Science.gov

Sample records for 800nm mi-frog measures

  1. Femtosecond Coherent Spectroscopy at 800nm: MI-FROG Measures High-Field Ionization Rates in Gases

    SciTech Connect

    Siders, C.W.; Siders, J.L.W.; Taylor, A.J.

    1999-05-24

    The authors report the first quantitative phase-sensitive measurement of ultrafast ionization rates in gases using Multi-phase Interferometric Frequency-Resolved Optical Gating. Ultrafast probe depletion via frequency mixing in the ionization front is observed.

  2. High-brightness 800nm fiber-coupled laser diodes

    NASA Astrophysics Data System (ADS)

    Berk, Yuri; Levy, Moshe; Rappaport, Noam; Tessler, Renana; Peleg, Ophir; Shamay, Moshe; Yanson, Dan; Klumel, Genadi; Dahan, Nir; Baskin, Ilya; Shkedi, Lior

    2014-03-01

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. Single emitters offer reliable multi-watt output power from a 100 m lateral emission aperture. By their combination and fiber coupling, pump powers up to 100 W can be achieved from a low-NA fiber pigtail. Whilst in the 9xx nm spectral range the single emitter technology is very mature with <10W output per chip, at 800nm the reliable output power from a single emitter is limited to 4 W - 5 W. Consequently, commercially available fiber coupled modules only deliver 5W - 15W at around 800nm, almost an order of magnitude down from the 9xx range pumps. To bridge this gap, we report our advancement in the brightness and reliability of 800nm single emitters. By optimizing the wafer structure, laser cavity and facet passivation process we have demonstrated QCW device operation up to 19W limited by catastrophic optical damage to the 100 μm aperture. In CW operation, the devices reach 14 W output followed by a reversible thermal rollover and a complete device shutdown at high currents, with the performance fully rebounded after cooling. We also report the beam properties of our 800nm single emitters and provide a comparative analysis with the 9xx nm single emitter family. Pump modules integrating several of these emitters with a 105 μm / 0.15 NA delivery fiber reach 35W in CW at 808 nm. We discuss the key opto-mechanical parameters that will enable further brightness scaling of multi-emitter pump modules.

  3. Nonlinear refraction properties of nickel oxide thin films at 800 nm

    SciTech Connect

    Melo, Ronaldo P. Jr. de; Silva, Blenio J. P. da; Santos, Francisco Eroni P. dos; Azevedo, A.; Araujo, Cid B. de

    2009-11-01

    Measurements of the nonlinear refractive index, n{sub 2}, of nickel oxide films prepared by controlled oxidation of nickel films deposited on substrates of soda-lime glass are reported. The structure and morphology of the samples were characterized by scanning electron microscopy, atomic force microscopy, and x-ray diffractometry. Samples of excellent optical quality were prepared. The nonlinear measurements were performed using the thermally managed eclipse Z-scan technique at 800 nm. A large value of n{sub 2}approx =10{sup -12} cm{sup 2}/W and negligible nonlinear absorption were obtained.

  4. High resolution spectroscopy of an Orionid meteor from 700 to 800 nm

    NASA Astrophysics Data System (ADS)

    Passas, M.; Madiedo, J. M.; Gordillo-Vázquez, F. J.

    2016-03-01

    The emission spectrum of a meteor was recorded by the GRASSP instrument during the observation of transient luminous events (TLEs) on 2014 October 16th. The spectroscopic signal was recorded in the wavelength range from 700 to 800 nm, where the emission from atmospheric oxygen and nitrogen dominated. The good spectral resolution of the spectrum (0.24 nm with 0.07 nm/pixel spectral dispersion) has allowed us to determine the physical conditions in the meteor plasma, to identify several emissions from atmospheric (N I, N II, O I) and meteoroid species (Ti I, Cr I, Fe I, Fe II, Zr I, Pd I, W I) and to estimate the upper limit of the temperature of the gaseous environment surrounding the meteoroid. Images recorded for this meteor from two different sites allowed calculating its atmospheric trajectory and the orbital parameters of the progenitor meteoroid. These data revealed that the particle belonged to the Orionid meteoroid stream.

  5. High Harmonic Inverse Free-Electron-Laser Interaction at 800nm

    SciTech Connect

    Sears, Christopher M.S.; Colby, Eric; Cowan, Ben; Siemann, Robert H.; Spencer, James; Byer, Robert L.; Plettner, Tomas; /Stanford U., Phys. Dept.

    2005-05-13

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and used as a short wavelength modulator for micro bunching of beams for laser acceleration experiments [1,2]. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.5 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. We also compare the experimental results to a simple analytic model that describes coupling to high order harmonics of the interaction.

  6. High-Harmonic Inverse Free-Electron-Laser Interaction at 800nm

    SciTech Connect

    Sears, C

    2006-02-17

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and used as a short wavelength modulator for micro bunching of beams for laser acceleration experiments [1,2]. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.5 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. We also compare the experimental results to a simple analytic model that describes coupling to high order harmonics of the interaction.

  7. Optical limiting property of a liquid malononitrile derivative on 800 nm laser pulses

    NASA Astrophysics Data System (ADS)

    Du, Juan; Wang, Liuheng; Xie, Na; Sun, Li; Wang, Xiaodong; Zhao, Yuxia; Wu, Feipeng

    2016-08-01

    A new liquid malononitrile derivative (LBDBP) has been synthesized by incorporating four tetraethylene glycol groups into the prototype scaffold of 2-[Bis-(4‧-diethylamino-biphenyl-4-yl)-methylene]-malononitrile (BDBP). The linear photophysical properties, optical/thermal stabilities and optical limiting behaviors of LBDBP and BDBP have been investigated. The results show that LBDBP has equivalent optical/thermal stability but much better solubility compared with BDBP. Its saturation concentration in DMF is increased to 0.075 M, while the corresponding datum for BDBP is only 0.01 M. The improved solubility of LBDBP insures a very significant optical limiting behavior. The saturated DMF solution of LBDBP can significantly reduce the intensity fluctuation of laser pulses in an 800 nm laser setup.

  8. TCSPC FLIM in the wavelength range from 800 nm to 1700 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Becker, Wolfgang; Shcheslavsky, Vladislav

    2016-03-01

    Excitation and detection in the wavelength range above 800nm is a convenient and relatively inexpensive way to increase the penetration depth in optical microscopy. Moreover, detection at long wavelength avoids the problem that tissue autofluorescence contaminates the signals from endogenous fluorescence probes. FLIM at NIR wavelength may therefore be complementary to multiphoton microscopy, especially if the lifetimes of NIR fluorophores report biological parameters of the tissue structures they are bound to. Unfortunately, neither the excitation sources nor the detectors of standard confocal and multiphoton laser scanning systems are directly suitable for excitation and detection of NIR fluorescence. Most of these problems can be solved, however, by using ps diode lasers or Ti:Sapphire lasers at their fundamental wavelength, and NIR-sensitive detectors. With NIR-sensitive PMTs the detection wavelength range can be extended up to 900 nm, with InGaAs SPAD detectors up to 1700 nm. Here, we demonstrate the use of a combination of laser scanning, multi-dimensional TCSPC, and advanced excitation sources and detectors for FLIM at up to 1700 nm. The performance was tested at tissue samples incubated with NIR dyes. The fluorescence lifetimes generally get shorter with increasing absorption and emission wavelengths of the dyes. For the cyanine dye IR1061, absorbing around 1060 nm, the lifetime was found to be as short as 70 ps. Nevertheless the fluorescence decay could still be clearly detected. Almost all dyes showed clear lifetime changes depending on the binding to different tissue constituents.

  9. Experimental study on 800 nm femtosecond laser ablation of fused silica in air and vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shi-zhen; Yao, Cai-zhen; Liao, Wei; Yuan, Xiao-dong; Wang, Tao; Zu, Xiao-tao

    2016-10-01

    Ablation rates of fused silica were studied as a function of femtosecond laser pulse fluences (0.7-41 J/cm2) in air and vacuum. The experiment was conducted by using a Ti:sapphire laser that emits radiation at 800 nm with a pulse width of 35 fs and a repetition rate of 10 Hz. The morphology and ablation depth of laser-induced damage crater were evaluated by using optical microscopy and scanning electron microscopy (SEM). Ablation rates were calculated from the depth of craters induced by multiple laser pulses. Results showed that two ablation regimes, i.e. non-thermal and thermal ablation co-existed in air and vacuum at low and moderate fluences. A drop of ablation rate was observed at high fluence (higher than 9.5 J/cm2) in air. While in vacuum, the ablation rate increased continuously with the increasing of laser fluence and much higher than that in air. The drop of ablation rate observed at high fluence in air was due to the strong defocusing effects associated with the non-equilibrium ionization of air. Furthermore, the laser-induced damage threshold (LIDT), which was determined from the relationship between crater area and the logarithm of laser energy, was found to depend on the number of incident pulses on the same spot, and similar phenomenon was observed in air and vacuum.

  10. 1.319 μm excited intense 800 nm frequency upconversion emission in Tm3+-doped fluorogermanate glass

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, A. S.; Vermelho, M. V. D.; Gouveia, E. A.; Bueno, L. A.; Jacinto, C.

    2015-11-01

    Generation of near-infrared light within the first biological optical window via frequency upconversion in Tm3+-doped PbGeO3-PbF2-CdF2 glass excited within the second biological window at 1.319 μm is reported. The upconversion emission at 800 nm is the sole light signal observed in the entire ultraviolet-visible-near-infrared spectral region making it possible obtaining high contrast imaging. The dependence of the 800 nm signal upon the sample temperature was investigated and results showed an increase by a factor of ×2.5 in the 30-280 °C range. Generation of detectable 690 nm for temperatures above 100 °C in addition to the intense 800 nm main signal was also observed. The proposed excitation mechanism for the 800 nm thulium emitting level is assigned to a multiphonon-assisted excitation from the ground-state 3H6 to the 3H5 excited-state level, a rapid relaxation to the 3F4 level and followed by an excited-state absorption of the pump photons mediated by multiphonons connecting the 3F4 level to the 3H4 emitting level.

  11. Efficient 800nm upconversion luminescence emission in 1.319μm excited thulium-doped fluorogermanate

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, A. S.; Vermelho, M. V. D.; Jacinto, C.; Gouveia, E. A.; Bueno, L. A.

    2016-02-01

    Generation of near-infrared light within the first biological optical window via frequency upconversion in Tm3+-doped PbGeO3-PbF2-CdF2 glass excited within the second biological window at 1.319 μm is reported. The upconversion emission at 800 nm is the sole light signal observed in the entire UV-VIS-NIR spectral region making possible obtaining high contrast imaging. The dependence of the 800 nm signal upon the sample temperature was investigated and results showed an increase by a factor of x2.5 in the 30°C - 280°C range. Generation of detectable 690 nm for temperatures above 100°C in addition to the intense 800 nm main signal was also observed. The proposed excitation mechanism for the 800 nm thulium emitting level is assigned to a multiphonon-assisted excitation from the ground-state 3H6 to the 3H5 excited-state level, a rapid relaxation to the 3F4 level and followed by an excited-state absorption of the pump photons mediated by multiphonons connecting the 3F4 level to the 3H4 emitting level.

  12. Correlated Two-Electron Momentum Spectra for Strong-Field Nonsequential Double Ionization of He at 800 nm

    SciTech Connect

    Rudenko, A.; Ergler, Th.; Zrost, K.; Feuerstein, B.; Schroeter, C. D.; Moshammer, R.; Ullrich, J.; Jesus, V. L. B. de

    2007-12-31

    We report on a kinematically complete experiment on nonsequential double ionization of He by 25 fs 800 nm laser pulses at 1.5 PW/cm{sup 2}. The suppression of the recollision-induced excitation at this high intensity allows us to address in a clean way direct (e,2e) ionization by the recolliding electron. In contrast with earlier experimental results, but in agreement with various theoretical predictions, the two-electron momentum distributions along the laser polarization axis exhibit a pronounced V-shaped structure, which can be explained by the role of Coulomb repulsion and typical (e,2e) kinematics.

  13. Efficient 1 kHz femtosecond optical parametric amplification in BiB(3)O(6) pumped at 800 nm.

    PubMed

    Ghotbi, Masood; Ebrahim-Zadeh, Majid; Petrov, Valentin; Tzankov, Pancho; Noack, Frank

    2006-10-30

    We demonstrate efficient operation of a tunable femtosecond optical parametric amplifier based on BiB(3)O(6) pumped at 800 nm by a 1 kHz Ti:sapphire regenerative amplifier. The idler wavelength coverage extends to beyond 3 mum and the pulse duration at this wavelength is of the order of 110 fs. This new nonlinear borate crystal offers exceptionally high nonlinearity, making it a very promising candidate for power scaling of such frequency converters in the near-IR.

  14. Leaf Level Chlorophyll Fluorescence Emission Spectra: Narrow Band versus Full 650-800 nm Retrievals

    NASA Astrophysics Data System (ADS)

    Middleton, E.; Zhang, Q.; Campbell, P. K.; Huemmrich, K. F.; Corp, L.; Cheng, Y.

    2012-12-01

    Recently, chlorophyll fluorescence (ChlF) retrievals in narrow spectral regions (< 1 nm, between 750-770 nm) of the near infrared (NIR) region of Earth's reflected radiation have been achieved from satellites, including the Japanese GOSAT and the European Space Agency's Sciamachy/Envisat. However, these retrievals sample the total full-spectrum ChlF and are made at non-optimal wavelengths since they are not located at the peak fluorescence emission features. We wish to estimate the total full-spectrum ChlF based on emissions obtained at selected wavelengths. For this, we drew upon leaf emission spectra measured on corn leaves obtained from a USDA experimental cornfield in MD (USA). These emission spectra were determined for the adaxial and abaxial (i.e., top and underside) surfaces of leaves measured throughout the 2008 and 2011 growing seasons (n>400) using a laboratory instrument (Fluorolog-3, Horiba Scientific, USA), recorded in either 1 nm or 5 nm increments with monochromatic excitation wavelengths of either 532 or 420 nm. The total ChlF signal was computed as the area under the continuous spectral emission curves, summing the emission intensities (counts per second) per waveband. The individual narrow (1 or 5 nm) waveband emission intensities were linearly related to full emission values, with variable success across the spectrum. Equations were developed to estimate total ChlF from these individual wavebands. Here, we report the results for the average adaxial/abaxial emissions. Very strong relationships were achieved for the relatively high fluorescence intensities at the red chlorophyll peak, centered at 685 nm (r2= 0.98, RMSE = 5.53 x 107 photons/s) and in the nearby O2-B atmospheric absorption feature centered at 688 nm (r2 = 0.94, RMSE = 4.04 x 107), as well as in the far-red peak centered at 740 nm (r2=0.94, RMSE = 5.98 x107). Very good retrieval success occurred for the O2-A atmospheric absorption feature on the declining NIR shoulder centered at 760

  15. Amplifications in the S-, C- and L-bands using RE-ion doped short tellurite fibres with 980 nm and 800 nm excitation sources

    NASA Astrophysics Data System (ADS)

    Jha, Animesh; Shen, Shaoxiong; Joshi, P.

    2006-02-01

    We report the results of emission and amplification in Tm 3+- and Er 3+-fibres for signal gain in the 1420 nm to 1600 nm wavelength range, which covers S-, C- and L-bands of silica fibre optical communication networks. The paper explains the mechanism for alleviating the pump excited state absorption (ESA) in Er-doped tellurite fibres for maximizing the pump inversion efficiency at 980 nm using the Ce-ions as a co-dopant and via the structural modification of TeO II glass using B IIO 3. The spectroscopic data and gain bandwidth of Er-doped fibres are reported in the C- and L-bands. Methods for enhancing gain in the S-band using the co-dopants (Tb 3+, Yb 3+) with 800 nm and 980 nm pumping schemes are also explained. The measured maximum relative gain in short fibres of 5 to 10 cm in length in C- and L-bands are: 30 dB and 15 dB, respectively. By comparison the internal gain in a 20 cm long Tm/Yb ion co-doped fibre pumped with a 980 nm source was 7 dB.

  16. Acousto-optic Q-switched self-frequency-doubling Er:Yb:YAl3(BO3)4 laser at 800 nm.

    PubMed

    Chen, Yujin; Lin, Yanfu; Gong, Xinghong; Huang, Jianhua; Luo, Zundu; Huang, Yidong

    2012-05-01

    Actively Q-switched self-frequency-doubling laser at 800 nm was first reported in an Er:Yb:YAl3(BO3)4 crystal by using an acousto-optical modulator. At incident pump power of 16 W and pulse repetition frequency of 1 kHz, 1600 nm fundamental pulse laser with energy of 130 μJ and width of 170 ns, and self-frequency-doubling 800 nm pulse laser with energy of 20 μJ and width of 96 ns were respectively achieved in a hemispherical resonator end-pumped by a 970 nm laser diode. Pulse characteristics of fundamental and self-frequency-doubling lasers at different pulse repetition frequencies were also investigated.

  17. Generation of 0.19-mJ THz pulses in LiNbO3 driven by 800-nm femtosecond laser.

    PubMed

    Zhong, Sen-Cheng; Li, Jun; Zhai, Zhao-Hui; Zhu, Li-Guo; Li, Jiang; Zhou, Ping-Wei; Zhao, Jian-Heng; Li, Ze-Ren

    2016-06-27

    A cylindrical lens telescope tilted-pulse-front pumping scheme was proposed for high energy terahertz (THz) pulse generation. This scheme allows higher pump energy to be used with lower saturation effects under high pump fluence, and higher THz generation efficiency was achieved within large range of pump energy. The optimum pump pulse duration and crystal cooling temperature for THz generation in LiNbO3 (LN) crystal were also researched systematically. Excited by 800-nm laser, up to 0.19 mJ THz pulse energy and 0.27% conversion efficiency was demonstrated under 800-nm 400-fs laser excitation with ~100-mJ pulse energy and 150-K LN cooling temperature. PMID:27410634

  18. S100a8/NF-κB signal pathway is involved in the 800-nm diode laser-induced skin collagen remodeling.

    PubMed

    Ren, Xiaolin; Ge, Minggai; Qin, Xiaofeng; Xu, Peng; Zhu, Pingya; Dang, Yongyan; Gu, Jun; Ye, Xiyun

    2016-05-01

    The 800-nm diode laser is widely used for hair removal and also promotes collagen synthesis, but the molecular mechanism by which dermis responses to the thermal damage induced by the 800-nm diode laser is still unclear. Ten 2-month-old mice were irradiated with the 800-nm diode laser at 20, 40, and 60 J/cm(2), respectively. Skin samples were taken for PCR, Western blot analysis, and histological study at day 3 or 30 after laser irradiation. The expression of S100a8 and its two receptors (advanced glycosylation end product-specific receptor, RAGE and toll-like receptor 4, TRL4) was upregulated at day 3 after laser treatments. P-p65 levels were also elevated, causing the increase of cytokine (tumor necrosis factor, TNF-α and interleukin 6, IL-6) and MMPs (MMP1a, MMP9). At day 30, PCR and Western blot analysis showed significant increase of type I and III procollagen in the dermis treated with laser. Importantly, skin structure was markedly improved in the laser-irradiated skin compared with the control. Thus, it seemed that S100a8 upregulation triggered NF-κB signal pathway through RAGE and TLR4, responding to laser-induced dermis wound healing. The involvement of the NF-κB pathway in MMP gene transcription promoted the turnover of collagen in the skin, accelerating new collagen synthesis.

  19. S100a8/NF-κB signal pathway is involved in the 800-nm diode laser-induced skin collagen remodeling.

    PubMed

    Ren, Xiaolin; Ge, Minggai; Qin, Xiaofeng; Xu, Peng; Zhu, Pingya; Dang, Yongyan; Gu, Jun; Ye, Xiyun

    2016-05-01

    The 800-nm diode laser is widely used for hair removal and also promotes collagen synthesis, but the molecular mechanism by which dermis responses to the thermal damage induced by the 800-nm diode laser is still unclear. Ten 2-month-old mice were irradiated with the 800-nm diode laser at 20, 40, and 60 J/cm(2), respectively. Skin samples were taken for PCR, Western blot analysis, and histological study at day 3 or 30 after laser irradiation. The expression of S100a8 and its two receptors (advanced glycosylation end product-specific receptor, RAGE and toll-like receptor 4, TRL4) was upregulated at day 3 after laser treatments. P-p65 levels were also elevated, causing the increase of cytokine (tumor necrosis factor, TNF-α and interleukin 6, IL-6) and MMPs (MMP1a, MMP9). At day 30, PCR and Western blot analysis showed significant increase of type I and III procollagen in the dermis treated with laser. Importantly, skin structure was markedly improved in the laser-irradiated skin compared with the control. Thus, it seemed that S100a8 upregulation triggered NF-κB signal pathway through RAGE and TLR4, responding to laser-induced dermis wound healing. The involvement of the NF-κB pathway in MMP gene transcription promoted the turnover of collagen in the skin, accelerating new collagen synthesis. PMID:26914682

  20. Broadband and high-efficiency metal-multilayer dielectric grating centered at 800 nm based on non-quarter wave coatings as reflective mirror

    NASA Astrophysics Data System (ADS)

    Wang, Shuhua; Kong, Weijin; Yun, Maojin; Zhang, Wenfei; You, Chenglong; Wang, Zhao; Pan, Guoqing; Zhang, Mengmeng; Li, Xiaohong; Sun, Xin

    2013-07-01

    This article deals with designing broadband and high efficiency metal multi-layer dielectric grating (MMDG) used to compress and stretch ultra-short laser pulse. The diffraction characteristics of MMDG are analyzed with the method of rigorous coupled-wave analysis (RCWA). Taking the diffraction efficiency of the -1 order as the value of merit function, the parameters such as groove depth, residual thickness, duty cycle are optimized to obtain broadband and high diffraction efficiency. The optimized MMDG shows an ultra-broadband working spectrum with the average efficiency exceeding 97% over 135nm wavelength centered at 800nm and TE polarization. The optimized MMDG should be useful for chirped pulse amplification.

  1. Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser.

    PubMed

    Liu, Jukun; Jia, Tianqing; Zhou, Kan; Feng, Donghai; Zhang, Shian; Zhang, Hongxin; Jia, Xin; Sun, Zhenrong; Qiu, Jianrong

    2014-12-29

    We present a controllable fabrication of nanogratings and nanosquares on the surface of ZnO crystal in water based on femtosecond laser-induced periodic surface structures (LIPSS). The formation of nanogrooves depends on both laser fluence and writing speed. A single groove with width less than 40 nm and double grooves with distance of 150 nm have been produced by manipulating 800 nm femtosecond laser fluence. Nanogratings with period of 150 nm, 300 nm and 1000 nm, and nanosquares with dimensions of 150 × 150 nm2 were fabricated by using this direct femtosecond laser writing technique.

  2. Mechanisms of the blue emission of NaYF4:Tm(3+) nanoparticles excited by an 800 nm continuous wave laser.

    PubMed

    Zhang, Hongxin; Jia, Tianqing; Shang, Xiaoying; Zhang, Shian; Sun, Zhenrong; Qiu, Jianrong

    2016-10-01

    A thorough understanding of energy transfer and upconversion (UC) processes between trivalent lanthanide (Ln(3+)) ions is essential and important for improving UC performance. However, because of the abundant energy states of Ln(3+) ions, UC mechanisms are very complicated, which makes it a challenge to exclusively verify and quantitatively evaluate the dominant process. In this study, the fundamental excitation processes of Tm(3+)-doped NaYF4 nanocrystals under 800 nm continuous wave (CW) laser excitation were experimentally investigated on the basis of the quantum transition principle. An 800 nm CW laser combined with other wavelength CW lasers, including 471 nm, 657 nm, 980 nm, and 1550 nm lasers, were designed to study in-depth the excitation processes of UC luminescence via simultaneous two-wavelength laser excitation. The results indicate that the excited state absorption of (3)H6→(3)H4∼∼(3)H5→(1)G4 is the dominant pathway of the 481 nm and 651 nm emission bands, and two kinds of energy transfer UC pathways, uniformly expressed as (1)G4 + (3)H4→(1)D2 + (3)F4, play the primary roles in the 456 nm emission band. PMID:27604173

  3. Enhancement of 800 nm upconversion emission in a thulium doped tellurite microstructured fiber pumped by a 1560 nm femtosecond fiber laser

    NASA Astrophysics Data System (ADS)

    Jia, Zhixu; Yao, Chuanfei; Wang, Shunbin; Zheng, Kezhi; Xiong, Liangming; Luo, Jie; Lv, Dajuan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2016-04-01

    We report enhanced upconversion (UC) fluorescence in Tm3+ doped tellurite microstructured fibers (TDTMFs) fabricated by using a rod-in-tube method. Under the pumping of a 1560 nm femtosecond fiber laser, ultrabroadband supercontinuum light expanding from ˜1050 to ˜2700 nm was generated in a 4 cm long TDTMF. Simultaneously, intense 800 nm UC emission from the 3H4 → 3H6 transition of Tm3+ was observed in the same TDTMF. Compared to that pumped by a 1560 nm continuous wave fiber laser, the UC emission intensity was enhanced by ˜4.1 times. The enhancement was due to the spectral broadening in the TDTMF under the pumping of the 1560 nm femtosecond fiber laser.

  4. High-power Femtosecond Optical Parametric Amplification at 1 kHz in BiB(3)O(6) pumped at 800 nm.

    PubMed

    Petrov, Valentin; Noack, Frank; Tzankov, Pancho; Ghotbi, Masood; Ebrahim-Zadeh, Majid; Nikolov, Ivailo; Buchvarov, Ivan

    2007-01-22

    Substantial power scaling of a travelling-wave femtosecond optical parametric amplifier, pumped near 800 nm by a 1 kHz Ti:sapphire laser amplifier, is demonstrated using monoclinic BiB(3)O(6) in a two stage scheme with continuum seeding. Total energy output (signal plus idler) exceeding 1 mJ is achieved, corresponding to an intrinsic conversion efficiency of approximately 32% for the second stage. The tunability extends from 1.1 to 2.9 microm. The high parametric gain and broad amplification bandwidth of this crystal allowed the maintenance of the pump pulse duration, leading to pulse lengths less than 140 fs, both for the signal and idler pulses, even at such high output levels.

  5. Genotoxicity of visible light (400-800 nm) and photoprotection assessment of ectoin, L-ergothioneine and mannitol and four sunscreens.

    PubMed

    Botta, Céline; Di Giorgio, Carole; Sabatier, Anne-Sophie; De Méo, Michel

    2008-04-25

    This study was designed to determine the genotoxic effects of visible (400-800nm) and ultraviolet A (UVA)/visible (315-800nm) lights on human keratinocytes and CHO cells. The alkaline comet assay was used to quantify DNA-damage. In addition, photo-dependent cytogenetic lesions were assessed in CHO cells by the micronucleus test. Three protective compounds [ectoin, l-ergothioneine (ERT) and mannitol] were tested with the comet assay for their effectiveness to reduce DNA single-strand breaks (SSB). Finally, the genomic photoprotections of two broad-band sunscreens and their tinted analogues were assessed by the comet assay. The WST-1 cytotoxicity assay revealed a decrease of the keratinocyte viability of 30% and 13% for the highest UVA/visible and visible irradiations (15 and 13.8J/cm(2), respectively). Visible as well as UVA/visible lights induced DNA SSB and micronuclei, in a dose-dependent manner. The level of DNA breakage induced by visible light was 50% of the one generated by UVA/visible irradiation. However, UVA radiations were 10 times more effective than visible radiations to produce SSB. The DNA lesions induced by visible and UVA/visible lights were reduced after a 1-h preincubation period with the three tested compounds. The maximal protective effects were 92.7%, 97.9% and 52.0% for ectoin (0.1mM), ERT (0.5mM) and mannitol (1.5mM), respectively, against visible light and 68.9%, 59.8% and 62.7% for ectoin (0.1mM), ERT (0.5mM) and mannitol (1.5mM), respectively, against UVA/visible light. Thus, visible light was genotoxic on human keratinocytes and CHO cells through oxidative stress mechanisms similar to the ones induced by UVA radiations. The four tested sunscreens efficiently prevented DNA lesions that were induced by both visible and UVA/visible irradiations. The tinted sunscreens were slightly more effective that their colorless analogues. There is a need to complement sunscreen formulations with additional molecules to obtain a complete internal and

  6. Generation of spectrally-stable continuous-wave emission and ns pulses at 800 nm and 975 nm with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier

    NASA Astrophysics Data System (ADS)

    Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.

    2015-03-01

    Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.

  7. Determination of Optical-Field Ionization Dynamics in Plasmas through the Direct Measurement of the Optical Phase Change

    SciTech Connect

    Taylor, A.J.; Omenetto, G.; Rodriguez, G.; Siders, C.W.; Siders, J.L.W.; Downer, C.

    1999-07-16

    This is the final report of a three-year Laboratory Directed Research and Development (LDRD) Project at Los Alamos National Laboratory (LANL). The detailed dynamics of an atom in a strong laser field is rich in both interesting physics and potential applications. The goal of this project was to develop a technique for characterizing high-field laser-plasma interactions with femtosecond resolution based on the direct measurement of the phase change of an optical pulse. The authors developed the technique of Multi-pulse Interferometric Frequency Resolved Optical Gating (MI-FROG), which recovers (to all orders) the phase difference between pumped and unpumped probe pulses, enabling the determination of sub-pulsewidth time-resolved phase and frequency shifts impressed by a pump pulse on a weak probe pulse. Using MI-FROG, the authors obtained the first quantitative measurements of high-field ionization rates in noble gases and diatomic molecules. They obtained agreement between the measured ionization rates an d those calculated for the noble gases and diatomic nitrogen and hydrogen using a one-dimensional fluid model and rates derived from tunneling theory. However, much higher rates are measured for diatomic oxygen than predicted by tunneling theory calculations.

  8. Super-achromatic microprobe for ultrahigh-resolution endoscopic OCT imaging at 800 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Alemohammad, Milad; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    In this paper, we report a super-achromatic microprobe made with fiber-optic ball lens to enable ultrahigh-resolution endoscopic OCT imaging. An axial resolution of ~2.4 µm (in air) can be achieved with a 7-fs Ti:Sapphire laser. The microprobe has minimal astigmatism which affords a high transverse resolution of ~5.6 µm. The miniaturized microprobe has an outer diameter of ~520 µm including the encasing metal guard and can be used to image small luminal organs. The performance of the ultrahigh-resolution OCT microprobe was demonstrated by imaging rat esophagus, guinea pig esophagus, and mouse rectum in vivo.

  9. Robust near-infrared light bullet in 800-nm femtosecond light filaments in air

    NASA Astrophysics Data System (ADS)

    Panov, Nikolay A.; Shipilo, Daniil E.; Andreeva, Vera A.; Uryupina, Daria S.; Savel'ev, Andrei B.; Kosareva, Olga G.; Chin, See Leang

    2015-09-01

    Systematic numerical study of near-infrared radiation formed during filamentation in air revealed the formation of robust light bullet first registered in the experiment (Chen et al. in Appl Phys B 91:219, 2008). The near-infrared light bullet propagates along the filament axis with the divergence <1 mrad and the quasi-constant duration of ~30 fs. The central wavelength of the bullet gradually increases from 860 to 900 nm during the propagation. The results of our numerical simulation are in agreement with the experiments (Chen et al. in Appl Phys B 91:219, 2008; Uryupina et al. in Appl Phys B 110:123, 2013).

  10. Direct measurement of sub-wavelength interference using thermal light and photon-number-resolved detection

    NASA Astrophysics Data System (ADS)

    Zhai, Yanhua; Becerra, Francisco E.; Fan, Jingyun; Migdall, Alan

    2014-09-01

    We examine thermal light diffracted through a double slit using photon-number-resolved detection to directly measure high-order spatial correlations, and we see sinusoidal modulations of those correlations. The fringe width can, in principal, be made arbitrarily small, and we have experimentally obtained fringe widths as small as 30 nm with 800 nm wavelength light. This extreme sub-wavelength resolution, along with this direct detection technique, offers potential for high precision measurement applications.

  11. Note: Fiber optic transport probe for Hall measurements under light and magnetic field at low temperatures: Case study of a two dimensional electron gas

    SciTech Connect

    Bhadauria, P. P. S.; Gupta, Anurag; Kumar, Pramod; Dogra, Anjana; Budhani, R. C.

    2015-05-15

    A fiber optic based probe is designed and developed for electrical transport measurements in presence of quasi-monochromatic (360–800 nm) light, varying temperature (T = 1.8–300 K), and magnetic field (B = 0–7 T). The probe is tested for the resistivity and Hall measurements performed on a LaAlO{sub 3}–SrTiO{sub 3} heterointerface system with a conducting two dimensional electron gas.

  12. Measuring spatiotemporal intensity-and-phase complexity of multimode fiber output pulses

    NASA Astrophysics Data System (ADS)

    Guang, Zhe; Rhodes, Michelle; Trebino, Rick

    2016-03-01

    We demonstrate ultrashort pulse spatiotemporal field measurement for multimode optical fibers, using a singleframe characterization technique, called Spatially and Temporally Resolved Intensity and Phase Evaluation Device: Full Information from a Single Hologram (STRIPED FISH). We measure STRIPED FISH traces and retrieve the pulse field E(x,y,t) or equivalently E(x,y,ω), to generate movies revealing the field structure induced by propagating modes, due to their differences in field spatial distribution, modal propagation velocity and modal dispersion inside the fiber. We launch femtosecond pulses near 800nm from Ti: Sapphire laser to investigate linearly polarized modes LP01, LP11, LP02 and LP21 in multimode fibers.

  13. Measurement of nonlinear optical refraction of composite material based on sapphire with silver by Kerr-lens autocorrelation method.

    PubMed

    Yu, Xiang-xiang; Wang, Yu-hua

    2014-01-13

    Silver nanoparticles synthesized in a synthetic sapphire matrix were fabricated by ion implantation using the metal vapor vacuum arc ion source. The optical absorption spectrum of the Ag: Al2O3 composite material has been measured. The analysis of the supercontinuum spectrum displayed the nonlinear refractive property of this kind of sample. Nonlinear optical refraction index was identified at 800 nm excitation using the Kerr-lens autocorrelation (KLAC) technique. The spectrum showed that the material possessed self-defocusing property (n(2) = -1.1 × 10(-15) cm(2)W). The mechanism of nonlinear refraction has been discussed.

  14. ATOMIC AND MOLECULAR PHYSICS: Analysis of femtosecond laser ionization/dissociation of polyatomic molecule C6H10O from one-colour pump-probe measurement

    NASA Astrophysics Data System (ADS)

    Hu, Fei-Fei; Zhou, Sheng-Peng; Hu, Zhan; Jin, Ming-Xing; Zhang, Dong-Dong; Wu, Di; Cheng, Xi-Hui; Jiang, Dian-Wu; Ding, Da-Jun

    2009-04-01

    This paper reports that a one-colour fs pump-probe measurement has been carried out for studying photoionization/photodissociation of cyclohexanone (C6H10O) in intense laser field. Two of the fragments from cyclohexanone, C2H3+ and C3H3+, are studied under 800 nm laser pump-probe and the results obtained show similar time evolutions. It proposes a feasible model for analysing the experimental observations of the one-colour fs pump-probe measurement. The results demonstrate that as an intermediate product, the excited molecular parent ions play a very important role in photionization/photodissociation processes in intense laser field.

  15. EXPERIMENTAL MEASUREMENTS OF THE ORION PHOTOINJECTOR DRIVE LASER OSCILLATOR SUBSYSTEM

    SciTech Connect

    Akre, Ronald A.

    2003-05-14

    Timing jitter measurements have been conducted on the ORION photoinjector laser oscillator pulse train output with respect to a ultra low noise crystal rf oscillator running at 79 1/3 MHz, the 36th harmonic of S-Band. The ORION laser oscillator subsystem consists of a Spectra-Physics Tsunami ultra-fast tunable (750-850nm) laser pumped by a Diode pumped Spectra-Physics Millennia VsP 5W. Overall laser oscillator subsystem performance will be presented. These measurements consist of the laser oscillator generated noise and transfer function from the RF reference input of the laser to an external photodiode RF output. Timing jitter measurements of less than 500 fsec have been attained with the laser oscillator tuned to 800 nm.

  16. Measuring the GVD of transparent solvents and creation of laser-etched holographic mirrors

    NASA Astrophysics Data System (ADS)

    Scarborough, Timothy; Strohaber, James; Petersen, Chad; Uiterwaal, Cornelis

    2008-05-01

    We report experimental values of the group velocity dispersion (GVD) of water and methanol at 800 nm. These values were measured by sending 50-fs, 800-nm pulses with various amounts of chirp through a cell filled with a solution of fluorescein in these solvents and recording the production of visible 2-photon fluorescence light using a commercial digital camera. This simple setup also gives information on the duration of our pulses and has allowed us to identify behavior consistent with the presence of third-order spectral phase in the pulse. Additionally, we introduce a simple and practical method[1] to create ultrashort, intense optical vortices (`donut modes') for applications using high-intensity lasers. A laser-etching process is used to encode a holographic grating onto laser-quality gold mirrors, which can withstand intensities of up to 10^12W/cm^2. With new methods for angular dispersion compensation[2], optical vortices can be produced with intensities ˜10^11W/cm^2. [1] Strohaber J, Scarborough T, and Uiterwaal C J G J Appl. Opt. 46 8583 (2007) [2] Strohaber J, Petersen C, and Uiterwaal C J G J Opt. Lett. 32 2387 (2007)

  17. Microchip for the Measurement of Seebeck Coefficients of Single Nanowires

    NASA Astrophysics Data System (ADS)

    Völklein, F.; Schmitt, M.; Cornelius, T. W.; Picht, O.; Müller, S.; Neumann, R.

    2009-07-01

    Bismuth nanowires were electrochemically grown in ion track-etched polycarbonate membranes. Micromachining and microlithography were employed to realize a newly developed microchip for Seebeck coefficient measurements on individual nanowires. By anisotropic etching of a (100) Si wafer, an 800-nm-thick SiO2/Si3N4 membrane was prepared in the chip center. The low thermal conductivity of the membrane is crucial to obtain the required temperature difference Δ T along the nanowire. The wire is electrically contacted to thin metal pads which are patterned by a new method of microscopic exposure of photoresist and a lift-off process. A Δ T between the two pairs of contact pads, located on the membrane, is established by a thin-film heater. Applying the known Seebeck coefficient of a reference film, the temperature difference at this gap is determined. Using Δ T and the measured Seebeck voltage U of the nanowire, its Seebeck coefficient can be calculated.

  18. Receiver performance of laser ranging measurements between the Lunar Observer and a subsatellite for lunar gravity studies

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1992-01-01

    The optimal receiver for a direct detection laser ranging system for slow Doppler frequency shift measurement is shown to consist of a phase tracking loop which can be implemented approximately as a phase lock loop with a 2nd or 3rd order loop filter. The laser transmitter consists of an AlGaAs laser diode at a wavelength of about 800 nm and is intensity modulated by a sinewave. The receiver performance is shown to be limited mainly by the preamplifier thermal noise when a silicon avalanche photodiode is used. A high speed microchannel plate photomultiplier tube is shown to outperform a silicon APD despite its relatively low quantum efficiency at wavelengths near 800 nm. The maximum range between the Lunar Observer and the subsatellite for lunar gravity studies is shown to be about 620 km when using a state-of-the-art silicon APD and about 1000 km when using a microchannel plate photomultiplier tube in order to achieve a relative velocity measurement accuracy of 1 millimeter per second. Other parameters such as the receiver time base jitter and drift also limit performance and have to be considered in the design of an actual system.

  19. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals

    NASA Astrophysics Data System (ADS)

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E.; Spiliotis, Alexandros K.; Tzallas, Paraskevas; Loppinet, Benoit; Rakitzis, T. Peter

    2015-09-01

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.

  20. Single-particle light-scattering measurement: photochemical aerosols and atmospheric particulates.

    PubMed

    Phillips, D T; Wyatt, P J

    1972-09-01

    The use of single-particle light-scattering measurements to determine the origin of atmospheric hazes has been explored by measurement of laboratory aerosols, field samples, and computer analysis of the light-scattering data. The refractive index of measured spherical particles 800 nm to 1000 nm in diameter was determined within 2%. For particles of diameter less than 500 nm the measurement of absolute scattering intensity is required for complete analysis. Distinctive nonspherical and absorbing particles were observed both in automotive exhaust and atmospheric samples. Electrostatic suspension of atmospheric particulates is demonstrated to provide a practical approach to optical measurement of single particles. The technique may be used to calibrate optical particle counters or identify particles with unique shape or refractive index.

  1. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals

    SciTech Connect

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E.; Spiliotis, Alexandros K.; Rakitzis, T. Peter; Tzallas, Paraskevas; Loppinet, Benoit

    2015-09-14

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.

  2. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals.

    PubMed

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Tzallas, Paraskevas; Loppinet, Benoit; Rakitzis, T Peter

    2015-09-14

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces. PMID:26374026

  3. Measurements of scattering and absorption in mammalian cell suspensions

    SciTech Connect

    Mourant, J.R.; Johnson, T.M.; Freyer, J.P.

    1996-03-01

    During the past several years a range of spectroscopies, including fluorescence and elastic-scatter spectroscopy, have been investigated for optically based detection of cancer and other tissue pathologies. Both elastic-scatter and fluorescence signals depend, in part, on scattering and absorption properties of the cells in the tissue. Therefore an understanding of the scattering and absorption properties of cells is a necessary prerequisite for understanding and developing these techniques. Cell suspensions provide a simple model with which to begin studying the absorption and scattering properties of cells. In this study we have made preliminary measurements of the scattering and absorption properties of suspensions of mouse mammary carcinoma cells (EMT6) over a broad wavelength range (380 nm to 800 nm).

  4. A fast UV/visible pyrometer for shock temperature measurements to 20 000 K

    SciTech Connect

    Radousky, H.B.; Mitchell, A.C. )

    1989-12-01

    An ultraviolet/visible pyrometer is described which can measure shock temperatures from 3000 to 20 000 K. The system is modular, and in general consists of six photomultiplier tubes and two linear intensified diode array/spectrograph systems which can cover the range from 250 to 800 nm. Extension of the pyrometer's capabilities into the ultraviolet is necessary for accurate measurements above 8000 K. The nature of the shock environment requires the photomultiplier tubes to have rise times on the order of 2 ns, with a typical experiment lasting between 20 and 500 ns. The system measures absolute intensity, and is calibrated against a known tungsten lamp prior to each experiment. The highest temperature measured was 18 300 K for fluid Xe. The targets needed to contain this type of cryogenic sample are described as well.

  5. A Remote Sensing Technique For Combustion Gas Temperature Measurement In Black Liquor Recovery Boilers

    NASA Astrophysics Data System (ADS)

    Charagundla, S. R.; Semerjian, H. G.

    1986-10-01

    A remote sensing technique, based on the principles of emission spectroscopy, is being developed for temperature measurements in black liquor recovery boilers. Several tests have been carried out, both in the laboratory and at a number of recovery boilers, to characterize the emission spectra in the wavelength range of 300 nm to 800 nm. These tests have pointed out the potential for temperature measurements using the line intensity ratio technique based on a pair of emission lines at 404.4 nm and 766.5 nm observed in the recovery boiler combustion zone; these emission lines are due to potassium, a common constituent found in all the black liquors. Accordingly, a fiber optics based four-color system has been developed. This in-situ, nonintrusive temperature measurement technique, together with some of the more recent results, is described in this paper.

  6. Generation of Terahertz Radiation from Fe-doped InGaAsP Using 800 nm to 1550 nm Pulsed Laser Excitation

    NASA Astrophysics Data System (ADS)

    Hatem, O.; Freeman, J. R.; Cunningham, J. E.; Cannard, P. J.; Robertson, M. J.; Linfield, E. H.; Davies, A. G.; Moodie, D. G.

    2016-05-01

    We demonstrate efficient generation of terahertz (THz) frequency radiation by pulsed excitation, at wavelengths between 800 and 1550 nm, of photoconductive (PC) switches fabricated using Fe-doped InGaAsP wafers, grown by metal organic chemical vapor deposition (MOCVD). Compared to our previous studies of Fe-doped InGaAs wafers, Fe:InGaAsP wafers exhibited five times greater dark resistivity to give a value of 10 kΩ cm, and Fe:InGaAsP PC switches produced five times higher THz power emission. The effect of Fe-doping concentration (between 1E16 and 1.5E17 cm-3) on optical light absorption (between 800 and 1600 nm), on resistivity, and on THz emission is also discussed.

  7. Reflectance spectra of selected lunar areas within the 300 - 800 nm spectral range observed by means of the SVET instrument and their interpretation.

    NASA Astrophysics Data System (ADS)

    Ksanfomaliti, L. V.; Petrova, E. V.; Chesalin, L. S.; Busarev, V. V.; Shevchenko, V. V.; Pinet, P.; Chevrel, S.

    1994-12-01

    The SVET instrument has been designed and built for use of Mars mineralogy mapping. Placed at the 2-m telescope at the high altitude Pic-du-Midi observatory and observing the Moon. The observations provide two kinds of results. Firstly, the validity of the design was proved, secondly - some interesting results on spectral characteristics and content of lunar regolith were obtained.

