Science.gov

Sample records for 800-nm laser pulses

  1. Laser Direct Writing of Long Period Fiber Grating by 800 NM Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Ruan, Shuangchen; Huang, Yi; Du, Chenlin; Yu, Yongqin

    Femtosecond laser pulses with ultrashort time duration and ultrahigh peak power can cause the refractive index change in transparent materials and micron scale machining precision. Long period fiber gratings (LPFGs) with different periods and different grating lengths in the standard single mode fiber were fabricated, using laser direct writing method, by femtosecond laser pulses with pulse width of 200 fs at a center wavelength of 800 nm in air. The transmission spectra were studied in the range of 1510 nm to 1610 nm. Two LPFGs with period of 400 μm, and 550 μm, respectively fabricated with same irradiation power of 275 mW, were shown. The loss peak of 1552 nm, the transmission loss of 16 dB and the FWHM of 20 nm were obtained when the period of LPFG was 400 μm, while the loss peak of 1588 nm, the transmission loss of 20 dB and the FWHM of 25 nm were achieved when the period of LPFG was 550 μm. According to the theory of mode field coupling for long period grating, it was indicated that the modulation of refractive index Δn was in the level of 10-2.

  2. Optical limiting property of a liquid malononitrile derivative on 800 nm laser pulses

    NASA Astrophysics Data System (ADS)

    Du, Juan; Wang, Liuheng; Xie, Na; Sun, Li; Wang, Xiaodong; Zhao, Yuxia; Wu, Feipeng

    2016-08-01

    A new liquid malononitrile derivative (LBDBP) has been synthesized by incorporating four tetraethylene glycol groups into the prototype scaffold of 2-[Bis-(4‧-diethylamino-biphenyl-4-yl)-methylene]-malononitrile (BDBP). The linear photophysical properties, optical/thermal stabilities and optical limiting behaviors of LBDBP and BDBP have been investigated. The results show that LBDBP has equivalent optical/thermal stability but much better solubility compared with BDBP. Its saturation concentration in DMF is increased to 0.075 M, while the corresponding datum for BDBP is only 0.01 M. The improved solubility of LBDBP insures a very significant optical limiting behavior. The saturated DMF solution of LBDBP can significantly reduce the intensity fluctuation of laser pulses in an 800 nm laser setup.

  3. Generation of 0.19-mJ THz pulses in LiNbO3 driven by 800-nm femtosecond laser.

    PubMed

    Zhong, Sen-Cheng; Li, Jun; Zhai, Zhao-Hui; Zhu, Li-Guo; Li, Jiang; Zhou, Ping-Wei; Zhao, Jian-Heng; Li, Ze-Ren

    2016-06-27

    A cylindrical lens telescope tilted-pulse-front pumping scheme was proposed for high energy terahertz (THz) pulse generation. This scheme allows higher pump energy to be used with lower saturation effects under high pump fluence, and higher THz generation efficiency was achieved within large range of pump energy. The optimum pump pulse duration and crystal cooling temperature for THz generation in LiNbO3 (LN) crystal were also researched systematically. Excited by 800-nm laser, up to 0.19 mJ THz pulse energy and 0.27% conversion efficiency was demonstrated under 800-nm 400-fs laser excitation with ~100-mJ pulse energy and 150-K LN cooling temperature. PMID:27410634

  4. High-brightness 800nm fiber-coupled laser diodes

    NASA Astrophysics Data System (ADS)

    Berk, Yuri; Levy, Moshe; Rappaport, Noam; Tessler, Renana; Peleg, Ophir; Shamay, Moshe; Yanson, Dan; Klumel, Genadi; Dahan, Nir; Baskin, Ilya; Shkedi, Lior

    2014-03-01

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. Single emitters offer reliable multi-watt output power from a 100 m lateral emission aperture. By their combination and fiber coupling, pump powers up to 100 W can be achieved from a low-NA fiber pigtail. Whilst in the 9xx nm spectral range the single emitter technology is very mature with <10W output per chip, at 800nm the reliable output power from a single emitter is limited to 4 W - 5 W. Consequently, commercially available fiber coupled modules only deliver 5W - 15W at around 800nm, almost an order of magnitude down from the 9xx range pumps. To bridge this gap, we report our advancement in the brightness and reliability of 800nm single emitters. By optimizing the wafer structure, laser cavity and facet passivation process we have demonstrated QCW device operation up to 19W limited by catastrophic optical damage to the 100 μm aperture. In CW operation, the devices reach 14 W output followed by a reversible thermal rollover and a complete device shutdown at high currents, with the performance fully rebounded after cooling. We also report the beam properties of our 800nm single emitters and provide a comparative analysis with the 9xx nm single emitter family. Pump modules integrating several of these emitters with a 105 μm / 0.15 NA delivery fiber reach 35W in CW at 808 nm. We discuss the key opto-mechanical parameters that will enable further brightness scaling of multi-emitter pump modules.

  5. Generation of spectrally-stable continuous-wave emission and ns pulses at 800 nm and 975 nm with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier

    NASA Astrophysics Data System (ADS)

    Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.

    2015-03-01

    Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.

  6. Generation of Terahertz Radiation from Fe-doped InGaAsP Using 800 nm to 1550 nm Pulsed Laser Excitation

    NASA Astrophysics Data System (ADS)

    Hatem, O.; Freeman, J. R.; Cunningham, J. E.; Cannard, P. J.; Robertson, M. J.; Linfield, E. H.; Davies, A. G.; Moodie, D. G.

    2016-05-01

    We demonstrate efficient generation of terahertz (THz) frequency radiation by pulsed excitation, at wavelengths between 800 and 1550 nm, of photoconductive (PC) switches fabricated using Fe-doped InGaAsP wafers, grown by metal organic chemical vapor deposition (MOCVD). Compared to our previous studies of Fe-doped InGaAs wafers, Fe:InGaAsP wafers exhibited five times greater dark resistivity to give a value of 10 kΩ cm, and Fe:InGaAsP PC switches produced five times higher THz power emission. The effect of Fe-doping concentration (between 1E16 and 1.5E17 cm-3) on optical light absorption (between 800 and 1600 nm), on resistivity, and on THz emission is also discussed.

  7. High-Efficiency 800 nm Multi-Layer Dielectric Gratings for High Average Power Laser Systems

    SciTech Connect

    Nguyen, H T; Britten, J A; Patel, D; Brizuela, F; Rocca, J J; Menoni, C S

    2006-06-15

    We report on the design, fabrication, and performance of a 1740 l/mm multilayer dielectric diffraction grating for use with 800 nm light. At an input angle of 8{sup o} from Littrow and a wavelength from 770 to 830 nm, >90% diffraction efficiency is achieved, with peak diffraction efficiency of >97% at 800nm. We will also comment on laser damage threshold and power-handling properties.

  8. Fabrication of nanostructures on silicon carbide surface and microgroove sidewall using 800-nm femtosecond laser

    NASA Astrophysics Data System (ADS)

    Khuat, Vanthanh; Chen, Tao; Dao, Vanluu

    2015-07-01

    Nanoripples and nanoparticles have been fabricated on the surface of a silicon carbide sample with the irradiation of an 800-nm femtosecond laser in an underwater environment. When a linearly polarized laser was used, the nanoripples were perpendicular to the polarization direction of the incident laser, and the period of the nanoripples was dependent on the number of pulses. When a circularly polarized laser was used, nanoparticles with a diameter of approximately 80 nm were formed. In addition, we observed two kinds of nanoripples on the sidewall of the silicon carbide microgroove fabricated by femtosecond laser irradiation followed by chemical wet etching. When the polarization direction was aligned perpendicular to the writing direction, ripples parallel to the surface of the sample were formed. We attribute the formation of this kind of ripple to interference of the incident laser and the reflected wave. When the polarization direction was aligned parallel to the writing direction, the ripples are perpendicular to the surface of the sample. We attribute the formation of this kind of ripple to interference of incident laser and bulk electron plasma wave. A scanning electron microscope equipped with an energy dispersive X-ray spectroscope was employed to characterize the morphology of the structures.

  9. Self-Q-switched Cr:LiCAF laser near 800 nm

    NASA Astrophysics Data System (ADS)

    Beyatli, Ersen; Sennaroglu, Alphan; Demirbas, Umit

    2013-03-01

    Self-Q-switching (SQS) of lasers enable the generation of Q-switched pulses from simple laser cavities without using any additional saturable absorbers or active modulators. Earlier studies have reported SQS in ruby, Nd:YAG, and Cr:LiSAF lasers. However, these systems were mostly flashlamp pumped and required cooling of the crystal and/or misalignment of the laser cavity for the observation of SQS. In this presentation, for the first time to our knowledge, we report SQS operation of a Cr:LiCAF laser. SQS was achieved in an astigmatically compensated x-cavity containing only a Cr:LiCAF crystal that was end-pumped with a 140-mW continuous-wave (cw) diode at 660 nm. During regular cw operation, the laser produced a diffraction-limited beam with 50 mW of output power and had a spectral width of 0.5 nm near 795 nm. SQS operation of the Cr:LiCAF laser could be initiated by fine adjustment of the separation between the curved mirrors of the cavity and was observed at several mirror separations within the stability range of the resonator. During SQS operation, the laser generated saw-tooth-shaped pulses with 20-30 microsecond duration in the 780-800 nm wavelength range, at repetition rates between 10 and 30 kHz. SQS operation was further accompanied with a decrease in the output power to the 30-45 mW range. In this regime, the output beam became multimode and spectral broadening up to 12.5 nm (FWHM) was observed.

  10. Suppression of high-order-harmonic intensities observed in aligned CO2 molecules with 1300-nm and 800-nm pulses

    NASA Astrophysics Data System (ADS)

    Kato, Kosaku; Minemoto, Shinichirou; Sakai, Hirofumi

    2011-08-01

    High-order-harmonic generation from aligned N2, O2, and CO2 molecules is investigated by 1300-nm and 800-nm pulses. The harmonic intensities of 1300-nm pulses from aligned molecules show harmonic photon energy dependence similar to those of 800-nm pulses. Suppression of harmonic intensity from aligned CO2 molecules is observed for both 1300- and 800-nm pulses over the same harmonic photon energy range. As the dominant mechanism for the harmonic intensity suppression from aligned CO2 molecules, the present results support the two-center interference picture rather than the dynamical interference picture.

  11. Upconverted luminescence under 800 nm laser diode excitation in Nd 3+-activated fluoroaluminate glass

    NASA Astrophysics Data System (ADS)

    Koepke, Cz.; Wisniewski, K.; Sikorski, L.; Piatkowski, D.; Kowalska, K.; Naftaly, M.

    2006-01-01

    We report on the upconverted luminescence in neodymium-activated fluoroaluminate glass obtained with 800 nm diode laser excitation. Several anti-Stokes emissions: at 588, 607, 720 and 750 nm are observed and appropriate transitions are assigned. For both latter emissions we observe strong dependence on temperature: the 720 nm emission intensity decreases with temperature, whereas the 750 nm emission increases. Interpretations are presented in terms of the influence of oxygen-affected sites on the radiationless transitions and multiphonon anti-Stokes excitation. The models provide reasonable fits to the experimental data.

  12. Optical measurement of temperature in biological cells under infrared laser light exposure (λ=800 nm)

    NASA Astrophysics Data System (ADS)

    Moreau, David; Lefort, Claire; Leveque, Philippe; O'Connor, Rod P.

    2015-07-01

    Interest in the interaction between laser light and biological samples has gained momentum in recent years, particularly in neurobiology, where there is significant potential to stimulate neurons with infrared laser light. Despite recent reports showing the application of infrared light for neurostimulation, the underlying mechanism is still unknown. The two main hypotheses are based on thermal or electrostatic mechanisms. Here, a novel optical method is presented to make temperature measurements in human neural cells under infrared laser excitation (λ=800nm) using the dye Rhodamine B (RhB). The measurement of temperature is based on the property of RhB, a fluorescent dye whose fluorescence intensity decreases linearly with increases in temperature. We present and detail the setup and measurement procedure that has temporal resolution of few milliseconds, based around a fluorescent live-cell imaging microscope used for cellular microfluorimetry experiments.

  13. Experimental demonstration of laser tomographic adaptive optics on a 30-meter telescope at 800 nm

    NASA Astrophysics Data System (ADS)

    Ammons, S., Mark; Johnson, Luke; Kupke, Renate; Gavel, Donald T.; Max, Claire E.

    2010-07-01

    A critical goal in the next decade is to develop techniques that will extend Adaptive Optics correction to visible wavelengths on Extremely Large Telescopes (ELTs). We demonstrate in the laboratory the highly accurate atmospheric tomography necessary to defeat the cone effect on ELTs, an essential milestone on the path to this capability. We simulate a high-order Laser Tomographic AO System for a 30-meter telescope with the LTAO/MOAO testbed at UCSC. Eight Sodium Laser Guide Stars (LGSs) are sensed by 99x99 Shack-Hartmann wavefront sensors over 75". The AO system is diffraction-limited at a science wavelength of 800 nm (S ~ 6-9%) over a field of regard of 20" diameter. Openloop WFS systematic error is observed to be proportional to the total input atmospheric disturbance and is nearly the dominant error budget term (81 nm RMS), exceeded only by tomographic wavefront estimation error (92 nm RMS). The total residual wavefront error for this experiment is comparable to that expected for wide-field tomographic adaptive optics systems of similar wavefront sensor order and LGS constellation geometry planned for Extremely Large Telescopes.

  14. S100a8/NF-κB signal pathway is involved in the 800-nm diode laser-induced skin collagen remodeling.

    PubMed

    Ren, Xiaolin; Ge, Minggai; Qin, Xiaofeng; Xu, Peng; Zhu, Pingya; Dang, Yongyan; Gu, Jun; Ye, Xiyun

    2016-05-01

    The 800-nm diode laser is widely used for hair removal and also promotes collagen synthesis, but the molecular mechanism by which dermis responses to the thermal damage induced by the 800-nm diode laser is still unclear. Ten 2-month-old mice were irradiated with the 800-nm diode laser at 20, 40, and 60 J/cm(2), respectively. Skin samples were taken for PCR, Western blot analysis, and histological study at day 3 or 30 after laser irradiation. The expression of S100a8 and its two receptors (advanced glycosylation end product-specific receptor, RAGE and toll-like receptor 4, TRL4) was upregulated at day 3 after laser treatments. P-p65 levels were also elevated, causing the increase of cytokine (tumor necrosis factor, TNF-α and interleukin 6, IL-6) and MMPs (MMP1a, MMP9). At day 30, PCR and Western blot analysis showed significant increase of type I and III procollagen in the dermis treated with laser. Importantly, skin structure was markedly improved in the laser-irradiated skin compared with the control. Thus, it seemed that S100a8 upregulation triggered NF-κB signal pathway through RAGE and TLR4, responding to laser-induced dermis wound healing. The involvement of the NF-κB pathway in MMP gene transcription promoted the turnover of collagen in the skin, accelerating new collagen synthesis. PMID:26914682

  15. Enhancement of 800 nm upconversion emission in a thulium doped tellurite microstructured fiber pumped by a 1560 nm femtosecond fiber laser

    NASA Astrophysics Data System (ADS)

    Jia, Zhixu; Yao, Chuanfei; Wang, Shunbin; Zheng, Kezhi; Xiong, Liangming; Luo, Jie; Lv, Dajuan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2016-04-01

    We report enhanced upconversion (UC) fluorescence in Tm3+ doped tellurite microstructured fibers (TDTMFs) fabricated by using a rod-in-tube method. Under the pumping of a 1560 nm femtosecond fiber laser, ultrabroadband supercontinuum light expanding from ˜1050 to ˜2700 nm was generated in a 4 cm long TDTMF. Simultaneously, intense 800 nm UC emission from the 3H4 → 3H6 transition of Tm3+ was observed in the same TDTMF. Compared to that pumped by a 1560 nm continuous wave fiber laser, the UC emission intensity was enhanced by ˜4.1 times. The enhancement was due to the spectral broadening in the TDTMF under the pumping of the 1560 nm femtosecond fiber laser.

  16. Characterization of an 800 nm SASE FEL at Saturation

    SciTech Connect

    Nuhn, Heinz-Dieter

    2002-11-13

    VISA (Visible to Infrared SASE Amplifier) is an FEL (Free Electron Laser) designed to saturate at a radiation wavelength of 800 nm within a 4-m long, strong focusing undulator. Large gain is achieved by driving the FEL with the 72 MeV, high brightness beam of BNL's Accelerator Test Facility (ATF). We present measurements that demonstrate saturation in addition to the frequency spectrum of the FEL radiation. Energy, gain length and spectral characteristics are compared and shown to agree with simulation and theoretical predictions.

  17. Supercontinuum generation at 800 nm in all-normal dispersion photonic crystal fiber.

    PubMed

    Sukhoivanov, Igor A; Iakushev, Sergii O; Shulika, Oleksiy V; AndradeLucio, Jose Amparao; Díez, Antonio; Andrés, Miguel

    2014-12-01

    We have numerically investigated the supercontinuum generation and pulse compression in a specially designed all-normal dispersion photonic crystal fiber with a flat-top dispersion curve, pumped by typical pulses from state of the art Ti:Sapphire lasers at 800 nm. The optimal combination of pump pulse parameters for a given fiber was found, which provides a wide octave-spanning spectrum with superb spectral flatness (a drop in spectral intensity of ~1.7 dB). With regard to the pulse compression for these spectra, multiple-cycle pulses (~8 fs) can be obtained with the use of a simple quadratic compressor and nearly single-cycle pulses (3.3 fs) can be obtained with the application of full phase compensation. The impact of pump pulse wavelength-shifting relative to the top of the dispersion curve on the generated SC and pulse compression was also investigated. The optimal pump pulse wavelength range was found to be 750 nm < λp < 850 nm, where the distortions of pulse shape are quite small (< -3.3 dB). The influences of realistic fiber fabrication errors on the SC generation and pulse compression were investigated systematically. We propose that the spectral shape distortions generated by fiber fabrication errors can be significantly attenuated by properly manipulating the pump. PMID:25606954

  18. Correlated Two-Electron Momentum Spectra for Strong-Field Nonsequential Double Ionization of He at 800 nm

    SciTech Connect

    Rudenko, A.; Ergler, Th.; Zrost, K.; Feuerstein, B.; Schroeter, C. D.; Moshammer, R.; Ullrich, J.; Jesus, V. L. B. de

    2007-12-31

    We report on a kinematically complete experiment on nonsequential double ionization of He by 25 fs 800 nm laser pulses at 1.5 PW/cm{sup 2}. The suppression of the recollision-induced excitation at this high intensity allows us to address in a clean way direct (e,2e) ionization by the recolliding electron. In contrast with earlier experimental results, but in agreement with various theoretical predictions, the two-electron momentum distributions along the laser polarization axis exhibit a pronounced V-shaped structure, which can be explained by the role of Coulomb repulsion and typical (e,2e) kinematics.

  19. Observation of Supercontinuum Generation and Darkening Effect in Bro-Silicate Glass under 800 nm Femtosecond Irradiations

    NASA Astrophysics Data System (ADS)

    Abdolahpour, D.; Jamshidi-Ghaleh, K.

    2007-04-01

    In this paper, we report the experimental observations of supercontinuum generation and darkening effect in bro-silicate glasses under 200 femtosecond pulses at wavelength of 800 nm. The spectrum of supercontinuum emission from the sample is recorded in the UV wavelength range. The length of filamentation or white light and darkening are investigated at different incident laser pulse energies. The begging position of the generated white light and darkening moves inside glass bulk with decreasing of incident pulse energy. The pulse energy threshold for supercontinuum generation and the laser-induced darkening in this material has been measured. By controlling of the laser-induced darkening in borosilicate glasses prepares a promising technique for designing optical devices.

  20. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    NASA Astrophysics Data System (ADS)

    Moody, J. T.; Anderson, S. G.; Anderson, G.; Betts, S.; Fisher, S.; Tremaine, A.; Musumeci, P.

    2016-02-01

    In this paper we discuss the ultrashort pulse high gradient inverse free electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gradients exceeding 200 MV /m using a 4 TW 100 fs long 800 nm Ti :Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, nondestructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with <100 fs accuracy. The results of this experiment are expected to pave the way towards the development of future GeV-class IFEL accelerators.

  1. INITIAL GAIN MEASUREMENTS OF A 800 NM SASE FEL, VISA.

    SciTech Connect

    FRIGOLA,P.; MUROKH,A.; ET AL; BABZIEN,M.; BEN-ZVI,I.; JOHNSON,E.; MALONE,R.

    2000-08-13

    The VISA (Visible to Infrared SASE Amplifier) FEL is designed to obtain high gain at a radiation wavelength of 800nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6mm and a period of 1.8cm. To obtain large gain the beam and undulator axis have to be aligned to better than 50{micro}m. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.

  2. Initial Gain Measurements of a 800nm SASE FEL, VISA

    SciTech Connect

    Carr, Roger

    2002-08-14

    The VISA (Visible to Infrared SASE Amplifier) FEL is designed to obtain high gain at a radiation wavelength of 800nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6mm and a period of 1.8cm. To obtain large gain the beam and undulator axis have to be aligned to better than 50{micro}m. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.

  3. Initial gain measurements of an 800 nm SASE FEL, VISA

    NASA Astrophysics Data System (ADS)

    Frigola, P.; Murokh, A.; Musumeci, P.; Pellegrini, C.; Reiche, S.; Rosenzweig, J.; Tremaine, A.; Babzien, M.; Ben-Zvi, I.; Johnson, E.; Malone, R.; Rakowsky, G.; Skaritka, J.; Wang, X. J.; Van Bibber, K. A.; Bertolini, L.; Hill, J. M.; Le Sage, G. P.; Libkind, M.; Toor, A.; Carr, R.; Cornacchia, M.; Klaisner, L.; Nuhn, H.-D.; Ruland, R.; Nguyen, D. C.

    2001-12-01

    The Visible to Infrared SASE Amplifier (VISA) FEL is designed to obtain high gain at a radiation wavelength of 800 nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72 MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6 mm and a period of 1.8 cm. To obtain large gain the beam and undulator axis have to be aligned to better than 5 μm. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.

  4. Wavelength Effects In Femtosecond Pulsed Laser Ablation And Deposition

    SciTech Connect

    Castillejo, Marta; Nalda, Rebeca de; Oujja, Mohamed; Sanz, Mikel

    2010-10-08

    Ultrafast pulsed laser irradiation of solid materials is highly attractive for the micro-and nanostructuring of substrates and for the fabrication of nanostructured deposits. Femtosecond laser pulses promote efficient material removal with reduced heat transfer and high deposition rates of nanometer scale particles free of microscopic particulates. Most of the studies to date have been performed with light pulses centered around the peak wavelength of the Titanium:Sapphire laser, around 800 nm. Analysis of the process over a broader range of wavelengths can provide important information about the processes involved and serve as experimental tests for advanced theoretical models. We report on our current investigations on the effect that laser wavelength of femtosecond pulses has on the superficial nanostructuring induced on biopolymer substrates, and on the characteristics of nanostructured deposits grown by pulsed laser deposition from semiconductor targets.

  5. Precision ablation of dental enamel using a subpicosecond pulsed laser.

    PubMed

    Rode, A V; Gamaly, E G; Luther-Davies, B; Taylor, B T; Graessel, M; Dawes, J M; Chan, A; Lowe, R M; Hannaford, P

    2003-12-01

    In this study we report the use of ultra-short-pulsed near-infrared lasers for precision laser ablation of freshly extracted human teeth. The laser wavelength was approximately 800nm, with pulsewidths of 95 and 150fs, and pulse repetition rates of 1kHz. The laser beam was focused to an approximate diameter of 50microm and was scanned over the tooth surface. The rise in the intrapulpal temperature was monitored by embedded thermocouples, and was shown to remain below 5 degrees C when the tooth was air-cooled during laser treatment. The surface preparation of the ablated teeth, observed by optical and electron microscopy, showed no apparent cracking or heat effects, and the hardness and Raman spectra of the laser-treated enamel were not distinguishable from those of native enamel. This study indicates the potential for ultra-short-pulsed lasers to effect precision ablation of dental enamel. PMID:14738125

  6. Cornea surgery with nanojoule femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Wang, Bagui; Riemann, Iris; Kobow, Jens

    2005-04-01

    We report on a novel optical method for (i) flap-generation in LASIK procedures as well as (ii) for flap-free intrastromal refractive surgery based on nanojoule femtosecond laser pulses. The near infrared 200 fs pulses for multiphoton ablation have been provided by ultracompact turn-key MHz laser resonators. LASIK flaps and intracorneal cavities have been realized with high precision within living New Zealand rabbits using the system FemtoCutO (JenLab GmbH, Jena, Germany) at 800 nm laser wavelength. Using low-energy sub-2 nJ laser pulses, collateral damage due to photodisruptive and self-focusing effects was avoided. The laser ablation system consists of fast galvoscanners, focusing optics of high numerical aperture as well as a sensitive imaging system and provides also the possibility of 3D multiphoton imaging of fluorescent cellular organelles and SHG signals from collagen. Multiphoton tomography of the cornea was used to determine the exact intratissue beam position and to visualize intraocular post-laser effects. The wound healing process has been investigated up to 90 days after instrastromal laser ablation by histological analysis. Regeneration of damaged collagen structures and the migration of inflammation cells have been detected.

  7. Research on optical damage to sodium chloride by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Gavasheli, Yu. O.; Komarov, P. S.; Ashitkov, S. I.; Savintsev, A. P.

    2016-06-01

    Thresholds of optical damage to sodium chloride by ultrashort laser pulses with a duration of about 40 fs are determined. Experiments were carried out using a terawatt titanium-sapphire laser device. p-polarized laser radiation at a wavelength of 800 nm fell on the specimen surface at an angle of 60°. Optical damage to the surface was observed when the critical electric field strength attained 94 MV/cm.

  8. Continuous and Pulsed THz generation with molecular gas lasers and photoconductive antennas gated by femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Cruz, Flavio C.; Nogueira, T.; Costa, Leverson F. L.; Jarschel, Paulo F.; Frateschi, Newton C.; Viscovini, Ronaldo C.; Vieira, Bruno R. B.; Guevara, Victor M. B.; Pereira, Daniel

    2008-04-01

    We report THz generation based on two systems: 1) continuous-wave (cw) laser generation in molecular gas lasers, and 2) short pulse generation in photoconductive antennas, gated by femtosecond near-infrared Ti:sapphire lasers. With the first system, we have generated tens of monochromatic cw laser lines over the last years, extending roughly from 40 microns to several hundred microns. This is done by optical pumping of gas lasers based on polar molecules such as methanol and its isotopes. In the second system, under development, pulsed THz radiation is generated by a photoconductive antenna built in a semi-insulating GaAs substrate excited by femtosecond pulses from a near-infrared (800 nm) Ti:sapphire laser.

  9. Hemifusion of cells using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Katchinskiy, Nir; Godbout, Roseline; Goez, Helly R.; Elezzabi, Abdulhakem Y.

    2015-03-01

    Attachment of single cells via hemifusion of cellular membranes using femtosecond laser pulses is reported in this manuscript. This is a method to attach single cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength delivered from a Ti:Sapphire laser is described. A fluorescent dye, Calcein AM, was used to verify that the cell's cytoplasm did not migrate from a dyed cell to a non-dyed cell, in order to ascertain that the cells did not go through cell-fusion process. An optical tweezer was used in order to assess the mechanical integrity of the attached joint membranes. Hemifusion of cellular membranes was successful without initiating full cell fusion. Attachment efficiency of 95% was achieved, while the cells' viability was preserved. The attachment was performed via the delivery of one to two trains of sub-10 femtosecond laser pulses lasting 15 milliseconds each. An ultrafast reversible destabilization of the phospholipid molecules in the cellular membranes was induced due to a laser-induced ionization process. The inner phospholipid cell membrane remained intact during the attachment procedure, and cells' cytoplasm remained isolated from the surrounding medium. The unbounded inner phospholipid molecules bonded to the nearest free phospholipid molecule, forming a joint cellular membrane at the connection point. The cellular membrane hemifusion technique can potentially provide a platform for the creation of engineered tissue and cell cultures.

  10. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles.

    PubMed

    Zhong, Yeteng; Tian, Gan; Gu, Zhanjun; Yang, Yijun; Gu, Lin; Zhao, Yuliang; Ma, Ying; Yao, Jiannian

    2014-05-01

    Nd3+-sensitized quenching-shield sandwich-structured upconversion nanoparticles are reported, which exhibit highly efficient upconversion photoluminescence under excitation by an 800 nm continuous-wave laser. The transition-layer structure is essential to bridge energy transfer from the sensitizer to the activator and simultaneously block energy back-transfer from the activator to the sensitizer. These 800 nm-excited upconversion nanoparticles are a key step toward the development of upconversion nanophosphors for biological applications. PMID:24338994

  11. Diode laser based water vapor DIAL using modulated pulse technique

    NASA Astrophysics Data System (ADS)

    Pham, Phong Le Hoai; Abo, Makoto

    2014-11-01

    In this paper, we propose a diode laser based differential absorption lidar (DIAL) for measuring lower-tropospheric water vapor profile using the modulated pulse technique. The transmitter is based on single-mode diode laser and tapered semiconductor optical amplifier with a peak power of 10W around 800nm absorption band, and the receiver telescope diameter is 35cm. The selected wavelengths are compared to referenced wavelengths in terms of random error and systematic errors. The key component of modulated pulse technique, a macropulse, is generated with a repetition rate of 10 kHz, and the modulation within the macropulse is coded according to a pseudorandom sequence with 100ns chip width. As a result, we evaluate both single pulse modulation and pseudorandom coded pulse modulation technique. The water vapor profiles conducted from these modulation techniques are compared to the real observation data in summer in Japan.

  12. Cloning assay thresholds on cells exposed to ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter; Becker, Thomas P.; Oehring, Hartmut; Halbhuber, Karl-Juergen

    1999-06-01

    The influence of the peak power, laser wavelength and the pulse duration of near infrared ultrashort laser pulses on the reproduction behavior of Chinese hamster ovary (CHO) cells has been studied. In particular, we determined the cloning efficiency of single cell pairs after exposure to ultrashort laser pulses with an intensity in the range of GW/cm2 and TW/cm2. A total of more than 3500 non- labeled cells were exposed to a highly focused scanning beam of a multiphoton laser microscope with 60 microsecond(s) pixel dwell time per scan. The beam was provided by a tunable argon ion laser pumped mode-locked 76 MHz Titanium:Sapphire laser as well as by a compact solid-state laser based system (Vitesse) at a fixed wavelength of 800 nm. Pulse duration (tau) was varied in the range of 100 fs to 4 ps by out-of- cavity pulse-stretching units consisting of SF14 prisms and blazed gratings. Within an optical (laser power) window CHO cells could be scanned for hours without severe impact on reproduction behavior, morphology and vitality. Ultrastructural studies reveal that mitochondria are the major targets of intense destructive laser pulses. Above certain laser power P thresholds, CHO cells started to delay or failed to undergo cell division and, in part, to develop uncontrolled cell growth (giant cell formation). The damage followed a P2/(tau) relation which is typical for a two- photon excitation process. Therefore, cell damage was found to be more pronounced at shorter pulses. Due to the same P2/(tau) relation for the efficiency of fluorescence excitation, two-photon microscopy of living cells does not require extremely short femtosecond laser pulses nor pulse compression units. Picosecond as well as femtosecond lasers can be used as efficient light sources in safe two photon fluorescence microscopy. Only in three photon fluorescence microscopy, femtosecond laser pulses are advantageous over picosecond pulses.

  13. Cloning assay thresholds on cells exposed to ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter; Becker, Thomas P.; Oehring, Hartmut; Halbhuber, Karl-Juergen

    1999-06-01

    The influence of the peak power, laser wavelength and the pulse duration of near infrared (NIR) ultrashort laser pulses on the reproduction behavior of Chinese hamster ovary (CHO) cells has been studied. In particular we determined the cloning efficiency of single cell pairs after exposure to ultrashort laser pulses with an intensity in the range of GW/cm2 and TW/cm2. A total of more than 3500 non- labeled cells were exposed to a highly focused scanning beam of a multiphoton laser microscope with 60 microsecond pixel dwell time per scan. The beam was provided by a tunable argon ion laser pumped mode-locked 76 MHz Titanium:Sapphire laser as well as by a compact solid-state laser based system (Vitesse) at a fixed wavelength of 800 nm. Pulse duration (tau) was varied in the range of 100 fs to 4 ps by out-of-cavity pulse- stretching units consisting of SF14 prisms and blazed gratings. Within an optical (laser power) window CHO cells could be scanned for hours without severe impact on reproduction behavior, morphology and vitality. Ultrastructural studies reveal that mitochondria are the major targets of intense destructive laser pulses. Above certain laser power P thresholds, CHO cells started to delay or failed to undergo cell division and, in part, to develop uncontrolled cell growth (giant cell formation). The damage followed a P2/(tau) relation which is typical for a two-photon excitation process. Therefore, cell damage was found to be more pronounced at shorter pulses. Due to the same P2/(tau) relation for the efficiency of fluorescence excitation, two- photon microscopy of living cells does not require extremely short femtosecond laser pulses nor pulse compression units. Picosecond as well as femtosecond layers can be used as efficient light sources in safe two photon fluorescence microscopy. Only in three photon fluorescence microscopy, femtosecond laser pulses are advantageous over picosecond pulses.

  14. Laser pulse stacking method

    DOEpatents

    Moses, Edward I.

    1992-01-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.

  15. Laser pulse stacking method

    DOEpatents

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  16. Cell perforation mediated by plasmonic bubbles generated by a single near infrared femtosecond laser pulse.

    PubMed

    Boutopoulos, Christos; Bergeron, Eric; Meunier, Michel

    2016-01-01

    We report on transient membrane perforation of living cancer cells using plasmonic gold nanoparticles (AuNPs) enhanced single near infrared (NIR) femtosecond (fs) laser pulse. Under optimized laser energy fluence, single pulse treatment (τ = 45 fs, λ = 800 nm) resulted in 77% cell perforation efficiency and 90% cell viability. Using dark field and ultrafast imaging, we demonstrated that the generation of submicron bubbles around the AuNPs is the necessary condition for the cell membrane perforation. AuNP clustering increased drastically the bubble generation efficiency, thus enabling an effective laser treatment using low energy dose in the NIR optical therapeutical window. PMID:26199220

  17. TCSPC FLIM in the wavelength range from 800 nm to 1700 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Becker, Wolfgang; Shcheslavsky, Vladislav

    2016-03-01

    Excitation and detection in the wavelength range above 800nm is a convenient and relatively inexpensive way to increase the penetration depth in optical microscopy. Moreover, detection at long wavelength avoids the problem that tissue autofluorescence contaminates the signals from endogenous fluorescence probes. FLIM at NIR wavelength may therefore be complementary to multiphoton microscopy, especially if the lifetimes of NIR fluorophores report biological parameters of the tissue structures they are bound to. Unfortunately, neither the excitation sources nor the detectors of standard confocal and multiphoton laser scanning systems are directly suitable for excitation and detection of NIR fluorescence. Most of these problems can be solved, however, by using ps diode lasers or Ti:Sapphire lasers at their fundamental wavelength, and NIR-sensitive detectors. With NIR-sensitive PMTs the detection wavelength range can be extended up to 900 nm, with InGaAs SPAD detectors up to 1700 nm. Here, we demonstrate the use of a combination of laser scanning, multi-dimensional TCSPC, and advanced excitation sources and detectors for FLIM at up to 1700 nm. The performance was tested at tissue samples incubated with NIR dyes. The fluorescence lifetimes generally get shorter with increasing absorption and emission wavelengths of the dyes. For the cyanine dye IR1061, absorbing around 1060 nm, the lifetime was found to be as short as 70 ps. Nevertheless the fluorescence decay could still be clearly detected. Almost all dyes showed clear lifetime changes depending on the binding to different tissue constituents.

  18. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  19. Influence of laser pulse energy on emission lines intensity in the femtosecond laser-induced breakdown spectroscopy of iron in aqua solution

    NASA Astrophysics Data System (ADS)

    Golik, S. S.; Ilyin, A. A.; Babiy, M. Y.; Biryukova, Yu. S.; Lisitsa, V. V.; Shmirko, K. A.

    2015-11-01

    The influence of pulse energy on the time evolution of the intensity of the continuum and emission lines of plasma generated on the surface of aqueous solutions of iron by focused radiation Ti: sapphire laser with a wavelength of 800 nm and pulse duration of 45 fs and a range of energy 3-7 mJ was investigated. The calibration curve for iron in water and 3-ó limit of detection of iron in water was obtained.

  20. Periodic structure formation and surface morphology evolution of glassy carbon surfaces applying 35-fs-200-ps laser pulses

    NASA Astrophysics Data System (ADS)

    Csontos, J.; Toth, Z.; Pápa, Z.; Budai, J.; Kiss, B.; Börzsönyi, A.; Füle, M.

    2016-06-01

    In this work laser-induced periodic structures with lateral dimensions smaller than the central wavelength of the laser were studied on glassy carbon as a function of laser pulse duration. To generate diverse pulse durations titanium-sapphire (Ti:S) laser (center wavelength 800 nm, pulse durations: 35 fs-200 ps) and a dye-KrF excimer laser system (248 nm, pulse durations: 280 fs, 2.1 ps) were used. In the case of Ti:S laser treatment comparing the central part of the laser-treated areas a striking difference is observed between the femtoseconds and picoseconds treatments. Ripple structure generated with short pulse durations can be characterized with periodic length significantly smaller than the laser wavelength (between 120 and 165 nm). At higher pulse durations the structure has a higher periodic length (between 780 and 800 nm), which is comparable to the wavelength. In case of the excimer laser treatment the different pulse durations produced similar surface structures with different periodic length and different orientation. One of the structures was parallel with the polarization of the laser light and has a higher periodic length (~335 nm), and the other was perpendicular with smaller periodic length (~78-80 nm). The possible mechanisms of structure formation will be outlined and discussed in the frame of our experimental results.

  1. Infrared Two-Color Multicycle Laser Field Synthesis for Generating an Intense Attosecond Pulse

    NASA Astrophysics Data System (ADS)

    Takahashi, Eiji J.; Lan, Pengfei; Mücke, Oliver D.; Nabekawa, Yasuo; Midorikawa, Katsumi

    2010-06-01

    We propose and demonstrate the generation of a continuum high-order harmonic spectrum by mixing multicycle two-color (TC) laser fields with the aim of obtaining an intense isolated attosecond pulse. By optimizing the wavelength of a supplementary infrared pulse in a TC field, a continuum harmonic spectrum was created around the cutoff region without carrier-envelope phase stabilization. The obtained harmonic spectra clearly show the possibility of generating isolated attosecond pulses from a multicycle TC laser field, which is generated by an 800 nm, 30 fs pulse mixed with a 1300 nm, 40 fs pulse. Our proposed method enables us not only to relax the requirements for the pump pulse duration but also to reduce ionization of the harmonic medium. This concept opens the door to create an intense isolated attosecond pulse using a conventional femtosecond laser system.

  2. Optical Field Ionization of Atoms and Ions Using Ultrashort Laser Pulses

    NASA Astrophysics Data System (ADS)

    Fittinghoff, David Neal

    This dissertation research is an investigation of the strong optical field ionization of atoms and ions by 120-fs, 614-nm laser pulses and 130-fs, 800-nm laser pulses. The experiments have shown ionization that is enhanced above the predictions of sequential tunneling models for He^{+2}, Ne ^{+2} and Ar^ {+2}. The ion yields for He^ {+1}, Ne^{+1} and Ar^{+1} agree well with the theoretical predictions of optical tunneling models. Investigation of the polarization dependence of the ionization indicates that the enhancements are consistent with a nonsequential ionization mechanism in which the linearly polarized field drives the electron wavefunction back toward the ion core and causes double ionization through inelastic e-2e scattering. These investigations have initiated a number of other studies by other groups and are of current scientific interest in the fields of high-irradiance laser -matter interactions and production of high-density plasmas. This work involved: (1) Understanding the characteristic nature of the ion yields produced by tunneling ionization through investigation of analytic solutions for tunneling at optical frequencies. (2) Extensive characterization of the pulses produced by 614-nm and 800-nm ultrashort pulse lasers. Absolute calibration of the irradiance scale produced shows the practicality of the inverse problem--measuring peak laser irradiance using ion yields. (3) Measuring the ion yields (number of ions produced versus irradiance) for three noble gases using linear, circular and elliptical polarizations of laser pulses.

  3. Multiple pulse thresholds in live eyes for ultrashort laser pulses in the near infrared

    NASA Astrophysics Data System (ADS)

    Stolarski, David J.; Cain, Clarence P.; Toth, Cynthia A.; Noojin, Gary D.; Rockwell, Benjamin A.

    1999-06-01

    Damage thresholds using multiple laser pulses to produce minimum visible lesions (MVL) in rhesus monkey eyes are reported for near-infrared (800 nm) at 130 femtoseconds. Previous studies by our research group using single pulses in the near-infrared (1060 nm) have determined damage thresholds and retinal spot size dependence. We report the first multiple pulse damage thresholds using femtosecond pulses. MVL thresholds at 1 hour and 24 hours postexposure were determined for 1, 100 and 1,000 pulses and we compare these with other reported multiple pulse thresholds. These new data will be added to the databank for retinal MVL's as a function of pulse repetition rate for this pulsewidth and a comparison will be made with the ANSI standard for multiple pulse exposures. Our measurements show that the retinal ED50 threshold/pulse in the paramacula decreases for increasing number of pulses. The MVL-ED50 at the threshold/pulse decreased by a factor of 4 (0.55 (mu) J to 0.13 (mu) J/pulse) for an increase from 1 to 100 pulses.

  4. Multiphoton photoemission from a copper cathode illuminated by ultrashort laser pulses in an RF photoinjector.

    PubMed

    Musumeci, P; Cultrera, L; Ferrario, M; Filippetto, D; Gatti, G; Gutierrez, M S; Moody, J T; Moore, N; Rosenzweig, J B; Scoby, C M; Travish, G; Vicario, C

    2010-02-26

    In this Letter we report on the use of ultrashort infrared laser pulses to generate a copious amount of electrons by a copper cathode in an rf photoinjector. The charge yield verifies the generalized Fowler-Dubridge theory for multiphoton photoemission. The emission is verified to be prompt using a two pulse autocorrelation technique. The thermal emittance associated with the excess kinetic energy from the emission process is comparable with the one measured using frequency tripled uv laser pulses. In the high field of the rf gun, up to 50 pC of charge can be extracted from the cathode using a 80 fs long, 2 microJ, 800 nm pulse focused to a 140 mum rms spot size. Taking into account the efficiency of harmonic conversion, illuminating a cathode directly with ir laser pulses can be the most efficient way to employ the available laser power. PMID:20366937

  5. Controlling the formation of excited neutral D* fragments of D2 using intense ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Feizollah, Peyman; Berry, Ben; Severt, T.; Jochim, Bethany; Zohrabi, M.; Kanaka Raju, P.; Rajput, Jyoti; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2016-05-01

    Excited neutral D* fragments (n >> 1) are produced by the interaction of strong-field laser pulses with D2 molecules. In this work, we focus on the formation of low kinetic energy release (KER) D* fragments, which are relatively unstudied, using NIR (800-nm) and UV (400-nm) laser pulses. The KER spectrum is found to be very sensitive to the laser parameters, including laser chirp. By changing the chirp of the UV laser pulses, two separate low-KER peaks are generated instead of a single peak. Moreover, the ratio between these peaks can be controlled with the chirp. Similarly, by chirping the NIR pulses, the low-KER peak is attenuated and shifted to lower energy. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy. BJ was also supported in part by DOE-SCGF (DE-AC05-06OR23100).

  6. Optical and structural characterization of iron oxide and cobalt oxide thin films at 800 nm

    NASA Astrophysics Data System (ADS)

    Garcia, Hans A.; de Melo, Ronaldo P.; Azevedo, Antonio; de Araújo, Cid B.

    2013-05-01

    We report on optical and structural properties of α-Fe2O3 and Co3O4 thin films, grown by direct oxidation of pure metal films deposited on soda-lime glass. Structural characteristics and morphology of the films were investigated by X-ray diffraction, atomic force microscopy, and scanning electron microscopy. Linear optical absorption, and linear refraction as well as nonlinear optical properties were investigated. The third-order optical susceptibilities were measured applying the Thermally managed Z- scan technique using a Ti: sapphire laser (150 fs; 800 nm). The results obtained for the Co3O4 film were {Re} χ^{( 3 )} = -(5.7 ± 2.4) ×10-9 esu and {Im} χ^{(3)} = -(1.8 ± 0.2) ×10-8 esu while for the α-Fe2O3 film we determined {Re} χ^{(3)} = +(6.6 ± 2.4) ×10-10 esu and {Im} χ^{(3)} = +(2.2 ± 0.4) ×10-10 esu.

  7. Generation of scalable terahertz radiation from cylindrically focused laser pulses in air

    NASA Astrophysics Data System (ADS)

    Kuk, Donghoon; Yoo, Yungjun; Rosenthal, Eric; Jhajj, Nihal; Milchberg, Howard; Kim, Ki-Yong

    We have demonstrated scalable terahertz (THz) generation via cylindrical focusing of two-color laser pulses in air. In this experiment, we have used a terawatt (TW) laser system which can deliver >50 mJ, 800 nm, 50 fs pulses at a 10 Hz repetition rate. A 800 nm pulse passing through a nonlinear crystal (BBO) generates its second harmonic pulse (400 nm). Both pulses pass through a cylindrical lens and are focused together to generate a 2-dimensional plasma sheet in air. This yields two diverging THz lobes, characterized by an uncooled microbolometer. This observed radiation angle and pattern is explained by the optical-Cherenkov radiation theory. The diverging THz radiation is re-focused to yield strong THz field strengths (>20 MV/cm) at the focus. At laser energy of 40 mJ, cylindrical focusing provides THz energy of >30 microjoules, far exceeding the output produced by spherical focusing. This shows that cylindrical focusing can effectively minimize ionization-induced defocusing, previously observed in spherical focusing, and can allow scalable THz generation with relatively high laser energies (>20 mJ). Work supported by DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. 014216-001.

  8. Nanosurgery in live cells using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Heisterkamp, Alexander; Maxwell, Iva Z.; Kumar, Sanjay; Underwood, J. M.; Nickerson, J. A.; Ingber, Donald E.; Mazur, Eric

    2005-04-01

    We selectively disrupted the cytoskeletal network of fixed and live bovine capillary endothelial cell using ultrashort laser pulses. We image the microtubules in the cytoskeleton of the cultured cells using green fluorescent protein. The cells are placed on a custom-built inverted fluorescence microscope setup, using a 1.4 NA oil-immersion objective to both image the cell and focus the laser radiation into the cell samples. The laser delivers 100-fs laser pulses centered at 800 nm at a repetition rate of 1 kHz; the typical energy delivered at the sample is 1-5nJ. The fluorescent image of the cell is captured with a CCD-camera at one frame per second. To determine the spatial discrimination of the laser cutting we ablated microtubules and actin fibers in fixed cells. At pulse energies below 2 nJ we obtain an ablation size of 200 nm. This low pulse energy and high spatial discrimination enable the application of this technique to live cells. We severed a single microtubule inside the live cells without affecting the cell's viability. The targeted microtubule snaps and depolymerizes after the cutting. This nanosurgery technique will further the understanding and modeling of stress and compression in the cytoskeletal network of live cells.

  9. High-energy large-aperture Ti:sapphire amplifier for 5 PW laser pulses.

    PubMed

    Chu, Yuxi; Gan, Zebiao; Liang, Xiaoyan; Yu, Lianghong; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Xu, Lu; Lu, Haihe; Yin, Dingjun; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2015-11-01

    We report on the generation of 192.3 J centered at 800 nm wavelength from a chirped-pulse amplification (CPA) Ti:sapphire laser system. The experimental results demonstrate that parasitic lasing can be suppressed successfully in the final amplifier based on a Ti:sapphire crystal of 150 mm in diameter. An over 50% pump-to-signal conversion efficiency was measured for the final amplifier by optimizing the time delay of two pump pulses and enhancing the injected seed energy. With 72% compressor throughput efficiency and 27 fs long compressed pulse duration obtained at a lower energy level, this laser could potentially support a compressed laser pulse of 5.13 PW peak power. The experimental results represent notable progress regarding the CPA laser. PMID:26512506

  10. Complicated high-order harmonic generation due to the falling edge of a trapezoidal laser pulse

    NASA Astrophysics Data System (ADS)

    Ahmadi, H.; Vafaee, M.; Maghari, A.

