general, diabetic foot ulcers result from abnormal mechanical loading of the foot, such as repetitive moderate pressure applied to the plantar aspect of the foot while walking. Diabetic peripheral neuropathy causes changes in foot structure, affecting foot function and subsequently leading to increased plantar foot pressure, which is a predictive risk factor for the development of diabetic foot ulceration. Prevention of diabetic foot ulceration is possible by early identification of the insensitive foot, therefore a foot "at risk," and by protecting the foot from abnormal biomechanical loading. Abnormal foot pressures can be reduced using several different approaches, including callus debridement, prescription of special footwear, injection of liquid silicone, Achilles tendon lengthening, and so forth. Off-loading of the diabetic wound is a key factor in successful wound healing, as it is associated with reduced inflammatory and accelerated repair processes. Pressure relief can be achieved using various off-loading modalities including accommodative dressing, walking splints, ankle-foot orthosis, total contact cast, and removable and irremovable cast walkers.

  14. Increased Mortality in Diabetic Foot Ulcer Patients: The Significance of Ulcer Type

    PubMed Central

    Chammas, N. K.; Hill, R. L. R.; Edmonds, M. E.

    2016-01-01

    Diabetic foot ulcer (DFU) patients have a greater than twofold increase in mortality compared with nonulcerated diabetic patients. We investigated (a) cause of death in DFU patients, (b) age at death, and (c) relationship between cause of death and ulcer type. This was an eleven-year retrospective study on DFU patients who attended King's College Hospital Foot Clinic and subsequently died. A control group of nonulcerated diabetic patients was matched for age and type of diabetes mellitus. The cause of death was identified from death certificates (DC) and postmortem (PM) examinations. There were 243 DFU patient deaths during this period. Ischaemic heart disease (IHD) was the major cause of death in 62.5% on PM compared to 45.7% on DC. Mean age at death from IHD on PM was 5 years lower in DFU patients compared to controls (68.2 ± 8.7 years versus 73.1 ± 8.0 years, P = 0.015). IHD as a cause of death at PM was significantly linked to neuropathic foot ulcers (OR 3.064, 95% CI 1.003–9.366, and P = 0.049). Conclusions. IHD is the major cause of premature mortality in DFU patients with the neuropathic foot ulcer patients being at a greater risk. PMID:27213157

  15. A retrospective analysis evaluating allogeneic cancellous bone sponge for foot and ankle arthrodesis.

    PubMed

    Brigido, Stephen A; Bleazey, Scott T; Protzman, Nicole M; D'Angelantonio, Albert; Schoenhaus, Harold D

    2013-01-01

    The present retrospective case crossover study was conducted to determine the effectiveness and safety data associated with the use of an allogeneic, cancellous bone sponge in an orthopedic foot and ankle population. We reviewed the medical records of 47 subjects (80 joints) who had undergone foot and/or ankle fusion with the cancellous bone sponge. The records were reviewed up to 12 months postoperatively. The joints included in the present study were 12 ankles, 3 ankle syndesmotic fusions (with concurrent total ankle arthroplasty), 17 subtalar joints, 17 talonavicular joints, 9 calcaneocubiod joints, 1 naviculocuneiform joint, 13 first tarsometatarsal joints, 6 lesser tarsometatarsal joints, and 2 first metatarsophalangeal joints. The endpoints of the present study were solid, sustained foot and ankle fusion, as demonstrated radiographically, and the occurrence of unexpected adverse effects related to the graft. The fusion rates were compared with those reported in other studies. The patient-reported outcome variables for the present study included the visual analog pain scale and the American Orthopaedic Foot and Ankle Score. The use of a cancellous sponge showed statistically significant improvements in pain and function and comparable or better fusion rates compared with outcomes reported in other published reports.

  16. Foot and Ankle Injuries in Runners.

    PubMed

    Tenforde, Adam S; Yin, Amy; Hunt, Kenneth J

    2016-02-01

    Foot and ankle injuries account for nearly one-third of running injuries. Achilles tendinopathy, plantar fasciopathy, and ankle sprains are 3 of the most common types of injuries sustained during training. Other common injuries include other tendinopathies of the foot and ankle, bone stress injuries, nerve conditions including neuromas, and joint disease including osteoarthritis. This review provides an evidence-based framework for the evaluation and optimal management of these conditions to ensure safe return to running participation and reduce risk for future injury. PMID:26616180

  17. Development of a Composite Antenna Foot

    NASA Astrophysics Data System (ADS)

    Bonnes, Lionel

    2012-07-01

    MECANO ID develops and produces composite parts using RTM (Resin Transfer Molding) and LRI (Liquid Resin Infusion) processes. In collaboration with THALES ALENIA SPACE and ONERA, this project aims at replacing titanium antenna feet, which interface the Earth deck antenna of a telecommunication satellite to its support panel, with composite feet. The objectives of the presentation are to detail: - The methodology applied to develop the composite antenna foot - The experimental validation of the foot sizing This project was granted by the French state and the region Midi-Pyrénées.

  18. Small Joint Arthroscopy in the Foot.

    PubMed

    Reeves, Christopher L; Shane, Amber M; Payne, Trevor; Cavins, Zac

    2016-10-01

    Arthroscopy has advanced in the foot and ankle realm, leading to new innovative techniques designed toward treatment of small joint abnormality. A range of abnormalities that are currently widespread for arthroscopic treatment in larger joints continues to be translated to congruent modalities in the small joints. Small joint arthroscopy offers relief from foot ailments with a noninvasive element afforded by arthroscopy. Early studies have found comparable results from arthroscopic soft tissue procedures as well as arthrodesis of the small joints when compared with the standard open approach. PMID:27599441

  19. Foot Pedals for Spacecraft Manual Control

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Morin, Lee M.; McCabe, Mary

    2010-01-01

    Fifty years ago, NASA decided that the cockpit controls in spacecraft should be like the ones in airplanes. But controls based on the stick and rudder may not be best way to manually control a vehicle in space. A different method is based on submersible vehicles controlled with foot pedals. A new pilot can learn the sub's control scheme in minutes and drive it hands-free. We are building a pair of foot pedals for spacecraft control, and will test them in a spacecraft flight simulator.

  20. Wind assessment and power prediction from a wind farm in southern Saskatchewan

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Mukundhan

    Mesoscale and Microscale Modeling are two methods used to estimate wind energy resources. The main parameters of wind resource estimation are the mean wind speed and the mean wind power density. Mesoscale Modeling was applied to three different regions, Regina, Saskatoon, and Gull Lake, located in southern Saskatchewan, Canada. The areas were selected as centers of a domain for a grid with a horizontal resolution of 3 kilometers. Mesoscale Modeling was performed using the software tool, Anemoscope. Wind resources for the regions and the areas surrounding them have been generated for three elevations (30, 50, and 80 meters). As it is a site for a large wind turbine farm, the region in and around Swift Current in southern Saskatchewan (approximately 36 km x 36 km in area) was the site of choice for this study in Microscale Modeling. A widely popular software, WAsP, was chosen to perform the study. Statistical wind data was obtained from a Swift Current meteorological station over a period of ten years (2000-2009). A wind resource grid has been set up for the area at a horizontal resolution of 200 meters, and wind resource maps have been generated for heights of 50, 65, and 80 meters above ground level as the heights are the potential wind turbine hub heights. In order to simulate the SaskPower Centennial Wind Power Station, a wind farm was set up with 83 wind turbines in the Coulee Municipality region near Swift Current. The annual energy production for the entire farm, along with those of the individual turbines, has been calculated. Both total and individual wind turbine productions were accurately modeled.