  8. Measuring of urban ultrafine aerosol as a part of regular air pollution monitoring activities

    NASA Astrophysics Data System (ADS)

    Hejkrlík, Libor; Plachá, Helena

    2015-04-01

    Number size distribution of UFP has been measured since June 2012 to present time (end of 2014) at a background urban site in Northern Bohemia in the frame of UltraSchwarz Project. The project sustainability guarantees at least five years further measuring thus this highly specific activity already becomes part of existing air pollution monitoring system of Czech Hydrometeorological Institute. Number concentrations of UFP were measured by SMPS in a diameter range of 10 to 800 nm in 7 channels with time resolution of 10 minutes. For the purposes of this study the data were re-arranged into series of one-hour means in three size categories: nucleation mode (10-30 nm), Aitken mode (30-100 nm) and accumulation mode (100-800 nm). At the same measuring site 7 other air pollutants (PM1-BC, NO, NOX, NO2, O3, PM10 and SO2) were measured with identical time resolution. The successive daily courses of submicron particles in three size modes as well as of seven other ambient air pollutants were drawn in the form of 3D surface diagrams expressing different behavior of specific substances in the course of 26 months of continuous measuring campaign, allowing for analysis of both diurnal and seasonal changes. The three modes of UFP manifest diverse pictures, the nucleation mode is apparent mainly during warm seasons, the particles in Aitken mode behave rather indifferently to the period of the year and the accumulation mode has close relationship to coarse particles. Month by month correlation analysis indicate that nucleation mode nanoparticles are positively correlated especially with increasing O3 and SO2 concentration and that there exists connection between Aitken and accumulation modes and nitrogen oxides. In order to better understand fine time patterns we plan to calculate moving correlation indices over shorter time periods. Good idea would also be to make use of large database of data from nearby stations of CHMI to analyze the role of meteorological conditions.

  9. Measuring evaporation rates of laser-trapped droplets by use of fluorescent morphology-dependent resonances.

    PubMed

    Pastel, R; Struthers, A

    2001-05-20

    Morphology-dependent resonances (MDRs) are used to measure accurately the evaporation rates of laser-trapped 1- to 2-mum droplets of ethylene glycol. Droplets containing 3 x 10(-5) M Rhodamine-590 laser dye are optically trapped in a 20-mum hollow fiber by two counterpropagating 150-mW, 800-nm laser beams. A weaker 532-nm laser excites the dye, and fluorescence emission is observed near 560 nm as the droplet evaporates. A complete series of first-order TE and TM MDRs dominates the fluorescent output. MDR mode identification sizes the droplets and provides accurate evaporation rates. We verify the automated MDR mode identification by counting fringes in a videotape of the experiment. The longitudinal spring constant of the trap, measured by analysis of the videotaped motion of droplets perturbed from the trap center, provides independent verification of the laser's intensity within the trap.

  10. Development of polymer lab-on-a-chip (LOC) for oxidation-reduction potential (ORP) measurement.

    PubMed

    Jang, A; Lee, K K; Bishop, P L; Kim, I S; Ahn, C H

    2011-01-01

    Reverse osmosis (RO) desalination has been recognized as a promising method to solve the water shortage problem. Nevertheless, since it is energy intensive and has many problems associated with biofouling/fouling of RO membranes in RO plants, its commercial acceptance is still slow. Especially, as high levels of oxidizing agents negatively affect RO membrane efficiency and life span. So, there is a need to develop sensitive, selective, portable and rapid methods to determine oxidation-reduction potential (ORP) in feed solution. For developing a polymer ORP lab-on-a-chip (LOC), a microchannel patterned on a polymer substrate was successfully filled with 800 nm diameter silica beads using self-assembly bead packing technology. The measured ORPs using the three kinds of redox potential solutions were typically slightly lower than those of the nominal redox potential. But, all of the measurements should be deemed acceptable. The ORP LOC has also a much shorter response time than the conventional potentiometric sensor.

  11. Measurement of molecular length of self-assembled monolayer probed by localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Ito, Juri; Kajikawa, Kotaro

    2016-02-01

    We propose a method to measure the variation of the molecular length of self-assembled monolayers (SAMs) when it is exposed to solutions at different pH conditions. The surface immobilized gold nanospheres (SIGNs) shows strong absorption peak at the wavelengths of 600-800 nm when p-polarized light is illuminated. The peak wavelength depends on the length of the gap distance between the SIGNs and the substrate. The gap is supported by the SAM molecules. According to the analytical calculation based on multiple expansion, the relation between the peak wavelength of the SIGN structures and the gap distance is calculated, to evaluate the molecular length of the SAM through the optical absorption spectroscopy for the SIGN structures. The molecular length of the SIGN structure was measured in air, water, acidic, and basic solutions. It was found that the molecular lengths are longer in acidic solutions.

  12. In-vivo reflection spectroscopy measurements in pig brain during stereotactic surgery

    NASA Astrophysics Data System (ADS)

    Antonsson, Johan; Eriksson, Ola; Wardell, Karin

    2003-07-01

    Radio frequency (RF) lesioning in the human brain is a common surgical therapy for relieving severe pain as well as for movement disorders such as Parkinsonia. During the procedure a small electrode is introduced by stereotactic means towards a target area localized by CT or MRI. An RF-current is applied through the electrode tip when positioned in the target area. The tissue in the proximity of the tip is heated by the current and finally coagulated. The overall aim of this study was to improve the RF-technique and its ability to estimate lesion size by means of optical methods. Therefore, the optical differences between white and gray matter, as well as lesioned and unlesioned tissue were investigated. Reflection spectroscopy measurements in the range of 450-800 nm were conducted on fully anesthetized pigs during stereotactic RF-lesioning (n=6). Light from a tungsten lamp was guided to the electrode tip through optical fibers, inserted along a 2 mm in diameter monopolar RF-electrode. Measurements were performed in steps of 0-10 mm from the target in each hemisphere towards the entry point of the skull. In the central gray of the porcine brain measurements were performed both before and after the creation of a lesion. A total of 55 spectra were collected during this study. Correlation to tissue type was done using post-operative MR-images. The spectral signature for white and gray matter differs significantly for the entire spectral range of 450-800 nm. Pre- and post-lesioning reflection spectroscopy showed the largest differences below 600 and above 620 nm, which implies that lasers within this wavelength range may be useful for in-vivo measurements of tissue optical changes during RF-lesioning.

  13. Optoelectronic measurement of x-ray synchrotron pulses: A proof of concept demonstration

    SciTech Connect

    Durbin, Stephen M.; Caffee, Marc; Savikhin, Sergei; Mahmood, Aamer; Dufresne, Eric M.; Wen, Haidan; Li, Yuelin

    2013-02-04

    Optoelectronic detection using photoconductive coplanar stripline devices has been applied to measuring the time profile of x-ray synchrotron pulses, a proof of concept demonstration that may lead to improved time-resolved x-ray studies. Laser sampling of current vs time delay between 12 keV x-ray and 800 nm laser pulses reveal the {approx}50 ps x-ray pulse width convoluted with the {approx}200 ps lifetime of the conduction band carriers. For GaAs implanted with 8 MeV protons, a time profile closer to the x-ray pulse width is observed. The protons create defects over the entire depth sampled by the x-rays, trapping the x-ray excited conduction electrons and minimizing lifetime broadening of the electrical excitation.

  14. Measuring $\

    SciTech Connect

    Mitchell, Jessica Sarah

    2011-01-01

    The MINOS Experiment consists of two steel-scintillator calorimeters, sampling the long baseline NuMI muon neutrino beam. It was designed to make a precise measurement of the ‘atmospheric’ neutrino mixing parameters, Δm2 atm. and sin2 (2 atm.). The Near Detector measures the initial spectrum of the neutrino beam 1km from the production target, and the Far Detector, at a distance of 735 km, measures the impact of oscillations in the neutrino energy spectrum. Work performed to validate the quality of the data collected by the Near Detector is presented as part of this thesis. This thesis primarily details the results of a vμ disappearance analysis, and presents a new sophisticated fitting software framework, which employs a maximum likelihood method to extract the best fit oscillation parameters. The software is entirely decoupled from the extrapolation procedure between the detectors, and is capable of fitting multiple event samples (defined by the selections applied) in parallel, and any combination of energy dependent and independent sources of systematic error. Two techniques to improve the sensitivity of the oscillation measurement were also developed. The inclusion of information on the energy resolution of the neutrino events results in a significant improvement in the allowed region for the oscillation parameters. The degree to which sin2 (2θ )= 1.0 could be disfavoured with the exposure of the current dataset if the true mixing angle was non-maximal, was also investigated, with an improved neutrino energy reconstruction for very low energy events. The best fit oscillation parameters, obtained by the fitting software and incorporating resolution information were: | Δm2| = 2.32+0.12 -0.08×10-3 eV2 and sin2 (2θ ) > 0.90(90% C.L.). The analysis provides the current world best measurement of the atmospheric neutrino mass

  15. Measurement of tumor oxygenation using new frequency domain phosphorometers.

    PubMed

    Wilson, David F; Vinogradov, Sergei A; Dugan, Benjamin W; Biruski, Dubravko; Waldron, Lee; Evans, Sydney A

    2002-05-01

    Oxygen dependent quenching of phosphorescence allows for non-invasive measurements of oxygen in tissue. We have designed and constructed a novel multi-frequency instrument for measurement of phosphorescence lifetimes and developed algorithms for determining the distribution of oxygen (oxygen histogram) in the microvasculature of tissue with good temporal resolution (Vinogradov et al., 2002, Compar. Biochem. A, these proceedings). This technology, in combination with a new water soluble near infra red phosphor (Oxyphor G2), was used to examine the oxygenation of subcutaneous Q7 tumors grown on the flank of Buffalo rats and their response to giving the rats oxygen or carbogen to breathe. Phosphorescence was measured using excitation at 635 nm and emission at >700 nm (the phosphorescence maximum is near 800 nm). The excitation and collection light guides were placed on the surface of the skin of the anesthetized animals separated by approximately 0.8 cm. A 6 x 6 or 7 x 7 grid (approx. 4 cm x 4 cm) was drawn on the flank and oxygen histograms were measured in each square, providing 'images' of the oxygen distribution in the tissue. This procedure determines the tissue oxygen distribution at each position in the grid. Regions of relative hypoxia (associated with the tumor) can be readily localized and the extent of hypoxia quantitatively evaluated.

  16. Assessment of Vegetation Stress Using Reflectance or Fluorescence Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, P. K. E.; Middleton, E. M.; McMurtrey, J. E.; Corp, L. A.; Chappelle, E. W.

    2007-01-01

    Current methods for large-scale vegetation monitoring rely on multispectral remote sensing, which has serious limitation for the detection of vegetation stress. To contribute to the establishment of a generalized spectral approach for vegetation stress detection, this study compares the ability of high-spectral resolution reflectance (R) and fluorescence (F) foliar measurements to detect vegetation changes associated with common environmental factors affecting plant growth and productivity. To obtain a spectral dataset from a broad range of species and stress conditions, plant material from three experiments was examined, including (i) corn, nitrogen (N) deficiency/excess; (ii) soybean, elevated carbon dioxide, and ozone levels; and (iii) red maple, augmented ultraviolet irradiation. Fluorescence and R spectra (400-800 nm) were measured on the same foliar samples in conjunction with photosynthetic pigments, carbon, and N content For separation of a wide range of treatment levels, hyperspectral (5-10 nm) R indices were superior compared with F or broadband R indices, with the derivative parameters optimal results. For the detection of changes in vegetation physiology, hyperspectral indices can provide a significant improvement over broadband indices. The relationship of treatment levels to R was linear, whereas that to F was curvilinear. Using reflectance measurements, it was not possible to identify the unstressed vegetation condition, which was accomplished in all three experiments using F indices. Large-scale monitoring of vegetation condition and the detection of vegetation stress could be improved by using hyperspectral R and F information, a possible strategy for future remote sensing missions.

  17. Influence of chlorophyll content on phytochrome measurements in turnip cotyledons.

    PubMed

    Grill, R

    1977-01-01

    Phytochrome determinations at 730/800 nm were performed on de-etiolated turnip (Brassica rapa L.) cotyledons in which chlorophyll (Chl) content had been reduced experimentally to varying degrees by pre-treatment with high temperature (HT), or transfer to 3% ethanol. The magnitude of detectable phytochrome depended on Chl content, showing a linear relationshop in vivo. The results were confirmed by an in vitro experiment where, however, the correlation was exponential. An attempt is made to illustrate phytochrome decay in continuous blue or red light after corretion for Chl interference. To overcome the possible objection that the higher Δ(ΔA) measured in continuous light after HT pre-treatment could be caused by a reduced rate of destruction, apparent re-synthesis following red light was measured after several hours of darkness during which time the HT effect was lost. Under these conditions HT pre-treated samples display a more realistic magnitude of apparent new synthesis and make correlation with a physiological response possible.

  18. Measurements of the optical properties of tissue in conjunction with photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Nilsson, Annika M. K.; Berg, Roger; Andersson-Engels, Stefan

    1995-07-01

    A simple optical dosimeter was used to measure the light intensity in rat liver and muscle in vivo with fibers positioned at different depths to investigate whether the light penetration changed during photodynamic therapy (PDT). The results were then correlated with measurements of the three optical-interaction coefficients mu s, mu a, and g for wavelengths in the range 500-800 nm for PDT-treated and nontreated rat liver and muscle tissue in vitro. A distinct increase in the absorption coefficient was seen immediately after treatment, in agreement with the decreasing light intensity observed during the treatment, as measured with the optical dosimeter. The collimated transmittance was measured with a narrow-beam setup, and an optical integrating sphere was used to measure the diffuse reflectance and total transmittance of the samples. The corresponding optical properties were obtained by spline interpolation of Monte Carlo-simulated data. To ensure that the measured values were correct, we performed calibration measurements with suspensions of polystyrene microspheres and ink.

  19. Optical property measurements of a novel type of upconverting reporter

    NASA Astrophysics Data System (ADS)

    Xiao, Xudong; Herring, Michael E.; Haushalter, Jeanne; Lee, Seonkyung; Kalogerakis, Kostas S.; Faris, Gregory W.

    2003-07-01

    We have recently developed a new type of reporter (upconverting chelate) for biomedical diagnostics. For this reporter, the light is absorbed and emitted by a lanthanide ion, rather than an organic molecule, as is the case for a typical fluorescent dye. These materials do not photobleach and have no autofluorescent background. We focus in this paper on neodymium ions complexed with the familiar chelating agents, EDTA, DPA, DTPA and DOTA. We have performed experimental measurements with one- and two-color laser light excitation for different chelate compounds. The samples are excited using two Nd:YAG-pumped dye laser systems that provide laser light near 587 nm and 800 nm. For one-color excitation, the emitted light depends quadratically on the incident laser power, as expected. Three strongly emitting lines are observed, located near 360 nm, 387 nm, and 417 nm. We observed more efficient upconversion in EDTA although the DPA chelates show comparable ground state absorbance. We have studied the influence of temporal delay between the two laser pulses and obtained the decay lifetime of the first intermediate state in the various chelated compounds.

  20. Ultrafast Measurement of the Optical Properties of Shocked Nickel and Laser Heated Gold

    NASA Astrophysics Data System (ADS)

    Funk, David J.; Moore, D. S.; Reho, J. H.; Gahagan, K. T.; McGrane, S. D.; Rabie, R. L.

    2002-07-01

    We have used high-resolution Frequency Domain Interferometry (FDI) to make the first ultrafast measurement of shock-induced changes in the optical properties of thin nickel (approx500 nm) targets. Data taken at several angles of incidence allowed the separation of optical effects from material motion, yielding an effective complex index for the shocked material. In contrast to our previous studies of aluminum, measurements with an 800 nm probe wavelength found a phase shift attributable to optical property changes with the same sign as that due to surface motion, during an 11.5 GPa shock breakout. A similar experiment was attempted with thin gold films (approx180 nm) using Ultrafast Spatial Interferometry (USI). However, since the electron-phonon coupling in gold is extremely weak, a shock is observed as it "forms". Ballistic electrons and electron-electron equilibrium cause fast heating of the electrons in the entire thickness of the thin film, followed by lattice excitation through electron-phonon coupling, eventually leading to melt and frustrated thermal expansion yielding the observed surface motion. We suggest that these experiments offer a new path for observation of phase changes or for temperature measurements, by allowing a determination of the complex index under dynamic loading conditions and comparing the measured values to those obtained under static conditions.

  1. Spectrophotometric Measurements of Phytochrome in vivo and Their Correlation with Photomorphogenic Responses of Phaseolus 12

    PubMed Central

    Klein, W. H.; Edwards, J. L.; Shropshire, W.

    1967-01-01

    Direct in vivo measurements of phytochrome have been made in Phaseolus vulgaris by 2-filter difference spectrophotometry (Ratiospect). All measurements were made at 730 versus 800 nm and it is assumed that the Δ (ΔOD) is directly proportional to the PFR concentration of phytochrome present. Dose response curves were determined for both physiological and spectrophotometric responses for red induction and far-red photoinactivation. For induction, saturation occurs at 100 mj/cm2 and for inactivation at 30 mj/cm2. The rate of hook opening and the physiological response measured 20 hours after induction are both shown to be directly proportional to the initial amount of PFR present spectrophotometrically. The sensitivity of the tissue correlates well with the absolute amount of phytochrome present, the inner portion of the hook having the maximum concentration of 0.042 Δ (ΔOD)/g fresh weight. If the total reversible phytochrome concentration is reduced by exposure to red light and allowing PFR to decay out of the system the remaining sensitivity of the tissue is shown to be directly correlated with the amount of PR remaining in the tissue. PFR disappears rapidly in the dark at 25°, and is not detectable after 6 hours. There is no indication that PFR reverts in the system to PR. At 4°, PFR does not disappear measurably up to 1 hour and is nearly totally reversible to PR. Images PMID:16656503

  2. Absolute measurement of the effective nonlinearities of KTP and BBO crystals by optical parametric amplification.

    PubMed

    Armstrong, D J; Alford, W J; Raymond, T D; Smith, A V

    1996-04-20

    Absolute magnitudes of the effective nonlinearity, deff, were measured for seven KTP and six BBO crystals. The d(eff), were derived from the parametric gain of an 800-nm signal wave in the sample crystals when they were pumped by the frequency-doubled, spatially filtered light from an injectionseeded, Q-switched Nd:YAG laser. The KTP crystals, all type II phase matched with propagation in the X-Z plane, had d(eff) values ranging from 1.97 to 3.50 pm/V. Measurements of gain as a function of phase velocity mismatch indicate that two of the KTP crystals clearly contain multiple ferroelectric domains. For five type I phase-matched BBO crystals, d(eff) ranged from 1.76 to 1.83 pm/V, and a single type II phase-matched BBO crystal had a d(eff) of 1.56 pm/V. The uncertainty in our measurements of d(eff) values is ±5% for KTP and ±10% for BBO.

  3. Application of frequency combs in the measurement of the refractive index of air

    SciTech Connect

    Zhang, J.; Lu, Z. H.; Menegozzi, B.; Wang, L. J.

    2006-08-15

    We report a new method in the precision measurement of the refractive index of air using a highly unbalanced Michelson interferometer with a femtosecond optical frequency comb as the light source. Standard dry air is filled into a 30 m multipass cell, serving as the long arm of the interferometer, while a short arm acts as the reference path. Both time and frequency domain interferograms are recorded to measure the refractive index of air. The deviation of our experimental results with Edlen's formula is 1.4x10{sup -9} at 800 nm. Our experiment has a standard error of 5.2x10{sup -9} at fixed parameters (pressure and temperature). This is achieved by putting the multipass cell into a temperature-stabilized box, and also by locking the interferometer path length with a He-Ne laser. We achieved a temperature stabilization of 0.8 mK for 25 h. This corresponds to 0.4 {mu}m multipass cell length change. The locking of the He-Ne interferometer enables us to achieve 7 nm path-length change outside the multipass cell. Combined with accurate measurement of temperature and pressure, we were able to achieve an accuracy of 7.7x10{sup -9}.

  4. Development of polymer lab-on-a-chip (LOC) for oxidation-reduction potential (ORP) measurement.

    PubMed

    Jang, A; Lee, K K; Bishop, P L; Kim, I S; Ahn, C H

    2011-01-01

    Reverse osmosis (RO) desalination has been recognized as a promising method to solve the water shortage problem. Nevertheless, since it is energy intensive and has many problems associated with biofouling/fouling of RO membranes in RO plants, its commercial acceptance is still slow. Especially, as high levels of oxidizing agents negatively affect RO membrane efficiency and life span. So, there is a need to develop sensitive, selective, portable and rapid methods to determine oxidation-reduction potential (ORP) in feed solution. For developing a polymer ORP lab-on-a-chip (LOC), a microchannel patterned on a polymer substrate was successfully filled with 800 nm diameter silica beads using self-assembly bead packing technology. The measured ORPs using the three kinds of redox potential solutions were typically slightly lower than those of the nominal redox potential. But, all of the measurements should be deemed acceptable. The ORP LOC has also a much shorter response time than the conventional potentiometric sensor. PMID:21977654

  5. Validity Assessment of Pixel Linear Spectral Mixing Through Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Mobasheri, M. R.; Dehnavi, S.; Maghsoudi, Y.

    2015-12-01

    In order to understand the characteristics of the data collected by hyperspectral imaging systems, it is important to discuss the physics behind the scene radiance field incident on the imaging system. A dominant effect in hyperspectral remote sensing is the mixing of radiant energies contributed from different materials present in a given pixel. The basic assumption of mixture modelling is that within a given scene, the surface is covered by a small number of distinct materials that have relatively constant spectral properties. It is most common to assume that the radiance reflected by different materials in a pixel can spectrally combine in a linear additive manner to produce the pixel radiance/reflectance, even when that might not be the case e.g. where the mixing process leads to nonlinear combinations of the radiance and where the linear assumption fails to hold. This can occur where there is significant relative three-dimensional structure within a given pixel. Without detailed knowledge of the dimensional structure, it can be very difficult to correctly ``un-mix'' the contributions of the various materials. This work aims to evaluate the correctness of the linear assumption in the mixture modelling using some laboratory measurements. Study was conducted using some sheets made of cellulose materials of different colours in 400-800 nm spectral range. Experimental results have shown that a correction term must be applied to the gains and offsets in the linear model. The obtained results can be extended to satellite sensors that acquire images in the above mentioned spectral range.

  6. Light transmission of the ocular media in birds and mammals.

    PubMed

    Tsukahara, Naoki; Tani, Yuri; Kikuchi, Hideyuki; Sugita, Shoei

    2014-01-01

    Differences in the ultraviolet (UV) cutoff of ocular media between birds and mammals have been revealed by spectrophotometric measurements of the transmission of light wavelengths by the cornea, lens and vitreous body in chickens, crows, quails, rats, rabbits and pigs. The light transmission values of the cornea were shown to be above 50% for wavelengths of 330-800 nm in birds, 300-800 nm in rat and 310-800 nm in mammals except for rat. For the lens, the light transmission values were shown to be above 50% for wavelengths of 320-800 nm in birds and rat and 390-800 nm in mammals except for rat. Thus, among the ocular media, the cornea in birds and the lens in mammals except for rat may play a role as a major UV cutoff filter.

  7. Dual-wavelength photothermal optical coherence tomography for blood oxygen saturation measurement

    NASA Astrophysics Data System (ADS)

    Yin, Biwei; Kuranov, Roman V.; McElroy, Austin B.; Milner, Thomas E.

    2013-03-01

    We report design and demonstration of a dual wavelength photothermal (DWP) optical coherence tomography (OCT) system for imaging of a phantom microvessel and measurement of hemoglobin oxygen saturation (SO2) level. The DWP-OCT system contains a swept-source (SS) two-beam phase-sensitive (PhS) OCT system (1060 nm) and two intensity modulated photothermal excitation lasers (770 nm and 800 nm). The PhS-OCT probe beam (1060 nm) and photothermal excitation beams are combined into one single-mode optical fiber. A galvanometer based two-dimensional achromatic scanning system is designed to provide 14 μm lateral resolution for the PhS-OCT probe beam (1060 nm) and 13 μm lateral resolution for photothermal excitation beams. DWP-OCT system's sensitivity is 102 dB, axial resolution is 13 μm in tissue and uses a real-time digital dispersion compensation algorithm. Noise floor for optical pathlength measurements is 300 pm in the signal frequency range (380-400 Hz) of photothermal modulation frequencies. Blood SO2 level is calculated from measured optical pathlength (op) signal in a 300 μm diameter microvessel phantom introduced by the two photothermal excitation beams. En-face and B-scan images of a phantom microvessel are recorded, and six blood samples' SO2 levels are measured using DWP-OCT and compared with values provided by a commercial blood oximeter. A mathematical model indicates thermal diffusion introduces a systematic artifact that over-estimates SO2 values and is consistent with measured data.

  8. Optical pH measurements with water dispersion of polyaniline nanoparticles and their redox sensitivity.

    PubMed

    Lindfors, Tom; Harju, Leo; Ivaska, Ari

    2006-05-01

    A new method for optical pH and redox measurements with a commercially available water dispersion of polyaniline (PANI) nanoparticles (mean particle size, 46 nm) is presented. The pH measurements are based on the acid-base equilibrium of PANI and were carried out either by combining both the automated sequential injection analysis (SIA) and UV-visible spectrophotometric techniques or with a fiber-optic light guide. In the former case, the detection was done in continuous mode at lambda = 800 nm by using the SIA technique for transporting the sample to a flow-through cell, which was placed in the light path of the photometer. With the fiber-optic light guide, the detection was done in batch mode at lambda = 400 and 580 nm. In both methods, fresh pH reagent (PANI) solution was used in each measurement, thus overcoming the problem with hysteresis (memory effect), which is usually observed with PANI films. The PANI nanoparticles were characterized with UV-visible spectroscopy in pH buffer solutions between pH 2-12 and a protonation constant of logK(0.5H,L)(H(0.5)L) = 4.4 was calculated from these data. Fast pH measurements can be done between pH 6 and 10.5 depending on the measuring technique. It is possible to determine pH with an accuracy of 0.1 pH unit between pH 8 and 10.5 (RSD, 0.5-2%). Redox transitions typical for PANI films were also observed for water solutions of PANI nanoparticles in the presence of the hexacyanoferrate(II/III) and the iron(II/III) oxalate redox couples. The absorbance at lambda = 875 nm is linearly dependent on the logarithm of the concentration ratio (0.1-10) of the iron oxalate redox couple.

  9. Measuring the coral reef distribution of Kuroshima Island by satellite remote sensing

    SciTech Connect

    Miyazaki, Tadakuni; Harashima, Akira; Nakatani, Yukihiro

    1995-12-31

    Coral reefs are the major sites for photo-synthesis and calcification in the present ocean. Estimating the production rate of calcification by the coral reefs or investigating the sink/source mechanism of CO{sub 2} by the coral reefs in the ocean, the distribution of the coral reefs in the world wide must be identified. Measuring the spectral signatures of underwater coral reefs and mapping of coral reefs by satellite remote sensing are described. The spectral signatures of different species of the coral reefs were measured using a spectroradiometer at off Kuroshima Island, Okinawa, Japan and investigated spectral difference between different species of the coral reefs. As well as the field experiments, laboratory experiments for measuring the spectral signatures of 9 different species of coral reefs were carried out with the same spectroradiometer. The spectral reflectance of each coral reef showed a significant result that a narrow absorption band exists in the spectral region between 660 and 680 nm, and very strong spectral reflectance from about 700 nm towards the longer wavelength range. On the other hand, absorption and the high reflectance region were not observed from the bottom sands or bare rocks underwater. These experiments suggested that there is a significant spectral difference between coral reefs and bottom sands or bare rocks and so the best spectral range for separating the coral reefs from other underwater objects in the ocean would be between 700 and 800 nm. As well as the basic spectral measurement either in the field or at the laboratory, SPOT satellite imageries were used to classify the underwater coral reefs. Classification methods used here were the principal component analysis, and the maximum likelihood. Finally, the evaluation of classification method for extracting the coral reefs was introduced.

  10. Development of a 3D-AFM for true 3D measurements of nanostructures

    NASA Astrophysics Data System (ADS)

    Dai, Gaoliang; Häßler-Grohne, Wolfgang; Hüser, Dorothee; Wolff, Helmut; Danzebrink, Hans-Ulrich; Koenders, Ludger; Bosse, Harald

    2011-09-01

    The development of advanced lithography requires highly accurate 3D metrology methods for small line structures of both wafers and photomasks. Development of a new 3D atomic force microscopy (3D-AFM) with vertical and torsional oscillation modes is introduced in this paper. In its configuration, the AFM probe is oscillated using two piezo actuators driven at vertical and torsional resonance frequencies of the cantilever. In such a way, the AFM tip can probe the surface with a vertical and a lateral oscillation, offering high 3D probing sensitivity. In addition, a so-called vector approach probing (VAP) method has been applied. The sample is measured point-by-point using this method. At each probing point, the tip is approached towards the surface until the desired tip-sample interaction is detected and then immediately withdrawn from the surface. Compared to conventional AFMs, where the tip is kept continuously in interaction with the surface, the tip-sample interaction time using the VAP method is greatly reduced and consequently the tip wear is reduced. Preliminary experimental results show promising performance of the developed system. A measurement of a line structure of 800 nm height employing a super sharp AFM tip could be performed with a repeatability of its 3D profiles of better than 1 nm (p-v). A line structure of a Physikalisch-Technische Bundesanstalt photomask with a nominal width of 300 nm has been measured using a flared tip AFM probe. The repeatability of the middle CD values reaches 0.28 nm (1σ). A long-term stability investigation shows that the 3D-AFM has a high stability of better than 1 nm within 197 measurements taken over 30 h, which also confirms the very low tip wear.

  11. High-Resolution, Noninvasive, Two-Photon Fluorescence Measurement of Molecular Concentrations in Corneal Tissue

    PubMed Central

    Cui, Liping; Huxlin, Krystel R.; Xu, Lisen; MacRae, Scott

    2011-01-01

    Purpose. To perform high-resolution, noninvasive, calibrated measurements of the concentrations and diffusion profiles of fluorescent molecules in the live cornea after topical application to the ocular surface. Methods. An 800-nm femtosecond laser was used to perform two-photon fluorescence (TPF) axial scanning measurements. Calibration solutions consisting of sodium fluorescein (Na-Fl; concentration range, 0.01%–2.5%) and riboflavin (concentration range, 0.0125%–0.1%) were tested in well slides, and TPF signals were assessed. Excised feline eyeballs preserved in corneal storage medium and with either intact or removed corneal epithelia were then treated with Na-Fl, riboflavin, or fluorescein dextran (Fl-d) of different molecular weight (MW) for 30 minutes. Calibrated TPF was then used immediately to measure the concentration of these molecules across the central corneal depth. Results. The axial resolution of our TPF system was 6 μm, and a linear relationship was observed between TPF signal and low concentrations of most fluorophores. Intact corneas treated with Na-Fl or riboflavin exhibited a detectable penetration depth of only approximately 20 μm, compared with approximately 400 to 600 μm when the epithelium was removed before fluorophore application. Peak concentrations for intact corneas were half those attained with epithelial removal. Debrided corneas treated with 2,000,000 MW Fl-d showed a half-maximum penetration depth of 156.7 μm compared with 384 μm for the 3,000 MW dextran. The peak concentration of the high MW dextran was one quarter that of the lower MW dextran. Conclusions. TPF is an effective, high-resolution, noninvasive method of quantifying the diffusion and concentration of fluorescent molecules across the cornea. PMID:21228379

  12. Laser Remote Measurements of atmospheric pollutants (Las-R-Map): UV-Visible Laser system description and data processing

    NASA Astrophysics Data System (ADS)

    Sivakumar, V.; Wyk, H. V.

    Laser radar more popularly known as LIDAR LIght Detection And Ranging is becoming one of the most powerful techniques for active remote sensing of the earth s atmosphere Around the globe several new lidar systems have been developed based on the scientific interest Particularly the DIfferential Absorption Lidar DIAL technique is only one which can provide the better accuracy of measuring atmospheric pollutants Using modern advanced techniques and instrumentation a mobile DIAL system called laser remote measurements of atmospheric pollutants hear after referred as Las-R-Map is designed at National Laser Centre NLC --Pretoria 25 r 45 prime S 28 r 17 prime E Las-R-Map is basically used for measuring atmospheric pollutants applying the principle of absorption by constituents The system designed primarily to focus on the following pollutant measurements such as SO 2 CH 4 CO 2 NO 2 and O 3 In future the system could be used to measure few particulate matter between 2 5 mu m and 10 mu m Benzene Hg 1 3-butadiene H 2 S HF and Volatile Organic Compounds VOC Las-R-map comprises of two different laser sources Alexandrite and CO 2 optical receiver data acquisition and signal processor It uses alexandrite laser in the UV-Visible region from 200 nm to 800 nm and CO 2 laser in the Far-IR region from 9 2 mu m to 10 8 mu m Such two different laser sources make feasibility for studying the wide range of atmospheric pollutants The present paper is focused on technical details

  13. Radiometric Measurement Comparison on the Integrating Sphere Source Used to Calibrate the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 7 Enhanced Thematic Mapper Plus (ETM+).

    PubMed

    Butler, James J; Brown, Steven W; Saunders, Robert D; Johnson, B Carol; Biggar, Stuart F; Zalewski, Edward F; Markham, Brian L; Gracey, Paul N; Young, James B; Barnes, Robert A

    2003-01-01

    As part of a continuing effort to validate the radiometric scales assigned to integrating sphere sources used in the calibration of Earth Observing System (EOS) instruments, a radiometric measurement comparison was held in May 1998 at Raytheon/Santa Barbara Remote Sensing (SBRS). This comparison was conducted in support of the calibration of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) instruments. The radiometric scale assigned to the Spherical Integrating Source (SIS100) by SBRS was validated through a comparison with radiometric measurements made by a number of stable, well-characterized transfer radiometers from the National Institute of Standards and Technology (NIST), the National Aeronautics and Space Administration's Goddard Space Flight Center (NASA's GSFC), and the University of Arizona Optical Sciences Center (UA). The measured radiances from the radiometers differed by ±3 % in the visible to near infrared when compared to the SBRS calibration of the sphere, and the overall agreement was within the combined uncertainties of the individual measurements. In general, the transfer radiometers gave higher values than the SBRS calibration in the near infrared and lower values in the blue. The measurements of the radiometers differed by ±4 % from 800 nm to 1800 nm compared to the SBRS calibration of the sphere, and the overall agreement was within the combined uncertainties of the individual measurements for wavelengths less than 2200 nm. The results of the radiometric measurement comparison presented here supplement the results of previous measurement comparisons on the integrating sphere sources used to calibrate the Multi-angle Imaging SpectroRadiometer (MISR) at NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) at NEC Corporation, Yokohama, Japan. PMID:27413606

  14. Radiometric Measurement Comparison on the Integrating Sphere Source Used to Calibrate the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 7 Enhanced Thematic Mapper Plus (ETM+).

    PubMed

    Butler, James J; Brown, Steven W; Saunders, Robert D; Johnson, B Carol; Biggar, Stuart F; Zalewski, Edward F; Markham, Brian L; Gracey, Paul N; Young, James B; Barnes, Robert A

    2003-01-01

    As part of a continuing effort to validate the radiometric scales assigned to integrating sphere sources used in the calibration of Earth Observing System (EOS) instruments, a radiometric measurement comparison was held in May 1998 at Raytheon/Santa Barbara Remote Sensing (SBRS). This comparison was conducted in support of the calibration of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) instruments. The radiometric scale assigned to the Spherical Integrating Source (SIS100) by SBRS was validated through a comparison with radiometric measurements made by a number of stable, well-characterized transfer radiometers from the National Institute of Standards and Technology (NIST), the National Aeronautics and Space Administration's Goddard Space Flight Center (NASA's GSFC), and the University of Arizona Optical Sciences Center (UA). The measured radiances from the radiometers differed by ±3 % in the visible to near infrared when compared to the SBRS calibration of the sphere, and the overall agreement was within the combined uncertainties of the individual measurements. In general, the transfer radiometers gave higher values than the SBRS calibration in the near infrared and lower values in the blue. The measurements of the radiometers differed by ±4 % from 800 nm to 1800 nm compared to the SBRS calibration of the sphere, and the overall agreement was within the combined uncertainties of the individual measurements for wavelengths less than 2200 nm. The results of the radiometric measurement comparison presented here supplement the results of previous measurement comparisons on the integrating sphere sources used to calibrate the Multi-angle Imaging SpectroRadiometer (MISR) at NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) at NEC Corporation, Yokohama, Japan.

  15. Light absorption coefficient measurement of SOA using a UV-Visible spectrometer connected with an integrating sphere

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Jang, Myoseon

    2011-08-01

    A method for measuring an aerosol light absorption coefficient ( B a) has been developed using a conventional UV-visible spectrometer equipped with an integrating sphere covering a wide range of wavelengths (280-800 nm). The feasibility of the proposed method was evaluated in both the transmittance mode (TUV-IS) and the reflective mode (RUV-IS) using the reference aerosol known for the cross-sectional area. The aerosol was collected on a conventional filter and measured for B a values. The resulting RUV-IS method was applied to measure light absorption of secondary organic aerosol (SOA). SOA was produced through photooxidation of different precursor hydrocarbons such as toluene, d-limonene and α-pinene in the presence of NO x (60-70 ppb) and inorganic seed aerosol using a 2-m 3 indoor Teflon film chamber. Of the three precursor hydrocarbons, the B a value of toluene SOA (0.574 m 2 g -1 at 350 nm) was the highest compared with B a values for α-pinene SOA (0.029 m 2 g -1) and d-limonene SOA (0.038 m 2 g -1). When d-limonene SOA or toluene SOA was internally mixed with neutral [(NH 4) 2SO 4] or acidic inorganic seed (NH 4HSO 4:H 2SO 4 = 1:1 by mole), the SOA showed 2-3 times greater B a values at 350 nm than the SOA with no seed. Aerosol aging with a light source for this study reduced B a values of SOA (e.g., on average 10% for toluene SOA and 30% for d-limonene SOA within 4 h). Overall, weak absorption appeared for chamber-generated SOA over wavelengths ranging from 280 to 550 nm, which fall into the sunlight spectrum.

  16. Measurement of the lateral diffusion of dipalmitoylphosphatidylcholine adsorbed on silica beads in the absence and presence of melittin: a 31P two-dimensional exchange solid-state NMR study.

    PubMed Central

    Picard, F; Paquet, M J; Dufourc, E J; Auger, M

    1998-01-01

    31P two-dimensional exchange solid-state NMR spectroscopy was used to measure the lateral diffusion, D(L), in the fluid phase of dipalmitoylphosphatidylcholine (DPPC) in the presence and absence of melittin. The use of a spherical solid support with a radius of 320 +/- 20 nm, on which lipids and peptides are adsorbed together, and a novel way of analyzing the two-dimensional exchange patterns afforded a narrow distribution of D(L) centered at a value of (8.8 +/- 0.5) x 10(-8) cm2/s for the pure lipid system and a large distribution of D(L) spanning 1 x 10(-8) to 10 x 10(-8) cm2/s for the lipids in the presence of melittin. In addition, the determination of D(L) for nonsupported DPPC multilamellar vesicles (MLVs) suggests that the support does not slow down the lipid diffusion and that the radii of the bilayers vary from 300 to 800 nm. Finally, the DPPC-melittin complex is stabilized at the surface of the silica beads in the gel phase, opening the way to further study of the interaction between melittin and DPPC. PMID:9533697

  17. Measure for Measure.

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Joyce, Beverly A.; Ness, Daniel

    2002-01-01

    Presents an activity on measurement and points out the importance of units which, in most cases, are omitted by students. Focuses on measurement in informal settings, indirect measurement, ratio and scales, and surface area to volume ratio. (YDS)

  18. Measuring unrecorded measurement

    NASA Astrophysics Data System (ADS)

    Revzen, M.; Mann, A.

    2016-08-01

    Projective (von Neumann) measurement of an operator (i.e., a dynamical variable) selected from a prescribed set of operators is termed unrecorded measurement (URM) when both the selected operator and the measurement outcome are unknown, i.e., “lost”. Within classical physics a URM is completely inconsequential: the state is unaffected by measurement. Within quantum physics a measurement leaves a mark. The present study provides protocols that allow the retrieval of some of the data lost in a URM. The study is shown as supportive of viewing quantum measurement as made up of both classical-like and pure quantum components.

  19. Tissue distribution and real-time fluorescence measurement of a tumor-targeted nanodevice by a two photon optical fiber fluorescence probe

    NASA Astrophysics Data System (ADS)

    Thomas, Thommey P.; Ye, Jing Yong; Yang, Chu-Sheng; Myaing, Monthiri; Majoros, Istvan J.; Kotlyar, Alina; Cao, Zhengyi; Norris, Theodore B.; Baker, James R., Jr.

    2006-02-01

    Real-time fluorescence measurement in deep tumors in live animals (or humans) by conventional methods has significant challenges. We have developed a two-photon optical fiber fluorescence (TPOFF) probe as a minimally invasive technique for quantifying fluorescence in solid tumors in live mice. Here we demonstrate TPOFF for real-time measurements of targeted drug delivery dynamics to tumors in live mice. 50-femtosecond laser pulses at 800 nm were coupled into a single mode optical fiber and delivered into the tumor through a 27-gauge needle. Fluorescence was collected back through the same fiber, filtered, and detected with photon counting. Biocompatible dendrimer-based nanoparticles were used for targeted delivery of fluorescent materials into tumors. Dendrimers with targeting agent folic acid and fluorescent reporter 6-TAMRA (G5-6T-FA) were synthesized. KB cell tumors expressing high levels of FA receptors were developed in SCID mice. We initially demonstrated the specific uptake of the targeted conjugates into tumor, kidney and liver, using the TPOFF probe. The tumor fluorescence was then taken in live mice at 30 min, 2 h and 24 h with the TPOFF probe. G5-6T-FA accumulated in the tumor with maximum mean levels reaching 673 +/- 67 nM at the 2 h time point. In contrast, the levels of a control, non-targeted conjugate (G5-6T) at 2 h reached a level of only 136 +/- 28 nM in tumors, and decrease quickly. This indicates that the TPOFF probe can be used as a minimally invasive detection system for quantifying the specific targeting of a fluorescent nanodevice on a real-time basis.

  20. Measure for measure

    NASA Astrophysics Data System (ADS)

    Weinberger, Peter

    2012-06-01

    The present system of measures for length, weight and capacity (volume) originates from scientific ideas expressed during the French Revolution in 1789. The history of a compatible unit of length, however, turns out to be less of a scientific but rather of a political character. Here reports to the Philosophical Magazine made in the first quarter of the nineteenth century are used to trace the cultural split between meters and inches, and between kilograms and pounds, that can be experienced in many parts of the world.

  1. Measurement Technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    New and improved materials, equipment, and techniques in measurement technology, developed by the aerospace industry, are presented for economic development in other industries. The developments are grouped as follows: (1) surface measurement, (2) alignment and orientation of bodies, (3) fluid measurement, (4) linear and angular measurements, and (5) force measurements.

  2. Ideas: Measurement.

    ERIC Educational Resources Information Center

    Sovchik, Robert; Meconi, L. J.

    1994-01-01

    Presents measurement activities for K-3, 4-6, 5-6, and 7-8 grade levels. Activities include a measurement scavenger hunt, using a clinometer to measure angles of elevation, estimating the age of trees, measuring the height of a tree, and measuring objects at a distance. Includes reproducible worksheets. (MDH)

  3. Long-term measurements of microphysical properties of marine stratocumulus and aerosols in a new ground-based station located at Tenerife Island (Friolera Peak Lab, 28.6°N, 16.2°W). First results.

    NASA Astrophysics Data System (ADS)

    Taima-Hernández, D.; Diaz, J. P.; Exposito, F. J.; González, A.; Pérez, J. C.

    2012-04-01

    Clouds are one of the most important regulators of climate because they cover a great percentage of the Earth surface at any time and they interact with solar and infrared radiation. Nowadays one of the most important uncertainties affecting the climate models are the processes related with cloud-aerosols interactions. The aerosols act as cloud condensation and ice nuclei, so they can modify the clouds in many ways. In order to check the different parameterizations implemented to resolve these sub-grid processes, it is essential to account with an accurate database of microphysics cloud and aerosols properties. The Canary Islands are located in one of the most important marine stratocumulus regions in the world. The orography of some of these islands allows us to locate a suitable station to establish long-term programs to measure microphysical cloud and aerosols properties. With these aims, a new ground-based station has been installed in the North-East part of the Tenerife Island, Friolera Peak Lab. (28°33'1.16"N, 16°12'1.79"W, 720 masl), where the trade winds regime and the quasi-permanent thermal inversion layer configure a situation where the probability to find marine stratocumulus is high along the year. In a first step two instruments have been installed: a FM100 DMT and an UFP 3031 from TSI, Inc. The FM100 is a robust cloud-particle spectrometer, and allows for computation and real-time display of particle concentration, median volume diameter, equivalent diameter, and liquid water content. The UFP 3031 provides continuous size distribution and number concentration of particles between 20 and 800 nm, with six channels of size resolution: 20-30 nm, 30-50 nm, 50-70 nm, 70-100, 100-200 nm and 200-800 nm. It is an instrument specially designed for long-term monitoring with minimum maintenance. The first results obtained are presented showing that this station is situated in a very clean environment, with values for the number of ultrafine particles lower

  4. Uncertainty in vegetation products derived from field spectral measurements: an error budget approach

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Dungan, J. L.