    2016-02-01

    High-order harmonic generation (HHG) is investigated for {{{H}}}2+ and its isotopologues under seven and ten-cycle trapezoidal laser pulses at an 800 nm wavelength and I = 4 × 1014 W cm-2 intensity. We numerically solved the full-dimensional electronic time-dependent Schrödinger equation (TDSE) with and without the Born-Oppenheimer approximation (BO). We show that contribution to the HHG spectrum from the trailing edge of a trapezoidal laser pulse can result in a redshift and complexity in the total HHG spectrum. This effect can be removed by considering different laser pulse durations and nuclear motion that is not possible for sin2 and Gaussian laser pulses. We have resolved the contributions to the redshift and other patterns in the HHG spectra into the different electronic and vibrational channels and the interference thereof.

  11. Molecular dissociation of HD^+ by broad bandwidth chirped laser pulses: a molecular bandwidth filter

    NASA Astrophysics Data System (ADS)

    Zohrabi, M.; Ablikim, U.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2012-06-01

    We employ a coincidence 3D momentum imaging method to study the fragmentation of HD^+ following interaction with an intense, 800 nm, 25 fs Fourier transform-limited (FTL) laser pulse. The broad bandwidth of our FTL pulse prevents us from observing vibrational peaks that one would expect to see using longer FTL laser pulses ˜100 fs. However, by chirping the pulse either positively or negatively, while maintaining a fixed bandwidth, we were able to measure vibrational structure. The kinetic energy release of these vibrational peaks are shifted up or down depending on the sign of the chirp.ootnotetextV. S. Prabhudesai et al., Phys. Rev. A 81, 023401 (2010). We will address the question of why the vibrational structure is observed in spite of the broad bandwidth of the chirped laser pulses.

  12. Nanofabrication with Pulsed Lasers

    NASA Astrophysics Data System (ADS)

    Kabashin, A. V.; Delaporte, Ph.; Pereira, A.; Grojo, D.; Torres, R.; Sarnet, Th.; Sentis, M.

    2010-03-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser-matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  13. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses

    NASA Astrophysics Data System (ADS)

    Kim, I. Jong; Pae, Ki Hong; Choi, Il Woo; Lee, Chang-Lyoul; Kim, Hyung Taek; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V.; Jeong, Tae Moon; Kim, Chul Min; Nam, Chang Hee

    2016-07-01

    The radiation pressure acceleration (RPA) of charged particles has been a challenging task in laser-driven proton/ion acceleration due to its stringent requirements in laser and target conditions. The realization of radiation-pressure-driven proton acceleration requires irradiating ultrathin targets with an ultrahigh contrast and ultraintense laser pulses. We report the generation of 93-MeV proton beams achieved by applying 800-nm 30-fs circularly polarized laser pulses with an intensity of 6.1 × 10 20 W / cm 2 to 15-nm-thick polymer targets. The radiation pressure acceleration was confirmed from the obtained optimal target thickness, quadratic energy scaling, polarization dependence, and three-dimensional particle-in-cell simulations. We expect this clear demonstration of RPA to facilitate the realization of laser-driven proton/ion sources delivering energetic and short-pulse particle beams for novel applications.

  14. Nanofabrication with Pulsed Lasers

    PubMed Central

    2010-01-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics. PMID:20672069

  15. Pulsed gas laser

    DOEpatents

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  16. Pulsed atomic soliton laser

    SciTech Connect

    Carr, L.D.; Brand, J.

    2004-09-01

    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a nondispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments.

  17. Pulsed inductive HF laser

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.; Demchuk, S. V.

    2016-03-01

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H2 – F2(NF3 or SF66) and He(Ne) – H2 – F2(NF3 or SF6) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%.

  18. Laser pulse sampler

    DOEpatents

    Vann, Charles

    1998-01-01

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera.

  19. Laser pulse sampler

    DOEpatents

    Vann, C.

    1998-03-24

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera. 5 figs.

  20. Silica Nanowire Growth on Photonic Crystal Fiber by Pulsed Femtosecond Laser Deposition

    NASA Astrophysics Data System (ADS)

    Langellier, Nicholas; Li, Chih-Hao; Furesz, Gabor; Glenday, Alex; Phillips, David; Zhang, Huiliang; Noah Chang, Guoqing; Kaertner, Franz; Szentgyorgyi, Andrew; Walsworth, Ronald

    2012-06-01

    We present a new method of nanowire fabrication using pulsed laser deposition. An 800 mW 1 GHz femtosecond Ti:Sapphire laser is guided into a polarization-maintaining photonic crystal fiber (PCF). The PCF, with a core tapered to 1.7 micron diameter, converts femtosecond laser pulses centered at 800 nm into green light with a spectrum down to 500 nm. The PCF is enclosed in a cylindrical tube with glass windows, sealed in a class 100 clean room with silicone-based RTV adhesive. The high power of each laser pulse in a silica-rich environment leads to growth of a silica nanowire at the output end of the PCF. SEM analysis shows that the nanowire is 720 nm in diameter and grows at a rate of about 0.6 um/s. Details of nanowire performance along with potential applications will be presented.

  1. Laser pulse detector

    DOEpatents

    Mashburn, D.N.; Akerman, M.A.

    1979-08-13

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  2. Laser pulse detector

    DOEpatents

    Mashburn, Douglas N.; Akerman, M. Alfred

    1981-01-01

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  3. Molecular Ionization at High Intensities: Characterizing OPA Laser Pulses

    NASA Astrophysics Data System (ADS)

    McAcy, Collin; Karnemaat, Ryan; Marsh, Skyler; Foote, David; Uiterwaal, Cornelis

    2012-06-01

    Ultrashort laser pulses have long been the primary instruments of probing and analyzing intense-field molecular dynamics on femtosecond timescales. In particular, processes involving resonance-enhanced multiphoton ionization (REMPI) have provided insight into ionization and dissociation dynamics. Typically the scope of REMPI is limited by the laser properties; namely, REMPI is limited by the transition energies accessible by an integer number of photons. However, the ability to tune the energies of these photons adds flexibility to the available resonances and, for longer wavelengths, makes tunneling the dominant ionization process. Optical parametric amplification (OPA) provides these changes, but the nonlinear processes required for OPA could have complicating effects on pulse duration and focusability, distorting beam quality and compromising experiments. We present the parametric amplification of 800-nm, 50-fs laser pulses in a TOPAS-C system: we use autocorrelation, power measurements, and knife-edging techniques to determine output pulse duration, intensity, and focal characteristics as a function of wavelength. We also report on the effects such changes will have on the practicality of various techniques requiring high-intensity processes.

  4. Fiber delivery of femtosecond pulses from a Ti:sapphire laser.

    PubMed

    Clark, S W; Ilday, F O; Wise, F W

    2001-09-01

    We propose a way to deliver nanojoule-energy, 100-fs pulses at 800 nm through a few meters of standard optical fiber. Pulses from a mode-locked laser are compressed temporally, and then spectrally, to produce the desired pulses at the end of the fiber. Initial experiments agree well with calculations and demonstrate the benefits of this technique: For an energy of ~0.5 nJ , the delivered pulses are ~5 times shorter than those delivered by other techniques. The issues that must be addressed to scale the technique up to delivered pulse energies of 5 nJ are identified, and the apparatus employs only readily available components. Thus we expect it to find use in the many applications that would benefit from fiber delivery of femtosecond pulses. PMID:18049595

  5. Production of petawatt laser pulses by backward Raman amplification in plasma

    NASA Astrophysics Data System (ADS)

    Wu, Zhaohui; Zuo, Yanlei; Su, Jingqin; Liu, Lanqin; Jiao, Zhihong; Wei, Xiaofeng

    2015-02-01

    Backward Raman amplification (BRA) in plasma has been demonstrated an effective way to produce high power laser pulses. However, most experiments of BRA are carried out around the pump wavelength of 800 nm. In recent years, the 1053 nm pump pulse becomes more and more essential as the development of the chirped pulse amplification (CPA) around this wavelength. Here we design an experiment of BRA with a 1053 nm, 20 ps pump pulse and a 1200 nm, 50 fs seed pulse based on the facility of XG III. The simulation results obtained by a 1-d particle-in-cell (PIC) code show that the amplified peak seed intensity of ˜ 5 × 1016 W/cm2 is obtained, with an energy transfer up to 16.8%. An output pulse of petawatt power is theoretically demonstrated feasible.

  6. Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Gibson, Emily A.; Gaudiosi, David M.; Kapteyn, Henry C.; Jimenez, Ralph; Kane, Steve; Huff, Rachel; Durfee, Charles; Squier, Jeff

    2006-11-01

    Efficient reflection grisms for pulse-compression and material-dispersion compensation have been designed and demonstrated in a 40 fs, 300 μJ, 5 kHz downchirped pulse amplification system for the first time to our knowledge. A grism design for 800nm femtosecond laser pulse dispersion compensation applications is realized by using standard, commercial diffraction gratings.

  7. CW-pulsed laser

    SciTech Connect

    Wert, J. C.

    1981-09-01

    An apparatus for generating a spatially coherent laser beam having both CW and pulsed modes is disclosed. The modes are generated in differing volumetric regions of a single gain medium excited by a continuous energy pump. The CW portion of the output beam passes from the gain medium through a partially transmissive output coupling. The pulsed modes in the output beam are created in the respective region of the gain medium when transition materials from a selected group are stimulated to undergo an abrupt change between their reflective and transmissive states. Either cavity dumped or Q-switched configurations can be created by selective and patterned location of the transition materials at the ends of the gain medium. Symmetric organization of the volumetric regions within the gain medium allows temporal superposition of the two modes while maintaining spatial distinctiveness within the laser beam generated.

  8. Pulsed laser microtomograph

    NASA Astrophysics Data System (ADS)

    Antonov, V. B.; Bonch-Bruevich, A. M.; Vasil'Ev, V. I.; Ionov, L. N.; Nikolaev, S. D.; Starobogatov, I. O.

    1994-12-01

    This paper describes a pulsed laser tomographic apparatus that has been implemented in practice and has a spatial resolution of 2-5 microns in the transverse direction and approximately 70 microns in the probe-radiation propagation direction. Experiments have been performed with model objects. Results have been obtained that confirm the possibility of early diagnosis of skin mycoses that cannot be diagnosed by existing methods.

  9. Design and construction of a PW ultrashort laser facility with ns, ps, and fs outputting pulses

    NASA Astrophysics Data System (ADS)

    Zhu, Qihua; Huang, Xiaojun; Wang, Xiao; Zeng, Xiaoming; Xie, Xudong; Wang, Fang; Wang, Fengrui; Lin, Donghui; Jiang, Dongbin; Wang, Xiaodong; Zhou, Kainan; Zuo, Yanlei; Zhang, Ying; Deng, Ying; Wei, Xiaofeng; Fan, Dianyuan

    2007-06-01

    A petawatt laser facility with three beams for fast ignition research and strong-field physics applications has been designed and is being constructed. The first beam (referred as SILEX-I) is a Ti:sapphire femto-second laser which pulse width is 30 fs, and till now, output power has reached to 330 TW. The other two beams are Nd 3+:glass lasers which output energy are larger than 1kJ and pulse width are about 1ps and 1ns respectively. By using the technology of OPA pumped by 800nm femtosecond laser and seeded by super-continuum white light (SWL), the three beams are synchronized with each other without jitter time. Tiled multilayer dielectric coating gratings are used for the compressor of the PW beam.

  10. Frequency doubling and tripling of ultrashort laser pulses in biological tissues

    SciTech Connect

    Da Silva, L. B.; Eichler, J.; Joslin, E. J.; Kim, B.-M.

    1998-07-24

    Structural proteins such as collagen and elastin are known to generate second harmonic at high laser intensities. Second and third harmonic generations (SHG, THG) of 0.4 ps Ti-Sapphire laser radiation at 800 nm were observed in various biological tissues. Dependence of SHG on laser pulse energy and pulse width was investigated. Reflected second harmonic yield was measured for animal tissue in vitro and human skin in vivo. The yield varies about a factor of 20 for various areas of the skin while the scattered laser radiation (diffuse reflectance) varies only by a factor of 2. In some cases the THG efficiency was comparable to the SHG. Possible applications of higher harmonic radiation for diagnostics and microscopy are discussed.

  11. Optical field ionization of atoms and ions using ultrashort laser pulses

    SciTech Connect

    Fittinghoff, D.N.

    1993-12-01

    This dissertation research is an investigation of the strong optical field ionization of atoms and ions by 120-fs, 614-run laser pulses and 130-fs, 800-nm laser pulses. The experiments have shown ionization that is enhanced above the predictions of sequential tunneling models for He{sup +2}, Ne{sup +2} and Ar{sup +2}. The ion yields for He{sup +l}, Ne{sup +l} and Ar{sup +l} agree well with the theoretical predictions of optical tunneling models. Investigation of the polarization dependence of the ionization indicates that the enhancements are consistent with a nonsequential ionization mechanism in which the linearly polarized field drives the electron wavefunction back toward the ion core and causes double ionization through inelastic e-2e scattering. These investigations have initiated a number of other studies by other groups and are of current scientific interest in the fields of high-irradiance laser-matter interactions and production of high-density plasmas. This work involved: (1) Understanding the characteristic nature of the ion yields produced by tunneling ionization through investigation of analytic solutions for tunneling at optical frequencies. (2) Extensive characterization of the pulses produced by 614-nm and 800-ran ultrashort pulse lasers. Absolute calibration of the irradiance scale produced shows the practicality of the inverse problem--measuring peak laser irradiance using ion yields. (3) Measuring the ion yields for three noble gases using linear, circular and elliptical polarizations of laser pulses at 614-nm and 800-nm. The measurements are some of the first measurements for pulse widths as low as 120-fs.

  12. Photoelectron momentum distributions of the hydrogen atom driven by multicycle elliptically polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Murakami, Mitsuko; Chu, Shih-I.

    2016-02-01

    Photoelectron momentum distributions (PMDs) of the hydrogen atom driven by multicycle elliptically polarized strong laser fields are studied in detail, based on the numerical solution of the time-dependent Schrödinger equation and the Volkov wave propagation. Both short and long driving pulses of the 800-nm field are considered, as well as the ellipticity dependence, to describe the mechanism of symmetry breaking in the hydrogen-atom PMD. Moreover, we demonstrate that the value of a retardation angle in the longitudinal PMD can depend on the order of above-threshold ionization spectra.

  13. The Application of Ultrafast Laser Pulses to Laser Desorption Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cui, Yang

    Ultrashort femtosecond laser pulses display exceptional performance for the selective ablation of materials, includes metals, semiconductors, and biological tissues. They do not damage the remaining unablated portion of a sample, which permits the possibility of depth profiling by repeat sampling at the same location. With sufficiently micro-focused fs laser pulse length beam, high lateral resolution mass spectrometry imaging is possible, while sample damage may degrade ultimate lateral resolution in some other methods. Combining imaging and depth profiling could ultimately leads to tomographical mass spectrometry or 3D imaging MS. Laser postionization, a "soft" ionization method, was combined with ultrafast laser desorption for enhanced molecular analysis. A customized femtosecond laser desorption/ablation postionization time-of-flight mass spectrometer was designed and built. The construction and performance of both phases including the VUV source are detailed. Instrument control software was written to operate this instrument, and many automated experiments were successfully demonstrated by this software. Elemental and molecular analysis was carried out on the instrument and demonstrated exceptional performance for fs laser pulse sampling of small areas. Studies demonstrated the imaging and depth profiling capability of fs-LDPI on metals, semiconductors and intact biofilm tissues. Attempts were made to reach the limit of lateral resolution of imaging by fs-LDPI-MS. The results showed similar lateral resolution of <2 mum for both fs 800 nm and 400 nm desorption beams. To improve the repetition rate for high speed imaging application, an alternative LDPI scheme was designed and constructed. The fs 800 beam was tripled to 267 nm and delivered into the ion source as an ionization laser, while a ns 349 nm pulse laser was used for desorption. Preliminary data showed certain intact molecular ions can be detected. Fragmentation tendency was measured against various

  14. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  15. Laser beam pulse formatting method

    DOEpatents

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  16. Formation of Si nanocrystals in SiOx, SiOx:C:H films and Si/SiO2 multilayer nano-heterostructures by pulse laser treatments

    NASA Astrophysics Data System (ADS)

    Neizvestniy, I. G.; Volodin, V. A.; Gismatulin, A. A.; Kamaev, G. N.; Antonenko, A. H.; Cherkov, A. G.; Litovchenko, V. G.; Lisovsky, I. P.; Maidanchuk, I. Yu.

    2014-12-01

    Furnace annealing and pulse laser treatments, including nanosecond laser treatments (KrF laser 248 nm wavelength, 20 ns pulse duration and XeCl laser 308 nm wavelength, 10 ns pulse duration) and femtosecond laser treatments (Tisapphire laser, 800 nm wavelength, <30 fs pulse duration) were applied for crystallization of amorphous hydrogenated silicon films, SiOx films and multilayer nanostructures. The as-deposited and annealed structures were studied using optical methods and electron microscopy techniques. The influence of impurities on crystallization and formation of Si nanoclusters was studied. Regimes for pulse laser crystallization of amorphous Si nanoclusters and nanolayers were found. The developed approach can be used for the creation of dielectric films with semiconductor nanoclusters on nonrefractory substrates.

  17. Micro pulse laser radar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  18. Laser pulse duration dependence of blister formation on back-radiated Ti thin films for BB-LIFT

    NASA Astrophysics Data System (ADS)

    Goodfriend, N. T.; Starinskiy, S. V.; Nerushev, O. A.; Bulgakova, N. M.; Bulgakov, A. V.; Campbell, E. E. B.

    2016-03-01

    The influence of the laser pulse duration on the mechanism of blister formation in the particle transfer technique, blister-based laser-induced forward transfer, was investigated. Pulses from a fs Ti:Sapphire laser (120 fs, 800 nm) and from a ns Nd:YAG laser (7 ns, 532 nm) were used to directly compare blister formation on thin titanium films of ca. 300 nm thickness, deposited on glass. The different blister morphologies were compared and contrasted by using optical microscopy and atomic force microscopy. The results provide evidence for different blister formation mechanisms: for fs pulses the mechanism is predominantly ablation at the metal-glass interface accompanied by confined plasma expansion and deformation of the remaining metal film; for ns pulses it is heating accompanied by thermal expansion of the metal film.

  19. Ablation of crystalline oxides by infrared femtosecond laser pulses

    SciTech Connect

    Watanabe, Fumiya; Cahill, David G.; Gundrum, Bryan; Averback, R. S.

    2006-10-15

    We use focused laser pulses with duration of 180 fs and wavelength of 800 nm to study the interactions of high power near-infrared light with the surfaces of single-crystal transparent oxides (sapphire, LaAlO{sub 3}, SrTiO{sub 3}, yttria-stabilized ZrO{sub 2}, and MgO); the morphologies of the ablation craters are studied by atomic force microscopy and scanning electron microscopy. With the exception of LaAlO{sub 3}, the high temperature annealing of these oxide crystals produces atomically flat starting surfaces that enable studies of the morphology of ablation craters with subnanometer precision. The threshold fluence for ablation is determined directly from atomic-force microscopy images and increases approximately linearly with the band gap of the oxide. For all oxides except sapphire, the depth of the ablation crater increases approximately as the square root of the difference between the peak laser fluence and the threshold fluence for ablation. Sapphire shows unique behavior: (i) at laser fluences within 1 J/cm{sup 2} of the threshold for ablation, the depth of the ablation crater increases gradually instead of abruptly with laser fluence, and (ii) the rms roughness of the ablation crater shows a pronounced minimum of <0.2 nm at a laser fluence of 1 J/cm{sup 2} above the threshold.

  20. Spectral shaping of attosecond pulses using two-colour laser fields

    NASA Astrophysics Data System (ADS)

    Mansten, E.; Dahlström, J. M.; Johnsson, P.; Swoboda, M.; L'Huillier, A.; Mauritsson, J.

    2008-08-01

    We use a strong two-colour laser field composed of the fundamental (800 nm) and the second harmonic (400 nm) of an infrared (IR) laser field to generate attosecond pulses with controlled spectral and temporal properties. With a second-harmonic intensity equal to 15% of the IR intensity the second-harmonic field is strong enough to significantly alter and control the electron trajectories in the generation process. This enables us to tune the central photon energy of the attosecond pulses by changing the phase difference between the IR and the second-harmonic fields. In the time domain the radiation is emitted as a sequence of pulses separated by a full IR cycle. We also perform calculations showing that the effect of even stronger second-harmonic fields leads to an extended tunable range under conditions that are experimentally feasible.

  1. Laser ablation in a liquid-confined environment using a nanosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook; Lee, Ho; Welch, Ashley J.

    2008-04-01

    Laser ablation of aluminum metal with 1ns, 800nm pulse at low radiant exposures was investigated in air (dry) and water (wet) environments. Compared to dry ablation, an approximately eight times increase in material removal rate was associated with wet ablation. Based on optical reflectance and scanning electron microscope images, bubble formation/collapse was responsible for augmented acoustic pressure and ablation performance. Numerically simulated temperature distributions during wet ablation were consistent with the occurrence of explosive water vaporization near the critical temperature of water. Strong pressure emission during liquid vaporization and jet formation can account for enhanced ablation process. Radial expansion of bubbles minimized the redeposition of debris, leading to improvements in energy coupling to the target and ablation performance.

  2. EUV emission stimulated by use of dual laser pulses from continus liquid microjet targets

    NASA Astrophysics Data System (ADS)

    Higashiguchi, Takeshi; Rajyaguru, Chirag; Sasaki, Wataru; Kubodera, Shoichi

    2004-11-01

    A continuous water-jet or water-jet mixed with LiF with several tens μm diameter was formed in a vacuum chamber through a small capillary nozzle. Usage of two laser pulses is an efficient way to produce EUV emission, since a density and temperature of a plasma formed by the first laser pulse are regulated by the second laser pulse. By adjusting the delay of the second pulse, one could maximize the EUV emission. A subpicosecond Ti:Sapphire laser at a wavelength of 800 nm produced a maximum energy around 30 mJ. The beam was divided by a Michelson interferometer, which produced two laser pulses with energies of 5 mJ. The pulse duration was adjusted around 300 fs (FWHM). Both beams were focused on a micro-jet using a lens with a focal length of 15 cm. The delay time between the two pulses was varied from 100 to 800 ps by use of an optical delay line. Clear enhancement of the EUV emission yield was observed when the delay between the two pulses was around 500 ps. The experimentally observed delay agrees reasonably well with that of a plasma to expand to its critical density of 10^21 cm-3.

  3. Status and initial commissioning of a high gain 800 nm SASE FEL

    NASA Astrophysics Data System (ADS)

    Tremaine, A.; Frigola, P.; Murokh, A.; Musumeci, P.; Pellegrini, C.; Rosenzweig, J.; Babzien, M.; Ben-Zvi, I.; Johnson, E.; Malone, R.; Rakowsky, G.; Skaritka, J.; Wang, X. J.; Yu, L. H.; Van Bibber, K. A.; Hill, J. M.; Le Sage, G. P.; Carr, R.; Cornacchia, M.; Nuhn, H.-D.; Ruland, R.; Nguyen, D. C.

    2000-05-01

    We describe the status and initial commissioning of the Visible to Infrared SASE Amplifier (VISA) experiment. VISA uses a strong focusing 4 m undulator, the Brookhaven National Laboratory ATF linac with an energy of 72 MeV, and a photoinjector electron source. The VISA fundamental radiation wavelength is near 800 nm and the power expected at saturation is near 60 MW. Power, angular and spectral measurements are planned for the VISA radiation and these results will be analyzed and compared with SASE FEL theory and computer simulation. In addition, the induced electron beam micro-bunching will be measured using coherent transition radiation.

  4. Nonlinear refraction properties of nickel oxide thin films at 800 nm

    NASA Astrophysics Data System (ADS)

    de Melo, Ronaldo P.; da Silva, Blenio J. P.; dos Santos, Francisco Eroni P.; Azevedo, A.; de Araújo, Cid B.

    2009-11-01

    Measurements of the nonlinear refractive index, n2, of nickel oxide films prepared by controlled oxidation of nickel films deposited on substrates of soda-lime glass are reported. The structure and morphology of the samples were characterized by scanning electron microscopy, atomic force microscopy, and x-ray diffractometry. Samples of excellent optical quality were prepared. The nonlinear measurements were performed using the thermally managed eclipse Z-scan technique at 800 nm. A large value of n2≈10-12 cm2/W and negligible nonlinear absorption were obtained.

  5. High power ultrashort pulse lasers

    SciTech Connect

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  6. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  7. Laser system using ultra-short laser pulses

    SciTech Connect

    Dantus, Marcos; Lozovoy, Vadim V.; Comstock, Matthew

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  8. Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses.

    PubMed

    Miura, K; Qiu, J; Mitsuyu, T; Hirao, K

    2000-03-15

    We report on space-selective growth of a second-harmonic-generation beta-BaB(2)O(4) (BBO) crystal inside a BaO-Al(2)O(3)-B(2)O(3) glass sample at the focal point of an 800-nm femtosecond laser beam. A spherical heated region was formed during the focused laser irradiation through observation with an optical microscope. We moved the heated region by changing the position of the focal point of the laser beam relative to the glass sample. We grew BBO crystal continuously in the glass sample by adjusting the moving speed of the heated zone. Our results demonstrate that functional crystals can be formed three dimensionally in glasses by use of a nonresonant ultrashort pulsed laser. PMID:18059895

  9. Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses

    SciTech Connect

    Chen Tao; Si Jinhai; Hou Xun; Kanehira, Shingo; Miura, Kiyotaka; Hirao, Kazuyuki

    2011-10-01

    We studied the photoluminescence (PL) from black silicon that was fabricated using an 800 nm, 250 kHz femtosecond laser in air. By changing the scan velocity and the fluence of the femtosecond laser, the formation of the PL band between the orange (600 nm) and red bands (near 680 nm) could be controlled. The red band PL from the photoinduced microstructures on the black silicon was observed even without annealing due to the thermal accumulation of high-repetition rate femtosecond laser pulses. The orange band PL was easily quenched under 532 nm cw laser irradiation, whereas the red band PL was more stable; this can be attributed to ''defect luminescence'' and ''quantum confinement'', respectively.

  10. Generation of an extreme ultraviolet supercontinuum and isolated sub-50 as pulse in a two-colour laser field

    NASA Astrophysics Data System (ADS)

    Zhang, Gang-Tai; Liu, Xue-Shen

    2009-06-01

    We theoretically study high-order harmonic generation when a helium ion is exposed to a two-colour laser field, which is synthesized by a 5 fs/800 nm laser pulse and a 64 fs/2400 nm laser pulse. Our numerical results show that the harmonic spectrum exhibits an ultrabroad extreme ultraviolet supercontinuum when the initial state is prepared as a coherent superposition of the ground state and the first excited state. By superposing a series of properly selected harmonics, an isolated attosecond pulse with a duration of 47 as is obtained. Compared with the case of the ground state in a one-colour field, the intensity of this isolated attosecond pulse is six orders of magnitude higher. We also demonstrate these results in terms of the time-frequency analysis and the semiclassical three-step model.

  11. Proof of damage-free selective removal of thin dielectric coatings on silicon wafers by irradiation with femtosecond laser pulses

    SciTech Connect

    Rublack, Tino; Muchow, Markus; Schade, Martin; Leipner, Hartmut S.; Seifert, Gerhard

    2012-07-15

    The microstructural impact of selective femtosecond laser ablation of thin dielectric layers from monocrystalline silicon wafers was investigated. Various spots opened by 280 fs laser pulses at {lambda} = 1.03 {mu}m wavelength and 50 fs pulses at 800 nm, respectively, were analyzed in detail using Raman and transmission electron microscopy. The results show clearly that the thin dielectric films can be removed without any detectable modification of the Si crystal structure in the opened area. In contrast, in adjacent regions corresponding to laser fluence slightly below the breaking threshold, a thin layer of amorphous silicon with a maximum thickness of about 50 nm is found at the Si/SiO{sub 2} interface after laser irradiation. More than one pulse on the same position, however, causes structural modification of the silicon after thin film ablation in any case.

  12. Observation of the temporal Bragg-diffraction-induced laser-pulse splitting in a linear photonic crystal

    NASA Astrophysics Data System (ADS)

    Svyakhovskiy, S. E.; Kompanets, V. O.; Maydykovskiy, A. I.; Murzina, T. V.; Chekalin, S. V.; Skorynin, A. A.; Bushuev, V. A.; Mantsyzov, B. I.

    2012-07-01

    Temporal Bragg-diffraction-induced laser-pulse splitting into two pulses propagating with different group velocities is observed in multilayered linear photonic crystals (PCs). This phenomenon originates from spatially inhomogeneous light localization within the PCs at the Laue scheme of the dynamical Bragg diffraction. In a homogeneous medium at the PC output each pulse is spatially separated into two pulses, propagating in the transmission and diffraction directions, respectively. The experiments are carried out for a one-dimensional porous silicon-based PC consisting of 375 spatial periods of 800 nm thickness using a femtosecond Ti:sapphire laser as a probe. A linear dependence of the time splitting of each pair of transmitted and diffractively reflected pulses on the crystal thickness is demonstrated and is supported by theoretical estimations.

  13. Lasers for ultrashort light pulses

    SciTech Connect

    Herrmann, J.; Wilhelmi, B.

    1987-01-01

    The present rapid expansion of research work on picosecond lasers and their application makes it difficult to survey and comprehend the large number of publications in this field. This book aims to provide an introduction to the field starting with the very basic and moving on to an advanced level. Contents: Fundamentals of the interaction between light pulses and matter; Fundamentals of lasers for ultrashort light pulses; Methods of measurement; Active modelocking; Synchronously pumped lasers; Passive modelocking of dye lasers; Passive modelocking of solid state lasers; Nonstationary nonlinear optical processes; Ultrafast spectroscopy.

  14. Calorimeters for pulsed lasers: calibration.

    PubMed

    Thacher, P D

    1976-07-01

    A calibration technique is developed and tested in which a calorimeter used for single-shot laser pulse energy measurements is calibrated with reference to a cw power standard using a chopped cw laser beam. A pulsed laser is required only to obtain the relative time response of the calorimeter to a pulse. With precautions as to beam alignment and wavelength, the principal error of the technique is that of the cw standard. Calibration of two thermopiles with cone receivers showed -2.5% and -3.5% agreement with previous calibrations made by the National Bureau of Standards. PMID:20165270

  15. Quantum path control and isolated attosecond pulse generation with the combination of two circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Xia, Chang-Long; Liu, Xue-Shen

    2013-04-01

    We theoretically investigate the quantum paths of the high-order harmonic generation (HHG) by using a left and a right circularly polarized Gaussian laser pulse with a proper time delay. When the carrier phase of the two pulses is φ1=0, φ2=0.5π, the “gating” structure of the combined laser field disappears. The numerical results indicate that no “gating”-structure-combined laser pulse can control the quantum path. The HHG process is investigated by the semiclassical three-step model that makes use of a finite initial transverse velocity in the elliptically polarized field. For the case of λ1=800 nm, λ2=1600 nm, only a short quantum path contributes to the HHG, and an isolated attosecond pulse would be obtained. For the case of λ2=1600, φ2=0.5π, a supercontinuum spectrum plateau from 180 to 570 eV which includes the water window region is obtained, and attosecond pulses with the duration of about 75 as and a tunable central wavelength could be generated by superposing a bandwidth of 50 eV in the plateau area.

  16. Quantum counter for correcting fluorescence excitation spectra at 320- to 800-nm wavelengths.

    PubMed

    Nothnagel, E A

    1987-05-15

    A procedure for recording corrected fluorescence excitation spectra to wavelengths as long as 800 nm is described. The procedure involves the use of a commercial spectrofluorometer, which is modified by substituting 1,1',3,3,3',3'-hexamethylindotricarbocyanine perchlorate in place of rhodamine B as the quantum counter dye. This modification is applicable to spectrofluorometers supplied by several different manufacturers and can be accomplished by a user having only modest technical skills. A study of the fluorescence excitation spectrum of bacteriochlorophyll a is presented as an illustration of the use of the procedure. The procedure will be valuable in biological and biochemical studies that involve the use of long-wavelength fluorescent probes of either natural or synthetic origin. PMID:3619023

  17. Fast dispersion encoded full range OCT for retinal imaging at 800 nm and 1060 nm

    NASA Astrophysics Data System (ADS)

    Hofer, Bernd; Považay, Boris; Unterhuber, Angelika; Wang, Ling; Hermann, Boris; Rey, Sara; Matz, Gerald; Drexler, Wolfgang

    2011-03-01

    The dispersion mismatch between sample and reference arm in frequency-domain OCT can be used to iteratively suppress complex conjugate artifacts and thereby increase the imaging range. We propose a fast dispersion encoded full range (DEFR) algorithm that detects multiple signal components per iteration. The influence of different dispersion levels on the reconstruction quality is analyzed for in vivo retinal tomograms at 800 nm. Best results have been achieved with about 30 mm SF11, with neglectable resolution decrease due to finite resolution of the spectrometer. Our fast DEFR algorithm achieves an average suppression ratio of 55 dB and converges within 5 to 10 iterations. The processing time on non-dedicated hardware was 5 to 10 seconds for tomograms with 512 depth scans and 4096 sampling points per depth scan. Application of DEFR to the more challenging 1060 nm wavelength region is demonstrated by introducing an additional optical fibre in the sample arm.

  18. High resolution spectroscopy of an Orionid meteor from 700 to 800 nm

    NASA Astrophysics Data System (ADS)

    Passas, M.; Madiedo, J. M.; Gordillo-Vázquez, F. J.

    2016-03-01

    The emission spectrum of a meteor was recorded by the GRASSP instrument during the observation of transient luminous events (TLEs) on 2014 October 16th. The spectroscopic signal was recorded in the wavelength range from 700 to 800 nm, where the emission from atmospheric oxygen and nitrogen dominated. The good spectral resolution of the spectrum (0.24 nm with 0.07 nm/pixel spectral dispersion) has allowed us to determine the physical conditions in the meteor plasma, to identify several emissions from atmospheric (N I, N II, O I) and meteoroid species (Ti I, Cr I, Fe I, Fe II, Zr I, Pd I, W I) and to estimate the upper limit of the temperature of the gaseous environment surrounding the meteoroid. Images recorded for this meteor from two different sites allowed calculating its atmospheric trajectory and the orbital parameters of the progenitor meteoroid. These data revealed that the particle belonged to the Orionid meteoroid stream.

  19. Progress on developing a PW ultrashort laser facility with ns, ps, and fs outputting pulses

    NASA Astrophysics Data System (ADS)

    Zhu, Qihua; Huang, Xiaojun; Wang, Xiao; Zeng, Xiaoming; Xie, Xudong; Wang, Fang; Wang, Fengrui; Lin, Donghui; Wang, Xiaodong; Zhou, Kainan; Jiang, Dongbin; Deng, Wu; Zuo, Yanlei; Zhang, Ying; Deng, Ying; Wei, Xiaofeng; Zhang, Xiaomin; Fan, Dianyuan

    2008-03-01

    A petawatt laser facility with three beams for fast ignition research and strong-field physics applications has been designed and is being constructed. The first beam (referred as SILEX-I) is a Ti:sapphire femto-second laser which pulse width is 30 fs, and till now, output power has reached to 330 TW. The other two beams are Nd 3+:glass lasers which output energy are larger than 1kJ and pulse width are about 1ps and 1ns respectively. By using the technology of OPA pumped by 800nm femtosecond laser and seeded by super-continuum spectrum white light, the three beams are synchronized with each other without jitter time. By using the seeds from OPA pumped by femtosecond laser, and by using the pre-amplification stage of OPCPA, the signal to noise ratio of the Nd 3+:glass petawatt laser will reach to 10 8. Active methods are taken to control the gain narrowing effect of the Nd 3+:glass amplifiers, giving the option to compress the chirped pulse to ultrashort pulse with width less than 400fs. Tiled multilayer dielectric coating gratings are used for the compressor of the PW beam, which has been successfully demonstrated on a 100J picosecond Nd 3+:glass laser system.

  20. Depth profiling and imaging capabilities of an ultrashort pulse laser ablation time of flight mass spectrometer

    PubMed Central

    Cui, Yang; Moore, Jerry F.; Milasinovic, Slobodan; Liu, Yaoming; Gordon, Robert J.; Hanley, Luke

    2012-01-01

    An ultrafast laser ablation time-of-flight mass spectrometer (AToF-MS) and associated data acquisition software that permits imaging at micron-scale resolution and sub-micron-scale depth profiling are described. The ion funnel-based source of this instrument can be operated at pressures ranging from 10−8 to ∼0.3 mbar. Mass spectra may be collected and stored at a rate of 1 kHz by the data acquisition system, allowing the instrument to be coupled with standard commercial Ti:sapphire lasers. The capabilities of the AToF-MS instrument are demonstrated on metal foils and semiconductor wafers using a Ti:sapphire laser emitting 800 nm, ∼75 fs pulses at 1 kHz. Results show that elemental quantification and depth profiling are feasible with this instrument. PMID:23020378

  1. Infrared antireflection DLC films by femtosecond pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Shuyun; Guo, Yanlong; Wang, Xiaobing; Cheng, Yong; Wang, Huisheng; Liu, Xu

    2009-05-01

    Diamond-like Carbon(DLC) films are deposited by Ti:Sapphire femtosecond pulsed laser(800nm, 120fs-2ps, 3.3W, 1-1000Hz) at room temperature. The substrate is n-type Si(100), and the target is 99.999%-purity graphite. After a great lot of experiments, optimal technical parameters, which are 1000Hz repetition frequency, 120fs pulse-width, 5cm-distance between target and underlay and 1014W/cm2 power-density, were used to deposite 443nm thick DLC film. Raman spectrum measurement shows a broad peak with a center at 1550 cm-1 for all films, similar to those of typical diamond-like carbon films prepared using other methods. And sp3-bond content reaches 67% analyzed by XPS. There is no nick on the film when scraped 105 times by a RS-5600 friction test machine under the pressure of 9.8N. The infrared transmittance increases along with the oxygen pressure when between 0.03 Pa and 2 Pa. The result shows that oxygen is effective in etching sp2-bond content. The extreme infrared transmittance of Si slice deposited DLC film on single surface is higher than 64% at 3-5μm, superior to 53% when being uncoated.

  2. Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains

    SciTech Connect

    Yuan Yanping; Jiang Lan; Li Xin; Wang Cong

    2012-11-15

    A quantum model is proposed to investigate femtosecond laser pulse trains processing of dielectrics by including the plasma model with the consideration of laser particle-wave duality. Central wavelengths (400 nm and 800 nm) strongly impact the surface plasmon field distribution, the coupling field intensity distribution (between the absorbed intensity and the surface plasma), and the distribution of transient localized free electron density in the material. This, in turn, significantly changes the localized transient optical/thermal properties during laser materials processing. The effects of central wavelengths on ablation shapes and subwavelength ripples are discussed. The simulation results show that: (1) ablation shapes and the spacing of subwavelength ripples can be adjusted by localized transient electron dynamics control using femtosecond laser pulse trains; (2) the adjustment of the radii of ablation shapes is stronger than that of the periods of subwavelength ripples.

  3. Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse.

    PubMed

    Kneip, S; Nagel, S R; Martins, S F; Mangles, S P D; Bellei, C; Chekhlov, O; Clarke, R J; Delerue, N; Divall, E J; Doucas, G; Ertel, K; Fiuza, F; Fonseca, R; Foster, P; Hawkes, S J; Hooker, C J; Krushelnick, K; Mori, W B; Palmer, C A J; Phuoc, K Ta; Rajeev, P P; Schreiber, J; Streeter, M J V; Urner, D; Vieira, J; Silva, L O; Najmudin, Z

    2009-07-17

    The acceleration of electrons to approximately 0.8 GeV has been observed in a self-injecting laser wakefield accelerator driven at a plasma density of 5.5x10(18) cm(-3) by a 10 J, 55 fs, 800 nm laser pulse in the blowout regime. The laser pulse is found to be self-guided for 1 cm (>10zR), by measurement of a single filament containing >30% of the initial laser energy at this distance. Three-dimensional particle in cell simulations show that the intensity within the guided filament is amplified beyond its initial focused value to a normalized vector potential of a0>6, thus driving a highly nonlinear plasma wave. PMID:19659287

  4. Dual-Laser-Pulse Ignition

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Early, James W.; Thomas, Matthew E.; Bossard, John A.

    2006-01-01

    A dual-pulse laser (DPL) technique has been demonstrated for generating laser-induced sparks (LIS) to ignite fuels. The technique was originally intended to be applied to the ignition of rocket propellants, but may also be applicable to ignition in terrestrial settings in which electric igniters may not be suitable.

  5. Pulsed Single Frequency Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Jiang, Shibin

    2016-06-01

    Pulsed single frequency fiber lasers with mJ level near 1 micron, 1.55 micron and 2 micron wavelengths were demonstrated by using our proprietary highly doped fibers. These fiber lasers exhibit excellent long term stable operation with M2<1.2.

  6. Generation of UV light by intense ultrashort laser pulses in air

    NASA Astrophysics Data System (ADS)

    Alexeev, Ilya; Ting, Antonio; Gordon, Daniel; Briscoe, Eldridge; Penano, Joe; Sprangle, Phillip

    2004-11-01

    The propagation of collimated high-peak-power ultrashort laser pulses in air has attracted considerable attention, which may have a variety of important applications including remote sensing and chemical-biological aerosols standoff detection. Sub-millimeter diameter laser filaments can develop without any focusing optics and instead solely from laser self-focusing and plasma formation in air. These filaments can produce ultraviolet radiations in the form of the 3rd harmonic of the fundamental frequency and also through spectral broadening due to self-phase modulation of the laser pulse. Using femtosecond laser pulses produced by a high power Ti:Sapphire laser (0.8 TW, 50 fs, 800 nm) we observed generation of the third harmonic radiation light in air (centered around 267 nm) by the laser filaments. Characterization of the 3rd harmonic generation with respect to the major gas components of the air will be reported. Supported by the ONR and RDECOM. I. Alexeev is NRC/NRL Post-Doc.

  7. Movement of magnetic domain walls induced by single femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Sandig, O.; Shokr, Y. A.; Vogel, J.; Valencia, S.; Kronast, F.; Kuch, W.

    2016-08-01

    We present a microscopic investigation of how the magnetic domain structure in ultrathin films changes after direct excitation by single ultrashort laser pulses. Using photoelectron emission microscopy in combination with x-ray magnetic circular dichroism in the resonant absorption of soft x rays, we find that individual laser pulses of ≈60 fs duration and a central wavelength of 800 nm lead to clear changes in the domain structure of a Co layer of three atomic monolayers thickness in an epitaxial Co/Cu/Ni trilayer on a Cu(001) single-crystal substrate. A relatively small enhancement of the sample base temperature by 40 K is sufficient to lower the threshold of laser fluence for domain wall motion by about a factor of two. Pump-probe measurements with a laser fluence just below this threshold indicate that the laser-induced demagnetization of the sample is far from complete in these experiments. Although the domain wall motion appears similar to thermal domain wall fluctuations, quantitatively it cannot be explained by pure thermal activation of domain wall motion by the transient rise of sample temperature after the laser pulse, but it is likely to be triggered by a laser-induced depinning of domain walls.

  8. Multiphoton absorption in CsLiB6O10 with femtosecond infrared laser pulses

    NASA Astrophysics Data System (ADS)

    Reddy, J. N. Babu; Naik, V. B.; Elizabeth, Suja; Bhat, H. L.; Venkatram, N.; Rao, D. Narayana

    2008-09-01

    Nonlinear absorption and refraction characteristics of cesium lithium borate (CsLiB6O10) crystal have been studied using Z-scan technique. Ti:sapphire laser with 110 fs pulse width operating at 800 nm wavelength and pulse repetition rate of 1 kHz is used as the source of photons. Intensity of the laser pulse is varied from 0.541 to 1.283 T W/cm2 to estimate the intensity dependence of multiphoton absorption coefficients. Using the theory of multiphoton absorption proposed by Sutherland [Handbook of Nonlinear Optics, in 2nd ed., edited by D. G. McLean and S. Kirkpatrick, Dekker, New York (2003)], found that open aperture Z-scan data fit well for the five-photon absorption (5PA) process. 5PA coefficients are obtained by fitting the expressions into the open aperture experimental data for various peak intensities (I00). The nonlinear refractive index n2 estimated from closed aperture Z-scan experiment is 1.075×10-4 cm2/T W at an input peak intensity of 0.723 T W/cm2. The above experiment when repeated with a 532 nm, 6 ns pulsed laser led to an irreversible damage of the sample resulting in an asymmetric open aperture Z-scan profile. This indicates that it is not possible to observe multiphoton absorption in this regime of pulse width using 532 nm laser.

  9. Effect of deposition method and substrate surface quality on laser-induced damage threshold for repetitive 13-ns and 130-fs pulses

    NASA Astrophysics Data System (ADS)

    Melninkaitis, Andrius; Rakickas, Tomas; Miksys, Darius; Grigonis, Rimantas; Sirutkaitis, Valdas; Skrebutenas, Alfridas; Buzelis, Rytis; Drazdys, Ramutis; Abromavicius, Giedrius; Juskenas, Remigijus; Selskis, Algirdas

    2005-02-01

    A comparison of laser induced damage thresholds (LIDT) of ion assisted deposition (IAD) and standard electron beam deposition dielectric coatings on BK7 glass with different surface roughness was performed. Five types of high reflectance mirrors at 800 nm and two types of high reflectance mirrors at 1064 nm were tested. Mirror coatings were made of ZrO2 and SiO2. Automated LIDT measurements were performed according to the requirements of current ISO 11254-2 standard. Two lasers were used for the measurements: Nd:YAG (l = 1064 nm, t = 13 ns) and Ti:Sapphire (l = 800 nm, t = 130 fs ). All measurements were performed at 1-kHz pulse repetition rate (S-on-1 test). A fixed spot size was used for each laser. For 1064 nm it was ~ 70 um and for 800 nm ~ 500 um. The damage morphology and structure of coatings were characterized by an atomic force microscopy (AFM), Nomarski microscopy and X-ray diffraction (XRD).

  10. Femtosecond-pulse-driven 10-Hz 41.8-nm laser in Xe IX

    NASA Astrophysics Data System (ADS)

    Lemoff, B. E.; Yin, G. Y.; Gordon, C. L., III; Barty, C. P. J.; Harris, S. E.

    1996-01-01

    We report the observation of extreme UV lasing at 41.81 nm on the 4d95d1S0 - 4d95p1P1 transition in Xe IX, as proposed by Lemoff et al. [Opt. Lett. 19, 569 (1994)]. A 10-Hz circularly polarized 800-nm laser pulse with an energy of \\similar 70 mJ and a duration of \\similar 40 fs is longitudinally focused to a peak intensity of >3 \\times 1016 W / cm2 over a length of 8.4 nm in a differentially pumped cell containing 12 Torr of Xe gas. Laser amplification was observed with an estimated gain coefficient of 13 cm-1 and a total gain of exp(11).

  11. Study of the influence of glucose on diffuse reflection of ultrashort laser pulses from a medium simulating a biological tissue

    SciTech Connect

    Bykov, A V; Indukaev, A K; Priezzhev, A V; Myllylae, R

    2008-05-31

    The influence of glucose on the diffuse reflection of near-IR femtosecond laser radiation from single- and three-layer media simulating biological tissues is studied experimentally. Based on a 800-nm femtosecond Ti:sapphire laser emitting 40-fs pulses and a VUV Agat streak camera, a setup is built for time and spatially resolved detection of radiation diffusely reflected from the volume of a strongly scattering medium. A multichannel fibreoptic system is developed for detecting pulses simultaneously at several fixed distances between a radiation source and detector. It is shown that the peak intensity and total energy of detected pulses are sensitive to variations in the glucose concentration in the medium under study from 0 to 1000 mg dL{sup -1}. The relative sensitivity in our experiments achieved 0.030% mg dL{sup -1}. (biophotonics)

  12. Coaxial short pulsed laser

    DOEpatents

    Nelson, M.A.; Davies, T.J.