    2008-12-01

    vegetation. The grey panel data showed a wavelength- dependent pattern, similar to the NEdL laboratory trend, but subsequent error propagation of laboratory- derived NEdL through to a reflectance factor showed that the laboratory characterisation was unable to account for all of the uncertainty measured in the field. Therefore the estimate of u gained from field data more closely represents the reproducibility of measurements where atmospheric, solar zenith and instrument-related uncertainties are combined. Results on vegetation u showed a stronger wavelength dependency with higher standard uncertainties beyond the vegetation red-edge than in visible wavelengths (maximum = 0.015 at 800 nm, and 0.004 at 550nm). The results demonstrate that standard uncertainties of field reflectance data have a spectral dependence and exceed laboratory-derived estimates of instrument "noise". Uncertainty of this type must be taken into account when statistically testing for differences in field spectra. Improved reporting of standard uncertainties from field experiments will foster progress in remote sensing science.

  5. Measuring Resilience.

    ERIC Educational Resources Information Center

    O'Neal, Marcia R.

    Locating and selecting an instrument that measures resilience is no simple task. This document provides information about several measures of resilience or hardiness that have been used in recent years. The discussion of each measure includes information about its origins, a description of the measure and its uses, and a discussion of the…

  6. Aerosol size distribution and new particle formation in western Yangtze River Delta of China: two-year measurement at the SORPES station

    NASA Astrophysics Data System (ADS)

    Qi, X. M.; Ding, A. J.; Nie, W.; Petäjä, T.; Kerminen, V.-M.; Herrmann, E.; Xie, Y. N.; Zheng, L. F.; Manninen, H.; Aalto, P.; Sun, J. N.; Xu, Z. N.; Chi, X. G.; Huang, X.; Boy, M.; Virkkula, A.; Yang, X.-Q.; Fu, C. B.; Kulmala, M.

    2015-04-01

    Aerosol particles play important roles in regional air quality and global climate change. In this study, we analyzed two-year (2011-2013) of measurements of submicron particles (6-800 nm) at a suburban site in western Yangtze River delta (YRD) of East China. The number concentrations (NCs) of particles in the nucleation, Aitken and accumulation modes were 5300 ± 5500, 8000 ± 4400, 5800 ± 3200 cm-3, respectively. Number concentrations and size distributions of submicron particles were also influenced by long-range and regional transport of air masses. The highest and lowest accumulation mode particle number concentrations were observed in air masses from YRD and coastal region, respectively. Continental air masses from inland had the highest concentrations of nucleation mode particles. New particle formation (NPF) events, apparent in 44% of the effective measurement days, occurred frequently in all the seasons except winter. Radiation and pre-existing particles were found to be the main factors influencing the occurrence of NPF events. The particle formation rate was the highest in spring (3.6 ± 2.4 cm-3 s-1), whereas the particle growth rate had the highest values in summer (12.8 ± 4.4 nm h-1). The formation rate was typically high in relatively clean air masses, whereas the growth rate tended to be high in the polluted YRD air masses. The frequency of NPF events and the growth rate showed a strong year-to-year difference. In the summer of 2013, associated with a multi-week heat wave and photochemical pollution, NPF events occurred more frequently and the growth rate was much higher than in the same period of 2012. The difference in the location and strength of sub-tropical High, which influences the air mass transport pathways and solar radiation, seems to be the driving cause for year-to-year differences. This study reported the longest continuous measurement records of submicron particles in the East China and gained a comprehensive understanding of the

  7. Aerosol size distribution and new particle formation in the western Yangtze River Delta of China: 2 years of measurements at the SORPES station

    NASA Astrophysics Data System (ADS)

    Qi, X. M.; Ding, A. J.; Nie, W.; Petäjä, T.; Kerminen, V.-M.; Herrmann, E.; Xie, Y. N.; Zheng, L. F.; Manninen, H.; Aalto, P.; Sun, J. N.; Xu, Z. N.; Chi, X. G.; Huang, X.; Boy, M.; Virkkula, A.; Yang, X.-Q.; Fu, C. B.; Kulmala, M.

    2015-11-01

    Aerosol particles play important roles in regional air quality and global climate change. In this study, we analyzed 2 years (2011-2013) of measurements of submicron particles (6-800 nm) at a suburban site in the western Yangtze River Delta (YRD) of eastern China. The number concentrations (NCs) of particles in the nucleation, Aitken and accumulation modes were 5300 ± 5500, 8000 ± 4400, 5800 ± 3200 cm-3, respectively. The NCs of total particles are comparable to those at urban/suburban sites in other Chinese megacities, such as Beijing, but about 10 times higher than in the remote western China. Long-range and regional transport largely influenced number concentrations and size distributions of submicron particles. The highest and lowest accumulation-mode particle number concentrations were observed in air masses from the YRD and coastal regions, respectively. Continental air masses from inland brought the highest concentrations of nucleation-mode particles. New particle formation (NPF) events, apparent in 44 % of the effective measurement days, occurred frequently in all the seasons except winter. The frequency of NPF in spring, summer and autumn is much higher than other measurement sites in China. Sulfuric acid was found to be the main driver of NPF events. The particle formation rate was the highest in spring (3.6 ± 2.4 cm-3 s-1), whereas the particle growth rate had the highest values in summer (12.8 ± 4.4 nm h-1). The formation rate was typically high in relatively clean air masses, whereas the growth rate tended to be high in the polluted YRD air masses. The frequency of NPF events and the particle growth rates showed a strong year-to-year difference. In the summer of 2013, associated with a multi-week heat wave and strong photochemical processes, NPF events occurred with larger frequency and higher growth rates compared with the same period in 2012. The difference in the location and strength of the subtropical high pressure system, which influences

  8. Measuring circuit

    DOEpatents

    Sun, Shan C.; Chaprnka, Anthony G.

    1977-01-11

    An automatic gain control circuit functions to adjust the magnitude of an input signal supplied to a measuring circuit to a level within the dynamic range of the measuring circuit while a log-ratio circuit adjusts the magnitude of the output signal from the measuring circuit to the level of the input signal and optimizes the signal-to-noise ratio performance of the measuring circuit.

  9. An Automated System for Measuring Microphysical and Radiative Cloud Characteristics from a Tethered Balloon

    SciTech Connect

    Dr. Paul Lawson

    2004-03-15

    OAK-B135 The rate of climate change in polar regions is now felt to be a harbinger of possible global warming. Long-lived, relatively thin stratus clouds play a predominant role in transmitting solar radiation and trapping long wave radiation emitted from open water and melt ponds. In situ measurements of microphysical and radiative properties of Arctic and Antarctic stratus clouds are needed to validate retrievals from remote measurements and simulations using numerical models. While research aircraft can collect comprehensive microphysical and radiative data in clouds, the duration of these aircraft is relatively short (up to about 12 hours). During the course of the Phase II research, a tethered balloon system was developed that supports miniaturized meteorological, microphysical and radiation sensors that can collect data in stratus clouds for days at a time. The tethered balloon system uses a 43 cubic meter balloon to loft a 17 kg sensor package to altitudes u p to 2 km. Power is supplied to the instrument package via two copper conductors in the custom tether. Meteorological, microphysical and radiation data are recorded by the sensor package. Meteorological measurements include pressure, temperature, humidity, wind speed and wind direction. Radiation measurements are made using a 4-pi radiometer that measures actinic flux at 500 and 800 nm. Position is recorded using a GPS receiver. Microphysical data are obtained using a miniaturized version of an airborne cloud particle imager (CPI). The miniaturized CPI measures the size distribution of water drops and ice crystals from 9 microns to 1.4 mm. Data are recorded onboard the sensor package and also telemetered via a 802.11b wireless communications link. Command signals can also be sent to the computer in the sensor package via the wireless link. In the event of a broken tether, a GMRS radio link to the balloon package is used to heat a wire that burns 15 cm opening in the top of the balloon. The balloon and

  10. Particle Measurement

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Rupprecht & Patashnick Co. Inc.'s TEOM Series 1100 particulate mass monitor is a device that provides measurements of exceptional sensitivity and accuracy. Deriving from skylab, this monitor has applications in such areas as evaluation of diesel exhaust, dust concentration, smoke measurement and other situations wherein particulate matter in gas streams must be measured and weighed.

  11. Measure Lines

    ERIC Educational Resources Information Center

    Crissman, Sally

    2011-01-01

    One tool for enhancing students' work with data in the science classroom is the measure line. As a coteacher and curriculum developer for The Inquiry Project, the author has seen how measure lines--a number line in which the numbers refer to units of measure--help students not only represent data but also analyze it in ways that generate…

  12. Effects of inelastic radiative processes on the determination of water-leaving spectral radiance from extrapolation of underwater near-surface measurements.

    PubMed

    Li, Linhai; Stramski, Dariusz; Reynolds, Rick A

    2016-09-01

    Extrapolation of near-surface underwater measurements is the most common method to estimate the water-leaving spectral radiance, Lw(λ) (where λ is the light wavelength in vacuum), and remote-sensing reflectance, Rrs(λ), for validation and vicarious calibration of satellite sensors, as well as for ocean color algorithm development. However, uncertainties in Lw(λ) arising from the extrapolation process have not been investigated in detail with regards to the potential influence of inelastic radiative processes, such as Raman scattering by water molecules and fluorescence by colored dissolved organic matter and chlorophyll-a. Using radiative transfer simulations, we examine high-depth resolution vertical profiles of the upwelling radiance, Lu(λ), and its diffuse attenuation coefficient, KLu (λ), within the top 10 m of the ocean surface layer and assess the uncertainties in extrapolated values of Lw(λ). The inelastic processes generally increase Lu and decrease KLu in the red and near-infrared (NIR) portion of the spectrum. Unlike KLu in the blue and green spectral bands, KLu in the red and NIR is strongly variable within the near-surface layer even in a perfectly homogeneous water column. The assumption of a constant KLu with depth that is typically employed in the extrapolation method can lead to significant errors in the estimate of Lw. These errors approach ∼100% at 900 nm, and the desired threshold of 5% accuracy or less cannot be achieved at wavelengths greater than 650 nm for underwater radiometric systems that typically take measurements at depths below 1 m. These errors can be reduced by measuring Lu within a much shallower surface layer of tens of centimeters thick or even less at near-infrared wavelengths longer than 800 nm, which suggests a

  13. Measurement fundamentals

    SciTech Connect

    Webb, R.A.

    1995-12-01

    The need to have accurate petroleum measurement is obvious. Petroleum measurement is the basis of commerce between oil producers, royalty owners, oil transporters, refiners, marketers, the Department of Revenue, and the motoring public. Furthermore, petroleum measurements are often used to detect operational problems or unwanted releases in pipelines, tanks, marine vessels, underground storage tanks, etc. Therefore, consistent, accurate petroleum measurement is an essential part of any operation. While there are several methods and different types of equipment used to perform petroleum measurement, the basic process stays the same. The basic measurement process is the act of comparing an unknown quantity, to a known quantity, in order to establish its magnitude. The process can be seen in a variety of forms; such as measuring for a first-down in a football game, weighing meat and produce at the grocery, or the use of an automobile odometer.

  14. Multilevel Interventions: Measurement and Measures

    PubMed Central

    Charns, Martin P.; Alligood, Elaine C.; Benzer, Justin K.; Burgess, James F.; Mcintosh, Nathalie M.; Burness, Allison; Partin, Melissa R.; Clauser, Steven B.

    2012-01-01

    Background Multilevel intervention research holds the promise of more accurately representing real-life situations and, thus, with proper research design and measurement approaches, facilitating effective and efficient resolution of health-care system challenges. However, taking a multilevel approach to cancer care interventions creates both measurement challenges and opportunities. Methods One-thousand seventy two cancer care articles from 2005 to 2010 were reviewed to examine the state of measurement in the multilevel intervention cancer care literature. Ultimately, 234 multilevel articles, 40 involving cancer care interventions, were identified. Additionally, literature from health services, social psychology, and organizational behavior was reviewed to identify measures that might be useful in multilevel intervention research. Results The vast majority of measures used in multilevel cancer intervention studies were individual level measures. Group-, organization-, and community-level measures were rarely used. Discussion of the independence, validity, and reliability of measures was scant. Discussion Measurement issues may be especially complex when conducting multilevel intervention research. Measurement considerations that are associated with multilevel intervention research include those related to independence, reliability, validity, sample size, and power. Furthermore, multilevel intervention research requires identification of key constructs and measures by level and consideration of interactions within and across levels. Thus, multilevel intervention research benefits from thoughtful theory-driven planning and design, an interdisciplinary approach, and mixed methods measurement and analysis. PMID:22623598

  15. First derivative versus absolute spectral reflectance of citrus varieties

    NASA Astrophysics Data System (ADS)

    Blazquez, Carlos H.; Nigg, H. N.; Hedley, Lou E.; Ramos, L. E.; Sorrell, R. W.; Simpson, S. E.

    1996-06-01

    Spectral reflectance measurements from 400 to 800 nm were taken from immature and mature leaves of grapefruit ('McCarty' and 'Rio Red'), 'Minneola' tangelo, 'Satsuma' mandarin, 'Dancy' tangerine, 'Nagami' oval kumquat, and 'Valencia' sweet orange, at the Florida Citrus Arboretum, Division of Plant Industry, Winter Haven, Florida. Immature and mature leaves of 'Minneola' tangelo had greater percent reflectance in the 400 to 800 nm range than the other varieties and leaf ages measured. The slope of the citrus spectral curves in the 800 nm range was not as sharp as conventional spectrometers, but had a much higher reflectance value than those obtained with a DK-2 spectrometer. Statistical analyses of absolute spectral data yielded significant differences between mature and immature leaves and between varieties. First derivative data analyses did not yield significant differences between varieties.

  16. Measurement Uncertainty

    NASA Astrophysics Data System (ADS)

    Koch, Michael

    Measurement uncertainty is one of the key issues in quality assurance. It became increasingly important for analytical chemistry laboratories with the accreditation to ISO/IEC 17025. The uncertainty of a measurement is the most important criterion for the decision whether a measurement result is fit for purpose. It also delivers help for the decision whether a specification limit is exceeded or not. Estimation of measurement uncertainty often is not trivial. Several strategies have been developed for this purpose that will shortly be described in this chapter. In addition the different possibilities to take into account the uncertainty in compliance assessment are explained.

  17. Comparison of measured and calculated collision efficiencies at low temperatures

    NASA Astrophysics Data System (ADS)

    Nagare, B.; Marcolli, C.; Stetzer, O.; Lohmann, U.

    2015-12-01

    Interactions of atmospheric aerosols with clouds influence cloud properties and modify the aerosol life cycle. Aerosol particles act as cloud condensation nuclei and ice nucleating particles or become incorporated into cloud droplets by scavenging. For an accurate description of aerosol scavenging and ice nucleation in contact mode, collision efficiency between droplets and aerosol particles needs to be known. This study derives the collision rate from experimental contact freezing data obtained with the ETH CoLlision Ice Nucleation CHamber (CLINCH). Freely falling 80 μm diameter water droplets are exposed to an aerosol consisting of 200 and 400 nm diameter silver iodide particles of concentrations from 500 to 5000 and 500 to 2000 cm-3, respectively, which act as ice nucleating particles in contact mode. The experimental data used to derive collision efficiency are in a temperature range of 238-245 K, where each collision of silver iodide particles with droplets can be assumed to result in the freezing of the droplet. An upper and lower limit of collision efficiency is also estimated for 800 nm diameter kaolinite particles. The chamber is kept at ice saturation at a temperature range of 236 to 261 K, leading to the slow evaporation of water droplets giving rise to thermophoresis and diffusiophoresis. Droplets and particles bear charges inducing electrophoresis. The experimentally derived collision efficiency values of 0.13, 0.07 and 0.047-0.11 for 200, 400 and 800 nm particles are around 1 order of magnitude higher than theoretical formulations which include Brownian diffusion, impaction, interception, thermophoretic, diffusiophoretic and electric forces. This discrepancy is most probably due to uncertainties and inaccuracies in the description of thermophoretic and diffusiophoretic processes acting together. This is, to the authors' knowledge, the first data set of collision efficiencies acquired below 273 K. More such experiments with different droplet and

  18. Measuring Creativity.

    ERIC Educational Resources Information Center

    Miller, Phyllis, Ed.

    2001-01-01

    In this journal issue, articles examine various aspects of measuring creativity, productivity of gifted individuals, fostering psychological well-being of the gifted, and federal funding of gifted programs. Specific articles include: (1) "The Death of Creativity Measurement Has Been Greatly Exaggerated: Current Issues, Recent Advances, and Future…

  19. Asbestos Measurement

    EPA Science Inventory

    Environmental engineers are generally concerned with two types of air pollutants, gases and particulate matter (PM). Generally, the mass of PM falling in two size categories is measured, i.e. ≤2.5 µm diameter, and between 2.5 µm and 10 µm diameter. These measurements are taken by...

  20. Psychological Measurement.

    ERIC Educational Resources Information Center

    Dawes, Robyn M.

    1994-01-01

    L. L. Thurstone's revolutionary article resulted in the development of many representational measurement models, but the introduction of "true measurement" in social, attitudinal, and personality psychology did not yield the progress Thurstone envisioned. This specific model is seldom used in these areas today. (SLD)

  1. MEASURING PROJECTOR

    DOEpatents

    Franck, J.V.; Broadhead, P.S.; Skiff, E.W.

    1959-07-14

    A semiautomatic measuring projector particularly adapted for measurement of the coordinates of photographic images of particle tracks as prcduced in a bubble or cloud chamber is presented. A viewing screen aids the operator in selecting a particle track for measurement. After approximate manual alignment, an image scanning system coupled to a servo control provides automatic exact alignment of a track image with a reference point. The apparatus can follow along a track with a continuous motion while recording coordinate data at various selected points along the track. The coordinate data is recorded on punched cards for subsequent computer calculation of particle trajectory, momentum, etc.

  2. MEASURING CIRCUIT

    DOEpatents

    Mahoney, J.R.

    1963-01-29

    A measuring and balancing arrangement for mass spectrometers permits the ready determination of isotopic ratios and mole and weight percentages by employing a selection of amplifier input resistors to vary sensitivity in a bridge arrangement. (AEC)

  3. An Optical Streaking Method for Measuring Femtosecond Electron Bunches

    SciTech Connect

    Ding, Yuantao; Bane, Karl L.F.; Huang, Zhirong; /SLAC

    2011-12-14

    are the right direction to achieve a better resolution. For example, by choosing an X-band transverse deflecting cavity, the expected resolution for LCLS beam with 4.3 GeV is about 1 fs rms. Typically the rf breakdown threshold and the power source availability prevent going to even higher voltage and frequency. With the highly-developed laser techniques, we can choose to streak the beam at optical frequencies. By jumping from rf to optical frequency, the wavelength is shortening by 4 to 5 orders. With an electron bunch length shorter than half period of the laser, we can apply the similar rf deflecting or zero-phasing method for e-beam bunch length measurements using a high-power laser. A short wiggler is required to provide interaction between the electron and the laser. For example, to measure the e-beam at the order of 1 m rms length, a laser with its wavelength of 10 {mu}m may be considered. For a typical few GeV e-beam, the wiggler period has to be large to satisfy the resonance condition. Also, if the e-beam is longer than one laser period, the different modulation periods will overlap and we cannot distinguish them. So this method is so far limited by the achievable long-wavelength laser power. To get an effective modulation on an e-beam of 4.3 GeV, the required laser power is about a few tens GW. In this paper we propose to adopt a high-power Ti:Sapphire laser (wavelength of 800 nm), and use the slope in the intensity envelope to distinguish the different modulation periods. First an ultrashort electron beam interacts with the Ti:Sapphire laser in a wiggler, where the electron energy is modulated at the same periods of the laser. If the laser pulse is long and the short electron bunch is overlapped (in time) with the middle part of the laser, such as the setup at LCLS laser heater, the different energy modulation periods on the electron beam will be overlapped on the energy profile. In this conditionwe typically have a double-horn distribution of the energy

  4. Optical Kerr effect of tRNA solution induced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kucia, Weronika E.; Sharma, Gargi; Joseph, Cecil S.; Sarbak, Szymon; Oliver, Cameron; Dobek, Andrzej; Giles, Robert H.

    2016-10-01

    The optical Kerr effect (OKE) in a transfer ribonucleic acid (tRNA) solution induced by femtosecond pulses of linearly polarized pump light (λi = 800 nm) and sounded by probe light (λp = 800 nm) was studied. The measurements were performed to find nonlinear optical parameters describing a single molecule (molecular Kerr constant K, mean nonlinear third order optical polarizability cpi) and to compare them with our previous OKE results obtained in ns and ps time range. The OKE experiment has proven to be an efficient method to obtain the nonlinear parameters of single molecules in solution, which reflects dynamic structure changes.

  5. Measurement uncertainty.

    PubMed

    Bartley, David; Lidén, Göran

    2008-08-01

    The reporting of measurement uncertainty has recently undergone a major harmonization whereby characteristics of a measurement method obtained during establishment and application are combined componentwise. For example, the sometimes-pesky systematic error is included. A bias component of uncertainty can be often easily established as the uncertainty in the bias. However, beyond simply arriving at a value for uncertainty, meaning to this uncertainty if needed can sometimes be developed in terms of prediction confidence in uncertainty-based intervals covering what is to be measured. To this end, a link between concepts of accuracy and uncertainty is established through a simple yet accurate approximation to a random variable known as the non-central Student's t-distribution. Without a measureless and perpetual uncertainty, the drama of human life would be destroyed. Winston Churchill.

  6. Measuring Up

    ERIC Educational Resources Information Center

    Hart, Holly; Healey, Kaleen; Sporte, Susan E.

    2014-01-01

    Moving teacher evaluation systems from measuring teachers' performance to improving their practice requires much greater attention to communication and support. In the fall of 2012, Chicago Public Schools (CPS) instituted a sweeping reform of its teacher evaluation system with the introduction of REACH Students (Recognizing Educators…

  7. Measured Success

    ERIC Educational Resources Information Center

    Keating, Tom

    2009-01-01

    Many students think custodians are hired to pick up after them. And sometimes adult workers voice similarly negative impressions. What can education institutions do about this negative and improper thinking? Because of heightened concerns about invisible pathogens such as MRSA and swine flu, improved technologies are available to measure bacteria…

  8. Measuring Learning

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2011-01-01

    Teachers assess children's learning to understand how to make their instruction more effective. Early childhood assessment must take into account the typically uneven development of children and their cultural contexts. The author assessed what a group of four-year-olds knew about measurement as she talked about how much water had filled a rain…

  9. Measuring Height.

    ERIC Educational Resources Information Center

    Schoettle, Kenneth

    1982-01-01

    A school building was originally used while investigating the acceleration of a free-falling body due to gravity. Because it was difficult to measure time accurately over such a short distance, an alternative method using a rocket was used. Materials needed and a description of the activity are provided. (Author/JN)

  10. Property Measurement

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Van is used by Land Inventory Systems to measure and map property for tax assessment purposes. It is adapted from navigation system of the Lunar Rover wheeled vehicle in which moon-exploring astronauts traveled as much as 20 miles from their Lunar Module base. Astronauts had to know their precise position so that in case of emergency they could take the shortest route back. Computerized navigational system kept a highly accurate record of the directional path providing continuous position report. Distance measuring subsystem was a more accurate counterpart of automobile odometer system counts revolutions of wheels and encoders generate electrical pulses for each fractional revolution and the computer analyzed the pulses to determine the distance traveled in a given direction.

  11. Measuring Up

    ERIC Educational Resources Information Center

    Faircloth, Donna B

    2007-01-01

    In this article, the author talks about how she was struck with the inspiration for a series of math lessons for her fifth graders as she walked through the doors of a convenience store. A measuring chart on either side of the exit was an observation tool for the clerks in the event of a robbery. As she left the store, she was aware that anyone…

  12. Measurement of $\

    SciTech Connect

    Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; Curioni, A.; /Yale U. /Columbia U.

    2010-10-01

    MiniBooNE reports the first absolute cross sections for neutral current single {pi}{sup 0} production on CH{sub 2} induced by neutrino and antineutrino interactions measured from the largest sets of NC {pi}{sup 0} events collected to date. The principal result consists of differential cross sections measured as functions of {pi}{sup 0} momentum and {pi}{sup 0} angle averaged over the neutrino flux at MiniBooNE. We find total cross sections of (4.76 {+-} 0.05{sub stat} {+-} 0.76{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of E{sub {nu}} = 808 MeV and (1.48 {+-} 0.05{sub stat} {+-} 0.23{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of E{sub {nu}} = 664 MeV for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} induced production, respectively. In addition, we have included measurements of the neutrino and antineutrino total cross sections for incoherent exclusive NC 1{pi}{sup 0} production corrected for the effects of final state interactions to compare to prior results.

  13. Measurement of \

    SciTech Connect

    Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; Curioni, A.; /Yale U. /Columbia U.

    2009-11-01

    MiniBooNE reports the first absolute cross sections for neutral current single {pi}{sup 0} production on CH{sub 2} induced by neutrino and antineutrino interactions measured from the largest sets of NC {pi}{sup 0} events collected to date. The principal result consists of differential cross sections measured as functions of {pi}{sup 0} momentum and {pi}{sup 0} angle averaged over the neutrino flux at MiniBooNE. We find total cross sections of (4.76 {+-} 0.05{sub stat} {+-} 0.40{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of = 808 MeV and (1.48 {+-} 0.05{sub stat} {+-} 0.14{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of = 664 MeV for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} induced production, respectively. In addition, we have included measurements of the neutrino and antineutrino total cross sections for incoherent exclusive NC 1{pi}{sup 0} production corrected for the effects of final state interactions to compare to prior results.

  14. MEASURING APPARATUS

    DOEpatents

    Kohman, T.P.; Weissbourd, B.W.

    1959-02-17

    An ion chamber assembly is presented for measuring neutron emission of a relatively slow rate from a radioactive sample. The detecting apparatus comprises a container filled with neutron slowing material and having a cavity where a neutron source may be located centrally in the container. A plurality of ion chamber units are disposed equidistantly from the source and from each other for detecting the neutron radiation. Each of the ion chamber units has an ion chamber and a second chamber of substantially the same diameter as the ion chamber and in end-to-end relationship therewith. The second chamber contains paraffin and an axially disposed lead-in conductor for the ion chamber central electrode. The preamplifier circuit whose input is connected to the lead-in conductor is housed in a third container arranged in end-to-end relationship with the second chamber.

  15. Effect of rotational wave packets on the stimulated emission of nitrogen with light filament

    NASA Astrophysics Data System (ADS)

    Arissian, Ladan; Kamer, Brian; Rasoulof, Amin

    2016-06-01

    We measure forward emission of the nitrogen ion excited by light filaments at 800 nm. The radiation strongly depends on light polarization and orbital angular momentum. In all cases the rotational distribution of nitrogen molecules plays an essential role in the 428 nm stimulated emission.

  16. Multipulse interferometric frequency-resolved optical gating

    SciTech Connect

    Siders, C.W.; Siders, J.L.W.; Omenetto, F.G.; Taylor, A.J.

    1999-04-01

    The authors review multipulse interferometric frequency-resolved optical gating (MI-FROG) as a technique, uniquely suited for pump-probe coherent spectroscopy using amplified visible and near-infrared short-pulse systems and/or emissive targets, for time-resolving ultrafast phase shifts and intensity changes. Application of polarization-gate MI-FROG to the study of ultrafast ionization in gases is presented.

  17. Man Is the Measure...the Measurer.

    ERIC Educational Resources Information Center

    Stone, Mark H.

    1998-01-01

    The science of metrology has moved from man as the measure to man as the measurer. This transformation is documented with examples from the history of metrology. Outcome measures, which rest on the same history of measurement, are units constructed and maintained for their utility, constancy, and generality. (Author/SLD)

  18. Work Measurement as a Generalized Quantum Measurement

    NASA Astrophysics Data System (ADS)

    Roncaglia, Augusto J.; Cerisola, Federico; Paz, Juan Pablo

    2014-12-01

    We present a new method to measure the work w performed on a driven quantum system and to sample its probability distribution P (w ). The method is based on a simple fact that remained unnoticed until now: Work on a quantum system can be measured by performing a generalized quantum measurement at a single time. Such measurement, which technically speaking is denoted as a positive operator valued measure reduces to an ordinary projective measurement on an enlarged system. This observation not only demystifies work measurement but also suggests a new quantum algorithm to efficiently sample the distribution P (w ). This can be used, in combination with fluctuation theorems, to estimate free energies of quantum states on a quantum computer.

  19. Work measurement as a generalized quantum measurement.

    PubMed

    Roncaglia, Augusto J; Cerisola, Federico; Paz, Juan Pablo

    2014-12-19

    We present a new method to measure the work w performed on a driven quantum system and to sample its probability distribution P(w). The method is based on a simple fact that remained unnoticed until now: Work on a quantum system can be measured by performing a generalized quantum measurement at a single time. Such measurement, which technically speaking is denoted as a positive operator valued measure reduces to an ordinary projective measurement on an enlarged system. This observation not only demystifies work measurement but also suggests a new quantum algorithm to efficiently sample the distribution P(w). This can be used, in combination with fluctuation theorems, to estimate free energies of quantum states on a quantum computer.

  20. Measurement and characteristic analysis of refractive index of biological medium adsorption on two-dimensional photonic crystal surface

    NASA Astrophysics Data System (ADS)

    Tong, Kai; Lu, Jianru; Zhang, Zhenguo; Wang, Hui-bo; Chen, Ying

    2014-07-01

    The two-dimensional (2D) SiO2 photonic crystal (PC) is constructed with the substrate of polyester film. The PC period is 800nm, and the duty cycle is 0.5.The high refractive index coating is deposited on the surface of PC. Rigorous coupled-wave (RCWA) theory is used to analyze 2D PC narrowband reflection spectrum characteristic. A relationship model between reflection peak wavelength and medium refractive index adsorption on surface of 2D PC is established. The conclusion shows that there is a linear relationship between reflection wavelength of the PC and the refractive index of adsorption medium, with the refractive index of adsorption medium in the range of 1.3-1.8. The effects of the refractive index of deposited coating on the sensitivity of the PC biosensor are analyzed. With the increase of the refractive index of the deposited coating, the sensitivity of the sensor is increasing.

  1. Measurement technology: A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technical information is presented on measurement techniques and instruments, measurement applications for inspection activities, measurement sensors, and data conversion methods. Photographs or diagrams are included for each instrument or method described, and where applicable, patent information is given.

  2. Measuring Test Measurement Error: A General Approach

    ERIC Educational Resources Information Center

    Boyd, Donald; Lankford, Hamilton; Loeb, Susanna; Wyckoff, James

    2013-01-01

    Test-based accountability as well as value-added asessments and much experimental and quasi-experimental research in education rely on achievement tests to measure student skills and knowledge. Yet, we know little regarding fundamental properties of these tests, an important example being the extent of measurement error and its implications for…

  3. Measuring the Internet.

    ERIC Educational Resources Information Center

    Molyneux, Robert E.; Williams, Robert V.

    1999-01-01

    Examines the literature that measures characteristics of the Internet. Discusses: conclusions about the Internet measurement literature; definition of the Internet from a technical standpoint; history of Internet measurement; nature of the Internet data environment; Internet technical characteristics; information measurement and the Internet;…

  4. Software measurement guidebook

    NASA Technical Reports Server (NTRS)

    Bassman, Mitchell J.; Mcgarry, Frank; Pajerski, Rose

    1994-01-01

    This software Measurement Guidebook presents information on the purpose and importance of measurement. It discusses the specific procedures and activities of a measurement program and the roles of the people involved. The guidebook also clarifies the roles that measurement can and must play in the goal of continual, sustained improvement for all software production and maintenance efforts.

  5. Can Virtue Be Measured?

    ERIC Educational Resources Information Center

    Curren, Randall; Kotzee, Ben

    2014-01-01

    This article explores some general considerations bearing on the question of whether virtue can be measured. What is moral virtue? What are measurement and evaluation, and what do they presuppose about the nature of what is measured or evaluated? What are the prospective contexts of, and purposes for, measuring or evaluating virtue, and how would…

  6. Weak measure expansive flows

    NASA Astrophysics Data System (ADS)

    Lee, Keonhee; Oh, Jumi

    2016-01-01

    A notion of measure expansivity for flows was introduced by Carrasco-Olivera and Morales in [3] as a generalization of expansivity, and they proved that there were no measure expansive flows on closed surfaces. In this paper we introduce a concept of weak measure expansivity for flows which is really weaker than that of measure expansivity, and show that there is a weak measure expansive flow on a closed surface. Moreover we show that any C1 stably weak measure expansive flow on a C∞ closed manifold M is Ω-stable, and any C1 stably measure expansive flow on M satisfies both Axiom A and the quasi-transversality condition.

  7. Temperature Measurements in the Magnetic Measurement Facility

    SciTech Connect

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the

  8. Metrology measurement capabilities

    SciTech Connect

    Shroyer, K.

    1997-02-01

    Since 1958, the AlliedSignal Federal Manufacturing and Technologies (FM and T) Metrology Department has developed measurement technology and calibration capability in four major areas of measurement: (1) mechanical; (2) environmental, gas, liquid; (3) electrical (D.C., A.C., RF/Microwave); and (4) optical and radiation. The capabilities developed include unique capabilities in many areas of measurement and engineering expertise to develop measurement techniques and resolve measurement problems in these major areas. A strong audit function has been developed to provide a means to evaluate the calibration programs of the suppliers and internal calibration organizations. This evaluation includes measurement audits and technical surveys. The requirements placed on metrology require traceability of measurements to the National Institute of Standards and Technology or to nationally recognized methods or natural phenomena. A description of Metrology capabilities, traceability flow charts, and the measurement uncertainty of each of the measurement capabilities is contained in the report.

  9. PV Solar Radiometric Measurements

    SciTech Connect

    Myers, D.R.; Cannon, T.W.

    1997-02-01

    Radiometric measurements performed by the PV Solar Radiometric Measurements Task support NREL{close_quote}s centers for Measurements and Characterization, Performance Engineering and Reliability, and Renewable Energy Resources. The task provides characterization, measurements, testing, designs, and analysis of radiometric instrumentation and data for the performance of PV cells, modules, and systems. We describe recent characterization of the radiometric performance of pyranometers deployed for PV system testing at the NREL Outdoor Test Facility (OTF) and improvements undertaken in NREL broadband radiometer characterization. Typical measurement and calibration issues with diode array spectroradiometers used for absolute spectral measurements applied to PV performance and characterization are discussed. {copyright} {ital 1997 American Institute of Physics.}

  10. Precision mass measurements

    NASA Astrophysics Data System (ADS)

    Gläser, M.; Borys, M.

    2009-12-01

    Mass as a physical quantity and its measurement are described. After some historical remarks, a short summary of the concept of mass in classical and modern physics is given. Principles and methods of mass measurements, for example as energy measurement or as measurement of weight forces and forces caused by acceleration, are discussed. Precision mass measurement by comparing mass standards using balances is described in detail. Measurement of atomic masses related to 12C is briefly reviewed as well as experiments and recent discussions for a future new definition of the kilogram, the SI unit of mass.

  11. Metrology measurement capability

    NASA Astrophysics Data System (ADS)

    Shroyer, K.

    1995-01-01

    During the past 36 years, the Kansas City Division's (KCD) Metrology Department has developed measurement technology and calibration capability in four major areas of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; Electrical (D.C., A.C., RF/Microwave); and (3) Optical and Radiation. The capabilities developed include unique capabilities in many areas of measurement and engineering expertise to develop measurement techniques and resolve measurement problems in these major areas. KCD Metrology was established in 1958 to provide a measurement base for the Kansas City Plant. The Metrology Engineering Department provides the expertise to develop measurement capabilities for virtually any type of measurement which falls into the broad areas listed above. The engineering staff currently averages almost 19 years of measurement experience. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. This evaluation includes measurement audits and technical surveys. The requirements placed on Metrology require traceability of measurements to the National Institute of Standards and Technology or to nationally recognized methods or natural phenomena. A description of Metrology capabilities, traceability flow charts, and the measurement uncertainty of each of the measurement capabilities is contained in the following pages.

  12. Metrology measurement capabilities

    SciTech Connect

    Barnes, L.M.

    1997-06-01

    Since 1958, the AlliedSignal Federal Manufacturing and Technologies (FM and T) Metrology Department has developed measurement technology and calibration capability in four major areas of measurement: mechanical; environmental, gas, liquid; electrical (D.C., A.C., RF/microwave); and optical and radiation. The capabilities developed include unique capabilities in many areas of measurement and engineering expertise to develop measurement techniques and resolve measurement problems in these major areas. FM and T Metrology was established in 1958 to provide a measurement base for the Department of energy`s Kansas City Plant. The Metrology Engineering Department provides the expertise to develop measurement capabilities for virtually any type of measurement which falls into the broad areas listed above. The engineering staff currently averages almost 16 years of measurement experience. A strong audit function has been developed to provide a means to evaluate the calibration programs of the suppliers and internal calibration organizations. This evaluation includes measurement audits and technical surveys. The requirements placed on Metrology require traceability of measurements to the National Institute of Standards and Technology or to nationally recognized methods or natural phenomena. A description of Metrology capabilities, traceability flow charts, and the measurement uncertainty of each of the measurement capabilities is contained in this report.

  13. Metrology measurement capability

    SciTech Connect

    Shroyer, K.

    1995-01-01

    During the past 36 years, the Kansas City Division`s (KCD) Metrology Department has developed measurement technology and calibration capability in four major areas of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; Electrical (D.C., A.C., RF/Microwave); and (3) Optical and Radiation. The capabilities developed include unique capabilities in many areas of measurement and engineering expertise to develop measurement techniques and resolve measurement problems in these major areas. KCD Metrology was established in 1958 to provide a measurement base for the Kansas City Plant. The Metrology Engineering Department provides the expertise to develop measurement capabilities for virtually any type of measurement which falls into the broad areas listed above. The engineering staff currently averages almost 19 years of measurement experience. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. This evaluation includes measurement audits and technical surveys. The requirements placed on Metrology require traceability of measurements to the National Institute of Standards and Technology or to nationally recognized methods or natural phenomena. A description of Metrology capabilities, traceability flow charts, and the measurement uncertainty of each of the measurement capabilities is contained in the following pages.

  14. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  15. Ozone Correlative Measurements Workshop

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E. (Editor)

    1985-01-01

    A study was conducted to determine the necessary parameters for the correlation of data on Earth ozone. Topics considered were: (1) measurement accuracy; (2) equipment considerations (SBUV); and (3) ground based measurements to support satellite data.

  16. Downhole steam quality measurement

    DOEpatents

    Lee, David O.; Montoya, Paul C.; Muir, James F.; Wayland, Jr., J. Robert

    1987-01-01

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  17. Electrolyte measurement device and measurement procedure

    DOEpatents

    Cooper, Kevin R.; Scribner, Louie L.

    2010-01-26

    A method and apparatus for measuring the through-thickness resistance or conductance of a thin electrolyte is provided. The method and apparatus includes positioning a first source electrode on a first side of an electrolyte to be tested, positioning a second source electrode on a second side of the electrolyte, positioning a first sense electrode on the second side of the electrolyte, and positioning a second sense electrode on the first side of the electrolyte. current is then passed between the first and second source electrodes and the voltage between the first and second sense electrodes is measured.

  18. Impedance Measurement Box

    SciTech Connect

    Morrison, William

    2014-11-20

    The IMB 50V software provides functionality for design of impedance measurement tests or sequences of tests, execution of these tests or sequences, processing measured responses and displaying and saving of the results. The software consists of a Graphical User Interface that allows configuration of measurement parameters and test sequencing, a core engine that controls test sequencing, execution of measurements, processing and storage of results and a hardware/software data acquisition interface with the IMB hardware system.

  19. Force-Measuring Clamp

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2004-01-01

    A precision clamp that accurately measures force over a wide range of conditions is described. Using a full bridge or other strain gage configuration. the elastic deformation of the clamp is measured or detected by the strain gages. Thc strain gages transmit a signal that corresponds to the degree of stress upon the clamp. Thc strain gage signal is converted to a numeric display. Calibration is achieved by ero and span potentiometers which enable accurate measurements by the force-measuring clamp.

  20. Coordinate measuring system

    DOEpatents

    Carlisle, Keith

    2003-04-08

    An apparatus and method is utilized to measure relative rigid body motion between two bodies by measuring linear motion in the principal axis and linear motion in an orthogonal axis. From such measurements it is possible to obtain displacement, departure from straightness, and angular displacement from the principal axis of a rigid body.

  1. Standards for holdup measurement

    SciTech Connect

    Zucker, M.S.

    1982-01-01

    Holdup measurement, needed for material balance, depend intensively on standards and on interpretation of the calibration procedure. More than other measurements, the calibration procedure using the standard becomes part of the standard. Standards practical for field use and calibration techniques have been developed. While accuracy in holdup measurements is comparatively poor, avoidance of bias is a necessary goal.

  2. Measurement Practice Guide

    ERIC Educational Resources Information Center

    College and Career Readiness and Success Center, 2014

    2014-01-01

    This discussion guide is part of a larger practice guide designed to help state education agencies (SEAs) define measurement goals, select college and career readiness measures and indicators designed to support those goals, and use the data gathered with those measures and indicators to make informed decisions about college and career readiness…

  3. Measuring Rural Hospital Quality

    ERIC Educational Resources Information Center

    Moscovice, Ira; Wholey, Douglas R.; Klingner, Jill; Knott, Astrid

    2004-01-01

    Increased interest in the measurement of hospital quality has been stimulated by accrediting bodies, purchaser coalitions, government agencies, and other entities. This paper examines quality measurement for hospitals in rural settings. We seek to identify rural hospital quality measures that reflect quality in all hospitals and that are sensitive…

  4. Measurement and Research Tools.

    ERIC Educational Resources Information Center

    1997

    This document contains four papers from a symposium on measurement and research tools for human resource development (HRD). "The 'Best Fit' Training: Measure Employee Learning Style Strengths" (Daniel L. Parry) discusses a study of the physiological aspect of sensory intake known as modality, more specifically, modality as measured by the…

  5. Measuring the Immeasurable

    ERIC Educational Resources Information Center

    Downs, Sylvia

    2004-01-01

    There is growing evidence of the wider benefits of learning on non-accredited courses. However, there appears to be a problem on how these benefits can be measured. The Learning and Skills Council consultation "Measuring Success in the Learning and Skills Sector" (2003) confirms that no national measures exist for recognising achievements in…

  6. Teaching Measurement with Literature

    ERIC Educational Resources Information Center

    Bintz, William P.; Moore, Sara D.

    2011-01-01

    Measurement is a difficult concept for many children. Trend data from the National Association of Educational Progress (NAEP) indicate that student achievement with measurement is disappointing, given the amount of instructional time it receives in K-grade 5. In an attempt to address the problem of student achievement with measurement, the authors…

  7. Spectral characteristics of Shuttle glow

    NASA Technical Reports Server (NTRS)

    Viereck, R. A.; Mende, S. B.; Murad, E.; Swenson, G. R.; Pike, C. P.; Culbertson, F. L.; Springer, R. C.

    1992-01-01

    The glowing cloud near the ram surfaces of the Space Shuttle was observed with a hand-held, intensified spectrograph operated by the astronauts from the aft-flight-deck of the Space Shuttle. The spectral measurements were made between 400 and 800 nm with a resolution of 3 nm. Analysis of the spectral response of the instrument and the transmission of the Shuttle window was performed on orbit using earth-airglow OH Meinel bands. This analysis resulted in a correction of the Shuttle glow intensity in the spectral region between 700 and 800 nm. The data presented in this report is in better agreement with laboratory measurements of the NO2 continuum.

  8. Excited state cross sections for Er-doped glasses

    NASA Astrophysics Data System (ADS)

    Zemon, Stanley A.; Lambert, Gary M.; Miniscalco, William J.; Davies, Richard W.; Hall, Bruce T.; Folweiler, Robert C.; Wei, Ta-Sheng; Andrews, Leonard J.; Singh, Mahendra P.

    1991-01-01

    Excited-state-absorption (ESA) cross sections were determined for the region between 760 and 900 nm for Er-doped fluorophosphate phosphate and silicate glasses. Measurements were performed on multimode fibers pumping at 647 nm with powers 1 . 5 Wto invert the population into the saturation regime. Over much of the 800-nm band ground-state-absorption (GSA) cross sections are equal to or greater than ESA cross sections. For comparison ESA was also measured for singlemode Al/P-doped silica fiber. The cross sections were incorporated into an amplifier model and the phosphate and fluorophosphate glasses were found to provide higher gain than silica for pumping in the 800-nm band. Photoexcited fluorozirconates were found to have substantial populations in the first four excited states and ESA transitions originating from these states are identified.

  9. Precision electroweak measurements

    SciTech Connect

    Demarteau, M.

    1996-11-01

    Recent electroweak precision measurements fro {ital e}{sup +}{ital e}{sup -} and {ital p{anti p}} colliders are presented. Some emphasis is placed on the recent developments in the heavy flavor sector. The measurements are compared to predictions from the Standard Model of electroweak interactions. All results are found to be consistent with the Standard Model. The indirect constraint on the top quark mass from all measurements is in excellent agreement with the direct {ital m{sub t}} measurements. Using the world`s electroweak data in conjunction with the current measurement of the top quark mass, the constraints on the Higgs` mass are discussed.

  10. Measuring Seebeck Coefficient

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor)

    2015-01-01

    A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.

  11. Current measurement apparatus

    DOEpatents

    Umans, Stephen D.

    2008-11-11

    Apparatus and methods are provided for a system for measurement of a current in a conductor such that the conductor current may be momentarily directed to a current measurement element in order to maintain proper current without significantly increasing an amount of power dissipation attributable to the current measurement element or adding resistance to assist in current measurement. The apparatus and methods described herein are useful in superconducting circuits where it is necessary to monitor current carried by the superconducting elements while minimizing the effects of power dissipation attributable to the current measurement element.

  12. Stratospheric hydroperoxyl measurements

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.; Johnson, David G.; Chance, Kelly V.

    1990-01-01

    The hydroperoxyl radical plays a key role in stratospheric chemistry through the HO(x) catalytic cycle of ozone destruction. Earlier measurements of stratospheric HO2 have given mixed results. Some measured mixing ratios greatly exceed theoretical predictions. Measurements of HO2 have now been made with a balloon-borne FIR spectrometer. The measured daytime profile is in excellent agreement with theory up to 40 kilometers. Above this level the measurements exceed theory by 30 percent, perhaps because of underprediction of ozone at these altitudes. The nighttime HO2 profile is strongly depressed with respect to the daytime profile, in general agreement with theory.

  13. Measuring Nasal Obstruction.

    PubMed

    Keeler, Jarrod; Most, Sam P

    2016-08-01

    The nose and the nasal airway is highly complex with intricate 3-dimensional anatomy, with multiple functions in respiration and filtration of the respired air. Nasal airway obstruction (NAO) is a complex problem with no clearly defined "gold-standard" in measurement. There are 3 tools for the measurement of NAO: patient-derived measurements, physician-observed measurements, and objective measurements. We continue to work towards finding a link between subjective and objective nasal obstruction. The field of evaluation and surgical treatment for NAO has grown tremendously in the past 4-5 decades and will continue to grow as we learn more about the pathophysiology and treatment of nasal obstruction.

  14. Fundamentals of flow measurement

    SciTech Connect

    De Carlo, J.P.

    1984-01-01

    This book provides an understanding of flow measurement methods. Twelve separate units are designed to introduce the two basic approaches to flow measurement. ''Energy Extractive'' and ''Energy Additive,'' the general classes and types of flowmeters, the terminology associated with flow measurement, special techniques, mass flow measurement and the methodology for flowmeter selection. It explains the basic approaches to flow measurement and the different classes of flowmeters; flowmeter terminology; the basic theory of operation of different flowmeters; choosing the correct approach, class type, and particular device to satisfy the specified requirement; and sizing a flowmeter to satisfy the requirements of an installation.

  15. Portable emittance measurement device

    SciTech Connect

    Liakin, D.; Seleznev, D.; Orlov, A.; Kuibeda, R.; Kropachev, G.; Kulevoy, T.; Yakushin, P.

    2010-02-15

    In Institute for Theoretical and Experimental Physics (ITEP) the portable emittance measurements device is developed. It provides emittance measurements both with ''pepper-pot'' and ''two slits'' methods. Depending on the method of measurements, either slits or pepper-pot mask with scintillator are mounted on the two activators and are installed in two standard Balzer's cross chamber with CF-100 flanges. To match the angle resolution for measured beam, the length of the stainless steel pipe between two crosses changes is adjusted. The description of the device and results of emittance measurements at the ITEP ion source test bench are presented.

  16. Consistent quantum measurements

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2015-11-01

    In response to recent criticisms by Okon and Sudarsky, various aspects of the consistent histories (CH) resolution of the quantum measurement problem(s) are discussed using a simple Stern-Gerlach device, and compared with the alternative approaches to the measurement problem provided by spontaneous localization (GRW), Bohmian mechanics, many worlds, and standard (textbook) quantum mechanics. Among these CH is unique in solving the second measurement problem: inferring from the measurement outcome a property of the measured system at a time before the measurement took place, as is done routinely by experimental physicists. The main respect in which CH differs from other quantum interpretations is in allowing multiple stochastic descriptions of a given measurement situation, from which one (or more) can be selected on the basis of its utility. This requires abandoning a principle (termed unicity), central to classical physics, that at any instant of time there is only a single correct description of the world.

  17. Software Measurement Guidebook

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This Software Measurement Guidebook is based on the extensive experience of several organizations that have each developed and applied significant measurement programs over a period of at least 10 years. The lessons derived from those experiences reflect not only successes but also failures. By applying those lessons, an organization can minimize, or at least reduce, the time, effort, and frustration of introducing a software measurement program. The Software Measurement Guidebook is aimed at helping organizations to begin or improve a measurement program. It does not provide guidance for the extensive application of specific measures (such as how to estimate software cost or analyze software complexity) other than by providing examples to clarify points. It does contain advice for establishing and using an effective software measurement program and for understanding some of the key lessons that other organizations have learned. Some of that advice will appear counterintuitive, but it is all based on actual experience. Although all of the information presented in this guidebook is derived from specific experiences of mature measurement programs, the reader must keep in mind that the characteristics of every organization are unique. Some degree of measurement is critical for all software development and maintenance organizations, and most of the key rules captured in this report will be generally applicable. Nevertheless, each organization must strive to understand its own environment so that the measurement program can be tailored to suit its characteristics and needs.

  18. Process measurement assurance program

    SciTech Connect

    Pettit, R.B.

    1996-05-01

    This paper describes a new method for determining, improving, and controlling the measurement process errors (or measurement uncertainty) of a measurement system used to monitor product as it is manufactured. The method is called the Process Measurement Assurance Program (PMAP). It integrates metrology early into the product realization process and is a step beyond statistical process control (SPC), which monitors only the product. In this method, a control standard is used to continuously monitor the status of the measurement system. Analysis of the control standard data allow the determination of the measurement error inherent in the product data and allow one to separate the variability in the manufacturing process from variability in the measurement process. These errors can be then associated with either the measurement equipment, variability of the measurement process, operator bias, or local environmental effects. Another goal of PMAP is to determine appropriate re-calibration intervals for the measurement system, which may be significantly longer or shorter than the interval typically assigned by the calibration organization.

  19. Platinum nanostructures formed by femtosecond laser irradiation in water

    SciTech Connect

    Huo Haibin; Shen Mengyan

    2012-11-15

    Platinum nanostructures with various morphologies, such as spike-like, ripple-like and array-like structures, have been fabricated by 400 nm and 800 nm femtosecond laser irradiation in water. Different structures can be formed on the surfaces as a function of the laser wavelength, the fluence and scan methods. The reflectance measurements of these structures show much larger absorption on the irradiated surfaces than untreated platinum surfaces.

  20. Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light

    NASA Astrophysics Data System (ADS)

    Cultrera, L.; Gulliford, C.; Bartnik, A.; Lee, H.; Bazarov, I.

    2016-03-01

    The intrinsic emittance of electron beams generated from a multi-alkali photocathode operated in a high voltage DC gun is reported. The photocathode showed sensitivity extending to the infrared part of the spectrum up to 830 nm. The measured intrinsic emittances of electron beams generated with light having wavelength longer than 800 nm are approaching the limit imposed by the thermal energy of electrons at room temperature with quantum efficiencies comparable to metallic photocathodes used in operation of modern photoinjectors.

  1. Multivariate Hypergeometric Similarity Measure

    PubMed Central

    Kaddi, Chanchala D.; Parry, R. Mitchell; Wang, May D.

    2016-01-01

    We propose a similarity measure based on the multivariate hypergeometric distribution for the pairwise comparison of images and data vectors. The formulation and performance of the proposed measure are compared with other similarity measures using synthetic data. A method of piecewise approximation is also implemented to facilitate application of the proposed measure to large samples. Example applications of the proposed similarity measure are presented using mass spectrometry imaging data and gene expression microarray data. Results from synthetic and biological data indicate that the proposed measure is capable of providing meaningful discrimination between samples, and that it can be a useful tool for identifying potentially related samples in large-scale biological data sets. PMID:24407308

  2. Geodetic distance measuring apparatus

    NASA Technical Reports Server (NTRS)

    Abshire, J. B. (Inventor)

    1983-01-01

    A mode locked laser system including a laser device and its peripheral components is utilized for deriving two mutually phase locked optical wavelength signals and one phase locked microwave CW signal which respectively traverse the same distance measurement path. Preferably the optical signals are comprised of pulse type signals. Phase comparison of the two optical wavelength pulse signals is used to provide a measure of the dry air density while phase comparison of one of the optical wavelength pulse signals and the microwave CW signal is used to provide a measure of the wet or water vapor density of the air. From these measurements is computed in means of the distance to be measured corrected for the atmospheric dry and water vapor densities in the measurement path.

  3. Current measuring system

    DOEpatents

    Dahl, David A.; Appelhans, Anthony D.; Olson, John E.

    1997-01-01

    A current measuring system comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device.

  4. Current measuring system

    DOEpatents

    Dahl, D.A.; Appelhans, A.D.; Olson, J.E.

    1997-09-09

    A current measuring system is disclosed comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device. 4 figs.

  5. Experimenting cavitation measuring instruments

    NASA Astrophysics Data System (ADS)

    Toulouse, G.

    1988-09-01

    A calibrating method for measuring the volume of cavitation bubbles is presented and the results of open air experiments are given. The bubbles appearing on the surface of a marine rotating propeller are measured using CCD cameras and optical procedures. Square bubble section first approximations is used. The performance of cameras equipped with light amplifiers is studied in order to use them for real bubble cross section measurements.

  6. Sequential weak measurement

    SciTech Connect

    Mitchison, Graeme; Jozsa, Richard; Popescu, Sandu |||

    2007-12-15

    The notion of weak measurement provides a formalism for extracting information from a quantum system in the limit of vanishing disturbance to its state. Here we extend this formalism to the measurement of sequences of observables. When these observables do not commute, we may obtain information about joint properties of a quantum system that would be forbidden in the usual strong measurement scenario. As an application, we provide a physically compelling characterization of the notion of counterfactual quantum computation.

  7. Measurements of ocean color

    NASA Technical Reports Server (NTRS)

    Hovis, W. A.

    1972-01-01

    An airborne instrument for determining ocean color and measurements made with the instrument are discussed. It was concluded that a clear relationship exists between the chlorophyll concentration and the color of the water. High altitude measurements from 50,000 feet are described and the effects of atmospheric scattering on the energy reaching the sensor are examined. The measured spectrum of ocean color at high and low altitudes is plotted.

  8. The necessity of measurement.

    PubMed

    Dudden, Rosalind Farnam

    2008-01-01

    Measurement of library systems and services is a multidimensional management task. New paradigms of library service and the context in which libraries operate have made it necessary for librarians to find new measures while at the same time keeping the old. Factors that can be measured, such as needs, inputs, quality processes, outputs, quality of service, outcomes, and impacts, are described. This bibliographic essay covers the current trends while leading readers to resources where they can learn more.

  9. The attribute measurement technique

    SciTech Connect

    Macarthur, Duncan W; Langner, Diana; Smith, Morag; Thron, Jonathan; Razinkov, Sergey; Livke, Alexander

    2010-01-01

    Any verification measurement performed on potentially classified nuclear material must satisfy two seemingly contradictory constraints. First and foremost, no classified information can be released. At the same time, the monitoring party must have confidence in the veracity of the measurement. An information barrier (IB) is included in the measurement system to protect the potentially classified information while allowing sufficient information transfer to occur for the monitoring party to gain confidence that the material being measured is consistent with the host's declarations, concerning that material. The attribute measurement technique incorporates an IB and addresses both concerns by measuring several attributes of the nuclear material and displaying unclassified results through green (indicating that the material does possess the specified attribute) and red (indicating that the material does not possess the specified attribute) lights. The attribute measurement technique has been implemented in the AVNG, an attribute measuring system described in other presentations at this conference. In this presentation, we will discuss four techniques used in the AVNG: (1) the 1B, (2) the attribute measurement technique, (3) the use of open and secure modes to increase confidence in the displayed results, and (4) the joint design as a method for addressing both host and monitor needs.

  10. "Measurement" of Tinnitus.

    PubMed

    Henry, James A

    2016-09-01

    Chronic tinnitus is the persistent sensation of hearing a sound that exists only inside the head. The prevalence of tinnitus in adults in the United States is estimated at 10 to 15%. For about 20% of these individuals the tinnitus is significantly bothersome. Although myriad therapies for tinnitus are offered (often at significant cost), most are not evidence based. Difficulty in the assessment and further development of interventions for tinnitus stems from the limitations of techniques used to evaluate these interventions. Questionnaires are widely available to "measure" (tinnitus can only be indirectly measured) functional effects of tinnitus, such as difficulty sleeping and concentrating, and negative emotions such as anxiety, depression, and annoyance. Questionnaires have recently been documented for sensitivity to change in response to intervention (i.e., "responsiveness"). All of these questionnaires function well to assess the overall impact of tinnitus. The limitations mentioned pertain primarily to measures of tinnitus perception, which typically include the psychoacoustic measures of tinnitus loudness and pitch matches, tinnitus spectral content, minimum masking levels, and residual inhibition. These measures, which are obtained routinely in many clinics and as part of research studies, have not been validated for being diagnostic, prognostic, discriminative, or responsive. In order for these measures to become clinically meaningful, normative standards are needed, both for baseline measures and for repeated measures of tinnitus perception. Evidence-based intervention for tinnitus requires accurately measuring both the perception of, and reactions to, tinnitus. PMID:27518136

  11. Why Measure Outcomes?

    PubMed

    Kuhn, John E

    2016-01-01

    The concept of measuring the outcomes of treatment in health care was promoted by Ernest Amory Codman in the early 1900s, but, until recently, his ideas were generally ignored. The forces that have advanced outcome measurement to the forefront of health care include the shift in payers for health care from the patient to large insurance companies or government agencies, the movement toward assessing the care of populations not individuals, and the effort to find value (or cost-effective treatments) amid rising healthcare costs. No ideal method exists to measure outcomes, and the information gathered depends on the reason the outcome information is required. Outcome measures used in research are best able to answer research questions. The methods for assessing physician and hospital performance include process measures, patient-experience measures, structure measures, and measures used to assess the outcomes of treatment. The methods used to assess performance should be validated, be reliable, and reflect a patient's perception of the treatment results. The healthcare industry must measure outcomes to identify which treatments are most effective and provide the most benefit to patients. PMID:27049223

  12. Measuring School Contexts

    PubMed Central

    Muller, Chandra L.

    2016-01-01

    This article describes issues in measuring school contexts with an eye toward understanding students’ experiences and outcomes. I begin with an overview of the conceptual underpinnings related to measuring contexts, briefly describe the initiatives at the National Center for Education Statistics to measure school contexts, and identify possible gaps in those initiatives that if filled could provide valuable new data for researchers. Next, I discuss new approaches and opportunities for measurement, and special considerations related to diverse populations and youth development. I conclude with recommendations for future priorities. PMID:27158640

  13. Remote Raman measurement techniques

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.

    1981-01-01

    The use of laser Raman measurement techniques in remote sensing applications is surveyed. A feasibility index is defined as a means to characterize the practicality of a given remote Raman measurement application. Specific applications of Raman scattering to the measurement of atmospheric water vapor profiles, methane plumes from liquid natural gas spills, and subsurface ocean temperature profiles are described. This paper will survey the use of laser Raman measurement techniques in remote sensing applications using as examples specific systems that the Computer Genetics Corporation (CGC) group has developed and engineered.

  14. Global Precipitation Measurement

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Skofronick-Jackson, Gail; Kummerow, Christian D.; Shepherd, James Marshall

    2008-01-01

    This chapter begins with a brief history and background of microwave precipitation sensors, with a discussion of the sensitivity of both passive and active instruments, to trace the evolution of satellite-based rainfall techniques from an era of inference to an era of physical measurement. Next, the highly successful Tropical Rainfall Measuring Mission will be described, followed by the goals and plans for the Global Precipitation Measurement (GPM) Mission and the status of precipitation retrieval algorithm development. The chapter concludes with a summary of the need for space-based precipitation measurement, current technological capabilities, near-term algorithm advancements and anticipated new sciences and societal benefits in the GPM era.

  15. Photothermal measurements of superconductors

    SciTech Connect

    Kino, G.S.; Studenmund, W.R.; Fishman, I.M.

    1996-12-31

    A photothermal technique has been used to measure diffusion and critical temperature in high temperature superconductors. The technique is particularly suitable for determining material quality and inhomogeneity.

  16. Qualitative interviewing as measurement.

    PubMed

    Paley, John

    2010-04-01

    The attribution of beliefs and other propositional attitudes is best understood as a form of measurement, however counter-intuitive this may seem. Measurement theory does not require that the thing measured should be a magnitude, or that the calibration of the measuring instrument should be numerical. It only requires a homomorphism between the represented domain and the representing domain. On this basis, maps measure parts of the world, usually geographical locations, and 'belief' statements measure other parts of the world, namely people's aptitudes. Having outlined an argument for this view, I deal with an obvious objection to it: that self-attribution of belief cannot be an exercise in measurement, because we are all aware, from introspection, that our beliefs have an intrinsically semantic form. Subsequently, I turn to the philosophical and methodological ramifications of the measurement theoretic view. I argue, first, that it undermines at least one version of constructivism and, second, that it provides an effective alternative to the residually Cartesian philosophy that underpins much qualitative research. Like other anti-Cartesian strategies, belief-attribution-as-measurement implies that the objective world is far more knowable than the subjective one, and that reality is ontologically prior to meaning. I regard this result as both plausible and welcome.

  17. Systemic risk measures

    NASA Astrophysics Data System (ADS)

    Guerra, Solange Maria; Silva, Thiago Christiano; Tabak, Benjamin Miranda; de Souza Penaloza, Rodrigo Andrés; de Castro Miranda, Rodrigo César

    2016-01-01

    In this paper we present systemic risk measures based on contingent claims approach and banking sector multivariate density. We also apply network measures to analyze bank common risk exposure. The proposed measures aim to capture credit risk stress and its potential to become systemic. These indicators capture not only individual bank vulnerability, but also the stress dependency structure between them. Furthermore, these measures can be quite useful for identifying systemically important banks. The empirical results show that these indicators capture with considerable fidelity the moments of increasing systemic risk in the Brazilian banking sector in recent years.

  18. Measuring axial pump thrust

    DOEpatents

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  19. Measuring axial pump thrust

    DOEpatents

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  20. Precision signal power measurement

    NASA Technical Reports Server (NTRS)

    Winkelstein, R.

    1972-01-01

    Accurate estimation of signal power is an important Deep Space Network (DSN) consideration. Ultimately, spacecraft power and weight is saved if no reserve transmitter power is needed to compensate for inaccurate measurements. Spectral measurement of the received signal has proved to be an effective method of estimating signal power over a wide dynamic range. Furthermore, on-line spectral measurements provide an important diagnostic tool for examining spacecraft anomalies. Prototype equipment installed at a 64-m-diameter antenna site has been successfully used to make measurements of carrier power and sideband symmetry of telemetry signals received from the Mariner Mars 1971 spacecraft.

  1. Force-Measuring Clamps

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark

    2003-01-01

    Force-measuring clamps have been invented to facilitate and simplify the task of measuring the forces or pressures applied to clamped parts. There is a critical need to measure clamping forces or pressures in some applications for example, while bonding sensors to substrates or while clamping any sensitive or delicate parts. Many manufacturers of adhesives and sensors recommend clamping at specific pressures while bonding sensors or during adhesive bonding between parts in general. In the absence of a force-measuring clamp, measurement of clamping force can be cumbersome at best because of the need for additional load sensors and load-indicating equipment. One prior method of measuring clamping force involved the use of load washers or miniature load cells in combination with external power sources and load-indicating equipment. Calibrated spring clamps have also been used. Load washers and miniature load cells constitute additional clamped parts in load paths and can add to the destabilizing effects of loading mechanisms. Spring clamps can lose calibration quickly through weakening of the springs and are limited to the maximum forces that the springs can apply. The basic principle of a force-measuring clamp can be implemented on a clamp of almost any size and can enable measurement of a force of almost any magnitude. No external equipment is needed because the component(s) for transducing the clamping force and the circuitry for supplying power, conditioning the output of the transducers, and displaying the measurement value are all housed on the clamp. In other words, a force-measuring clamp is a complete force-application and force-measurement system all in one package. The advantage of unitary packaging of such a system is that it becomes possible to apply the desired clamping force or pressure with precision and ease.

  2. Threshold for permanent refractive index change in crystalline silicon by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Bachman, D.; Chen, Z.; Fedosejevs, R.; Tsui, Y. Y.; Van, V.

    2016-08-01

    An optical damage threshold for crystalline silicon from single femtosecond laser pulses was determined by detecting a permanent change in the refractive index of the material. This index change could be detected with unprecedented sensitivity by measuring the resonant wavelength shift of silicon integrated optics microring resonators irradiated with femtosecond laser pulses at 400 nm and 800 nm wavelengths. The threshold for permanent index change at 400 nm wavelength was determined to be 0.053 ± 0.007 J/cm2, which agrees with previously reported threshold values for femtosecond laser modification of crystalline silicon. However, the threshold for index change at 800 nm wavelength was found to be 0.044 ± 0.005 J/cm2, which is five times lower than the previously reported threshold values for visual change on the silicon surface. The discrepancy is attributed to possible modification of the crystallinity of silicon below the melting temperature that has not been detected before.

  3. Ultrafast optical nonlinearity and photoacoustic studies on chitosan-boron nitride nanotube composite films

    NASA Astrophysics Data System (ADS)

    Kuthirummal, Narayanan; Philip, Reji; Mohan, Athira; Jenks, Cassidy; Levi-Polyachenko, Nicole

    2016-07-01

    Ultrafast optical nonlinearity in chitosan (CS) films doped with multi-walled boron nitride nanotubes (MWBN) has been investigated using 800 nm, 100 fs laser pulses, employing the open aperture Z-scan technique. Two-photon absorption coefficients (β) of CS-MWBN films have been measured at 800 nm by Z-scan. While chitosan with 0.01% MWBN doping gives a β value of 0.28×10-13 m/W, 1% doping results in a higher β value of 1.43×10-13 m/W, showing nonlinearity enhancement by a factor of 5. These nonlinearity coefficients are comparable to those reported for silver nanoclusters in glass matrix and Pt-PVA nanocomposites, indicating potential photonic applications for MWBN doped chitosan films. Characterization of the synthesized films using Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) reveals significant interactions between the NH and CO groups of chitosan with boron nitride.

  4. Measures of Biochemical Sociology

    ERIC Educational Resources Information Center

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  5. Measuring cosmological parameters

    PubMed Central

    Freedman, Wendy L.

    1998-01-01

    In this review, the status of measurements of the matter density (Ωm), the vacuum energy density or cosmological constant (ΩΛ), the Hubble constant (H0), and the ages of the oldest measured objects (t0) are summarized. Three independent types of methods for measuring the Hubble constant are considered: the measurement of time delays in multiply imaged quasars, the Sunyaev–Zel’dovich effect in clusters, and Cepheid-based extragalactic distances. Many recent independent dynamical measurements are yielding a low value for the matter density (Ωm ≈ 0.2–0.3). A wide range of Hubble constant measurements appear to be converging in the range of 60–80 km/sec per megaparsec. Areas where future improvements are likely to be made soon are highlighted—in particular, measurements of anisotropies in the cosmic microwave background. Particular attention is paid to sources of systematic error and the assumptions that underlie many of the measurement methods. PMID:9419315

  6. Managing Multiple Measures

    ERIC Educational Resources Information Center

    DePascale, Charles A.

    2012-01-01

    Regardless of how one might feel about the recent developments in teacher evaluation systems, No Child Left Behind (NCLB) and adequate yearly progress (AYP), or student assessments for high-stakes promotion decisions, educators overwhelmingly agree that use of multiple measures is better than reliance on a single measure such as a large-scale,…

  7. Measuring News Media Literacy

    ERIC Educational Resources Information Center

    Maksl, Adam; Ashley, Seth; Craft, Stephanie

    2015-01-01

    News media literacy refers to the knowledge and motivations needed to identify and engage with journalism. This study measured levels of news media literacy among 500 teenagers using a new scale measure based on Potter's model of media literacy and adapted to news media specifically. The adapted model posits that news media literate individuals…

  8. Metabolic rate measurement system

    NASA Technical Reports Server (NTRS)

    Koester, K.; Crosier, W.

    1980-01-01

    The Metabolic Rate Measurement System (MRMS) is an uncomplicated and accurate apparatus for measuring oxygen consumption and carbon dioxide production of a test subject. From this one can determine the subject's metabolic rate for a variety of conditions, such as resting or light exercise. MRMS utilizes an LSI/11-03 microcomputer to monitor and control the experimental apparatus.

  9. [Measuring thrombin formation].

    PubMed

    Hemker, H C

    2016-01-01

    Measurement of thrombin formation makes it possible to estimate the risk of haemorrhage or thrombosis much more accurately than by using clotting time. This new technique allows better monitoring of the effect of prophylactic and therapeutic anticoagulant therapy. Thrombin formation is, however, not yet routinely measured. PMID:27650017

  10. Teaching Metric Measurements

    ERIC Educational Resources Information Center

    Kaltsounis, Bob

    1977-01-01

    Eight recommendations on how to teach the metric system to both elementary and secondary students are presented in this article: let the students measure; use the word "about"; have students "guesstimate"; make comparisons; don't teach conversions; stress place value concepts; teach measurement as a three-step process; and "relax". (JC)

  11. NBS: Materials measurements

    NASA Technical Reports Server (NTRS)

    Manning, J. R.

    1981-01-01

    Measurement of materials properties and thermophysical properties is described. The topics discussed are: surface tensions and their variations with temperature and impurities; convection during unidirectional solidification: measurement of high temperature thermophysical properties of tungsten liquid and solid; thermodynamic properties of refractory materials at high temperatures; and experimental and theoretical studies in wetting and multilayer adsorption.

  12. Electron measurement in PHENIX

    SciTech Connect

    Akiba, Y.

    1995-07-15

    Electron Measurement in PHENIX detector at RHIC is discussed. The yield and S/N ratio at vector meson peaks ({phi}, {omega}, {rho}{sup o}, and J/{psi}) are evaluated. The electrons from open charm decay, and its consequence to the di-electron measurements is discussed.

  13. PERFORMANCE MEASURES OF PHYSICIANS.

    ERIC Educational Resources Information Center

    PRICE, PHILIP B.; AND OTHERS

    CRITERION MEASURES DEVELOPED FOR ON-THE-JOB PERFORMANCE OF PHYSICIANS WILL BE USED IN A SUBSEQUENT STUDY TO DETERMINE HOW MUCH THE PERFORMANCE OF PHYSICIANS CAN BE PREDICTED BY THEIR INDIVIDUAL ACHIEVEMENTS IN MEDICAL AND PREMEDICAL SCHOOL. APPROXIMATELY 29 MEASURES OF THE UNIVERSITY OF UTAH COLLEGE OF MEDICINE AND OTHER PHYSICIANS IN THE UTAH…

  14. Viscosity measuring using microcantilevers

    DOEpatents

    Oden, Patrick Ian

    2001-01-01

    A method for the measurement of the viscosity of a fluid uses a micromachined cantilever mounted on a moveable base. As the base is rastered while in contact with the fluid, the deflection of the cantilever is measured and the viscosity determined by comparison with standards.

  15. Mathematics: Measurement Lab.

    ERIC Educational Resources Information Center

    Burns, James A.

    This course is a laboratory approach to linear measurement, perimeter, circumference, area of square and rectangle, volume of rectangular solids, and fluid measurement. Applications include use of ruler, meter stick, thermometer, beaker, air gauge, geometric solids, and geoboards. After lists of overall goals, overall strategies, specific…

  16. Acoustics, computers and measurements

    NASA Astrophysics Data System (ADS)

    Truchard, James J.

    2003-10-01

    The human ear has created a high standard for the requirements of acoustical measurements. The transient nature of most acoustical signals has limited the success of traditional volt meters. Professor Hixson's pioneering work in electroacoustical measurements at ARL and The University of Texas helped set the stage for modern computer-based measurements. The tremendous performance of modern PCs and extensive libraries of signal processing functions in virtual instrumentation application software has revolutionized the way acoustical measurements are made. Today's analog to digital converters have up to 24 bits of resolution with a dynamic range of over 120 dB and a single PC processor can process 112 channels of FFTs at 4 kHz in real time. Wavelet technology further extends the capabilities for analyzing transients. The tools available for measurements in speech, electroacoustics, noise, and vibration represent some of the most advanced measurement tools available. During the last 50 years, Professor Hixson has helped drive this revolution from simple oscilloscope measurements to the modern high performance computer-based measurements.

  17. Measuring food insecurity.

    PubMed

    Barrett, Christopher B

    2010-02-12

    Food security is a growing concern worldwide. More than 1 billion people are estimated to lack sufficient dietary energy availability, and at least twice that number suffer micronutrient deficiencies. Because indicators inform action, much current research focuses on improving food insecurity measurement. Yet estimated prevalence rates and patterns remain tenuous because measuring food security, an elusive concept, remains difficult.

  18. The Measurement of Nonviolence.

    ERIC Educational Resources Information Center

    Mayton, Daniel M., II; Palmer, B. James

    This paper reviews the assessment measures developed to recognize nonviolent dispositions. Based on computer searches of the Psychological Abstracts (PsychLit) database, the document identifies the best measures for assessing nonviolence such as: (1) The Nonviolence Test developed by Kool and Sen (1984); (2) the Gandhian Personality Scale…

  19. Measuring Facial Movement

    ERIC Educational Resources Information Center

    Ekman, Paul; Friesen, Wallace V.

    1976-01-01

    The Facial Action Code (FAC) was derived from an analysis of the anatomical basis of facial movement. The development of the method is explained, contrasting it to other methods of measuring facial behavior. An example of how facial behavior is measured is provided, and ideas about research applications are discussed. (Author)

  20. Acoustic radiation stress measurement

    NASA Technical Reports Server (NTRS)

    Cantrell, John H., Jr.; Yost, William T.

    1987-01-01

    Ultrasonic radio frequency tone-bursts are launched into a sample of material tested. The amplitude of the tone-bursts and the slope of the resulting static displacement pulses are measured. These measurements are used to calculate the nonlinearities of the materials.

  1. Isothermal and Adiabatic Measurements.

    ERIC Educational Resources Information Center

    McNairy, William W.

    1996-01-01

    Describes the working of the Adiabatic Gas Law Apparatus, a useful tool for measuring the pressure, temperature, and volume of a variety of gases undergoing compressions and expansions. Describes the adaptation of this apparatus to perform isothermal measurements and discusses the theory behind the adiabatic and isothermal processes. (JRH)

  2. Basic Measures of Progress.

    ERIC Educational Resources Information Center

    Calkins, Julia; Ling, Thomson; Moore, Eric; Halle, Tamara; Hair, Beth; Moore, Kris; Zaslow, Marty

    This document provides a compilation of measures of progress toward school readiness and three contributing conditions as used in several local, state, and national surveys. The report begins with a legend listing the surveys examined, their acronyms, and contact information. The remainder of the report, in tabular format, lists measures of…

  3. Metrology Measurement Capabilities

    SciTech Connect

    Dr. Glen E. Gronniger

    2007-10-02

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 13.2, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2005, and ANSI/NCSL Z540-1. FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/Standards/scopes/2001080.pdf. These parameters are summarized. The Honeywell Federal Manufacturing & Technologies (FM&T) Metrology Department has developed measurement technology and calibration capability in four major fields of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; (3) Electrical (DC, AC, RF/Microwave); and (4) Optical and Radiation. Metrology Engineering provides the expertise to develop measurement capabilities for virtually any type of measurement in the fields listed above. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. Evaluation includes measurement audits and technical surveys.

  4. Undulator Field Integral Measurements

    SciTech Connect

    Wolf, Zachary

    2010-12-07

    The LCLS undulator field integrals must be very small so that the beam trajectory slope and offset stay within tolerance. In order to make accurate measurements of the small field integrals, a long coil will be used. This note describes the design of the coil measurement system.

  5. Exploring Linear Measure.

    ERIC Educational Resources Information Center

    Cox, Philip L.

    This material is an instructional unit on measuring and estimating. A variety of activities are used with manipulative devices, worksheets, and discussion questions included. Major topics are estimating lengths, accuracy of measurement, metric system, scale drawings, and conversion between different units. A teacher's guide is also available.…

  6. Measuring Social Supports.

    ERIC Educational Resources Information Center

    Lehmann, Stan; And Others

    Although social support has been operationally defined, a lack of conceptual clarity has made measurement modest and unreliable. To investigate the feasibility of measuring social support from a qualitative rather than a quantitative perspective, and to consider negative social interactions in the assessment, 130 college students were administered…

  7. Measuring Curriculum Implementation

    ERIC Educational Resources Information Center

    Huntley, Mary Ann

    2009-01-01

    Using curriculum-specific tools for measuring fidelity of implementation is an essential yet often overlooked aspect of examining relationships among textbooks, teaching, and student learning. This "Brief Report" describes the variety of ways that curriculum implementation is measured and argues that there is an urgent need to develop…

  8. Human performance measuring device

    NASA Technical Reports Server (NTRS)

    Michael, J.; Scow, J.

    1970-01-01

    Complex coordinator, consisting of operator control console, recorder, subject display panel, and limb controls, measures human performance by testing perceptual and motor skills. Device measures psychophysiological functions in drug and environmental studies, and is applicable to early detection of psychophysiological body changes.

  9. Evaluating electronic measurement equipment

    SciTech Connect

    Chang, C.K. )

    1990-12-01

    Changes in a utility's rate structure created an urgent need to develop electronic devices to measure transportation gas. The author describes how the company's measurement and test development staff selected proper devices and provided guidelines in quality control, calibration procedure, field maintenance and personnel training.

  10. Liquid measurement station design

    SciTech Connect

    Duplantis, S.

    1995-12-01

    A liquid measurement station is a designed and engineered package of valves, pipe, instrumentation, flow meters and wiring, configured to produce accurate measurement data in the delivery of a product in a process unit or in a custody transfer between a buyer and seller. A liquid measurement station could be as simple as a manually operated single meter run or as complex as a multi-meter run tanker loading facility with a multi-tasking control/computer system. Liquid measurement stations are found in all areas of the hydrocarbon industry from the oil well to the refinery. Typical areas where, measurement stations are implemented are pump stations feeding pipelines, pipeline distribution terminals, loading terminals for storage facilities and loading terminals for tanker transports. The importance of good measurement system design is quite obvious since the measurement of the product is normally major factor in the proper operation and control of a process or is needed for the accurate accounting and selling of a product. In both cases, the accuracy of the measurement will directly affect the income and revenues of a company.

  11. Measuring software design

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An extensive series of studies of software design measures conducted by the Software Engineering Laboratory is described. Included are the objectives and results of the studies, the method used to perform the studies, and the problems encountered. The document should be useful to researchers planning similar studies as well as to managers and designers concerned with applying quantitative design measures.

  12. Large Surface Measuring Machine

    NASA Astrophysics Data System (ADS)

    Egdall, Mark; Breidenthal, Robert S.

    1983-09-01

    A new surface measuring concept developed under government contract at Itek Optical Systems has been previously reported by Allen Greenleaf. The method uses four steerable distance-measuring interferometers at the corners of a tetrahedron to determine the posi-tions of a retroreflecting target at various locations on the surface being measured. A small wooden breadboard had been built and tested, demonstrating the feasibility of the concept. This paper reports the building of a scaled-up prototype surface measuring machine to allow the measurement of large aspheric surfaces. A major advantage of the device is that, unlike conventional interferometry, it provides surface measurement in absolute coordinates, thus allowing direct determination of radius of curvature. In addition, the device is self-calibrating. Measurements of a 24-inch mirror have been made with the new machine, giving repeatability of 4 µ m peak sag in the curvature and accuracy of 0.7 μm rms in the surface figure at best focus. The device is currently being used in the production grinding of large aspheric mirrors at Itek. The device is potentially scalable to other industries where highly accurate measurement of unusual surfaces is required.

  13. Gummy Worm Measurements.

    ERIC Educational Resources Information Center

    Callison, Priscilla L.; Anshutz, Ramona J.; Wright, Emmett L.

    1997-01-01

    Describes a science activity using gummy worms to help primary students develop the mathematical skills of measurement concepts, units of measure, estimation, and graphing needed for science learning. Groups of two begin by estimating the number of gummy worms in their package and identifying the colors they expect to find. Individual worms are…

  14. Measuring Relational Reasoning

    ERIC Educational Resources Information Center

    Alexander, Patricia A.; Dumas, Denis; Grossnickle, Emily M.; List, Alexandra; Firetto, Carla M.

    2016-01-01

    Relational reasoning is the foundational cognitive ability to discern meaningful patterns within an informational stream, but its reliable and valid measurement remains problematic. In this investigation, the measurement of relational reasoning unfolded in three stages. Stage 1 entailed the establishment of a research-based conceptualization of…

  15. Measuring Authoritative Teaching

    ERIC Educational Resources Information Center

    Ertesvag, Sigrun K.

    2011-01-01

    High quality measurements are important to evaluate interventions. The study reports on the development of a measurement to investigate authoritative teaching understood as a two-dimensional construct of warmth and control. Through the application of confirmatory factor analysis (CFA) and structural equation modelling (SEM) the factor structure…

  16. Thoughts on Attitude Measurement

    ERIC Educational Resources Information Center

    Reid, Norman

    2006-01-01

    Attitude measurement has had a somewhat chequered history since the possibility of achieving it successfully was demonstrated by Thurstone in 1929. It has been an important area in science education, particularly in the context of falling uptakes in the physical sciences in many countries, and there have been many attempts to measure learner…

  17. Terrestrial photovoltaic measurement procedures

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Procedures for obtaining cell and array current-voltage measurements both outdoors in natural sunlight and indoors in simulated sunlight are presented. A description of the necessary apparatus and equipment is given for the calibration and use of reference solar cells. Some comments relating to concentration cell measurements, and a revised terrestrial solar spectrum for use in theoretical calculations, are included.

  18. Measurement of Mass.

    ERIC Educational Resources Information Center

    Zimmerer, Robert W.

    1983-01-01

    Various instruments and techniques for measuring mass are discussed, focusing on the physics behind techniques employed. Equal-arm balances, electronic substitution balance (using electromagnetic force), non-gravimetric weighing (intertial-mass measurement) are among the instruments/techniques considered. (JN)

  19. Measurement of academic entitlement.

    PubMed

    Miller, Brian K

    2013-10-01

    Members of Generation Y, or Millennials, have been accused of being lazy, whiny, pampered, and entitled, particularly in the college classroom. Using an equity theory framework, eight items from a measure of work entitlement were adapted to measure academic entitlement in a university setting in three independent samples. In Study 1 (n = 229), confirmatory factor analyses indicated good model fit to a unidimensional structure for the data. In Study 2 (n = 200), the questionnaire predicted unique variance in university satisfaction beyond two more general measures of dispositional entitlement. In Study 3 (n = 161), the measure predicted unique variance in perceptions of grade fairness beyond that which was predicted by another measure of academic entitlement. This analysis provides evidence of discriminant, convergent, incremental, concurrent criterion-related, and construct validity for the Academic Equity Preference Questionnaire.

  20. Outcome Measure Development.

    PubMed

    Mohtadi, Nicholas G

    2016-01-01

    Measuring patient-reported outcomes is the current method for conducting clinical research. Creating a new outcome measure is an exhaustive process that should be carefully monitored and concentrated on only important and common conditions. The evaluation of an existing outcome measure should involve assessing its internal consistency, reliability, floor and ceiling effects, validity, and ability to measure clinically meaningful change. The most important characteristic of a patient-reported outcome is that it is developed with direct input from its target patient population. Item generation and reduction is the most critical step in the development process because it "guarantees" that patients have communicated what is important to them and represents content validity. Outcome measures should not change; rather, they should demonstrate responsiveness by being reproducible and reliable if a patient's clinical condition is stable or reflect differences if a patient's clinical condition varies. Validation is an iterative process and requires patients from different settings and circumstances. PMID:27049222

  1. Measurement of academic entitlement.

    PubMed

    Miller, Brian K

    2013-10-01

    Members of Generation Y, or Millennials, have been accused of being lazy, whiny, pampered, and entitled, particularly in the college classroom. Using an equity theory framework, eight items from a measure of work entitlement were adapted to measure academic entitlement in a university setting in three independent samples. In Study 1 (n = 229), confirmatory factor analyses indicated good model fit to a unidimensional structure for the data. In Study 2 (n = 200), the questionnaire predicted unique variance in university satisfaction beyond two more general measures of dispositional entitlement. In Study 3 (n = 161), the measure predicted unique variance in perceptions of grade fairness beyond that which was predicted by another measure of academic entitlement. This analysis provides evidence of discriminant, convergent, incremental, concurrent criterion-related, and construct validity for the Academic Equity Preference Questionnaire. PMID:24597456

  2. Measuring Nasal Obstruction.

    PubMed

    Keeler, Jarrod; Most, Sam P

    2016-08-01

    The nose and the nasal airway is highly complex with intricate 3-dimensional anatomy, with multiple functions in respiration and filtration of the respired air. Nasal airway obstruction (NAO) is a complex problem with no clearly defined "gold-standard" in measurement. There are 3 tools for the measurement of NAO: patient-derived measurements, physician-observed measurements, and objective measurements. We continue to work towards finding a link between subjective and objective nasal obstruction. The field of evaluation and surgical treatment for NAO has grown tremendously in the past 4-5 decades and will continue to grow as we learn more about the pathophysiology and treatment of nasal obstruction. PMID:27400845

  3. Sensorimotor System Measurement Techniques

    PubMed Central

    Riemann, Bryan L.; Myers, Joseph B.; Lephart, Scott M.

    2002-01-01

    Objective: To provide an overview of currently available sensorimotor assessment techniques. Data Sources: We drew information from an extensive review of the scientific literature conducted in the areas of proprioception, neuromuscular control, and motor control measurement. Literature searches were conducted using MEDLINE for the years 1965 to 1999 with the key words proprioception, somatosensory evoked potentials, nerve conduction testing, electromyography, muscle dynamometry, isometric, isokinetic, kinetic, kinematic, posture, equilibrium, balance, stiffness, neuromuscular, sensorimotor, and measurement. Additional sources were collected using the reference lists of identified articles. Data Synthesis: Sensorimotor measurement techniques are discussed with reference to the underlying physiologic mechanisms, influential factors and locations of the variable within the system, clinical research questions, limitations of the measurement technique, and directions for future research. Conclusions/Recommendations: The complex interactions and relationships among the individual components of the sensorimotor system make measuring and analyzing specific characteristics and functions difficult. Additionally, the specific assessment techniques used to measure a variable can influence attained results. Optimizing the application of sensorimotor research to clinical settings can, therefore, be best accomplished through the use of common nomenclature to describe underlying physiologic mechanisms and specific measurement techniques. PMID:16558672

  4. Measuring Temperature Reading

    NASA Technical Reports Server (NTRS)

    2003-01-01

    There are two requirements for taking a measurement of something. The first is a tool for taking a measurement. The second is scale for making sense of the numbers of the measurement. For example, a ruler is often used to measure short lengths. It is the tool for measurement. On the ruler are one or more number scales with equally spaced numbers. These numbers can be compared with numbers from any other ruler that is accurately set to the same scale. Measuring length is far simpler than measuring temperature. While there is evidence of tools for measuring length at various times in human history, tools and scales for measuring temperature do not appear until more recent human history. Early thermometers, called thermoscopes, first appear in the 1500's. They were crude instruments that were not at all accurate. Most did not even have a number scale associated with them. This made them useless for most practical purposes. Gabriel Fahrenheit created the first accurate thermometer in 1714, and the Fahrenheit temperature scale followed it in 1724. The thermometer s accuracy was based on its use of mercury, a silver colored substance that remains liquid over a wide range of temperatures but expands or contracts in a standard, predictable way with changes in temperature. To set the scale, Fahrenheit created the coldest temperature that he could. He mixed equal parts of ice, water, and salt, and then used this as the zero point, 0 degrees, of his scale. He intended to make 30 degrees the freezing point of water and 90 degrees the temperature of the human body, but he had to later revise these temperatures to be 32 degrees and 96 degrees. In the final version of the scale, the temperature of the human body became 98.6 degrees. 19th century thermoscope

  5. Biomagnetic instrumentation and measurement

    NASA Technical Reports Server (NTRS)

    Iufer, E. J.

    1978-01-01

    The instruments and techniques of biomagnetic measurement have progressed greatly in the past 15 years and are now of a quality appropriate to clinical applications. The paper reports on recent developments in the design and application of SQUID (Superconducting Quantum Interference Device) magnetometers to biomagnetic measurement. The discussion covers biomagnetic field levels, magnetocardiography, magnetic susceptibility plethysmography, ambient noise and sensor types, principles of operation of a SQUID magnetometer, and laboratory techniques. Of the many promising applications of noninvasive biomagnetic measurement, magnetocardiography is the most advanced and the most likely to find clinical application in the near future.

  6. Remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1975-01-01

    This paper presents a discussion and comparison of the Raman method, the resonance and fluorescence backscatter method, long path absorption methods and the differential absorption method for remote air pollution measurement. A comparison of the above remote detection methods shows that the absorption methods offer the most sensitivity at the least required transmitted energy. Topographical absorption provides the advantage of a single ended measurement, and differential absorption offers the additional advantage of a fully depth resolved absorption measurement. Recent experimental results confirming the range and sensitivity of the methods are presented.