    1975-08-01

    This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors. (auth)

  13. Short pulse free electron laser amplifier

    DOEpatents

    Schlitt, Leland G.; Szoke, Abraham

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  14. Supercontinuum generation and filamentation of ultrashort laser pulses in hybrid silicate nanocomposite materials on the basis of polysaccharides and hyperbranched polyglycidols

    SciTech Connect

    Kul'chin, Yurii N; Golik, S S; Proshenko, D Yu; Chekhlenok, A A; Postnova, I V; Maior, A Yu; Shchipunov, Yurii A

    2013-04-30

    The possibility of using hybrid silicate nanocomposite materials on the basis of polysaccharides and hyperbranched polyglycidols for efficient conversion of pulsed radiation of a femtosecond Ti : sapphire laser at the wavelength 800 nm into supercontinuum in the range from 400 to 1000 nm is experimentally demonstrated. It is established that the addition of a small concentration of Au and CdS nanoparticles to the studied materials essentially affects the efficiency of conversion of the laser radiation energy into the supercontinuum spectrum. (extreme light fields and their applications)

  15. Pulsed DF laser effects study

    NASA Astrophysics Data System (ADS)

    Hall, R. B.; Maher, W. E.; Nichols, D. B.

    1981-07-01

    This study of DF laser interaction with materials investigated the amount of energy coupled to targets. Large focal spot dimensions were obtained with the Boeing photo-initiated 50-1 pulsed chemical laser with a stable resonator. Effects experiments emphasized metallic targets, especially aluminum. The single pulse coupling results yielded absorbed fluence values greater than those obtained with comparable energies at 10.6 micrometer wavelength. Ambient pressure and angle of incidence were varied. Research results also showed multiple-pulse effect at DF wavelength. Multiple-pulse thermal coupling experiments with aluminum demonstrated that, after 10 shots on the same spot, the coupled fluence per pulse doubled. Because of target melting and vaporization, both the intrinsic absorptivity and the plasma enhanced coupled fluence of succeeding pulses is greatly increased. In general, the multiple pulse effect is intensity-dependent and is small at either low or high intensities. Energy deposition was tested for uniformity by measuring the rises in temperature at five locations within the focal spot with an array of thermocouples.

  16. Characterization of femtosecond-laser pulse induced cell membrane nanosurgical attachment

    PubMed Central

    Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y.

    2016-01-01

    This article provides insight into the mechanism of femtosecond laser nanosurgical attachment of cells. We have demonstrated that during the attachment of two retinoblastoma cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength, the phospholipid molecules of both cells hemifuse and form one shared phospholipid bilayer, at the attachment location. In order to verify the hypothesis that hemifusion takes place, transmission electron microscope images of the cell membranes of retinoblastoma cells were taken. It is shown that at the attachment interface, the two cell membranes coalesce and form one single membrane shared by both cells. Thus, further evidence is provided to support the hypothesis that laser-induced ionization process led to an ultrafast reversible destabilization of the phospholipid layer of the cellular membrane, which resulted in cross-linking of the phospholipid molecules in each membrane. This process of hemifusion occurs throughout the entire penetration depth of the femtosecond laser pulse train. Thus, the attachment between the cells takes place across a large surface area, which affirms our findings of strong physical attachment between the cells. The femtosecond laser pulse hemifusion technique can potentially provide a platform for precise molecular manipulation of cellular membranes. Manipulation of the cellular membrane is an important procedure that could aid in studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered. PMID:27446703

  17. Characterization of femtosecond-laser pulse induced cell membrane nanosurgical attachment.

    PubMed

    Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y

    2016-07-01

    This article provides insight into the mechanism of femtosecond laser nanosurgical attachment of cells. We have demonstrated that during the attachment of two retinoblastoma cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength, the phospholipid molecules of both cells hemifuse and form one shared phospholipid bilayer, at the attachment location. In order to verify the hypothesis that hemifusion takes place, transmission electron microscope images of the cell membranes of retinoblastoma cells were taken. It is shown that at the attachment interface, the two cell membranes coalesce and form one single membrane shared by both cells. Thus, further evidence is provided to support the hypothesis that laser-induced ionization process led to an ultrafast reversible destabilization of the phospholipid layer of the cellular membrane, which resulted in cross-linking of the phospholipid molecules in each membrane. This process of hemifusion occurs throughout the entire penetration depth of the femtosecond laser pulse train. Thus, the attachment between the cells takes place across a large surface area, which affirms our findings of strong physical attachment between the cells. The femtosecond laser pulse hemifusion technique can potentially provide a platform for precise molecular manipulation of cellular membranes. Manipulation of the cellular membrane is an important procedure that could aid in studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered. PMID:27446703

  18. Intravital autofluorescence 2-photon microscopy of murine intestinal mucosa with ultra-broadband femtosecond laser pulse excitation: image quality, photodamage, and inflammation

    NASA Astrophysics Data System (ADS)

    Klinger, Antje; Krapf, Lisa; Orzekowsky-Schroeder, Regina; Koop, Norbert; Vogel, Alfred; Hüttmann, Gereon

    2015-11-01

    Ultra-broadband excitation with ultrashort pulses may enable simultaneous excitation of multiple endogenous fluorophores in vital tissue. Imaging living gut mucosa by autofluorescence 2-photon microscopy with more than 150 nm broad excitation at an 800-nm central wavelength from a sub-10 fs titanium-sapphire (Ti:sapphire) laser with a dielectric mirror based prechirp was compared to the excitation with 220 fs pulses of a tunable Ti:sapphire laser at 730 and 800 nm wavelengths. Excitation efficiency, image quality, and photochemical damage were evaluated. At similar excitation fluxes, the same image brightness was achieved with both lasers. As expected, with ultra-broadband pulses, fluorescence from NAD(P)H, flavines, and lipoproteins was observed simultaneously. However, nonlinear photodamage apparent as hyperfluorescence with functional and structural alterations of the tissue occurred earlier when the laser power was adjusted to the same image brightness. After only a few minutes, the immigration of polymorphonuclear leucocytes into the epithelium and degranulation of these cells, a sign of inflammation, was observed. Photodamage is promoted by the higher peak irradiances and/or by nonoptimal excitation of autofluorescence at the longer wavelength. We conclude that excitation with a tunable narrow bandwidth laser is preferable to ultra-broadband excitation for autofluorescence-based 2-photon microscopy, unless the spectral phase can be controlled to optimize excitation conditions.

  19. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon.

    PubMed

    Derrien, Thibault J-Y; Krüger, Jörg; Itina, Tatiana E; Höhm, Sandra; Rosenfeld, Arkadi; Bonse, Jörn

    2013-12-01

    The formation of near-wavelength laser-induced periodic surface structures (LIPSS) on silicon upon irradiation with sequences of Ti:sapphire femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied theoretically. For this purpose, the nonlinear generation of conduction band electrons in silicon and their relaxation is numerically calculated using a two-temperature model approach including intrapulse changes of optical properties, transport, diffusion and recombination effects. Following the idea that surface plasmon polaritons (SPP) can be excited when the material turns from semiconducting to metallic state, the "SPP active area" is calculated as function of fluence and double-pulse delay up to several picoseconds and compared to the experimentally observed rippled surface areas. Evidence is presented that multi-photon absorption explains the large increase of the rippled area for temporally overlapping pulses. For longer double-pulse delays, relevant relaxation processes are identified. The results demonstrate that femtosecond LIPSS on silicon are caused by the excitation of SPP and can be controlled by temporal pulse shaping. PMID:24514516

  20. Efficient 800nm upconversion luminescence emission in 1.319μm excited thulium-doped fluorogermanate

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, A. S.; Vermelho, M. V. D.; Jacinto, C.; Gouveia, E. A.; Bueno, L. A.

    2016-02-01

    Generation of near-infrared light within the first biological optical window via frequency upconversion in Tm3+-doped PbGeO3-PbF2-CdF2 glass excited within the second biological window at 1.319 μm is reported. The upconversion emission at 800 nm is the sole light signal observed in the entire UV-VIS-NIR spectral region making possible obtaining high contrast imaging. The dependence of the 800 nm signal upon the sample temperature was investigated and results showed an increase by a factor of x2.5 in the 30°C - 280°C range. Generation of detectable 690 nm for temperatures above 100°C in addition to the intense 800 nm main signal was also observed. The proposed excitation mechanism for the 800 nm thulium emitting level is assigned to a multiphonon-assisted excitation from the ground-state 3H6 to the 3H5 excited-state level, a rapid relaxation to the 3F4 level and followed by an excited-state absorption of the pump photons mediated by multiphonons connecting the 3F4 level to the 3H4 emitting level.

  1. 1.319 μm excited intense 800 nm frequency upconversion emission in Tm3+-doped fluorogermanate glass

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, A. S.; Vermelho, M. V. D.; Gouveia, E. A.; Bueno, L. A.; Jacinto, C.

    2015-11-01

    Generation of near-infrared light within the first biological optical window via frequency upconversion in Tm3+-doped PbGeO3-PbF2-CdF2 glass excited within the second biological window at 1.319 μm is reported. The upconversion emission at 800 nm is the sole light signal observed in the entire ultraviolet-visible-near-infrared spectral region making it possible obtaining high contrast imaging. The dependence of the 800 nm signal upon the sample temperature was investigated and results showed an increase by a factor of ×2.5 in the 30-280 °C range. Generation of detectable 690 nm for temperatures above 100 °C in addition to the intense 800 nm main signal was also observed. The proposed excitation mechanism for the 800 nm thulium emitting level is assigned to a multiphonon-assisted excitation from the ground-state 3H6 to the 3H5 excited-state level, a rapid relaxation to the 3F4 level and followed by an excited-state absorption of the pump photons mediated by multiphonons connecting the 3F4 level to the 3H4 emitting level.

  2. Characterization of short pulse laser-produced plasmas at the Lawrence Livermore National Laboratory ultra short-pulse laser

    SciTech Connect

    Shepherd, R.; Price, D.; White, W.; Osterheld, A.; Walling, R.; Goldstein, W.; Stewart, R.; Gordan, S.

    1993-07-14

    The K-shell emission from porous aluminum targets is used to infer the density and temperature of plasmas created with 800 nm and 400 nm, 140 fs laser light. The laser beam is focused to a minimum spot size of 5 {mu}m with 800 nm light and 3 {mu}m with 400 nm light, producing a normal incidence peak intensity of 10{sup 18} Watts/cm{sup 2}. A new 800 fs x-ray streak camera is used to study the broadband x-ray emission. The time resolved and time integrated x-ray emission implies substantial differences between the porous target and the flat target temperature.

  3. Ultrashort-pulse lasers machining

    SciTech Connect

    Banks, P S; Feit, M D; Nguyen, H T; Perry, M D, Stuart, B C

    1999-01-22

    A new type of material processing is enabled with ultrashort (t < 10 psec) laser pulses. Cutting, drilling, sculpting of all materials (biologic materials, ceramics, sapphire, silicon carbide, diamond, metals) occurs by new mechanisms which eliminate thermal shock or collateral damage. High precision machining to submicron tolerances is enabled resulting in high surface quality and negligible heat affected zone.

  4. Ultrashort-pulse laser machining

    SciTech Connect

    Banks, P S; Feit, M D; Nguyen, H T; Perry, M D; Rubenchik, A M; Sefcik, J A; Stuart, B C

    1998-09-01

    A new type of material processing is enabled with ultrashort (t < 10 ps) laser pulses. Cutting, drilling, sculpting of all materials (biologic materials, ceramics, sapphire, silicon carbide, diamond, metals) occurs by new mechanisms that eliminate thermal shock or collateral damage. High-precision machining to submicron tolerances is enabled resulting in high surface quality and negligible heat affected zone.

  5. Ordered YBCO sub-micron array structures induced by pulsed femtosecond laser irradiation.

    PubMed

    Luo, C W; Lee, C C; Li, C H; Shih, H C; Chen, Y-J; Hsieh, C C; Su, C H; Tzeng, W Y; Wu, K H; Juang, J Y; Uen, T M; Chen, S P; Lin, J-Y; Kobayashi, T

    2008-12-01

    We report on the formation of organized sub-micron YBa(2)Cu(3)O(7) (YBCO) dots induced by irradiating femtosecond laser pulses on YBCO films prepared by pulse laser deposition with fluence in the range of 0.21 approximately 0.53 J/cm(2). The morphology of the YBCO film surface depends strongly on the laser fluences irradiated. At lower laser fluence (approximately 0.21 J/cm(2)) the morphology was pattern of periodic ripples with sub-micrometer spacing. Slightly increasing the laser fluence to 0.26 J/cm(2) changes the pattern into organized sub-micron dots with diameters ranging from 100 nm to 800 nm and height of 150 nm. Further increase of the laser fluence to over 0.32 J/cm(2), however, appeared to result in massive melting and led to irregular morphology. The mechanism and the implications of the current findings will be discussed. Arrays of YBCO sub-micron dots with T(c) = 89.7 K were obtained. PMID:19065200

  6. Two-photon excited fluorescence enhancement with broadband versus tunable femtosecond laser pulse excitation

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yeh, Alvin T.

    2012-02-01

    The inverse relationship between two-photon excited fluorescence (TPEF) and laser pulse duration suggests that two-photon microscopy (TPM) performance may be improved by decreasing pulse duration. However, for ultrashort pulses of sub-10 femtosecond (fs) in duration, its spectrum contains the effective gain bandwidth of Ti:Sapphire and its central wavelength is no longer tunable. An experimental study was performed to explore this apparent tradeoff between untuned sub-10 fs transform-limited pulse (TLP) and tunable 140 fs pulse for TPEF. Enhancement factors of 1.6, 6.7, and 5.2 are measured for Indo-1, FITC, and TRITC excited by sub-10 fs TLP compared with 140 fs pulse tuned to the two-photon excitation (TPE) maxima at 730 nm, 800 nm, and 840 nm, respectively. Both degenerate (v1=v2) and nondegenerate (v1≠v2) mixing of sub-10 fs TLP spectral components result in its broad second-harmonic (SH) power spectrum and high spectral density, which can effectively compensate for the lack of central wavelength tuning and lead to large overlap with dye TPE spectra for TPEF enhancements. These pulse properties were also exploited for demonstrating its potential applications in multicolor imaging with TPM.

  7. Nanosecond component in a femtosecond laser pulse

    SciTech Connect

    Shneider, M. N.; Semak, V. V.; Zhang Zhili

    2012-11-15

    Experimental and computational results show that the coherent microwave scattering from a laser-induced plasma can be used for measuring the quality of a fs laser pulse. The temporal dynamics of the microwave scattered signal from the fs-laser induced plasma can be related to the effect of nanosecond tail of the fs laser pulse.

  8. Comparison of macular versus paramacular retinal sensitivity to femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Cain, Clarence P.; Toth, Cynthia A.; Thomas, Robert J.; Noojin, Gary D.; Carothers, Val; Stolarski, David J.; Rockwell, Benjamin A.

    2000-07-01

    Single 130 fs laser pulses in the near-IR (800 nm) were used to create ophthalmoscopically viewed minimum visible lesions (MVLs) within the macular and paramacular regions in rhesus monkey eyes. MVL thresholds at 1 and 24 h are reported as the 50% probability for damage (ED50) together with their fiducial limits at the 95% confidence level. These measured thresholds are compared with previously reported thresholds for near-IR and visible wavelengths for both macular and paramacular areas. Threshold doses were lower at the 24 h reading than at the 1 h reading for both retinal regions and the ED50s for the macular were slightly lower than for the paramacula. We measured the 24 h MVL ED50 thresholds to be 0.35 and 0.55 (mu) J for the macular and paramacular areas, respectively. The combined data for both areas yielded a threshold of 0.45 (mu) J.

  9. Simultaneous visible and near-infrared emission from a pulse-stretched alexandrite laser source

    NASA Astrophysics Data System (ADS)

    Boczar, Bruce; Thevar, Thanga; Rousseva, Ivelina; Kramer, Norman; Pryor, Brian; Frost, Rick

    2004-07-01

    An efficient method to make multi-spectral laser light having any selected pulsed duration in the range of 100 ns to 1 μs has been demonstrated in the laboratory. This laser system, based on the alexandrite tunable solid-state gain medium, which is tunable in its fundamental between 720 and 800 nm, was constructed near the gain maximum of 755 nm. A novel intracavity pulse-stretcher provides control of the pulse duration up to about 5 μs using the Pockels effect. In the demonstration prototype, however, the pulse duration was restricted to 500 ns to maintain the peak power needed for efficient nonlinear conversion. Following an amplification stage, Raman shifting in hydrogen gas was used to achieve efficient wavelength conversion to 1100 nm. The Raman shifted beam was frequency doubled to 550 nm using two BBO crystals arranged for walk-off compensation. The result was a convenient source of light whose spectral content, pulse duration, as well as other parameters, could be critically controlled.

  10. Pulse transformer for GaAs laser

    NASA Technical Reports Server (NTRS)

    Rutz, E. M.

    1976-01-01

    High-radiance gallium arsenide (GaAs) laser operating at room temperature is utilized in optical navigation system. For efficient transformer-to-laser impedance match, laser should be connected directly to pulse transformer secondary winding.

  11. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability.

  12. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, R.P.

    1992-11-24

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  13. Generation of Widely Tunable Fourier-Transform Pulsed Terahertz Radiation Using Narrowband Near-Infrared Laser Radiation

    NASA Astrophysics Data System (ADS)

    Liu, Jinjun; Haase, Christa; Merkt, Frédéric

    2009-06-01

    Widely tunable, Fourier-transform-limited pulses of terahertz (THz) radiation have been generated by optical frequency deference using (i) crystals of the highly nonlinear organic salt 4-N,N-dimethylamino-4^'-N^'-methyl stilbazolium tosylate (DAST), (ii) zinc telluride (ZnTe) crystals, and (iii) gallium phosphide (GaP) crystals. Outputs from two narrowband (Δν<1 MHz, λ˜800 nm) cw titanium-doped sapphire (Ti:Sa) ring lasers with a well-controlled frequency difference were shaped into pulses using acousto-optic modulators, coupled into an optical fiber, pulse amplified in Nd:YAG-pumped Ti:Sa crystals and used as optical sources to pump the THz nonlinear crystals. The THz radiation was detected over a broad frequency range and its bandwidth was determined to be ˜10 MHz. Absorption spectra of gas phase molecules including HF and OCS using the THz source will be presented.

  14. Laser-induced molybdenum oxide formation by low energy (nJ)-high repetition rate (MHz) femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Cano-Lara, M.; Camacho-López, S.; Esparza-García, A.; Camacho-López, M. A.

    2011-09-01

    Experimental results on femtosecond (fs) laser-induced oxidation of molybdenum (Mo) thin films are presented. The Mo thin films were deposited on fused silica substrates by the magnetron DC-sputtering technique. The as-deposited thin films were characterized by X-ray diffraction, which indicates that bbc-molybdenum was grown. The films were irradiated in ambient air, using a femtosecond Ti:Sapphire laser (800 nm, 60 fs pulse duration, 70 MHz and 6.5 nJ per pulse). The molybdenum thin films were laser scanned in the form of several millimeters long straight line traces, by using a per pulse laser fluence well below the (previously reported) ablation threshold. Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) were used to study the laser-induced optical and morphology changes on the exposed zone. Energy Dispersive Spectrometry (EDS) and Micro-Raman Spectroscopy (MRS) were used to determine the degree of oxidation and the phase change across the laser irradiated paths on the Mo thin film. Under the above described experimental conditions our results show that it is possible to laser-induce a specific oxide phase from the molybdenum starting material. Our micro-Raman results clearly demonstrate that the fs-laser irradiation induces the m-MoO 2 and o-Mo 4O 11 crystalline phases at the directly laser irradiated trace and its close proximity.

  15. Extension of the high-order harmonics and an isolated sub-100 as pulse generation in a two-colour laser field

    NASA Astrophysics Data System (ADS)

    Zhai, Zhen; Liu, Xue-shen

    2008-06-01

    We theoretically investigate the high-order harmonic generation (HHG) when a helium ion model is irradiated by a two-colour laser field, which is synthesized by a 5 fs pulse at 800 nm and a 10 fs pulse at 394 nm. The harmonic spectrum reveals a double-plateau structure and an extreme ultraviolet supercontinuum spectrum in the lower second plateau can be superposed to produce attosecond pulses. By increasing the intensity of 10 fs pulse at 394 nm, the cutoff of the second plateau is extended effectively and the harmonics in the second plateau become in phase. Consequently, an isolated 63 as pulse is observed. These results can be explained in terms of the time-frequency characteristics of attosecond pulses and a semiclassic three-step model.

  16. Ultrashort pulse laser interactions with cortical bone tissue for applications in orthopaedic surgery

    NASA Astrophysics Data System (ADS)

    Ashforth, Simon A.; Simpson, M. C.; Bodley, Owen; Oosterbeek, Reece

    2015-03-01

    Using a femtosecond pulsed laser system (pulse width = 100fs, repetition rate = 1kHz, λ = 800nm), ablation threshold studies of freshly culled bovine and ovine cortical bone samples were identified using the diameter regression technique. Using the D2 technique, the ablation threshold was found to lie within a range of 0.83 - 0.96 Jcm-2 and 0.89 - 0.95 Jcm-2 for ovine and bovine cortical bone respectively indicating that laser ablation of bone is irrespective of target species. The relationship between cortical bone tissue removal and the number of applied pulses was explored. By altering the laser spot translation rate, we varied the number of pulses at each point along scribed linear cuts. Optical Coherence Tomography (OCT) and PDMS casting indicates that cut depth is linearly dependent on the number of pulses applied to the tissue, irrespective of donor species. For single pulse ablation of ovine and bovine cortical bone, we determined that the ablation rates were 0.41 - 0.75 μm per pulse and 0.28 - 0.90 μm per pulse when pulses of fluences in the range 0.52 - 2.63 Jcm-2 were applied to ovine and bovine cortical bone tissue, respectively. Structural analysis of the ablation features using environmental scanning electron microscopy and optical microscopy were utilized to assess the ablation features and identify signs of damage to surrounding tissue. We observed no structural indications of thermal shockwave cracking, molten debris deposition or charring of the tissue whilst leaving hydroxyapatite crystal structure intact.

  17. Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding

    NASA Astrophysics Data System (ADS)

    Shayganmanesh, Mahdi; Khoshnoud, Afsaneh

    2016-03-01

    In this paper, laser welding of silicon in conduction mode is investigated numerically. In this study, the effects of laser beam characteristics on the welding have been studied. In order to model the welding process, heat conduction equation is solved numerically and laser beam energy is considered as a boundary condition. Time depended heat conduction equation is used in our calculations to model pulsed laser welding. Thermo-physical and optical properties of the material are considered to be temperature dependent in our calculations. Effects of spatial and temporal laser beam parameters such as laser beam spot size, laser beam quality, laser beam polarization, laser incident angle, laser pulse energy, laser pulse width, pulse repetition frequency and welding speed on the welding characteristics are assessed. The results show that how the temperature dependent thermo-physical and optical parameters of the material are important in laser welding modeling. Also the results show how the parameters of the laser beam influence the welding characteristics.

  18. Ultrashort-pulse laser calligraphy

    NASA Astrophysics Data System (ADS)

    Yang, Weijia; Kazansky, Peter G.; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Hirao, Kazuyuki

    2008-10-01

    Control of structural modifications inside silica glass by changing the front tilt of an ultrashort pulse is demonstrated, achieving a calligraphic style of laser writing. The phenomena of anisotropic bubble formation at the boundary of an irradiated region and modification transition from microscopic bubbles formation to self-assembled form birefringence are observed, and the physical mechanisms are discussed. The results provide the comprehensive evidence that the light beam with centrosymmetric intensity distribution can produce noncentrosymmetric material modifications.

  19. High-order-harmonic generation in benzene with linearly and circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Wardlow, Abigail; Dundas, Daniel

    2016-02-01

    High-order-harmonic generation in benzene is studied using a mixed quantum-classical approach in which the electrons are described using time-dependent density-functional theory while the ions move classically. The interaction with both linearly and circularly polarized infrared (λ =800 nm) laser pulses of duration of ten cycles (26.7 fs) is considered. The effect of allowing the ions to move is investigated as is the effect of including self-interaction corrections to the exchange-correlation functional. Our results for circularly polarized pulses are compared with previous calculations in which the ions were kept fixed and self-interaction corrections were not included, while our results for linearly polarized pulses are compared with both previous calculations and experiment. We find that even for the short-duration pulses considered here, the ionic motion greatly influences the harmonic spectra. While ionization and ionic displacements are greatest when linearly polarized pulses are used, the response to circularly polarized pulses is almost comparable, in agreement with previous experimental results.

  20. Wakefield generation via two color laser pulses

    SciTech Connect

    Jha, Pallavi; Saroch, Akanksha; Kumar Verma, Nirmal

    2013-05-15

    The analytical study for the evolution of longitudinal as well as transverse electric wakefields, generated via passage of two color laser pulses through uniform plasma, has been presented in the mildly relativistic regime. The frequency difference between the two laser pulses is assumed to be equal to the plasma frequency, in the present analysis. The relative angle between the directions of polarization of the two laser pulses is varied and the wakefield amplitudes are compared. Further, the amplitude of the excited wakes by two color pulses are compared with those generated by a single laser pulse.

  1. Megahertz pulse-burst alexandrite laser diagnostic systems

    NASA Astrophysics Data System (ADS)

    Luff, Jon David

    Megahertz pulse-burst laser systems coupled with megahertz-rate framing cameras have proven (over the last ten years) to be very robust in imaging of high-speed reacting and nonreacting supersonic flows. These Nd:YAG systems produce 20--30 pulses (at variable rates from 500 kHz to 1 MHz) with 50--100 mJ/pulse (lambda = 1064nm) and have been used with narrow, spectral-linewidth, iodine, atomic filters to image turbulence in supersonic boundary layers with great success (when operating at lambda = 532nm). To extend this pulse-burst capability at other wavelengths (wavelengths outside of the 5--30 GHz tuning range of Nd:YAG: lambda = 1064 nm fundamental, and lambda = 532 nm second harmonic), two unique, tunable, megahertz-rate alexandrite laser systems were designed and built. This dissertation documents these two systems and discusses the potential for tunable, megahertz, pulse-burst systems that have more tuning range than Nd:YAG. These tunable alexandrite systems substantially extend the wavelength range of pulse-burst laser technology, but, to date, have pulse-energy limitations. Tunable from 710 nm to 800 nm (in the fundamental), these lasers provide researchers one laser to reach multiple molecular or atomic resonances with variable pulse-burst pulse separations. The molecular and atomic species of interest in reacting and nonreacting flows are presented in Chapter 1, providing a road-map for the development of these tunable lasers. This dissertation presents the design and development of these systems, including mode control, Herriott cell design for pulse separation, and the megahertz-tuning ringmaster-oscillator. Chapter 2 covers the physics of alexandrite as a solid-state, lamp-pumped, tunable medium and compares it to the tunability of Ti:sapphire. Chapter 3 and 4 present the pulse-burst alexandrite systems. The first system, built in Princeton's Applied Physics group (PAPG) (Chapter 3), produced 1-5 mJ total pulse-packet energy of 20--30 pulses, or

  2. Compact KGd(WO4)2 picosecond pulse-train synchronously pumped broadband Raman laser.

    PubMed

    Gao, Xiao Qiang; Long, Ming Liang; Meng, Chen

    2016-08-20

    We demonstrate an efficient approach to realizing an extra-cavity, synchronously pumped, stimulated Raman cascaded process under low repetition frequency (1 kHz) pump conditions. We also construct a compact KGd(WO4)2 (KGW) crystal picosecond Raman laser that has been configured as the developed method. A pulse-train green laser pumped the corresponding 70 mm long KGW crystal Raman cavity. The pulse train contains six pulses, about 800 ps separated, for every millisecond; thus, it can realize synchronous pumping between pump pulse and the pumped Raman cavity. The investigated system produced a collinear Raman laser output that includes six laser lines covering the 532 to 800 nm spectra. This is the first report on an all-solid-state, high-average-power picosecond collinear multi-wavelength (more than three laser components) laser to our knowledge. This method has never been reported on before in the synchronously pumped stimulated Raman scattering (SRS) realm. PMID:27556971

  3. Signatures of nuclear motion in molecular high-order harmonics and in the generation of attosecond pulse trains by ultrashort intense laser pulses

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Chelkowski, Szczepan; Lu, Huizhong

    2009-04-01

    Non-Born-Oppenheimer time-dependent Shrödinger equation numerical simulations of the nonlinear nonperturbative response of 1D H2, H+2 molecules (and their isotopes) in few cycle intense 800 nm laser pulses are presented to study the effect of nuclear motion on molecular high-order harmonic generation. A time-frequency analysis is used to identify electron recollision and recombination times responsible for the generation of attosecond pulse trains during the nuclear motion. A very strong signature of nuclear motion is seen in the time profiles of high-order harmonics. In the case of high laser intensity (I sime 1015 W cm-2) the nuclear motion shortens the part of the attosecond pulse train originating from the first electron contribution and may enhance the onset of the second electron contribution for longer pulses. Molecular motion thus can act as an important 'time-gating' for controlling the length of generated attosecond pulses. The shape of time profiles of harmonics can thus be used for monitoring the nuclear motion. In the case of lower laser intensity, I sime 4 × 1014 W cm-2, we also find in time profiles a clear signature of electron excitation due to recollision of the returning electron.

  4. Self-phase modulation of femtosecond pulses in hollow photonic-crystal fibres

    SciTech Connect

    Konorov, Stanislav O; Zheltikov, Aleksei M; Sidorov-Biryukov, D A; Bugar, I; Chorvat, D J; Beloglazov, V I; Skibina, N B; Shcherbakov, Andrei V; Chorvat, D; Mel'nikov, L A

    2004-01-31

    Self-phase modulation of femtosecond laser pulses in hollow-core photonic-crystal fibres is experimentally studied. Photonic-crystal fibres allowing single-mode waveguide regimes of nonlinear-optical interactions to be implemented with maximum transmission for 800-nm femtosecond pulses are designed and fabricated. A radical enhancement of self-phase modulation is demonstrated for submicrojoule femtosecond pulses of Ti:sapphire-laser radiation propagating through hollow photonic-crystal fibres. (optical fibres)

  5. Internal Energy Deposition for Low Energy, Femtosecond Laser Vaporization and Nanospray Post-ionization Mass Spectrometry using Thermometer Ions

    NASA Astrophysics Data System (ADS)

    Flanigan, Paul M.; Shi, Fengjian; Archer, Jieutonne J.; Levis, Robert J.

    2015-05-01

    The internal energy of p-substituted benzylpyridinium ions after laser vaporization using low energy, femtosecond duration laser pulses of wavelengths 800 and 1042 nm was determined using the survival yield method. Laser vaporization of dried benzylpyridinium ions from metal slides into a buffered nanospray with 75 μJ, 800 nm laser pulses resulted in a higher extent of fragmentation than conventional nanospray due to the presence of a two-photon resonance fragmentation pathway. Using higher energy 800 nm laser pulses (280 and 505 μJ) led to decreased survival yields for the four different dried benzylpyridinium ions. Analyzing dried thermometer ions with 46.5 μJ, 1042 nm pulse-bursts resulted in little fragmentation and mean internal energy distributions equivalent to nanospray, which is attributable to the absence of a two-photon resonance that occurs with higher energy, 800 nm laser pulses. Vaporization of thermometer ions from solution with either 800 nm or 1042 nm laser pulses resulted in comparable internal energy distributions to nanospray ionization.

  6. Pulse shaping on the Nova laser system

    SciTech Connect

    Lawson, J.K.; Speck, D.R.; Bibeau, C.; Weiland, T.L.

    1989-02-06

    Inertial confinement fusion requires temporally shaped pulses to achieve high gain efficiency. Recently, we demonstrated the ability to produce complex temporal pulse shapes at high power at 0.35 microns on the Nova laser system. 2 refs., 2 figs.

  7. Photoemission using femtosecond laser pulses

    SciTech Connect

    Srinivasan-Rao, T.; Tsang, T.; Fischer, J.

    1991-10-01

    Successful operation of short wavelength FEL requires an electron bunch of current >100 A and normalized emittance < 1 mm-mrad. Recent experiments show that RF guns with photocathodes as the electron source may be the ideal candidate for achieving these parameters. To reduce the emittance growth due to space charge and RF dynamics effects, the gun may have to operate at high field gradient (hence at high RF frequency) and a spot size small compared to the aperture. This may necessitate the laser pulse duration to be in the subpicosecond regime to reduce the energy spread. We will present the behavior of metal photocathodes upon irradiation with femtosecond laser beams, comparison of linear and nonlinear photoemission, and scalability to high currents. Theoretical estimate of the intrinsic emittance at the photocathode in the presence of the anomalous heating of the electrons, and the tolerance on the surface roughness of the cathode material will be discussed.

  8. Formation of an electron beam with a duration shorter than 100 fs during photoemission of electrons by femtosecond laser pulses

    SciTech Connect

    Mironov, B. N.; Aseev, S. A. Minogin, V. G. Chekalin, S. V.

    2008-06-15

    Irradiation of a thin metal target by 38-fs laser pulses at a wavelength of 800 nm is shown to generate a beam of photoelectrons that contains a component whose duration is shorter than 100 fs. The ensemble of photoelectrons is formed by photoemission of a gold film about 10 nm thick sputtered on the base of a prism made of fused silica. The laser beam irradiates a dielectric-metal interface and propagates inside the prism at an angle of 45{sup o} to a normal to the interface. The photoelectron beam is formed by accelerating photoelectrons in a spatially inhomogeneous electrostatic potential. The ultrashort component of the photoelectron beam is found to be formed under the action of a ponderomotive potential. It is shown that the ultrashort electron component can be separated from the remaining part of the photoelectron beam with the help of an inhomogeneous electrostatic field.

  9. Short-pulse photolytic iodine laser

    NASA Astrophysics Data System (ADS)

    Tate, Ralph F.; Harris, Melvin; Anderson, Brian T.; Hager, Gordon D.

    2000-08-01

    A compact, short pulse photolytic iodine laser (PIL) system designed for use as a source in Raman conversion experiments is described. The single-shot, flashlamp-pumped laser outputs 10 Joules in a 3 microsecond(s) FWHM pulse at a wavelength of 1.315 micrometer and uses n-C3F7I as the renewable laser fuel. Laser design and performance characteristics are presented.

  10. Dynamic pulsing of a MOPA fiber laser

    NASA Astrophysics Data System (ADS)

    Romero, Rosa; Guerreiro, Paulo T.; Hendow, Sami T.; Salcedo, José R.

    2011-05-01

    Dynamic Pulsing is demonstrated using a pulsed MOPA fiber laser at 1064nm. The output of the MOPA laser is a pulsed profile consisting of a burst of closely spaced pulses. Tests were performed under several materials with pulse bursts ranging from 10ns to 1μs and operating from 500kHz down to single shot. In particular, percussion drilling in stainless steel is demonstrated showing improvements in quality and speed of the process. These profiles allow high flexibility and optimization of the process addressing the specificity of the end application. Dynamic Pulsing allows the same MOPA fiber laser to be used in diverse materials as well as different processes such us marking, drilling, scribing and engraving. The pulsed fiber laser used in this study is a MOPA-DY by Multiwave Photonics. It is based on a modulated seed laser followed by a series of fiber amplifiers and ending with an optically isolated collimator. This pulsed laser model has an output in such a way that each trigger produces a fast burst of pulses, with a repetition frequency within the burst of the order of tens of MHz. Within the burst it is possible to change the number of pulses, the individual pulse profile, burst pulse period and even to generate non-periodic burst pulse separations. The laser allows full freedom for all these combinations. The study here reported compares the impact of pulse peak power, number of pulses within a burst and the pulse burst period, on process quality (heat affected zone, debris, hole uniformity) and drilling yield.

  11. Investigation of damage threshold of ion beam deposited oxide thin film optics for high-peak-power short-pulse lasers

    NASA Astrophysics Data System (ADS)

    Fitzgerald Dummer, Ann M.; Brizuela, Fernando; Duskis, Charissa; Luther, Brad; Larotonda, Miguel; Rocca, Jorge J.; George, Jason; Kohli, Sandeep; McCurdy, Pat; Menoni, Carmen S.

    2004-09-01

    In this work we report on the damage threshold of ion beam deposited oxide films designed for high peak power short pulse laser systems. Single layers of ZrO2, SiO2, Al2O3, TiO2, and Ta2O5 and multilayers of Al2O 3/TiO2, SiO2/Ta2O5, and SiO2/ZrO2 were grown on polished borosilicate glass substrates using ion beam sputter deposition. Deposition conditions were optimized to yield fully oxidized films as determined from x-ray photoelectron spectroscopy (XPS). Damage threshold testing was performed using an amplified Ti:Sapphire laser producing a train of 120 picosecond pulses at a wavelength of 800 nm. The laser output was focused with a lens to generate fluences ranging from 0.1 to 24 J/cm2. The highest damage threshold of 15.4 J/cm2 was measured for a single layer film of SiO2. The damage threshold of high reflectance and anti-reflection multilayer coatings fabricated for 800 nm applications was evaluated using the same procedure as for the single layer films. Highest damage thresholds of 2.5 and 3.5 J/cm2 were measured for a 6-pair ZrO2/SiO2 high reflectance coating and a 5 layer anti-reflection coating of the same materials.

  12. Analysis of Picosecond Pulsed Laser Melted Graphite

    DOE R&D Accomplishments Database

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  13. Super-achromatic microprobe for ultrahigh-resolution endoscopic OCT imaging at 800 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Alemohammad, Milad; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    In this paper, we report a super-achromatic microprobe made with fiber-optic ball lens to enable ultrahigh-resolution endoscopic OCT imaging. An axial resolution of ~2.4 µm (in air) can be achieved with a 7-fs Ti:Sapphire laser. The microprobe has minimal astigmatism which affords a high transverse resolution of ~5.6 µm. The miniaturized microprobe has an outer diameter of ~520 µm including the encasing metal guard and can be used to image small luminal organs. The performance of the ultrahigh-resolution OCT microprobe was demonstrated by imaging rat esophagus, guinea pig esophagus, and mouse rectum in vivo.

  14. Temperature dependence of nanosecond laser pulse thresholds of melanosome and microsphere microcavitation

    NASA Astrophysics Data System (ADS)

    Schmidt, Morgan S.; Kennedy, Paul K.; Noojin, Gary D.; Thomas, Robert J.; Rockwell, Benjamin A.

    2016-01-01

    Melanosome microcavitation is the threshold-level retinal pigment epithelium (RPE) damage mechanism for nanosecond (ns) pulse exposures in the visible and near-infrared (NIR). Thresholds for microcavitation of isolated bovine RPE melanosomes were determined as a function of temperature (20 to 85°C) using single ns laser pulses at 532 and 1064 nm. Melanosomes were irradiated using a 1064-nm Q-switched Nd:YAG (doubled for 532-nm irradiation). For comparison to melanosome data, a similar temperature (20 to 65°C) dependence study was also performed for 532 nm, ns pulse exposures of black polystyrene microbeads. Results indicated a decrease in the microcavitation average radiant exposure threshold with increasing sample temperature for both 532- and 1064-nm single pulse exposures of melanosomes and microbeads. Threshold data and extrapolated nucleation temperatures were used to estimate melanosome absorption coefficients in the visible and NIR, and microbead absorption coefficients in the visible, indicating that melanin is a better absorber of visible light than black polystyrene. The NIR melanosome absorption coefficients ranged from 3713 cm-1 at 800 nm to 222 cm-1 at 1319 nm. These data represent the first temperature-dependent melanosome microcavitation study in the NIR and provide additional information for understanding melanosome microcavitation threshold dependence on wavelength and ambient temperature.

  15. Generation of an isolated sub-40-as pulse using two-color laser pulses: Combined chirp effects

    SciTech Connect

    Feng, Liqiang; Chu, Tianshu

    2011-11-15

    In this paper, we theoretically discuss the combined chirp effects on the isolated attosecond generation when a model Ar is exposed to an intense 5-fs, 800-nm fundamental chirped pulse combined with a weak 10-fs, 1200-nm controlling chirped pulse. It shows that for the case of the chirp parameters {beta}{sub 1} = 6.1 (corresponding to the 800-nm field) and {beta}{sub 2} = 4.0 (corresponding to the 1200-nm field), both the harmonic cutoff energy and the supercontinuum can be remarkably extended resulting in a 663-eV bandwidth. Moreover, due to the introduction of the chirps, the short quantum path is selected to contribute to the harmonic spectrum. Finally, by superposing a properly selected harmonic spectrum in the supercontinuum region, an isolated pulse as short as 31 as (5 as) is generated without (with) phase compensation.

  16. Ultrashort Laser Pulses in Physics and Chemistry

    SciTech Connect

    Naskrecki, Ryszard

    2007-11-26

    Study of physical and chemical events accompanying light-matter interaction in pico- and femtosecond time scale have become possible with the use of ultrashort laser pulses. With the progress in generation of ultrashort laser pulses, the ultrafast optical spectroscopy, as a tool for dynamic study, is still evolving rapidly.

  17. Flexible pulse-controlled fiber laser.

    PubMed

    Liu, Xueming; Cui, Yudong

    2015-01-01

    Controlled flexible pulses have widespread applications in the fields of fiber telecommunication, optical sensing, metrology, and microscopy. Here, we report a compact pulse-controlled all-fiber laser by exploiting an intracavity fiber Bragg grating (FBG) system as a flexible filter. The width and wavelength of pulses can be tuned independently by vertically and horizontally translating a cantilever beam, respectively. The pulse width of the laser can be tuned flexibly and accurately from ~7 to ~150 ps by controlling the bandwidth of FBG. The wavelength of pulse can be tuned precisely with the range of >20 nm. The flexible laser is precisely controlled and insensitive to environmental perturbations. This fiber-based laser is a simple, stable, and low-cost source for various applications where the width-tunable and/or wavelength-tunable pulses are necessary. PMID:25801546

  18. Flexible pulse-controlled fiber laser

    PubMed Central

    Liu, Xueming; Cui, Yudong

    2015-01-01

    Controlled flexible pulses have widespread applications in the fields of fiber telecommunication, optical sensing, metrology, and microscopy. Here, we report a compact pulse-controlled all-fiber laser by exploiting an intracavity fiber Bragg grating (FBG) system as a flexible filter. The width and wavelength of pulses can be tuned independently by vertically and horizontally translating a cantilever beam, respectively. The pulse width of the laser can be tuned flexibly and accurately from ~7 to ~150 ps by controlling the bandwidth of FBG. The wavelength of pulse can be tuned precisely with the range of >20 nm. The flexible laser is precisely controlled and insensitive to environmental perturbations. This fiber-based laser is a simple, stable, and low-cost source for various applications where the width-tunable and/or wavelength-tunable pulses are necessary. PMID:25801546

  19. Heating of solid targets with laser pulses

    NASA Technical Reports Server (NTRS)

    Bechtel, J. H.

    1975-01-01

    Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.

  20. Relativistic laser pulse compression in magnetized plasmas

    SciTech Connect

    Liang, Yun; Sang, Hai-Bo Wan, Feng; Lv, Chong; Xie, Bai-Song

    2015-07-15

    The self-compression of a weak relativistic Gaussian laser pulse propagating in a magnetized plasma is investigated. The nonlinear Schrödinger equation, which describes the laser pulse amplitude evolution, is deduced and solved numerically. The pulse compression is observed in the cases of both left- and right-hand circular polarized lasers. It is found that the compressed velocity is increased for the left-hand circular polarized laser fields, while decreased for the right-hand ones, which is reinforced as the enhancement of the external magnetic field. We find a 100 fs left-hand circular polarized laser pulse is compressed in a magnetized (1757 T) plasma medium by more than ten times. The results in this paper indicate the possibility of generating particularly intense and short pulses.

  1. Stimulated light forces using picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Bloch, Immanuel; Goepfert, A.; Haubrich, D.; Lison, F.; Schuetze, R.; Wynands, Robert; Meschede, Dieter

    1997-05-01

    Using the stimulated force exerted by counterpropagating picosecond laser pulses from a mode-locked Ti:Sapphire laser we were able to focus a beam of laser-cooled cesium atoms along one dimension to about 57% of its original width in the detection zone. The force profile was measured outside and inside the overlap region of the pulses and found to be in agreement with an earlier theoretical prediction. A brief theoretical account of the interaction of atoms with pulsed laser light based on the optical Bloch equations is given.

  2. Nonlinear dynamics of additive pulse modelocked lasers

    SciTech Connect

    Sucha, G.; Bolton, S.R.; Chemla, D.S.

    1995-04-01

    Nonlinear dynamics have been studied in a number of modelocked laser systems, primarily in actively modelocked systems. However, less attention has been paid to the dynamics of passively modelocked laser systems. With the recent revolutionary advances in femtosecond modelocked laser technology, the understanding of instabilities and dynamics in passively modelocked lasers is an important issue. Here, the authors present experimental and numerical studies of the dynamics of an additive-pulse modelocked (APM) color-center laser.

  3. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  4. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Ma, Guangjin; Dallari, William; Borot, Antonin; Krausz, Ferenc; Yu, Wei; Tsakiris, George D.; Veisz, Laszlo

    2015-03-01

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ˜100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  5. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    SciTech Connect

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-03-15

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  6. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  7. MOPA pulsed fiber laser for silicon scribing

    NASA Astrophysics Data System (ADS)

    Yang, Limei; Huang, Wei; Deng, Mengmeng; Li, Feng

    2016-06-01

    A 1064 nm master oscillator power amplifier (MOPA) pulsed fiber laser is developed with flexible control over the pulse width, repetition frequency and peak power, and it is used to investigate the dependence of mono-crystalline silicon scribe depth on the laser pulse width, scanning speed and repeat times. Experimental results indicate that long pulses with low peak powers lead to deep ablation depths. We also demonstrate that the ablation depth grows fast with the scanning repeat times at first and progressively tends to be saturated when the repeat times reach a certain level. A thermal model considering the laser pulse overlapping effect that predicts the silicon temperature variation and scribe depth is employed to verify the experimental conclusions with reasonably close agreement. These conclusions are of great benefits to the optimization of the laser material processing with high efficiency.

  8. Compositional dependent response of silica-based glasses to femtosecond laser pulse irradiation

    NASA Astrophysics Data System (ADS)

    Seuthe, Thomas; Grehn, Moritz; Mermillod-Blondin, Alexandre; Bonse, Jörn; Eberstein, Markus

    2013-11-01

    Femtosecond laser pulse irradiation of inorganic glasses allows a selective modification of the optical properties with very high precision. This results in the possibility for the production of three-dimensional functional optical elements in the interior of glass materials, such as optical data storage, waveguide writing, etc. The influence of the chemical glass composition to the response upon ultrashort laser irradiation has not been studied systematically. For that, simple silicabased model glasses composed of systematically varying alkaline- and earth-alkaline components were prepared, irradiated on the surface and in the volume with single fs-laser pulses (~130 fs, 800 nm), and were subsequently analyzed by means of micro-Raman spectroscopy and quantitative phase contrast microscopy in order to account for changes in the glass structure and for alterations of the optical refractive index, respectively. The Raman spectroscopic studies of the laser-irradiated spots revealed no change in the average binding configuration (the so called Q-structure), but local changes of bond-angles and bond-lengths within the glass structure structure. Those changes are explained by structural relaxation of the glass network due to densification caused by a transient laser-induced plasma generation and the following shock wave and other thermal phenomena. Glasses with a low amount of network modifiers show changes in the Si-O network while glasses with a high amount of network modifiers react primarily via variation of the nonbridging oxygen ions. The results are discussed in terms of possible structural response mechanisms and conclusions are outlined regarding glass compositions with technical suitability for fs-laser modifications.

  9. Effect of nuclear motion on high-order-harmonic generation of H2+ in intense ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Ahmadi, H.; Maghari, A.; Sabzyan, H.; Niknam, A. R.; Vafaee, M.

    2014-10-01

    High-order-harmonic generation is investigated for H2+ and D2+ with and without a Born-Oppenheimer approximation by a numerical solution of a full dimensional electronic time-dependent Schrödinger equation under four-cycle intense laser pulses of 800 nm wavelength and I =4, 5, 7, and 10×1014 W/cm2 intensities. For most harmonic orders, the intensity obtained for D2+ is higher than that for H2+, and the yield difference increases as the harmonic order increases. Only at some low harmonic orders, H2+ generates more intense harmonics compared to D2+. The results show that nuclear motion, ionization probability, and system dimensionality must be simultaneously taken into account to properly explain the isotopic effects on high-order-harmonic generation and to justify experimental observations.

  10. Relativistic plasma shutter for ultraintense laser pulses

    PubMed Central

    Reed, Stephen A.; Matsuoka, Takeshi; Bulanov, Stepan; Tampo, Motonobu; Chvykov, Vladimir; Kalintchenko, Galina; Rousseau, Pascal; Yanovsky, Victor; Kodama, Ryousuke; Litzenberg, Dale W.; Krushelnick, Karl; Maksimchuk, Anatoly

    2009-01-01

    A relativistic plasma shutter technique is proposed and tested to remove the sub-100 ps pedestal of a high-intensity laser pulse. The shutter is an ultrathin foil placed before the target of interest. As the leading edge of the laser ionizes the shutter material it will expand into a relativistically underdense plasma allowing for the peak pulse to propagate through while rejecting the low intensity pedestal. An increase in the laser temporal contrast is demonstrated by measuring characteristic signatures in the accelerated proton spectra and directionality from the interaction of 30 TW pulses with ultrathin foils along with supporting hydrodynamic and particle-in-cell simulations. PMID:19654882

  11. Injection locked oscillator system for pulsed metal vapor lasers

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  12. Pulse front tilt measurement of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Dimitrov, Nikolay; Stoyanov, Lyubomir; Stefanov, Ivan; Dreischuh, Alexander; Hansinger, Peter; Paulus, Gerhard G.

    2016-07-01

    In this work we report experimental investigations of an intentionally introduced pulse front tilt on femtosecond laser pulses by using an inverted field correlator/interferometer. A reliable criterion for the precision in aligning (in principle) dispersionless systems for manipulating ultrashort pulses is developed, specifically including cases when the pulse front tilt is a result of a desired spatio-temporal coupling. The results obtained using two low-dispersion diffraction gratings are in good qualitative agreement with the data from a previously developed analytical model and from an independent interferometric measurement.

  13. Simulation of Double-Pulse Laser Ablation

    SciTech Connect

    Povarnitsyn, Mikhail E.; Khishchenko, Konstantin V.; Levashov, Pavel R.; Itina, Tatian E.

    2010-10-08

    We investigate the physical reasons of a strange decrease in the ablation depth observed in femtosecond double-pulse experiments with increasing delay between the pulses. Two ultrashort pulses of the same energy produce the crater which is less than that created by a single pulse. Hydrodynamic simulation shows that the ablation mechanism is suppressed when the delay between the pulses exceeds the electron-ion relaxation time. In this case, the interaction of the second laser pulse with the expanding target material leads to the formation of the second shock wave suppressing the rarefaction wave created by the first pulse. The modeling of the double-pulse ablation for different delays between pulses confirms this explanation.

  14. Laser lithotripsy using double pulse technique

    NASA Astrophysics Data System (ADS)

    Helfmann, Juergen; Doerschel, Klaus; Mueller, Gerhard J.

    1990-07-01

    There are currntly several methods in the field of laser lithotripsy which operate not only at different wavelengths and pulse lengths but also with various types of optical front ends and various irrigation fluids'6. The methods can be divided into two main groups: First, those which utilize stone absorption and plasma formation on the stone surface to initiate stone fragmentation, such as dye lasers. Second, those which generate shock waves and caviatation in the surrounding fluid and which require additional means to produce aplasma (e.g. irrigation, focussing fiber end or metal surfaces). The pulsed Nd:YAG laser belongs to this group. The method presented here is the double pulse technique which is a combination of both methods. It uses two laser pulses with a short time delay transmitted by means of a fiber to destroy body concrements. The first pulse is the first harmonic of the Nd:YAG laser (532nm) which improves the coupling efficiency of the laser radiation with the stone. The second pulse is in the fundamental mode of the laser (1064 nm) delivering the high energy for the stone disruption.

  15. Fiber Laser Front Ends for High Energy, Short Pulse Lasers

    SciTech Connect

    Dawson, J; Messerly, M; Phan, H; Siders, C; Beach, R; Barty, C

    2007-06-21

    We are developing a fiber laser system for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal for these systems as they are highly reliable and enable long term stable operation.

  16. Nonlinear time-dependent density-functional-theory study of ionization and harmonic generation in CO{sub 2} by ultrashort intense laser pulses: Orientational effects

    SciTech Connect

    Fowe, Emmanuel Penka; Bandrauk, Andre D.

    2010-02-15

    Time-dependent density-functional-theory (TDDFT) methods are used to calculate the orientational dependence of ionization and molecular high-order harmonic generation (MHOHG) in the CO{sub 2} molecule as a function of laser intensity I{sub 0{>=}}10{sup 14} W/cm{sup 2} for few-cycle 800 nm laser pulses. A time-series analysis is used to confirm the recollision model in MHOHG for different density potentials. It is found that at intensities I{sub 0}>3.5x10{sup 14} W/cm{sup 2}, lower highest occupied molecular orbitals (HOMO's) contribute significantly to ionization and to the MHOHG process. This is due to the symmetry of these orbitals. Even though such lower orbitals have higher ionization potentials (IP), ionization and MHOHG processes occur when orbital densities are maximum with laser polarization direction.

  17. Pulsed Laser Ablation of Soft Biological Tissues

    NASA Astrophysics Data System (ADS)

    Vogel, Alfred; Venugopalan, Vasan

    In this chapter we focus on the key elements that form our current understanding of the mechanisms of pulsed laser ablation of soft biological tissues. We present a conceptual framework providing mechanistic links between various ablation applications and the underlying thermodynamic and phase change processes [1]. We define pulsed laser ablation as the use of laser pulses with duration of ~1 ms or less for the incision or removal of tissue regardless of the photophysical or photochemical processes involved. However, we will confine this presentation to pulsed ablation performed on a tissue level that does not involve laser-induced plasma formation. Ablation processes within transparent tissues or cells resulting from non-linear absorption have been considered in reviews by Vogel and Venugopalan [1] and by Vogel and co-workers [2].

  18. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    SciTech Connect

    Plateau, G. R.; Geddes, C. G. R.; Matlis, N. H.; Mittelberger, D. E.; Nakamura, K.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.; Cormier-Michel, E.

    2010-11-04

    Decoupling injection from acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA). In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy spread, and emittance of the electron beam by injecting electrons in momentum and phase into the accelerating phase of the wake trailing the driver laser pulse. At LBNL, using automated control of spatiotemporal overlap of laser pulses, two-pulse experiments showed stable operation and reproducibility over hours of operation. Arrival time of the colliding beam was scanned, and the measured timing window and density of optimal operation agree with simulations. The accelerator length was mapped by scanning the collision point.

  19. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    NASA Astrophysics Data System (ADS)

    Plateau, G. R.; Geddes, C. G. R.; Matlis, N. H.; Cormier-Michel, E.; Mittelberger, D. E.; Nakamura, K.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2010-11-01

    Decoupling injection from acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA) [1, 2]. In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy spread, and emittance of the electron beam by injecting electrons in momentum and phase into the accelerating phase of the wake trailing the driver laser pulse [3, 4, 5, 6, 7]. At LBNL, using automated control of spatiotemporal overlap of laser pulses, two-pulse experiments showed stable operation and reproducibility over hours of operation. Arrival time of the colliding beam was scanned, and the measured timing window and density of optimal operation agree with simulations [8]. The accelerator length was mapped by scanning the collision point.

  20. The dynamics of compact laser pulses

    NASA Astrophysics Data System (ADS)

    Goto, S.; Tucker, R. W.; Walton, T. J.

    2016-07-01

    We discuss the use of a class of exact finite energy solutions to the vacuum source-free Maxwell equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged point particles. These compact solutions are classified in terms of their chiral content and their influence on particular charge configurations in space. The results of such classical interactions motivate a phenomenological quantum description of a propagating laser pulse in a medium in terms of an effective quantum Hamiltonian.

  1. Multiple laser pulse ignition method and apparatus

    DOEpatents

    Early, J.W.

    1998-05-26

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures. 18 figs.

  2. Multiple laser pulse ignition method and apparatus

    DOEpatents

    Early, James W.

    1998-01-01

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.

  3. Photoimaging of the multiple filamentation of femtosecond laser pulses in poly(methyl methacrylate) doped with 2,2-difluoro-4-(9-anthracyl)-6-methyl-1,3,2-dioxaborine

    SciTech Connect

    Kulchin, Yu N; Vitrik, O B; Chekhlenok, A A; Zhizhchenko, A Yu; Proschenko, D Yu; Mirochnik, A G; Lyu Guohui

    2013-12-31

    We have studied the filamentation of femtosecond laser pulses (λ = 800 nm, ∼42 fs pulse duration) in poly(methyl methacrylate) doped with 2,2-difluoro-4-(9-anthracyl)-6-methyl-1,3,2- dioxaborine and the associated photomodification of the material. The results demonstrate that multiple filamentation occurs at pulse energies above 5 μJ. At a pulse energy of 1.5 mJ, it is accompanied by supercontinuum generation. The average filament length in PMMA is 9 mm and the filament diameter is ∼10 μm. An incident power density of ∼10{sup 12} W cm{sup -2} ensures inscription of the filament pattern owing to two-photon photochemical processes. Preliminary exposure to continuous light at λ = 400 nm enables an ordered filament pattern to be written. (interaction of laser radiation with matter)

  4. Pulsed lasers in dentistry: sense or nonsense?

    NASA Astrophysics Data System (ADS)

    Koort, Hans J.; Frentzen, Matthias

    1991-05-01

    The great interest in the field of laser applications in dentistry provokes the question, if all these new techniques may really fulfill advantages, which are expected after initial in-vitro studies. Whereas laser surgery of soft oral tissues has been developed to a standard method, laser treatment of dental hard tissues and the bone are attended with many unsolved problems. Different laser types, especially pulsed lasers in a wide spectrum of wavelengths have been proofed for dental use. Today neither the excimer lasers, emitting in the far uv-range from 193 to 351 nm, nor the mid-infrared lasers like Nd:YAG (1,064 μm), Ho:YAG (2,1 μm) and Er:YAG (2,96 μm) or the C02-laser (10,6 μm) show mechanism of interaction more carefully and faster than a preparation of teeth with diamond drillers. The laser type with the most precise and considerate treatment effects in the moment is the short pulsed (15 ns) ArF-excimer laser with a wavelength of 193 nm. However this laser type has not yet the effectivity of mechanical instruments and it needs a mirror system to deliver the radiation. Histological results point out, that this laser shows no significant pathological alterations in the adjacent tissues. Another interesting excimer laser, filled with XeCI and emitting at a wavelength of 308 nm has the advantage to be good to deliver through quartz fibers. A little more thermal influence is to be seen according to the longer wavelength. Yet the energy density, necessary to cut dental hard tissues will not be reached with the laser systems available now. Both the pulsed Er:YAG- (2,94 μm, pulse duration 250 s) and the Ho:YAG -laser (2,1 μm, pulse duration 250 μs) have an effective coupling of the laser energy to hydrogeneous tissues, but they do not work sufficient on healthy enamel and dentine. The influence to adjacent healthy tissue is not tolerable, especially in regard of the thermal damage dentine and pulp tissues. Moreover, like the 193 nm ArF-excimer laser

  5. The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry

    PubMed Central

    LaHaye, N. L.; Harilal, S. S.; Diwakar, P. K.; Hassanein, A.; Kulkarni, P.

    2015-01-01

    We investigated the role of femtosecond (fs) laser wavelength on laser ablation (LA) and its relation to laser generated aerosol counts and particle distribution, inductively coupled plasma-mass spectrometry (ICP-MS) signal intensity, detection limits, and elemental fractionation. Four different NIST standard reference materials (610, 613, 615, and 616) were ablated using 400 nm and 800 nm fs laser pulses to study the effect of wavelength on laser ablation rate, accuracy, precision, and fractionation. Our results show that the detection limits are lower for 400 nm laser excitation than 800 nm laser excitation at lower laser energies but approximately equal at higher energies. Ablation threshold was also found to be lower for 400 nm than 800 nm laser excitation. Particle size distributions are very similar for 400 nm and 800 nm wavelengths; however, they differ significantly in counts at similar laser fluence levels. This study concludes that 400 nm LA is more beneficial for sample introduction in ICP-MS, particularly when lower laser energies are to be used for ablation. PMID:26640294

  6. The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry

    SciTech Connect

    LaHaye, N. L.; Harilal, S. S.; Diwakar, P. K.; Hassanein, A.; Kulkarni, P.

    2013-07-14

    We investigated the role of femtosecond (fs) laser wavelength on laser ablation (LA) and its relation to laser generated aerosol counts and particle distribution, inductively coupled plasma-mass spectrometry (ICP-MS) signal intensity, detection limits, and elemental fractionation. Four different NIST standard reference materials (610, 613, 615, and 616) were ablated using 400 nm and 800 nm fs laser pulses to study the effect of wavelength on laser ablation rate, accuracy, precision, and fractionation. Our results show that the detection limits are lower for 400 nm laser excitation than 800 nm laser excitation at lower laser energies but approximately equal at higher energies. Ablation threshold was also found to be lower for 400 nm than 800 nm laser excitation. Particle size distributions are very similar for 400 nm and 800 nm wavelengths; however, they differ significantly in counts at similar laser fluence levels. This study concludes that 400 nm LA is more beneficial for sample introduction in ICP-MS, particularly when lower laser energies are to be used for ablation.

  7. Pulsed Laser Illumination of Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland; Jenkins, Philip; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. The induction FEL and the radio-frequency (RF) FEL both produce pulsed rather than continuous output. In this work, we investigate cell response to pulsed laser light which simulates the RF FEL format, producing 50 ps pulses at a frequency of 78 MHz. A variety of Si, GaAs, CaSb and CdInSe2 (CIS) solar cells are tested at average incident powers between 4 mW/sq cm and 425 mW/sq cm. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced by using a pulsed laser source compared to constant illumination at the same wavelength. Because the pulse separation is less than or approximately equal to the minority carrier lifetime, the illumination conditions are effectively those of a continuous wave laser. The time dependence of the voltage and current response of the cells are also measured using a sampling oscilloscope equipped with a high frequency voltage probe and current transformer. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments shows that the RF FEL pulse format yields much more efficient photovoltaic conversion of light than does an induction FEL pulse format.

  8. Single attosecond pulse generation in an orthogonally polarized two-color laser field combined with a static electric field

    SciTech Connect

    Xia Changlong; Zhang Gangtai; Wu Jie; Liu Xueshen

    2010-04-15

    We investigate theoretic high-order harmonic generation and single attosecond pulse generation in an orthogonally polarized two-color laser field, which is synthesized by a mid-infrared (IR) pulse (12.5 fs, 2000 nm) in the y component and a much weaker (12 fs, 800 nm) pulse in the x component. We find that the width of the harmonic plateau can be extended when a static electric field is added in the y component. We also investigate emission time of harmonics in terms of a time-frequency analysis to illustrate the physical mechanism of high-order harmonic generation. We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variation of harmonic intensity for different static electric field strengths. When the ratio of strengths of the static and the y-component laser fields is 0.1, a continuous harmonic spectrum is formed from 220 to 420 eV. By superposing a properly selected range of the harmonic spectrum from 300 to 350 eV, an isolated attosecond pulse with a duration of about 75 as is obtained, which is near linearly polarized.

  9. Pulse-shaping circuit for laser excitation

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J.

    1981-01-01

    Narrower, impedence-matched pulses initiate stabler electric discharges for gas lasers. Discharges are more efficient, more compact, capable of high repetition rate, and less expensive than conventional electron-beam apparatus, but gas tends to break down and form localized arcs. Pulse-shaping circuit compresses width of high-voltage pulses from relatively-slow rise-time voltage generator and gradually grades circuit impedance from inherent high impedance of generator to low impedence of gas.

  10. Feedback control of pulsed laser deposition processes

    NASA Astrophysics Data System (ADS)

    Laube, S. J. P.; Stark, E. F.

    1993-10-01

    Implementation of closed loop feedback on PLD (pulsed laser deposition) requires actuators and sensors. Improvements in quality and reproducibility of material depositions are achieved by actuating the process towards desired operating regions. Empirical relationships are experimentally determined for describing the complex dynamical interactions of laser parameters. Feedback control based on this description can then be implemented to reduce process disorder.

  11. PULSED LASER ABLATION OF CEMENT AND CONCRETE

    EPA Science Inventory

    Laser ablation was investigated as a means of removing radioactive contaminants from the surface and near-surface regions of concrete from nuclear facilities. We present the results of ablation tests on cement and concrete samples using a pulsed Nd:YAG laser with fiber optic beam...

  12. Pressure wave charged repetitively pulsed gas laser

    DOEpatents

    Kulkarny, Vijay A.

    1982-01-01

    A repetitively pulsed gas laser in which a system of mechanical shutters bracketing the laser cavity manipulate pressure waves resulting from residual energy in the cavity gas following a lasing event so as to draw fresh gas into the cavity and effectively pump spent gas in a dynamic closed loop.

  13. Modeling of pulsed lasers for remote sensing

    NASA Astrophysics Data System (ADS)

    Walsh, Brian M.; Barnes, Norman P.; Petros, Mulugeta; Yu, Jirong; Singh, Upendra N.

    2005-01-01

    Pulsed lasers are useful for remote sensing of wind and greenhouse gases to better understand the atmosphere and its impact on weather patterns and the environment. It is not always practical to develop and optimize new laser systems empirically due to the time and expense associated with such endeavors. A practical option is to use a laser model to predict various performance parameters and compare these with the needs required for a particular remote sensing application. This approach can be very useful in determining the efficacy of potential laser systems, saving both time and money before proceeding with the actual construction of a laser device. As a pedagogical example, the modeling of diode pumped Tm:Ho:YLF and Tm:Ho:LuLF lasers are examined. Tm:Ho lasers operating around 2.0 μm have been used for wind measurements such as clear air turbulence and wake vortices. The model predictions for the laser systems examined here are compared to the actual laser performance, validating the usefulness of the modeling approach. While Tm:Ho fluoride lasers are used as a pedagogical example, the model is applicable to any lanthanide series pulsed laser system. This provides a useful tool for investigating potential laser systems that meet the requirements desired for a variety of remote sensing applications.

  14. Quantifying pulsed laser induced damage to graphene

    SciTech Connect

    Currie, Marc; Caldwell, Joshua D.; Bezares, Francisco J.; Robinson, Jeremy; Anderson, Travis; Chun, Hayden; Tadjer, Marko

    2011-11-21

    As an emerging optical material, graphene's ultrafast dynamics are often probed using pulsed lasers yet the region in which optical damage takes place is largely uncharted. Here, femtosecond laser pulses induced localized damage in single-layer graphene on sapphire. Raman spatial mapping, SEM, and AFM microscopy quantified the damage. The resulting size of the damaged area has a linear correlation with the optical fluence. These results demonstrate local modification of sp{sup 2}-carbon bonding structures with optical pulse fluences as low as 14 mJ/cm{sup 2}, an order-of-magnitude lower than measured and theoretical ablation thresholds.

  15. Laser pulse shaping for high gradient accelerators

    NASA Astrophysics Data System (ADS)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  16. Pulse-to-pulse polarization-switching method for high-repetition-rate lasers

    NASA Astrophysics Data System (ADS)

    Hahne, Steffen; Johnston, Benjamin F.; Withford, Michael J.

    2007-02-01

    We report a method that enables dynamic switching of the pulse-to-pulse linear polarization orientation of a high-pulse-rate laser. The implications for laser micromachining, where polarization direction can be important, are also discussed.

  17. Pulsed solid state lasers for medicine

    NASA Astrophysics Data System (ADS)

    Kertesz, Ivan; Danileiko, A. Y.; Denker, Boris I.; Kroo, Norbert; Osiko, Vyacheslav V.; Prokhorov, Alexander M.

    1994-02-01

    The effect on living tissues of different pulsed solid state lasers: Nd:YAG ((lambda) equals 1.06 micrometers ) Er:glass (1.54 micrometers ), Ho:YAG (2.1 micrometers ) and Er:YAG (2.94 micrometers ) is compared with the continuous wave Nd:YAG- and CO2-lasers used in operating theaters. Portable Er:glass- and Er:YAG-lasers are developed for surgery/cosmetics and HIV-safe blood testing.

  18. Classical dynamics of free electromagnetic laser pulses

    NASA Astrophysics Data System (ADS)

    Goto, S.; Tucker, R. W.; Walton, T. J.

    2016-02-01

    We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a potential means for experimentally bounding the fundamental length scale in the generalized electrodynamics of Bopp, Landé and Podolsky.

  19. Heat accumulation during pulsed laser materials processing.

    PubMed

    Weber, Rudolf; Graf, Thomas; Berger, Peter; Onuseit, Volkher; Wiedenmann, Margit; Freitag, Christian; Feuer, Anne

    2014-05-01

    Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived. PMID:24921828

  20. Alexandrite-pumped alexandrite regenerative amplifier for femtosecond pulse amplification

    SciTech Connect

    Hariharan, A.; Fermann, M.E.; Stock, M.L.; Harter, D.J.; Squier, J.

    1996-01-01

    We demonstrate a regenerative amplifier incorporating alexandrite as the gain medium that is pumped by an alexandrite laser. Temperature-altered gain permitted the 728-nm alexandrite pump laser, operating at room temperature, to pump a 780{endash}800-nm alexandrite laser that was maintained at elevated temperatures. 200-fs pulses from a Ti:sapphire oscillator were amplified to the millijoule level. This system also amplified femtosecond pulses from a frequency-doubled Er-doped fiber laser. {copyright} {ital 1996 Optical Society of America.}

  1. Stimulated crystallization of melt-quenched Ge{sub 2}Sb{sub 2}Te{sub 5} films employing femtosecond laser double pulses

    SciTech Connect

    Cotton, Rebecca L.; Siegel, Jan

    2012-12-15

    The phase transformation of Ge{sub 2}Sb{sub 2}Te{sub 5} films from the melt-quenched amorphous phase into the crystalline phase induced by 800 nm, 100 fs laser pulses has been studied. For partly amorphized films, progressive crystallization could be induced by single pulses, which can be explained by growth of already existing crystalline embryos. For completely amorphized films, it was not possible to induce crystallization with one or two consecutive pulses; three pulses being the threshold for the onset of crystallization. By employing a fs laser double pulse with an adjustable inter-pulse delay, partial crystallization could be triggered for a delay range of 200 fs-100 ps, while for longer delays no crystallization was possible. The time window for stimulated crystallization can be related to the relaxation dynamics of free electrons excited by the first pulse, which are further excited by the second pulse still remaining in the excited state. Our results indicate that the lifetime of excited electrons in melt-quenched amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} is Almost-Equal-To 100 ps.

  2. Short-pulse laser amplification and saturation using stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Dodd, E. S.; Ren, J.; Kwan, T. J. T.; Schmitt, M. J.; Lundquist, P. B.; Sarkisyan, S.; Nelson-Melby, E.

    2010-11-01

    Recent theoretical and experimental work has focused on using backward-stimulated Raman scattering (BSRS) in plasmas as a means of laser pulse amplification and compression [1,2,3]. We present initial computational and experimental work on SRS amplification in a capillary-discharge generated Xe plasma. The experimental set-up uses a 200 ps pump pulse with an 800 nm wavelength seeded by a 100 fs pulse from a broadband source and counter-propagates the pulses through a plasma of length 1 cm and diameter 0.1 cm. Results from initial experiments characterizing the plasma and on short-pulse amplification will be presented. Additionally, we present results from calculations using pF3d [4], and discuss the role of SRS saturation and determine the possible significance of electron trapping with a model implemented in pF3d [5]. [1] G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. Lett. 81 4879 (1998). [2] V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82 4448 (1999). [3] R. K. Kirkwood, E. Dewald, and C. Niemann, et al., Phys. Plasmas 14 113109 (2007). [4] R. L. Berger, B. F. Lasinski, T. B. Kaiser, et al., Phys. Fluids B 5 2243 (1993). [5] H. X. Vu, D. F. DuBois, and B. Bezzerides, Phys. Plasmas 14 012702 (2007). Supported by US DOE and LANS, LLC under contract DE-AC52-06NA25396. LA-UR-10-04787

  3. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. Both the radio-frequency (RF) and induction FEL provide FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL pulse format.

  4. High Power Pulsed Gas Lasers

    NASA Astrophysics Data System (ADS)

    Witteman, W. J.

    1987-09-01

    Gas lasers have shown to be capable of delivering tens of terrawatt aspeak power or tens of kilowatt as average power. The efficiencies of most high power gas lasers are relatively high compared with other types of lasers. For instance molecular lasers, oscillating on low lying vibrational levels, and excimer lasers may have intrinsic efficiencies above 10%.The wavelengths of these gas lasers cover the range from the far infrared to the ultra-violet region, say from 12000 to 193 nm. The most important properties are the scalability, optical homogeneity of the excited medium, and the relatively low price per watt of output power. The disadvantages may be the large size of the systems and the relatively narrow line width with limited tunability compared with solid state systems producing the same peak power. High power gas lasers group into three main categories depending on the waste-heat handling capacity.

  5. Overview of repetitively pulsed photolytic iodine lasers

    NASA Astrophysics Data System (ADS)

    Schlie, L. A. V.

    1996-02-01

    The performance of a repetitively pulsed, 70 joule, closed cycle 1.3 (mu) M photolytic atomic iodine laser with excellent beam quality (BQ equals 1.15) is presented. This BQ was exhibited in the fundamental mode from a M equals 3.1 confocal unstable resonator at a 0.5 Hz repetition rate. A closed cycle scrubber/laser fuel system consisting of a condensative- evaporative section, two Cu wool I2 reactor regions, and an internal turbo-blower enabled the laser to operate very reliably with low maintenance. The fuel system provided C3F7I gas at 10 - 60 torr absent of the photolytic quenching by-product I2. Using a turbo- molecular blower longitudinal flow velocities greater than 10 m/s were achieved through the 150 cm long by 7.5 multiplied by 7.5 cm2 cross sectional photolytic iodine gain region. In addition to the high laser output and excellent BQ, the resulting 8 - 12 microsecond laser pulse had a coherence length greater than 45 meters and polarization extinction ratio better than 100:1. Projections from this pulsed photolytic atomic iodine laser technology to larger energies, higher repetition rates, and variable pulse widths are discussed.

  6. Probing collective multi-electron effects with few cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Shiner, Andrew

    High Harmonic Generation (HHG) enables the production of bursts of coherent soft x-rays with attosecond pulse duration. This process arrises from the nonlinear interaction between intense infrared laser pulses and an ionizing gas medium. Soft x-ray photons are used for spectroscopy of inner-shell electron correlation and exchange processes, and the availability of attosecond pulse durations will enable these processes to be resolved on their natural time scales. The maximum or cutoff photon energy in HHG increases with both the intensity as well as the wavelength of the driving laser. It is highly desirable to increase the harmonic cutoff as this will allow for the generation of shorter attosecond pulses, as well as HHG spectroscopy of increasingly energetic electronic transitions. While the harmonic cutoff increases with laser wavelength, there is a corresponding decrease in harmonic yield. The first part of this thesis describes the experimental measurement of the wavelength scaling of HHG efficiency, which we report alambda-6.5+/-1.1 in xenon, and lambda -6.5+/-1.1 in krypton. To increase the HHG cutoff, we have developed a 1.8 microm source, with stable carrier envelope phase and a pulse duration of < 2 optical cycles. The 1.8 microm wavelength allowed for a significant increase in the harmonic cutoff compared to equivalent 800nm sources, while still maintaing reasonable harmonic yield. By focusing this source into neon we have produced 400 eV harmonics that extend into the x-ray water window. In addition to providing a source of photons for a secondary target, the HHG spectrum caries the signature of the electronic structure of the generating medium. In krypton we observed a Cooper minimum at 85 eV, showing that photoionization cross sections can be measured with HHG. Measurements in xenon lead to the first clear observation of electron correlation effects during HHG, which manifest as a broad peak in the HHG spectrum centred at 100 eV. This thesis also

  7. Inductive gas line for pulsed lasers

    DOEpatents

    Benett, William J.; Alger, Terry W.

    1985-01-01

    A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

  8. Inductive gas line for pulsed lasers

    DOEpatents

    Benett, W.J.; Alger, T.W.

    1982-09-29

    A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

  9. Nonequilibrium Interlayer Transport in Pulsed Laser Deposition

    SciTech Connect

    Tischler, Jonathan Zachary; Eres, Gyula; Larson, Ben C; Rouleau, Christopher M; Zschack, P.; Lowndes, Douglas H

    2006-01-01

    We use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited SrTiO3. Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process. A much smaller fraction of material, which is governed by the dwell time between successive laser shots, is transferred by slow, thermally driven interlayer transport processes.

  10. Ophthalmic applications of ultrashort pulsed lasers

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Spooner, Greg; Sacks, Zachary S.; Suarez, Carlos G.; Raksi, Ferenc; Zadoyan, Ruben; Sarayba, Melvin; Kurtz, Ronald M.

    2004-06-01

    Ultrashort laser pulses can be used to create high precision incision in transparent and translucent tissue with minimal damage to adjacent tissue. These performance characteristics meet important surgical requirements in ophthalmology, where femtosecond laser flap creation is becoming a widely used refractive surgery procedure. We summarize clinical findings with femtosecond laser flaps as well as early experiments with other corneal surgical procedures such as corneal transplants. We also review laser-tissue interaction studies in the human sclera and their consequences for the treatment of glaucoma.

  11. Temporal optimization of neutron generation from the exploding deuterated methane jet of clusters subjected to an intense laser pulse

    NASA Astrophysics Data System (ADS)

    Lu, Haiyang; Liu, Jiansheng; Wang, Cheng; Wang, Wentao; Zhou, Zili; Deng, Aihua; Xia, Changquan; Xu, Yi; Leng, Yuxin; Ni, Guoquan; Li, Ruxin; Xu, Zhizhan

    2009-08-01

    An experimental investigation on the interaction of an ultraintense femtosecond laser pulse at the intensity of 2×1017 W/cm2 (60 fs, 120 mJ at 800 nm) with clusters in a supersonic jet of deuterated methane gas has shown the generation of energetic deuterons and nuclear fusion events. The deuteron density and the average size of the clusters in the gas jet, as well as the fusion neutron yields under different backing pressures were measured simultaneously as a function of the time delays of the laser pulses with respect to the puffing of the gas jet. The results demonstrate that during the development of the gas jet expanding through a conical nozzle, the clusters grew up with time, and the average size of the clusters reached the maximum when the molecular density in the jet started to drop. The fusion neutron yields were found to increase with the larger average cluster size and the higher deuteron density, in accordance with the theoretical prediction. Experimental data indicate the existence of a ˜1 ms steady region in which the fusion neutron yields have reached the maximum of 2.0×105 per shot at the backing pressure of 74 bars. Consequently, an efficiency of 1.6×106 neutrons per joule of incident laser energy was realized.

  12. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  13. Energy distribution of fast electrons accelerated by high intensity laser pulse depending on laser pulse duration

    NASA Astrophysics Data System (ADS)

    Kojima, Sadaoki; Arikawa, Yasunobu; Morace, Alessio; Hata, Masayasu; Nagatomo, Hideo; Ozaki, Tetsuo; Sakata, Shohei; Lee, Seung Ho; Matsuo, Kazuki; Farley Law, King Fai; Tosaki, Shota; Yogo, Akifumi; Johzaki, Tomoyuki; Sunahara, Atsushi; Sakagami, Hitoshi; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi

    2016-05-01

    The dependence of high-energy electron generation on the pulse duration of a high intensity LFEX laser was experimentally investigated. The LFEX laser (λ = 1.054 and intensity = 2.5 – 3 x 1018 W/cm2) pulses were focused on a 1 mm3 gold cubic block after reducing the intensities of the foot pulse and pedestal by using a plasma mirror. The full width at half maximum (FWHM) duration of the intense laser pulse could be set to either 1.2 ps or 4 ps by temporally stacking four beams of the LFEX laser, for which the slope temperature of the high-energy electron distribution was 0.7 MeV and 1.4 MeV, respectively. The slope temperature increment cannot be explained without considering pulse duration effects on fast electron generation.

  14. Direct Coulomb explosion imaging of coherent rotational dynamics induced by few-cycle laser pulses in light and heavy hydrogen

    NASA Astrophysics Data System (ADS)

    Bocharova, Irina; Magrakvelidze, Maia; Ranitovic, Predrag; Ray, Dipanwita; Cocke, Lewis; Litvinyuk, Igor

    2008-05-01

    We followed fast evolution of angular distributions for H2 and D2 molecules after their interaction with 8 fs 800 nm laser pulses. The rotating molecules were exploded by another few-cycle probe pulse time-delayed for up to 10 ps in respect to the pump. For neutral molecules we observed coherent rotational dynamics characterized by periodic revivals without noticeable decoherence within the 10 ps time-scale. For D2 up to 4 rotational states were involved in the wavepackets for each of the two spin isomers. In light hydrogen the resulting dynamics was dominated by beating of just two rotational states. The experimental data are in excellent agreement with our numerical simulations obtained by solving time-dependent Schr"odinger equation. For molecules that were ionized by the pump pulse we observed both vibrational and rotational dynamics. Time-dependent angular distributions for the molecular ions exhibit transient alignment only soon after the pulse (20 fs for H2^+ and 40 fs for D2^+) with no consequent revivals within the next 10 ps.

  15. Extension of harmonic cutoff in a multicycle chirped pulse combined with a chirp-free pulse

    SciTech Connect

    Xu Junjie; Zeng Bin; Yu Yongli

    2010-11-15

    We demonstrate high-order harmonic generation in a wave form synthesized by a multicycle 800-nm chirped laser pulse and a chirp-free laser pulse. Compared with the case of using only a chirped pulse, both the harmonic cutoff and the extreme ultraviolet supercontinuum can be extended when a weak chirp-free pulse is combined with the chirped pulse. When chirp-free pulse intensity grows, the cutoff energy and bandwidth of the supercontinuum grow as well. It is found that the broad supercontinuum can be achieved for a driving pulse with long duration even though the driving pulse reaches 10 optical cycles. An isolated attosecond pulse with duration of about 59 as is obtained, and after appropriate phase compensation with a duration of about 11 as. In addition, by performing time-frequency analyses and the classical trajectory simulation, the difference in supercontinuum generation between the preceding wave form and a similar wave form synthesized by an 800-nm fundamental pulse and a 1600-nm subharmonic pulse is investigated.

  16. Ultrashort pulsed laser technology development program

    NASA Astrophysics Data System (ADS)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  17. Polyethylene welding by pulsed visible laser irradiation

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Caridi, F.; Visco, A. M.; Campo, N.

    2011-01-01

    Laser welding of plastics is a relatively new process that induces locally a fast polymer heating. For most applications, the process involves directing a pulsed beam of visible light at the weld joint by going through one of the two parts. This is commonly referred to as “through transmission visible laser welding”. In this technique, the monochromatic visible light source uses a power ns pulsed laser in order to irradiate the joint through one part and the light is absorbed in the vicinity of the other part. In order to evaluate the mechanical resistance of the welded joint, mass quadrupole spectrometry, surface profilometry, microscopy techniques and mechanical shear tests were employed. The welding effect was investigated as a function of the laser irradiation time, nature of the polyethylene materials and temperature.

  18. Ceramic dentures manufactured with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Werelius, Kristian; Weigl, Paul

    2004-06-01

    Conventional manufacturing of individual ceramic dental prosthesis implies a handmade metallic framework, which is then veneered with ceramic layers. In order to manufacture all-ceramic dental prosthesis a CAD/CAM system is necessary due to the three dimensional shaping of high strength ceramics. Most CAD/CAM systems presently grind blocks of ceramic after the construction process in order to create the prosthesis. Using high-strength ceramics, such as Hot Isostatic Pressed (HIP)-zirconia, this is limited to copings. Anatomically shaped fixed dentures have a sculptured surface with small details, which can't be created by existing grinding tools. This procedure is also time consuming and subject to significant loss in mechanical strength and thus reduced survival rate once inserted. Ultra-short laser pulses offer a possibility in machining highly complex sculptured surfaces out of high-strength ceramic with negligible damage to the surface and bulk of the ceramic. In order to determine efficiency, quality and damage, several laser ablation parameters such as pulse duration, pulse energy and ablation strategies were studied. The maximum ablation rate was found using 400 fs at high pulse energies. High pulse energies such as 200μJ were used with low damage in mechanical strength compared to grinding. Due to the limitation of available laser systems in pulse repetition rates and power, the use of special ablation strategies provide a possibility to manufacture fully ceramic dental prosthesis efficiently.

  19. Ultrashort pulse laser deposition of thin films

    DOEpatents

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  20. Selective breaking of bonds in water with intense, 2-cycle, infrared laser pulses.

    PubMed

    Mathur, D; Dota, K; Dey, D; Tiwari, A K; Dharmadhikari, J A; Dharmadhikari, A K; De, S; Vasa, P

    2015-12-28

    One of the holy grails of contemporary science has been to establish the possibility of preferentially breaking one of several bonds in a molecule. For instance, the two O-H bonds in water are equivalent: given sufficient energy, either one of them is equally likely to break. We report bond-selective molecular fragmentation upon application of intense, 2-cycle pulses of 800 nm laser light: we demonstrate up to three-fold enhancement for preferential bond breaking in isotopically substituted water (HOD). Our experimental observations are rationalized by means of ab initio computations of the potential energy surfaces of HOD, HOD(+), and HOD(2+) and explorations of the dissociation limits resulting from either O-H or O-D bond rupture. The observations we report present a formidable theoretical challenge that need to be taken up in order to gain insights into molecular dynamics, strong field physics, chemical physics, non-adiabatic processes, mass spectrometry, and time-dependent quantum chemistry. PMID:26723674

  1. Selective breaking of bonds in water with intense, 2-cycle, infrared laser pulses

    SciTech Connect

    Mathur, D. Dharmadhikari, A. K.; Dota, K.; Dey, D.; Tiwari, A. K.; Dharmadhikari, J. A.; De, S.; Vasa, P.

    2015-12-28

    One of the holy grails of contemporary science has been to establish the possibility of preferentially breaking one of several bonds in a molecule. For instance, the two O–H bonds in water are equivalent: given sufficient energy, either one of them is equally likely to break. We report bond-selective molecular fragmentation upon application of intense, 2-cycle pulses of 800 nm laser light: we demonstrate up to three-fold enhancement for preferential bond breaking in isotopically substituted water (HOD). Our experimental observations are rationalized by means of ab initio computations of the potential energy surfaces of HOD, HOD{sup +}, and HOD{sup 2+} and explorations of the dissociation limits resulting from either O–H or O–D bond rupture. The observations we report present a formidable theoretical challenge that need to be taken up in order to gain insights into molecular dynamics, strong field physics, chemical physics, non-adiabatic processes, mass spectrometry, and time-dependent quantum chemistry.

  2. Direct spectroscopic observation of multiple-charged-ion acceleration by an intense femtosecond-pulse laser.

    PubMed

    Zhidkov, A G; Sasaki, A; Tajima, T; Auguste, T; D'Olivera, P; Hulin, S; Monot, P; Faenov, A Y; Pikuz, T A; Skobelev, I Y

    1999-09-01

    We have observed evidence of the emission of energetic He-and H-like ions of fluorine more than 1 MeV produced via the optical field ionization (OFI) from a solid target irradiated by an intense I=(2-4)x10(18) W/cm(2) (60 fs, lambda=800 nm), obliquely incident p-polarized pulse laser. The measured blue wing of He(alpha), He(beta), and Ly(alpha) lines of fluorine shows a feature of the Doppler-shifted spectrum due to the self-similar ion expansion dominated by superthermal electrons with the temperature T(h) approximately 100 keV. Using a collisional particle-in-cell simulation, which incorporates the nonlocal-thermodynamic-equilibrium ionization including OFI, we have obtained the plasma temperature, line shape, and maximal energy of accelerated ions, which agree well with those determined from the experimental spectra. The red wing of ion spectra gives the temperature of bulk plasma electrons. PMID:11970139

  3. Selective breaking of bonds in water with intense, 2-cycle, infrared laser pulses

    NASA Astrophysics Data System (ADS)

    Mathur, D.; Dota, K.; Dey, D.; Tiwari, A. K.; Dharmadhikari, J. A.; Dharmadhikari, A. K.; De, S.; Vasa, P.

    2015-12-01

    One of the holy grails of contemporary science has been to establish the possibility of preferentially breaking one of several bonds in a molecule. For instance, the two O-H bonds in water are equivalent: given sufficient energy, either one of them is equally likely to break. We report bond-selective molecular fragmentation upon application of intense, 2-cycle pulses of 800 nm laser light: we demonstrate up to three-fold enhancement for preferential bond breaking in isotopically substituted water (HOD). Our experimental observations are rationalized by means of ab initio computations of the potential energy surfaces of HOD, HOD+, and HOD2+ and explorations of the dissociation limits resulting from either O-H or O-D bond rupture. The observations we report present a formidable theoretical challenge that need to be taken up in order to gain insights into molecular dynamics, strong field physics, chemical physics, non-adiabatic processes, mass spectrometry, and time-dependent quantum chemistry.

  4. Compact pulsed laser having improved heat conductance

    NASA Technical Reports Server (NTRS)

    Yang, L. C. (Inventor)

    1977-01-01

    A highly efficient, compact pulsed laser having high energy to weight and volume ratios is provided. The laser utilizes a cavity reflector that operates as a heat sink and is essentially characterized by having a high heat conductivity, by being a good electrical insulator and by being substantially immune to the deleterious effects of ultra-violet radiation. Manual portability is accomplished by eliminating entirely any need for a conventional circulating fluid cooling system.

  5. Trident Pair Production in Strong Laser Pulses

    SciTech Connect

    Ilderton, Anton

    2011-01-14

    We calculate the trident pair production amplitude in a strong laser background. We allow for finite pulse durations, while still treating the laser fields nonperturbatively in strong-field QED. Our approach reveals explicitly the individual contributions of the one-step and two-step processes. We also expose the role gauge invariance plays in the amplitudes and discuss the relation between our results and the optical theorem.

  6. Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm.

    PubMed

    Li, Xiaomin; Wang, Rui; Zhang, Fan; Zhou, Lei; Shen, Dengke; Yao, Chi; Zhao, Dongyuan

    2013-01-01

    Core/shell1/shell2/shell3 structured NaGdF4:Nd/NaYF4/NaGdF4:Nd,Yb,Er/NaYF4 nanocrystals were well designed and synthesized, each of the parts assume respective role and work together to achieve dual-mode upconverting (UC) and downconverting (DC) luminescence upon the low heat effect 800-nm excitation. Nd(3+), Yb(3+), Er(3+) tri-doped NaGdF4:Nd,Yb,Er UC layer [NIR (800 nm)-to-Visible (540 nm)] with a constitutional efficient 800 nm excitable property were achieved for the in-vitro bioimaging with low auto-fluorescence and photo-damage effects. Moreover, typical NIR (800 nm)-to-NIR (860-895 nm) DC luminescence of Nd(3+) has also been realized with this designed nanostructure. Due to the low heat effect, high penetration depth of the excitation and the high efficiency of the DC luminescence, the in-vivo high contrast DC imaging of a whole body nude mouse was achieved. We believe that such dual-mode luminescence NCs will open the door to engineering the excitation and emission wavelengths of NCs and will provide a new tool for a wide variety of applications in the fields of bioanalysis and biomedical. PMID:24346622

  7. Femtosecond pulsed laser processing of electronic materials: Fundamentals and micro/nano-scale applications

    NASA Astrophysics Data System (ADS)

    Choi, Tae-Youl

    ultrashort laser pulse accompanied by the pre-pulse induces air breakdown that can be detrimental to materials processing. A time-resolved pump-and-probe experiment provides distinct evidence for the occurrence of an air plasma and air breakdown. This highly nonlinear phenomenon takes place before the commencement of the ablation process, which is traced beyond elapsed time of the order of 10 ps with respect to the ablating pulse. The nonlinear refractive index of the generated air plasma is calculated as a function of electron density. The self-focusing of the main pulse is identified by the third order nonlinear susceptibility. A crystalline silicon sample is subjected to two optically separated ultra-fast laser pulses of full-width-half-maximum (FWHM) duration of about 80 femtoseconds. These pulses are delivered at wavelength, lambda = 800 nm. Femtosecond-resolved imaging pump-and-probe experiments in reflective and Schlieren configurations have been performed to investigate plasma dynamics and shock wave propagation during the sample ablation process. By using a diffractive optical element (DOE) for beam shaping, microchannels were fabricated. A super-long working distance objective lens was used to machine silicon materials in the sub-micrometer scale. As an extension of micro-machining, the finite difference time domain (FDTD) method is used to assess the feasibility of using near-field distribution of laser light. Gold coated films were machined with nano-scale dimensions and characterized with atomic force microscopy (AFM).

  8. Ablation par laser pulse de revetements antierosion pour le domaine aeronautique

    NASA Astrophysics Data System (ADS)

    Ragusich, Alexis

    Erosion resistant coatings (ERCs) are frequently used to protect aircraft engine components against erosion, and therefore, to extend their lifetime and reduce maintenance cost. However, after many hours in service, certain areas of the coating will begin to deteriorate. Given that such components are generally very costly, it is desirable to replace only the coating instead of the part itself. This research is part of the MANU 4 project, supported by CRIAQ and NSERC, which aims to study the feasibility of stripping an erosion-resistant coating deposited on a titanium-based alloy with three different techniques: wet chemical etching, plasma etching and pulse laser ablation. This thesis focuses more specifically on the etching with a pulsed laser of a 20-mum thick TiAlN ERC deposited on a Ti-6Al-4V substrate. This work compares the suitability of two pulsed lasers: a femtosecond Ti:Sapphire laser emitting at 800 nm and a nanosecond KrF excimer laser centred at 248 nm. These two lasers were chosen since they are frequently used for micromachining applications and allow us to study the effect of the wavelength and pulse duration. Preliminary findings have allowed us to identify four most critical variables that influence the etch rate and the surface roughness: (i) beam size, (ii) laser power, (iii) stage speed, and (iv) step distance between scanned lines. For each laser, optimal etching conditions were obtained by varying a single parameter at a time. Final results show that the higher energy per pulse offered by the excimer laser allows one to increase by one order of magnitude the etch rate, but almost doubles, from 1 mum to 1.8 mum, the surface roughness, in comparison with results obtained with the Ti:Sapphire laser. Compared with other techniques, pulse laser ablation has the potential to offer very high selectivity. In this regard, plume emission spectroscopy was studied as an in situ technique to monitor the etching progress and determine the precise moment

  9. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, Stephen A.; Hayden, Joseph S.

    1997-01-01

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P.sub.2 O.sub.5, Al.sub.2 O.sub.3 and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules.

  10. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, S.A.; Hayden, J.S.

    1997-09-02

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

  11. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, Jr., C G; Throop, A; Eder, D; Kimbrough, J

    2007-08-28

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dots and D-dots, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetic codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a corresponding broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  12. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, C G; Throop, A; Eder, D; Kimbrough, J

    2008-02-04

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dot and D-dot probes, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from several hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetics codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a correspondingly broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  13. Lasers and Intense Pulsed Light Hidradenitis Suppurativa.

    PubMed

    Saunte, Ditte M; Lapins, Jan

    2016-01-01

    Lasers and intense pulsed light (IPL) treatment are useful for the treatment of hidradenitis suppurativa (HS). Carbon dioxide lasers are used for cutting or vaporization of the affected area. It is a effective therapy for the management of severe and recalcitrant HS with persistent sinus tract and scarring, and can be performed under local anesthesia. HS has a follicular pathogenesis. Lasers and IPL targeting the hair have been found useful in treating HS by reducing the numbers of hairs in areas with HS. The methods have few side effects, but the studies are preliminary and need to be repeated. PMID:26617364

  14. Thomson scattering in short pulse laser experiments

    SciTech Connect

    Hill, E. G.; Rose, S. J.

    2012-08-15

    Thomson scattering is well used as a diagnostic in many areas of high energy density physics. In this paper, we quantitatively demonstrate the practicality of using Thomson scattering as a diagnostic of short-pulse laser-plasma experiments in the regime, where the plasmas probed are at solid density and have temperatures of many hundreds of eV using a backlighter produced with an optical laser. This method allows a diagnosis both spatially and temporally of the density and temperature distributions in high energy density laser-plasma interactions which is independent from, and would act as a useful complement to, the existing spectroscopic methods.

  15. Chemically-Assisted Pulsed Laser-Ramjet

    SciTech Connect

    Horisawa, Hideyuki; Kaneko, Tomoki; Tamada, Kazunobu

    2010-10-13

    A preliminary study of a chemically-assisted pulsed laser-ramjet was conducted, in which chemical propellant such as a gaseous hydrogen/air mixture was utilized and detonated with a focused laser beam in order to obtain a higher impulse compared to the case only using lasers. CFD analysis of internal conical-nozzle flows and experimental measurements including impulse measurement were conducted to evaluate effects of chemical reaction on thrust performance improvement. From the results, a significant improvement in the thrust performances was confirmed with addition of a small amount of hydrogen to propellant air, or in chemically-augmented operation.