  7. Mathematics and Measurement

    PubMed Central

    Boisvert, Ronald F.; Donahue, Michael J.; Lozier, Daniel W.; McMichael, Robert; Rust, Bert W.

    2001-01-01

    In this paper we describe the role that mathematics plays in measurement science at NIST. We first survey the history behind NIST’s current work in this area, starting with the NBS Math Tables project of the 1930s. We then provide examples of more recent efforts in the application of mathematics to measurement science, including the solution of ill-posed inverse problems, characterization of the accuracy of software for micromagnetic modeling, and in the development and dissemination of mathematical reference data. Finally, we comment on emerging issues in measurement science to which mathematicians will devote their energies in coming years. PMID:27500024

  8. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  9. Spectroelectrochemical Instrument Measures TOC

    NASA Technical Reports Server (NTRS)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  10. CIRCUITS FOR CURRENT MEASUREMENTS

    DOEpatents

    Cox, R.J.

    1958-11-01

    Circuits are presented for measurement of a logarithmic scale of current flowing in a high impedance. In one form of the invention the disclosed circuit is in combination with an ionization chamber to measure lonization current. The particular circuit arrangement lncludes a vacuum tube having at least one grid, an ionization chamber connected in series with a high voltage source and the grid of the vacuum tube, and a d-c amplifier feedback circuit. As the ionization chamber current passes between the grid and cathode of the tube, the feedback circuit acts to stabilize the anode current, and the feedback voltage is a measure of the logaritbm of the ionization current.

  11. Ultrasonic linear measurement system

    NASA Technical Reports Server (NTRS)

    Marshall, Scot H. (Inventor)

    1991-01-01

    An ultrasonic linear measurement system uses the travel time of surface waves along the perimeter of a three-dimensional curvilinear body to determine the perimeter of the curvilinear body. The system can also be used piece-wise to measure distances along plane surfaces. The system can be used to measure perimeters where use of laser light, optical means or steel tape would be extremely difficult, time consuming or impossible. It can also be used to determine discontinuities in surfaces of known perimeter or dimension.

  12. Measuring Building Insulation

    NASA Astrophysics Data System (ADS)

    Parks, Beth

    2013-03-01

    Currently, the only way for homeowners to learn about the effectiveness of their home insulation is to hire an energy auditor. This difficulty deters homeowners from taking action to improve energy efficiency. In principle, measuring the temperature difference between a wall surface and the interior of a home is sufficient to determine the wall insulation, but in practice, temperature cycles from the heating system make a single measurement unreliable. I will describe a simple and inexpensive thermocouple-based device to measure this temperature difference and report results obtained by monitoring this temperature difference over multiple heating cycles in a range of buildings. Patent application 12/555371

  13. Mirror Measurement Device

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Small Business Innovation Research (SBIR) contract led to a commercially available instrument used to measure the shape profile of mirror surfaces in scientific instruments. Bauer Associates, Inc.'s Bauer Model 200 Profilometer is based upon a different measurement concept. The local curvature of the mirror's surface is measured at many points, and the collection of data is computer processed to yield the desired shape profile. (Earlier profilometers are based on the principle of interferometry.) The system is accurate and immune to problems like vibration and turbulence. Two profilometers are currently marketed, and a third will soon be commercialized.

  14. Ionospheric wave spectrum measurements

    NASA Technical Reports Server (NTRS)

    Harker, K. J.; Ilic, D. B.; Crawford, F. W.

    1979-01-01

    The local spectrum S(k, omega) of either potential or electron-density fluctuations can be used to determine macroscopic-plasma characteristics such as the local density and temperature, transport coefficients, and drift current. This local spectrum can be determined by measuring the cross-power spectrum. The paper examines the practicality of using the cross-power spectrum analyzer on the Space Shuttle to measure ionospheric parameters. Particular attention is given to investigating the integration time required to measure the cross-power spectral density to a desired accuracy.

  15. Radiometry spot measurement system

    NASA Technical Reports Server (NTRS)

    Chen, Harry H.; Lawn, Stephen J.

    1994-01-01

    The radiometry spot measurement system (RSMS) has been designed for use in the Diffusive And Radiative Transport in Fires (DARTFire) experiment, currently under development at the NASA Lewis Research Center. The RSMS can measure the radiation emitted from a spot of specific size located on the surface of a distant radiation source within a controlled wavelength range. If the spot is located on a blackbody source, its radiation and temperature can be measured directly or indirectly by the RSMS. This report presents computer simulation results used to verify RSMS performance.

  16. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  17. METHOD FOR MEASURING RADIATION

    DOEpatents

    Roesch, W.C.; McCall, R.C.

    1961-11-21

    A method for measuring an unknown integrated quantity of radiation with a condenser ionization chamber is described. The chamber is initially charged to a predetermined voltage by a voltage source. The chamber is then removed from the source and exposed to an unknown quantity of radiation for a period of time. The quantity of radiation to which the chamber was exposed is then measured by detecting the magnitude of the pulse of current necessary to recharge the chamber of its initial value through a suitable impedance. The current pulse is amplified and measured directly by a suitable pulse height analyzing system. (AEC)

  18. Debuncher Momentum Aperture Measurements

    SciTech Connect

    O'Day, S.

    1991-01-01

    During the November 1990 through January 1991 {bar p} studies period, the momentum aperture of the beam in the debuncher ring was measured. The momentum aperture ({Delta}p/p) was found to be 4.7%. The momentum spread was also measured with beam bunch rotation off. A nearly constant particle population density was observed for particles with {Delta}p/p of less than 4.3%, indicating virtually unobstructed orbits in this region. The population of particles with momenta outside this aperture was found to decrease rapidly. An absolute or 'cut-off' momentum aperture of {Delta}p/p = 5.50% was measured.

  19. Precision volume measurement system.

    SciTech Connect

    Fischer, Erin E.; Shugard, Andrew D.

    2004-11-01

    A new precision volume measurement system based on a Kansas City Plant (KCP) design was built to support the volume measurement needs of the Gas Transfer Systems (GTS) department at Sandia National Labs (SNL) in California. An engineering study was undertaken to verify or refute KCP's claims of 0.5% accuracy. The study assesses the accuracy and precision of the system. The system uses the ideal gas law and precise pressure measurements (of low-pressure helium) in a temperature and computer controlled environment to ratio a known volume to an unknown volume.

  20. Measuring Thermodynamic Length

    SciTech Connect

    Crooks, Gavin E

    2007-09-07

    Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among other interesting properties, this metric asymptotically bounds the dissipation induced by a finite time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon divergence, Fisher information, and Rao's entropy differential metric. Therefore, thermodynamic length is of central interestin understanding matter out of equilibrium. In this Letter, we will consider how to denethermodynamic length for a small system described by equilibrium statistical mechanics and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett's classic acceptance ratio method for measuring free energy differences also measures thermodynamic length.

  1. Attosecond probing of state-resolved ionization and superpositions of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Leone, Stephen

    2016-05-01

    Isolated attosecond pulses in the extreme ultraviolet are used to probe strong field ionization and to initiate electronic and vibrational superpositions in atoms and small molecules. Few-cycle 800 nm pulses produce strong-field ionization of Xe atoms, and the attosecond probe is used to measure the risetimes of the two spin orbit states of the ion on the 4d inner shell transitions to the 5p vacancies in the valence shell. Step-like features in the risetimes due to the subcycles of the 800 nm pulse are observed and compared with theory to elucidate the instantaneous and effective hole dynamics. Isolated attosecond pulses create massive superpositions of electronic states in Ar and nitrogen as well as vibrational superpositions among electronic states in nitrogen. An 800 nm pulse manipulates the superpositions, and specific subcycle interferences, level shifting, and quantum beats are imprinted onto the attosecond pulse as a function of time delay. Detailed outcomes are compared to theory for measurements of time-dynamic superpositions by attosecond transient absorption. Supported by DOE, NSF, ARO, AFOSR, and DARPA.

  2. Blood pressure measurement

    MedlinePlus

    Diastolic blood pressure; Systolic blood pressure; Blood pressure reading; Measuring blood pressure ... your health care provider will wrap the blood pressure cuff snugly around your upper arm. The lower ...

  3. Measurement of endolymphatic pressure.

    PubMed

    Mom, T; Pavier, Y; Giraudet, F; Gilain, L; Avan, P

    2015-04-01

    Endolymphatic pressure measurement is of interest both to researchers in the physiology and pathophysiology of hearing and ENT physicians dealing with Menière's disease or similar conditions. It is generally agreed that endolymphatic hydrops is associated with Menière's disease and is accompanied by increased hydrostatic pressure. Endolymphatic pressure, however, cannot be measured precisely without endangering hearing, making the association between hydrops and increased endolymphatic pressure difficult to demonstrate. Several integrated in vivo models have been developed since the 1960s, but only a few allow measurement of endolymphatic hydrostatic pressure. Models associating measurement of hydrostatic pressure and endolymphatic potential and assessment of cochlear function are of value to elucidate the pathophysiology of endolymphatic hydrops. The present article presents the main types of models and discusses their respective interest.

  4. CHAPTER ONE: EXPOSURE MEASUREMENTS.

    EPA Science Inventory

    Determining human exposure to suspended particualte concentrations requires measurements that quantify different particle properties in microenvironments where people live, work, and play. Particle mass, size, and chemical composition are important exposure variables, and these ...

  5. Measuring heart beats

    NASA Astrophysics Data System (ADS)

    Thompson, Frank

    2014-03-01

    A simple instrument has been constructed to measure heart beats via an earlobe sensor. The pulse rate is determined from a Picoscope trace and pupils may wish to see how this rate changes after modest exertion.

  6. Fission Measurements with Dance

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Keksis, A. L.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Dashdorj, D.; Macri, R. A.; Parker, W. E.; Wilk, P. A.; Wu, C. Y.; Becker, J. A.; Angell, C. T.; Tonchev, A. P.; Baker, J. D.

    2008-08-01

    Neutron capture cross section measurements on actinides are complicated by the presence of neutron-induced fission. An efficient fission tagging detector used in coincidence with the Detector for Advanced Neutron Capture Experiments (DANCE) provides a powerful tool in undertaking simultaneous measurements of (n,γ) and (n,f) cross sections. Preliminary results on 235U(n,γ) and (n,f) and 242mAm(n,f) cross sections measured with DANCE and a custom fission-tagging parallel plate avalanche counter (PPAC) are presented. Additional measurements of γ-ray cluster multiplicity distributions for neutron-induced fission of 235U and 242mAm and spontaneous fission of 252Cf are shown, as well as γ-ray energy and average γ-ray energy distributions.

  7. Measuring Strong Nanostructures

    ScienceCinema

    Andy Minor

    2016-07-12

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  8. Measuring soil salinity.

    PubMed

    Hardie, Marcus; Doyle, Richard

    2012-01-01

    Soil salinity is a form of land degradation in which salts accumulate in the soil profile to an extent that plant growth or infrastructure are negatively affected. A range of both field and laboratory procedures exist for measuring soil salinity. In the field, soil salinity is usually inferred from apparent electrical conductivity (EC(a)) using a range of devices, depending on the required depth of analysis, or size of the survey area. Field measurements of EC(a) require calibration to the actual salt content by laboratory analysis. In the laboratory, soil salinity is usually assessed by determining either the total soluble salts by evaporation of a soil water extract (TSS), or by determining the electrical conductivity (EC) of either a 1:5 distilled water:soil dilution, or a saturated paste extract. Although procedures for measuring soil salinity appear relatively straightforward, differences in methodology have considerable influence on measured values and interpretation of results. PMID:22895776

  9. Measuring Aspects of Morality

    ERIC Educational Resources Information Center

    Ziv, Avner

    1976-01-01

    A group test measuring five aspects of morality in children is presented. The aspects are: resistance to temptation, stage of moral judgment, confession after transgression, reaction of fear or guilt, and severity of punishment for transgression. (Editor)

  10. Earth Radiation Measurement Science

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis

    2000-01-01

    This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.

  11. Capacitance measuring device

    DOEpatents

    Andrews, W.H. Jr.

    1984-08-01

    A capacitance measuring circuit is provided in which an unknown capacitance is measured by comparing the charge stored in the unknown capacitor with that stored in a known capacitance. Equal and opposite voltages are repetitively simultaneously switched onto the capacitors through an electronic switch driven by a pulse generator to charge the capacitors during the ''on'' portion of the cycle. The stored charge is compared by summing discharge currents flowing through matched resistors at the input of a current sensor during the ''off'' portion of the switching cycle. The net current measured is thus proportional to the difference in value of the two capacitances. The circuit is capable of providing much needed accuracy and stability to a great variety of capacitance-based measurement devices at a relatively low cost.

  12. Photovoltaic spectral responsivity measurements

    SciTech Connect

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T.

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  13. Future GPD Measurements

    SciTech Connect

    Kaiser, Ralf

    2009-08-04

    Generalised Parton Distributions (GPDs) have grown into one of the main topics in hadron physics. They are playing a central role in the physics of the JLab 12 GeV upgrade as well as in the future physics programme of the COMPASS experiment at CERN. This paper explores the future of GPD measurements in the short, medium and long term. The short term includes the analysis of already existing data from HERMES and JLab and planned measurements at JLab before the 12 GeV upgrade. In the medium term this concerns the JLab programme after the upgrade, measurements at COMPASS and at PANDA/FAIR. The EIC project or possible alternatives form the long term perspective. The main focus of the considerations lies on DVCS measurements and related experiments.

  14. Measuring Strong Nanostructures

    SciTech Connect

    Andy Minor

    2008-10-16

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  15. Measuring Salinity by Conductivity.

    ERIC Educational Resources Information Center

    Lapworth, C. J.

    1981-01-01

    Outlines procedures for constructing an instrument which uses an electrode and calibration methods to measure the salinity of waters in environments close to and affected by a saline estuary. (Author/DC)

  16. In situ measurement system

    DOEpatents

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  17. Measuring Relative Humidity.

    ERIC Educational Resources Information Center

    Pinkham, Chester A.; Barrett, Kristin Burrows

    1992-01-01

    Describes four experiments that enable students to explore the phenomena of evaporation and condensation and determine the relative humidity by measuring air temperature and dew point on warm September days. Provides tables to calculate saturation points and relative humidity. (MDH)

  18. Terrestrial photovoltaic measurements, 2

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The following major topics are discussed; (1) Terrestrial solar irradiance; (2) Solar simulation and reference cell calibration; and (3) Cell and array measurement procedures. Numerous related subtopics are also discussed within each major topic area.

  19. Realizations of Measurement.

    ERIC Educational Resources Information Center

    Wright, Benjamin D.

    2000-01-01

    Uses the analogy of squeezing two glasses of orange juice from 4 pounds of oranges, no matter how many oranges constitute 4 pounds, to illustrate the distinction between art and science, as between counting right answers and constructing measures. (SLD)

  20. GPS Measurement Of Attitude

    NASA Technical Reports Server (NTRS)

    Dinardo, S. J.; Hushbeck, E. L.; Meehan, T. K.; Munson, T. N.; Purcell, G. H.; Srinivasan, J. M.; Young, L. E.; Yunck, T. P.

    1992-01-01

    Signals transmitted by satellites of Global Positioning System (GPS) measure orientation of baseline on ship, aircraft, or other vehicle with accuracy. Two GPS antennas and receivers placed at well separated points on platform. Receivers measure positions of ends of baseline as functions of time. Output processor computes vector difference between two positions and determines orientation of baseline. Combined with conventional GPS data, orientation data allows more precise navigation and mapping and enhances calculations related to performance and control of vehicle.

  1. Tevatron admittance measurement

    SciTech Connect

    Zhang, X.L.; Shiltsev, V.; Tan, C.Y.; /Fermilab

    2005-05-01

    We measured the Tevatron beam admittance by the means of exciting the beam with noise and causing emittance growth. The noise power was about 3W with a bandwidth of 100Hz and centered either in the horizontal betatron frequency or vertical betatron frequency. We were able to controllably blow the beam emittance up quickly. From the point where the beam emittance stopped growing, we measured the beam acceptance of the Tevatron.

  2. Oceanic wave measurement system

    NASA Technical Reports Server (NTRS)

    Holmes, J. F.; Miles, R. T. (Inventor)

    1980-01-01

    An oceanic wave measured system is disclosed wherein wave height is sensed by a barometer mounted on a buoy. The distance between the trough and crest of a wave is monitored by sequentially detecting positive and negative peaks of the output of the barometer and by combining (adding) each set of two successive half cycle peaks. The timing of this measurement is achieved by detecting the period of a half cycle of wave motion.

  3. Facility Measures Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.

    1991-01-01

    Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.

  4. Torque measurement issues

    NASA Astrophysics Data System (ADS)

    Goszczak, J.

    2016-09-01

    Problems with torque measurement in operational tests are considered. Introduction with torque definition is included. Short overview of different types of torque meters is presented. Own results and remarks about torque measurement and torque meters are quoted. Author takes into account such problems as: electromagnetic and mechanical noise (from componentry, e.g. clutches). Different ways of averaging and their results are discussed. Conclusions based on test results are included in the summary.

  5. Ultrasonic differential measurement

    DOEpatents

    Rhodes, George W.; Migliori, Albert

    1995-01-01

    A method and apparatus for ultrasonic resonance testing of an object is shown and described. Acoustic vibrations are applied to an object at a plurality of frequencies. Measurements of the object's vibrational response are made simultaneously at different locations on said object. The input frequency is stepped by using small frequency changes over a predetermined range. There is a pause interval or ring delay which permits the object to reach a steady state resonance before a measurement is taken.

  6. Performance Measurement Analysis System

    1989-06-01

    The PMAS4.0 (Performance Measurement Analysis System) is a user-oriented system designed to track the cost and schedule performance of Department of Energy (DOE) major projects (MPs) and major system acquisitions (MSAs) reporting under DOE Order 5700.4A, Project Management System. PMAS4.0 provides for the analysis of performance measurement data produced from management control systems complying with the Federal Government''s Cost and Schedule Control Systems Criteria.

  7. Device for calorimetric measurement

    DOEpatents

    King, William P; Lee, Jungchul

    2015-01-13

    In one aspect, provided herein is a single crystal silicon microcalorimeter, for example useful for high temperature operation and long-term stability of calorimetric measurements. Microcalorimeters described herein include microcalorimeter embodiments having a suspended structure and comprising single crystal silicon. Also provided herein are methods for making calorimetric measurements, for example, on small quantities of materials or for determining the energy content of combustible material having an unknown composition.

  8. Noncontact Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Lee, Mark C. (Editor)

    1988-01-01

    Noncontact temperature measurement has been identified as one of the eight advanced technology development (ATD) areas to support the effort of the Microgravity Science and Applications Division in developing six Space Station flight experiment facilities. This two-day workshop was an opportunity for all six disciplines to present their requirements on noncontact temperature measurement and to discuss state-of-the-art developments. Multi-color pyrometry, laser pyrometry and radiometric imaging techniques are addressed.

  9. Measurements of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Murrow, Harold N.

    1987-01-01

    Various types of atmospheric turbulence measurements are addressed for the purpose of stimulating discussion relative to available data. An outline of these various types of measurements are discussed. Some specific results of detailed characterization studies made at NASA Langley are emphasized. The most recent reports on statistics of turbulence encounters for various types of aircraft operations are summarized. Special severe encounter studies and reference to remote sensing are also included. Wind shear is considered to be a special topic and is not covered.

  10. Photoreceiver efficiency measurements

    NASA Technical Reports Server (NTRS)

    Lehr, C. G.

    1975-01-01

    The efficiency and other related parameters of Smithsonian Astrophysical Observatory's four laser receivers were measured at the observing stations by oscilloscope photography. If the efficiency is defined as the number of photoelectrons generated by the photomultiplier tube divided by the number of photons entering the aperture of the receiver, its measured value is about 1% for the laser wavelength of 694 nm. This value is consistent with the efficiency computed from the specified characteristics of the photoreceiver's optical components.

  11. Measuring Hospital Productivity

    PubMed Central

    Ruchlin, Hirsch S.; Leveson, Irving

    1974-01-01

    This study presents a comprehensive method for quantifying hospital output and estimating hospital productivity. A number of less comprehensive productivity measures that can be quantified from data available from regional third-party payers and from the American Hospital Association are also developed and evaluated as proxies for the comprehensive measure, which is based on local area data. Methods are discussed for estimating the necessary variables on a regional or national level. PMID:4461703

  12. Precision volume measuring system

    SciTech Connect

    Klevgard, P.A.

    1984-11-01

    An engineering study was undertaken to calibrate and certify a precision volume measurement system that uses the ideal gas law and precise pressure measurements (of low-pressure helium) to ratio a known to an unknown volume. The constant-temperature, computer-controlled system was tested for thermodynamic instabilities, for precision (0.01%), and for bias (0.01%). Ratio scaling was used to optimize the quartz crystal pressure transducer calibration.

  13. New measures of development.

    PubMed

    Pearce-batten, A

    1980-01-01

    As underdeveloped nations began developing after World War 2, it was assumed that they would follow the course followed previously by the industrialized ountries. Once the economic system could be brought to a stage of rapid and self-sustaining growth, it was felt that the benefits of progress would diffuse automatically throughout the society. In the last decade, it has become obvious that progress does not always reach down to the poorest groups within the society. A new goal and program for development--the basic needs approach--was formulated. This approach stresses improvement in the living standards of the poor. With a change in the approach to development, there came a need for a changed measurement of development progrsss. 2 such measures have been articulated: 1) the Physical Quality of Life Index (PQLI); and 2) the Social Accounting Matrix (SAM). The 2 measures illustrate major problems with development evaluation. Data is often not available. There is sometimes a question as to whether the measure accurately reflects the dynamics of the process. The PQLI is a simple measure, concentrating on literacy, infant mortality, and life expectancy indices. The SAM is a more complex measure, employing models and matrices. National data systems should be reformulated to provide the kinds of data necessary for program evaluation.

  14. How to measure metacognition

    PubMed Central

    Fleming, Stephen M.; Lau, Hakwan C.

    2014-01-01

    The ability to recognize one's own successful cognitive processing, in e.g., perceptual or memory tasks, is often referred to as metacognition. How should we quantitatively measure such ability? Here we focus on a class of measures that assess the correspondence between trial-by-trial accuracy and one's own confidence. In general, for healthy subjects endowed with metacognitive sensitivity, when one is confident, one is more likely to be correct. Thus, the degree of association between accuracy and confidence can be taken as a quantitative measure of metacognition. However, many studies use a statistical correlation coefficient (e.g., Pearson's r) or its variant to assess this degree of association, and such measures are susceptible to undesirable influences from factors such as response biases. Here we review other measures based on signal detection theory and receiver operating characteristics (ROC) analysis that are “bias free,” and relate these quantities to the calibration and discrimination measures developed in the probability estimation literature. We go on to distinguish between the related concepts of metacognitive bias (a difference in subjective confidence despite basic task performance remaining constant), metacognitive sensitivity (how good one is at distinguishing between one's own correct and incorrect judgments) and metacognitive efficiency (a subject's level of metacognitive sensitivity given a certain level of task performance). Finally, we discuss how these three concepts pose interesting questions for the study of metacognition and conscious awareness. PMID:25076880

  15. Thermochromism in color measurement

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jouni; Mutanen, J.; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.

    2002-06-01

    Accurate color measurements have become more and more important during the past few decades. This is valid not only in physical research but also in industrial production, where the importance of accurate measurements is mainly due to increased quality requirements set by the customers of various goods. The development of technology enables more and more accurate measuring systems. While the accuracy has improved one has noticed, that many unexpected factors affect the color of an object. One of these factors is the temperature of the sample. It is known that for example the reflectance of the ceramic reference tiles used for calibration of colorimeters and spectrophotometers is temperature dependent. This phenomenon is called thermochromism, which is a reversible change of color of the sample as a function of temperature. It may be noticed already at room temperature if the temperature varies few centigrades. Red and orange samples are especially sensitive to temperature variation and may cause difficulties in precise color measurements. We show, how the phenomenon is based on physical processes and not only reflects the instability of red color pigments. We derive simple formulas, which are shown to explain the experimental data. We also discuss the meaning of thermochromism for color measurements, measure the magnitude of it and propose the experimental conditions to avoid this effect.

  16. Measure problem in cosmology

    SciTech Connect

    Gibbons, G. W.; Turok, Neil

    2008-03-15

    The Hamiltonian structure of general relativity provides a natural canonical measure on the space of all classical universes, i.e., the multiverse. We review this construction and show how one can visualize the measure in terms of a 'magnetic flux' of solutions through phase space. Previous studies identified a divergence in the measure, which we observe to be due to the dilatation invariance of flat Friedmann-Lemaitre-Robertson-Walker universes. We show that the divergence is removed if we identify universes which are so flat they cannot be observationally distinguished. The resulting measure is independent of time and of the choice of coordinates on the space of fields. We further show that, for some quantities of interest, the measure is very insensitive to the details of how the identification is made. One such quantity is the probability of inflation in simple scalar field models. We find that, according to our implementation of the canonical measure, the probability for N e-folds of inflation in single-field, slow-roll models is suppressed by of order exp(-3N) and we discuss the implications of this result.

  17. New measures of development.

    PubMed

    Pearce-batten, A

    1980-01-01

    As underdeveloped nations began developing after World War 2, it was assumed that they would follow the course followed previously by the industrialized ountries. Once the economic system could be brought to a stage of rapid and self-sustaining growth, it was felt that the benefits of progress would diffuse automatically throughout the society. In the last decade, it has become obvious that progress does not always reach down to the poorest groups within the society. A new goal and program for development--the basic needs approach--was formulated. This approach stresses improvement in the living standards of the poor. With a change in the approach to development, there came a need for a changed measurement of development progrsss. 2 such measures have been articulated: 1) the Physical Quality of Life Index (PQLI); and 2) the Social Accounting Matrix (SAM). The 2 measures illustrate major problems with development evaluation. Data is often not available. There is sometimes a question as to whether the measure accurately reflects the dynamics of the process. The PQLI is a simple measure, concentrating on literacy, infant mortality, and life expectancy indices. The SAM is a more complex measure, employing models and matrices. National data systems should be reformulated to provide the kinds of data necessary for program evaluation. PMID:12261722

  18. Measurement dependent locality

    NASA Astrophysics Data System (ADS)

    Pütz, Gilles; Gisin, Nicolas

    2016-05-01

    The demonstration and use of Bell-nonlocality, a concept that is fundamentally striking and is at the core of applications in device independent quantum information processing, relies heavily on the assumption of measurement independence, also called the assumption of free choice. The latter cannot be verified or guaranteed. In this paper, we consider a relaxation of the measurement independence assumption. We briefly review the results of Pütz et al (2014 Phys. Rev. Lett. 113 190402), which show that with our relaxation, the set of so-called measurement dependent local (MDL) correlations is a polytope, i.e. it can be fully described using a finite set of linear inequalities. Here we analyze this polytope, first in the simplest case of two parties with binary inputs and outputs, for which we give a full characterization. We show that partially entangled states are preferable to the maximally entangled state when dealing with measurement dependence in this scenario. We further present a method which transforms any Bell-inequality into an MDL inequality and give valid inequalities for the case of arbitrary number of parties as well as one for arbitrary number of inputs. We introduce the assumption of independent sources in the measurement dependence scenario and give a full analysis for the bipartite scenario with binary inputs and outputs. Finally, we establish a link between measurement dependence and another strong hindrance in certifying nonlocal correlations: nondetection events.

  19. Lead Thickness Measurements

    SciTech Connect

    Rucinski, R.; /Fermilab

    1998-02-16

    The preshower lead thickness applied to the outside of D-Zero's superconducting solenoid vacuum shell was measured at the time of application. This engineering documents those thickness measurements. The lead was ordered in sheets 0.09375-inch and 0.0625-inch thick. The tolerance on thickness was specified to be +/- 0.003-inch. The sheets all were within that thickness tolerance. The nomenclature for each sheet was designated 1T, 1B, 2T, 2B where the numeral designates it's location in the wrap and 'T' or 'B' is short for 'top' or 'bottom' half of the solenoid. Micrometer measurements were taken at six locations around the perimeter of each sheet. The width,length, and weight of each piece was then measured. Using an assumed pure lead density of 0.40974 lb/in{sup 3}, an average sheet thickness was calculated and compared to the perimeter thickness measurements. In every case, the calculated average thickness was a few mils thinner than the perimeter measurements. The ratio was constant, 0.98. This discrepancy is likely due to the assumed pure lead density. It is not felt that the perimeter is thicker than the center regions. The data suggests that the physical thickness of the sheets is uniform to +/- 0.0015-inch.

  20. ''When Cost Measures Contradict''

    SciTech Connect

    Montgomery, W. D.; Smith, A. E.; Biggar, S. L.; Bernstein, P. M.

    2003-05-09

    When regulators put forward new economic or regulatory policies, there is a need to compare the costs and benefits of these new policies to existing policies and other alternatives to determine which policy is most cost-effective. For command and control policies, it is quite difficult to compute costs, but for more market-based policies, economists have had a great deal of success employing general equilibrium models to assess a policy's costs. Not all cost measures, however, arrive at the same ranking. Furthermore, cost measures can produce contradictory results for a specific policy. These problems make it difficult for a policy-maker to determine the best policy. For a cost measures to be of value, one would like to be confident of two things. First one wants to be sure whether the policy is a winner or loser. Second, one wants to be confident that a measure produces the correct policy ranking. That is, one wants to have confidence in a policy measure's ability to correctly rank policies from most beneficial to most harmful. This paper analyzes empirically these two properties of different costs measures as they pertain to assessing the costs of the carbon abatement policies, especially the Kyoto Protocol, under alternative assumptions about implementation.

  1. Ultrafast dynamics of VO2 thin films measured in pump-probe configuration

    NASA Astrophysics Data System (ADS)

    Radue, Elizabeth; Kittiwatanakul, Salinporn; Lu, Jiwei; Wolf, S. A.; Fu, Zhengping; Yamaguchi, Masashi; Rossi, Enrico; Lukaszew, R. A.; Novikova, Irina

    The semiconductor-metal transition of VO2 continues to be a vigorously studied phenomenon due to complicated interplay between the structural change and the electronic bands. It is also potentially a very useful material, particularly because of its ultrafast transition to the metallic state excited with a femtosecond pulse. We have been exploring the effects of polarization of the pump in relation to the probe affects the sub-picosecond response of VO2 thin films, which will be important in designing ultrafast switches. We have also been looking at pumping our VO2 films with a THz source that directly pumps the lattice, and have found the film responds optically on a slower scale than when pumped with 800 nm, suggesting that there is an electronic response from disturbing the lattice. This project was sponsored by the NSF, DMR-1006013: Plasmon Resonances and Metal Insulator Transitions in Highly Correlated Thin Film Systems, and the NASA Virginia Space Grant Consortium. We also acknowledge support from the NRI/SRC sponsored ViNC center.

  2. Measurement of Tanning Dependence

    PubMed Central

    Heckman, C.J.; Darlow, S.; Kloss, J.D.; Cohen-Filipic, J.; Manne, S.L.; Munshi, T.; Yaroch, A.L.; Perlis, C.

    2014-01-01

    Background Indoor tanning has been found to be addictive. However, the most commonly-used tanning dependence measures have not been well-validated. Objective The study’s purpose was to explore the psychometric characteristics of and compare the mCAGE (modified Cut-down, Annoyed, Guilty, Eye-opener Scale), mDSM-IV-TR (modified Diagnostic and Statistical Manual of Mental Disorders – Fourth Edition - Text Revised), and TAPS (Tanning Pathology Scale) measures of tanning dependence and provide recommendations for research and practice. Methods This study was a cross-sectional online survey with 18–25 year old female university students. The main outcome variable was tanning dependence measured by the mCAGE, mDSM-IV-TR, and TAPS. Results Internal consistency of the TAPS subscales was good but was poor for the mCAGE and mDSM-IV-TR, except when their items were combined. Agreement between the mCAGE and mDSM-IV-TR was fair. Factor analysis of the TAPS confirmed the current four-factor structure. All of the tanning dependence scales were significantly correlated with one another. Likewise, most of the tanning dependence scales were significantly correlated with other measures of tanning attitudes and behaviors. However, the tolerance to tanning TAPS subscale was not significantly correlated with any measure of tanning attitudes or behaviors and had the lowest subscale internal reliability and eigenvalues. Conclusion Based on the data and existing literature, we make recommendations for the continued use of tanning dependence measures. Intervention may be needed for the approximately 5% of college women who tend to be classified as tanning dependent across measures. Monitoring of individuals reporting tanning dependence symptoms is warranted. PMID:23980870

  3. Measuring head circumference

    PubMed Central

    Harris, Susan R.

    2015-01-01

    Abstract Objective To provide an evidence-based update emphasizing the importance of measuring head circumference (HC) in infants, with a focus on microcephaly. Quality of evidence PubMed and EMBASE (OvidSP) were searched. Search terms used were head circumference and infants and measurement; microcephaly and infants and measurement; idiopathic microcephaly and infants; and congenital microcephaly and infants. Most of the references for this review were published in 2000 or later. Most evidence is level II. Main message Serial measurement of HC should be incorporated into routine well-child care. Measure the distance around the back of the child’s head with a nonelastic tape measure held above the eyebrows and ears, and plot the measurement on an age- and sex-appropriate growth chart. Microcephaly is HC more than 2 SD below the mean. The most common disability associated with microcephaly is intellectual delay; other common concomitant conditions include epilepsy, cerebral palsy, language delay, strabismus, ophthalmologic disorders, and cardiac, renal, urinary tract, and skeletal anomalies. An interdisciplinary approach to microcephaly is warranted. Although there are no specific interventions to enhance brain growth, dietary or surgical interventions might be helpful in some cases. Infants with microcephaly who show developmental delays might benefit from early intervention programs or developmental physical and occupational therapy. Conclusion Early identification of HC concerns by family physicians can be a critical first step in identifying disorders such as microcephaly, leading to referral to pediatric specialists and, as needed, provision of family-centred early intervention services. PMID:26505062

  4. Engine Test and Measurements

    NASA Technical Reports Server (NTRS)

    Wey, Chown Chou

    1999-01-01

    Although the importance of aerosols and their precursors are now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. 1997 NASA LaRC engine test, as well as the parallel 1997 NASA LaRC flight measurement, attempts to address both issues by expanding measurements of aerosols and aerosol precursors with fuels containing different levels of fuel sulfur content. The specific objective of the 1997 engine test is to obtain a database of sulfur oxides emissions as well as the non-volatile particulate emission properties as a function of fuel sulfur and engine operating conditions. Four diagnostic systems, extractive and non-intrusive (optical), will be assembled for the gaseous and particulate emissions characterization measurements study. NASA is responsible for the extractive gaseous emissions measurement system which contains an array of analyzers dedicated to examining the concentrations of specific gases (NO, NO(x), CO, CO2, O2, THC, SO2) and the smoke number. University of Missouri-Rolla uses the Mobile Aerosol Sampling System to measure aerosol/particulate total concentration, size distribution, volatility and hydration property. Air Force Research Laboratory uses the Chemical Ionization Mass Spectrometer to measure SO2, SO3/H2SO4, and HN03 Aerodyne Research, Inc. uses Infrared Tunable Diode Laser system to measure SO2, SO3, NO, H2O, and CO2.

  5. Measuring reading performance.

    PubMed

    Rubin, Gary S

    2013-09-20

    Despite significant changes in the treatment of common eye conditions like cataract and age-related macular degeneration, reading difficulty remains the most common complaint of patients referred for low vision services. Clinical reading tests have been widely used since Jaeger introduced his test types in 1854. A brief review of the major developments in clinical reading tests is provided, followed by a discussion of some of the main controversies in clinical reading assessment. Data for the Salisbury Eye Evaluation (SEE) study demonstrate that standardised clinical reading tests are highly predictive of reading performance under natural, real world conditions, and that discrepancies between self-reported reading ability and measured reading performance may be indicative of people who are at a pre-clinical stage of disability, but are at risk for progression to clinical disability. If measured reading performance is to continue to increase in importance as a clinical outcome measure, there must be agreement on what should be measured (e.g. speed or comprehension) and how it should be measured (e.g. reading silently or aloud). Perhaps most important, the methods for assessing reading performance and the algorithms for scoring reading tests need to be optimised so that the reliability and responsiveness of reading tests can be improved.

  6. Statistics and Measurements

    PubMed Central

    Croarkin, M. Carroll

    2001-01-01

    For more than 50 years, the Statistical Engineering Division (SED) has been instrumental in the success of a broad spectrum of metrology projects at NBS/NIST. This paper highlights fundamental contributions of NBS/NIST statisticians to statistics and to measurement science and technology. Published methods developed by SED staff, especially during the early years, endure as cornerstones of statistics not only in metrology and standards applications, but as data-analytic resources used across all disciplines. The history of statistics at NBS/NIST began with the formation of what is now the SED. Examples from the first five decades of the SED illustrate the critical role of the division in the successful resolution of a few of the highly visible, and sometimes controversial, statistical studies of national importance. A review of the history of major early publications of the division on statistical methods, design of experiments, and error analysis and uncertainty is followed by a survey of several thematic areas. The accompanying examples illustrate the importance of SED in the history of statistics, measurements and standards: calibration and measurement assurance, interlaboratory tests, development of measurement methods, Standard Reference Materials, statistical computing, and dissemination of measurement technology. A brief look forward sketches the expanding opportunity and demand for SED statisticians created by current trends in research and development at NIST. PMID:27500023

  7. The performance measurement manifesto.

    PubMed

    Eccles, R G

    1991-01-01

    The leading indicators of business performance cannot be found in financial data alone. Quality, customer satisfaction, innovation, market share--metrics like these often reflect a company's economic condition and growth prospects better than its reported earnings do. Depending on an accounting department to reveal a company's future will leave it hopelessly mired in the past. More and more managers are changing their company's performance measurement systems to track nonfinancial measures and reinforce new competitive strategies. Five activities are essential: developing an information architecture; putting the technology in place to support this architecture; aligning bonuses and other incentives with the new system; drawing on outside resources; and designing an internal process to ensure the other four activities occur. New technologies and more sophisticated databases have made the change to nonfinancial performance measurement systems possible and economically feasible. Industry and trade associations, consulting firms, and public accounting firms that already have well-developed methods for assessing market share and other performance metrics can add to the revolution's momentum--as well as profit from the business opportunities it presents. Every company will have its own key measures and distinctive process for implementing the change. But making it happen will always require careful preparation, perseverance, and the conviction of the CEO that it must be carried through. When one leading company can demonstrate the long-term advantage of its superior performance on quality or innovation or any other nonfinancial measure, it will change the rules for all its rivals forever.

  8. On wave radar measurement

    NASA Astrophysics Data System (ADS)

    Ewans, Kevin; Feld, Graham; Jonathan, Philip

    2014-09-01

    The SAAB REX WaveRadar sensor is widely used for platform-based wave measurement systems by the offshore oil and gas industry. It offers in situ surface elevation wave measurements at relatively low operational costs. Furthermore, there is adequate flexibility in sampling rates, allowing in principle sampling frequencies from 1 to 10 Hz, but with an angular microwave beam width of 10° and an implied ocean surface footprint in the order of metres, significant limitations on the spatial and temporal resolution might be expected. Indeed there are reports that the accuracy of the measurements from wave radars may not be as good as expected. We review the functionality of a WaveRadar using numerical simulations to better understand how WaveRadar estimates compare with known surface elevations. In addition, we review recent field measurements made with a WaveRadar set at the maximum sampling frequency, in the light of the expected functionality and the numerical simulations, and we include inter-comparisons between SAAB radars and buoy measurements for locations in the North Sea.

  9. Structural power flow measurement

    SciTech Connect

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  10. Magnet measurement workshop

    SciTech Connect

    1986-12-01

    This report covers the deliberations of the participants the workshop and some subsequent contributions. Section III, the report of the rotating coil group, includes a summary table of the major measuring systems in use today, with separate sections on each. Section IV is the summary report of the group that addressed other measuring techniques. Because one of the limits of all the techniques being considered is electronic data acquisition, Section V addresses this topic. A set of issues relevant to magnetic field measurements of SSC dipoles was raised and addressed during the workshop. These are included as Section VI. Section VII includes a complete list of attendees with their addresses and a separate list of the members of the two working groups.

  11. Measuring improved patient choice.

    PubMed

    Holmes-Rovner, M; Rovner, D R

    2000-08-01

    Patient decision support (PDS) tools or decision aids have been developed as adjuncts to the clinical encounter. Their aim is to support evidence-based patient choice. Clinical trials of PDS tools have used an array of outcome measures to determine efficacy, including knowledge, satisfaction, health status and consistency between patient choice and values. This paper proposes that the correlation between 'subjective expected utility' (SEU) and decision may be the best primary endpoint for trials. SEU is a measure usually used in behavioural decision theory. The paper first describes how decision support tools may use decision analysis to structure the presentation of evidence and guide patient decision-making. Uses of expected utility (EU) are suggested for evaluating PDS tools when improving population health status is the objective. SEU is the theoretically better measure when internal consistency of patient choices is the objective. PMID:11083037

  12. Thermal Properties Measurement Report

    SciTech Connect

    Carmack, Jon; Braase, Lori; Papesch, Cynthia; Hurley, David; Tonks, Michael; Zhang, Yongfeng; Gofryk, Krzysztof; Harp, Jason; Fielding, Randy; Knight, Collin; Meyer, Mitch

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  13. Cometary Isotopic Measurements

    NASA Astrophysics Data System (ADS)

    Bockelée-Morvan, Dominique; Calmonte, Ursina; Charnley, Steven; Duprat, Jean; Engrand, Cécile; Gicquel, Adeline; Hässig, Myrtha; Jehin, Emmanuël; Kawakita, Hideyo; Marty, Bernard; Milam, Stefanie; Morse, Andrew; Rousselot, Philippe; Sheridan, Simon; Wirström, Eva

    2015-12-01

    Isotopic ratios in comets provide keys for the understanding of the origin of cometary material, and the physical and chemical conditions in the early Solar Nebula. We review here measurements acquired on the D/H, 14N/15N, 16O/18O, 12C/13C, and 32S/34S ratios in cometary grains and gases, and discuss their cosmogonic implications. The review includes analyses of potential cometary material available in collections on Earth, recent measurements achieved with the Herschel Space Observatory, large optical telescopes, and Rosetta, as well as recent results obtained from models of chemical-dynamical deuterium fractionation in the early solar nebula. Prospects for future measurements are presented.

  14. Downhole steam quality measurement

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  15. Measuring ambivalence to science

    NASA Astrophysics Data System (ADS)

    Gardner, P. L.

    Ambivalence is a psychological state in which a person holds mixed feelings (positive and negative) towards some psychological object. Standard methods of attitude measurement, such as Likert and semantic differential scales, ignore the possibility of ambivalence; ambivalent responses cannot be distinguished from neutral ones. This neglect arises out of an assumption that positive and negative affects towards a particular psychological object are bipolar, i.e., unidimensional in opposite directions. This assumption is frequently untenable. Conventional item statistics and measures of test internal consistency are ineffective as checks on this assumption; it is possible for a scale to be multidimensional and still display apparent internal consistency. Factor analysis is a more effective procedure. Methods of measuring ambivalence are suggested, and implications for research are discussed.

  16. Electrochemical thermodynamic measurement system

    DOEpatents

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  17. Measuring Education and Skill

    PubMed Central

    Muller, Chandra

    2015-01-01

    This article reviews recent developments in measuring education and skill that need to be taken into account in any new initiative to monitor social mobility. Over the past half-century, patterns of educational participation and attainment have become more heterogeneous, a trend that has been accompanied by increases in assessment and testing practices, and the availability of electronic data sources and other administrative records, including official school transcripts that are generally held indefinitely. This article describes the most promising approaches to measuring education and discusses some of the possible challenges for using the information to study social mobility. Measures of educational concepts fall along at least one of several dimensions: credentials earned, qualities of the schools attended, the amount and nature of curricular exposure, and the development and acquisition of skills. Selected data sources, with an emphasis on school transcripts and administrative records, and their possible uses are described. PMID:25983334

  18. System for Measuring Capacitance

    NASA Technical Reports Server (NTRS)

    McNichol, Randal S. (Inventor)

    2001-01-01

    A system has been developed for detecting the level of a liquid in a tank wherein a capacitor positioned in the tank has spaced plates which are positioned such that the dielectric between the plates will be either air or the liquid, depending on the depth of the liquid in the tank. An oscillator supplies a sine wave current to the capacitor and a coaxial cable connects the capacitor to a measuring circuit outside the tank. If the cable is very long or the capacitance to be measured is low, the capacitance inherent in the coaxial cable will prevent an accurate reading. To avoid this problem, an inductor is connected across the cable to form with the capacitance of the cable a parallel resonant circuit. The impedance of the parallel resonant circuit is infinite, so that attenuation of the measurement signal by the stray cable capacitance is avoided.

  19. New scale factor measure

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael

    2012-07-01

    The computation of probabilities in an eternally inflating universe requires a regulator or “measure.” The scale factor time measure truncates the Universe when a congruence of timelike geodesics has expanded by a fixed volume factor. This definition breaks down if the generating congruence is contracting—a serious limitation that excludes from consideration gravitationally bound regions such as our own. Here we propose a closely related regulator which is well defined in the entire spacetime. The new scale factor cutoff restricts to events with a scale factor below a given value. Since the scale factor vanishes at caustics and crunches, this cutoff always includes an infinite number of disconnected future regions. We show that this does not lead to divergences. The resulting measure combines desirable features of the old scale factor cutoff and of the light-cone time cutoff, while eliminating some of the disadvantages of each.