  16. Plasma mirrors for short pulse lasers

    SciTech Connect

    Yanovksy, V.P.; Perry, M.D.; Brown, C.G.; Feit, M.D.; Rubenchik, A.

    1997-06-11

    We show experimentally and theoretically that plasmas created by a sufficiently (1014 1015 2 short (<500 fs) intense W/cm ) laser pulse on the surface of dielectric material act as nearly perfect mirrors: reflecting p to 90% of the incident radiation with a wavefront quality equal to that of the initial solid surface.

  17. Pulse solid state lasers in aesthetic surgery

    NASA Astrophysics Data System (ADS)

    Dobryakov, Boris S.; Greben'kova, Ol'ga B.; Gulev, Valerii S.

    1996-04-01

    The emission of a pulse-periodic laser on alumo-ittrium garnet applied for preventive and medical treatment of a capsule contracture round implanted prostheses in xenoplastics is described in the present paper. The results obtained testify to a high efficiency of suggested method.

  18. Pulsed laser deposition: Prospects for commercial deposition of epitaxial films

    SciTech Connect

    Muenchausen, R.E.

    1999-03-01

    Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique for the deposition of thin films. The vapor source is induced by the flash evaporation that occurs when a laser pulse of sufficient intensity (about 100 MW/cm{sup 2}) is absorbed by a target. In this paper the author briefly defines pulsed laser deposition, current applications, research directed at gaining a better understanding of the pulsed laser deposition process, and suggests some future directions to enable commercial applications.

  19. Temporal laser-pulse-shape effects in nonlinear Thomson scattering

    NASA Astrophysics Data System (ADS)

    Kharin, V. Yu.; Seipt, D.; Rykovanov, S. G.

    2016-06-01

    The influence of the laser-pulse temporal shape on the nonlinear Thomson scattering on-axis photon spectrum is analyzed in detail. Using the classical description, analytical expressions for the temporal and spectral structure of the scattered radiation are obtained for the case of symmetric laser-pulse shapes. The possibility of reconstructing the incident laser pulse from the scattered spectrum averaged over interference fringes in the case of high peak intensity and symmetric laser-pulse shape is discussed.

  20. Laser zona dissection using short-pulse ultraviolet lasers

    NASA Astrophysics Data System (ADS)

    Neev, Joseph; Tadir, Yona; Ho, Peter D.; Whalen, William E.; Asch, Richardo H.; Ord, Teri; Berns, Michael W.

    1992-06-01

    The interaction of pulsed ultraviolet radiation with the zona pellucida of human oocytes which had failed to fertilize in standard IVF cycles, was investigated. Two lasers were studied: a 100 ps pulsed Nd:YAG with a nonlinear crystal emitting light at 266 nm, and a 15 ns XeCl excimer laser with 308 nm radiation. Incisions in the zona were made by aiming the beam tangentially to the oocyte. The results indicate superior, high precision performance by the excimer laser creating trenches as narrow as 1 micrometers and as shallow as 1 micrometers . The incision size was found to be sensitive to the laser's energy and to the position of the microscope's objective focal plane, but relatively insensitive to the laser pulse repetition rate. Once the minimum spot size was defined by the system parameters, the laser beam was used to curve out any desired zona shape. This laser microsurgery technique as applied to partial zone dissection or zona drilling could prove very useful as a high-precision, non-contact method for treatments of low fertilization rate and for enhancing embryo implantation rates in patients undergoing IVF treatments.

  1. Pulse distortion and modulation instability in laser plasma interaction

    SciTech Connect

    Jha, Pallavi; Singh, Ram Gopal; Upadhyay, Ajay K.

    2009-01-15

    The present paper deals with the propagation of a short, intense, Gaussian laser pulse in plasma. Using a one dimensional model, a wave equation including finite pulse length and group velocity dispersion is set up and solved to obtain the intensity distribution across the laser pulse. It is shown that the pulse profile becomes asymmetric as it propagates through plasma. Further, the growth rate of modulation instability and range of unstable frequencies across the laser pulse have been derived and graphically analyzed.

  2. Coiled Fiber Pulsed Laser Simulator

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a datamore » file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.« less

  3. Coiled Fiber Pulsed Laser Simulator

    SciTech Connect

    Hadley, G. Ronald

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a data file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.

  4. Near-infrared femtosecond laser-induced crystallization of amorphous silicon

    SciTech Connect

    Shieh, J.-M.; Chen, Z.-H.; Dai, B.-T.; Wang, Y.-C.; Zaitsev, Alexei; Pan, C.-L.

    2004-08-16

    Amorphous silicon (a-Si) was crystallized by femtosecond laser annealing (FLA) using a near-infrared ({lambda}{approx_equal}800 nm) ultrafast Ti:sapphire laser system. The intense ultrashort laser pulses lead to efficient nonlinear photoenergy absorption and the generation of very dense photoexcited plasma in irradiated materials, enabling nonlinear melting on transparent silicon materials. We studied the structural characteristics of recrystallized films and found that FLA assisted by spatial scanning of laser strip spot constitutes superlateral epitaxy that can crystallize a-Si films with largest grains of {approx}800 nm, requiring laser fluence as low as {approx}45 mJ/cm{sup 2}, and low laser shots. Moreover, the optimal annealing conditions are observed with a significant laser-fluence window ({approx}30%)

  5. Enhanced subthreshold e+ e- production in short laser pulses.

    PubMed

    Titov, A I; Takabe, H; Kämpfer, B; Hosaka, A

    2012-06-15

    The emission of e+ e- pairs off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g., laser) wave field is analyzed. A significant increase of the total cross section of pair production in the subthreshold region is found for decreasing laser pulse duration even in the case of moderate laser pulse intensities. PMID:23004244

  6. Front-end of the ILE Project: A design study for a 100 mJ sub-10 fs laser

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Dimitris N.; Ramirez, Patricia; Pellegrina, Alain; Druon, Frédéric; Georges, Patrick; Chen, Xiaowei; Canova, Lorenzo; Malvache, Arnaud; Jullien, Aurélie; Lopez-Martens, Rodrigo

    2010-04-01

    Within the development of the ILE French project aiming on the building of a 10 PW, 150 J/15 fs laser chain (named APOLLON), a design study for a sub-10-fs, 100 mJ pilot laser operating at 800 nm have been conceived. This system is based on a non-collinear optical parametric chirped-pulse amplification (NOPCPA) of the spectrally broadened and compressed pulses of a Ti:Sapphire laser system providing 1.5-mJ, 25-fs, pumped at 515 nm by a high-energy diode-pumped Yb-doped-based laser chain. The envisioned system, based on a novel combined architecture of picosecond and nanosecond NOPCPA stages, will finally deliver carrier envelope phased (CEP) stabilized 1 ns pulses (compressible to less than 10 fs) at 800 nm with 100 mJ energy and at a repetition rate in the range of 10-100 Hz.

  7. Group velocity and pulse lengthening of mismatched laser pulses in plasma channels

    SciTech Connect

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Tilborg, J. van; Leemans, W. P.

    2011-08-15

    Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in a plasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatched propagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of a mismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance and significantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage is examined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown to be in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasma channel diagnostics are discussed.

  8. Group velocity and pulse lengthening of mismatched laser pulses in plasma channels

    SciTech Connect

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim

    2011-07-07

    Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in aplasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatchedpropagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of amismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance andsignificantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage isexamined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown tobe in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasmachannel diagnostics are discussed.

  9. Phase Noise Comparision of Short Pulse Laser Systems

    SciTech Connect

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  10. Investigation of laser temporal pulse duration on Rayleigh scattering

    SciTech Connect

    Nee, T.A.; Roberts, J.R.

    1982-02-01

    Relative Rayleigh-scattering cross sections from nitrogen have been measured for various pulse durations and wavelengths of incident laser radiation. No pulse-duration dependence has been observed for laser pulses as short as 5 ns, and classical theory is found to be still valid over the pulse-width range (5< or =..delta..t< or =110 ns) of our observations.

  11. Nanosecond square pulse generation in fiber lasers with normal dispersion

    NASA Astrophysics Data System (ADS)

    Zhao, L. M.; Tang, D. Y.; Cheng, T. H.; Lu, C.

    2007-04-01

    We report on the generation of nanosecond square pulses in a passively mode-locked fiber ring laser made of purely normal dispersive fibers. Different to the noise-like pulse operation of the laser, the generated square pulses are stable and have no internal structures. We show that the formation of the square pulse is due to the combined action of the pulse peak clamping effect caused by the cavity and the almost linear pulse propagation in the normal dispersive fibers.

  12. Double nanosecond pulses generation in ytterbium fiber laser.

    PubMed

    Veiko, V P; Lednev, V N; Pershin, S M; Samokhvalov, A A; Yakovlev, E B; Zhitenev, I Yu; Kliushin, A N

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode. PMID:27370433

  13. Double nanosecond pulses generation in ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Lednev, V. N.; Pershin, S. M.; Samokhvalov, A. A.; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N.

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  14. Pulsed Power for Solid-State Lasers

    SciTech Connect

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  15. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, L.P.; Carder, B.M.; Gagnon, W.L.

    1981-03-17

    Disclosed are an apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse. 13 figs.

  16. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, Laird P. [Livermore, CA; Carder, Bruce M. [Antioch, CA; Gagnon, William L. [Berkeley, CA

    1981-03-17

    Apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse.

  17. Optical limiting of short laser pulses

    SciTech Connect

    Liu, J.-C.; Wang, C.-K.; Gel'mukhanov, Faris

    2007-11-15

    The dynamics of pulse propagation accompanied by harmonic generation, stimulated Raman scattering, amplified spontaneous emission, and superfluorescence is studied near the two-photon resonance. We explore the optical limiting of intense and short laser pulses. The numerical solutions of the coupled Bloch and Maxwell's equations for the 4,4{sup '}-bis(dimethylamino) stilbene molecule are compared with the two-photon area theorem. It is shown that the area theorem explains qualitatively the major dynamical properties of pulse propagation even if the propagation is accompanied by the generation of new fields. In agreement with the area theorem, we see that the conventional dependence of the transmittance on the propagation depth is not valid for intense pulses.

  18. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J.T.

    1989-01-01

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition if the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research questions still outstanding in this area. 16 refs., 7 figs.

  19. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J. )

    1990-07-30

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area.

  20. Single attosecond pulse generation via continuum wave packet interference

    NASA Astrophysics Data System (ADS)

    Zhou, Shengpeng; Yang, Yujun; Ding, Dajun

    2016-07-01

    A single attosecond pulse generation via continuum-continuum interference is investigated theoretically by exposing a single-electron atom in a femtosecond laser field with the intensity in over-the-barrier ionization regime. We show that the ground state of the atom is depleted in such intense laser field and the high-order harmonics (HHG) via continuum to continuum coherence are generated. In a few-cycle monochromatic laser field (5 fs/800 nm, 1.2×1016 W cm-2), a single attosecond pulse with duration of 49 as is obtained from the HHG. With a two-color laser field combined by 1200 nm (8 fs/7.5×1015 W cm-2) and 800 nm (5 fs/1.0×1016 W cm-2), a shorter single pulse with duration of 29 as can further be produced by changing the relative carrier envelope phase of two laser pulses as a result of controlling the electronic quantum path in the intense electric field. Our results also show that a short single attosecond pulse can be generated in a wide range of the relative carrier envelope phase of the two laser pulses.

  1. Multiple pulse resonantly enhanced laser plasma wakefield acceleration

    SciTech Connect

    Corner, L.; Walczak, R.; Nevay, L. J.; Dann, S.; Hooker, S. M.; Bourgeois, N.; Cowley, J.

    2012-12-21

    We present an outline of experiments being conducted at Oxford University on multiple-pulse, resonantly-enhanced laser plasma wakefield acceleration. This method of laser plasma acceleration uses trains of optimally spaced low energy short pulses to drive plasma oscillations and may enable laser plasma accelerators to be driven by compact and efficient fibre laser sources operating at high repetition rates.

  2. Graphene in Ultrafast and Ultrastrong Laser Pulses

    NASA Astrophysics Data System (ADS)

    Koochakikelardeh, Hamed; Apalkov, Vadym; Stockman, Mark

    2015-03-01

    We have shown that graphene subjected to an ultrafast (near-single-oscillation pulse) and strong (F ~ 1-3 V/Å) pulse exhibits fundamental behavior dramatically different from both insulators and metals. In such an ultrafast and ultrastrong field, the electron dynamics is coherent, in contrast to relatively long pulses (τ>100 fs) where the electron's dephasing becomes important leading to incoherent dynamics. Electron transfer from the valence band (VB) to the conduction band (CB) is deeply irreversible i.e., non-adiabatic, in which the residual CB population (after pulse ends) is close to the maximum one. The residual CB population as a function of wave vector is nonuniform with a few strongly localized spots near the Dirac points, at which the CB population is almost 100%. Furthermore, it is shown the direction of charge transfer depends on the pulse amplitude. Namely, at small pulse amplitude, <=1V/Å, the charge is transferred in the direction of the pulse maximum (positive transferred charge), while at large amplitude, >=1 V/Å, it is in opposite direction of the pulse maximum (negative transferred charge). Consequently, in terms of charge transport, graphene at small pulse intensities behaves as a dielectric while at large intensities acts as a metal. These femtosecond currents and charge transfer in graphene may provide fundamental basis for detection and calibration of ultrashort intense laser pulses and are promising for petahertz information processing. This work was supported by U.S. Office of Naval Research No. N00014-13-1-0649 and NSF Grant No. ECCS-1308473.

  3. Large grain growth of Ge-rich Ge1-xSnx (x ≈ 0.02) on insulating surfaces using pulsed laser annealing in flowing water

    NASA Astrophysics Data System (ADS)

    Kurosawa, Masashi; Taoka, Noriyuki; Ikenoue, Hiroshi; Nakatsuka, Osamu; Zaima, Shigeaki

    2014-02-01

    We investigate Sn incorporation effects on the growth characteristics of Ge-rich Ge1-xSnx (x < 0.02) on SiO2 crystallized by pulsed laser annealing (PLA) in air and water. Despite the very low Sn content of 2%, Sn atoms within the GeSn layers play a role in preventing ablation and aggregation of the layers during these PLA. Raman and electron backscatter diffraction measurements demonstrate achievement of large-grain (˜800 nmϕ) growth of Ge0.98Sn0.02 polycrystals by using PLA in water. These polycrystals also show a tensile-strain of ˜0.68%. This result opens up the possibility for developing GeSn-based devices fabricated on flexible substrates as well as Si platforms.

  4. Evaporation of solids by pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Stafast, H.; Von Przychowski, M.

    The focused beam of a KrF laser (248 nm) has been applied to irradiate targets of Al 2O 3, SiC, graphite, Pb, Ni, Cr, quartz, and NaCl at variable laser energy flux is the range 0-13 J/cm 2. The amount of target material ejected into the vacuum (background pressure about 8 × 10 -4 Torr) was determined from the target weight before and after laser irradiation. The average number of particles (formula weight) evaporated per laser pulse and per unit of irradiated target area is non-linearly dependent on the laser energy flux. The evaporation of Al 2O 3, SiC, and graphite is showing a well-defined flux threshold while the vaporization of Pb, Ni and Cr is rising smoothly with increasing flux. With both groups of materials laser evaporation is monotonically increasing with the laser energy flux. NaCl and quartz, on the other hand, are showing an intermediate maximum in the laser vaporization efficiency.

  5. Pulse energy dependence of subcellular dissection by femtosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Heisterkamp, A.; Maxwell, I. Z.; Mazur, E.; Underwood, J. M.; Nickerson, J. A.; Kumar, S.; Ingber, D. E.

    2005-01-01

    Precise dissection of cells with ultrashort laser pulses requires a clear understanding of how the onset and extent of ablation (i.e., the removal of material) depends on pulse energy. We carried out a systematic study of the energy dependence of the plasma-mediated ablation of fluorescently-labeled subcellular structures in the cytoskeleton and nuclei of fixed endothelial cells using femtosecond, near-infrared laser pulses focused through a high-numerical aperture objective lens (1.4 NA). We find that the energy threshold for photobleaching lies between 0.9 and 1.7 nJ. By comparing the changes in fluorescence with the actual material loss determined by electron microscopy, we find that the threshold for true material ablation is about 20% higher than the photobleaching threshold. This information makes it possible to use the fluorescence to determine the onset of true material ablation without resorting to electron microscopy. We confirm the precision of this technique by severing a single microtubule without disrupting the neighboring microtubules, less than 1 micrometer away. c2005 Optical Society of America.

  6. Comparison of amplified spontaneous emission pulse cleaners for use in chirped pulse amplification front end lasers

    SciTech Connect

    Dawson, J; Siders, C; Phan, H; Kanz, V; Barty, C

    2007-07-02

    We compare various schemes for removing amplified spontaneous emission from seed laser pulses. We focus on compact schemes that are compatible with fiber laser front end systems with pulse energies in the 10nJ-1{micro}J range and pulse widths in the 100fs-10ps range. Pre-pulse contrast ratios greater than 10{sup 9} have been measured.

  7. Size- and intensity-dependent photoelectron spectra from gas-phase gold nanoparticles irradiated by intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Powell, J.; Robatjazi, S. J.; Makhija, V.; Vajdi, A.; Li, X.; Malakar, Y.; Pearson, W. L.; Rudenko, A.; Sorensen, C.; Stierle, J.; Kling, M. F.

    2016-05-01

    Nanoparticles bridge the gap between atomic/molecular and bulk matter offering unique opportunities to study light interactions with complex systems, in particular, near-field enhancements and excitation of plasmons. Here we report on a systematic study of photoelectron emission from isolated gold nanoparticles irradiated by 800 nm, 25 fs laser pulses at 10-50 TW/ cm2 peak intensities. A combination of an aerodynamic lens nanoparticle injector, high-energy velocity-map imaging spectrometer and a high-speed, single-shot camera is employed to record shot by shot photoelectron emission patterns from individual particles. By sorting the recorded images according to the number of emitted electrons, we select the events from the regions of particular laser intensities within the laser focus, thus, essentially avoiding focal volume averaging. Using this approach, we study the intensity- and size-dependence of photoelectron energy and angular distributions for particle sizes ranging from 5 nm to 400 nm. This work is supported by NSF Award No. IIA-143049. JRML operations and personal are supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of BES, Office of Science, U. S. DOE.

  8. Near infrared femtosecond laser ablation of urinary calculi in water

    NASA Astrophysics Data System (ADS)

    Qiu, Jinze; Teichman, Joel M.; Kuranov, Roman V.; McElroy, Austin B.; Wang, Tianyi; Paranjape, Amit S.; Milner, Thomas E.

    2009-02-01

    Pulsed light emitted from a near infrared (λ=800nm) femtosecond laser is capable of plasma induced photodisruption of various materials. We used femtosecond laser pulses to ablate human urinary calculi. Femtosecond pulsed laser interaction with urinary calculi was investigated with various stone compositions, different incident fluences and number of applied pulses. Spectral-domain optical coherence tomography was used to image cross sections of ablation craters on the surface of urinary calculi. Our results indicate that femtosecond laser pulses can ablate various calculi compositions. Crater diameter and depth varies from tens of microns to several hundred microns when up to 1000 pulses were applied. Future studies are required to determine if pulsed near infrared femtosecond laser pulses can be applied clinically for lithotripsy of urinary calculi.

  9. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    SciTech Connect

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of

  10. Laser cutting of titanium with pulsed and modulated pulsed Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Maher, Warren; Tong, Kwok-On

    1998-05-01

    Recent test results demonstrate the differences between laser cutting of Ti with different pulsed formats at 1.06 micrometer wavelength. The precision Laser Machining (PLM) consortium is dedicated to investigating improved processing obtained with the use of diode-pumped Nd:YAG lasers having high beam quality and high average power. One of the PLM lasers developed at TRW was used to determine the best parameters for laser cutting 0.034' Ti. Average power was available up to 340 W. Pulse repetition rates were 322 Hz with pulse lengths of 454 microseconds, while the modulated laser output had a 142 kHz micropulse train within the pulse envelope. Beam quality was sufficient to permit a 100 micrometer spot size to be used with f/10 focusing. Ar assist gas was used. At each setting of the laser average power the cutting tests usually were tried at 11 different speeds, up to 3'/second. The highest speed for which cutting is possible at a given average power is the threshold speed for that power. The cut specimens were evaluated for dross for a variety of rear surface Ar cross flow conditions. Each cut specimen also was evaluated for excess heating indicated by metallurgical and/or surface chemistry changes. Cutting at speeds above a critical minimum speed for each setting of laser average power greatly reduces degradation due to excess heating. Good cutting is possible between the threshold speed and this minimum speed (both a function of average power). Data for threshold and minimum speed were obtained for the pulsed and the modulated pulsed laser output. These tests also determined evidence of optimum conditions for cutting with a rear cross flow of Ar that substantially eliminates rear surface dross on the edge of the kerf. The quality of the cut edge was evaluated by inspection of its polished cross-section.

  11. Black anneal marking with pulsed fiber lasers

    NASA Astrophysics Data System (ADS)

    Murphy, T.; Harrison, P.; Norman, S.

    2015-07-01

    High contrast marking of metals is used in a wide range of industries. Fiber laser marking of these metals provides non-contact marking with no consumables, offering many advantages over traditional methods of metal marking. The laser creates a permanent mark on the material surface combining heat and oxygen with no noticeable ablation. The focussed beam of the fiber laser in combination with precision control of the heat input is able to treat small areas of the material surface evenly and consistently, which is critical for producing black anneal marks. The marks are highly legible which is ideal for marking serial numbers or small data matrices where traceability is required. This paper reports the experimental study for producing black anneal marks on various grades of stainless steel using fiber lasers. The influence of metal surface finish, beam quality, spot size diameter and pulse duration are investigated for producing both smooth and decorative anneal marks.

  12. Pulse Compression Techniques for Laser Generated Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  13. GEOS-1 laser pulse return shape analysis

    NASA Technical Reports Server (NTRS)

    Felsentreger, T. L.

    1972-01-01

    An attempt has been made to predict the shape of the laser return pulse from the corner cube retroreflectors on the GEOS-1 spacecraft. The study is geometrical only, and neglects factors such as optical interference, atmospheric perturbations, etc. A function giving the intensity of the return signal at any given time has been derived. In addition, figures are given which show the predicted return pulse shape as a function of time, the angle between the beam and the spin axis, and an in-plane angle (designating the orientation of the intersection of the planar waves with the plane of the corner cubes).

  14. Nanosecond laser ablation for pulsed laser deposition of yttria

    NASA Astrophysics Data System (ADS)

    Sinha, Sucharita

    2013-09-01

    A thermal model to describe high-power nanosecond pulsed laser ablation of yttria (Y2O3) has been developed. This model simulates ablation of material occurring primarily through vaporization and also accounts for attenuation of the incident laser beam in the evolving vapor plume. Theoretical estimates of process features such as time evolution of target temperature distribution, melt depth and ablation rate and their dependence on laser parameters particularly for laser fluences in the range of 6 to 30 J/cm2 are investigated. Calculated maximum surface temperatures when compared with the estimated critical temperature for yttria indicate absence of explosive boiling at typical laser fluxes of 10 to 30 J/cm2. Material ejection in large fragments associated with explosive boiling of the target needs to be avoided when depositing thin films via the pulsed laser deposition (PLD) technique as it leads to coatings with high residual porosity and poor compaction restricting the protective quality of such corrosion-resistant yttria coatings. Our model calculations facilitate proper selection of laser parameters to be employed for deposition of PLD yttria corrosion-resistive coatings. Such coatings have been found to be highly effective in handling and containment of liquid uranium.

  15. A Simulation of Laser Ablation During the Laser Pulse

    NASA Astrophysics Data System (ADS)

    Suzuki, Motoyuki; Ventzek, Peter L. G.; Sakai, Y.; Date, H.; Tagashira, H.; Kitamori, K.

    1996-10-01

    Charge damage considerations in plasma assisted etching are prompting the development of neutral beam sources. Already, anisotropic etching of has been demonstrated by neutral beams generated by exhausting heated ecthing gases into vacuum via a nozzle. Laser ablation of condensed etching gases may also be an attractive alternative means of generating neutral beams. Laser ablation coupled with electrical breakdown of the ablation plume may afford some degree of control over a neutral beam's dissociation fraction and ion content. Results from a Monte Carlo simulation of the laser ablation plume as it expands into vacuum at time-scales during the laser pulse will be presented. The model includes both heavy particle interactions and photochemistry. In particular, the influence of the initial particle angular distribution on the beam spread will be demonstrated as will the relationship between laser beam energy and initial ionization and dissociation fraction.

  16. Pulse-burst laser systems for fast Thomson scattering (invited).

    PubMed

    Den Hartog, D J; Ambuel, J R; Borchardt, M T; Falkowski, A F; Harris, W S; Holly, D J; Parke, E; Reusch, J A; Robl, P E; Stephens, H D; Yang, Y M

    2010-10-01

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned. PMID:21033868

  17. Pulse-burst laser systems for fast Thomson scattering (invited)

    SciTech Connect

    Den Hartog, D. J.; Ambuel, J. R.; Holly, D. J.; Robl, P. E.; Borchardt, M. T.; Falkowski, A. F.; Harris, W. S.; Parke, E.; Reusch, J. A.; Stephens, H. D.; Yang, Y. M.

    2010-10-15

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  18. Nanosecond pulsed laser blackening of copper

    NASA Astrophysics Data System (ADS)

    Tang, Guang; Hourd, Andrew C.; Abdolvand, Amin

    2012-12-01

    Nanosecond (12 ns) pulsed laser processing of copper at 532 nm resulted in the formation of homogenously distributed, highly organized microstructures. This led to the fabrication of large area black copper substrates with absorbance of over 97% in the spectral range from 250 nm to 750 nm, and a broadband absorbance of over 80% between 750 nm and 2500 nm. Optical and chemical analyses of the fabricated black metal are presented and discussed. The employed laser is an industrially adaptable source and the presented technique for fabrication of black copper could find applications in broadband thermal radiation sources, solar energy absorbers, irradiative heat transfer devices, and thermophotovoltaics.

  19. Photoswitches operating upon ns pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Athanassiou, A.; Lakiotaki, K.; Kalyva, M.; Georgiou, S.; Fotakis, C.

    2005-07-01

    We present a potential photoswitch, which undergoes reversible mechanical actuation induced exclusively by photons. The photoswitch is a polymer-based film doped with spiropyran photochromic molecules. It undergoes repeatable mechanical cycles controlled by ns laser pulses of specific wavelengths. The polymer matrix is mechanically activated due to particular photoisomerization processes of the incorporated photochromic molecules, resulting in its contraction and lengthening in a highly controllable manner. We present herein the way that the switching time of this novel photoswitch depends on different laser parameters such as the energy and the repetition rate.

  20. First in vivo animal studies on intraocular nanosurgery and multiphoton tomography with low-energy 80-MHz near-infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Wang, Bagui; Krauss, Oliver; Riemann, Iris; Schubert, Harald; Kirste, Sigrun; Fischer, Peter

    2004-07-01

    We report on a method for refractive laser surgery based on low-energy femtosecond laser pulses provided by ultracompact turn-key non-amplified laser systems. An additional excimer laser is not required for ablation of the stroma. The novel method has the potential to be used for (i) optical flap creation as well as stroma ablation and (ii) for non-invasive flap-free intrastromal ablation. In addition, 3D multiphoton imaging of the cornea can be performed. In particular, we used sub-nanojoule near infrared 80 MHz femtosecond laser pulses for multiphoton imaging of corneal structures with ultrahigh resolution (< 1μm) as well as for highly precise intraocular refractive surgery. Imaging based on two-photon excited cellular autofluorescence and SHG formation in collagen structures was performed at GW/cm2 intensities, whereas destructive optical breakdown for nanoprocessing occurred at TW/cm2 light intensities. These high intensities were realized with sub-nJ pulses within a subfemtoliter intrastromal volume by diffraction-limited focussing with high NA objectives and beam scanning 50 to 140 μm below the epithelial surface. Multiphoton tomography of the cornea was used to determine the target of interest and to visualize intraocular post-laser effects. Histological examination with light- and electron microscopes of laser-exposed porcine and rabbit eyes reveal a minimum intratissue cut size below 1 μm without destructive effects to surrounding collagen structures. LASIK flaps and intracorneal cavities could be realized with high precision using 200 fs, 80 MHz, sub-nanojoule pulses at 800 nm. First studies on 80 MHz femtosecond laser surgery on living rabbits have been performed.

  1. Pulsed laser deposition of pseudowollastonite coatings.

    PubMed

    Fernández-Pradas, J M; Serra, P; Morenza, J L; De Aza, P N

    2002-05-01

    Pseudowollastonite (alpha-CaSiO3) is a bioactive ceramic material that induces direct bone growth. A process to obtain pseudowollastonite coatings that may be applied to implants is described and evaluated in this work. The coatings were first deposited on titanium alloy by laser ablation with a pulsed Nd:YAG laser tripled in frequency. After deposition, they were submitted to a soft laser treatment with a continuous wave Nd:YAG infrared laser. Coatings were characterised by X-ray diffractometry, Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy before and after the laser treatment. As-deposited coatings are composed of pseudowollastonite and amorphous material. They have a porous structure of gathered grains and poor cohesion. After the laser treatment the coatings crystallinity and cohesion are improved. The laser treatment also makes the coatings dense and well adhered to the substrate. Therefore, this two-step process has been demonstrated as a valuable method to coat titanium implants with pseudowollastonite. PMID:11996047

  2. High voltage pulse generators for use in laser systems

    SciTech Connect

    Dymoke-Bradshaw, A.K.L.; Hares, J.D.; Kellett, P.A.

    1995-12-31

    Solid state pulse generators with controlled multi-kilovolt outputs are now production items. The range of applications within the field of lasers has increased so that they can control laser pulse width and shape, cavity dumping and seeding, stage isolation and coherence reduction for smoothing irradiation. Such pulse generators can now be built with embedded computer systems for remote control, interrogation and diagnosis of pulser parameters. Diagnostic equipment to monitor laser beam profiles with respectable time resolution also employs these pulse generators.

  3. Short-pulse Laser Capability on the Mercury Laser System

    SciTech Connect

    Ebbers, C; Armstrong, P; Bayramian, A; Barty, C J; Bibeau, C; Britten, J; Caird, J; Campbell, R; Chai, B; Crane, J; Cross, R; Erlandson, A; Fei, Y; Freitas, B; Jovanovic, I; Liao, Z; Molander, B; Schaffers, K; Stuart, B; Sutton, S; Ladran, T; Telford, S; Thelin, P; Utterback, E

    2006-06-22

    Applications using high energy ''petawatt-class'' laser drivers operating at repetition rates beyond 0.01 Hz are only now being envisioned. The Mercury laser system is designed to operate at 100 J/pulse at 10 Hz. We investigate the potential of configuring the Mercury laser to produce a rep-rated, ''petawatt-class'' source. The Mercury laser is a prototype of a high energy, high repetition rate source (100 J, 10 Hz). The design of the Mercury laser is based on the ability to scale in energy through scaling in aperture. Mercury is one of several 100 J, high repetition rate (10 Hz) lasers sources currently under development (HALNA, LUCIA, POLARIS). We examine the possibility of using Mercury as a pump source for a high irradiance ''petawatt-class'' source: either as a pump laser for an average power Ti:Sapphire laser, or as a pump laser for OPCPA based on YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB), ideally producing a source approaching 30 J /30 fs /10 Hz--a high repetition rate petawatt. A comparison of the two systems with nominal configurations and efficiencies is shown in Table 1.

  4. Mirrorlike pulsed laser deposited tungsten thin film

    SciTech Connect

    Mostako, A. T. T.; Khare, Alika; Rao, C. V. S.

    2011-01-15

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10{sup -5} Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness {approx}782 nm.

  5. Mirrorlike pulsed laser deposited tungsten thin film.

    PubMed

    Mostako, A T T; Rao, C V S; Khare, Alika

    2011-01-01

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm. PMID:21280810

  6. Pulse switching for high energy lasers

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J. (Inventor)

    1981-01-01

    A saturable inductor switch for compressing the width and sharpening the rise time of high voltage pulses from a relatively slow rise time, high voltage generator to an electric discharge gas laser (EDGL) also provides a capability for efficient energy transfer from a high impedance primary source to an intermediate low impedance laser discharge network. The switch is positioned with respect to a capacitive storage device, such as a coaxial cable, so that when a charge build-up in the storage device reaches a predetermined level, saturation of the switch inductor releases or switches energy stored in the capactive storage device to the EDGL. Cascaded saturable inductor switches for providing output pulses having rise times of less than ten nanoseconds and a technique for magnetically biasing the saturable inductor switch are disclosed.

  7. Optical reprogramming with ultrashort femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  8. Magnetic Colloids By Pulsed Laser Ablation

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Singh, M. K.; Agarwal, A.; Gopal, R.

    2011-06-01

    Colloidal magnetic nanoparticles have been successfully synthesized by nano second pules laser ablation of a cobalt slice immersed in liquid (distilled water) medium. The focused output of 1064 nm wavelength of pulsed Nd: YAG laser operating at 40 mJ/pulse is used for ablation. The liquid enviorment allows formation of colloids with nanoparticles in uniform particle diameter. Synchrotron X-ray powder diffraction (XRD) is used for the study of structural property of synthesized nanoparticles. The magnetic properties of cobalt nanoparticles are also investigated. The coercivity of is found to be 73 Oe. The optical properties have been determined by UV-visible absorption spectroscopy and band gap found to be 2.16 and 3.60 eV.

  9. Pulsed laser damage to optical fibers

    SciTech Connect

    Allison, S.W.; Gillies, G.T.; Magnuson, D.W.; Pagano, T.S.

    1985-10-01

    This paper describes some observations of pulsed laser damage to optical fibers with emphasis on a damage mode characterized as a linear fracture along the outer core of a fiber. Damage threshold data are presented which illustrate the effects of the focusing lens, end-surface preparation, and type of fiber. An explanation based on fiber-beam misalignment is given and is illustrated by a simple experiment and ray trace.

  10. Laser pulse stretcher method and apparatus

    DOEpatents

    Hawkins, Jon K.; Williams, William A.

    1990-01-01

    The output of an oscillator stage of a laser system is monitored by a photocell which is coupled to a feedback section to control a Pockels Cell and change the light output of the oscillator stage. A synchronizing pulse is generated in timed relation to the initiation of operation of the oscillator stage and is applied to a forward feed section which cooperates with the feedback section to maintain the light output constant for an extended time interval.

  11. Rectangular Pulsed Laser-Electromagnetic Hybrid Accelerator

    SciTech Connect

    Kishida, Yoshiaki; Katayama, Masahiro; Horisawa, Hideyuki

    2010-10-13

    Experimental investigation of impulse-bit and propellant consumption rate, or mass shot, per single pulse discharge was conducted to characterize the thrust performance of the rectangular laser-electromagnetic hybrid acceleration thruster with various propellant materials. From the result, alumina propellant showed significantly superior performance. The largest values of the measured impulse-bit, specific impulse and thrust efficiency were 49 {mu}Nsec, 6,200 sec and 22%, respectively.

  12. Fragmentation process induced by microsecond laser pulses during lithotripsy

    NASA Astrophysics Data System (ADS)

    Rink, K.; Delacrétaz, G.; Salathé, R. P.

    1992-07-01

    A fiber optic stress sensing technique is applied to evaluate the fragmentation mechanism for pulsed dye-laser lithotripsy. We demonstrate for the first time that the fragmentation process with microsecond laser pulses originates from the shock wave induced by the cavitation bubble collapse. This shock occurs some hundreds of microseconds after the laser pulse. The shock induced by the plasma expansion, which occurs during laser irradiation, has a minor effect.

  13. Observation of Laser-Pulse Shortening in Nonlinear Plasma Waves

    SciTech Connect

    Faure, J.; Glinec, Y.; Santos, J.J.; Ewald, F.; Rousseau, J.-P.; Malka, V.; Kiselev, S.; Pukhov, A.; Hosokai, T.

    2005-11-11

    We have measured the temporal shortening of an ultraintense laser pulse interacting with an underdense plasma. When interacting with strongly nonlinear plasma waves, the laser pulse is shortened from 38{+-}2 fs to the 10-14 fs level, with a 20% energy efficiency. The laser ponderomotive force excites a wakefield, which, along with relativistic self-phase modulation, broadens the laser spectrum and subsequently compresses the pulse. This mechanism is confirmed by 3D particle in cell simulations.

  14. Observation of laser-pulse shortening in nonlinear plasma waves.

    PubMed

    Faure, J; Glinec, Y; Santos, J J; Ewald, F; Rousseau, J-P; Kiselev, S; Pukhov, A; Hosokai, T; Malka, V

    2005-11-11

    We have measured the temporal shortening of an ultraintense laser pulse interacting with an underdense plasma. When interacting with strongly nonlinear plasma waves, the laser pulse is shortened from 38 +/- 2 fs to the 10-14 fs level, with a 20% energy efficiency. The laser ponderomotive force excites a wakefield, which, along with relativistic self-phase modulation, broadens the laser spectrum and subsequently compresses the pulse. This mechanism is confirmed by 3D particle in cell simulations. PMID:16384066

  15. Generation of ultrahigh intensity laser pulses

    NASA Astrophysics Data System (ADS)

    Fisch, N. J.; Malkin, V. M.

    2003-05-01

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 1025 W/cm2 can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers.

  16. Spectral Signature of Short Attosecond Pulse Trains

    NASA Astrophysics Data System (ADS)

    Mansten, E.; Dahlström, J. M.; Mauritsson, J.; Ruchon, T.; L'Huillier, A.; Tate, J.; Gaarde, M. B.; Eckle, P.; Guandalini, A.; Holler, M.; Schapper, F.; Gallmann, L.; Keller, U.

    2009-02-01

    We report experimental measurements of high-order harmonic spectra generated in Ar using a carrier-envelope-offset (CEO) stabilized 12 fs, 800 nm laser field and a fraction (less than 10%) of its second harmonic. Additional spectral peaks are observed between the harmonic peaks, which are due to interferences between multiple pulses in the train. The position of these peaks varies with the CEO and their number is directly related to the number of pulses in the train. An analytical model, as well as numerical simulations, support our interpretation.

  17. K-shell emission from 140 femtosecond laser-produced plasmas created from porous aluminum targets

    SciTech Connect

    Shepherd, R.; Price, D.; White, B.; Osterheld, A.; Walling, R.; Slaughter, D.; Stewart, R.; Gordan, S.

    1992-06-05

    The K-shell emission from flat and porous aluminum targets is used to infer the efficiency of creating a high temperature (>100eV), thermal plasma with 800 nm, 140 fs laser light. The K-shell emission from flat aluminum targets is fond to be significantly less than that of the porous targets, implying a lower temperature and less efficient coupling between the target and ultra-short pulse laser light.

  18. Nonlinear optical studies on 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    NASA Astrophysics Data System (ADS)

    Matei, Andreea; Marinescu, Maria; Constantinescu, Catalin; Ion, Valentin; Mitu, Bogdana; Ionita, Iulian; Dinescu, Maria; Emandi, Ana

    2016-06-01

    We present results on a new, laboratory synthesized ferrocene-derivative, i.e. 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid. Thin films with controlled thickness are deposited by matrix-assisted pulsed laser evaporation (MAPLE), on quartz and silicon substrates, with the aim of evaluating the nonlinear optical properties for potential optoelectronic applications. Dimethyl sulfoxide was used as matrix, with 1% wt. concentration of the guest compound. The frozen target is irradiated by using a Nd:YAG laser (4ω/266 nm, 7 ns pulse duration, 10 Hz repetition rate), at low fluences ranging from 0.1 to 1 J/cm2. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to probe the surface morphology of the films. Fourier transform infrared (FTIR) and Raman spectroscopy reveal similar structure of the thin film material when compared to the starting material. The optical properties of the thin films are investigated by spectroscopic-ellipsometry (SE), and the refractive index dependence with respect to temperature is studied. The second harmonic generation (SHG) potential is assessed by using a femtosecond Ti:sapphire laser (800 nm, 60-100 fs pulse duration, 80 MHz repetition rate), at 200 mW maximum output power, revealing that the SHG signal intensity is strongly influenced by the films' thickness.

  19. Laser pulse modulation instabilities in plasma channels

    PubMed

    Sprangle; Hafizi; Penano

    2000-04-01

    In this paper the modulational instability associated with propagation of intense laser pulses in a partially stripped, preformed plasma channel is analyzed. In general, modulation instabilities are caused by the interplay between (anomalous) group velocity dispersion and self-phase modulation. The analysis is based on a systematic approach that includes finite-perturbation-length effects, nonlinearities, group velocity dispersion, and transverse effects. To properly include the radial variation of both the laser field and plasma channel, the source-dependent expansion method for analyzing the wave equation is employed. Matched equilibria for a laser beam propagating in a plasma channel are obtained and analyzed. Modulation of a uniform (matched) laser beam equilibrium in a plasma channel leads to a coupled pair of differential equations for the perturbed spot size and laser field amplitude. A general dispersion relation is derived and solved. Surface plots of the spatial growth rate as a function of laser beam power and the modulation wave number are presented. PMID:11088236

  20. Short Pulse Experimental Capability at the Nike Laser Facility

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Chan, Y.; Gardner, J.; Giuliani, J.; Karasik, M.; Kehne, D.; Mostovych, A.; Obenschain, S.; Velikovich, A.; Schmitt, A.; Serlin, V.; Aglitskiy, Y.; Metzler, N.; Smyth, Z.; Terrell, S.

    2004-11-01

    Recent simulations demonstrated high gain for direct drive pellets compressed by a laser pulse incorporating a short pulse prior to the main pulse. Theoretical work has also shown that a short prepulse can create a tailored density profile that reduces the initial instability growth due to laser imprinting. A new short pulse (0.35-0.75 ns FWHM)is being added to the Nike KrF laser system to facilitate hydrodynamic experiments with short prepulses. This capability has been incorporated into the initial stages of the laser system and the propagation of these pulses through the angularly multiplexed amplifiers is being studied. Measurements of pulse shape and energy will be compared to simulations using the KrF physics code Orestes for the next to last amplifier of the laser system, the 20 cm x 20 cm e-beam pumped laser cell. The effects of amplified spontaneous emission (ASE) upon individual output pulses will be also discussed.

  1. Pulsed-discharge carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1990-01-01

    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  2. Pulsed Nd-YAG laser in endodontics

    NASA Astrophysics Data System (ADS)

    Ragot-Roy, Brigitte; Severin, Claude; Maquin, Michel

    1994-12-01

    The purpose of this study was to establish an operative method in endodontics. The effect of a pulsed Nd:YAG laser on root canal dentin has been examined with a scanning electron microscope. Our first experimentation was to observe the impacts carried out perpendicularly to root canal surface with a 200 micrometers fiber optic in the presence of dye. Secondarily, the optical fiber was used as an endodontic instrument with black dye. The irradiation was performed after root canal preparation (15/100 file or 40/100 file) or directly into the canal. Adverse effects are observed. The results show that laser irradiation on root canal dentin surfaces induces a nonhomogeneous modified dentin layer, melted and resolidified dentin closed partially dentinal tubules. The removal of debris is not efficient enough. The laser treatment seems to be indicated only for endodontic and periapical spaces sterilization after conventional root canal preparation.

  3. [Effect of pulsed CO2-laser irradiation on bone tissue].

    PubMed

    Kholodnov, S E

    1985-01-01

    Different dynamic effects on biological tissue caused by pulsed laser radiation are described. It is shown that the parameters of these effects which take place on the bone tissue affected by pulsed CO2-laser radiation are directly dependent on the parameters of these pulses and may be predicted for any concrete application. PMID:3931698

  4. Electron beam switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, Lyn D.; Murray, John R.; Goldhar, Julius; Bradley, Laird P.

    1981-01-01

    Method and apparatus for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  5. Ultrashort-pulse laser generated nanoparticles of energetic materials

    DOEpatents

    Welle, Eric J.; Tappan, Alexander S.; Palmer, Jeremy A.

    2010-08-03

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  6. Evaluation of pulsed laser ablation in liquids generated gold nanoparticles as novel transfection tools: efficiency and cytotoxicity

    NASA Astrophysics Data System (ADS)

    Willenbrock, Saskia; Durán, María. Carolina; Barchanski, Annette; Barcikowski, Stephan; Feige, Karsten; Nolte, Ingo; Murua Escobar, Hugo

    2014-03-01

    Varying transfection efficiencies and cytotoxicity are crucial aspects in cell manipulation. The utilization of gold nanoparticles (AuNP) has lately attracted special interest to enhance transfection efficiency. Conventional AuNP are usually generated by chemical reactions or gas pyrolysis requiring often cell-toxic stabilizers or coatings to conserve their characteristics. Alternatively, stabilizer- and coating-free, highly pure, colloidal AuNP can be generated by pulsed laser ablation in liquids (PLAL). Mammalian cells were transfected efficiently by addition of PLAL-AuNP, but data systematically evaluating the cell-toxic potential are lacking. Herein, the transfection efficiency and cytotoxicity of PLAL AuNP was evaluated by transfection of a mammalian cell line with a recombinant HMGB1/GFP DNA expression vector. Different methods were compared using two sizes of PLAL-AuNP, commercialized AuNP, two magnetic NP-based protocols and a conventional transfection reagent (FuGENE HD; FHD). PLAL-AuNP were generated using a Spitfire Pro femtosecond laser system delivering 120 fs laser pulses at a wavelength of 800 nm focusing the fs-laser beam on a 99.99% pure gold target placed in ddH2O. Transfection efficiencies were analyzed after 24h using fluorescence microscopy and flow cytometry. Toxicity was assessed measuring cell proliferation and percentage of necrotic, propidium iodide positive cells (PI %). The addition of PLAL-AuNP significantly enhanced transfection efficiencies (FHD: 31 %; PLAL-AuNP size-1: 46 %; size-2: 50 %) with increased PI% but no reduced cell proliferation. Commercial AuNP-transfection showed significantly lower efficiency (23 %), slightly increased PI % and reduced cell proliferation. Magnetic NP based methods were less effective but showing also lowest cytotoxicity. In conclusion, addition of PLAL-AuNP provides a novel tool for transfection efficiency enhancement with acceptable cytotoxic side-effects.

  7. The formation of nanodimensional structures on the surface of Tin exposed to femtosecond laser pulses in the ambient environment of ethanol

    NASA Astrophysics Data System (ADS)

    Bashir, Shazia; Rafique, M. Shahid; Nathala, Chandra S.; Husinsky, Wolfgang

    2014-01-01

    The formation of nanodimensional structures on the surface of Tin (Sn) has been explored as a function of the laser fluence and pulse duration. The targets were exposed by employing femtosecond pulses of a Ti: Sapphire laser (wavelength of 800 nm, pulse length of 25 fs and pulse repetition rate of 1 kHz) in ethanol. In order to investigate the effect of fluence, the targets were exposed to 1000 succeeding pulses for four various fluences ranging from 4.7 to 11.8 J cm-2 with the pulse duration of 25 fs. To probe the effect of pulse duration, targets were exposed for various pulse durations ranging from 25 fs to 100 fs at a constant fluence of 11.8 J cm-2 (i.e. maximum). Nano sized structures including globules, droplets, craters and grooves were observed by SEM analysis. The dependence of structure formation on the laser fluence and pulse duration has been explored both for central as well as peripheral ablated areas. For increasing fluences, the more energy deposition is responsible for the growth of distinct features. For increasing fluence, the size distribution of nanostructures reduces and their number density increases after fragmentation. As the pulse width increases, the size distribution of structures increases significantly due to enhanced thermal effects. The development of nanostructures has been correlated with structural analysis carried out by micro-Raman spectroscopy. The formation of various bands e.g. SnO, SnO2, C2H5 Sn, Sn-CO complexes after laser irradiation of Sn in a liquid-confined environment (ethanol) has been observed. For higher fluences more energy deposition takes place which enhances the chemical reactivity and is responsible for an appearance of additional and strong bands. However, with increasing pulse width more thermal effects are responsible for bond breaking and disappearance of those peaks which are identified for the shortest pulse duration. It is found first time that both the pulse duration as well as laser fluence are

  8. Pulsed laser deposition: the road to hybrid nanocomposites coatings and novel pulsed laser adaptive technique.

    PubMed

    Serbezov, Valery

    2013-01-01

    The applications of Pulsed Laser Deposition (PLD) for producing nanoparticles, nanostructures and nanocomposites coatings based on recently developed laser ablating techniques and their convergence are being reviewed. The problems of in situ synthesis of hybrid inorganic-organic nanocomposites coatings by these techniques are being discussed. The novel modification of PLD called Pulsed Laser Adaptive Deposition (PLAD) technique is presented. The in situ synthesized inorganic/organic nanocomposites coatings from Magnesium (Mg) alloy/Rhodamine B and Mg alloy/ Desoximetasone by PLAD are described. The trends, applications and future development of discussed patented methods based on the laser ablating technologies for producing hybrid nanocomposite coatings have also been discussed in this review. PMID:22747717

  9. Measurement Issues In Pulsed Laser Propulsion

    SciTech Connect

    Sinko, John E.; Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter; Sasoh, Akihiro

    2010-05-06

    Various measurement techniques have been used throughout the over 40-year history of laser propulsion. Often, these approaches suffered from inconsistencies in definitions of the key parameters that define the physics of laser ablation impulse generation. Such parameters include, but are not limited to the pulse energy, spot area, imparted impulse, and ablated mass. The limits and characteristics of common measurement techniques in each of these areas will be explored as they relate to laser propulsion. The idea of establishing some standardization system for laser propulsion data is introduced in this paper, so that reported results may be considered and studied by the general community with more certain understanding of particular merits and limitations. In particular, it is the intention to propose a minimum set of requirements a literature study should meet. Some international standards for measurements are already published, but modifications or revisions of such standards may be necessary for application to laser ablation propulsion. Issues relating to development of standards will be discussed, as well as some examples of specific experimental circumstances in which standardization would have prevented misinterpretation or misuse of past data.

  10. Generation of intense 25-fsec pulses by a pulsed laser system

    SciTech Connect

    Angel, G.; Gagel, R.; Laubereau, A. )

    1989-09-15

    A pulsed femtosecond dye laser is demonstrated with relaxed stability requirements, improved output reproducibility, and significant pulse shortening. Starting with a sequence of {approx}350 pump pulses of a Nd:glass laser (repetition rate 6 Hz, duration 1.3 psec), pulses of 25 fsec and 10 nJ are generated at 566 nm. A non-colliding-pulse, mode-locked ring laser is used with dispersion compensation and the dyes Rhodamine 6G, DQOCI, and DTCI. The evolution of the pulse parameters as a function of cavity round trips is investigated.

  11. Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes

    SciTech Connect

    Velikanov, S D; Zaretskiy, N A; Zotov, E A; Maneshkin, A A; Chuvatkin, R S; Yutkin, I M; Kozlovsky, V I; Korostelin, Yu V; Krokhin, O N; Podmar'kov, Yu P; Savinova, S A; Skasyrsky, Ya K; Frolov, M P

    2015-01-31

    The characteristics of a Fe:ZnSe laser pumped by a single-pulse free-running Er : YAG laser and a repetitively pulsed HF laser are presented. An output energy of 4.9 J is achieved in the case of liquid-nitrogen cooling of the Fe{sup 2+}:ZnSe active laser element longitudinally pumped by an Er:YAG laser with a pulse duration of 1 ms and an energy up to 15 J. The laser efficiency with respect to the absorbed energy is 47%. The output pulse energy at room temperature is 53 mJ. The decrease in the output energy is explained by a strong temperature dependence of the upper laser level lifetime and by pulsed heating of the active element. The temperature dependence of the upper laser level lifetime is used to determine the pump parameters needed to achieve high pulse energies at room temperature. Stable repetitively-pulsed operation of the Fe{sup 2+}:ZnSe laser at room temperature with an average power of 2.4 W and a maximum pulse energy of 14 mJ is achieved upon pumping by a 1-s train of 100-ns HF laser pulses with a repetition rate of 200 Hz. (lasers)

  12. Pulsed laser fluorometry for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Saunders, G. C.; Martin, J. C.; Jett, J. H.; Wilder, M. E.; Martinez, A.; Bentley, B. F.; Lopez, J.; Hutson, L.

    A compact pulsed laser fluorometer has been incorporated into a continuous flow system developed to detect acetylcholinesterase (AChE) inhibitors and/or primary amine compounds in air and water. A pulsed nitrogen laser pumped dye laser excites fluorescent reactants which flow continuously through a quartz flow cell. Data are collected, analyzed, and displayed using a Macintosh II personal computer. For detection of cholinesterase inhibitors the fluorogenic substrate N methylindoxyl acetate is used to monitor the activity of immobilized enzyme. Presence of inhibitors results in a decrease of steady state fluorescence. Detection of compounds containing primary amines is based on their reaction with fluorescamine to rapidly produce intensely fluorescent products. Compounds of interest to our research were amino acids, peptides, and proteins. An increase in steady state fluorescence could be cause to evaluate the reasons for the change. The detection limit of the protein, bovine serum albumin (BSA) in water, is 10 ppT. Nebulized BSA concentrated by the LANL air sampler can be detected at sub ppT original air concentration.

  13. Pulsed laser fluorometry for environmental monitoring

    SciTech Connect

    Saunders, G. C.; Martin, J. C.; Jett, J. H.; Wilder, M. E.; Martinez, A.; Bentley, B. F.; Lopez, J.; Hutson, L.

    1990-01-01

    A compact pulsed laser fluorometer has been incorporated into a continuous flow system developed to detect acetylcholinesterase (AChE) inhibitors and/or primary amine compounds in air and water. A pulsed nitrogen laser pumped dye laser excites fluorescent reactants which flow continuously through a quartz flow cell. Data are collected, analyzed, and displayed using a Macintosh II personal computer. For detection of cholinesterase inhibitors the fluorogenic substrate N methylindoxyl acetate is used to monitor the activity of immobilized enzyme. Presence of inhibitors results in a decrease of steady state fluorescence. Detection of compounds containing primary amines is based on their reaction with fluorescamine to rapidly produce intensely fluorescent products. Compounds of interest to our research were amino acids, peptides, and proteins. An increase in steady state fluorescence could be cause to evaluate the reasons for the change. The detection limit of the protein, bovine serum albumin (BSA) in water is 10 ppT. Nebulized BSA concentrated by the LANL air sampler can be detected at sub ppT original air concentration. 16 refs., 14 figs., 3 tabs.

  14. Laser wakefield acceleration by petawatt ultrashort laser pulses

    SciTech Connect

    Gorbunov, L.M.; Kalmykov, S.Yu.; Mora, P.

    2004-12-07

    An ultra-short (about 30 fs) petawatt laser pulse focused in a wide focal spot (about 100{mu}m) in rarefied plasma (n0 {approx} 1017cm-3) excites a nonlinear plasma wakefield which can accelerate injected electrons up to a GeV energy without pulse channelling. In these conditions, the laser pulse with an over-critical power for relativistic self-focusing propagates as in vacuum. The nonlinear quasi-plane wake plasma wave, whose amplitude and phase velocity vary along the laser path, effectively traps and accelerates injected electrons with a wide range of initial energies. Electrons accelerated along two Rayleigh lengths (about eight centimeters) gain the energy up to 1 GeV. In particular, the electrons trapped from quite a long ({tau}b {approx} 330 fs) non-resonant electron beamlet of 1 MeV particles eventually form a low emittance bunch with the energies in the range 900 {+-} 50 MeV. All these conclusions follow from the two-dimensional simulations performed in cylindrical geometry by fully relativistic time-averaged particle code WAKE.

  15. The laser driven particle accelerator project: Theory and experiment

    SciTech Connect

    Plettner, T.; Byer, R.L. Smith, T.I.; Siemann, R.H. Huang, Y.C.

    1999-07-01

    A proof of principle experiment for laser driven electron acceleration from crossed laser beams in a dielectric loaded vacuum is being carried out at Stanford University. We seek to measure a maximum energy gain of about 250 keV for a 30{endash}35 MeV electron beam in one accelerator cell. We use laser pulses of a few picoseconds of duration from a regenerative Ti:sapphire laser amplifier at a wavelength of 800 nm in a laser-electron interaction distance of {approximately}1 mm. {copyright} {ital 1999 American Institute of Physics.}

  16. Controlling electron injection in laser plasma accelerators using multiple pulses

    SciTech Connect

    Matlis, N. H.; Geddes, C. G. R.; Plateau, G. R.; Esarey, E.; Schroeder, C.; Bruhwiler, D.; Cormier-Michel, E.; Chen, M.; Yu, L.; Leemans, W. P.

    2012-12-21

    Use of counter-propagating pulses to control electron injection in laser-plasma accelerators promises to be an important ingredient in the development of stable devices. We discuss the colliding pulse scheme and associated diagnostics.

  17. Pulsed thrust measurements using laser interferometry

    NASA Astrophysics Data System (ADS)

    Cubbin, E. A.; Ziemer, J. K.; Choueiri, E. Y.; Jahn, R. G.

    1997-06-01

    An optical interferometric proximeter system (IPS) for measuring thrust and impulse bit of pulsed electric thrusters was developed. Unlike existing thrust stands, the IPS-based thrust stand offers the advantage of a single system that can yield electromagnetic interference-free, high accuracy (<2% error) thrust measurements within a very wide range of impulses (100 μN s to above 10 N s) covering the impulse range of all known pulsed plasma thrusters. In addition to pulsed thrusters, the IPS is theoretically shown to be capable of measuring steady-state thrust values as low as 20 μN for microthrusters such as the field emission electric propulsion thruster. The IPS-based thrust stand relies on measuring the dynamic response of a swinging arm using a two-sensor laser interferometer with 10 nm position accuracy. The wide application of the thrust stand is demonstrated with thrust measurements of an ablative pulsed plasma thruster and a quasi-steady magnetoplasmadynamic thruster.

  18. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    SciTech Connect

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  19. Laser generation of subnanosecond sound pulses in liquids

    NASA Astrophysics Data System (ADS)

    Vodopianov, K. L.; Kulevskii, L. A.; Mikhalevich, V. G.; Rodin, A. M.

    1986-07-01

    Laser generation of intense sound pulses of subnanosecond duration is observed for the first time. Use is made of hydroxyl-containing liquids with hydrogen bonds such as water, ethanol and glycerine which possess very high light absorption coefficients at the laser wavelength of 2.94 microns. When using ultrashort laser pulses (tau = 80 ps) with energies reaching 60 microjoules, sound pressure pulses 0.75 ns in duration with amplitudes reaching 20 kbar (in water) were obtained.

  20. Laser Doppler and Pulsed Laser Velocimetry in Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Coupland, Jeremy M.

    Since the introduction of the laser in the late 1960s, optical metrology has made a major impact in many branches of engineering. This is nowhere more apparent than in the field of fluid mechanics where laser technology has revolutionised the way in which fluid flows are studied. The light scattered from small seeding particles following the flow contains information relating to the particle position and velocity. The coherence characteristics and high power densities achievable with a laser source allow well-defined regions of flow to be investigated in a largely non-intrusive manner and on a spatial and temporal scale commensurate with he flow field of interest. This review outlines the laser-based methods of velocimetry that are now available to the fluid dynamicist and discusses their practical application. Laser Doppler velocimetry provides a means to produce time-resolved measurements of fluid velocity at a single point in the flow. The optical design of instruments of this type is addressed with reference to spatial resolution and light gathering performance. Typical Doppler signals produced at both high and low particle concentrations are analysed and signal processing techniques are briefly discussed. Pulsed laser velocimeters use imaging optics to record the position of seeding particles at two or more instants and provide information concerning the instantaneous structure of the flow field. The optical configurations and analysis procedures used for planar velocity measurements are described and whole-field three-dimensional velocity measurements using holographic techniques are introduced.

  1. Optical penetration sensor for pulsed laser welding

    DOEpatents

    Essien, Marcelino; Keicher, David M.; Schlienger, M. Eric; Jellison, James L.

    2000-01-01

    An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

  2. Pulsed laser deposition of zeolitic membranes

    SciTech Connect

    Peachey, N.M.; Dye, R.C.; Ries, P.D.

    1995-02-01

    The pulsed laser deposition of zeolites to form zeolitic thin films is described. Films were grown using both mordenite and faujasite targets and were deposited on various substrates. The optimal films were obtained when the target and substrate were separated by 5 cm. These films are comprised of small crystallites embedded in an amorphous matrix. Transmission electron microscopy reveals that the amorphous material is largely porous and that the pores appear to be close to the same size as the parent zeolite. Zeolotic thin films are of interest for sensor, gas separation, and catalytic applications.

  3. Uncooled pulsed zinc oxide semiconductor laser

    NASA Astrophysics Data System (ADS)

    Bogdankevich, O. V.; Darznek, S. A.; Zverev, M. M.; Kostin, N. N.; Krasavina, E. M.

    1985-02-01

    An optimized ZnO laser which operates at ambient temperature without cooling is reported, along with extension of the design to form a multielement high-power laser. ZnO single crystal plane-parallel wafers 0.22 mm thick, covered with total and semi-transparent coatings, were exposed to a 200 keV electron beam with a 10 nsec pulse and a current density up to 1 kA/sq cm. No damage was observed in the crystals at saturation. A 7 percent maximum efficiency at a reflection coefficient (RC) of 0.4 was associated with a maximum output of 25 kW and a light power density of 3 MW/sq cm. Cementing a ZnO wafer to a sapphire substrate, applying the same type of coatings and working with a RC of 0.6 yielded a maximum power of 300 kW/sq cm.

  4. Development of short pulse soft x-ray lasers

    SciTech Connect

    Da Silva, L.B.; MacGowan, B.J.; Koch, J.A.; Mrowka, S.; Matthews, D.L.; Eder, D.; London, R.

    1993-02-01

    X-ray lasers with pulse duration shorter than 20 ps allow the possibility of imaging laser produced plasmas with {mu}m resolution. In addition, the high peak brightness of these new sources will allow us to study nonlinear optics in the xuv region. In this paper we will describe our efforts to produce collisionally pumped short pulse x-ray lasers. Initial results, which have produced {approximately} 45 ps (FWHM) x-ray lasers, using a double pulse irradiation technique are presented along with a discussion of the prospects for reducing the pulse width.

  5. Precise micromachining of materials using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Garasz, K.; Tański, M.; Barbucha, R.; Kocik, M.

    2015-06-01

    We present the results of the experimental parametric study on efficiency, accuracy and quality of femtosecond laser micromachining of different materials. The laser micromachining process was performed with a solid-state Yb:KYW laser. The laser generates 500 fs pulses of three different wavelengths, repetition rate from 100 to 900 kHz and output power up to 50 W. This allows to perform a complex research for a wide range of parameters and materials. Laser micromachining is a process based on a laser ablation phenomenon, i.e. total evaporation of material from the target surface during laser irradiation. It is the most precise method of material removal. Applying a femtosecond laser in the process, allows the use of ultra short pulses, with a duration of 10-15 seconds, while maintaining a high laser power. The concentration of energy within a single pulse is sufficiently high to cause the detachment of particles from the irradiated target without any thermal interactions with the surrounding material. Therefore, the removal of the material occurs only in the laser focus. This allows to avoid most of the unwanted effects of the heat affected zone (HAZ). It has been established, that the quality of laser ablation process using femtosecond pulses is much higher than while using the long pulsed lasers (i.e. nanosecond). The use of femtosecond laser pulses creates therefore an attractive opportunity for high quality micromachining of many groups of materials.

  6. Noncontact microsurgery of living cell membrane using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ilina, I. V.; Ovchinnikov, A. V.; Sitnikov, D. S.; Chefonov, O. V.; Agranat, M. B.; Mikaelyan, A. S.

    2013-06-01

    Near-infrared femtosecond laser pulses were applied to initiate reversible permeabilization of cell membrane and inject extrinsic substances into the target cells. Successful laser-based injection of a membrane impermeable dye, as well as plasmid DNA was demonstrated.

  7. Long pulse chemical laser. Final technical report

    SciTech Connect

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R.

    1989-02-01

    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  8. Pulsed laser surface hardening of ferrous alloys.

    SciTech Connect

    Xu, Z.; Reed, C. B.; Leong, K. H.; Hunter, B. V.

    1999-09-30

    A high power pulsed Nd:YAG laser and special optics were used to produce surface hardening on 1045 steel and gray cast iron by varying the process parameters. Unlike CO{sub 2} lasers, where absorptive coatings are required, the higher absorptivity of ferrous alloys at the Nd:YAG laser wavelength eliminates the necessity of applying a coating before processing. Metallurgical analysis of the treated tracks showed that very fine and hard martensitic microstructure (1045 steel) or inhomogeneous martensite (gray cast iron) were obtained without surface melting, giving maximum hardness of HRC 61 and HRC 40 for 1045 steel and gray cast iron respectively. The corresponding maximum case depths for both alloys at the above hardness are 0.6 mm. Gray cast iron was more difficult to harden without surface melting because of its lower melting temperature and a significantly longer time-at-temperature required to diffuse carbon atoms from the graphite flakes into the austenite matrix during laser heating. The thermal distortion was characterized in term of flatness changes after surface hardening.

  9. Intense sub-2 optical cycle laser pulses at 1.8 micron for high harmonic generation

    NASA Astrophysics Data System (ADS)

    Legare, Francois; Schmidt, Bruno E.; Béejot, Pierre; Giguère, Mathieu; Shiner, Andrew D.; Trallero-Herrero, Carlos; Bisson, Éric; Kasparian, Jerome; Wolf, Jean-Pierre; Villeneuve, David M.; Kieffer, Jean-Claude; Corkum, Paul B.

    2010-03-01

    Shortening of attosecond pulse duration utilizing high harmonic generation (HHG) requires access to few cycle pulses in the infrared spectral range because the cut-off shifts towards higher photon energies proportional to the square of the driving field wavelength. Furthermore, the ability of performing time-resolved molecular orbital tomography of polyatomic molecules will benefit from longer wavelengths compared to 800 nm because of their low ionization potential. A simple scheme for generating 0.4 mJ 11.5 fs pulses at 1.8 μm is presented. Optical parametric amplified pulses were spectrally broadened in a hollow-core fiber and subsequently compressed by utilizing linear propagation through bulk material. The physical origin of the pulse compression scheme will be confirmed with numerical simulations of nonlinear propagation in the hollow-core fiber. Finally, high harmonic generation of noble gas atoms will be reported.

  10. 25 years of pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  11. PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS

    SciTech Connect

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  12. Reshaping of intense laser pulse with a capillary

    SciTech Connect

    Cao Lihua; Yu Wei; Yu, M. Y.; Wang Xin; Gu Yuqiu; He, X. T.

    2009-09-15

    The reshaping of intense laser pulse by vacuum capillary is studied by particle-in-cell simulation. It is shown that as an intense laser pulse propagates from free space into a capillary, its profile is reshaped due to laser-plasma interaction near the entrance of capillary. As a result, the free-space mode is self-consistently converted into a capillary mode. Only the relatively low-intensity periphery of the reshaped pulse interacts with the capillary-wall plasma, so that the high-intensity center of the pulse can propagate in the narrow vacuum channel over a distance much larger than the Rayleigh length. The mechanism is then applied to reshape a radially imperfect laser pulse having two wings around the center spot. Most of the output light energy is concentrated in the center spot, and the wings are almost completely removed. That is, the quality of the laser pulse can be greatly improved by a capillary.

  13. Pulse-burst operation of standard Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Den Hartog, D. J.; Ambuel, J. R.; Borchardt, M. T.; Reusch, J. A.; Robl, P. E.; Yang, Y. M.

    2010-05-01

    Two standard commercial flashlamp-pumped Nd:YAG lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to fifteen 2 J Q-switched pulses (1064 nm) at repetition rates 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by IGBT (insulated gate bipolar transistor) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to study the dynamic evolution of the electron temperature.

  14. Pulsed laser deposition of pepsin thin films

    NASA Astrophysics Data System (ADS)

    Kecskeméti, G.; Kresz, N.; Smausz, T.; Hopp, B.; Nógrádi, A.

    2005-07-01

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ( λ = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm 2. The pressure in the PLD chamber was 2.7 × 10 -3 Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm 2. The protein digesting capacity of the transferred pepsin was tested by adapting a modified "protein cube" method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  15. A Pulse-Burst Laser System for Thomson Scattering

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Borchardt, M. T.; Yang, Y. M.; Ambuel, J. R.; Holly, D. J.; Mattison, H. E.; Robl, P. E.

    2008-11-01

    A ``pulse-burst'' laser system is being constructed for addition to the Thomson scattering diagnostic on the MST reversed-field pinch. This laser will produce a burst of up to 200 approximately 1 J Q-switched pulses at repetition rates 5--250 kHz. The laser will operate at 1064 nm and is a master oscillator, power amplifier (MOPA) system. Variable pulse-width drive (0.1--20 ms) of the flashlamps is accomplished by IGBT switching of large electrolytic capacitor banks. In the near term, these flashlamp power supplies will be adapted to drive the flashlamps in the two existing commercial Nd:YAG lasers used for Thomson scattering on the MST RFP. This will enable these lasers to produce a burst of up to 40 pulses at repetition frequencies <= 1 kHz. The burst train of laser pulses will enable the study of Te and ne dynamics in a single MST shot.

  16. Production of picosecond, kilojoule, and petawatt laser pulses via Raman amplification of nanosecond pulses.

    PubMed

    Trines, R M G M; Fiúza, F; Bingham, R; Fonseca, R A; Silva, L O; Cairns, R A; Norreys, P A

    2011-09-01

    Raman amplification in plasma has been promoted as a means of compressing picosecond optical laser pulses to femtosecond duration to explore the intensity frontier. Here we show for the first time that it can be used, with equal success, to compress laser pulses from nanosecond to picosecond duration. Simulations show up to 60% energy transfer from pump pulse to probe pulse, implying that multikilojoule ultraviolet petawatt laser pulses can be produced using this scheme. This has important consequences for the demonstration of fast-ignition inertial confinement fusion. PMID:21981507

  17. Pulse-stretched Alexandrite laser for improved optical fiber reliability for laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Simons, David; Koschmann, Eric C.

    1992-06-01

    Clinical data shows that short pulse duration lasers used in laser induced shock wave lithotripsy severely damage optical fibers on both the proximal and distal ends which is unsuitable for clinical use. An Alexandrite laser system has been developed that uses dynamic pulse stretching of the Q-switched laser pulse and improved optical fiber coupling to eliminate the fiber damage. The method of pulse stretching presented controls the laser output pulse energy from 50 to 150 millijoules and temporal shape from 0.5 to 1.5 microseconds. This yields effective fragmentation of calculi without damage to the optical fiber.

  18. Pulse-Burst Laser Systems for Thomson Scattering on MST

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Borchardt, M. T.; Harris, W. S.; Reusch, J. A.; Yang, Y. M.

    2009-11-01

    A new purpose-built ``pulse-burst'' laser system is being constructed for the Thomson scattering diagnostic on the MST reversed-field pinch. This new laser will produce a burst of 1--2 J Q-switched pulses at repetition rates 5--250 kHz. It will operate at 1064 nm and is a master oscillator, power amplifier (MOPA) system. Variable pulse-width drive (0.15--20 ms) of the flashlamps in this laser will be accomplished by IGBT switching of large electrolytic capacitor banks. A subset of these power supplies has already been constructed and is currently being used to drive the flashlamps in the two existing commercial Nd:YAG lasers used for Thomson scattering on MST. Each of these upgraded lasers now produces a burst of up to fifteen 2 J Q-switched pulses (1064 nm) at repetition rates 1--12.5 kHz. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are currently being used to study the dynamic evolution of electron temperature in MST. The new purpose-built ``pulse-burst'' laser system will further expand this capability.

  19. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    PubMed

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C. PMID:22559543

  20. A new pulsed laser deposition technique: Scanning multi-component pulsed laser deposition method

    SciTech Connect

    Fischer, D.; Jansen, M.; Fuente, G. F. de la

    2012-04-15

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 deg. C.

  1. Amplifier similariton laser with extra-broad bandwidth output pulse

    NASA Astrophysics Data System (ADS)

    Korobko, D. A.; Okhotnikov, O. G.; Zolotovskii, I. O.

    2016-03-01

    We propose an advanced scheme of amplifier similariton laser providing an output pulse spectrum much wider than the gain bandwidth. The upgrade is an additional dispersive element introduced into the cavity to locally increase the peak pulse power. The proposed scheme demonstrates a drastic increase in the output pulse spectrum width, reduction of the pulse duration, and an increase in the output peak pulse power after compression.

  2. Stimulated brillouin backscatter of a short-pulse laser

    SciTech Connect

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.

    1994-11-03

    Stimulated Brillouin backscattering (SBBS) from a short-pulse laser, where the pulse length is short compared to the plasma length, is found to be qualitatively different than in the long pulse regime, where the pulse length is long compared to the plasma length. We find that after an initial transient of order the laser pulse length transit time, the instability reaches a steady state in the variables x{prime} = x {minus} V{sub g}t, t{prime} = t, where V{sub g} is the pulse group velocity. In contrast, SBBS in a long pulse can be absolutely unstable and grows indefinitely, or until nonlinearities intervene. We find that the motion of the laser pulse induces Doppler related effects that substantially modify the backscattered spectrum at higher intensities, where the instability is strongly coupled (i.e. , has a growth rate large compared to the ion acoustic frequency).

  3. New methods of generation of ultrashort laser pulses for ranging

    NASA Technical Reports Server (NTRS)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  4. Generation of ultrashort electron bunches by colliding laser pulses

    SciTech Connect

    Schroeder, C. B.; Lee, P. B.; Wurtele, J. S.; Esarey, E.; Leemans, W. P.

    1999-07-12

    A proposed laser-plasma based relativistic electron source [E. Esarey et al., Phys. Rev. Lett. 79, 2682 (1997)] using laser triggered injection of electrons is investigated. The source generates ultrashort electron bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited plasma wake. The plasma electrons are dephased by colliding two counter-propagating laser pulses which generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses.

  5. Generation of ultrashort electron bunches by colliding laser pulses.

    PubMed

    Schroeder, C B; Lee, P B; Wurtele, J S; Esarey, E; Leemans, W P

    1999-05-01

    A proposed laser-plasma-based relativistic electron source [E. Esarey et al., Phys. Rev. Lett. 79, 2682 (1997)] using laser-triggered injection of electrons is investigated. The source generates ultrashort electron bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited plasma wake. The plasma electrons are dephased by colliding two counterpropagating laser pulses which generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses. PMID:11969588

  6. Solitary Nanostructures Produced by Ultrashort Laser Pulse.

    PubMed

    Inogamov, Nail A; Zhakhovsky, Vasily V; Khokhlov, Viktor A; Petrov, Yury V; Migdal, Kirill P

    2016-12-01

    Laser-produced surface nanostructures show considerable promise for many applications while fundamental questions concerning the corresponding mechanisms of structuring are still debated. Here, we present a simple physical model describing those mechanisms happened in a thin metal film on dielectric substrate irradiated by a tightly focused ultrashort laser pulse. The main ingredients included into the model are (i) the film-substrate hydrodynamic interaction, melting and separation of the film from substrate with velocity increasing with increase of absorbed fluence; (ii) the capillary forces decelerating expansion of the expanding flying film; and (iii) rapid freezing into a solid state if the rate of solidification is comparable or larger than hydrodynamic velocities. The developed model and performed simulations explain appearance of microbump inside the focal spot on the film surface. The model follows experimental findings about gradual transformation of the bump from small parabolic to a conical shape and to the bump with a jet on its tip with increasing fluence. Disruption of the bump as a result of thinning down the liquid film to a few interatomic distances or due to mechanical break-off of solid film is described together with the jetting and formation of one or many droplets. Developed theory opens door for optimizing laser parameters for intended nanostructuring in applications. PMID:27044306

  7. Optical gene transfer by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  8. Solitary Nanostructures Produced by Ultrashort Laser Pulse

    NASA Astrophysics Data System (ADS)

    Inogamov, Nail A.; Zhakhovsky, Vasily V.; Khokhlov, Viktor A.; Petrov, Yury V.; Migdal, Kirill P.

    2016-04-01

    Laser-produced surface nanostructures show considerable promise for many applications while fundamental questions concerning the corresponding mechanisms of structuring are still debated. Here, we present a simple physical model describing those mechanisms happened in a thin metal film on dielectric substrate irradiated by a tightly focused ultrashort laser pulse. The main ingredients included into the model are (i) the film-substrate hydrodynamic interaction, melting and separation of the film from substrate with velocity increasing with increase of absorbed fluence; (ii) the capillary forces decelerating expansion of the expanding flying film; and (iii) rapid freezing into a solid state if the rate of solidification is comparable or larger than hydrodynamic velocities. The developed model and performed simulations explain appearance of microbump inside the focal spot on the film surface. The model follows experimental findings about gradual transformation of the bump from small parabolic to a conical shape and to the bump with a jet on its tip with increasing fluence. Disruption of the bump as a result of thinning down the liquid film to a few interatomic distances or due to mechanical break-off of solid film is described together with the jetting and formation of one or many droplets. Developed theory opens door for optimizing laser parameters for intended nanostructuring in applications.

  9. Glass drilling by longitudinally excited CO2 laser with short laser pulse

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Yamamoto, Takuya; Akitsu, Tetsuya; Jitsuno, Takahisa

    2015-03-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance, and a spark-gap switch. The laser pulse had a spike pulse and a pulse tail. The energy of the pulse tail was controlled by adjusting medium gas. Using three types of CO2 laser pulse with the same spike-pulse energy and the different pulse-tail energy, the characteristics of the hole drilling of synthetic silica glass was investigated. Higher pulse-tail energy gave deeper ablation depth. In the short laser pulse with the spike-pulse energy of 1.2 mJ, the spike pulse width of 162 ns, the pulse-tail energy of 24.6 mJ, and the pulse-tail length of 29.6 μs, 1000 shots irradiation produced the ablation depth of 988 μm. In the hole drilling of synthetic silica glass by the CO2 laser, a crack-free process was realized.

  10. Pulse front adaptive optics: a new method for control of ultrashort laser pulses.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-07-27

    Ultrafast lasers enable a wide range of physics research and the manipulation of short pulses is a critical part of the ultrafast tool kit. Current methods of laser pulse shaping are usually considered separately in either the spatial or the temporal domain, but laser pulses are complex entities existing in four dimensions, so full freedom of manipulation requires advanced forms of spatiotemporal control. We demonstrate through a combination of adaptable diffractive and reflective optical elements - a liquid crystal spatial light modulator (SLM) and a deformable mirror (DM) - decoupled spatial control over the pulse front (temporal group delay) and phase front of an ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary shaping of the pulse front, promises to offer a further level of control for ultrafast lasers. PMID:26367595

  11. Pulse laser ablation at water-air interface

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro

    2010-06-01

    We studied a new pulse laser ablation phenomenon on a liquid surface layer, which is caused by the difference between the refractive indices of the two materials involved. The present study was motivated by our previous study, which showed that laser ablation can occur at the interface between a transparent material and a gas or liquid medium when the laser pulse is focused through the transparent material. In this case, the ablation threshold fluence is reduced remarkably. In the present study, experiments were conducted in water and air in order to confirm this phenomenon for a combination of two fluid media with different refractive indices. This phenomenon was observed in detail by pulse laser shadowgraphy. A high-resolution film was used to record the phenomenon with a Nd:YAG pulse laser with 10-ns duration as a light source. The laser ablation phenomenon on the liquid surface layer caused by a focused Nd:YAG laser pulse with 1064-nm wavelength was found to be followed by the splashing of the liquid surface, inducing a liquid jet with many ligaments. The liquid jet extension velocity was around 1000 m/s in a typical case. The liquid jet decelerated drastically due to rapid atomization at the tips of the ligaments. The liquid jet phenomenon was found to depend on the pulse laser parameters such as the laser fluence on the liquid surface, laser energy, and laser beam pattern. The threshold laser fluence for the generation of a liquid jet was 20 J/cm2. By increasing the incident laser energy with a fixed laser fluence, the laser focused area increased, which eventually led to an increase in the size of the plasma column. The larger the laser energy, the larger the jet size and the longer the temporal behavior. The laser beam pattern was found to have significant effects on the liquid jet’s velocity, shape, and history.

  12. Clutter discrimination algorithm simulation in pulse laser radar imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Su, Xuan; Zhu, Fule

    2015-10-01

    Pulse laser radar imaging performance is greatly influenced by different kinds of clutter. Various algorithms are developed to mitigate clutter. However, estimating performance of a new algorithm is difficult. Here, a simulation model for estimating clutter discrimination algorithms is presented. This model consists of laser pulse emission, clutter jamming, laser pulse reception and target image producing. Additionally, a hardware platform is set up gathering clutter data reflected by ground and trees. The data logging is as clutter jamming input in the simulation model. The hardware platform includes a laser diode, a laser detector and a high sample rate data logging circuit. The laser diode transmits short laser pulses (40ns FWHM) at 12.5 kilohertz pulse rate and at 905nm wavelength. An analog-to-digital converter chip integrated in the sample circuit works at 250 mega samples per second. The simulation model and the hardware platform contribute to a clutter discrimination algorithm simulation system. Using this system, after analyzing clutter data logging, a new compound pulse detection algorithm is developed. This new algorithm combines matched filter algorithm and constant fraction discrimination (CFD) algorithm. Firstly, laser echo pulse signal is processed by matched filter algorithm. After the first step, CFD algorithm comes next. Finally, clutter jamming from ground and trees is discriminated and target image is produced. Laser radar images are simulated using CFD algorithm, matched filter algorithm and the new algorithm respectively. Simulation result demonstrates that the new algorithm achieves the best target imaging effect of mitigating clutter reflected by ground and trees.

  13. Evolution of chirped laser pulses in a magnetized plasma channel

    SciTech Connect

    Jha, Pallavi; Hemlata,; Mishra, Rohit Kumar

    2014-12-15

    The propagation of intense, short, sinusoidal laser pulses in a magnetized plasma channel has been studied. The wave equation governing the evolution of the radiation field is set up and a variational technique is used to obtain the equations describing the evolution of the laser spot size, pulse length and chirp parameter. Numerical methods are used to analyze the simultaneous evolution of these parameters. The effect of the external magnetic field on initially chirped as well as unchirped laser pulses on the spot size, pulse length and chirping has been analyzed.

  14. Controlling plasma channels through ultrashort laser pulse filamentation

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey A.; Seleznev, Leonid V.; Sunchugasheva, Elena S.

    2013-10-01

    A review of studies fulfilled at the Lebedev Institute in collaboration with the Moscow State University and Institute of Atmospheric Optics in Tomsk (Siberia) on influence of various characteristics of ultrashort laser pulse on plasma channels formed under its filamentation is presented. Filamentation of high-power laser pulses with wavefront controlled by a deformable mirror, with cross-sections spatially formed by various diaphragms and with different wavelengths was experimentally and numerically studied. An application of plasma channels formed due to filamentation of ultrashort laser pulse including a train of such pulses for triggering and guiding electric discharge is discussed.

  15. Laser-generated ultrasonic pulse shapes at solid wedges.

    PubMed

    Pupyrev, Pavel D; Lomonosov, Alexey M; Mayer, Andreas P

    2016-08-01

    Laser pulses focused near the tip of an elastic wedge generate acoustic waves guided at its apex. The shapes of the acoustic wedge wave pulses depend on the energy and the profile of the exciting laser pulse and on the anisotropy of the elastic medium the wedge is made of. Expressions for the acoustic pulse shapes have been derived in terms of the modal displacement fields of wedge waves for laser excitation in the thermo-elastic regime and for excitation via a pressure pulse exerted on the surface. The physical quantity considered is the local inclination of a surface of the wedge, which is measured optically by laser-probe-beam deflection. Experimental results on pulse shapes in the thermo-elastic regime are presented and confirmed by numerical calculations. They pertain to an isotropic sharp-angle wedge with two wedge-wave branches and to a non-reciprocity phenomenon at rectangular silicon edges. PMID:27135188

  16. Laser Pulse-Stretching Using Multiple Optical Ring-Cavities

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    We describe a simple and passive nanosecond-long (ns-long) laser 'pulse-stretcher' using multiple optical ring-cavities. We present a model of the pulse-stretching process for an arbitrary number of optical ring-cavities. Using the model, we optimize the design of a pulse-stretcher for use in a spontaneous Raman scattering excitation system that avoids laser-induced plasma spark problems. From the optimized design, we then experimentally demonstrate and verify the model with a 3-cavity pulse-stretcher system that converts a 1000 mJ, 8.4 ns-long input laser pulse into an approximately 75 ns-long (FWHM) output laser pulse with a peak power reduction of 0.10X, and an 83% efficiency.

  17. Ultrafast pulse lasers jump to macro applications

    NASA Astrophysics Data System (ADS)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  18. Femtosecond induced transparency and absorption in the extremeultraviolet by coherent coupling of the He 2s2p (1Po) and 2p2 (1Se)double excitation states with 800 nm light

    SciTech Connect

    Loh, Z.-H.; Greene, C.H.; Leone, S.R.

    2007-08-01

    Femtosecond high-order harmonic transient absorption spectroscopy is used to observe electromagnetically induced transparency-like behavior as well as induced absorption in the extreme ultraviolet by laser dressing of the He 2s2p ({sup 1}P{sup 0}) and 2p{sup 2} ({sup 1}S{sup e}) double excitation states with an intense 800 nm field. Probing in the vicinity of the 1s{sup 2} {yields} 2s2p transition at 60.15 eV reveals the formation of an Autler-Townes doublet due to coherent coupling of the double excitation states. Qualitative agreement with the experimental spectra is obtained only when optical field ionization of both double excitation states into the N = 2 continuum is included in the theoretical model. Because the Fano q-parameter of the unperturbed probe transition is finite, the laser-dressed He atom exhibits both enhanced transparency and absorption at negative and positive probe energy detunings, respectively.

  19. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    PubMed

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state. PMID:25606901

  20. Incubation and nanostructure formation on n- and p-type Si(1 0 0) and Si(1 1 1) at various doping levels induced by sub-nanojoule femto- and picosecond near-infrared laser pulses

    NASA Astrophysics Data System (ADS)

    Schüle, M.; Afshar, M.; Feili, D.; Seidel, H.; König, K.; Straub, M.

    2014-09-01

    N- and p-doped Si(1 0 0) and Si(1 1 1) surfaces with dopant concentrations of 2 × 1014-1 × 1019 cm-3 were irradiated by tightly focused 85-MHz repetition rate Ti:sapphire laser light (central wavelength 800 nm, bandwidth 120 nm) at pulse durations of 12 fs to 1.6 ps. Dependent on pulse peak intensity and exposure time nanorifts, ripples of period 130 nm as well as sponge-like randomly nanoporous surface structures were generated with water immersion and, thereafter, laid bare by etching off aggregated oxide nanoparticles. The same structure types emerged in air or water with transform-limited 100-fs pulses. At a pulse length of 12 fs pronounced incubation occurred with incubation coefficients S = 0.66-0.85, whereas incubation was diminished for picosecond pulses (S > 0.95). The ablation threshold strongly rose with dopant concentration. At similar doping level it was higher for n-type than for p-type samples and for Si(1 0 0) compared to Si(1 1 1) surfaces. These observations are attributed to laser-induced defect states in the bandgap which participate in photoexcitation, deactivation of dopants by complex formation, and different densities of interface states at the boundary with the ultrathin native silicon dioxide surface layer. The threshold increase with pulse length revealed predominant single-photon excitation as well as multiphoton absorption.

  1. Electron acceleration by a laser pulse in a plasma

    SciTech Connect

    McKinstrie, C.J.; Startsev, E.A.

    1996-08-01

    The acceleration of an electron by a circularly polarized laser pulse in a plasma is studied. It appears possible to increase significantly the energy of a preaccelerated electron. Although the pulse tends to generate a plasma wake, to which it loses energy, one can eliminate the wake by choosing the duration of the pulse judiciously. {copyright} {ital 1996 The American Physical Society.}

  2. Pulsed FM mode locking of a Nd:BEL laser.

    PubMed

    Godil, A A; Li, K D; Bloom, D M

    1991-08-15

    A novel but simple and practical mode locker was built and demonstrated for a diode-pumped Nd:BEL laser. Fast electrical pulses from a comb generator drive a LiNbO(3) crystal, which produces pulsed electro-optic phase modulation in the laser cavity. Stable mode-locked pulses of 7.5-ps duration were obtained at a repetition rate of 250 MHz. PMID:19776932

  3. Additive-pulse modelocking of non-cw neodymium lasers

    NASA Astrophysics Data System (ADS)

    Heinz, P.; Reuther, A.; Laubereau, A.

    1993-03-01

    Passive modelocking of several flash-lamp pumped neodymium lasers with electro-optic amplitude stabilization is demonstrated using a nonlinear Michelson interferometer. Improved performance is reported for the GSGG- YLF- and glass-laser as compared to the nonlinear absorber, with shorter pulse durations and smaller amplitude fluctuations, e.g. 5 μJ pulses for 460 ± 20 fs for Nd:glass. Evidence is obtained for multi-selfstability of the pulse energy.

  4. Tailoring the plasma channel generated by femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Fan, Chengyu; Zhang, Pengfei; Jia, Wei

    2015-02-01

    By investigating the spatial and temporal variations of the propagating pulses, we have shown for the first time that the lattice waveguides can induce nonlinear effects to tailor the plasma channel generated by a femtosecond laser pulse. Different types of the spatiotemporal localized nonlinear light bullet’s propagating configurations have been predicted. By adjusting the parameters of the modulation potential, longer continuum filaments and reshaped laser pulses can be obtained, due to the focusing nonlinearity of the lattice modulation index.

  5. High energy protons generation by two sequential laser pulses

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  6. Optodynamic aspect of a pulsed laser ablation process

    NASA Astrophysics Data System (ADS)

    Hrovatin, Rok; Možina, Janez

    1995-02-01

    A study of a pulsed laser ablation process is presented from a novel, optodynamic aspect. By quantitative analysis of laser-induced bulk ultrasonic and blast waves in the air the ablation dynamics is characterized. In this way the influence of the laser pulse parameters and of the interacting material on the ablation process was assessed. By the analysis of the laser drilling process of thin layered samples the material influence was demonstrated. Besides the ultrasonic evaluation of the laser pulse power density the plasma shielding for 10 ns laser pulses was analyzed by the same method. All measurements were noncontact. Bulk waves in the solid and blast waves in the air were measured simultaneously, an interferometric and a probe beam deflection method were used, respectively.

  7. Nonlinear laser pulse response in a crystalline lens.

    PubMed

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated. PMID:27192252

  8. Studies of Photosynthesis Using a Pulsed Laser

    PubMed Central

    De Vault, Don; Chance, Britton

    1966-01-01

    The rate of oxidation of cytochrome following absorption of a short pulse of light from a ruby laser in the photosynthetic bacterium Chromatium has been measured spectrophotometrically. The half-time is about 2 μsec at room temperature increasing to 2.3 msec at about 100°K and constant at the latter value to 35°K or below. The temperature dependence above 120°K corresponds to an activation energy of 3.3 kcal/mole; that below 100°K to less than 80 cal/mol: essentially a temperature-independent electron transport reaction. Since the slowness below 100°K indicates the presence of a barrier, the lack of activation energy is taken to mean penetration by quantum-mechanical “tunneling.” PMID:5972381

  9. Pulsed laser Doppler measurements of wind shear

    NASA Technical Reports Server (NTRS)

    Dimarzio, C.; Harris, C.; Bilbro, J. W.; Weaver, E. A.; Burnham, D. C.; Hallock, J. N.

    1979-01-01

    There is a need for a sensor at the airport that can remotely detect, identify, and track wind shears near the airport in order to assure aircraft safety. To determine the viability of a laser wind-shear system, the NASA pulsed coherent Doppler CO2 lidar (Jelalian et al., 1972) was installed in a semitrailer van with a rooftop-mounted hemispherical scanner and was used to monitor thunderstorm gust fronts. Wind shears associated with the gust fronts at the Kennedy Space Center (KSC) between 5 July and 4 August 1978 were measured and tracked. The most significant data collected at KSC are discussed. The wind shears were clearly visible in both real-time velocity vs. azimuth plots and in postprocessing displays of velocities vs. position. The results indicate that a lidar system cannot be used effectively when moderate precipitation exists between the sensor and the region of interest.

  10. Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics

    SciTech Connect

    Puerto, D.; Siegel, J.; Gawelda, W.; Galvan-Sosa, M.; Solis, J.; Ehrentraut, L.; Bonse, J.

    2010-05-15

    We have studied plasma formation and relaxation dynamics along with the corresponding topography modifications in fused silica and sapphire induced by single femtosecond laser pulses (800 nm and 120 fs). These materials, representative of high bandgap amorphous and crystalline dielectrics, respectively, require nonlinear mechanisms to absorb the laser light. The study employed a femtosecond time-resolved microscopy technique that allows obtaining reflectivity and transmission images of the material surface at well-defined temporal delays after the arrival of the pump pulse which excites the dielectric material. The transient evolution of the free-electron plasma formed can be followed by combining the time-resolved optical data with a Drude model to estimate transient electron densities and skin depths. The temporal evolution of the optical properties is very similar in both materials within the first few hundred picoseconds, including the formation of a high reflectivity ring at about 7 ps. In contrast, at longer delays (100 ps-20 ns) the behavior of both materials differs significantly, revealing a longer lasting ablation process in sapphire. Moreover, transient images of sapphire show a concentric ring pattern surrounding the ablation crater, which is not observed in fused silica. We attribute this phenomenon to optical diffraction at a transient elevation of the ejected molten material at the crater border. On the other hand, the final topography of the ablation crater is radically different for each material. While in fused silica a relatively smooth crater with two distinct regimes is observed, sapphire shows much steeper crater walls, surrounded by a weak depression along with cracks in the material surface. These differences are explained in terms of the most relevant thermal and mechanical properties of the material. Despite these differences the maximum crater depth is comparable in both material at the highest fluences used (16 J/cm{sup 2}). The

  11. Approaches to solar cell design for pulsed laser power receivers

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1993-01-01

    Using a laser to beam power from Earth to a photovoltaic receiver in space could be a technology with applications to many space missions. Extremely high average-power lasers would be required in a wavelength range of 700-1000 nm. However, high-power lasers inherently operate in a pulsed format. Existing solar cells are not well designed to respond to pulsed incident power. To better understand cell response to pulsed illumination at high intensity, the PC-1D finite-element computer model was used to analyze the response of solar cells to continuous and pulsed laser illumination. Over 50 percent efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modeled, and the effect of laser intensity, wavelength, and bias point was studied. Three main effects decrease the efficiency of a solar cell under pulsed laser illumination: series resistance, L-C 'ringing' with the output circuit, and current limiting due to the output inductance. The problems can be solved either by changing the pulse shape or designing a solar cell to accept the pulsed input. Cell design possibilities discussed are a high-efficiency, light-trapping silicon cell, and a monolithic, low-inductance GaAs cell.

  12. Electron beam-switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, L.D.; Murray, J.R.; Goldhar, J.; Bradley, L.P.

    1979-12-11

    A method and apparatus are designed for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  13. Measuring spatiotemporal intensity-and-phase complexity of multimode fiber output pulses

    NASA Astrophysics Data System (ADS)

    Guang, Zhe; Rhodes, Michelle; Trebino, Rick

    2016-03-01

    We demonstrate ultrashort pulse spatiotemporal field measurement for multimode optical fibers, using a singleframe characterization technique, called Spatially and Temporally Resolved Intensity and Phase Evaluation Device: Full Information from a Single Hologram (STRIPED FISH). We measure STRIPED FISH traces and retrieve the pulse field E(x,y,t) or equivalently E(x,y,ω), to generate movies revealing the field structure induced by propagating modes, due to their differences in field spatial distribution, modal propagation velocity and modal dispersion inside the fiber. We launch femtosecond pulses near 800nm from Ti: Sapphire laser to investigate linearly polarized modes LP01, LP11, LP02 and LP21 in multimode fibers.

  14. Dielectric breakdown induced by picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1976-01-01

    The damage thresholds of transparent optical materials were investigated. Single picosecond pulses at 1.06 microns, 0.53 microns and 0.35 microns were obtained from a mode locked Nd-YAG oscillator-amplifier-frequency multiplier system. The pulses were Gaussian in space and time and permitted the determination of breakdown thresholds with a reproducibility of 15%. It was shown that the breakdown thresholds are characteristic of the bulk material, which included nine alkali halides, five different laser host materials, KDP, quartz, sapphire and calcium fluoride. The extension of the damage data to the ultraviolet is significant, because some indication was obtained that two- and three-photon absorption processes begin to play a role in determining the threshold. Throughout the visible region of the spectrum the threshold is still an increasing function of frequency, indicating that avalanche ionization is the dominant factor in determining the breakdown threshold. This was confirmed by a detailed study of the damage morphology with a high resolution microscope just above the threshold. The influence of self focusing is discussed, and evidence for beam distortion below the power threshold for complete self focusing is presented, confirming the theory of Marburger.