  20. Enhanced Microfluidic Electromagnetic Measurements

    NASA Technical Reports Server (NTRS)

    Giovangrandi, Laurent (Inventor); Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor)

    2015-01-01

    Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.

  1. Precision Measurement in Biology

    NASA Astrophysics Data System (ADS)

    Quake, Stephen

    Is biology a quantitative science like physics? I will discuss the role of precision measurement in both physics and biology, and argue that in fact both fields can be tied together by the use and consequences of precision measurement. The elementary quanta of biology are twofold: the macromolecule and the cell. Cells are the fundamental unit of life, and macromolecules are the fundamental elements of the cell. I will describe how precision measurements have been used to explore the basic properties of these quanta, and more generally how the quest for higher precision almost inevitably leads to the development of new technologies, which in turn catalyze further scientific discovery. In the 21st century, there are no remaining experimental barriers to biology becoming a truly quantitative and mathematical science.

  2. Blade pressure measurements

    NASA Astrophysics Data System (ADS)

    Chivers, J. W. H.

    Three measurement techniques which enable rotating pressures to be measured during the normal operation of a gas turbine or a component test rig are described. The first technique was developed specifically to provide steady and transient blade surface pressure data to aid both fan flutter research and general fan performance development. This technique involves the insertion of miniature high frequency response pressure transducers into the fan blades of a large civil gas turbine. The other two techniques were developed to measure steady rotating pressures inside and on the surface of engine or rig turbine blades and also rotating pressures in cooling feed systems. These two low frequency response systems are known as the "pressure pineapple' (a name which resulted from the shape of the original prototype) and the rotating scanivalve.

  3. Neutron beam measurement dosimetry

    SciTech Connect

    Amaro, C.R.

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  4. Measurement of complex surfaces

    SciTech Connect

    Brown, G.M.

    1993-05-01

    Several of the components used in coil fabrication involve complex surfaces and dimensions that are not well suited to measurements using conventional dimensional measuring equipment. Some relatively simple techniques that are in use in the SSCL Magnet Systems Division (MSD) for incoming inspection will be described, with discussion of their suitability for specific applications. Components that are submitted for MSD Quality Assurance (QA) dimensional inspection may be divided into two distinct categories; the first category involves components for which there is an approved drawing and for which all nominal dimensions are known; the second category involves parts for which `reverse engineering` is required, the part is available but there are no available drawings or dimensions. This second category typically occurs during development of coil end parts and coil turn filler parts where it is necessary to manually shape the part and then measure it to develop the information required to prepare a drawing for the part.

  5. Metrology Measurement Capabilities

    SciTech Connect

    Barnes, L.M.

    2003-11-12

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 8.4, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2000, and ANSI/NCSL Z540-1 (equivalent to ISO Guide 25). FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001080.pdf. These parameters are summarized in the table at the bottom of this introduction.

  6. Precision tropopause turbulence measurements

    NASA Astrophysics Data System (ADS)

    Otten, Leonard John, III; Jones, Al; Black, Don G.; Lane, Joshua; Hugo, Ron; Beyer, Jeffery; Roggemann, Michael C.

    2000-11-01

    Limited samples of the turbulence structure in the tropopause suggest that conventional models for atmospheric turbulence may not apply through this portion of the atmosphere. This paper discusses the instrumentation requirements, design and calibration of a balloon borne sensor suite designed to accurately measure the distribution and spectral spatial character of the index of refraction fluctuations through the tropopause. The basis for the data system is a 16 bit dynamic range, high data rate sample and hold instrumentation package. Calibration and characterization of the constant current anemometers used in the measurements show them to have a frequency response greater than 170 Hz at the -3 Db point and sufficient resolution to measure a Cn2 of 1 x 10-19 cm-2/3. A novel technique was developed that integrates the over 20 signals into two time correlated telemetry streams. The entire system has been assembled for a flight in the late summer of 2000.

  7. Advanced Ceramics Property Measurements

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan; Helfinstine, John; Quinn, George; Gonczy, Stephen

    2013-01-01

    Mechanical and physical properties of ceramic bodies can be difficult to measure correctly unless the proper techniques are used. The Advanced Ceramics Committee of ASTM, C-28, has developed dozens of consensus test standards and practices to measure various properties of a ceramic monolith, composite, or coating. The standards give the "what, how, how not, and why" for measurement of many mechanical, physical, thermal, and performance properties. Using these standards will provide accurate, reliable, and complete data for rigorous comparisons with other test results from your test lab, or another. The C-28 Committee has involved academics, producers, and users of ceramics to write and continually update more than 45 standards since the committee's inception in 1986. Included in this poster is a pictogram of the C-28 standards and information on how to obtain individual copies with full details or the complete collection of standards in one volume.

  8. Metrology Measurement Capabilities

    SciTech Connect

    Barnes, L.M.

    2000-03-23

    This document contains descriptions of Federal Manufacturing and Technologies (FM and T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties in laboratories that conform to the requirements of the Department of Energy Development and Production Manual Chapter 8.4, and ANSI/NCSL Z540-1 (equivalent to ISO Guide 25). FM and T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. These parameters are summarized.

  9. Materials property measurements

    SciTech Connect

    Boyd, D.M.; Green, E.R.; Doctor, S.R.; Good, M.S.

    1990-04-19

    An in-depth review of the measurement techniques that could be used in materials characterization is presented. The measurement techniques to non-destructively determine the in-service or time-related aging of materials considered include ultrasonic velocity and attenuation, eddy current conductivity, neutron scattering and absorption, conventional and tomographic imaging for ultrasonic and radiation imaging, x-ray scattering, thermal impedance, and magnetic hysteresis. The three sections of the report include a review of failure mechanisms in steel and a discussion of nondestructive evaluation techniques and fracture mechanics, a description of a chart on Measurement Techniques versus Material Properties, and recommendations on the techniques and tests to be performed for the experimental investigations and analysis task of the project. 49 refs., 7 figs.

  10. Measurement uncertainty relations

    SciTech Connect

    Busch, Paul; Lahti, Pekka; Werner, Reinhard F.

    2014-04-15

    Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here we prove such relations for the case of two canonically conjugate observables like position and momentum, and establish a close connection with the more familiar preparation uncertainty relations constraining the sharpness of the distributions of the two observables in the same state. Both sets of relations are generalized to means of order α rather than the usual quadratic means, and we show that the optimal constants are the same for preparation and for measurement uncertainty. The constants are determined numerically and compared with some bounds in the literature. In both cases, the near-saturation of the inequalities entails that the state (resp. observable) is uniformly close to a minimizing one.

  11. Measurement of particulates

    NASA Technical Reports Server (NTRS)

    Woods, D.

    1980-01-01

    The size distributions of particles in the exhaust plumes from the Titan rockets launched in August and September 1977 were determined from in situ measurements made from a small sampling aircraft that flew through the plumes. Two different sampling instruments were employed, a quartz crystal microbalance (QCM) cascade impactor and a forward scattering spectrometer probe (FSSP). The QCM measured the nonvolatile component of the aerosols in the plume covering an aerodynamic size ranging from 0.05 to 25 micrometers diameter. The FSSP, flown outside the aircraft under the nose section, measured both the liquid droplets and the solid particles over a size range from 0.5 to 7.5 micrometers in diameter. The particles were counted and classified into 15 size intervals. The presence of a large number of liquid droplets in the exhaust clouds is discussed and data are plotted for each launch and compared.

  12. Multipartite entanglement measures

    NASA Astrophysics Data System (ADS)

    Szalay, Szilárd

    2015-10-01

    The main concern of this paper is how to define proper measures of multipartite entanglement for mixed quantum states. Since the structure of partial separability and multipartite entanglement is getting complicated if the number of subsystems exceeds two, one cannot expect the existence of an ultimate scalar entanglement measure, which grasps even a small part of the rich hierarchical structure of multipartite entanglement, and some higher-order structure characterizing that is needed. In this paper we make some steps in this direction. First, we reveal the lattice-theoretic structure of the partial separability classification, introduced earlier [Sz. Szalay and Z. Kökényesi, Phys. Rev. A 86, 032341 (2012), 10.1103/PhysRevA.86.032341]. It turns out that, mathematically, the structure of the entanglement classes is the up-set lattice of the structure of the different kinds of partial separability, which is the down-set lattice of the lattice of the partitions of the subsystems. It also turns out that, physically, this structure is related to the local operations and classical communication convertibility: If a state from a class can be mapped into another one, then that class can be found higher in the hierarchy. Second, we introduce the notion of multipartite monotonicity, expressing that a given set of entanglement monotones, while measuring the different kinds of entanglement, shows also the same hierarchical structure as the entanglement classes. Then we construct such hierarchies of entanglement measures and propose a physically well-motivated one, being the direct multipartite generalization of the entanglement of formation based on the entanglement entropy, motivated by the notion of statistical distinguishability. The multipartite monotonicity shown by this set of measures motivates us to consider the measures to be the different manifestations of some "unified" notion of entanglement.

  13. Heat flux measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    A new automated, computer controlled heat flux measurement facility is described. Continuous transient and steady-state surface heat flux values varying from about 0.3 to 6 MW/sq m over a temperature range of 100 to 1200 K can be obtained in the facility. An application of this facility is the development of heat flux gauges for continuous fast transient surface heat flux measurement on turbine blades operating in space shuttle main engine turbopumps. The facility is useful for durability testing at fast temperature transients.

  14. Measuring tissue oxygenation

    NASA Technical Reports Server (NTRS)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  15. Emission rate measuring device

    NASA Astrophysics Data System (ADS)

    Luckat, S.

    1980-09-01

    The development and application of an emission rate measuring device for gaseous components is explored. The device contains absorption fluid from a supply container that moistens a cylindrical paper sleeve. A newer model is provided with a direct current motor requiring less electricity than an older model. The hose pump is modified to avoid changing it and the filter sleeve is fastened more securely to the distributor head. Application of the measuring devices is discussed, particularly at the Cologne Cathedral, where damage to the stone is observed.

  16. Remote measurement of pollution

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A summary of the major conclusions and recommendations developed by the panels on gaseous air pollution, water pollution, and particulate air pollution is presented. It becomes evident that many of the trace gases are amenable to remote sensing; that certain water pollutants can be measured by remote techniques, but their number is limited; and that a similar approach to the remote measurement of specific particulate pollutants will follow only after understanding of their physical, chemical, and radiative properties is improved. It is also clear that remote sensing can provide essential information in all three categories that can not be obtained by any other means.

  17. Income inequality measures

    PubMed Central

    2007-01-01

    The Gini coefficient has been the most popular method for operationalising income inequality in the public health literature. However, a number of alternative methods exist, and they offer researchers the means to develop a more nuanced understanding of the distribution of income. Income inequality measures such as the generalised entropy index and the Atkinson index offer the ability to examine the effects of inequalities in different areas of the income spectrum, enabling more meaningful quantitative assessments of qualitatively different inequalities. This glossary provides a conceptual introduction to these and other income inequality measures. PMID:17873219

  18. Income inequality measures.

    PubMed

    De Maio, Fernando G

    2007-10-01

    The Gini coefficient has been the most popular method for operationalising income inequality in the public health literature. However, a number of alternative methods exist, and they offer researchers the means to develop a more nuanced understanding of the distribution of income. Income inequality measures such as the generalised entropy index and the Atkinson index offer the ability to examine the effects of inequalities in different areas of the income spectrum, enabling more meaningful quantitative assessments of qualitatively different inequalities. This glossary provides a conceptual introduction to these and other income inequality measures.

  19. Disability Experience and Measurement.

    PubMed

    Verbrugge, Lois M

    2016-10-01

    Top themes of international research on disability in the past three decades are discussed: disability dynamics, buffers and barriers for disability, disability trends, and disability among very old persons. Each theme is highlighted by research examples. Turning to measurement, I discuss traditional measures of disability, new longer and shorter ones, and composites like disability-free life expectancy, noting their merits. Contemporary models of disability are presented, ranging from visual images to formal theories. The article ends on how scientists can facilitate movement of disability science into health care practice and policy. PMID:27590795

  20. Measuring Thermoforming Behaviour

    NASA Astrophysics Data System (ADS)

    Michaeli, W.; Hopmann, C.; Ederleh, L.; Begemann, M.

    2011-05-01

    Thermoforming is the process of choice for manufacturing thin-gauge or large-area parts for packaging or technical applications. The process allows low-weight parts to be produced rapidly and economically from thermoplastic semi-finished products. A technical and consequently economical problem is the choice of the right material in combination with the thermoformability of the product. The prediction of thermoformability includes the aspired product features and geometry and defined wall thickness distributions, depending on the specific stretchability of the semifinished product. In practice, thermoformability is estimated by empirical tests with the particular semi-finished product using e.g. staged pyramidal moulds or model cars. With this method, it still cannot be ensured that the product can be thermoformed with the intended properties. A promising alternative is the forming simulation using finite element analysis (FEA). For the simulation, it is necessary to describe the material behaviour using defined material models and the appropriate parameters. Therefore, the stress-/strain-behaviour of the semi-finished product under defined conditions is required. There are several, entirely different measurement techniques used in industry and at research facilities. This paper compares a choice of different measurement techniques to provide an objective basis for future work and research. The semi-finished products are examined with the Membrane-Inflation-Rheometer (MIR), an equibiaxial strain rheometer. A flat sample is heated to the desired temperature in silicone oil. During the measurement, a servohydraulic linear drive advances a piston, thus displacing the hot silicone oil and inflating the specimen to form a sphere. Further measurements are carried out with the Karo IV Laboratory Stretching Machine at Brückner Maschinenbau GmbH & Co. KG, Siegsdorf, Germany. The samples are heated using hot air. During the biaxial stretching, the resulting forces at the

  1. The measurement of happiness.

    PubMed

    Helm, D T

    2000-09-01

    Happiness has been defined either as a broad notion of how one feels about their life in general or as an emotional or affective state. Depending on the way researchers define the concept, there have been variable attempts at measurement. With decades of research, we have a better understanding of how to measure the happiness of others. A combination of quantitative and qualitative methods appears to be most productive. If we assume that individuals with disabilities are made happy in the same way as are people without disabilities, then we have a good idea of how to proceed with practical and policy matters.

  2. Airdata Measurement and Calibration

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.

    1995-01-01

    This memorandum provides a brief introduction to airdata measurement and calibration. Readers will learn about typical test objectives, quantities to measure, and flight maneuvers and operations for calibration. The memorandum informs readers about tower-flyby, trailing cone, pacer, radar-tracking, and dynamic airdata calibration maneuvers. Readers will also begin to understand how some data analysis considerations and special airdata cases, including high-angle-of-attack flight, high-speed flight, and nonobtrusive sensors are handled. This memorandum is not intended to be all inclusive; this paper contains extensive reference and bibliography sections.

  3. Creep Measurement Video Extensometer

    NASA Technical Reports Server (NTRS)

    Jaster, Mark; Vickerman, Mary; Padula, Santo, II; Juhas, John

    2011-01-01

    Understanding material behavior under load is critical to the efficient and accurate design of advanced aircraft and spacecraft. Technologies such as the one disclosed here allow accurate creep measurements to be taken automatically, reducing error. The goal was to develop a non-contact, automated system capable of capturing images that could subsequently be processed to obtain the strain characteristics of these materials during deformation, while maintaining adequate resolution to capture the true deformation response of the material. The measurement system comprises a high-resolution digital camera, computer, and software that work collectively to interpret the image.

  4. Measurements of microlens performance

    NASA Technical Reports Server (NTRS)

    Shough, D.; Herman, B.; Gal, George

    1993-01-01

    We present results of laboratory evaluations of several microlens types that have been designed and fabricated at the Lockheed Research and Development Division. The microlenses include wideband and dispersive types, in isolation and in arrays, and fabricated with binary or grayscale methods. Different lens pixel geometries are considered, including square, hexagonal, and skewed microlenses. We describe our micro-optics laboratory testbed which has been designed for the evaluation of individual lenslets or 2D arrays at selected spectral wavelengths. Measurement capabilities include focal length, point-spread functions, wavefront quality, and modulation transfer functions. Our present effort focuses on the results of point spread function measurements and their comparison with design predictions.

  5. Equity, by what measure?

    PubMed

    Houston, Shane

    2006-12-01

    Equity has in many instances been framed around the notion of fairness. But the metric used to determine what is fair leaves some people at a disadvantage because the things that they value are not always taken properly into account. If I value mangoes and you value oranges is a measure of fairness based on how many oranges I seek appropriate? If I am expected to give up my love of mangoes in order to get ahead is that fair? The debate about judging equity - about measuring fairness - needs to find the conceptual and methodological space to allow the voices and claims of the other to be heard. PMID:17176236

  6. Magnetotelluric measurements in Antarctica

    NASA Astrophysics Data System (ADS)

    Trivedi, N. B.; Padilha, A. L.; Barbosa, M. J. F.

    1986-11-01

    In the period of 2/14/86 to 3/7/86, during the 4th Brazilian Scientific Expedition to Antarctica, organized through the CIRM (Comissao Interministerial para Recursos do Mar), Station Commander Ferraz, (62 deg 5 min S, 58 deg 23.5 min W), magnetotelluric measurements were accomplished in 120 second intervals for DC. This measurement complemented the former, accomplished in the preceeding year between 20 and 400 seconds and although it presented excellent agreement in the overlapping intervals, it was a difficult interpretation. A Hilbert transformation technique was utilized for solving this problem, which brought to mind similar obtained resistivity values. The preliminary results encountered were presented and discussed.

  7. Minisodar measurements of rain

    SciTech Connect

    Coulter, R.L.; Martin, T.J.; Weckwerth, T.M.

    1988-01-01

    Measurements of raindrop fall velocity spectra have been made with a minisodar. Amplitude calibration of the system enables the calculation of drop size parameters such as number density, water density, and surface area using methods similar to those with radar studies. The acoustic measurements are at 10 m intervals within 200 m of the surface and benefit from an almost complete separation of droplet velocity spectra from atmospheric vertical velocity spectra. Comparison of parameters with the literature shows good agreement. It is shown that the chief difficulty with the method is atmospheric attenuation; however, excess attenuation due to scattering from droplets is found to be unimportant. 24 refs., 7 figs., 2 tabs.

  8. Measuring humanitarian emergencies.

    PubMed

    Garfield, Richard

    2007-11-01

    The ability to monitor assistance, define humanitarian needs, and approach equity in the distribution of assistance has lagged behind the world's growing commitment to responding to humanitarian emergencies. This article highlights relevant data sources to elucidate elements of an operational definition of humanitarian need. New and refined measures are proposed to assist in assessing the level of need among affected populations. An original measure that combines data on conflict and disasters to summarize the cumulative magnitude of 4 types of humanitarian threats is presented.

  9. Measurement and society

    NASA Astrophysics Data System (ADS)

    Quinn, Terence J.; Kovalevsky, Jean

    2004-10-01

    In modern society, metrology is a hidden infrastructure, that affects most human activities. Several domains in which measurements, and therefore metrology, play a crucial role are presented and illustrated with examples: manufacturing industries, navigation, telecommunications, medicine, environment, and scientific research. The BIPM and the national metrology institutes are at the top of traceability chains, which guarantee that all measurements are performed in conformity with the International System of Units (SI) and are therefore comparable. Finally, some indications of the economic benefits of metrology are given. To cite this article: T.J. Quinn, J. Kovalevsky, C. R. Physique 5 (2004).

  10. Measuring management potential.

    PubMed

    Kee, C C; Johnson, J Y; Foley, B J; Harvey, S S; Leonard, T; Russell, C; Saunders, J; Williams, J

    1996-06-01

    This article provides a brief introduction to instruments that may be used to measure management potential in persons being considered for administrative positions. Instruments that measure aspects of leadership, power, personality, conflict, and organizational climate are discussed. An overview of each instrument is provided as well as data on the type of test, time to complete, cost, and purchasing information. While objective tests such as these are useful in assessing individual suitability for management positions, we advise that they be used prudently and judiciously.

  11. Ionizations and fragmentations of benzene, methylbenzene, and chlorobenzene in strong IR and UV laser fields

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Feng; Lü, Hang; Zuo, Wan-Long; Xu, Hai-Feng; Jin, Ming-Xing; Ding, Da-Jun

    2015-11-01

    Ionizations and fragmentations of benzene, methylbenzene, and chlorobenzene are studied in linearly polarized 50-fs, 800-nm and 400-nm strong laser fields using a time-of-flight mass spectrometer. It is shown that at low laser intensity, the parent ions are dominant for any one of the molecules in an 800-nm strong laser field, while extensive fragmentation is observed in a 400-nm laser field, which can be understood by the resonant photon absorption of molecular cations. The ratio of the yield of the parent ion to the yield of the total ion for each molecule is measured as a function of laser intensity in a range from 1.0 × 1013 W/cm2 to 4.0 × 1014 W/cm2, in either the 800-nm or 400-nm laser field. The results show that the fragmentation of the aromatic molecules increases significantly as the laser intensity is increased. Possible mechanisms for fragmentation in strong laser fields are discussed. Finally, the saturation intensity of ionization of the titled molecules is also determined. Project supported by the National Basic Research Program of China (Grant No. 2013CB922200) and the National Natural Science Foundation of China (Grant No. 11274140).

  12. Strategic Measures of Teacher Performance

    ERIC Educational Resources Information Center

    Milanowski, Anthony

    2011-01-01

    Managing the human capital in education requires measuring teacher performance. To measure performance, administrators need to combine measures of practice with measures of outcomes, such as value-added measures, and three measurement systems are needed: classroom observations, performance assessments or work samples, and classroom walkthroughs.…

  13. Measurement Decision Theory.

    ERIC Educational Resources Information Center

    Rudner, Lawrence M.

    This paper describes and evaluates the use of decision theory as a tool for classifying examinees based on their item response patterns. Decision theory, developed by A. Wald (1947) and now widely used in engineering, agriculture, and computing, provides a simple model for the analysis of categorical data. Measurement decision theory requires only…

  14. Pollution Measuring System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Research Ventures, Inc.'s visiplume is a portable, microprocessor-controlled air pollution monitor for measuring sulfur dioxide emissions from fossil fuel-fired power plants, and facilities that manufacture sulfuric acid. It observes smokestack plumes at a distance from the stack obviating the expense and difficulty of installing sample collectors in each stack and later analyzing the samples.

  15. PRIME Lab Radiocarbon Measurements

    NASA Astrophysics Data System (ADS)

    Hillegonds, D. J.; Mueller, K. A.; Ma, X.; Lipschutz, M. E.

    1996-03-01

    The Purdue Rare Isotope Measurement Laboratory (PRIME Lab) is one of three NSF national facilities for accelerator mass spectrometry (AMS), and is the only one capable of determining six cosmogenic radionuclides: 10Be, 14C, 26Al, 36Cl, 41Ca, and 129I. This abstract describes the current status of the radiocarbon analysis program at PRIME Lab.

  16. The Measurement of Information.

    ERIC Educational Resources Information Center

    Harmon, Glynn

    1984-01-01

    Views information as residual or catalytic form of energy which regulates other forms of energy in natural and artificial systems. Parallel human information processing (production systems, algorithms, heuristics) and information measurement are discussed. Suggestions for future research in area of parallel information processing include a matrix…

  17. Measuring mandibular motions

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Rositano, S.; Taylor, R. C.

    1977-01-01

    Mandibular motion along three axes is measured by three motion transducers on floating yoke that rests against mandible. System includes electronics to provide variety of outputs for data display and processing. Head frame is strapped to test subject's skull to provide fixed point of reference for transducers.

  18. ALMA measures Calama earthquake

    NASA Astrophysics Data System (ADS)

    Brito, R.; Shillue, B.

    2010-04-01

    On 4 March 2010, the ALMA system response to an extraordinarily large disturbance was measured when a magnitude 6.3 earthquake struck near Calama, Chile, relatively close to the ALMA site. Figures 1 through 4 demonstrate the remarkable performance of the ALMA system to a huge disturbance that was more than 100 times the specification for correction accuracy.

  19. Measuring Reading Performance.

    ERIC Educational Resources Information Center

    Blanton, William E., Ed.; And Others

    Designed to provide solutions to some of the problems related to measuring reading behavior, this publication explores some of the problems of test selection and usage which confront educators. Contents include "Reading Testing for Reading Evaluation" by Walter R. Hill, "Reading Tests and the Disadvantaged" by Thomas J. Fitzgibbon, "What Is…

  20. Measurement of Training Outcomes.

    ERIC Educational Resources Information Center

    Bond, Nicholas A., Jr.; Rigney, Joseph W.

    Measurement of training outcomes is a requirement for evaluating new training techniques, but is one that is different to meet. Managers of education and training may have different concepts of what they want, as favorable outcomes, than do the investigators doing the research. Classical statistical and experimental designs assume laboratory rigor…

  1. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A; Dakin, B.; Hoeschele, M.

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  2. Top quark mass measurements

    SciTech Connect

    L. Cerrito

    2004-07-16

    Preliminary results on the measurement of the top quark mass at the Tevatron Collider are presented. In the dilepton decay channel, the CDF Collaboration measures m{sub t} = 175.0{sub -16.9}{sup +17.4}(stat.){+-}8.4(syst.) GeV/c{sup 2}, using a sample of {approx} 126 pb{sup -1} of proton-antiproton collision data at {radical}s = 1.96 TeV (Run II). In the lepton plus jets channel, the CDF Collaboration measures 177.5{sub -9.4}{sup +12.7}(stat.) {+-} 7.1(syst.) GeV/c{sup 2}, using a sample of {approx} 102 pb{sup -1} at {radical}s = 1.96 TeV. The D0 Collaboration has newly applied a likelihood technique to improve the analysis of {approx} 125 pb{sup -1} of proton-antiproton collisions at {radical}s = 1.8 TeV (Run I), with the result: m{sub t} = 180.1 {+-} 3.6(stat.) {+-}3.9(syst.) GeV/c{sup 2}. The latter is combined with all the measurements based on the data collected in Run I to yield the most recent and comprehensive experimental determination of the top quark mass: m{sub t} = 178.0 {+-} 2.7(stat.) {+-} 3.3(syst.) GeV/c{sup 2}.

  3. Global precipitation measurement (GPM)

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Flaming, Gilbert M.; Adams, W. James; Smith, Eric A.

    2001-12-01

    The National Aeronautics and Space Administration (NASA) is studying options for future space-based missions for the EOS Follow-on Era (post 2003), building upon the measurements made by Pre-EOS and EOS First Series Missions. One mission under consideration is the Global Precipitation Measurement (GPM), a cooperative venture of NASA, Japan, and other international partners. GPM will capitalize on the experience of the highly successful Tropical Rainfall Measurement Mission (TRMM). Its goal is to extend the measurement of rainfall to high latitudes with high temporal frequency, providing a global data set every three hours. A reference concept has been developed consisting of an improved TRMM-like primary satellite with precipitation radar and microwave radiometer to make detailed and accurate estimates of the precipitation structure and a constellation of small satellites flying compact microwave radiometers to provide the required temporal sampling of highly variable precipitation systems. Considering that DMSP spacecraft equipped with SSMIS microwave radiometers, successor NPOESS spacecraft equipped with CMIS microwave radiometers, and other relevant international systems are expected to be in operation during the timeframe of the reference concept, the total number of small satellites required to complete the constellation will be reduced. A nominal plan is to begin implementation in FY'03 with launches in 2007. NASA is presently engaged in advanced mission studies and advanced instrument technology development related to the mission.

  4. Measures of Leadership.

    ERIC Educational Resources Information Center

    Clark, Kenneth E., Ed.; Clark, Miriam B., Ed.

    The work reviewed in this book uses methods of psychological measurement to identify and understand the nature of leadership talent and leadership behavior. Part 1 contains nine chapters coauthored by the editors, Kenneth E. Clark and Miriam B. Clark. The chapters present information on leadership development and identification in the context of a…

  5. Foraminal height measurement techniques

    PubMed Central

    Phan, Kevin; Rao, Prashanth J.

    2015-01-01

    Background One of the proposed advantages of anterior lumbar interbody fusion (ALIF) is restoration of disc height and hence an indirect foraminal height restoration. While this proposed advantage is often quoted in the literature, there are few robust studies demonstrating restoration of foraminal volume. Thus, this study aimed to review the literature and discuss the progression and development of foramen measurement techniques. Methods A review of the literature was performed to identify studies which reported foraminal height and dimensions following fusion surgery in cadaveric models or patients. Results Techniques in prior studies used to quantify foraminal dimensions before and after fusion operations include analysis from plain radiographs, computed tomography (CT) scans and magnetic resonance imaging (MRI) scans. Recent studies have attempted to standardize foraminal dimension measurements with the use of orthogonal software, accelerator-based measurements and the use of multiple images for three-dimensional reconstruction of the foramen volume. Conclusions Consistent results have demonstrated significant increases in foraminal area and height following anterior lumbar interbody distraction, providing evidence that ALIF can indirectly increase foraminal height. Future studies should use standardized measurement approaches such as the Pedicle-to-Pedicle technique with CT or MRI images to determine changes in foraminal dimensions.

  6. Non Contact Measuring Machine

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Sebastiao, Pedro; Henriques, Bernardo G.

    1989-01-01

    One of the problems of the production of cables is the measurement of the thickness plastic cover at the production line. If for some reason the thickness of the plastic is smaller than the minimum necessary several meters of cable may be lost. If the problem exists in the middle of a long cable and the default is not detected in time, the loss will be significant. To solve this problem it is possible to use automatic measuring machines which may detect a default as soon as it happens. It is also possible to interact with the production line in order to avoid any losses. In this paper it is presented a non contact measuring machine, developed for this purpose. The machine uses a laser which is scanned through a field of 80 mm. The interruption of the beam gives information about the external dimension of the object. The technical study of the resolution, sensitivity and precision are presented on the paper. Also the hardware solution and the software are presented. The machine has an interface which allows communication with a PC. The PC may receive information from several measuring units and to interact with machines installed at the production line. The prototype is finished and is going to be tested in the industry.

  7. Measuring Neurotic Behavior.

    ERIC Educational Resources Information Center

    Blai, Boris, Jr.

    An exploratory study concerned with the measurement of perseveration, or persistence, as a personality variable was based on the work of G.V. Hamilton, an early investigator in the field. Persistently maladaptive behavior was hypothesized to be a chief characteristic of neurosis. An experimental problem-solving situation was designed to…

  8. Measuring software technology

    NASA Technical Reports Server (NTRS)

    Agresti, W. W.; Card, D. N.; Church, V. E.; Page, G.; Mcgarry, F. E.

    1983-01-01

    Results are reported from a series of investigations into the effectiveness of various methods and tools used in a software production environment. The basis for the analysis is a project data base, built through extensive data collection and process instrumentation. The project profiles become an organizational memory, serving as a reference point for an active program of measurement and experimentation on software technology.

  9. Measuring Energy Sustainability

    SciTech Connect

    Greene, David L

    2009-01-01

    For the purpose of measurement, energy sustainability is defined as ensuring that future generations have energy resources that enable them to achieve a level of well-being at least as good as that of the current generation. It is recognized that there are valid, more comprehensive understandings of sustainability and that energy sustainability as defined here is only meaningful when placed in a broader context. Still, measuring energy sustainability is important to society because the rates of consumption of some fossil resources are now substantial in relation to measures of ultimate resources, and because conflicts between fossil energy use and environmental sustainability are intensifying. Starting from the definition, an equation for energy sustainability is derived that reconciles renewable fl ows and nonrenewable stocks, includes the transformation of energy into energy services, incorporates technological change and, at least notionally, allows for changes in the relationship between energy services and societal well-being. Energy sustainability must be measured retrospectively as well as prospectively, and methods for doing each are discussed. Connections to the sustainability of other resources are also critical. The framework presented is merely a starting point; much remains to be done to make it operational.

  10. Measuring Children's Curiosity.

    ERIC Educational Resources Information Center

    Miller, George

    A study to develop a technique for measuring the curiosity of young children and to determine whether three treatments affected the subjects as hypothesized is presented. The Appalachia Educational Laboratory's Preschool Education Program sought to stimulate curiosity in its 3-, 4-, and 5-year-old subjects. One third of the children received only…

  11. Resilience: Development and Measurement.

    ERIC Educational Resources Information Center

    Hiew, Chok C.

    This paper explains that Grotberg (1995) has developed two measures of child resilience, one eliciting children's responses to vignettes depicting difficult situations and the second a checklist completed by an adult. Two studies examined the validity of these methods of assessing child resilience. Study 1 focused on the validity of vignettes and…

  12. Electrets and Electrostatic Measurement

    ERIC Educational Resources Information Center

    Varney, R. N.; Hahn, H. T.

    1975-01-01

    Electrets, the electrical counterparts of magnets, are polarized dielectrics that are permanent on a scale of months. Describes procedures for making electrets out of plastic sheets like Mylar, for testing them and measuring their pole strengths, and for establishing necessary and sufficient demonstrations that they are not simply surface charged.…

  13. Measure Guideline: Ventilation Cooling

    SciTech Connect

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  14. Measure Guideline: Ventilation Cooling

    SciTech Connect

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  15. Measuring Strong Nanostructures

    SciTech Connect

    Minor, Andy

    2008-01-01

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information:http://newscenter.lbl.gov/press-releases/2008/10/20/engineering-nanoparticles-for-maximum-strength/

  16. Profiles in Measurement.

    ERIC Educational Resources Information Center

    Ludlow, Larry H.; Wright, Benjamin Drake; Linacre, John Michael; Webster, Linda; Andrich, David

    1998-01-01

    Four of the articles in this section profile major figures in measurement: (1) Sir Francis Galton (Larry Ludlow); (2) Georg Rasch (Benjamin Wright); (3) Benjamin Wright (John Michael Linacre); and (4) David Andrich (Linda Webster). The fifth article, by David Andrich, presents insights gained into the Rasch model. (SLD)

  17. Measuring Graduate Student Retention.

    ERIC Educational Resources Information Center

    Isaac, Paul D.

    1993-01-01

    The conceptual and technical problems that need to be considered when studying graduate student retention and degree progress are examined, and practical suggestions for the institutional researcher are offered. Terms are defined, retention measures are explained, and different types of analysis are outlined. Ideas are given for database…

  18. Foraminal height measurement techniques

    PubMed Central

    Phan, Kevin; Rao, Prashanth J.

    2015-01-01

    Background One of the proposed advantages of anterior lumbar interbody fusion (ALIF) is restoration of disc height and hence an indirect foraminal height restoration. While this proposed advantage is often quoted in the literature, there are few robust studies demonstrating restoration of foraminal volume. Thus, this study aimed to review the literature and discuss the progression and development of foramen measurement techniques. Methods A review of the literature was performed to identify studies which reported foraminal height and dimensions following fusion surgery in cadaveric models or patients. Results Techniques in prior studies used to quantify foraminal dimensions before and after fusion operations include analysis from plain radiographs, computed tomography (CT) scans and magnetic resonance imaging (MRI) scans. Recent studies have attempted to standardize foraminal dimension measurements with the use of orthogonal software, accelerator-based measurements and the use of multiple images for three-dimensional reconstruction of the foramen volume. Conclusions Consistent results have demonstrated significant increases in foraminal area and height following anterior lumbar interbody distraction, providing evidence that ALIF can indirectly increase foraminal height. Future studies should use standardized measurement approaches such as the Pedicle-to-Pedicle technique with CT or MRI images to determine changes in foraminal dimensions. PMID:27683677

  19. Measuring Telephone Apprehension.

    ERIC Educational Resources Information Center

    Steele, Cam Monroe; Reinsch, N. L., Jr.

    An instrument for measuring telephone apprehension was developed to facilitate research into hypothesized relationships between communication apprehension and telephone apprehension. A set of 92 Likert-type items was adapted from previous communication apprehension scales and administered to 81 undergraduate students in a speech communication…

  20. Precision measurements in supersymmetry

    SciTech Connect

    Feng, J.L.

    1995-05-01

    Supersymmetry is a promising framework in which to explore extensions of the standard model. If candidates for supersymmetric particles are found, precision measurements of their properties will then be of paramount importance. The prospects for such measurements and their implications are the subject of this thesis. If charginos are produced at the LEP II collider, they are likely to be one of the few available supersymmetric signals for many years. The author considers the possibility of determining fundamental supersymmetry parameters in such a scenario. The study is complicated by the dependence of observables on a large number of these parameters. He proposes a straightforward procedure for disentangling these dependences and demonstrate its effectiveness by presenting a number of case studies at representative points in parameter space. In addition to determining the properties of supersymmetric particles, precision measurements may also be used to establish that newly-discovered particles are, in fact, supersymmetric. Supersymmetry predicts quantitative relations among the couplings and masses of superparticles. The author discusses tests of such relations at a future e{sup +}e{sup {minus}} linear collider, using measurements that exploit the availability of polarizable beams. Stringent tests of supersymmetry from chargino production are demonstrated in two representative cases, and fermion and neutralino processes are also discussed.

  1. Viscoelasticity measurements inside liposomes

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Gibson, Lachlan; Preece, Daryl; Nieminen, Timo A.; Rubinsztein-Dunlop, Halina

    2014-09-01

    Microrheology, the study of the behavior of fluids on the microscopic scale, has been and continues to be one of the most important subjects that can be applied to characterize the behavior of biological fluids. It is extremely difficult to make rapid measurement of the viscoelastic properties of the interior of living cells. Liposomes are widely used as model system for studying different aspects of cell biology. We propose to develop a microrheometer, based on real-time control of optical tweezers, in order to investigate the viscoelastic properties of the fluid inside liposomes. This will give greater understanding of the viscoelastic properties of the fluids inside cells. In our experiment, the liposomes are prepared by different methods to find out both a better way to make GUVs and achieve efficient encapsulation of particle. By rotating the vaterite inside a liposome via spin angular momentum, the optical torque can be measured by measuring the change of polarization of the transmitted light, which allows the direct measurement of viscous drag torque since the optical torque is balanced by the viscous drag. We present an initial feasibility demonstration of trapping and manipulation of a microscopic vaterite inside the liposome. The applied method is simple and can be extended to sensing within the living cells.

  2. Plant Light Measurement & Calculations.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1991-01-01

    The differences between measuring light intensity for the human eye and for plant photosynthesis are discussed. Conversion factors needed to convert various units of light are provided. Photosynthetic efficiency and the electricity costs for plants to undergo photosynthesis using interior lighting are described. (KR)

  3. Measuring Meat Texture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the complex and highly structured nature of muscle tissue, meat is an inherently tough and widely variable food product. In order to better predict and control meat tenderness issues, accurate measures of meat texture are needed. Unfortunately, the multifaceted characteristic of meat texture ...

  4. Flame Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Claus, R. W.; Humenik, F. M.; Neely, G. M.

    1983-01-01

    Spectral and total flame radiation measurements exhibited: (1) that radiant heat flux increases with vision combustor inlet air pressure; (2) the effect of fuel atomization characteristics on radiant heat flux; and (3) that a reduction in fuel hydrogen content produces a significant increase in radiant heat flux primarily at low combustor pressures.

  5. Underwater measuring gage

    DOEpatents

    Lockhart, James L.

    1989-01-01

    A device for remotely measuring the diameter of wire rope. The device includes a linear variable differential tansducer, a mechanism to guide and clamp the rope in relation to the anvil of the transducer, an elongated handle for manually manipulating the transducer and the guide and clamp mechanism.

  6. Color measurement and discrimination

    NASA Technical Reports Server (NTRS)

    Wandell, B. A.

    1985-01-01

    Theories of color measurement attempt to provide a quantative means for predicting whether two lights will be discriminable to an average observer. All color measurement theories can be characterized as follows: suppose lights a and b evoke responses from three color channels characterized as vectors, v(a) and v(b); the vector difference v(a) - v(b) corresponds to a set of channel responses that would be generated by some real light, call it *. According to theory a and b will be discriminable when * is detectable. A detailed development and test of the classic color measurement approach are reported. In the absence of a luminance component in the test stimuli, a and b, the theory holds well. In the presence of a luminance component, the theory is clearly false. When a luminance component is present discrimination judgements depend largely on whether the lights being discriminated fall in separate, categorical regions of color space. The results suggest that sensory estimation of surface color uses different methods, and the choice of method depends upon properties of the image. When there is significant luminance variation a categorical method is used, while in the absence of significant luminance variation judgments are continuous and consistant with the measurement approach.

  7. Measuring Up with GLOBE.

    ERIC Educational Resources Information Center

    LaHart, Valerie

    1998-01-01

    Global Learning and Observations to Benefit the Environment (GLOBE) is an international hands-on environmental science and education program that began on Earth Day in 1995. Students measure environmental parameters for scientists studying weather patterns and environmental change, and discover their connection to Earth's ever-changing systems…

  8. Benchmarking and Performance Measurement.

    ERIC Educational Resources Information Center

    Town, J. Stephen

    This paper defines benchmarking and its relationship to quality management, describes a project which applied the technique in a library context, and explores the relationship between performance measurement and benchmarking. Numerous benchmarking methods contain similar elements: deciding what to benchmark; identifying partners; gathering…

  9. Measuring Speech Communication Skills.

    ERIC Educational Resources Information Center

    Carpenter, Edwin C.

    Improving the quality of undergraduate speech communication education depends to a large extent on effectively measuring student achievement in college level communication skills. While formal tests are not as well developed for speaking skills as for other areas of the curriculum, they are available. The two used most frequently are the…

  10. Measuring Latent Quantities

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    2011-01-01

    A distinction is proposed between measures and predictors of latent variables. The discussion addresses the consequences of the distinction for the true-score model, the linear factor model, Structural Equation Models, longitudinal and multilevel models, and item-response models. A distribution-free treatment of calibration and…

  11. Measuring Intergenerational Obligations

    ERIC Educational Resources Information Center

    Ganong, Lawrence; Coleman, Marilyn

    2005-01-01

    Researchers have defined intergenerational obligations in diverse ways, and they have used many labels and ways of measuring intergenerational obligations. Using vignettes, we compared responses to questions about what family members should do when another family member needed assistance ("normative obligations") with responses to questions about…

  12. Measuring Teacher Value Systems.

    ERIC Educational Resources Information Center

    Ames, Russell; Lied, Terry

    The purpose of this study was to develop and assess the psychometric properties of a measure of teacher value systems. Three value systems were defined as values associated with (1) the pursuit of truth, (2) social and interpersonal relations, and (3) authority and its exercise. The scale was taken through three stages of development and field…

  13. First Measurement of $\

    SciTech Connect

    Palomino Gallo, Jose Luis

    2012-12-01

    Understanding of the $\\pi^0$ production via anti-neutrino-nucleus charged current interaction in the neutrino energy region of 1-10 GeV is essential for neutrino oscillation experiments. In this thesis, we present a measurement of charged current $\\pi^0$ production from anti-muon neutrinos scattering on a polystyrene scintillator (CH) target in the MINER$\

  14. Measuring Course Learning Outcomes

    ERIC Educational Resources Information Center

    Keshavarz, Mohsen

    2011-01-01

    Accreditation criteria of programs require effective learning outcomes, assessment with documented procedures, tools, results, and actions to close the assessment loop with broad faculty involvement. This article describes a methodology for providing quantitative measurement of a course's learning outcomes. The methodology uses a linkage matrix…

  15. Idiographic Measurement Invariance?

    ERIC Educational Resources Information Center

    Willoughby, Michael T.; Sideris, John

    2007-01-01

    In this article, the authors comment on Nesselroade, Gerstorf, Hardy, and Ram's efforts (this issue) to grapple with the challenge of accommodating idiographic assessment as it pertains to measurement invariance (MI). Although the authors are in complete agreement with the motivation for Nesselroade et al.'s work, the authors have concerns about…

  16. Interferometric measurement of angles.

    PubMed

    Malacara, D; Harris, O

    1970-07-01

    A new interferometric device for measuring small angles or rotations with high accuracy is described. This instrument works by counting fringes formed by the rotation of a flat-parallel plate of glass illuminated with a collimated beam from a gas laser. Some possible applications are given.

  17. Measuring Educational Sustainability

    ERIC Educational Resources Information Center

    Selvanathan, Rani G.

    2013-01-01

    There are many definitions that are attributable to the meaning of sustainability. Sustainability can be viewed as long-lasting, effective result of a project, venture, action, or investment without consuming additional future resources. Because of the wide nature of its applicability, a universal measure of sustainability is hard to come by. This…

  18. Digital capacitance measuring system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The hardware phase of a digital capacitance measuring system is presented with the major emphasis placed on the electrical design and operation. Test results are included of the three units fabricated. The system's interface is applicable to existing requirements for the space shuttle vehicle.

  19. Measuring Attitude Functions.

    ERIC Educational Resources Information Center

    Anderson, Deborah S.; Kristiansen, Connie M.

    1990-01-01

    Discusses the Attitude Functions Inventory (AFI), which assesses the extent to which a person's attitude fulfills each of four psychological functions. Reports findings of a study, involving 249 undergraduates, that tested the construct validity of the AFI. Suggests that the AFI provides conceptually meaningful measures of the functions of…

  20. Diamond Measuring Machine

    SciTech Connect

    Krstulic, J.F.