  15. Controlled electron injection into laser wakefields with a perpendicular injection laser pulse

    SciTech Connect

    Wang, W.-M.; Sheng, Z.-M.; Zhang, J.

    2008-11-17

    Electron injection into laser wakefields for acceleration by two orthogonally directed laser pulses is investigated theoretically. It is found that efficient injection occurs provided the two pulses are collinearly polarized, even if the injection pulse is much weaker than the pump pulse driving wakefields. Compared with the head-on colliding injection geometry, this scheme allows for a shorter propagation distance less than a Rayleigh length for the injection pulse, before its overlapping with the pump pulse. Moreover, it can generate electron beams stably with comparable low energy spread and emittance, as demonstrated by particle-in-cell simulations. The optimization of laser parameters is also investigated.

  16. Hemocompatible, pulsed laser deposited coatings on polymers.

    PubMed

    Lackner, Juergen M; Waldhauser, Wolfgang; Major, Roman; Major, Boguslaw; Bruckert, Franz

    2010-02-01

    State-of-the-art non-thrombogenic blood contacting surfaces are based on heparin and struggle with the problem of bleeding. However, appropriate blood flow characteristics are essential for clinical application. Thus, there is increasing demand to develop new coating materials for improved human body acceptance. Materials deposited by vacuum coating techniques would be an excellent alternative if the coating temperatures can be kept low because of the applied substrate materials of low temperature resistance (polymers). Most of the recently used plasma-based deposition techniques cannot fulfill this demand. However, adequate film structure and high adhesion can be reached by the pulsed laser deposition at room temperature, which was developed to an industrial-scaled process at Laser Center Leoben. Here, this process is described in detail and the resulting structural film properties are shown for titanium, titanium nitride, titanium carbonitride, and diamond-like carbon on polyurethane, titanium and silicon substrates. Additionally, we present the biological response of blood cells and the kinetic mechanism of eukaryote cell attachment. In conclusion, high biological acceptance and distinct differences for the critical delamination shear stress were found for the coatings, indicating higher adhesion at higher carbon contents. PMID:20128746

  17. Creation and control of single attosecond XUV pulse by few-cycle intense laser pulse

    NASA Astrophysics Data System (ADS)

    Carrera, Juan J.; Tong, X. M.; Chu, Shih-I.

    2006-05-01

    We present a theoretical investigation of the mechanisms responsible for the production of single atto-second pulse by using few-cycle intense laser pulses. The atto-second XUV spectral is calculated by accurately integrating the time- dependent Schr"odinger equation. The detailed mechanism for the production of the XUV pulse are also corroborated by analyzing the classical trajectories of the electron. Our study shows that the first return of the rescattering electron is responsible for the high energy atto-second pulse. Furthermore, we can optimize the production of atto-second XUV pulses by modifying the trajectory of the rescattering electron by tuning the laser field envelope.

  18. Material micromachining using a pulsed fiber laser platform with fine temporal nanosecond pulse shaping capability

    NASA Astrophysics Data System (ADS)

    Deladurantaye, Pascal; Gay, David; Cournoyer, Alain; Roy, Vincent; Labranche, Bruno; Levesque, Marc; Taillon, Yves

    2009-02-01

    We report on recent advances in laser material processing using a novel pulsed fiber laser platform providing pulse shape agility at the nanosecond time scale and at high repetition rates. The pulse shapes can be programmed with a time resolution of 2.5 ns and with an amplitude resolution of 10 bits. Depending on the desired laser performances, the pulses are generated either by directly modulating the drive current of a seed laser diode or by modulating the output of a seed laser diode operated in CW with electro-optic modulators. The pulses are amplified in an amplifier chain in a MOPA configuration. Advanced polarization maintaining LMA fiber designs enable output energy per pulse up to 60 μJ at 1064 nm at a repetition rate of 200 kHz with excellent beam quality (M2< 1.1) and narrow line widths suitable for efficient frequency conversion. Micro-milling experiments were carried out with stainless steel, in which processing microstructures of a few tens of microns in size usually represents a challenge, and aluminum, whose thermal conductivity is about 20 times higher than stainless steel. The results obtained with two metals having very different thermal properties using different pulse shapes with durations varying between 3 ns and 80 ns demonstrate the benefits of using lasers offering flexible pulse durations and controllable pulse intensity profiles for rapidly optimizing a process in different applications while using the same laser with respect to conventional methods based on pulsed laser with fixed pulse shapes. Numerous applications are envisioned in a near future, like the micromachining of multi-layered structures, in particular when working with the harmonics of the laser.

  19. Optical pulse generation using fiber lasers and integrated optics

    SciTech Connect

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-03-27

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics.

  20. [INVITED] Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping

    NASA Astrophysics Data System (ADS)

    Garrelie, Florence; Bourquard, Florent; Loir, Anne--Sophie; Donnet, Christophe; Colombier, Jean-Philippe

    2016-04-01

    This study explores the effects of temporal laser pulse shaping on femtosecond pulsed laser deposition (PLD). The potential of laser pulses temporally tailored on ultrafast time scales is used to control the expansion and the excitation degree of ablation products including atomic species and nanoparticles. The ablation plume generated by temporally shaped femtosecond pulsed laser ablation of aluminum and graphite targets is studied by in situ optical diagnostic methods. Taking advantage of automated pulse shaping techniques, an adaptive procedure based on spectroscopic feedback regulates the irradiance for the enhancement of typical plasma features. Thin films elaborated by unshaped femtosecond laser pulses and by optimized sequence indicate that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. The ablation processes leading either to the generation of the nanoparticles either to the formation of plasma can be favored by using a temporal shaping of the laser pulse. Insights are given on the possibility to control the quantity of the nanoparticles. The temporal laser pulse shaping is shown also to strongly modify the laser-induced plasma contents and kinetics for graphite ablation. Temporal pulse shaping proves its capability to reduce the number of slow radicals while increasing the proportion of monomers, with the addition of ionized species in front of the plume. This modification of the composition and kinetics of plumes in graphite ablation using temporal laser pulse shaping is discussed in terms of modification of the structural properties of deposited Diamond-Like Carbon films (DLC). This gives rise to a better understanding of the growth processes involved in femtosecond-PLD and picosecond-PLD of DLC suggesting the importance of neutral C atoms, which are responsible for the subplantation process.

  1. Pulsed Laser Deposition of Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Brodoceanu, D.; Scarisoreanu, N. D.; Filipescu, M. (Morar); Epurescu, G. N.; Matei, D. G.; Verardi, P.; Craciun, F.; Dinescu, M.

    2004-10-01

    Pulsed Laser Deposition (PLD) emerged as an attractive technique for growth of thin films with different properties as metals, semiconductors, ferroelectrics, biocompatibles, polymers, etc., due to its important advantages: (i) the stoichiometric transfer of a complex composition from target to film and film crystallization at lower substrate temperature respect to other techniques (due to the high energy of species in the laser plasma); (ii) single step process, synthesis and deposition; (iii) creation in plasma of species impossible to be obtained by other processes; (iv) possibility of "in situ" heterostructure deposition using a multi-target system, etc. Simple or complex oxides are between the materials widely studied for their applications. PMN is the most known relaxor ferroelectric material: it exhibits a high dielectric constant value around the (diffuse) maximum phase transition temperature, of more than 35 000 in bulk form. Other oxides as lead zirconate titanate, Pb(ZrxTi1-x)O3 simple or La doped exhibit exceptional properties as large remanent polarization, high dielectric permittivity, high piezoelectric coefficient. SrBi2Ta2O9 (SBT) is characterized by a high "fatigue resistance" (constant remanent polarization until 1012 switching cycles), low imprint, and low leakage current. The physical properties of zirconium oxide (or zirconia) -- high strength, stability at high temperatures -- make it useful for applications involving gas sensors, corrosion or heat resistant mechanical parts, high refractive index optical coatings. Of particular interest is its use as an alternative gate dielectric in metal-oxide-semiconductor (MOS) devices or capacitor in dynamic random access memory (DRAM) chips. All these oxides have been deposited by laser ablation in oxygen reactive atmosphere and some of their properties will be presented in this paper.

  2. Fiber Optic Solutions for Short Pulse Lasers

    SciTech Connect

    Beach, R; Dawson, J; Liao, Z; Jovanovic, I; Wattellier, B; Payne, S; Barty, C P

    2003-01-29

    For applications requiring high beam quality radiation from efficient, compact and rugged sources, diffraction limited fiber lasers are ideal, and to date have been demonstrated at average CW power levels exceeding 100 W with near diffraction limited: output. For conventional single-core step-index single-mode fibers, this power level represents the sealing limit because of nonlinear and laser damage considerations. Higher average powers would exceed nonlinear process thresholds such as the Raman and stimulated Brillouin scattering limit, or else damage the fiber due to the high intensity level in the fiber's core. The obvious way to increase the average power capability of fibers is to increase the area of their core. Simply expanding the core dimensions of the fiber allows a straightforward power sealing due to enhanced nonlinear and power handling characteristics that scale directly with the core area. Femtosecond, chirped-pulse, fiber lasers with pulse energies greater than 1mJ have been demonstrated in the literature [2] using this technique. This output energy was still limited by the onset of stimulated Raman scattering. We have pursued an alternative and complimentary approach which is to reduce the intensity of light propagating in the core by distributing it more evenly across the core area via careful design of the refractive index profile [3]. We have also sought to address the primary issue that results from scaling the core. The enhanced power handling capability comes at the expense of beam quality, as increasing the core diameter in standard step index fibers permits multiple transverse modes to lase simultaneously. Although this problem of multimode operation can be mitigated to some extent by appropriately designing the fiber's waveguide structure, limitations such as bend radius loss, sensitivity to thermally induced perturbations of the waveguide structure, and refractive index control, all become more stringent as the core diameter grows

  3. A laser spectrometer and wavemeter for pulsed lasers

    NASA Technical Reports Server (NTRS)

    Mckay, J. A.; Laufer, P. M.; Cotnoir, L. J.

    1989-01-01

    The design, construction, calibration, and evaluation of a pulsed laser wavemeter and spectral analyzer are described. This instrument, called the Laserscope for its oscilloscope-like display of laser spectral structure, was delivered to NASA Langley Research Center as a prototype of a laboratory instrument. The key component is a multibeam Fizeau wedge interferometer, providing high (0.2 pm) spectral resolution and a linear dispersion of spectral information, ideally suited to linear array photodiode detectors. Even operating alone, with the classic order-number ambiguity of interferometers unresolved, this optical element will provide a fast, real-time display of the spectral structure of a laser output. If precise wavelength information is also desired then additional stages must be provided to obtain a wavelength measurement within the order-number uncertainty, i.e., within the free spectral range of the Fizeau wedge interferometer. A Snyder (single-beam Fizeau) wedge is included to provide this initial wavelength measurement. Difficulties in achieving the required wide-spectrum calibration limit the usefulness of this function.

  4. Measurements of Intense Femtosecond Laser Pulse Propagation in Air

    NASA Astrophysics Data System (ADS)

    Ting, Antonio

    2004-11-01

    Intense femtosecond pulses generated from chirped pulse amplification (CPA) lasers can deliver laser powers many times above the critical power for self-focusing in air. Catastrophic collapse of the laser pulse is usually prevented by the defocusing of the plasma column formed when the laser intensity gets above the threshold for multiphoton ionization. The resultant laser/plasma filament can extend many meters as the laser pulse propagates in the atmosphere. We have carried out a series of experiments both for understanding the formation mechanisms of the filaments and the nonlinear effects such as white light and harmonics generation associated with them. Many applications of these filaments such as remote atmospheric breakdown, laser induced electrical discharge and femtosecond laser material interactions require direct measurements of their characteristics. Direct measurements of these filaments had been difficult because the high laser intensity ( ˜10^13 W/cm^2) can damage practically any optical diagnostics. A novel technique was invented to obtain the first absolute measurements of laser energy, transverse profile, fluence and spectral content of the filaments. We are investigating a ``remote atmospheric breakdown'' concept of remotely sensing chemical and biological compounds. A short intense laser pulse can be generated at a remote position by using the group velocity dispersion (GVD) of the air to compress an initially long, frequency negatively chirped laser pulse to generate the air breakdown and filaments. We have observed that nonlinear contributions to the laser spectrum through self-phase modulation can lead to modification of the linear GVD compression. We have also observed the generation of ultraviolet (UV) radiations from these filaments in air and the induced fluorescence by the UV radiation of a surrogate biological agent. These and other results such as laser induced electrical discharges will be presented.

  5. Application of Yb:YAG short pulse laser system

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Crane, John K.; Telford, Steve; Perry, Michael D.

    2004-07-06

    A diode pumped, high power (at least 20W), short pulse (up to 2 ps), chirped pulse amplified laser using Yb:YAG as the gain material is employed for material processing. Yb:YAG is used as the gain medium for both a regenerative amplifier and a high power 4-pass amplifier. A single common reflective grating optical device is used to both stretch pulses for amplification purposes and to recompress amplified pulses before being directed to a workpiece.

  6. Dephasing time of an electron accelerated by a laser pulse

    SciTech Connect

    McKinstrie, C.J.; Startsev, E.A.

    1997-08-01

    The trajectory and dephasing time of an electron accelerated by a circularly polarized laser pulse are determined analytically. The dephasing time is proportional to {gamma}{sub P}{sup 2}l, where {gamma}{sub P} is the Lorentz factor associated with the pulse speed and l is the pulse length. The residual dependence of the dephasing time on pulse intensity and electron injection energy is studied in detail. {copyright} {ital 1997} {ital The American Physical Society}

  7. 25 years of pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  8. Generation of 1.5 cycle 0.3 TW laser pulses using a hollow-fiber pulse compressor.

    PubMed

    Park, Juyun; Lee, Jae-Hwan; Nam, Chang Hee

    2009-08-01

    Pulse compression in a differentially pumped neon-filled hollow fiber was used to generate high-power few-cycle laser pulses. The pulse compression process was optimized by adjusting gas pressure and laser chirp to produce the shortest laser pulses. Precise dispersion control enabled the generation of laser pulses with duration of 3.7 fs and energy of 1.2 mJ. This corresponds to an output of 1.5 cycle, 0.3 TW pulses at a 1 kHz repetition rate using positively chirped 33 fs laser pulses. PMID:19649091

  9. Generation of high-power nanosecond pulses from laser diode-pumped Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Chan, Kinpui

    1988-01-01

    Simulation results are used to compare the pulse energy levels and pulse energy widths that can be achieved with LD-pumped Nd:YAG lasers for both the pulse-transmission mode (PTM) and pulse-reflection mode (PRM) Q-switching methods for pulse energy levels up to hundreds of microjoules and pulse widths as short as 1 ns. It is shown that high-power pulses with pulse widths as short as 1 ns can be generated with PTM Q-switched in LD-pumped Nd:YAG lasers. With the PRM Q-switching method, pulse widths as short as 2 ns and pulse energy at the level of a few hundred microjoules can also be achieved but require pumping with 8-10-mJ AlGaAs laser diode arrays.

  10. The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils

    SciTech Connect

    Offermann, Dustin Theodore

    2008-01-01

    This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 1016 protons with an average energy of about 3MeV. This is far more than the 1012 protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH3 coatings on 5 μm gold foils are compared with typical contaminants which are approximately equivalent to CH1.7. It will be shown that there was a factor of 1.25 ± 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 1019W/cm2. The total number of protons from either target type was on the order of 1010. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 1020 W/cm2. In this experiment 1012 protons were seen from both erbium hydride and

  11. The effect of erbium hydride on the conversion efficiency to accelerated protons from ultra-short pulse laser irradiated foils

    NASA Astrophysics Data System (ADS)

    Offermann, Dustin Theodore

    This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 10 16 protons with an average energy of about 3MeV. This is far more than the 1012 protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH 3 coatings on 5mum gold foils are compared with typical contaminants which are approximately equivalent to CH 1.7. It will be shown that there was a factor of 1.25 +/- 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 1019W/cm2. The total number of protons from either target type was on the order of 1010. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 1020W/cm 2. In this experiment 1012 protons were seen from both erbium hydride and contaminants on 14mum gold foils. Significant improvements were also observed but possibly because of the depletion of

  12. Short-pulse laser interactions with disordered materials and liquids

    SciTech Connect

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L.

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  13. Prepulse effect on intense femtosecond laser pulse propagation in gas

    SciTech Connect

    Giulietti, Antonio; Tomassini, Paolo; Galimberti, Marco; Giulietti, Danilo; Gizzi, Leonida A.; Koester, Petra; Labate, Luca; Ceccotti, Tiberio; D'Oliveira, Pascal; Auguste, Thierry; Monot, Pascal; Martin, Philippe

    2006-09-15

    The propagation of an ultrashort laser pulse can be affected by the light reaching the medium before the pulse. This can cause a serious drawback to possible applications. The propagation in He of an intense 60-fs pulse delivered by a Ti:sapphire laser in the chirped pulse amplification (CPA) mode has been investigated in conditions of interest for laser-plasma acceleration of electrons. The effects of both nanosecond amplified spontaneous emission and picosecond pedestals have been clearly identified. There is evidence that such effects are basically of refractive nature and that they are not detrimental for the propagation of a CPA pulse focused to moderately relativistic intensity. The observations are fully consistent with numerical simulations and can contribute to the search of a stable regime for laser acceleration.

  14. Response of silicon solar cell to pulsed laser illumination

    NASA Technical Reports Server (NTRS)

    Willowby, D.; Alexander, D.; Edge, T.; Herren, K.

    1993-01-01

    The response of silicon solar cell(s) to pulsed laser illumination is discussed. The motivation was due to the interest of Earth to space/Moon power beaming applications. When this work began, it was not known if solar cells would respond to laser light with pulse lengths in the nanosecond range and a repetition frequency in the kHz range. This is because the laser pulse would be shorter than the minority carrier lifetime of silicon. A 20-nanosecond (ns) full width half max (FWHM) pulse from an aluminum-gallium/arsenide (Al-Ga-As) diode laser was used to illuminate silicon solar cells at a wavelength of 885 nanometers (nm). Using a high-speed digital oscilloscope, the response of the solar cells to individual pulses across various resistive loads was observed and recorded.

  15. Recent progress in picosecond pulse generation from semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    This paper reviews the recent progress in producing picosecond optical pulses from semiconductor laser diodes. The discussion concentrates on the mode-locking of a semiconductor laser diode in an external resonator. Transform-limited optical pulses ranging from several picoseconds to subpicosecond durations have been observed with active and passive mode-locking. Even though continuing research on the influence of impurities and defects on the mode-locking process is still needed, this technique has good promise for being utilized in fiber-optic communication systems. Alternative methods of direct electrical and optical excitation to produce ultrashort laser pulses are also described. They can generate pulses of similar widths to those obtained by mode-locking. The pulses generated will find applications in laser ranging and detector response measurement.

  16. Investigation on a field description of the chirped laser pulse

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; Huang, S. J.; Song, Q.; Wang, P. X.

    2016-02-01

    Starting from a first-order approximate field description function for laser pulses, the method currently used to approximate chirped laser pulse (CLP) substitutes frequency and wave vector related variables with spatiotemporally varying functions. We investigated the error involved by calculating the relative deviation from Maxwell equations. Errors for the electric and magnetic fields are analyzed separately, and behaviors related to parameter changes (that is, in laser width, pulse duration and chirp parameter) were studied. Results show that aberration associated with currently used field-description functions for CLP increases monotonically with chirp parameter, and the deviation introduced by chirping is proportional to the relative frequency span of the laser. Simulations based on these functions will lead to considerable error, especially for laser pulses with large chirping.

  17. Ponderomotive acceleration of electrons by a self focused laser pulse

    SciTech Connect

    Singh, Rohtash; Sharma, A. K.

    2010-12-15

    Ponderomotive acceleration of electrons by a short laser pulse undergoing relativistic self-focusing in a plasma is investigated. The saturation in nonlinear plasma permittivity causes periodic self-focusing of the laser. The periodicity lengths are different for different axial segments of the pulse. As a result, pulse shape is distorted. An electron initially on the laser axis and at the front of the self-focusing pulse gains energy from the pulse until it is run over by the pulse peak. By the time electron reaches the tail, if pulse begins diverging, the deceleration of the electron is slower and the electron is left with net energy gain. The electrons slightly off the laser axis see a radial ponderomotive force too. Initially, when they are accelerated by the pulse front the acceleration is strong as they are closer to the axis. When they see the tail of the pulse (after being run by the pulse), they are farther from the axis and the retardation ponderomotive force is weaker. Thus, there is net energy gain.

  18. Laser detection of remote targets applying chaotic pulse position modulation

    NASA Astrophysics Data System (ADS)

    Du, Pengfei; Geng, Dongxian; Wang, Wei; Gong, Mali

    2015-11-01

    Chaotic pulse position modulation (CPPM) has been successfully used in robust digital communication for years. We propose to adapt CPPM for laser detection of remote targets to address the issue of noise. Specified in a time-of-flight (TOF) consecutive laser ranging application scenario, the feasibility of laser detection applying CPPM for laser detection is experimentally investigated. The scheme including the adaptive design for laser detection and parameter settings with validation is introduced. Lab-based electrical experiment and a proof-of-concept outdoor TOF experiment are further conducted to verify the feasibility of laser ranging and detection using CPPM through comparison with traditional Lidar detection and other pulse interval patterns. According to experiments and the following analysis, laser ranging using CPPM is feasible and more robust than traditional laser ranging.

  19. Highly efficient pulse-periodic XeCl lasers

    SciTech Connect

    Dudarev, V V; Ivanov, N G; Konovalov, I N; Losev, V F; Pavlinskii, A V; Panchenko, Yu N

    2011-08-31

    The parameters of electric-discharge pulse-periodic XeCl lasers with a pulse duration of 25 - 40 ns, an energy of 0.2 - 0.7 J, and a pulse repetition rate up to 100 Hz have been investigated. It is shown that the total laser efficiency of 2.6 % and the maximum efficiency with respect to the stored energy of 3.8 % are obtained at a specific pump power of 2.8 - 3.3 MW cm{sup -3} and a discharge circuit inductance of 3.5 - 4 nH. (lasers)

  20. Research on intelligent detection and processing technology of laser pulse

    NASA Astrophysics Data System (ADS)

    Zhao, Haili; Jiang, Huilin

    2005-01-01

    Aimed at the influence of turbulent atmosphere effect on laser pulse detection, it discusses the key factors that affect the signal test in this paper. Based on it, the article also discusses two key techniques, namely, floating threshold value and AGC (Automatic Gain Control) technology in detail, especially about the technique of floating threshold value. According to discussion about intelligent detection technology of laser pulse, the system designs a low noise detecting unit of laser pulse, tests its performance by the experiment, and validates correctness of the results.

  1. Photon kinetic modeling of laser pulse propagation in underdense plasma

    SciTech Connect

    Reitsma, A. J. W.; Trines, R. M. G. M.; Bingham, R.; Cairns, R. A.; Mendonca, J. T.; Jaroszynski, D. A.

    2006-11-15

    This paper discusses photon kinetic theory, which is a description of the electromagnetic field in terms of classical particles in coordinate and wave number phase space. Photon kinetic theory is applied to the interaction of laser pulses with underdense plasma and the transfer of energy and momentum between the laser pulse and the plasma is described in photon kinetic terms. A comparison is made between a one-dimensional full wave and a photon kinetic code for the same laser and plasma parameters. This shows that the photon kinetic simulations accurately reproduce the pulse envelope evolution for photon frequencies down to the plasma frequency.

  2. High-charge energetic ions generated by intersecting laser pulses

    NASA Astrophysics Data System (ADS)

    Yang, L.; Deng, Z. G.; Yu, M. Y.; Wang, X. G.

    2016-08-01

    Ion acceleration from the interaction of two intersecting intense laser pulses with an overdense plasma is investigated using a three-dimensional particle-in-cell simulation. It is found that, comparing with the single-pulse case, the charge of the resulting energetic ion bunch can be increased by more than an order of magnitude without much loss of quality. Dependence of the ion charge on the interaction parameters, including separation distance and incidence angles of the lasers, is considered. It is shown that the charge of the accelerated ion bunch can be optimized by controlling the degree of laser overlapping. The improved performance can be attributed to the enhanced laser intensity as well as stochastic heating of the accelerated electrons. Since at present the intensity of readily available lasers is limited, the two pulse scheme should be useful for realizing higher laser intensity in order to achieve higher-energy target normal sheath acceleration ions.

  3. Generation of quasimonoenergetic electron bunches with 80-fs laser pulses.

    PubMed

    Hidding, B; Amthor, K-U; Liesfeld, B; Schwoerer, H; Karsch, S; Geissler, M; Veisz, L; Schmid, K; Gallacher, J G; Jamison, S P; Jaroszynski, D; Pretzler, G; Sauerbrey, R

    2006-03-17

    Highly collimated, quasimonoenergetic multi-MeV electron bunches were generated by the interaction of tightly focused, 80-fs laser pulses in a high-pressure gas jet. These monoenergetic bunches are characteristic of wakefield acceleration in the highly nonlinear wave breaking regime, which was previously thought to be accessible only by much shorter laser pulses in thinner plasmas. In our experiment, the initially long laser pulse was modified in underdense plasma to match the necessary conditions. This picture is confirmed by semianalytical scaling laws and 3D particle-in-cell simulations. Our results show that laser-plasma interaction can drive itself towards this type of laser wakefield acceleration even if the initial laser and plasma parameters are outside the required regime. PMID:16605744

  4. Pulse Splitting in Short Wavelength Seeded Free Electron Lasers

    SciTech Connect

    Labat, M.; Couprie, M. E.; Joly, N.; Bruni, C.

    2009-12-31

    We investigate a fundamental limitation occurring in vacuum ultraviolet and extreme ultraviolet seeded free electron lasers (FELs). For a given electron beam and undulator configuration, an increase of the FEL output energy at saturation can be obtained via an increase of the seed pulse duration. We put in evidence a complex spatiotemporal deformation of the amplified pulse, leading ultimately to a pulse splitting effect. Numerical studies of the Colson-Bonifacio FEL equations reveal that slippage length and seed laser pulse wings are core ingredients of the dynamics.

  5. Light pressure acceleration with frequency-tripled laser pulse

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Ji, Liangliang; Wang, Wenpeng; Zhao, Xueyan; Xu, Jiancai; Yu, Yahong; Yi, Longqing; Shi, Yin; Xu, Tongjun; Zhang, Lingang

    2014-08-15

    Light pressure acceleration of ions in the interaction of the frequency-tripled (3ω) laser pulse and foil target is studied, and a promising method to increase accelerated ion energy is shown. Results show that at a constant laser energy, much higher ion energy peak value is obtained for 3ω laser compared with that using the fundamental frequency laser. The effect of energy loss during frequency conversion on ion acceleration is considered, which may slightly decrease the acceleration effect.

  6. Micromachining soda-lime glass by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Jia, Wei; Yu, Jian; Chai, Lu; Wang, Ching-Yue

    2015-08-01

    The physical process of forming a modified region in soda-lime glass was investigated using 1 kHz intense femtosecond laser pulses from a Ti: sapphire laser at 775 nm. Through the modifications induced by the femtosecond laser radiation using selective chemical etching techniques, we fabricated reproducible and defined microstructures and further studied their morphologies and etching properties. Moreover, a possible physical mechanism for the femtosecond laser modification in soda-lime glass was proposed.

  7. The multiple-pulse driver line on the OMEGA laser

    NASA Astrophysics Data System (ADS)

    Kosc, T. Z.; Kelly, J. H.; Hill, E. M.; Dorrer, C.; Waxer, L. J.; Donaldson, W. R.

    2015-02-01

    The multiple-pulse driver line (MPD) provides on-shot co-propagation of two separate pulse shapes in all 60 OMEGA beams at the Laboratory for Laser Energetics (LLE). The two co-propagating pulse shapes would typically be (1) a series of 100-ps "picket" pulses followed by (2) a longer square or shaped "drive" pulse. Smoothing by spectral dispersion (SSD), which increases the laser bandwidth, can be applied to either one of the two pulse shapes. Therefore, MPD allows for dynamic bandwidth reduction, where the bandwidth is applied only to the picket portion of a pulse shape. Since the use of SSD decreases the efficiency of frequency conversion from the IR to the UV, dynamic bandwidth reduction provides an increase in the drive-pulse energy. The design of the MPD required careful consideration of beam combination as well as the minimum pulse separation for two pulses generated by two separate sources. A new combined-pulse-shape diagnostic needed to be designed and installed after the last grating used for SSD. This new driver-line flexibility is built into the OMEGA front end as one component of the initiative to mitigate cross-beam energy transfer on target and to demonstrate hydro-equivalent ignition on the OMEGA laser at LLE.

  8. Generation of elliptically polarized nitrogen ion laser fields using two-color femtosecond laser pulses

    PubMed Central

    Li, Ziting; Zeng, Bin; Chu, Wei; Xie, Hongqiang; Yao, Jinping; Li, Guihua; Qiao, Lingling; Wang, Zhanshan; Cheng, Ya

    2016-01-01

    We experimentally investigate generation of nitrogen molecular ion () lasers with two femtosecond laser pulses at different wavelengths. The first pulse serves as the pump which ionizes the nitrogen molecules and excites the molecular ions to excited electronic states. The second pulse serves as the probe which leads to stimulated emission from the excited molecular ions. We observe that changing the angle between the polarization directions of the two pulses gives rise to elliptically polarized laser fields, which is interpreted as a result of strong birefringence of the gain medium near the wavelengths of the laser. PMID:26888182

  9. Deformation of ultra-short laser pulses by optical systems for laser scanners.

    PubMed

    Büsing, Lasse; Bonhoff, Tobias; Gottmann, Jens; Loosen, Peter

    2013-10-21

    Current experiments of processing glass with ultra-short laser pulses (< 1 ps) lead to scan angle depending processing results. This scan angle depending effect is examined by simulations of a common focusing lens for laser scanners. Due to dispersion, focusing lenses may cause pulse deformations and increase the pulse duration in the focal region. If the field angle of the incoming laser beam is variable, the pulse deformation may also vary as a function of the field angle. By ray tracing as well as wave optical simulations we investigate pulse deformations of optical systems for different scan angles. PMID:24150292

  10. Femtosecond laser damage in dielectric coatings

    NASA Astrophysics Data System (ADS)

    Bonse, Joern; Baudach, Steffen; Krueger, Joerg; Kautek, Wolfgang; Starke, Kai; Gross, Tobias; Ristau, Detlev; Rudolph, Wolfgang G.; Jasapara, Jayesh C.; Welsch, Eberhard

    2001-04-01

    Multi-shot investigations of Ti:sapphire laser (wavelength (lambda) approximately equals 800 nm) induced damage were performed in three different laboratories (BAM, Berlin; LZH, Hannover; UNM, Albuquerque). The ablation behavior of a high reflecting mirror consisting of alternating (lambda) /4- layers of Ta2O5 and SiO2 was studied. Fused silica served as substrate. The influence of the pulse duration ((tau) equals 13 - 130 fs), the pulse number (30 - (infinity) ) and the repetition rate (10 Hz - 100 MHz) on the damage threshold will be discussed.

  11. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    DOEpatents

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  12. Ablation characteristics of quantum square pulse mode dental erbium laser

    NASA Astrophysics Data System (ADS)

    Lukač, Nejc; Suhovršnik, Tomaž; Lukač, Matjaž; Jezeršek, Matija

    2016-01-01

    Erbium lasers are by now an accepted tool for performing ablative medical procedures, especially when minimal invasiveness is desired. Ideally, a minimally invasive laser cutting procedure should be fast and precise, and with minimal pain and thermal side effects. All these characteristics are significantly influenced by laser pulse duration, albeit not in the same manner. For example, high cutting efficacy and low heat deposition are characteristics of short pulses, while vibrations and ejected debris screening are less pronounced at longer pulse durations. We report on a study of ablation characteristics on dental enamel and cementum, of a chopped-pulse Er:YAG [quantum square pulse (QSP)] mode, which was designed to reduce debris screening during an ablation process. It is shown that in comparison to other studied standard Er:YAG and Er,Cr:YSGG laser pulse duration modes, the QSP mode exhibits the highest ablation drilling efficacy with lowest heat deposition and reduced vibrations, demonstrating that debris screening has a considerable influence on the ablation process. By measuring single-pulse ablation depths, we also show that tissue desiccation during the consecutive delivery of laser pulses leads to a significant reduction of the intrinsic ablation efficacy that cannot be fully restored under clinical settings by rehydrating the tooth using an external water spray.

  13. Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser

    NASA Astrophysics Data System (ADS)

    Zheng, Lihe; Taira, Takunori

    2016-03-01

    A sub-nanosecond green laser with laser head sized 35 × 35 × 35 mm3 was developed from a giant pulsed microchip laser for laser processing on organic superconducting transistor with a flexible substrate. A composite monolithic Y3Al5O12 (YAG) /Nd:YAG/Cr4+:YAG/YAG crystal was designed for generating giant pulsed 1064 nm laser. A fibercoupled 30 W laser diode centered at 808 nm was used with pump pulse duration of 245 μs. The 532 nm green laser was obtained from a LiB3O5 (LBO) crystal with output energy of 150 μJ and pulse duration of 268 ps. The sub-nanosecond green laser is interesting for 2-D ablation patterns.

  14. High-pulse-repetition-rate HF laser with plate electrodes

    SciTech Connect

    Andramanov, A V; Kabaev, S A; Lazhintsev, B V; Nor-Arevyan, V A; Pisetskaya, A V; Selemir, Victor D

    2006-03-31

    A high-pulse-repetition-rate electric-discharge HF laser with inductive-capacitive discharge stabilisation in the active H{sub 2}-SF{sub 6}-He mixture is studied. The multisectional discharge gap with a total length of 250 mm is formed by pairs of anode-cathode plates arranged in a zigzag pattern. The width of the discharge gap between each pair of plates is {approx}1 mm and its height is {approx}12 mm. The laser-beam cross section at the output cavity mirror is {approx}9 mm x 11 mm. The maximum laser pulse energy and the maximum laser efficiency for the H{sub 2}-SF{sub 6} mixture are 14.3 mJ and 2.1%, respectively. The addition of He to the mixture reduced the laser pulse energy by 10%-15%. The maximum gas velocity in the gap between the electrodes achieves 20 m s{sup -1}. The limiting pulse repetition rate f{sub lim} for which a decrease in the laser pulse energy is still not observed is {approx}2kHz for the H{sub 2}-SF{sub 6} mixture and {approx}2.4kHz for the H{sub 2}-SF{sub 6}-He mixture. The average output power {approx}27 W is obtained for a pulse repetition rate of 2.4 kHz. (lasers)

  15. Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond, and femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Canova, F.; Chambaret, J.-P.; Mourou, G.; Sentis, M.; Uteza, O.; Delaporte, P.; Itina, T.; Natoli, J.-Y.; Commandre, M.; Amra, C.

    2005-12-01

    femtosecond pulses, at 800nm to reach the deterministic dielectric threshold and validate fundamentals models and simulation results. To our knowledges this is the first time that such a complete characterization is done for Ti:Sapphire laser crystals. We will present the first conclusions about the experiments as well as the methods we will employ in our systematic analysis.

  16. Acceleration Mechanism Of Pulsed Laser-Electromagnetic Hybrid Thruster

    SciTech Connect

    Horisawa, Hideyuki; Mashima, Yuki; Yamada, Osamu

    2011-11-10

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the ablated mass per pulse and impulse bit. As results, significantly high specific impulses up to 7,200 s were obtained at charge energies of 8.6 J. Moreover, from the Faraday cup measurement, it was confirmed that the speed of ions was accelerated with addition of electric energy.

  17. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J. B.; Le Sage, G. P.

    1999-07-12

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail.

  18. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage, G.P.

    1999-07-01

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) {copyright} {ital 1999 American Institute of Physics.}

  19. Terahertz generation in plasmas using two-color laser pulses.

    PubMed

    Peñano, Joseph; Sprangle, Phillip; Hafizi, Bahman; Gordon, Daniel; Serafim, Philip

    2010-02-01

    We analyze the generation of terahertz radiation when an intense, short laser pulse is mixed with its frequency-doubled counterpart in plasma. The nonlinear coupling of the fundamental and the frequency-doubled laser pulses in plasma is shown to be characterized by a third order susceptibility which has a time dependence characteristic of the laser pulse durations. The terahertz generation process depends on the relative polarizations of the lasers and the terahertz frequency is omega approximately 1/tau(L), where tau(L) is the laser pulse duration. Since the laser pulse duration is typically in the picosecond or subpicosecond regime the resulting radiation is in the terahertz or multiterahertz regime. To obtain the third order susceptibility we solve the plasma fluid equations correct to third order in the laser fields, including both the relativistic and ponderomotive force terms. The relativistic and ponderomotive contributions to the susceptibility nearly cancel in the absence of electron collisions. Therefore, in this terahertz generation mechanism collisional effects play a critical role. Consistent with recent experimental observations, our model shows that (1) the terahertz field amplitude is proportional to I(1) square root I(2), where I(1) and I(2) are the intensities of the fundamental and second harmonic laser pulses, respectively, (2) the terahertz emission is maximized when the polarization of the laser beams and the terahertz are aligned, (3) for typical experimental parameters, the emitted terahertz field amplitude is on the order of tens of kilovolts/cm with duration comparable to that of the drive laser pulses, and (4) the direction of terahertz emission depends sensitively on experimental parameters. PMID:20365665

  20. Terahertz generation in plasmas using two-color laser pulses

    SciTech Connect

    Penano, Joseph; Sprangle, Phillip; Gordon, Daniel; Hafizi, Bahman; Serafim, Philip

    2010-02-15

    We analyze the generation of terahertz radiation when an intense, short laser pulse is mixed with its frequency-doubled counterpart in plasma. The nonlinear coupling of the fundamental and the frequency-doubled laser pulses in plasma is shown to be characterized by a third order susceptibility which has a time dependence characteristic of the laser pulse durations. The terahertz generation process depends on the relative polarizations of the lasers and the terahertz frequency is omegaapprox1/tau{sub L}, where tau{sub L} is the laser pulse duration. Since the laser pulse duration is typically in the picosecond or subpicosecond regime the resulting radiation is in the terahertz or multiterahertz regime. To obtain the third order susceptibility we solve the plasma fluid equations correct to third order in the laser fields, including both the relativistic and ponderomotive force terms. The relativistic and ponderomotive contributions to the susceptibility nearly cancel in the absence of electron collisions. Therefore, in this terahertz generation mechanism collisional effects play a critical role. Consistent with recent experimental observations, our model shows that (1) the terahertz field amplitude is proportional to I{sub 1}sq root(I{sub 2}), where I{sub 1} and I{sub 2} are the intensities of the fundamental and second harmonic laser pulses, respectively, (2) the terahertz emission is maximized when the polarization of the laser beams and the terahertz are aligned, (3) for typical experimental parameters, the emitted terahertz field amplitude is on the order of tens of kilovolts/cm with duration comparable to that of the drive laser pulses, and (4) the direction of terahertz emission depends sensitively on experimental parameters.

  1. Passive coherent combining of CEP-stable few-cycle pulses from a temporally divided hollow fiber compressor.

    PubMed

    Jacqmin, Hermance; Jullien, Aurélie; Mercier, Brigitte; Hanna, Marc; Druon, Frédéric; Papadopoulos, Dimitrios; Lopez-Martens, Rodrigo

    2015-03-01

    We demonstrate a simple and robust passive coherent combining technique for temporal compression of millijoule energy laser pulses down to few-cycle duration in a gas-filled hollow fiber. High combining efficiency is achieved by using carefully oriented calcite plates for temporal pulse division and recombination. Carrier-envelope phase (CEP)-stable, 6-fs, 800-nm pulses with more than 0.6 mJ energy are routinely generated. This method could aid in the energy scaling of CEP-stable hollow-fiber compressor systems. PMID:25723413

  2. Pulse shape effect on rotational excitation and 2-D alignment alternation by elliptic laser pulses

    NASA Astrophysics Data System (ADS)

    Maan, Anjali; Ahlawat, Dharamvir Singh; Prasad, Vinod

    2016-04-01

    We examine theoretically the time-evolution of NAREX (non-adiabatic rotational excitation) and molecular 2-D alignment (2DA) interacting with a pair of elliptically polarized laser pulses. The pulse shapes taken are half-cycle pulse (HCP) and square pulse (SQP). By choosing the proper value of elliptically polarized field parameters, we demonstrate that efficient field-free 2DA alignment can be achieved. It is also shown that NAREX can be controlled by various laser parameters, out of which pulse shape plays the most significant role. The effect of pulse width along with elliptic parameter on probabilities of rotational states is also under concern. The delay time between the two pulses decides the maximum in 2DAs.

  3. Femtosecond laser sintering of copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Cheng, C. W.; Chen, J. K.

    2016-04-01

    The ultrafast melting of copper nanoparticles (NPs) induced by a femtosecond laser pulse with duration of 100 fs and wavelength of 800 nm is investigated theoretically and experimentally. The Cu pattern fabricated from sintering of a Cu NP-dispersed film by the femtosecond laser at a repetition rate of 80 MHz is experimentally studied. A one-dimensional two-temperature model with temperature-dependent material properties, including the extended Drude model for dynamic optical properties and the thermophysical properties, is employed to simulate the particles ultrafast melting and re-solidification process.

  4. The interaction of intense femtosecond laser pulses with solid targets

    SciTech Connect

    Klem, D.E.; Darrow, C.; Lane, S.; Perry, M.D.

    1992-12-30

    The absorption of 800 fsec Nd-glass laser pulses obliquely incident on solid targets is measured at intensities up to 10[sup 18] W/cm[sup 2]. The associated production of hard x-rays is also measured.

  5. The interaction of intense femtosecond laser pulses with solid targets

    SciTech Connect

    Klem, D.E.; Darrow, C.; Lane, S.; Perry, M.D.

    1992-12-30

    The absorption of 800 fsec Nd-glass laser pulses obliquely incident on solid targets is measured at intensities up to 10{sup 18} W/cm{sup 2}. The associated production of hard x-rays is also measured.

  6. Power Enhancement Cavity for Burst-Mode Laser Pulses

    SciTech Connect

    Liu, Yun

    2015-01-01

    We demonstrate a novel optical cavity scheme and locking method that can realize the power enhancement of picosecond UV laser pulses operating at a burst mode with arbitrary burst (macropulse) lengths and repetition rates.

  7. Femtosecond laser pulse train interaction with dielectric materials

    NASA Astrophysics Data System (ADS)

    Dematteo Caulier, O.; Mishchik, K.; Chimier, B.; Skupin, S.; Bourgeade, A.; Javaux Léger, C.; Kling, R.; Hönninger, C.; Lopez, J.; Tikhonchuk, V.; Duchateau, G.

    2015-11-01

    The interaction of trains of femtosecond microjoule laser pulses with dielectric materials by means of a multi-scale model is investigated. Theoretical predictions are directly confronted with experimental observations in soda-lime glass. It is shown that due to the low heat conductivity, a significant fraction of the laser energy can be accumulated in the absorption region. Depending on the pulse repetition rate, the material can be heated to high temperatures even though the single pulse energy is too low to induce a significant material modification. Regions heated above the glass transition temperature in the simulations correspond very well to zones of permanent material modifications observed in the experiments. It turns out that pulse-to-pulse variations of the laser absorption are negligible and of minor influence to permanent material modifications.

  8. Femtosecond laser pulse induced birefringence in optically isotropic glass.

    SciTech Connect

    Vawter, Gregory Allen; Luk, Ting Shan; Guo, Junpeng; Yang, Pin; Burns, George Robert

    2003-07-01

    We used a regeneratively amplified Ti:sapphire femtosecond laser to create optical birefringence in an isotropic glass medium. Between two crossed polarizers, regions modified by the femtosecond laser show bright transmission with respect to the dark background of the isotropic glass. This observation immediately suggests that these regions possess optical birefringence. The angular dependence of transmission through the laser-modified region is consistent with that of an optically birefringent material. Laser-induced birefringence is demonstrated in different glasses, including fused silica and borosilicate glass. Experimental results indicate that the optical axes of laser-induced birefringence can be controlled by the polarization direction of the femtosecond laser. The amount of laser-induced birefringence depends on the pulse energy level and number of accumulated pulses.

  9. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  10. Backward nitrogen lasing actions induced by femtosecond laser filamentation: influence of duration of gain

    NASA Astrophysics Data System (ADS)

    Xie, Hongqiang; Li, Guihua; Chu, Wei; Zeng, Bin; Yao, Jinping; Jing, Chenrui; Li, Ziting; Cheng, Ya

    2015-07-01

    We experimentally investigate generation of backward 357 nm N2 laser in a gas mixture of N2/Ar using 800 nm femtosecond laser pulses, and examine the involved gain dynamics based on pump-probe measurements. Our findings show that a minimum duration of gain in the excited N2 molecules is required for generating intense backward nitrogen lasers, which is ∼0.8 ns under our experimental conditions. The results shed new light on the mechanism for generating intense backward lasers from nitrogen molecules, which are highly in demand for high sensitivity remote atmospheric sensing application.

  11. Laser shaping of a relativistic circularly polarized pulse by laser foil interaction

    SciTech Connect

    Zou, D. B.; Zhuo, H. B.; Yu, T. P.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ouyang, J. M.; Ge, Z. Y.; Zhang, G. B.; Wang, P.

    2013-07-15

    Laser shaping of a relativistic circularly polarized laser pulse in ultra-intense laser thin-foil interaction is investigated by theoretical analysis and particle-in-cell simulations. It is found that the plasma foil as a nonlinear optical shutter has an obvious cut-out effect on the laser temporal and spatial profiles. Two-dimensional particle-in-cell simulations show that the high intensity part of a Gaussian laser pulse can be well extracted from the whole pulse. The transmitted pulse with longitudinal steep rise front and transverse super-Gaussian profile is thus obtained which would be beneficial for the radiation pressure acceleration regime. The Rayleigh-Taylor-like instability is observed in the simulations, which destroys the foil and results in the cut-out effect of the pulse in the rise front of a circularly polarized laser.

  12. Longitudinally excited CO2 laser with short laser pulse for hard tissue drilling

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Hayashi, Hiroyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2014-02-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse with a circular beam and a low divergence angle. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance, and a spark-gap switch. The laser pulse had a spike pulse width of 103 ns and a pulse tail length of 32.6 μs. The beam cross-section was circular and the full-angle beam divergence was 1.7 mrad. The laser was used to drill ivory samples without carbonization at fluences of 2.3-7.1 J/cm2. The drilling depth of the dry ivory increased with the fluence. The drilling mechanism of the dry ivory was attributed to absorption of the laser light by the ivory.

  13. Reduction of the pulse duration of the ultrafast laser pulses of the Two-Photon Laser Scanning Microscopy (2PLSM)

    PubMed Central

    Reshak, Ali Hussain

    2008-01-01

    Background We provide an update of our two-photon laser scanning microscope by compressing or reducing the broadening of the pulse width of ultrafast laser pulses for dispersion precompensation, to enable the pulses to penetrate deeply inside the sample. Findings The broadening comes as the pulses pass through the optical elements. We enhanced and modified the quality and the sharpness of images by enhancing the resolution using special polarizer namely Glan Laser polarizer GL10. This polarizer consists of two prisms separated by air space. This air separation between the two prisms uses to delay the red wavelength when the light leaves the first prism to the air then to second prism. We note a considerable enhancing with using the GL polarizer, and we can see the details of the leaf structure in early stages when we trying to get focus through z-stacks of images in comparison to exactly the same measurements without using GL polarizer. Hence, with this modification we able to reduce the time of exposure the sample to the laser radiation thereby we will reduce the probability of photobleaching and phototoxicity. When the pulse width reduced, the average power of the laser pulses maintained at a constant level. Significant enhancement is found between the two kinds of images of the Two-Photon Excitation Fluorescence (TPEF). Conclusion In summary reduction the laser pulse width allowed to collect more diffraction orders which will used to form the images. The more diffraction orders the higher resolution images. PMID:18710492

  14. Short pulse dynamics in a linear cavity fiber laser

    NASA Astrophysics Data System (ADS)

    Razukov, Vadim A.; Melnikov, Leonid A.