    2000-01-27

    The fundamental goal of this project was to develop additional capabilities to the diamond measuring prototype, work out technical difficulties associated with the original device, and perform automated measurements which are accurate and repeatable. For this project, FM and T was responsible for the overall system design, edge extraction, and defect extraction and identification. AccuGem provided a lab and computer equipment in Lawrence, 3D modeling, industry expertise, and sets of diamonds for testing. The system executive software which controls stone positioning, lighting, focusing, report generation, and data acquisition was written in Microsoft Visual Basic 6, while data analysis and modeling were compiled in C/C++ DLLs. All scanning parameters and extracted data are stored in a central database and available for automated analysis and reporting. The Phase 1 study showed that data can be extracted and measured from diamond scans, but most of the information had to be manually extracted. In this Phase 2 project, all data required for geometric modeling and defect identification were automatically extracted and passed to a 3D modeling module for analysis. Algorithms were developed which automatically adjusted both light levels and stone focus positioning for each diamond-under-test. After a diamond is analyzed and measurements are completed, a report is printed for the customer which shows carat weight, summarizes stone geometry information, lists defects and their size, displays a picture of the diamond, and shows a plot of defects on a top view drawing of the stone. Initial emphasis of defect extraction was on identification of feathers, pinpoints, and crystals. Defects were plotted color-coded by industry standards for inclusions (red), blemishes (green), and unknown defects (blue). Diamonds with a wide variety of cut quality, size, and number of defects were tested in the machine. Edge extraction, defect extraction, and modeling code were tested for

  1. Measurements of Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Meisner, Gregory P.

    2004-03-01

    The many sensational claims of vast quantities of hydrogen (H) stored in carbon materials reported since 1996 have resulted in the H storage and carbon scientific literature now being cluttered with misinformation and some genuinely bad science. H storage experiments are not trivial, and they are prone to error and misinterpretation. For example, volumetric experiments use equilibrium gas pressures (P) and temperatures (T) measured in calibrated volumes to determine the number of moles of gas, and changes in P without changes in T (or leakage) are then interpreted as sorption. A typical mistake is measuring P vs. time after pressurizing a sample chamber and interpreting a drop in P as sorption. This is difficult to interpret as real absorption because all confounding effects (leaks, T drifts, thermal inhomogeneities, etc.) are nearly impossible to eliminate. Moreover, the basic thermodynamic properties of gas flow systems tell us that high-P gases filling evacuated chambers experience non-negligible rises in T. Another example of misinterpretation arises in gravimetric experiments that use weight (W) measurements corrected for large T-dependent buoyancy effects to determine gas sorption. Here a typical mistake is interpreting the actual sorption of heavy residual impurity gases as H sorption. These and other techniques for measuring H sorption must be performed and interpreted with great care due to difficulties associated with small sample sizes, high gas pressures, very reactive materials, contamination, low signal-to-noise, poor experimental design, and, in some cases, bad science. Good science respects the difference between measurement precision (the number of significant digits of P or W measurements) and experimental accuracy (the degree of certainty that P or W changes really represent H sorption). At General Motors, we endeavor to understand, conduct, and promote reliable H storage measurements on new materials and routinely use both volumetric

  2. Reference Undulator Measurement Results

    SciTech Connect

    Wolf, Zachary; Levashov, Yurii; /SLAC

    2011-08-18

    The LCLS reference undulator has been measured 22 times during the course of undulator tuning. These measurements provide estimates of various statistical errors. This note gives a summary of the reference undulator measurements and it provides estimates of the undulator tuning errors. We measured the reference undulator many times during the tuning of the LCLS undulators. These data sets give estimates of the random errors in the tuned undulators. The measured trajectories in the reference undulator are stable and straight to within {+-}2 {micro}m. Changes in the phase errors are less than {+-}2 deg between data sets. The phase advance in the cell varies by less than {+-}2 deg between data sets. The rms variation between data sets of the first integral of B{sub x} is 9.98 {micro}Tm, and the rms variation of the second integral of B{sub x} is 17.4 {micro}Tm{sup 2}. The rms variation of the first integral of B{sub y} is 6.65 {micro}Tm, and the rms variation of the second integral of B{sub y} is 12.3 {micro}Tm{sup 2}. The rms variation of the x-position of the fiducialized beam axis is 35 {micro}m in the final production run This corresponds to an rms uncertainty in the K value of {Delta}K/K = 2.7 x 10{sup -5}. The rms variation of the y-position of the fiducialized beam axis is 4 {micro}m in the final production run.

  3. 10 CFR 74.45 - Measurements and measurement control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... measurement quality and to estimate measurement uncertainty values, the licensee shall: (1) Assign... determine significant contributors to the measurement uncertainties associated with inventory differences... 10 Energy 2 2013-01-01 2013-01-01 false Measurements and measurement control. 74.45 Section...

  4. 10 CFR 74.45 - Measurements and measurement control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... measurement quality and to estimate measurement uncertainty values, the licensee shall: (1) Assign... determine significant contributors to the measurement uncertainties associated with inventory differences... 10 Energy 2 2014-01-01 2014-01-01 false Measurements and measurement control. 74.45 Section...

  5. Estimating multipartite entanglement measures

    SciTech Connect

    Osterloh, Andreas; Hyllus, Philipp

    2010-02-15

    We investigate the lower bound obtained from experimental data of a quantum state {rho}, as proposed independently by O. Guehne et al. [Phys. Rev. Lett. 98, 110502 (2007)] and J. Eisert et al. [New J. Phys. 9, 46 (2007)], and apply it to mixed states of three qubits. The measure we consider is the convex-roof extended three-tangle. Our findings highlight an intimate relation to lower bounds obtained recently from so-called characteristic curves of a given entanglement measure. We apply the bounds to estimate the three-tangle present in recently performed experiments aimed at producing a three-qubit Greenberger-Horne-Zeilinger (GHZ) state. A nonvanishing lower bound is obtained if the GHZ fidelity of the produced states is larger than 3/4.

  6. Measurement of heme concentration.

    PubMed

    Sinclair, P R; Gorman, N; Jacobs, J M

    2001-05-01

    Heme (iron protoporphyrin IX) is a prosthetic group for a number of hemoproteins in different tissues (e.g., hemoglobin, myoglobin, cytochrome P-450s, mitochondrial cytochromes, catalases, and peroxidases). Mutations in the biosynthetic pathway can affect the synthesis and/or degradation of heme. Several assays are provided in this unit for quantifying heme: a spectrophotometric assay based on the characteristic absorption spectrum of oxidized and reduced form of the hemochrome formed by replacing the nitrogen ligands with pyridine; a fluorescence assay based on removal of the iron by a heated, strong oxalic acid solution to produce fluorescent protoporphyrin; a reversed-phase HPLC assay to measure heme and intermediates in the synthetic pathway; and a radiometric assay to measure newly synthesized heme in tissue culture cells.

  7. A productivity measurement system

    SciTech Connect

    Sweet, R.H.; Blain, D.A.

    1988-01-01

    The system for measuring productivity of the EG and G Idaho, Inc., Drafting Group was developed at the Idaho National Engineering Laboratory. The Productivity Measurement System, built on relational data base management software, provides up-to-date information on the productivity of the Drafting Group, the drafting units, and the individual Drafters. The system was developed using data collected in the Drafters Time and Activities Log and Task Baseline Agreement (TBA) that was input to the data base. Using these data, an average usage rate in hours per square foot of drawing, CAD and Manual, was established. This provided a benchmark for management reports that are depicted graphically for ease of trend analyses. In addition, the system provides each drafter an indicator as to where they stand in relation to their peers, and all of the information provided leads to more accurate drafting estimates. 11 figs.

  8. Measurement of cardiac troponins.

    PubMed

    Collinson, P O; Boa, F G; Gaze, D C

    2001-09-01

    The cardiac troponins form part of the regulatory mechanism for muscle contraction. Specific cardiac isoforms of cardiac troponin T and cardiac troponin I exist and commercially available immunoassay systems have been developed for their measurement. A large number of clinical and analytical studies have been performed and the measurement of cardiac troponins is now considered the 'gold standard' biochemical test for diagnosis of myocardial damage. There have been advances in understanding the development and structure of troponins and their degradation following myocardial cell necrosis. This has contributed to the understanding of the problems with current assays. Greater clinical use has also highlighted areas of analytical and clinical confusion. The assays are reviewed based on manufacturers' information, current published material as well as the authors' in-house experience.

  9. Top quark mass measurements

    SciTech Connect

    Hill, Christopher S.; /UC, Santa Barbara

    2004-12-01

    The top quark, with its extraordinarily large mass (nearly that of a gold atom), plays a significant role in the phenomenology of EWSB in the Standard Model. In particular, the top quark mass when combined with the W mass constrains the mass of the as yet unobserved Higgs boson. Thus, a precise determination of the mass of the top quark is a principal goal of the CDF and D0 experiments. With the data collected thus far in Runs 1 and 2 of the Tevatron, CDF and D0 have measured the top quark mass in both the lepton+jets and dilepton decay channels using a variety of complementary experimental techniques. The author presents an overview of the most recent of the measurements.

  10. Top Quark Mass Measurements

    SciTech Connect

    Heinson, A.P.; /UC, Riverside

    2006-08-01

    First observed in 1995, the top quark is one of a pair of third-generation quarks in the Standard Model of particle physics. It has charge +2/3e and a mass of 171.4 GeV, about 40 times heavier than its partner, the bottom quark. The CDF and D0 collaborations have identified several hundred events containing the decays of top-antitop pairs in the large dataset collected at the Tevatron proton-antiproton collider over the last four years. They have used these events to measure the top quark's mass to nearly 1% precision and to study other top quark properties. The mass of the top quark is a fundamental parameter of the Standard Model, and knowledge of its value with small uncertainty allows us to predict properties of the as-yet-unobserved Higgs boson. This paper presents the status of the measurements of the top quark mass.

  11. Wear Measurement System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Lewis Research Center developed a tribometer for in-house wear tests. Implant Sciences Corporation (ISC), working on a NASA contract to develop coatings to enhance the wear capabilities of materials, adapted the tribometer for its own use and developed a commercial line of user-friendly systems. The ISC-200 is a pin-on-disk type of tribometer, functioning like a record player and creating a wear groove on the disk, with variables of speed and load. The system can measure the coefficient of friction, the wear behavior between materials, and the integrity of thin films or coatings. Applications include measuring wear on contact lenses and engine parts and testing disk drives.

  12. 757 Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Horton, Kent; Huffman, Mitch; Eppic, Brian; White, Harrison

    2005-01-01

    Path Loss Measurements were obtained on three (3) GPS equipped 757 aircraft. Systems measured were Marker Beacon, LOC, VOR, VHF (3), Glide Slope, ATC (2), DME (2), TCAS, and GPS. This data will provide the basis for assessing the EMI (Electromagnetic Interference) safety margins of comm/nav (communication and navigation) systems to portable electronic device emissions. These Portable Electronic Devices (PEDs) include all devices operated in or around the aircraft by crews, passengers, servicing personnel, as well as the general public in the airport terminals. EMI assessment capability is an important step in determining if one system-wide PED EMI policy is appropriate. This data may also be used comparatively with theoretical analysis and computer modeling data sponsored by NASA Langley Research Center and others.

  13. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  14. Impedance Measurement Box

    ScienceCinema

    Christophersen, Jon

    2016-07-12

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  15. Measurement of surface microtopography

    NASA Technical Reports Server (NTRS)

    Wall, S. D.; Farr, T. G.; Muller, J.-P.; Lewis, P.; Leberl, F. W.

    1991-01-01

    Acquisition of ground truth data for use in microwave interaction modeling requires measurement of surface roughness sampled at intervals comparable to a fraction of the microwave wavelength and extensive enough to adequately represent the statistics of a surface unit. Sub-centimetric measurement accuracy is thus required over large areas, and existing techniques are usually inadequate. A technique is discussed for acquiring the necessary photogrammetric data using twin film cameras mounted on a helicopter. In an attempt to eliminate tedious data reduction, an automated technique was applied to the helicopter photographs, and results were compared to those produced by conventional stereogrammetry. Derived root-mean-square (RMS) roughness for the same stereo-pair was 7.5 cm for the automated technique versus 6.5 cm for the manual method. The principal source of error is probably due to vegetation in the scene, which affects the automated technique but is ignored by a human operator.

  16. Measurement by phase severance

    SciTech Connect

    Noyes, H.P.

    1987-03-01

    It is claimed that the measurement process is more accurately described by ''quasi-local phase severance'' than by ''wave function collapse''. The approach starts from the observation that the usual route to quantum mechanics starting from the Hamilton-Jacobi equations throws away half the degrees of freedom, namely, the classical initial state parameters. To overcome this difficulty, the full set of Hamilton-Jacobi equations is interpreted as operator equations acting on a state vector. The measurement theory presented is based on the conventional S-matrix boundary condition of N/sub A/ free particles in the distant past and N/sub B/ free particles in the distant future and taking the usual free particle wave functions, multiplied by phase factors.

  17. Wind measurements by parachute

    NASA Technical Reports Server (NTRS)

    Nordstroem, S.

    1982-01-01

    Tests used the 8 cm Lotta grenade as well as 12 cm M/70 and 10.5 m/62 grenades, released at altitudes between 2000 and 6400 meters. The parachutes were tracked by AP and RFK. In later experiments wind data were also obtained for comparison by tracking hydrogen filled balloons in part with the CORA system, in part with radar. Generally radar picked up the objects without visual assistance. Wind measurements from parachutes correlated well with those obtained by balloon. Even when the radar locked on to a part of a grenade, descending faster than the parachute, some of the measurements obtained were good. Bodies with a greater rate of descent than parachutes, with less or no tendency toward drift and with sufficient, surface for radar tracking, ought to provide reliable results. The existence of vertically well defined winds of jet stream type at low altitudes was established.

  18. Electronic measurement correction devices

    SciTech Connect

    Mahns, R.R.

    1984-04-01

    The electronics semi-conductor revolution has touched every industry and home in the nation. The gas industry is no exception. Sophisticated gas measurement instrumentation has been with us for several decades now, but only in the last 10 years or so has it really begun to boom. First marketed were the flow computers dedicated to orifice meter measurement; but with steadily decreasing manufacturing costs, electronic instrumentation is now moving into the area of base volume, pressure and temperature correction previously handled almost solely by mechanical integrating instruments. This paper takes a brief look at some of the features of the newcomers on the market and how they stack up against the old standby mechanical base volume/pressure/temperature correctors.

  19. External Measures of Cognition

    PubMed Central

    Cairό, Osvaldo

    2011-01-01

    The human brain is undoubtedly the most impressive, complex, and intricate organ that has evolved over time. It is also probably the least understood, and for that reason, the one that is currently attracting the most attention. In fact, the number of comparative analyses that focus on the evolution of brain size in Homo sapiens and other species has increased dramatically in recent years. In neuroscience, no other issue has generated so much interest and been the topic of so many heated debates as the difference in brain size between socially defined population groups, both its connotations and implications. For over a century, external measures of cognition have been related to intelligence. However, it is still unclear whether these measures actually correspond to cognitive abilities. In summary, this paper must be reviewed with this premise in mind. PMID:22065955

  20. Measuring the Double Helix

    SciTech Connect

    Mathew-Fenn, R.S.; Das, R.; Harbury, P.A.B.

    2009-05-26

    DNA is thought to behave as a stiff elastic rod with respect to the ubiquitous mechanical deformations inherent to its biology. To test this model at short DNA lengths, we measured the mean and variance of end-to-end length for a series of DNA double helices in solution, using small-angle x-ray scattering interference between gold nanocrystal labels. In the absence of applied tension, DNA is at least one order of magnitude softer than measured by single-molecule stretching experiments. Further, the data rule out the conventional elastic rod model. The variance in end-to-end length follows a quadratic dependence on the number of base pairs rather than the expected linear dependence, indicating that DNA stretching is cooperative over more than two turns of the DNA double helix. Our observations support the idea of long-range allosteric communication through DNA structure.

  1. Why measure patient satisfaction?

    PubMed

    Riskind, Patty; Fossey, Leslie; Brill, Kari

    2011-01-01

    A practice that consistently and continuously measures patient perceptions will be more efficient and effective in its daily operations. With pay-for-performance requirements on the horizon and consumer rating sites already publicizing impressions from physician encounters, a practice needs to know how it is performing through the eyes of the patients. Azalea Orthopedics has used patient feedback to coach its physicians on better patient communication. The Orthopaedic Institute has used patient satisfaction results to reduce wait times and measure the return on investment from its marketing efforts. Patient survey results that are put to work can enhance the efficiency and effectiveness of practice operations as well as position the practice for increased profitability. PMID:21506460

  2. Impedance Measurement Box

    SciTech Connect

    Christophersen, Jon

    2011-01-01

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  3. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  4. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  5. Motor Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple motor inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: High Efficiency Motor retrofit and Cogged V-belts retrofit. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  6. Nondisturbing quantum measurements

    SciTech Connect

    Heinosaari, Teiko; Wolf, Michael M.

    2010-09-15

    We consider pairs of discrete quantum observables (POVMs) and analyze the relation between the notions of nondisturbance, joint measurability, and commutativity. We specify conditions under which these properties coincide or differ - depending, for instance, on the interplay between the number of outcomes and the Hilbert space dimension or on algebraic properties of the effect operators. We also show that (non-)disturbance is, in general, not a symmetric relation and that it can be decided and quantified by means of a semidefinite program.

  7. Stress Measurement System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under the Aircraft Structural Integrity program, Langley Research Center and Stress Photonics developed an infrared-based stress measurement system for use in nondestructive evaluation of materials and structures. Stress Photonics commercialized the technology in the DeltaTherm 1000 system, used to compare designs and detect cracks in structures, especially for aging aircraft and bridges. The system combines digital signal processing technology with a special infrared camera to provide instantaneous thermal images and live differential images.

  8. Planetary heat flow measurements.

    PubMed

    Hagermann, Axel

    2005-12-15

    The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments. PMID:16286290

  9. Radar measurement instruments

    NASA Astrophysics Data System (ADS)

    Hartl, P.

    1983-02-01

    The radar techniques used for Earth observation are reviewed. Range, direction and speed measuring techniques, and the principles of scatterometers, side-looking radar, altimeters and SAR are discussed. The ERS-1 radar package including the active microwave instrumentation and the radar altimeter are described. The analysis of the calibration problems leads to the conclusion that only the test of the system loop as a whole, besides the individual part tests, can provide a calibration in the absolute sense.

  10. Detailing 'measures that matter'.

    PubMed

    Heavisides, Bob

    2010-04-01

    In a paper originally presented at last October's Healthcare Estates conference in Harrogate, Bob Heavisides, director of facilities at the Milton Keynes NHS Foundation Trust, explains how estates and facilities directors can provide a package of information based on a number of "measures that matter" to demonstrate to their boards that safe systems of work, operational efficiency and effectiveness, and operational parameters, are within, or better than, equivalent-sized Trusts.

  11. Planetary heat flow measurements.

    PubMed

    Hagermann, Axel

    2005-12-15

    The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments.

  12. Temperature measuring device

    SciTech Connect

    Lauf, R.J.; Bible, D.W.; Sohns, C.W.

    1999-10-19

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  13. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  14. Spaceport Performance Measures

    NASA Technical Reports Server (NTRS)

    Finger, G. Wayne

    2010-01-01

    Spaceports have traditionally been characterized by performance measures associated with their site characteristics. Measures such as "Latitude" (proximity to the equator), "Azimuth" (range of available launch azimuths) and "Weather" (days of favorable weather) are commonly used to characterize a particular spaceport. However, other spaceport performance measures may now be of greater value. These measures can provide insight into areas of operational differences between competing spaceports and identify areas for improving the performance of spaceports. This paper suggests Figures of Merit (FOMs) for spaceport "Capacity" (number of potential launch opportunities per year and / or potential mass' to low earth orbit (LEO) per year); "Throughput" (actual mass to orbit per year compared to capacity); "Productivity" (labor effort hours per unit mass to orbit); "Energy Efficiency" (joules expended at spaceport per unit mass to orbit); "Carbon Footprint" tons CO2 per unit mass to orbit). Additional FOMS are investigated with regards to those areas of special interest to commercial launch operators, such as "Assignment Schedule" (days required for a binding assignment of a launch site from the spaceport); "Approval Schedule" (days to complete a range safety assessment leading to an approval or disapproval of a launch vehicle); "Affordability" (cost for a spaceport to assess a new launch vehicle); "Launch Affordability" (fixed range costs per launch); "Reconfigure Time" (hours to reconfigure the range from one vehicle's launch ready configuration to another vehicle's configuration); "Turn,Around Time" (minimum range hours required between launches of an identical type launch vehicle). Available or notional data is analyzed for the KSC/CCAFS area and other spaceports. Observations regarding progress over the past few decades are made. Areas where improvement are needed or indicated are suggested.

  15. Temperature measuring device

    DOEpatents

    Lauf, Robert J.; Bible, Don W.; Sohns, Carl W.

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  16. Swept group delay measurement

    NASA Technical Reports Server (NTRS)

    Trowbridge, D. L. (Inventor)

    1978-01-01

    Direct recording of group delay measurements on a system under temperature and stress tests employs modulated carrier frequency sweep over an S or X band. Reference path and test paths to separate detectors utilize a power divider e.g., a directional coupler or a hybrid T junction. An initially balanced phase comparator is swept in frequency by modulated carrier over the band of interest for different conditions of temperature and/or mechanical stress to obtain characteristic group delay curves.

  17. CCN Spectral Measurements

    SciTech Connect

    Hudson, James G.

    2009-02-27

    Detailed aircraft measurements were made of cloud condensation nuclei (CCN) spectra associated with extensive cloud systems off the central California coast in the July 2005 MASE project. These measurements include the wide supersaturation (S) range (2-0.01%) that is important for these polluted stratus clouds. Concentrations were usually characteristic of continental/anthropogenic air masses. The most notable feature was the consistently higher concentrations above the clouds than below. CCN measurements are so important because they provide a link between atmospheric chemistry and cloud-climate effects, which are the largest climate uncertainty. Extensive comparisons throughout the eleven flights between two CCN spectrometers operated at different but overlapping S ranges displayed the precision and accuracy of these difficult spectral determinations. There are enough channels of resolution in these instruments to provide differential spectra, which produce more rigorous and precise comparisons than traditional cumulative presentations of CCN concentrations. Differential spectra are also more revealing than cumulative spectra. Only one of the eleven flights exhibited typical maritime concentrations. Average below cloud concentrations over the two hours furthest from the coast for the 8 flights with low polluted stratus was 614?233 at 1% S, 149?60 at 0.1% S and 57?33 at 0.04% S cm-3. Immediately above cloud average concentrations were respectively 74%, 55%, and 18% higher. Concentration variability among those 8 flights was a factor of two. Variability within each flight excluding distances close to the coast ranged from 15-56% at 1% S. However, CN and probably CCN concentrations sometimes varied by less than 1% over distances of more than a km. Volatility and size-critical S measurements indicated that the air masses were very polluted throughout MASE. The aerosol above the clouds was more polluted than the below cloud aerosol. These high CCN concentrations from

  18. Measurement of Itch Intensity.

    PubMed

    Reich, Adam; Szepietowski, Jacek C

    2016-01-01

    Measurement of itch intensity is essential to properly evaluate pruritic disease severity, to understand the patients' needs and burden, and especially to assess treatment efficacy, particularly in clinical trials. However, measurement of itch remains a challenge, as, per definition, it is a subjective sensation and assessment of this symptom represents significant difficulty. Intensity of itch must be considered in relation to its duration, localization, course of symptoms, presence and type of scratch lesions, response to antipruritic treatment, and quality of life impairment. Importantly, perception of itch may also be confounded by different cofactors including but not limited to patient general condition and other coexisting ailments. In the current chapter we characterize the major methods of itch assessments that are used in daily clinical life and as research tools. Different methods of itch assessment have been developed; however, so far none is without limitations and any data on itch intensity should always be interpreted with caution. Despite these limitations, it is strongly recommended to implement itch measurement tools in routine daily practice, as it would help in proper assessment of patient clinical status. In order to improve evaluation of itch in research studies, it is recommended to use at least two independent methods, as such an approach should increase the validity of achieved results. PMID:27578068

  19. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  20. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  1. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  2. Environmental 90Sr measurements

    USGS Publications Warehouse

    Paul, M.; Berkovits, D.; Cecil, L.D.; Feldstein, H.; Hershkowitz, A.; Kashiv, Y.; Vogt, S.

    1997-01-01

    90Sr (T1/2 = 28.5 years) is a long-lived radionuclide produced in nuclear fission. Fast radiochemical detection of 90Sr in environmental samples is not feasible using current analytical methods. Accelerator Mass Spectrometry (AMS) measurements of 90Sr were made with the Rehovot 14UD Pelletron accelerator at a terminal voltage of 11 or 12 MV using our standard detection system. Injection of hydride ions (SrH3-) was chosen owing to high beam intensity and low Coulomb explosion effects. 90Sr ions were identified and discriminated from isobaric 90Zr by measuring time of flight, total energy and three independent energy-loss signals in an ionization chamber. A reference sample and a ground-water sample were successfully measured. The detection limit determined for a laboratory blank by the residual counts in the 90Sr region is 90Sr/Sr = 3 ?? 10-13, corresponding in practice to (2-4) ?? 10790Sr atoms or about 0.5-1 pCi/L in environmental water samples.

  3. Top Quark Mass Measurements

    SciTech Connect

    Heinson, A. P.

    2006-11-17

    First observed in 1995, the top quark is one of a pair of third-generation quarks in the Standard Model of particle physics. It has charge +2/3e and a mass of 171.4 GeV, about 40 times heavier than its partner, the bottom quark. The CDF and DO collaborations have identified several hundred events containing the decays of top-antitop pairs in the large dataset collected at the Tevatron proton-antiproton collider over the last four years. They have used these events to measure the top quark's mass to nearly 1% precision and to study other top quark properties. The mass of the top quark is a fundamental parameter of the Standard Model, and knowledge of its value with small uncertainty allows us to predict properties of the as-yet-unobserved Higgs boson. This paper presents the status of the measurements of the top quark mass. It is based on a talk I gave at the Conference on the Intersections of Particle and Nuclear Physics in Puerto Rico, May 2006, which also included discussion of measurements of other top quark properties.

  4. Measurement of lipolysis.

    PubMed

    Schweiger, Martina; Eichmann, Thomas O; Taschler, Ulrike; Zimmermann, Robert; Zechner, Rudolf; Lass, Achim

    2014-01-01

    Lipolysis is defined as the hydrolytic cleavage of ester bonds in triglycerides (TGs), resulting in the generation of fatty acids (FAs) and glycerol. The two major TG pools in the body of vertebrates comprise intracellular TGs and plasma/nutritional TGs. Accordingly, this leads to the discrimination between intracellular and intravascular/gastrointestinal lipolysis, respectively. This chapter focuses exclusively on intracellular lipolysis, referred to as lipolysis herein. The lipolytic cleavage of TGs occurs in essentially all cells and tissues of the body. In all of them, the resulting FAs are utilized endogenously for energy production or biosynthetic pathways with one exception, white adipose tissue (WAT). WAT releases FAs and glycerol to supply nonadipose tissues at times of nutrient deprivation. The fundamental role of lipolysis in lipid and energy homeostasis requires the accurate measurement of lipase activities and lipolytic rates. The recent discovery of new enzymes and regulators that mediate the hydrolysis of TG has made these measurements more complex. Here, we describe detailed methodology for how to measure lipolysis and specific enzymes' activities in cells, organs, and their respective extracts. PMID:24529439

  5. Measurement of lipolysis.

    PubMed

    Schweiger, Martina; Eichmann, Thomas O; Taschler, Ulrike; Zimmermann, Robert; Zechner, Rudolf; Lass, Achim

    2014-01-01

    Lipolysis is defined as the hydrolytic cleavage of ester bonds in triglycerides (TGs), resulting in the generation of fatty acids (FAs) and glycerol. The two major TG pools in the body of vertebrates comprise intracellular TGs and plasma/nutritional TGs. Accordingly, this leads to the discrimination between intracellular and intravascular/gastrointestinal lipolysis, respectively. This chapter focuses exclusively on intracellular lipolysis, referred to as lipolysis herein. The lipolytic cleavage of TGs occurs in essentially all cells and tissues of the body. In all of them, the resulting FAs are utilized endogenously for energy production or biosynthetic pathways with one exception, white adipose tissue (WAT). WAT releases FAs and glycerol to supply nonadipose tissues at times of nutrient deprivation. The fundamental role of lipolysis in lipid and energy homeostasis requires the accurate measurement of lipase activities and lipolytic rates. The recent discovery of new enzymes and regulators that mediate the hydrolysis of TG has made these measurements more complex. Here, we describe detailed methodology for how to measure lipolysis and specific enzymes' activities in cells, organs, and their respective extracts.

  6. Compact disk error measurements

    NASA Technical Reports Server (NTRS)

    Howe, D.; Harriman, K.; Tehranchi, B.

    1993-01-01

    The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.

  7. Optically measured explosive impulse

    NASA Astrophysics Data System (ADS)

    Biss, Matthew M.; McNesby, Kevin L.

    2014-06-01

    An experimental technique is investigated to optically measure the explosive impulse produced by laboratory-scale spherical charges detonated in air. Explosive impulse has historically been calculated from temporal pressure measurements obtained via piezoelectric transducers. The presented technique instead combines schlieren flow visualization and high-speed digital imaging to optically measure explosive impulse. Prior to an explosive event, schlieren system calibration is performed using known light-ray refractions and resulting digital image intensities. Explosive charges are detonated in the test section of a schlieren system and imaged by a high-speed digital camera in pseudo-streak mode. Spatiotemporal schlieren intensity maps are converted using an Abel deconvolution, Rankine-Hugoniot jump equations, ideal gas law, triangular temperature decay profile, and Schardin's standard photometric technique to yield spatiotemporal pressure maps. Temporal integration of individual pixel pressure profiles over the positive pressure duration of the shock wave yields the explosive impulse generated for a given radial standoff. Calculated explosive impulses are shown to exhibit good agreement between optically derived values and pencil gage pressure transducers.

  8. Scintillator Measurements for SNO+

    NASA Astrophysics Data System (ADS)

    Kaptanoglu, Tanner; SNO+ Collaboration

    2016-03-01

    SNO+ is a neutrino detector located 2km underground in the SNOLAB facility with the primary goal of searching for neutrinoless double beta decay. The detector will be filled with a liquid scintillator target primarily composed of linear alkyl benzene (LAB). As charged particles travel through the detector the LAB produces scintillation light which is detected by almost ten thousand PMTs. The LAB is loaded with Te130, an isotope known to undergo double beta decay. Additionally, the LAB is mixed with an additional fluor and wavelength shifter to improve the light output and shift the light to a wavelength regime in which the PMTs are maximally efficient. The precise scintillator optics drastically affect the ultimate sensitivity of SNO+. I will present work being done to measure the optical properties of the SNO+ scintillator cocktail. The measured properties are used as input to a scintillation model that allows us to extrapolate to the SNO+ scale and ultimately predict the sensitivity of the experiment. Additionally, I will present measurements done to characterize the R5912 PMT, a candidate PMT for the second phase of SNO+ that provides better light collection, improved charge resolution, and a narrower spread in timing.

  9. QM02 Strength Measurement

    SciTech Connect

    Welch, J; Wu, J.; /SLAC

    2010-11-24

    In late April, Paul Emma reported that his orbit fitting program could find a reasonably good fit only if the strength of QM02 was changed from design value of -5.83 kG to -6.25 kG - a strength change of 7.3%. In late May, we made a focal length measurement of QM02 by turning off all focusing optics between YC07 and BPMS1 (in the spectrometer line) except for QM02 and adjusted the strength of QM02 so that vertical kicks by YC07 did not produce any displacements at BPMS1 (see Figure 1). The result was quoted in the LCLS elog was that QM02 appeared to 6% too weak, and approximately agreed with Paul's observation. The analysis used for the entry in the log book was based on the thin lens approximation and used the following numbers: Distance YC07 to QM02 - 5.128 m; Distance QM02 to BPMS1 - 1.778 m; and Energy - 135 MeV. These distances were computed from the X,Z coordinates given the on the large plot of the Injector on the wall of the control room. On review of the MAD output file coordinates, it seems that the distance used for QM02 to BPMS1 is not 1.778 m. The correct value is Distance, center of QM02 to BPMS1 - 1.845 m. There may be a typo on the wall chart values for the coordinates of BPMS1, or perhaps there was a misinterpretation of edge versus center of QM02. In any case, the effect of this change is that the thin lens estimate changes from 6% too weak to 9% too weak. At John Galayda's suggestion, we looked into the thin lens versus thick lens approximation. A Mathematica program was written to solve for the K value of the QM02, in the thick lens approximation, that provides point to point focusing from YC07 to BPMS1, and to compare this number with the value obtained using the thin lens approximation. The length of QM02 used in the thick lens calculation is the effective length determined by magnetic measurements of 0.108 m. The result of the Mathematica calculation is that the thin lens approximation predicts less magnet strength is required to produce the

  10. Luminosity measurements at hadron colliders

    SciTech Connect

    Papadimitriou, Vaia; /Fermilab

    2008-04-01

    In this paper we discuss luminosity measurements at Tevatron and HERA as well as plans for luminosity measurements at LHC. We discuss luminosity measurements using the luminosity detectors of the experiments as well as measurements by the machine. We address uncertainties of the measurements, challenges and lessons learned.

  11. Technologies for measurement while drilling

    SciTech Connect

    Not Available

    1982-01-01

    Technology for measurement while drilling in the ocean margin drilling program is discussed. Mud pulse telemetry, hardwire telemetry, detection needs for well control, pressure measurements downhole while drilling, and continuous wave mud telemetry are considered. Data utilization from measurement while drilling in seismic calibrations, drilling efficiency measurements, directional control with regard to telemetry, and measurement while coring are also reviewed.

  12. Measuring Cluster Relaxedness

    SciTech Connect

    Moreland, Blythe; /Michigan U. /SLAC

    2012-08-24

    When is a dark matter halo 'relaxed'? In our efforts to understand the structure of the universe, dark matter simulations have provided essential grounds for theoretical predictions. These simulations provide a wealth of ways of parameterizing and measuring the features of astronomical objects. It is these measurements on which we base comparisons of our world and our attempts to re-create it. One of the essential questions dark matter simulations help address is how dark matter halos evolve. How does one characterize different states of that evolution? The focus of this project is identifying cluster relaxedness and how it relates to the internal structure of the halo. A dark matter simulation consists of an N-body simulation which takes an initial set of positions and velocities of the dark matter particles and evolves them under the influence of gravity [6]. Though scientists have so far not been able to detect dark matter particles, the information from these simulations is still valuable especially given the relationship between dark matter halos and galaxy clusters. Galaxies sit within dark matter halos and recent evidence points to filaments of dark matter forming the framework on which galaxy clusters grow [7]. A dark matter halo is a collapsed group of gravitationally bound dark matter particles. Subsets of bound particles form subhalos or substructures. The dark matter simulation is carried out over time - with decreasing redshift (z) or increasing scale factor (a = 1/1+z ). (Thus, z = 0 or a = 1.0 is present-day.) The merger history of a halo can be represented pictorally by a merger tree. A major merger event occurs when a structure joins the main halo with the mass ratio between it and the main halo being above a certain threshold. These events mark important points in the halo's evolution. And it is at these events that one hopes, and perhaps is more likely, to relate measures of relaxedness to this mass accretion. Cluster relaxedness is not a well

  13. A measure of welfare.

    PubMed

    Harrison, P

    1979-10-01

    The Overseas Development Council has been seeking to perfect a new kind of measure for assessment of development strategies, for it has long been recognized that the Gross National Product is an inadequate measurement tool. The Physical Quality of Life Index, developed by the ODC over the past 3 years, scores nations on a scale of 0-100. It is calculated by averaging the countries' scores in 3 important fields of welfare -- adult literacy, infant mortality, and life expectancy at age 1. Although the PQLI data are averages also they do seem to be sensitive to the distribution of benefits. Results have been calculated for every country in the world, and they refute the arguments of conservative economists and political leaders who claim that basic human needs can only be met through rapid economic growth. Poor countries can achieve high levels of welfare for their population without waiting for growth in material wealth, and relatively high levels of national income can fail to guarantee that the mass of the population will have their basic needs met. In that their advance tends to slow down as countries approach the upper levels of the PQLI, the Overseas Development Council introduced a new concept -- the disparity reduction ratio -- for measuring changes in welfare. This is the annual rate at which each nation is closing the gap between its current score and the best expected score anywhere for the year 2000. The disparity reduction rate may permit exact targets to be established for progress in meeting basic needs. A worthwhile objective over the next 20 years might be for each country to halve the gap separating them from the best attainable. PMID:12261487

  14. Workload: Measurement and Management

    NASA Technical Reports Server (NTRS)

    Gore, Brian Francis; Casner, Stephen

    2010-01-01

    Poster: The workload research project has as its task to survey the available literature on: (1) workload measurement techniques; and (2) the effects of workload on operator performance. The first set of findings provides practitioners with a collection of simple-to-use workload measurement techniques along with characterizations of the kinds of tasks each technique has been shown reliably address. This allows design practitioners to select and use the most appropriate techniques for the task(s) at hand. The second set of findings provides practitioners with the guidance they need to design for appropriate kinds and amounts of workload across all tasks for which the operator is responsible. This guidance helps practitioners design systems and procedures that ensure appropriate levels of engagement across all tasks, and avoid designs and procedures that result in operator boredom, complacency, loss of awareness, undue levels of stress, or skill atrophy that can result from workload that distracts operators from the tasks they perform and monitor, workload levels that are too low, too high, or too consistent or predictable. Only those articles that were peer reviewed, long standing and generally accepted in the field, and applicable to a relevant range of conditions in a select domain of interest, in analogous "extreme" environments to those in space were included. In addition, all articles were reviewed and evaluated on uni-dimensional and multi-dimensional considerations. Casner & Gore also examined the notion of thresholds and the conditions that may benefit mostly from the various methodological approaches. Other considerations included whether the tools would be suitable for guiding a requirement-related and design-related question. An initial review of over 225 articles was conducted and entered into an EndNote database. The reference list included a range of conditions in the domain of interest (subjective/objective measures), the seminal works in workload, as

  15. Using Technical Performance Measures

    NASA Technical Reports Server (NTRS)

    Garrett, Christopher J.; Levack, Daniel J. H.; Rhodes, Russel E.

    2011-01-01

    All programs have requirements. For these requirements to be met, there must be a means of measurement. A Technical Performance Measure (TPM) is defined to produce a measured quantity that can be compared to the requirement. In practice, the TPM is often expressed as a maximum or minimum and a goal. Example TPMs for a rocket program are: vacuum or sea level specific impulse (lsp), weight, reliability (often expressed as a failure rate), schedule, operability (turn-around time), design and development cost, production cost, and operating cost. Program status is evaluated by comparing the TPMs against specified values of the requirements. During the program many design decisions are made and most of them affect some or all of the TPMs. Often, the same design decision changes some TPMs favorably while affecting other TPMs unfavorably. The problem then becomes how to compare the effects of a design decision on different TPMs. How much failure rate is one second of specific impulse worth? How many days of schedule is one pound of weight worth? In other words, how to compare dissimilar quantities in order to trade and manage the TPMs to meet all requirements. One method that has been used successfully and has a mathematical basis is Utility Analysis. Utility Analysis enables quantitative comparison among dissimilar attributes. It uses a mathematical model that maps decision maker preferences over the tradeable range of each attribute. It is capable of modeling both independent and dependent attributes. Utility Analysis is well supported in the literature on Decision Theory. It has been used at Pratt & Whitney Rocketdyne for internal programs and for contracted work such as the J-2X rocket engine program. This paper describes the construction of TPMs and describes Utility Analysis. It then discusses the use of TPMs in design trades and to manage margin during a program using Utility Analysis.

  16. Plug Loads Conservation Measures

    2010-12-31

    This software requires inputs of simple plug loads inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Vending Machine Misers, Delamp Vending Machine, Desktop to Laptop retrofit, CRT to LCD monitors retrofit, Computer Power Management Settings, and Energy Star Refrigerator retrofit. This tool calculates energy savings, demand reduction, cost savings, building life cycle costs including: simple payback, discounted payback, net-present value, and savings tomore » investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  17. Surface cleanliness measurement procedure

    DOEpatents

    Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank

    2002-01-01

    A procedure and tools for quantifying surface cleanliness are described. Cleanliness of a target surface is quantified by wiping a prescribed area of the surface with a flexible, bright white cloth swatch, preferably mounted on a special tool. The cloth picks up a substantial amount of any particulate surface contamination. The amount of contamination is determined by measuring the reflectivity loss of the cloth before and after wiping on the contaminated system and comparing that loss to a previous calibration with similar contamination. In the alternative, a visual comparison of the contaminated cloth to a contamination key provides an indication of the surface cleanliness.

  18. Method for resonant measurement

    DOEpatents

    Rhodes, George W.; Migliori, Albert; Dixon, Raymond D.

    1996-01-01

    A method of measurement of objects to determine object flaws, Poisson's ratio (.sigma.) and shear modulus (.mu.) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson's ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson's ratio using other modes dependent on both the shear modulus and Poisson's ratio.

  19. Measurements of plasma zinc

    PubMed Central

    Davies, I. J. T.; Musa, M.; Dormandy, T. L.

    1968-01-01

    Zinc is an essential trace element. Previous methods of measuring zinc in clinical material have been difficult and reported findings must be treated with caution. Using atomic absorption spectroscopy it has been established that plasma zinc is one of the most uniform biochemical characteristics of normal adult blood. Sex and age differences in adult life are insignificant. Increased metabolic activity, on the other hand, induces a marked, immediate fall in plasma zinc level. The possible implications of this are discussed. Zinc levels in patients with diabetes mellitus, cardiovascular disease, and anaemia due to acute blood loss have been within normal limits. Plasma zinc is low in certain types of liver disease. PMID:5303355

  20. Service quality measurement.

    PubMed

    McAlexander, J H; Kaldenberg, D O; Koenig, H F

    1994-01-01

    Extending the research on service quality in health care, the authors examine the efficacy of four models for measuring service quality and conclude that SERVPERF methods are superior to SERVQUAL methods. Their study found that dental patients' assessments of overall service quality were strongly influenced by assessments of provider performance. Furthermore, an examination into the causal order between perceptions of overall service quality and patient satisfaction reveals such strong reciprocal influences that it's impossible to conclude that one empirically precedes the other. Finally, the authors found that purchase intentions are influenced by both patient satisfaction and patient assessments of overall service quality. PMID:10138734

  1. Measurement of Object Relations

    PubMed Central

    SMITH, THOMAS E.

    1993-01-01

    Although object relations theories are increasingly prominent in the psychoanalytic and psychotherapeutic literature, efforts to study these phenomena empirically remain in their infancy. Researchers interested in studying intrapsychic processes have nonetheless attempted to assess levels of object relatedness, and several reports have documented both construct and predictive validity. This literature is reviewed, with special emphasis on the difficulties involved in the development of assessment instruments. The author summarizes reliability and validity data on the most widely used instruments in an effort to provide general guidelines for researchers interested in developing strategies for measuring object relations. PMID:22700124

  2. Measurements of stratospheric bromine

    NASA Technical Reports Server (NTRS)

    Sedlacek, W. A.; Lazrus, A. L.; Gandrud, B. W.

    1984-01-01

    From 1974 to 1977, molecules containing acidic bromine were sampled in the stratosphere by using tetrabutyl ammonium hydroxide impregnated filters. Sampling was accomplished by WB-57F aircraft and high-altitude balloons, spanning latitudes from the equator to 75 deg N and altitudes up to 36.6 km. Analytical results are reported for 4 years of measurements and for laboratory simulations that determined the filter collection efficiencies for a number of brominated species. Mass mixing ratios for the collected bromine species in air average about 27 pptm in the stratosphere. Seasonal variability seems to be small.

  3. SUMP MEASURING SYSTEM

    SciTech Connect

    Vrettos, N; Athneal Marzolf, A; Casandra Robinson, C; James Fiscus, J; Daniel Krementz, D; Thomas Nance, T

    2007-11-26

    The process sumps in H-Canyon at the Savannah River Site (SRS) collect leaks from process tanks and jumpers. To prevent build-up of fissile material the sumps are frequently flushed which generates liquid waste and is prone to human error. The development of inserts filled with a neutron poison will allow a reduction in the frequency of flushing. Due to concrete deterioration and deformation of the sump liners the current dimensions of the sumps are unknown. Knowledge of these dimensions is necessary for development of the inserts. To solve this problem a remote Sump Measurement System was designed, fabricated, and tested to aid development of the sump inserts.

  4. Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Tropical rainfall affects the lives and economics of a majority of the Earth's population. Tropical rain systems, such as hurricanes, typhoons, and monsoons, are crucial to sustaining the livelihoods of those living in the tropics. Excess rainfall can cause floods and great property and crop damage, whereas too little rainfall can cause drought and crop failure. The latent heat release during the process of precipitation is a major source of energy that drives the atmospheric circulation. This latent heat can intensify weather systems, affecting weather thousands of kilometers away, thus making tropical rainfall an important indicator of atmospheric circulation and short-term climate change. Tropical forests and the underlying soils are major sources of many of the atmosphere's trace constituents. Together, the forests and the atmosphere act as a water-energy regulating system. Most of the rainfall is returned to the atmosphere through evaporation and transpiration, and the atmospheric trace constituents take part in the recycling process. Hence, the hydrological cycle provides a direct link between tropical rainfall and the global cycles of carbon, nitrogen, and sulfur, all important trace materials for the Earth's system. Because rainfall is such an important component in the interactions between the ocean, atmosphere, land, and the biosphere, accurate measurements of rainfall are crucial to understanding the workings of the Earth-atmosphere system. The large spatial and temporal variability of rainfall systems, however, poses a major challenge to estimating global rainfall. So far, there has been a lack of rain gauge networks, especially over the oceans, which points to satellite measurement as the only means by which global observation of rainfall can be made. The Tropical Rainfall Measuring Mission (TRMM), jointly sponsored by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of

  5. Measuring Black Hole Spin

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    1999-09-01

    WE PROPOSE TO CARRY OUT A SYSTEMATIC STUDY OF EMISSION AND ABSORPTION SPECTRAL FEATURES THAT ARE OFTEN SEEN IN X-RAY SPECTRA OF BLACK HOLE BINARIES. THE EXCELLENT SENSITIVITY AND ENERGY RESOLUTION OF THE ACIS/HETG COMBINATION WILL NOT ONLY HELP RESOLVE AMBIGUITIES IN INTERPRETING THESE FEATURES, BUT MAY ALLOW MODELLING OF THE EMISSION LINE PROFILES IN DETAIL. THE PROFILES MAY CONTAIN INFORMATION ON SUCH FUNDAMENTAL PROPERTIES AS THE SPIN OF BLACK HOLES. THEREFORE, THIS STUDY COULD LEAD TO A MEASUREMENT OF BLACK HOLE SPIN FOR SELECTED SOURCES. THE RESULT CAN THEN BE DIRECTLY COMPARED WITH THOSE FROM PREVIOUS STUDIES BASED ON INDEPENDENT METHODS.

  6. RADIATION MEASURING DEVICES

    DOEpatents

    Bouricius, G.M.B.; Rusch, G.K.

    1960-03-22

    A radiation-measuring device is described having an a-c output. The apparatus has a high-energy particle source responsive to radiation flux disposed within a housing having a pair of collector plates. A potential gradient between the source and collector plates causes ions to flow to the plates. By means of electrostatic or magnetic deflection elements connected to an alternating potential, the ions are caused to flow alternately to each of the collector plates causing an a-c signal thereon.

  7. Method for resonant measurement

    DOEpatents

    Rhodes, G.W.; Migliori, A.; Dixon, R.D.

    1996-03-05

    A method of measurement of objects to determine object flaws, Poisson`s ratio ({sigma}) and shear modulus ({mu}) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson`s ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson`s ratio using other modes dependent on both the shear modulus and Poisson`s ratio. 1 fig.

  8. Air pressure measurement

    NASA Technical Reports Server (NTRS)

    Ballard, H. N.

    1978-01-01

    The pressure measurement was made by a Model 830J Rosemont sensor which utilized the principle of a changing pressure to change correspondingly the capacitance of the pressure sensitive element. The sensor's range was stated to be from zero to 100 Torr (14 km); however, the sensor was not activated until an altitude of 20 km (41 Torr) was reached during the balloon ascent. The resolution of the sensor was specified by the manufacturer as infinitesimal; however, associated electronic and pressure readout systems limit the resolution to .044 Torr. Thus in the vicinity of an altitude of 30 km the pressure resolution corresponded to an altitude resolution of approximately 33 meters.

  9. Plug Loads Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple plug loads inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Vending Machine Misers, Delamp Vending Machine, Desktop to Laptop retrofit, CRT to LCD monitors retrofit, Computer Power Management Settings, and Energy Star Refrigerator retrofit. This tool calculates energy savings, demand reduction, cost savings, building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  10. The quantum measurement problem.

    PubMed

    Leggett, A J

    2005-02-11

    Despite the spectacular success of quantum mechanics (QM) over the last 80 years in explaining phenomena observed at the atomic and subatomic level, the conceptual status of the theory is still a topic of lively controversy. Most of the discussion centers around two famous paradoxes (or, as some would have it, pseudoparadoxes) associated, respectively, with the names of Einstein, Podolsky, and Rosen (EPR) and with Schrodinger's cat. In this Viewpoint, I will concentrate on the paradox of Schrodinger's cat or, as it is often known (to my mind somewhat misleadingly), the quantum measurement paradox.

  11. Pyoverdine and pyochelin measurements.

    PubMed

    Hoegy, Françoise; Mislin, Gaetan L A; Schalk, Isabelle J

    2014-01-01

    Siderophores are small organic chelators (of molecular weight between 200 and 2,000 Da), having a very high affinity for iron (10(17)-10(43) M(-1)). They are synthesized by bacteria and secreted into their environment in order to get access to iron, an essential element for bacterial growth. Pyoverdine (also called fluorescins or pseudobactins) and pyochelin are the two major siderophores produced by Pseudomonas aeruginosa in iron-limited media. Methods to specifically detect and measure the amount of pyoverdine and pyochelin in a bacterial culture are provided here. These methods are based on the spectral properties of these two siderophores. PMID:24818914

  12. Water Conservation Measures

    2010-12-31

    This software requires inputs of simple water fixture inventory information and calculates the water/energy and cost benefits of various retrofit opportunities. This tool includes water conservation measures for: Low-flow Toilets, Low-flow Urinals, Low-flow Faucets, and Low-flow Showheads. This tool calculates water savings, energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits ofmore » a project.« less

  13. Optically measuring interior cavities

    DOEpatents

    Stone, Gary Franklin

    2008-12-21

    A method of measuring the three-dimensional volume or perimeter shape of an interior cavity includes the steps of collecting a first optical slice of data that represents a partial volume or perimeter shape of the interior cavity, collecting additional optical slices of data that represents a partial volume or perimeter shape of the interior cavity, and combining the first optical slice of data and the additional optical slices of data to calculate of the three-dimensional volume or perimeter shape of the interior cavity.

  14. Optically measuring interior cavities

    DOEpatents

    Stone, Gary Franklin

    2009-11-03

    A method of measuring the three-dimensional volume or perimeter shape of an interior cavity includes the steps of collecting a first optical slice of data that represents a partial volume or perimeter shape of the interior cavity, collecting additional optical slices of data that represents a partial volume or perimeter shape of the interior cavity, and combining the first optical slice of data and the additional optical slices of data to calculate of the three-dimensional volume or perimeter shape of the interior cavity.

  15. Measurement of appearance

    NASA Astrophysics Data System (ADS)

    White, Helen; Pointer, Michael

    2002-06-01

    The visual appearance can be one of the most critical parameters affecting customer choise and, therefore, it needs to be quantifiable to ensure uniformity and reproducibility. A starting point in assessing the appearance of a consumer product might be the measurement of its colour. The description of its total appearance, however, cannot be achieved by the definition of color alone; other attributes of the material from which it is fabricated contribute to the overall appearance. The texture of a surface, for example, will cause changes in colour depending on the lighting direction; the freshness of food is judged by its overall appearance, but in a way that is much more subtle than by just its color; and novel effects such as pearlescence are added to products to enhance their attractiveness. For some products, such as cosmetics, it is not only their own appearance characteristics that are important, but also the visual effect after they have been applied to the skin, nails, hair, etc. It is clear, therefore, that the interest of industry in the measurement of appearance goes beyond simply surface color.

  16. Measurement of radiofrequency fields

    SciTech Connect

    Leonowich, J.A.

    1992-05-01

    We are literally surrounded by radiofrequency (RFR) and microwave radiation, from both natural and man-made sources. The identification and control of man-made sources of RFR has become a high priority of radiation safety professionals in recent years. For the purposes of this paper, we will consider RFR to cover the frequencies from 3 kHz to 300 MHz, and microwaves from 300 MHz to 300 GHz, and will use the term RFR interchangeably to describe both. Electromagnetic radiation and field below 3 kHz is considered Extremely Low Frequency (ELF) and will not be discussed in this paper. Unlike x- and gamma radiation, RFR is non-ionizing. The energy of any RFR photon is insufficient to produce ionizations in matter. The measurement and control of RFR hazards is therefore fundamentally different from ionizing radiation. The purpose of this paper is to acquaint the reader with the fundamental issues involved in measuring and safely using RFR fields. 23 refs.

  17. EPHIN anisotropy measurement capability

    NASA Astrophysics Data System (ADS)

    Banjac, S.; Gómez-Herrero, R.; Heber, B.; Kühl, P.; Terasa, C.

    2015-08-01

    The EPHIN instrument (Electron Proton Helium INstrument) forms a part of the COSTEP experiment (COmprehensive SupraThermal and Energetic Particle Analyzer) within the CEPAC collaboration on board of the SOHO spacecraft (SOlar and Heliospheric Observatory). The EPHIN sensor is a stack of six solid-state detectors surrounded by an anticoincidence. It measures energy spectra of electrons in the range 250 keV to > 8.7 MeV, and hydrogen and helium isotopes in the range 4 MeV/nuc to > 53 MeV/nuc. In order to improve the isotopic resolution, the first two detectors have been segmented: 5 sectors form a ring enclosing a central segment. This does not only allow to correct the energy-losses for particles with different path-lengths in the detectors, but allows also an estimation of the arrival direction with respect to the sensor axis. For that purpose we developed a method that allows for inferring the angle of incidence and angular distribution for ions. Here we describe the method and apply it to the November, 3, 2011 event. Due to the lack of magnetic field measurements and the restricted view cone of 83°, it is not possible to derive a real pitch angle distribution during this event. However, we can show that the particle distribution is anisotropic for several hours with a symmetry axis that deviates by about 20° from the sensor axis.

  18. Universal Quantum Measurements

    NASA Astrophysics Data System (ADS)

    Brody, Dorje C.; Hughston, Lane P.

    2015-06-01

    We introduce a family of operations in quantum mechanics that one can regard as “universal quantum measurements” (UQMs). These measurements are applicable to all finite dimensional quantum systems and entail the specification of only a minimal amount of structure. The first class of UQM that we consider involves the specification of the initial state of the system—no further structure is brought into play. We call operations of this type “tomographic measurements”, since given the statistics of the outcomes one can deduce the original state of the system. Next, we construct a disentangling operation, the outcome of which, when the procedure is applied to a general mixed state of an entangled composite system, is a disentangled product of pure constituent states. This operation exists whenever the dimension of the Hilbert space is not a prime, and can be used to model the decay of a composite system. As another example, we show how one can make a measurement of the direction along which the spin of a particle of spin s is oriented (s = 1/2, 1,...). The required additional structure in this case involves the embedding of CP1 as a rational curve of degree 2s in CP2s.

  19. Beam efflux measurements

    NASA Technical Reports Server (NTRS)

    Komatsu, G. K.; Stellen, J. M., Jr.

    1976-01-01

    Measurements have been made of the high energy thrust ions, (Group I), high angle/high energy ions (Group II), and high angle/low energy ions (Group IV) of a mercury electron bombardment thruster in the angular divergence range from 0 deg to greater than 90 deg. The measurements have been made as a function of thrust ion current, propellant utilization efficiency, bombardment discharge voltage, screen and accelerator grid potential (accel-decel ratio) and neutralizer keeper potential. The shape of the Group IV (charge exchange) ion plume has remained essentially fixed within the range of variation of the engine operation parameters. The magnitude of the charge exchange ion flux scales with thrust ion current, for good propellant utilization conditions. For fixed thrust ion current, charge exchange ion flux increases for diminishing propellant utilization efficiency. Facility effects influence experimental accuracies within the range of propellant utilization efficiency used in the experiments. The flux of high angle/high energy Group II ions is significantly diminished by the use of minimum decel voltages on the accelerator grid. A computer model of charge exchange ion production and motion has been developed. The program allows computation of charge exchange ion volume production rate, total production rate, and charge exchange ion trajectories for "genuine" and "facilities effects" particles. In the computed flux deposition patterns, the Group I and Group IV ion plumes exhibit a counter motion.

  20. Can we measure memes?

    PubMed

    McNamara, Adam

    2011-01-01

    Memes are the fundamental unit of cultural evolution and have been left upon the periphery of cognitive neuroscience due to their inexact definition and the consequent presumption that they are impossible to measure. Here it is argued that although a precise definition of memes is rather difficult it does not preclude highly controlled experiments studying the neural substrates of their initiation and replication. In this paper, memes are termed as either internally or externally represented (i-memes/e-memes) in relation to whether they are represented as a neural substrate within the central nervous system or in some other form within our environment. It is argued that neuroimaging technology is now sufficiently advanced to image the connectivity profiles of i-memes and critically, to measure changes to i-memes over time, i.e., as they evolve. It is argued that it is wrong to simply pass off memes as an alternative term for "stimulus" and "learnt associations" as it does not accurately account for the way in which natural stimuli may dynamically "evolve" as clearly observed in our cultural lives.

  1. Measuring Safeguards Culture

    SciTech Connect

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-07-19

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  2. Repeated measures with zeros.

    PubMed

    Berk, K N; Lachenbruch, P A

    2002-08-01

    Consider repeated measures data with many zeros. For the case with one grouping factor and one repeated measure, we examine several models, assuming that the nonzero data are roughly lognormal. One of the simplest approaches is to model the zeros as left-censored observations from the lognormal distribution. A random effect is assumed for subjects. The censored model makes a strong assumption about the relationship between the zeros and the nonzero values. To check on this, you can instead assume that some of the zeros are 'true' zeros and model them as Bernoulli. Then the other values are modeled with a censored lognormal. A logistic model is used for the Bernoulli p, the probability of a true nonzero. The fit of the pure left-censored lognormal can be assessed by testing the hypothesis that p is 1, as described by Moulton and Halsey. The model can also be simplified by omitting the censoring, leaving a logistic model for the zeros and a lognormal model for the nonzero values. This is approximately equivalent to modeling the zero and nonzero values separately, a two-part model. In contrast to the censored model, this model assumes only a slight relationship (a covariance component) between the occurrence of zeros and the size of the nonzero values. The models are compared in terms of an example with data from children's private speech. PMID:12197298

  3. Measuring zebrafish turning rate.

    PubMed

    Mwaffo, Violet; Butail, Sachit; di Bernardo, Mario; Porfiri, Maurizio

    2015-06-01

    Zebrafish is becoming a popular animal model in preclinical research, and zebrafish turning rate has been proposed for the analysis of activity in several domains. The turning rate is often estimated from the trajectory of the fish centroid that is output by commercial or custom-made target tracking software run on overhead videos of fish swimming. However, the accuracy of such indirect methods with respect to the turning rate associated with changes in heading during zebrafish locomotion is largely untested. Here, we compare two indirect methods for the turning rate estimation using the centroid velocity or position data, with full shape tracking for three different video sampling rates. We use tracking data from the overhead video recorded at 60, 30, and 15 frames per second of zebrafish swimming in a shallow water tank. Statistical comparisons of absolute turning rate across methods and sampling rates indicate that, while indirect methods are indistinguishable from full shape tracking, the video sampling rate significantly influences the turning rate measurement. The results of this study can aid in the selection of the video capture frame rate, an experimental design parameter in zebrafish behavioral experiments where activity is an important measure.

  4. Temperature Measurement Aid

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA's Ames Research Center has designed a simple but medically important device--one which holds temperature probes, called thermistors, to a person's skin without affecting the characteristics of the skin segment being measured. The device improves the accuracy of skin surface temperature measurements, valuable data in health evaluation. The need for such a device was recognized in the course of life science experiments at Ames. In earlier methods, the sensing head of the temperature probe was affixed to the patient's skin by tape or elastic bands. This created a heat variance which altered skin temperature readings. The Ames-developed thermistor holder is a plastic ring with tab extensions, shown in the upper photo on the chest, arm and leg of the patient undergoing examination. The ring holds the sensing head of the temperature probe and provides firm, constant pressure between the skin and the probe. The tabs help stabilize the ring and provide attachment points for the fastening tape or bands, which do not directly touch the sensor. With this new tool, it is possible to determine more accurately the physiological effects of strenuous exercise, particularly on the treadmill. The holder is commercially available from Yellow Springs Instrument Company, Inc., Yellow Springs, Ohio, which is producing the device under a NASA patent license.

  5. Evaluating linguistic distance measures

    NASA Astrophysics Data System (ADS)

    Wichmann, Søren; Holman, Eric W.; Bakker, Dik; Brown, Cecil H.

    2010-09-01

    In Ref. [13], Petroni and Serva discuss the use of Levenshtein distances (LD) between words referring to the same concepts as a tool for establishing overall distances among languages which can then subsequently be used to derive phylogenies. The authors modify the raw LD by dividing the LD by the length of the longer of the two words compared, to produce what could be called LDN (normalized LD). Other scholars [7,8] have used a further modification, where they divide the LDN by the average LDN among words not referring to the same concept. This produces what could be called LDND. The authors of Ref. [13] question whether LDND is a more adequate measure of distance than LDN. Here we show empirically that LDND is the better measure in the situation where the languages compared have not already been shown, by other, more traditional methods of comparative linguistics, to be related. If automated language classification is to be used as a tool independent of traditional methods then the further modification is necessary.

  6. Measurement of enzyme activity.

    PubMed

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  7. Measuring creative imagery abilities

    PubMed Central

    Jankowska, Dorota M.; Karwowski, Maciej

    2015-01-01

    Over the decades, creativity and imagination research developed in parallel, but they surprisingly rarely intersected. This paper introduces a new theoretical model of creative visual imagination, which bridges creativity and imagination research, as well as presents a new psychometric instrument, called the Test of Creative Imagery Abilities (TCIA), developed to measure creative imagery abilities understood in accordance with this model. Creative imagination is understood as constituted by three interrelated components: vividness (the ability to create images characterized by a high level of complexity and detail), originality (the ability to produce unique imagery), and transformativeness (the ability to control imagery). TCIA enables valid and reliable measurement of these three groups of abilities, yielding the general score of imagery abilities and at the same time making profile analysis possible. We present the results of nine studies on a total sample of more than 1700 participants, showing the factor structure of TCIA using confirmatory factor analysis, as well as provide data confirming this instrument's validity and reliability. The availability of TCIA for interested researchers may result in new insights and possibilities of integrating the fields of creativity and imagination science. PMID:26539140

  8. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  9. Wavefront Measurement in Ophthalmology

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl

    Wavefront sensing or aberration measurement in the eye is a key problem in refractive surgery and vision correction with laser. The accuracy of these measurements is critical for the outcome of the surgery. Practically all clinical methods use laser as a source of light. To better understand the background, we analyze the pre-laser techniques developed over centuries. They allowed new discoveries of the nature of the optical system of the eye, and many served as prototypes for laser-based wavefront sensing technologies. Hartmann's test was strengthened by Platt's lenslet matrix and the CCD two-dimensional photodetector acquired a new life as a Hartmann-Shack sensor in Heidelberg. Tscherning's aberroscope, invented in France, was transformed into a laser device known as a Dresden aberrometer, having seen its reincarnation in Germany with Seiler's help. The clinical ray tracing technique was brought to life by Molebny in Ukraine, and skiascopy was created by Fujieda in Japan. With the maturation of these technologies, new demands now arise for their wider implementation in optometry and vision correction with customized contact and intraocular lenses.

  10. Can We Measure Memes?

    PubMed Central

    McNamara, Adam

    2011-01-01

    Memes are the fundamental unit of cultural evolution and have been left upon the periphery of cognitive neuroscience due to their inexact definition and the consequent presumption that they are impossible to measure. Here it is argued that although a precise definition of memes is rather difficult it does not preclude highly controlled experiments studying the neural substrates of their initiation and replication. In this paper, memes are termed as either internally or externally represented (i-memes/e-memes) in relation to whether they are represented as a neural substrate within the central nervous system or in some other form within our environment. It is argued that neuroimaging technology is now sufficiently advanced to image the connectivity profiles of i-memes and critically, to measure changes to i-memes over time, i.e., as they evolve. It is argued that it is wrong to simply pass off memes as an alternative term for “stimulus” and “learnt associations” as it does not accurately account for the way in which natural stimuli may dynamically “evolve” as clearly observed in our cultural lives. PMID:21720531

  11. Intensity Biased PSP Measurement

    NASA Technical Reports Server (NTRS)

    Subramanian, Chelakara S.; Amer, Tahani R.; Oglesby, Donald M.; Burkett, Cecil G., Jr.

    2000-01-01

    The current pressure sensitive paint (PSP) technique assumes a linear relationship (Stern-Volmer Equation) between intensity ratio (I(sub o)/I) and pressure ratio (P/P(sub o)) over a wide range of pressures (vacuum to ambient or higher). Although this may be valid for some PSPs, in most PSPs the relationship is nonlinear, particularly at low pressures (less than 0.2 psia when the oxygen level is low). This non-linearity can be attributed to variations in the oxygen quenching (de-activation) rates (which otherwise is assumed constant) at these pressures. Other studies suggest that some paints also have non-linear calibrations at high pressures; because of heterogeneous (non-uniform) oxygen diffusion and quenching. Moreover, pressure sensitive paints require correction for the output intensity due to light intensity variation, paint coating variation, model dynamics, wind-off reference pressure variation, and temperature sensitivity. Therefore to minimize the measurement uncertainties due to these causes, an insitu intensity correction method was developed. A non-oxygen quenched paint (which provides a constant intensity at all pressures, called non-pressure sensitive paint, NPSP) was used for the reference intensity (I(sub NPSP) with respect to which all the PSP intensities (I) were measured. The results of this study show that in order to fully reap the benefits of this technique, a totally oxygen impermeable NPSP must be available.

  12. Intensity Biased PSP Measurement

    NASA Technical Reports Server (NTRS)

    Subramanian, Chelakara S.; Amer, Tahani R.; Oglesby, Donald M.; Burkett, Cecil G., Jr.

    2000-01-01

    The current pressure sensitive paint (PSP) technique assumes a linear relationship (Stern-Volmer Equation) between intensity ratio (I(sub 0)/I) and pressure ratio (P/P(sub 0)) over a wide range of pressures (vacuum to ambient or higher). Although this may be valid for some PSPs, in most PSPs the relationship is nonlinear, particularly at low pressures (less than 0.2 psia when the oxygen level is low). This non-linearity can be attributed to variations in the oxygen quenching (de-activation) rates (which otherwise is assumed constant) at these pressures. Other studies suggest that some paints also have non-linear calibrations at high pressures; because of heterogeneous (non-uniform) oxygen diffusion and c quenching. Moreover, pressure sensitive paints require correction for the output intensity due to light intensity variation, paint coating variation, model dynamics, wind-off reference pressure variation, and temperature sensitivity. Therefore to minimize the measurement uncertainties due to these causes, an in- situ intensity correction method was developed. A non-oxygen quenched paint (which provides a constant intensity at all pressures, called non-pressure sensitive paint, NPSP) was used for the reference intensity (I(sub NPSP)) with respect to which all the PSP intensities (I) were measured. The results of this study show that in order to fully reap the benefits of this technique, a totally oxygen impermeable NPSP must be available.

  13. Can we measure connectivity?

    NASA Astrophysics Data System (ADS)

    Brazier, Richard; Vericat, Damia; Cerda, Artemi; Brardinoni, Francesco; Batalla, Ramon; Masselink, Rens; Wittenberg, Lea; Nadal Romero, Estela; López-Tarazón, José; Estrany, Joan; Keesstra, Saskia

    2015-04-01

    Whilst the term 'connectivity' in hydrological and sediment-based research is becoming increasing well-known, it is neither used consistently in the existing literature, nor is it clear from that literature, that the connectivity of a landscape, or part of a landscape can be measured. However, it is argued that understanding how well critical source areas of water or sediment are connected to receiving surface waters, may be an essential step towards improvement of land management to mitigate flooding, soil erosion and water quality problems. The first part of this paper, therefore, explores what is currently meant by the term connectivity; addressing the differences between structural and functional, or process-based connectivity, specifically with reference to the movement of water and sediment through an ecosystem. We argue that most existing studies do not measure connectivity. Instead, they address only part of the story. Existing work may describe structural change in a landscape, which can perhaps elucidate the potential for connectivity to occur, or indeed the emergent spatial properties of an ecosystem, but it rarely quantifies the connectivity of an ecosystem in a process-based manner through time. Alternatively, a great deal of work describes fluxes of water and sediment at (sometimes multiple) points in a landscape and infers connectivity of the system via analysis of time series data; from rainfall peak to hydrograph peak or start of sediment flux until peak sediment flux within an event. Such data are doubtless useful to understand catchment function, but alone, they do not provide evidence that quantifies (for example) how well connected sediment sources are to the outlets of the catchments from which they flux. Finally, there are many examples of water and particularly sediment tracing studies, which attempt to link, either directly or indirectly water or sediment sources with their sinks (which might more usefully be termed temporary stores

  14. Saturation of repeated quantum measurements

    NASA Astrophysics Data System (ADS)

    Haapasalo, Erkka; Heinosaari, Teiko; Kuramochi, Yui

    2016-08-01

    We study sequential measurement scenarios where the system is repeatedly subjected to the same measurement process. We first provide examples of such repeated measurements where further repetitions of the measurement do not increase our knowledge on the system after some finite number of measurement steps. We also prove, however, that repeating the Lüders measurement of an unsharp two-outcome observable never saturates in this sense, and we characterize the observable measured in the limit of infinitely many repetitions. Our result implies that a repeated measurement can be used to correct the inherent noise of an unsharp observable.

  15. Rethinking Learning Measurement: Transformational Impact of New Measures of Performance

    ERIC Educational Resources Information Center

    Spitzer, Dean R.

    2008-01-01

    Learning has changed dramatically, but learning measurement has not. Since we can only effectively manage what we can measure, how we measure learning must change. This article posits that fifty years after Kirkpatrick's work, it is time for new thinking about the measurement of learning to emerge. This article challenges learning and human…

  16. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  17. Measuring to improve.

    PubMed

    Klein, R; Bobbitt, M

    1995-01-01

    Rush Prudential Health Plans, a managed care company located in Chicago, Illinois, is implementing a service quality improvement process across the three products it markets in the Chicago area: The Anchor Plan (a primarily staff model HMO), The Affiliates Plan (a network model HMO), and The Plus Plan (a point of service plan). In 1994, the company instituted an annual member satisfaction research study, conducted across the three plans, and began building a link between external customer requirements and internal operations. The research process consisted of three stages: determining external customer requirements, translating these customer-defined "symptoms" into underlying root causes, and developing a service quality improvement action plan. Rush Prudential determined that traditional "report card" surveys would not meet their goals for the information measurement process. A detailed diagnostic telephone survey was used to provide a picture of the entire clinical encounter, from scheduling an appointment through the time a member left the physician's office. PMID:10151598

  18. NIF Ambient Vibration Measurements

    SciTech Connect

    Noble, C.R.; Hoehler, M.S., S.C. Sommer

    1999-11-29

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B.

  19. NBS: Materials measurements

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Measurements in an Auger spectrometer of surface impurity concentrations on liquid gallium showed that the principle impurities were oxygen and carbon. The impurities showed a tendency to collect into plates or clumps. In Pb rich Pb-Sn off eutectic alloys, macrosegration caused by solutal convection was not reduced by vertical or horizontal fields of 0.1 T, but downward solidification virtually eliminated macrosegration in small diameter samples. Phase assemblages of selected compositions on the joints K(Fe0.5 Si-0.5) O2 -SiO2 and KFeO2 - SiO2 were determined over a large range of oxygen partial pressures and the temperature range 800 C to 1400 C.

  20. Measuring to improve.

    PubMed

    Klein, R; Bobbitt, M

    1995-01-01

    Rush Prudential Health Plans, a managed care company located in Chicago, Illinois, is implementing a service quality improvement process across the three products it markets in the Chicago area: The Anchor Plan (a primarily staff model HMO), The Affiliates Plan (a network model HMO), and The Plus Plan (a point of service plan). In 1994, the company instituted an annual member satisfaction research study, conducted across the three plans, and began building a link between external customer requirements and internal operations. The research process consisted of three stages: determining external customer requirements, translating these customer-defined "symptoms" into underlying root causes, and developing a service quality improvement action plan. Rush Prudential determined that traditional "report card" surveys would not meet their goals for the information measurement process. A detailed diagnostic telephone survey was used to provide a picture of the entire clinical encounter, from scheduling an appointment through the time a member left the physician's office.

  1. Measuring PV module delamination

    SciTech Connect

    Murphy, E.B.

    1980-09-22

    Delamination of the encapsulating pottant from both substrate and silicon cells in solar photovoltaic modules has been a common occurrence. While the extent of delamination is in some cases minor, there are other cases where appreciably large areas have been affected. At this time, most delaminated areas do not appear to cause electrical degradation of modules; however, keeping track of delamination growth and rate of growth is important and has been difficult. More accurate measurement of delamination has been achieved by using an acoustic digitizer to record the pattern of delamination. With the aid of a computer, software can be generated that shows the exact areas of delamination. By periodic measrement of those types of modules prone to delamination, growth rates can be documented.

  2. Monolithically compatible impedance measurement

    DOEpatents

    Ericson, Milton Nance; Holcomb, David Eugene

    2002-01-01

    A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.

  3. Pressure Measurement Sensor

    NASA Technical Reports Server (NTRS)

    1997-01-01

    FFPI Industries Inc. is the manufacturer of fiber-optic sensors that furnish accurate pressure measurements in internal combustion chambers. Such an assessment can help reduce pollution emitted by these engines. A chief component in the sensor owes its seven year- long development to Lewis Research Center funding to embed optical fibers and sensors in metal parts. NASA support to Texas A&M University played a critical role in developing this fiber optic technology and led to the formation of FFPI Industries and the production of fiber sensor products. The simple, rugged design of the sensor offers the potential for mass production at low cost. Widespread application of the new technology is forseen, from natural gas transmission, oil refining and electrical power generation to rail transport and the petrochemical paper product industry.

  4. Optical Measurement Center Status

    NASA Technical Reports Server (NTRS)

    Rodriguez, H.; Abercromby, K.; Mulrooney, M.; Barker, E.

    2007-01-01

    Beginning in 2005, an optical measurement center (OMC) was created to measure the photometric signatures of debris pieces. Initially, the OMC was equipped with a 300 W xenon arc lamp, a SBIG 512 x 512 ST8X MEI CCD camera with standard Johnson filters, and a Lynx 6 robotic arm with five degrees of freedom. As research progressed, modifications were made to the equipment. A customized rotary table was built to overcome the robot s limitation of 180 degree wrist rotation and provide complete 360 degree rotation with little human interaction. This change allowed an initial phase angle (source-object-camera angle) of roughly 5 degrees to be adjusted to 7, 10, 15, 18, 20, 25, or 28 degrees. Additionally, the Johnson R and I CCD filters were replaced with the standard astronomical filters suite (Bessell R,I). In an effort to reduce object saturation, the two generic aperture stops were replaced with neutral density filters. Initially data were taken with aluminum debris pieces from the European Space Operations Centre ESOC2 ground test and more recently with samples from a thermal multi-layered insulation (MLI) commonly used on rocket bodies and satellites. The ESOC2 data provided light curve analysis for one type of material but many different shapes, including flat, bent, curled, folded, and torn. The MLI samples are roughly the same size and shape, but have different surfaces that give rise to interesting photometric light curves. In addition, filter photometry was conducted on the MLI pieces, a process that also will be used on the ESOC2 samples. While obtaining light curve data an anomalous drop in intensity was observed when the table revolved through the second 180 degree rotation. Investigation revealed that the robot s wrist rotation is not reliable past 80 degrees, thus the object may be at slightly different angles at the 180 degree transition. To limit this effect, the initial rotation position begins with the object s minimal surface area facing the camera.

  5. Measuring the solar atmosphere

    NASA Astrophysics Data System (ADS)

    de la Cruz Rodriguez, Jaime

    2010-11-01

    The new CRISP filter at the Swedish 1-m Solar Telescope provides opportunities for observing the solar atmosphere with unprecedented spatial resolution and cadence. In order to benefit from the high quality of observational data from this instrument, we have developed methods for calibrating and restoring polarized Stokes images, obtained at optical and near infrared wavelengths, taking into account field-of-view variations of the filter properties. In order to facilitate velocity measurements, a time series from a 3D hydrodynamical granulation simulation is used to compute quiet Sun spectral line profiles at different heliocentric angles. The synthetic line profiles, with their convective blueshifts, can be used as absolute references for line-of-sight velocities. Observations of the Ca II 8542 Å line are used to study magnetic fields in chromospheric fibrils. The line wings show the granulation pattern at mid-photospheric heights whereas the overlying chromosphere is seen in the core of the line. Using full Stokes data, we have attempted to observationally verify the alignment of chromospheric fibrils with the magnetic field. Our results suggest that in most cases fibrils are aligned along the magnetic field direction, but we also find examples where this is not the case. Detailed interpretation of Stokes data from spectral lines formed in the chromospheric data can be made using non-LTE inversion codes. For the first time, we use a realistic 3D MHD chromospheric simulation of the quiet Sun to assess how well NLTE inversions recover physical quantities from spectropolarimetric observations of Ca II 8542 Å. We demonstrate that inversions provide realistic estimates of depth-averaged quantities in the chromosphere, although high spectral resolution and high sensitivity are needed to measure quiet Sun chromospheric magnetic fields.

  6. Measuring Resource Utilization

    PubMed Central

    Leggett, Laura E.; Khadaroo, Rachel G.; Holroyd-Leduc, Jayna; Lorenzetti, Diane L.; Hanson, Heather; Wagg, Adrian; Padwal, Raj; Clement, Fiona

    2016-01-01

    Abstract A variety of methods may be used to obtain costing data. Although administrative data are most commonly used, the data available in these datasets are often limited. An alternative method of obtaining costing is through self-reported questionnaires. Currently, there are no systematic reviews that summarize self-reported resource utilization instruments from the published literature. The aim of the study was to identify validated self-report healthcare resource use instruments and to map their attributes. A systematic review was conducted. The search identified articles using terms like “healthcare utilization” and “questionnaire.” All abstracts and full texts were considered in duplicate. For inclusion, studies had to assess the validity of a self-reported resource use questionnaire, to report original data, include adult populations, and the questionnaire had to be publically available. Data such as type of resource utilization assessed by each questionnaire, and validation findings were extracted from each study. In all, 2343 unique citations were retrieved; 2297 were excluded during abstract review. Forty-six studies were reviewed in full text, and 15 studies were included in this systematic review. Six assessed resource utilization of patients with chronic conditions; 5 assessed mental health service utilization; 3 assessed resource utilization by a general population; and 1 assessed utilization in older populations. The most frequently measured resources included visits to general practitioners and inpatient stays; nonmedical resources were least frequently measured. Self-reported questionnaires on resource utilization had good agreement with administrative data, although, visits to general practitioners, outpatient days, and nurse visits had poorer agreement. Self-reported questionnaires are a valid method of collecting data on healthcare resource utilization. PMID:26962773

  7. Measuring integrated care.

    PubMed

    Strandberg-Larsen, Martin

    2011-02-01

    The positive outcomes of coordination of healthcare services are to an increasing extent becoming clear. However the complexity of the field is an inhibiting factor for vigorously designed trial studies. Conceptual clarity and a consistent theoretical frame-work are thus needed. While researchers respond to these needs, patients and providers face the multiple challenges of today's healthcare environment. Decision makers, planners and managers need evidence based policy options and information on the scope of the integrated care challenges they are facing. The US managed care organization Kaiser Permanente has been put forward as an example for European healthcare systems to follow, although the evidence base is far from conclusive. The thesis has five objectives: 1) To contribute to the understanding of the concept of integration in healthcare systems and to identify measurement methods to capture the multi-dimensional aspects of integrated healthcare delivery. 2) To assess the level of integration of the Danish healthcare system. 3) To assess the use of joint health plans as a tool for coordination between the regional and local level in the Danish healthcare system. 4) To compare the inputs and performance of the Danish healthcare system and the managed care organization Kaiser Permanente, California, US. 5) To compare primary care clinicians' perception of clinical integration in two healthcare systems: Kaiser Permanente, Northern California and the Danish healthcare system. Further to examine the associations between specific organizational factors and clinical integration within each system. The literature was systematically searched to identify methods for measurement of integrated healthcare delivery. A national cross-sectional survey was conducted among major professional stake-holders at five different levels of the Danish healthcare system. The survey data were used to allow for analysis of the level of integration achieved. Data from the survey were

  8. Computed Tomography Measuring Inside Machines

    NASA Technical Reports Server (NTRS)

    Wozniak, James F.; Scudder, Henry J.; Anders, Jeffrey E.

    1995-01-01

    Computed tomography applied to obtain approximate measurements of radial distances from centerline of turbopump to leading edges of diffuser vanes in turbopump. Use of computed tomography has significance beyond turbopump application: example of general concept of measuring internal dimensions of assembly of parts without having to perform time-consuming task of taking assembly apart and measuring internal parts on coordinate-measuring machine.

  9. Rational Normalization of Concentration Measures.

    ERIC Educational Resources Information Center

    Bonckaert, P.; Egghe, L.

    1991-01-01

    Discusses normalization features of good concentration measures and extends the range of values of concentration measures that are population-size-independent. Rational normalization is described, and mathematical formulas for the coefficient of variation, Pratt's measure, the Gini index, Theil's measure, and Atkinson's indices are explained. (14…

  10. Measures of Disparity. A Note.

    ERIC Educational Resources Information Center

    Rosthal, Richard A.

    Four measures of disparity were used to compute changes in the distribution of education dollars for each of the 50 states between 1970 and 1975. Three of the measures have been used by analysts and have known statistical properties, and the fourth is a less formal measure that has been embodied in a federal regulation. These measures include 1)…

  11. Measurement control workshop instructional materials

    SciTech Connect

    Gibbs, Philip; Harvel, Charles; Clark, John

    2011-12-01

    An essential element in an effective nuclear materials control and accountability (MC&A) program is the measurement of the nuclear material as it is received, moved, processed and shipped. Quality measurement systems and methodologies determine the accuracy of the accountability values. Implementation of a measurement control program is essential to ensure that the measurement systems and methodologies perform as expected. A measurement control program also allows for a determination of the level of confidence in the ac counting values.

  12. Measurement control workshop instructional materials

    SciTech Connect

    Gibbs, Philip; Harvel, Charles; Clark, John

    2012-09-01

    An essential element in an effective nuclear materials control and accountability (MC&A) program is the measurement of the nuclear material as it is received, moved, processed and shipped. Quality measurement systems and methodologies determine the accuracy of the accountability values. Implementation of a measurement control program is essential to ensure that the measurement systems and methodologies perform as expected. A measurement control program also allows for a determination of the level of confidence in the accounting values.

  13. Bilirubin measurements in neonates

    NASA Astrophysics Data System (ADS)

    Newman, Gregory J.

    2000-04-01

    Infant Jaundice is a physiologic condition of elevated bilirubin in the tissue that affects nearly 60 percent of all term newborns and virtually 100 percent of premature infants. The high production of bilirubin in the newborn circulatory system and the inability of the immature liver to process and eliminate it case the condition. When the bilirubin levels rise, it starts to deposit in the baby's skin and in the brain. The deposits in the brain can cause neurologic impairment and death. The BiliCheck is a handheld, battery-powered device that measures the level of jaundice non-invasively using BioPhotonics at the point of care. The result is displayed on an LCD screen immediately, so physicians can now make treatment decision without waiting for results to return from the lab. The BiliCheck System has been marketed worldwide since April of 1998 and has received FDA clearance for use in the USA on pre-photo therapy infants in March of 1999.

  14. Aerodynamic Measurement Technology

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.

    2002-01-01

    Ohio State University developed a new spectrally filtered light-scattering apparatus based on a diode laser injected-locked titanium: sapphire laser and rubidium vapor filter at 780.2 nm. When the device was combined with a stimulated Brillouin scattering phase conjugate mirror, the realizable peak attenuation of elastic scattering interferences exceeded 105. The potential of the system was demonstrated by performing Thomson scattering measurements. Under USAF-NASA funding, West Virginia University developed a Doppler global velocimetry system using inexpensive 8-bit charged coupled device cameras and digitizers and a CW argon ion laser. It has demonstrated a precision of +/- 2.5 m/sec in a swirling jet flow. Low-noise silicon-micromachined microphones developed and incorporated in a novel two-tier, hybrid packaging scheme at the University of Florida used printed circuit board technology to realize a MEMS-based directional acoustic array. The array demonstrated excellent performance relative to conventional sensor technologies and provides scaling technologies that can reduce cost and increase speed and mobility.

  15. Measuring electrode assembly

    DOEpatents

    Bordenick, John E.

    1989-01-01

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture.

  16. Measuring electrode assembly

    DOEpatents

    Bordenick, J.E.

    1988-04-26

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture. 2 figs.

  17. MACPEX Water Measurement Comparison

    NASA Astrophysics Data System (ADS)

    Al-Saadi, J. A.; Thornhill, A.; Alston, E. J.; Chen, G.; Fahey, D. W.; Jensen, E. J.; Mace, G. G.

    2012-12-01

    The Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) airborne field campaign was conducted in March and April 2011 to investigate cirrus cloud properties and the processes that affect their impact on radiation. In pursuit of this goal the NASA WB-57 was outfitted with dozens of in-situ instruments from government and university science teams including a wide range of water instruments. This provided an unprecedented situation to compare eight water instruments on one platform measuring water vapor (CIMS, DLH, HWV, JLH, and ULH), total water (ALIAS and FISH) and ice water content (CLH/IWC) for 14 flight days. Objective and data-driven approaches were applied to analyze the comparison data and to assess the consistency levels between the instruments and instrument uncertainties. The analysis is primarily focused on the upper tropospheric and lower stratospheric conditions, paying particular attention to water levels below 20 ppmv and between 20 - 120 ppmv depending on specific instrument data coverage. To be presented are comparison results suggesting the level of the agreement among the instrument as a function of atmospheric conditions, e.g., temperature and water vapor. Also discussed are some exploratory analyses of instrument precisions.

  18. Increasing demands for quality measurement.

    PubMed

    Panzer, Robert J; Gitomer, Richard S; Greene, William H; Webster, Patricia Reagan; Landry, Kevin R; Riccobono, Charles A

    2013-11-13

    Measurement of health care quality and patient safety is rapidly evolving, in response to long-term needs and more recent efforts to reform the US health system around "value." Development and choice of quality measures is now guided by a national quality strategy and priorities, with a public-private partnership, the National Quality Forum, helping determine the most worthwhile measures for evaluating and rewarding quality and safety of patient care. Yet there remain a number of challenges, including diverse purposes for quality measurement, limited availability of true clinical measures leading to frequent reliance on claims data with its flaws in determining quality, fragmentation of measurement systems with redundancy and conflicting conclusions, few high-quality comprehensive measurement systems and registries, and rapid expansion of required measures with hundreds of measures straining resources. The proliferation of quality measures at the clinician, hospital, and insurer level has created challenges and logistical problems. Recommendations include raising the bar for qualtiy measurements to achieve transformational rather than incremental change in the US quality measurement system, promoting a logical set of measures for the various levels of the health system, leaving room for internal organizational improvement, harmonizing the various national and local quality measurement systems, anchoring on National Quality Forum additions and subtractions of measures to be applied, reducing reliance on and retiring claims-based measures as quickly as possible, promoting comprehensive measurement such as through registries with deep understanding of patient risk factors and outcomes, reducing attention to proprietary report cards, prompt but careful transition to measures from electronic health records, and allocation of sufficient resources to accomplish the goals of an efficient, properly focused measurement system.

  19. Increasing demands for quality measurement.

    PubMed

    Panzer, Robert J; Gitomer, Richard S; Greene, William H; Webster, Patricia Reagan; Landry, Kevin R; Riccobono, Charles A

    2013-11-13

    Measurement of health care quality and patient safety is rapidly evolving, in response to long-term needs and more recent efforts to reform the US health system around "value." Development and choice of quality measures is now guided by a national quality strategy and priorities, with a public-private partnership, the National Quality Forum, helping determine the most worthwhile measures for evaluating and rewarding quality and safety of patient care. Yet there remain a number of challenges, including diverse purposes for quality measurement, limited availability of true clinical measures leading to frequent reliance on claims data with its flaws in determining quality, fragmentation of measurement systems with redundancy and conflicting conclusions, few high-quality comprehensive measurement systems and registries, and rapid expansion of required measures with hundreds of measures straining resources. The proliferation of quality measures at the clinician, hospital, and insurer level has created challenges and logistical problems. Recommendations include raising the bar for qualtiy measurements to achieve transformational rather than incremental change in the US quality measurement system, promoting a logical set of measures for the various levels of the health system, leaving room for internal organizational improvement, harmonizing the various national and local quality measurement systems, anchoring on National Quality Forum additions and subtractions of measures to be applied, reducing reliance on and retiring claims-based measures as quickly as possible, promoting comprehensive measurement such as through registries with deep understanding of patient risk factors and outcomes, reducing attention to proprietary report cards, prompt but careful transition to measures from electronic health records, and allocation of sufficient resources to accomplish the goals of an efficient, properly focused measurement system. PMID:24219953

  20. Invariant Measures for Cherry Flows

    NASA Astrophysics Data System (ADS)

    Saghin, Radu; Vargas, Edson

    2013-01-01

    We investigate the invariant probability measures for Cherry flows, i.e. flows on the two-torus which have a saddle, a source, and no other fixed points, closed orbits or homoclinic orbits. In the case when the saddle is dissipative or conservative we show that the only invariant probability measures are the Dirac measures at the two fixed points, and the Dirac measure at the saddle is the physical measure. In the other case we prove that there exists also an invariant probability measure supported on the quasi-minimal set, we discuss some situations when this other invariant measure is the physical measure, and conjecture that this is always the case. The main techniques used are the study of the integrability of the return time with respect to the invariant measure of the return map to a closed transversal to the flow, and the study of the close returns near the saddle.