    2016-04-01

    New suitable numerical scheme is proposed for simulation of dynamics of oppositely running pulses in a fiber laser with linear cavity. The proposed model allows to include various temporal and spatial effects which affect the laser dynamics. The pulse evolution in the fiber cavity with perfect reflectors at the fiber ends with accounting of fiber group velocity dispersion and self-phase modulation is demonstrated.

  15. Probing Molecular Dynamics at Attosecond Resolution with Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Tong, X. M.; Zhao, Z. X.; Lin, C. D.

    2003-12-01

    The kinetic energy distribution of D+ ions resulting from the interaction of a femtosecond laser pulse with D2 molecules is calculated based on the rescattering model. From analyzing the molecular dynamics, it is shown that the recollision time between the ionized electron and the D+2 ion can be read from the D+ kinetic energy peaks to attosecond accuracy. We further suggest that a more precise reading of the clock can be achieved by using shorter fs laser pulses (about 15fs).

  16. Dynamic model of target charging by short laser pulse interactions.

    PubMed

    Poyé, A; Dubois, J-L; Lubrano-Lavaderci, F; D'Humières, E; Bardon, M; Hulin, S; Bailly-Grandvaux, M; Ribolzi, J; Raffestin, D; Santos, J J; Nicolaï, Ph; Tikhonchuk, V

    2015-10-01

    A model providing an accurate estimate of the charge accumulation on the surface of a metallic target irradiated by a high-intensity laser pulse of fs-ps duration is proposed. The model is confirmed by detailed comparisons with specially designed experiments. Such a model is useful for understanding the electromagnetic pulse emission and the quasistatic magnetic field generation in laser-plasma interaction experiments. PMID:26565356

  17. Effect of pulse duty cycle on Inconel 718 laser welds

    NASA Technical Reports Server (NTRS)

    McCay, M. H.; McCay, T. D.; Dahotre, N. B.; Sharp, C. M.; Sedghinasab, A.; Gopinathan, S.

    1989-01-01

    Crack sensitive Inconel 718 was laser pulse welded using a 3.0 kW CO2 laser. Weld shape, structure, and porosity were recorded as a function of the pulse duty cycle. Within the matrix studied, the welds were found to be optimized at a high (17 ms on, 7 ms off) duty cycle. These welds were superior in appearance and lack of porosity to both low duty cycle and CW welds.

  18. Repetitively pulsed Cr:LiSAF laser for lidar applications

    SciTech Connect

    Shimada, Tsutomu; Early, J.W.; Lester, C.S.; Cockroft, N.J.

    1994-03-01

    A Cr:LiSAF laser has been successfully operated at time averaged powers up to 11 W and at pulse repetition rates to 12 Hz. During Q-switch operation, output energy as high as 450 mJ (32 ns FWHM) was obtained. Finally, line narrowed Q-switched pulses (< 0.1 nm) from the Cr:LiSAF laser were successfully used as a tunable light source for lidar to measure atmospheric water content.

  19. Dynamic model of target charging by short laser pulse interactions

    NASA Astrophysics Data System (ADS)

    Poyé, A.; Dubois, J.-L.; Lubrano-Lavaderci, F.; D'Humières, E.; Bardon, M.; Hulin, S.; Bailly-Grandvaux, M.; Ribolzi, J.; Raffestin, D.; Santos, J. J.; Nicolaï, Ph.; Tikhonchuk, V.

    2015-10-01

    A model providing an accurate estimate of the charge accumulation on the surface of a metallic target irradiated by a high-intensity laser pulse of fs-ps duration is proposed. The model is confirmed by detailed comparisons with specially designed experiments. Such a model is useful for understanding the electromagnetic pulse emission and the quasistatic magnetic field generation in laser-plasma interaction experiments.

  20. Filamentation of ultrashort laser pulses propagating in tenuous plasmas

    SciTech Connect

    Andreev, N. E.; Gorbunov, L. M.; Mora, P.; Ramazashvili, R. R.

    2007-08-15

    The filamentation of ultrashort laser pulses (shorter than a plasma period) propagating in tenuous plasmas is studied. In this regime relativistic and ponderomotive nonlinearities tend to cancel each other. Time-dependent residual nonlinear plasma response brings about the dynamical filamentation with the maximum unstable transverse wave number decreasing in the course of laser pulse propagation. Dynamics of a hot spot that seeds the filamentation instability is studied numerically and reveals a good agreement with the analytical results.

  1. Studies of a repetitively-pulsed laser powered thruster

    NASA Astrophysics Data System (ADS)

    Rosen, D. I.; Kemp, N. H.; Miller, M.

    1982-01-01

    In this report we present results of continuing analytical and experimental investigations carried out to evaluate the concept of pulsed laser propulsion. This advanced propulsion scheme, which has been the subject of several previous studies, involves supplying propellant energy by beaming short, repetitive laser pulses to a thruster from a remote laser power station. The concept offers the advantages of a remote power source, high specific impulse, high payload to total mass ratio (a consequence of the first two features) and moderate to high thrust (limited primarily by the average laser power available). The present research addresses questions related to thruster performance and optical design. In the thruster scheme under consideration, parabolic nozzle walls focus the incoming laser beam to yield breakdown in a propellant at the focal point of the parabola. The resulting high pressure plasma is characteristic of a detonation wave initiation by high power laser-induced breakdown. With a short laser pulse, the detonation wave quickly becomes a blast wave which propagates to the nozzle exit plane converting the high pressure of the gas behind it to a force on the nozzle wall. Propellant is fed to the focal region from a plenum chamber. The laser-induced blast wave stops the propellant flow through the throat until the pressure at the throat decays to the sonic pressure; then the propellant flow restarts. The process is repeated with each successive laser pulse.

  2. Attosecond pulse generation from aligned molecules—dynamics and propagation in H2+

    NASA Astrophysics Data System (ADS)

    Lorin, E.; Chelkowski, S.; Bandrauk, A. D.

    2008-02-01

    The dynamics and propagation effects in attosecond (asec) pulse generation from high-order harmonic generation (HHG) of aligned one-dimensional (1D) H2+ molecules are investigated from numerical solutions of fully coupled Maxwell and time-dependent Schrödinger equations (Maxwell-TDSEs), in the highly nonlinear nonperturbative regime of laser molecule interaction. Density, laser-phase and propagation length effects are studied on the total electric field and nonlinear polarization from the Maxwell-TDSE for intense few cycle (800 nm) laser pulses interacting with a 1D H2+ gas. We show how single and double asec pulses can be generated and propagated as a function of the phase of individual harmonics created by ultrashort intense laser pulses in aligned H2+ molecules. We find furthermore extension of maximum HHG plateaux with increasing gas pressure.

  3. Monoenergetic Electronic Beam Production Using Dual Collinear Laser Pulses

    SciTech Connect

    Thomas, A. G. R.; Mangles, S. P. D.; Dangor, A. E.; Kamperidis, C.; Krushelnick, K.; Najmudin, Z.; Murphy, C. D.; Foster, P.; Lancaster, K. L.; Norreys, P. A.; Gallacher, J. G.; Jaroszynski, D. A.; Viskup, R.

    2008-06-27

    The production of monoenergetic electron beams by two copropagating ultrashort laser pulses is investigated both by experiment and using particle-in-cell simulations. By proper timing between guiding and driver pulses, a high-amplitude plasma wave is generated and sustained for longer than is possible with either of the laser pulses individually, due to plasma waveguiding of the driver by the guiding pulse. The growth of the plasma wave is inferred by the measurement of monoenergetic electron beams with low divergence that are not measured by using either of the pulses individually. This scheme can be easily implemented and may allow more control of the interaction than is available to the single pulse scheme.

  4. Laser wavelength effects in ultrafast near-field laser nanostructuring of Si

    SciTech Connect

    Zormpa, Vasileia; Mao, Xianglei; Russo, Richard E.

    2010-03-18

    We study the effect of laser wavelength (400 nm and 800 nm) on the near-field processing of crystalline silicon (Si) in the femtosecond (fs) pulse duration regime through sub-wavelength apertures. Distinct differences in the obtained nanostructures are found in each case both in terms of their physical sizes as well as their structure which can be tuned between craters and protrusions. A single or a few fs pulses can deliver enough energy on the substrate to induce sub-diffraction limited surface modification, which is among the smallest ever reported in sub-wavelength apertured Near-field Scanning Optical Microscope (NSOM) schemes.

  5. Nonsequential Double Ionization of Atoms in Strong Laser Pulses

    NASA Astrophysics Data System (ADS)

    Prauzner-Bechcicki, J. S.; Sacha, K.; Eckhardt, B.; Zakrzewski, J.

    2007-10-01

    It is now possible to produce laser pulses with reproducible pulse shape and controlled carrier envelope phase. It is discussed how that can be explored in double ionisation studies. To this end we solve numerically the Schrödinger equation for a limited dimensionality model which nevertheless treats electron repulsion qualitatively correctly and allows to study correlation effects due to the Coulomb repulsion.

  6. Nonlinear longitudinal compression of short laser pulses in the atmosphere

    SciTech Connect

    Yedierler, Burak

    2009-05-15

    Propagation of short and intense laser beams in the atmosphere is considered for the purpose of identifying the temporal compression. The conditions and validity of linear and nonlinear compression theories are discussed. The effects of chirping and pulse power in the preionization regime are deliberated. The fact that the linear theory cannot explain the pulse compression in the atmosphere is presented.

  7. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  8. Production, preparation, and performance of shaped ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Davis, Jennifer Case

    1999-09-01

    In the following pages, the current state-of-the art in the method and implementation of acousto-optic modulator (AOM) ultrafast laser pulse shaping is discussed. Since ultrafast laser technologies are relatively recent, many aspects of these pulses and their interaction with material systems (and in particular, optically dense systems) have yet to be well- characterized. Here, we make some headway in understanding the interaction between intense, shaped ultrafast pulses and optically dense media via computer simulations in which the Maxwell-Bloch coupled equations are solved numerically using a recursive algorithm. In one set of experiments, we studied the propagation of shaped ultrafast laser pulses through a cell filled with an optically dense sample of rubidium vapor. We soon found that the excited state dynamics in atomic rubidium change non-intuitively as different pulse shapes are applied. In this case, characterization of the excited state dynamics is important for illuminating the mechanisms involved in the commercial preparation of the spin-polarized noble gases used in MRI lung studies. Thus, theoretical modeling of the laser- material interaction via the Maxwell-Bloch coupled equations allows us to predict the interaction effects on both the material system and the propagating laser pulses. In other experiments we show (via computer simulations) that a series of shaped Raman pulses can excite arbitrary vibrational transitions in homonuclear diatomics. In these calculations, a blue-to-red frequency-swept (off- resonant) pump pulse and a red-to-blue Stokes pulse are employed to sequentially excite Δ v = 1 vibrational transitions in an anharmonic potential. Use of increasingly complicated models shows that despite rotational effects, such a pulse sequence should be effective in exciting certain diatomics into high vibrational states. Since highly (vibrationally) excited oxygen is a critical reagent in upper atmosphere energy transfer reactions with

  9. Three-dimensional polymer nanostructures for applications in cell biology generated by high-repetition rate sub-15 fs near-infrared laser pulses

    NASA Astrophysics Data System (ADS)

    Licht, Martin; Straub, Martin; König, Karsten; Afshar, Maziar; Feili, Dara; Seidel, Helmut

    2011-03-01

    In recent years two-photon photopolymerization has emerged as a novel and extremely powerful technique of three-dimensional nanostructure formation. Complex-shaped structures can be generated using appropriate beam steering or nanopositioning systems. Here, we report on the fabrication of three-dimensional arrangements made of biocompatible polymer material, which can be used as templates for cell growth. Using three-dimensional cell cages as cell culture substrates is advantageous, as cells may develop in a more natural environment as compared to conventional planar growth methods. The two-photon fabrication experiments were carried out on a commercial microscope setup. Sub-15 fs pulsed Ti:Sapphire laser light (centre wavelength 800 nm, bandwidth 120 nm, repetition rate 85 MHz) was focused into the polymer material by a high-numerical aperture oil immersion objective. Due to the high peak intensities picojoule pulse energies in the focal spot are sufficient to polymerize the material at sub-100 nm structural element dimensions. Therefore, cell cages of sophisticated architecture can be constructed involving very fine features which take into account the specific needs of various types of cells. Ultimately, our research aims at three-dimensional assemblies of photopolymerized structural elements involving sub-100 nm features, which provide cell culture substrates far superior to those currently existing.

  10. Yb:YAG thin-disk chirped pulse amplification laser system for intense terahertz pulse generation.

    PubMed

    Ochi, Yoshihiro; Nagashima, Keisuke; Maruyama, Momoko; Tsubouchi, Masaaki; Yoshida, Fumiko; Kohno, Nanase; Mori, Michiaki; Sugiyama, Akira

    2015-06-01

    We have developed a 1 kHz repetition picosecond laser system dedicated for intense terahertz (THz) pulse generation. The system comprises a chirped pulse amplification laser equipped with a Yb:YAG thin-disk amplifier. At room temperature, the Yb:YAG thin-disk regenerative amplifier provides pulses having energy of over 10 mJ and spectral bandwidth of 1.2 nm. The pulse duration achieved after passage through a diffraction grating pair compressor was 1.3 ps. By employing this picosecond laser as a pump source, THz pulses having a peak frequency of 0.3 THz and 4 µJ of energy were generated by means of optical rectification in an Mg-doped LiNbO3 crystal. PMID:26072862

  11. The effect of the laser wavelength on collinear double pulse laser induced breakdown spectroscopy (DP-LIBS)

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Lin, Yanqing; Liu, Jing; Fan, Shuang; Xu, Zhuopin; Huang, Qing; Wu, Yuejin

    2016-05-01

    The pulsed lasers at wavelengths of 532 nm and 1064 nm were used as two beams of light for collinear double pulse laser induced breakdown spectroscopy (DP-LIBS). By changing the time sequence of two beams of different lasers, we studied the effect of the interval of two pulses of DP-LIBS on spectral signals compared with single pulsed (SP) LIBS.

  12. Laser cutting of carbon fiber reinforced plastics (CFRP) by UV pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki; Kurosaki, Ryozo

    2011-03-01

    In this paper, we report on a micro-cutting of carbon fiber reinforced plastics (CFRP) by nanosecond-pulsed laser ablation with a diode-pumped solid state UV laser (DPSS UV laser, λ= 355nm). A well-defined cutting of CFRP which were free of debris and thermal-damages around the grooves, were performed by the laser ablation with a multiple-scanpass irradiation method. CFRP is a high strength composite material with a lightweight, and is increasingly being used various applications. UV pulsed laser ablation is suitable for laser cutting process of CFRP materials, which drastically reduces a thermal damage at cut regions.

  13. Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output.

    PubMed

    Wei, Kaihua; Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Wu, Bo; Shen, Yonghang

    2013-10-21

    We report a novel quasi-synchronously pumped PPMgLN-based high power mid-infrared (MIR) laser with picosecond pulse bunch output. The pump laser is a linearly polarized MOPA structured all fiberized Yb fiber laser with picosecond pulse bunch output. The output from a mode-locked seed fiber laser was directed to pass through a FBG reflector via a circulator to narrow the pulse duration from 800 ps to less than 50 ps and the spectral FWHM from 9 nm to 0.15 nm. The narrowed pulses were further directed to pass through a novel pulse multiplier through which each pulse was made to become a pulse bunch composing of 13 sub-pulses with pulse to pulse time interval of 1.26 ns. The pulses were then amplified via two stage Yb fiber amplifiers to obtain a linearly polarized high average power output up to 85 W, which were then directed to pass through an isolator and to pump a PPMgLN-based optical parametric oscillator via quasi-synchronization pump scheme for ps pulse bunch MIR output. High MIR output with average power up to 4 W was obtained at 3.45 micron showing the feasibility of such pump scheme for ps pulse bunch MIR output. PMID:24150378

  14. Synchronization of Sub-Picosecond Electron and Laser Pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage G.P.

    2000-08-15

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is subpicosecond, with tens of femtosecond synchronization implied for next-generation experiments. Typically, an RF electron accelerator is synchronized to a short pulse laser system by detecting the repetition signal of a laser oscillator, adjusted to an exact subharmonic of the linac RF frequency, and multiplying or phase locking this signal to produce the master RF clock. Pulse-to-pulse jitter characteristic of self-mode-locked laser oscillators represents a direct contribution to the ultimate timing jitter between a high intensity laser focus and electron beam at the interaction point, or a photocathode drive laser in an RF photoinjector. This timing jitter problem has been addressed most seriously in the context of the RF photoinjector, where the electron beam properties are sensitive functions of relative timing jitter. The timing jitter achieved in synchronized photocathode drive laser systems is near, or slightly below one picosecond. The ultimate time of arrival jitter of the beam at the photoinjector exit is typically a bit smaller than the photocathode drive-laser jitter due to velocity compression effects in the first RF cell of the gun. This tendency of the timing of the electron beam arrival at a given spatial point to lock to the RF lock is strongly reinforced by use of magnetic compression.

  15. ULTRASHORT LIGHT PULSES: Formation of subfemtosecond laser pulses in aperiodically poled nonlinear-optical crystals

    NASA Astrophysics Data System (ADS)

    Shutov, I. V.; Novikov, A. A.; Chirkin, A. S.

    2008-03-01

    The method of synthesis of ultrashort laser pulses in nonlinear aperiodically poled crystals based on the simultaneous generation of several higher optical harmonics is considered. The interaction of four waves with multiple frequencies involving three mutually coupled nonlinear three-frequency processes is studied. It is shown that by introducing intense laser radiation into a crystal, pulses of duration of the order of a few hundreds of attoseconds can be produced at the crystal output.

  16. Pulsed laser processing of electronic materials in micro/nanoscale

    NASA Astrophysics Data System (ADS)

    Hwang, David Jen

    2005-08-01

    Time-resolved pump-and-probe side-view imaging has been performed to investigate the energy coupling to the target specimen over a wide range of fluences. Plasmas generated during the laser ablation process are visualized and the decrease of the ablation efficiency in the high fluence regime (>10 J/cm2) is attributed to the strong interaction of the laser pulse with the laser-induced plasmas. The high intensity ultra-short laser pulses also trigger volumetric multi-photon absorption (MPA) processes that can be beneficial in applications such as three-dimensional bulk modification of transparent materials. Femtosecond laser pulses were used to fabricate straight and bent through-channels in the optical glass. Drilling was initiated from the rear surface to preserve consistent absorbing conditions of the laser pulse. Machining in the presence of a liquid solution assisted the debris ejection. Drilling process was further enhanced by introducing ultrasonic waves, thereby increasing the aspect ratio of drilled holes and improving the quality of the holes. In conventional lens focusing schemes, the minimum feature size is determined by the diffraction limit. Finer resolution is accomplished by combining pulsed laser radiation with Near-field Scanning Optical Microscopy (NSOM) probes. Short laser pulses are coupled to a fiber-based NSOM probes in order to ablate thin metal films. A detailed parametric study on the effects of probe aperture size, laser pulse energy, temporal width and environment gas is performed. The significance of lateral thermal diffusion is highlighted and the dependence of the ablation process on the imparted near-field distribution is revealed. As a promising application of laser ablation in nanoscale, laser induced breakdown spectroscopy (LIBS) system has been built up based on NSOM ablation configuration. NSOM-LIBS is demonstrated with nanosecond pulsed laser excitation on Cr sample. Far-field collecting scheme by top objective lens was chosen as

  17. Femtosecond near-infrared laser pulses as a versatile non-invasive tool for intra-tissue nanoprocessing in plants without compromising viability.

    PubMed

    Tirlapur, Uday K; König, Karsten

    2002-08-01

    In this report, we describe a highly reproducible femtosecond near-infrared (NIR) laser-based nanoprocessing technique that can be used both for non-invasive intra-tissue nanodissection of plant cell walls as well as selective destruction of a single plastid or part thereof without compromising the viability of the cells. The ultra-precise intra-tissue nanoprocessing is achieved by the generation of high light intensity (10(12)W cm(-2)) by diffraction-limited focusing of the radiation of an NIR (lambda = 740 and 800 nm) femtosecond titanium-sapphire laser to a sub-femtolitre volume and subsequent highly localized instantaneous plasma formation. Following nanosurgery, electron microscopical analysis of the corresponding cellular target areas revealed clean non-staggering lesions across the cell wall with a cut width measuring less than 400 nm. To our knowledge, this is the smallest cut made non-invasively within a plant tissue. Further evidence, including two-photon imaging of chlorophyll fluorescence, revealed that a single target chloroplast or part thereof can be completely knocked out using intense ultra-fast NIR pulses without any visible deleterious effect on the adjacent plastids. The vitality of the cells after nanoprocessing has been ascertained by exclusion of propidium iodide from the cells as well as by the presence of cytoplasmic streaming. The potential applications of this technical advance include developmental biology applications, particularly studies addressing spatio-temporal control of ontogenetic events and cell-cell interactions, and gravitational biology applications. PMID:12164815

  18. Polarized neutron reflectivity and X-ray scattering measurements as tools to study properties of Pt/Co/Pt ultrathin layers irradiated by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Szuszkiewicz, Wojciech; Ott, Frédéric; Kisielewski, Jan; Sveklo, Iosif; Dynowska, Elżbieta; Minikayev, Roman; Kurant, Zbigniew; Kuna, Rafał; Jakubowski, Marcin; Wawro, Andrzej; Sobierajski, Ryszard; Maziewski, Andrzej

    2016-04-01

    We have used polarized neutron reflectivity, X-ray diffraction, X-ray reflectivity and magneto-optical Kerr effect in polar configuration to study the properties of ultrathin Pt/Co/Pt films. Structures consisting of a 5-nm thick Pt buffer, 3-nm thick Co layer and 5-nm thick Pt cover layer were deposited onto (0001)-oriented Al2O3 substrate by the molecular beam epitaxy (MBE) method. Irreversible modifications of film properties, resulting from its illumination by single femtosecond laser pulses, of duration of 40 fs and wavelength of 800 nm, were observed and analyzed. As prepared films exhibited magnetization in-plane, but after laser irradiation, the direction of magnetization was rotated to out-of-plane state. Formation of Co-Pt alloy phase caused by quasi-uniform film irradiation was demonstrated by the results of X-ray and neutron scattering measurements. Moreover, polarized neutron and X-ray reflectivity data showed that after illumination Co was distributed mostly in the area of nominal Co layer and Pt cover layer and its diffusion into the Pt buffer was less significant.

  19. Investigation of a pulsed dye laser under various pumping conditions

    SciTech Connect

    Nechaev, S.Y.

    1983-08-01

    An investigation was made of the influence of bilateral laser pumping in an almost longitudinal arrangement on the spectral and energy characteristics of a short-pulse laser utilizing rhodamine 6G. A considerable increase in efficiency over that for unilateral pumping was observed, together with a narrowing of the spectrum, in a dispersive resonator having a prism telescope and a grating.

  20. Pulsed UV and ultrafast laser micromachining of surface structures

    NASA Astrophysics Data System (ADS)

    Apte, Paul; Sykes, Neil

    2015-07-01

    We describe and compare the cutting and patterning of various "difficult" materials using pulsed UV Excimer, picosecond and femtosecond laser sources. Beam delivery using both fast galvanometer scanners and scanning mask imaging are described. Each laser source has its own particular strengths and weaknesses, and the optimum choice for an application is also decided by financial constraints. With some materials notable improvements in process quality have been observed using femtosecond lasers compared to picosecond lasers, which makes for an interesting choice now that cost effective reliable femtosecond systems are increasingly available. By contrast Pulsed UV Excimer lasers offer different imaging characteristics similar to mask based Lithographic systems and are particularly suited to the processing of polymers. We discuss optimized beam delivery techniques for these lasers.

  1. Pulsed CO laser for isotope separation of uranium

    SciTech Connect

    Baranov, Igor Y.; Koptev, Andrey V.

    2012-07-30

    This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

  2. Precision machining of pig intestine using ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  3. Plasma detector for TEA CO2 laser pulse measurement

    NASA Astrophysics Data System (ADS)

    Ichikawa, Y.; Yamanaka, M.; Mitsuishi, A.; Fujita, S.; Yamanaka, T.; Yamanaka, C.; Tsunawaki, Y.; Iwasaki, T.; Takai, M.

    1983-10-01

    Laser-pulse evolution can be detected by measuring the emf generated by fast electrons in a laser-produced plasma when the laser radiation is focused onto a solid metal target in a vacuum. Using this phenomenon a 'plasma detector' is constructed, and its characteristics for the TEA CO2 laser radiation of intensity 10 to the 9th to 10 to the 10th W/sq cm are investigated experimentally. The plasma detector operates at room temperature and is strong against laser damages. For the evacuated plasma detector down to 0.1 torr, a maximum output voltage of 90 V and a rise time shorter than 1 ns are observed. The plasma detector, therefore, can be used as a power monitor for laser pulses and as a trigger voltage source.

  4. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    DOEpatents

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  5. Photonic crystal Fano laser: terahertz modulation and ultrashort pulse generation.

    PubMed

    Mork, J; Chen, Y; Heuck, M

    2014-10-17

    We suggest and analyze a laser with a mirror realized by Fano interference between a waveguide and a nanocavity. For small-amplitude modulation of the nanocavity resonance, the laser can be modulated at frequencies exceeding 1 THz, not being limited by carrier dynamics as for conventional lasers. For larger modulation, a transition from pure frequency modulation to the generation of ultrashort pulses is observed. The laser dynamics is analyzed by generalizing the field equation for conventional lasers to account for a dynamical mirror, described by coupled mode theory. PMID:25361259

  6. Ultrashort pulsed fiber laser welding and sealing of transparent materials.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Liu, Jian

    2012-05-20

    In this paper, methods of welding and sealing optically transparent materials using an ultrashort pulsed (USP) fiber laser are demonstrated which overcome the limit of small area welding of optical materials. First, the interaction of USP fiber laser radiation inside glass was studied and single line welding results with different laser parameters were investigated. Then multiline scanning was used to obtain successful area bonding. Finally, complete four-edge sealing of fused silica substrates with a USP laser was demonstrated and the hermetic seal was confirmed by water immersion test. This laser microwelding technique can be extended to various applications in the semiconductor industry and precision optic manufacturing. PMID:22614601

  7. Note: external multipass optical trap for counterpropagating pulsed laser applications.

    PubMed

    Graul, J S; Ketsdever, A D; Andersen, G P; Lilly, T C

    2013-07-01

    Pulses from a 12 mJ, frequency doubled, 5 ns FWHM, pulsed Nd:YAG laser were split and injected into opposing sides of a symmetric 2.44 m (96 in.) optical ring trap. Using a Pockels cell, the counterpropagating pulses were "locked" into the trap for ≥50 round trips. This optical trap has potential applications ranging from established cavity processes, e.g., laser-based absorption spectroscopy and x-ray production, to new processes such as non-resonant optical lattice gas heating and time-resolved coherent Rayleigh-Brillouin scattering diagnostic studies. PMID:23902119

  8. Note: External multipass optical trap for counterpropagating pulsed laser applications

    NASA Astrophysics Data System (ADS)

    Graul, J. S.; Ketsdever, A. D.; Andersen, G. P.; Lilly, T. C.

    2013-07-01

    Pulses from a 12 mJ, frequency doubled, 5 ns FWHM, pulsed Nd:YAG laser were split and injected into opposing sides of a symmetric 2.44 m (96 in.) optical ring trap. Using a Pockels cell, the counterpropagating pulses were "locked" into the trap for ≥50 round trips. This optical trap has potential applications ranging from established cavity processes, e.g., laser-based absorption spectroscopy and x-ray production, to new processes such as non-resonant optical lattice gas heating and time-resolved coherent Rayleigh-Brillouin scattering diagnostic studies.

  9. Pulse Selection Control for the IR FEL Photocathode Drive Laser

    NASA Astrophysics Data System (ADS)

    Jordan, K.; Evans, R.; Garza, O.; Hill, R.; Shinn, M.; Song, J.; Venhaus, D.

    1997-05-01

    The method for current control of the photocathode source is described. This device allows remote control of drive laser output pulses for resulting beam currents of less than 1 microamp to full current of 5 milliamps. The low current modes are accomplished by counting discrete micropulses and gating electro-optical cells. The higher current modes are done by varying both the photons per pulse and the frequency of the laser output pulses. Programmable Logic Devices (PLDs) provide the choice in micropulses per macropulse and the macropulse frequency. All macropulses are line locked to 60 Hz and have the ability to be slewed through a line cycle in discrete steps.

  10. Toward attosecond electron pulses using ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Fortin, Pierre-Louis; Piché, Michel

    2008-06-01

    In many countries around the world, ultra-intense laser facilities are being built. These state-of-the-art lasers are intended for innovative medical and technological applications, as well as for basic experiments at the frontiers of fundamental science. Laser particle acceleration is a promising new endeavor. Recently developed schemes using radially polarized beams could help in reaching unprecedentedly short electron pulse durations, well in the attosecond range and potentially in the subattosecond range.

  11. Femtosecond laser microfabrication in polymers towards memory devices and microfluidic applications

    NASA Astrophysics Data System (ADS)

    Deepak, K. L. N.; Venugopal Rao, S.; Narayana Rao, D.

    2011-12-01

    We have investigated femtosecond laser induced microstructures, gratings, and craters in four different polymers: poly methyl methacrylate (PMMA), poly dimethyl siloxane (PDMS), polystyrene (PS) and poly vinyl alcohol (PVA) using Ti:sapphire laser delivering 800 nm, 100 femtosecond (fs) pulses at 1 kHz repetition rate with a maximum pulse energy of 1 mJ. Local chemical modifications leading to the formation of optical centers and peroxide radicals which were studied using UV-Visible absorption and emission, confocal micro-Raman and Electron Spin Resonance (ESR) spectroscopic techniques.

  12. Femtosecond-laser direct writing in polymers and potential applications in microfluidics and memory devices

    NASA Astrophysics Data System (ADS)

    Kallepalli, Lakshmi Narayana Deepak; Soma, Venugopal Rao; Desai, Narayana Rao

    2012-07-01

    We have investigated femtosecond-laser-induced microstructures (on the surface and within the bulk), gratings, and craters in four different polymers: polymethyl methacrylate, polydimethylsiloxane, polystyrene, and polyvinyl alcohol. The structures were achieved using a Ti:sapphire laser delivering 100-fs pulses at 800 nm with a repetition rate of 1 kHz and a maximum pulse energy of 1 mJ. Local chemical modifications leading to the formation of optical centers and peroxide radicals were studied using ultraviolet-visible absorption and emission, confocal micro-Raman and electron spin resonance spectroscopic techniques. Potential applications of these structures in microfluidics, waveguides, and memory-based devices are demonstrated.

  13. Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics

    NASA Astrophysics Data System (ADS)

    Schultze, M.; Goulielmakis, E.; Uiberacker, M.; Hofstetter, M.; Kim, J.; Kim, D.; Krausz, F.; Kleineberg, U.

    2007-07-01

    Single 170-as extreme ultraviolet (XUV) pulses delivering more than 106 photons/pulse at ~100 eV at a repetition rate of 3 kHz are produced by ionizing neon with waveform-controlled sub-5 fs near-infrared (NIR) laser pulses and spectrally filtering the emerging near-cutoff high-harmonic continuum with a broadband, chirped multilayer molybdenum silicon (Mo/Si) mirror.

  14. Short pulse generation by laser slicing at NSLSII

    SciTech Connect

    Yu, L.; Blednykh, A.; Guo, W.; Krinsky, S.; Li, Y.; Shaftan, T.; Tchoubar, O.; Wang, G.; Willeke, F.; Yang, L.

    2011-03-28

    We discuss an upgrade R&D project for NSLSII to generate sub-pico-second short x-ray pulses using laser slicing. We discuss its basic parameters and present a specific example for a viable design and its performance. Since the installation of the laser slicing system into the storage ring will break the symmetry of the lattice, we demonstrate it is possible to recover the dynamical aperture to the original design goal of the ring. There is a rapid growth of ultrafast user community interested in science using sub-pico-second x-ray pulses. In BNL's Short Pulse Workshop, the discussion from users shows clearly the need for a sub-pico-second pulse source using laser slicing method. In the proposal submitted following this workshop, NSLS team proposed both hard x-ray and soft x-ray beamlines using laser slicing pulses. Hence there is clearly a need to consider the R&D efforts of laser slicing short pulse generation at NSLSII to meet these goals.

  15. Development of pulse laser processing for mounting fiber Bragg grating

    SciTech Connect

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  16. Mechanism study of skin tissue ablation by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin

    Understanding the fundamental mechanisms in laser tissue ablation is essential to improve clinical laser applications by reducing collateral damage and laser pulse energy requirement. The motive of this dissertation is to study skin tissue ablation by nanosecond laser pulses in a wide spectral region from near-infrared to ultraviolet for a clear understanding of the mechanism that can be used to improve future design of the pulsed lasers for dermatology and plastic surgery. Multiple laser and optical configurations have been constructed to generate 9 to 12ns laser pulses with similar profiles at 1064. 532, 266 and 213nm for this study of skin tissue ablation. Through measurements of ablation depth as a function cf laser pulse energy, the 589nm spectral line in the secondary radiation from ablated skin tissue samples was identified as the signature of the occurrence of ablation. Subsequently, this spectral signature has been used to investigate the probabilistic process of the ablation near the threshold at the four wavelengths. Measurements of the ablation probability were conducted as a function of the electrical field strength of the laser pulse and the ablation thresholds in a wide spectral range from 1064nm to 213nm were determined. Histology analysis and an optical transmission method were applied in assessing of the ablation depth per pulse to study the ablation process at irradiance levels higher than threshold. Because more than 70% of the wet weight of the skin tissue is water, optical breakdown and backscattering in water was also investigated along with a nonlinear refraction index measurement using a z-scan technique. Preliminary studies on ablation of a gelatin based tissue phantom are also reported. The current theoretical models describing ablation of soft tissue ablation by short laser pulses were critically reviewed. Since none of the existing models was found capable of explaining the experimental results, a new plasma-mediated model was developed

  17. Development of pulse laser processing for mounting fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-01

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  18. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    PubMed

    Kemp, A J; Divol, L

    2012-11-01

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion. PMID:23215393

  19. Energy Losses Estimation During Pulsed-Laser Seam Welding

    NASA Astrophysics Data System (ADS)

    Sebestova, Hana; Havelkova, Martina; Chmelickova, Hana

    2014-06-01

    The finite-element tool SYSWELD (ESI Group, Paris, France) was adapted to simulate pulsed-laser seam welding. Besides temperature field distribution, one of the possible outputs of the welding simulation is the amount of absorbed power necessary to melt the required material volume including energy losses. Comparing absorbed or melting energy with applied laser energy, welding efficiencies can be calculated. This article presents achieved results of welding efficiency estimation based on the assimilation both experimental and simulation output data of the pulsed Nd:YAG laser bead on plate welding of 0.6-mm-thick AISI 304 stainless steel sheets using different beam powers.

  20. Interaction of repetitively pulsed high energy laser radiation with matter

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, M.

    1986-05-01

    Laser target interaction processes and methods of improving the overall energy balance are discussed. This can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed using a pulsed CO2 laser at mean powers up to 2 KW and repetition rates up to 100 Hz. The rates of temperature rise of aluminum for example are increased by more than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements are found for the overall absorptivities, that are increased by more than an order of magnitude.

  1. Propagation of intense laser pulses in strongly magnetized plasmas

    SciTech Connect

    Yang, X. H. Ge, Z. Y.; Xu, B. B.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q.; Yu, W.; Xu, H.; Yu, M. Y.; Borghesi, M.

    2015-06-01

    Propagation of intense circularly polarized laser pulses in strongly magnetized inhomogeneous plasmas is investigated. It is shown that a left-hand circularly polarized laser pulse propagating up the density gradient of the plasma along the magnetic field is reflected at the left-cutoff density. However, a right-hand circularly polarized laser can penetrate up the density gradient deep into the plasma without cutoff or resonance and turbulently heat the electrons trapped in its wake. Results from particle-in-cell simulations are in good agreement with that from the theory.

  2. Controlling Plasma Channels through Ultrashort Laser Pulse Filamentation

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey; Seleznev, Leonid; Sunchugasheva, Elena

    2013-09-01

    A review of studies fulfilled at the Lebedev Institute in collaboration with the Moscow State University and Institute of Atmospheric Optics in Tomsk on influence of various characteristics of ultrashort laser pulse on plasma channels formed under its filamentation is presented. Filamentation of high-power laser pulses with wavefront controlled by a deformable mirror, with cross-sections spatially formed by various diaphragms and with different wavelengths was experimentally and numerically studied. An application of plasma channels formed due to filamentation of ultrashort laser pulse including a train of such pulses for triggering and guiding long electric discharges is discussed. The research was supported by RFBR Grants 11-02-12061-ofi-m and 11-02-01100, and EOARD Grant 097007 through ISTC Project 4073 P

  3. Sudden perturbation of hydrogen atoms by intense ultrashort laser pulses

    SciTech Connect

    Lugovskoy, A. V.; Bray, I.

    2005-12-15

    We study theoretically how hydrogen atoms respond to intense ultrashort laser pulses of duration {tau} shorter than the inverse of the initial-state energy {epsilon}{sub i}{sup -1}. An analytical expression for the evolution operator S is derived up to the first order of the sudden perturbation approximation. This approximation treats the laser-atom interaction beyond the dipole approximation and yields S as a series in the small parameter {epsilon}{sub i}{tau}. It is shown that the effect of realistic laser pulses on atoms begins at the first order of {epsilon}{sub i}{tau}. Transitions between atomic (nlm) states of different m become possible due to the action of the pulse's magnetic field. Transitions between states of same m and arbitrary l become possible if the static Coulomb potential is taken into account during the pulse.

  4. Electrostrictive counterforce on fluid microdroplet in short laser pulse.

    PubMed

    Ellingsen, S Å; Brevik, I

    2012-06-01

    When a micrometer-sized fluid droplet is illuminated by a laser pulse, there is a fundamental distinction between two cases. If the pulse is short in comparison with the transit time for sound across the droplet, the disruptive optical Abraham-Minkowski radiation force is countered by electrostriction, and the net stress is compressive. In contrast, if the pulse is long on this scale, electrostriction is cancelled by elastic pressure and the surviving term of the electromagnetic force, the Abraham-Minkowski force, is disruptive and deforms the droplet. Ultrashort laser pulses are routinely used in modern experiments, and impressive progress has moreover been made on laser manipulation of liquid surfaces in recent times, making a theory for combining the two pertinent. We analyze the electrostrictive contribution analytically and numerically for a spherical droplet. PMID:22660076

  5. Electroporation visualized under a multishot pulsed laser fluorescence microscope system

    NASA Astrophysics Data System (ADS)

    Itoh, Hiroyasu; Yu, Irene I. K.; Hibino, Masahiro; Hayakawa, Tsuyoshi; Kinosita, Kazuhiko, Jr.

    1993-10-01

    We describe a new fluorescence microscope system, which is the third generation of our pulsed-laser microscope systems developed for the purpose of capturing rapid cellular phenomena. Time resolution of this latest version is supported by the combination of a Q- switched Nd:YAG laser producing a burst of 4 pulses and a large format framing camera. We obtain series images at intervals on the order of 10 microsecond(s) with exposure times of 30 ns. With this multi-shot pulsed laser fluorescence microscope system, we examined the behavior of the transmembrane potential in a sea urchin egg under an intense electric field. Irreversible process of cell electroporation was revealed in serial images taken under a single electric pulse of microsecond duration.

  6. High efficiency, high pulse energy fiber laser system

    NASA Astrophysics Data System (ADS)

    Bowers, Mark S.; Henrie, Jason; Garske, Megan; Templeman, Dan; Afzal, Robert

    2013-05-01

    We report a master-oscillator/power-amplifier laser system featuring a polarizing and coilable 40-micron-core Yb-doped photonic crystal fiber as the final-stage amplifier. The laser source generates 3.4 ns pulses at a repetition rate 19 kHz, with maximum pulse energy 1.2 mJ, maximum average power 22.8 W, near diffraction-limited (M2 < 1.1) beam quality, and 20% electrical to optical efficiency in a compact package. This pulsed-fiber laser flight system provides high pulse energy, average power, peak power, diffraction limited beam quality, and high efficiency all in a thermally and mechanically stable compact package.

  7. Xenon plasma sustained by pulse-periodic laser radiation

    SciTech Connect

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.; Shilov, A. O.; Yakimov, M. Yu.

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse, plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.

  8. The efficiency of photovoltaic cells exposed to pulsed laser light

    NASA Technical Reports Server (NTRS)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  9. The simulation of behaviors of photodetectors under pulsed laser irritation

    NASA Astrophysics Data System (ADS)

    Zheng, Xin; Cheng, Xiang-ai; Yu, Xiangyang; Qian, Le; Jiang, Tian

    2013-05-01

    Precise simulation of transient electrical behaviors of photodetectors under laser irradiation is becoming an increasingly concern. It not only can allow a detailed study and analysis of complex phenomena that cannot be carried out by experiments, but gives valuable information about the physical mechanisms which ultimately determine the response of the photodetectors. Finite difference numerical technique is adopted in the simulation to calculate the current response of photodetectors under pulsed laser irritation in this paper. To simulation the behaviors of photodetectors under pulsed laser irritation, the transport and trapping of carries and external circuit effects, including load resistance, junction capacitance, and parasitic capacitance, are considered. The basic equations governing the carrier behaviors are solved, including Poisson's equation, the carrier motion equations, and the carrier continuity equations. The simulated transient carrier density and velocities are present, as well as corresponding transient electric field distributions. The behaviors of electrons and holes and its contributions to the external current response are analyzed. Then a general and brief image of the transient progress of photodetectors under pulsed laser irritation is established. How the carrier is induced, transported, and trapped and whether they make any significant contribution to the external current response are discussed. Besides, bias dependent response is also studied. Higher bias will improver the behaviors of photodetectors under pulsed laser irritation. The simulated results and theory analysis will show valuable clue for future research on the behaviors of photodetectors irradiated by pulsed laser.

  10. Asymmetric explosion of clusters in intense laser fields

    SciTech Connect

    Kundu, M.

    2012-08-15

    We examine asymmetric expansion of argon clusters illuminated by 800 nm laser pulses of duration Almost-Equal-To 23fs, using three-dimensional particle-in-cell (PIC) simulation. For this short pulse duration, laser energy absorption by cluster electrons is dominated by the nonlinear resonance (NLR) absorption process [Phys. Rev. Lett. 96, 123401 (2006)]. In this work, we concentrate, particularly, on the ionic outcome in the NLR regime and show that higher charge states of argon ions are produced along the laser polarization than in the transverse directions leading to the anisotropy (asymmetry) in the ion energy distribution. This anisotropy already established during the short pulse duration (or in the early duration of a long pulse) may contribute to the anisotropic ion emission reported in cluster experiments with pulse duration longer than 100 fs. Our PIC results are compared with a charged-sphere model showing that cluster explosion is mainly due to Coulomb repulsion between the cluster ions.

  11. The interaction of intense subpicosecond laser pulses with underdense plasmas

    SciTech Connect

    Coverdale, C.A.

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10{sup 16} W/cm{sup 2} laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L{sub plasma} {ge} 2L{sub Rayleigh} > c{tau}. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n{sub o} {le} 0.05n{sub cr}). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in {omega}-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  12. Laser hazard analysis for various candidate diode lasers associated with the high resolution pulsed scanner.

    SciTech Connect

    Augustoni, Arnold L.

    2004-10-01

    A laser hazard analysis and safety assessment was performed for each various laser diode candidates associated with the High Resolution Pulse Scanner based on the ANSI Standard Z136.1-2000, American National Standard for the Safe Use of Lasers. A theoretical laser hazard analysis model for this system was derived and an Excel{reg_sign} spreadsheet model was developed to answer the 'what if questions' associated with the various modes of operations for the various candidate diode lasers.

  13. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses

    SciTech Connect

    Watanabe, Wataru; Onda, Satoshi; Tamaki, Takayuki; Itoh, Kazuyoshi; Nishii, Junji

    2006-07-10

    We report on the joining of dissimilar transparent materials based on localized melting and resolidification of the materials only around the focal volume due to nonlinear absorption of focused femtosecond laser pulses. We demonstrate the joining of borosilicate glass and fused silica, whose coefficients of thermal expansion are different. The joint strength and the transmittance through joint volume were investigated by varying the translation velocity of the sample and the pulse energy of the irradiated laser pulses.

  14. Cluster ion control by simultaneous irradiations of femtosecond laser and nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kamada, H.; Hiratani, Y.; Toyoda, K.

    2002-09-01

    Generation of multiply charged ions and molecular ions have been investigated using simultaneous irradiation of high intensity and ultrashort pulse of Ti:sapphire laser and fourth harmonics of Q-switched nanosecond pulse of Nd:YAG laser on carbon targets [Morimoto et al., in: Proceedings of the 13th International Conference on High-Power Particles Beams (BEAMS2000),Vol. PB-89, Nagaoka, 2000, p. 359; Toyoda et al., in: Proceedings of the 8th International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference (GCL-HPL2000), Vol. P1.60, 2000, p. 101]. The ion current waveforms have been analyzed by means of time-of-flight (tof) mass measurement. Simultaneous irradiation of high intensity and ultrashort pulse of Ti:sapphire laser and fourth harmonics of Q-switched nanosecond pulse of Nd:YAG laser on carbon targets was found to generate molecular ions of carbon.

  15. Short-pulse, high-intensity lasers at Los Alamos

    SciTech Connect

    Taylor, A.J.; Roberts, J.P.; Rodriguez, G.; Fulton, R.D.; Kyrala, G.A.; Schappert, G.T.

    1994-03-01

    Advances in ultrafast lasers and optical amplifiers have spurred the development of terawatt-class laser systems capable of delivering focal spot intensities approaching 10{sup 20} W/cm{sup 2}. At these extremely high intensities, the optical field strength is more than twenty times larger than the Bohr electric field, permitting investigations of the optical properties of matter in a previously unexplored regime. The authors describe two laser systems for high intensity laser interaction experiments: The first is a terawatt system based on amplification of femtosecond pulses in XeCl which yields 250 mJ in 275 fs and routinely produces intensifies on target in excess of 10{sup 18} W/cm{sup 2}. The second system is based on chirped pulse amplification of 100-fs pulses in Ti:sapphire.

  16. Medical applications of ultra-short pulse lasers

    SciTech Connect

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment community perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.

  17. Envelope evolution of a laser pulse in an active medium

    SciTech Connect

    Fisher, D.L.; Tajima, T.; Downer, M.C.; Siders, C.W.

    1994-11-01

    The authors show that the envelope velocity, v{sub env}, of a short laser pulse can, via propagation in an active medium, be made less than, equal to, or even greater than c, the vacuum phase velocity of light. Simulation results, based on moving frame propagation equations coupling the laser pulse, active medium and plasma, are presented, as well as equations that determines the design value of super- and sub-luminous v{sub env}. In this simulation the laser pulse evolves in time in a moving frame as opposed to their earlier work where the profile was fixed. The elimination of phase slippage and pump depletion effects in the laser wakefield accelerator is discussed as a particular application. Finally they discuss media properties necessary for an experimental realization of this technique.

  18. Device For Trapping Laser Pulses In An Optical Delay Line

    DOEpatents

    Yu, David U. L.; Bullock, Donald L.

    1997-12-23

    A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.

  19. Intracavity frequency doubling of {mu}s alexandrite laser pulses

    SciTech Connect

    Brinkmann, R.; Schoof, K.

    1994-12-31

    Intracavity second harmonic generation (SHG) with a three mirror folded cavity configuration was investigated with a flashlamp pumped, Q-switched Alexandrite laser. The authors therefore used different nonlinear optical crystals to convert the fundamental 750 nm radiation into the near UV spectral ,range (3 75 nm). The laser pulses were stretched into the {mu}s time domain by an electronic feedback system regulating the losses of the resonator. They investigated the conversion efficiency for different pulse lengths as well as the effect of pulse-lengthening due to the nonlinearity of the intracavity losses introduced by the optical crystal used. Working with BBO-crystals, they were able to achieve a second harmonic output of 25 mJ per pulse at 375 mn with a temporal rectangular pulse of 1 {mu}s in length and a stable nearly gaussian shaped beam profile.

  20. Femtosecond pulsed laser ablation of GaAs

    NASA Astrophysics Data System (ADS)

    Trelenberg, T. W.; Dinh, L. N.; Saw, C. K.; Stuart, B. C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed.