Science.gov

Sample records for 80s complex formation

  1. Role of Pre-rRNA Base Pairing and 80S Complex Formation in Subnucleolar Localization of the U3 snoRNP

    PubMed Central

    Granneman, Sander; Vogelzangs, Judith; Lührmann, Reinhard; van Venrooij, Walther J.; Pruijn, Ger J. M.; Watkins, Nicholas J.

    2004-01-01

    In the nucleolus the U3 snoRNA is recruited to the 80S pre-rRNA processing complex in the dense fibrillar component (DFC). The U3 snoRNA is found throughout the nucleolus and has been proposed to move with the preribosomes to the granular component (GC). In contrast, the localization of other RNAs, such as the U8 snoRNA, is restricted to the DFC. Here we show that the incorporation of the U3 snoRNA into the 80S processing complex is not dependent on pre-rRNA base pairing sequences but requires the B/C motif, a U3-specific protein-binding element. We also show that the binding of Mpp10 to the 80S U3 complex is dependent on sequences within the U3 snoRNA that base pair with the pre-rRNA adjacent to the initial cleavage site. Furthermore, mutations that inhibit 80S complex formation and/or the association of Mpp10 result in retention of the U3 snoRNA in the DFC. From this we propose that the GC localization of the U3 snoRNA is a direct result of its active involvement in the initial steps of ribosome biogenesis. PMID:15367679

  2. Cryo-EM of ribosomal 80S complexes with termination factors reveal the translocated cricket paralysis virus IRES

    PubMed Central

    Muhs, Margarita; Hilal, Tarek; Mielke, Thorsten; Skabkin, Maxim A.; Sanbonmatsu, Karissa Y.; Pestova, Tatyana V.; Spahn, Christian M.T.

    2015-01-01

    Summary The Cricket paralysis virus (CrPV) uses an internal ribosomal entry site (IRES) to hijack the ribosome. In a remarkable RNA-based mechanism involving neither initiation factor nor initiator tRNA, the CrPV IRES jump starts translation in the elongation phase from the ribosomal A-site. Here we present cryo-EM maps of 80S•CrPV-STOP•eRF1•eRF3•GMPPNP and 80S•CrPV-STOP•eRF1 complexes revealing a previously unseen binding state of the IRES and directly rationalizing that an eEF2-dependent translocation of the IRES is required to allow the first A-site occupation. During this unusual translocation event the IRES undergoes a pronounced conformational change to a more stretched conformation. At the same time our structural analysis provides information about the binding modes of eRF1•eRF3•GMPPNP and eRF1 in a minimal system. It shows that neither eRF3 nor ABCE1 are required for the active conformation of eRF1 at the intersection between eukaryotic termination and recycling. PMID:25601755

  3. Cryo-EM of ribosomal 80S complexes with termination factors reveals the translocated cricket paralysis virus IRES.

    PubMed

    Muhs, Margarita; Hilal, Tarek; Mielke, Thorsten; Skabkin, Maxim A; Sanbonmatsu, Karissa Y; Pestova, Tatyana V; Spahn, Christian M T

    2015-02-01

    The cricket paralysis virus (CrPV) uses an internal ribosomal entry site (IRES) to hijack the ribosome. In a remarkable RNA-based mechanism involving neither initiation factor nor initiator tRNA, the CrPV IRES jumpstarts translation in the elongation phase from the ribosomal A site. Here, we present cryoelectron microscopy (cryo-EM) maps of 80S⋅CrPV-STOP ⋅ eRF1 ⋅ eRF3 ⋅ GMPPNP and 80S⋅CrPV-STOP ⋅ eRF1 complexes, revealing a previously unseen binding state of the IRES and directly rationalizing that an eEF2-dependent translocation of the IRES is required to allow the first A-site occupation. During this unusual translocation event, the IRES undergoes a pronounced conformational change to a more stretched conformation. At the same time, our structural analysis provides information about the binding modes of eRF1 ⋅ eRF3 ⋅ GMPPNP and eRF1 in a minimal system. It shows that neither eRF3 nor ABCE1 are required for the active conformation of eRF1 at the intersection between eukaryotic termination and recycling. PMID:25601755

  4. Bacterial formate hydrogenlyase complex

    PubMed Central

    McDowall, Jennifer S.; Murphy, Bonnie J.; Haumann, Michael; Palmer, Tracy; Armstrong, Fraser A.; Sargent, Frank

    2014-01-01

    Under anaerobic conditions, Escherichia coli can carry out a mixed-acid fermentation that ultimately produces molecular hydrogen. The enzyme directly responsible for hydrogen production is the membrane-bound formate hydrogenlyase (FHL) complex, which links formate oxidation to proton reduction and has evolutionary links to Complex I, the NADH:quinone oxidoreductase. Although the genetics, maturation, and some biochemistry of FHL are understood, the protein complex has never been isolated in an intact form to allow biochemical analysis. In this work, genetic tools are reported that allow the facile isolation of FHL in a single chromatographic step. The core complex is shown to comprise HycE (a [NiFe] hydrogenase component termed Hyd-3), FdhF (the molybdenum-dependent formate dehydrogenase-H), and three iron-sulfur proteins: HycB, HycF, and HycG. A proportion of this core complex remains associated with HycC and HycD, which are polytopic integral membrane proteins believed to anchor the core complex to the cytoplasmic side of the membrane. As isolated, the FHL complex retains formate hydrogenlyase activity in vitro. Protein film electrochemistry experiments on Hyd-3 demonstrate that it has a unique ability among [NiFe] hydrogenases to catalyze production of H2 even at high partial pressures of H2. Understanding and harnessing the activity of the FHL complex is critical to advancing future biohydrogen research efforts. PMID:25157147

  5. Life in the '80s and Beyond.

    ERIC Educational Resources Information Center

    Morris, Joan, Ed.

    1982-01-01

    Contains nine articles discussing how lives of students will be affected by future changes. Discusses the work ethic and work values in a time of change, entering the 80s job market, women and employment. Describes students' changing sexual values, and the impact of computers and declining enrollment on education. (RC)

  6. Structures of the human and Drosophila 80S ribosome.

    PubMed

    Anger, Andreas M; Armache, Jean-Paul; Berninghausen, Otto; Habeck, Michael; Subklewe, Marion; Wilson, Daniel N; Beckmann, Roland

    2013-05-01

    Protein synthesis in all cells is carried out by macromolecular machines called ribosomes. Although the structures of prokaryotic, yeast and protist ribosomes have been determined, the more complex molecular architecture of metazoan 80S ribosomes has so far remained elusive. Here we present structures of Drosophila melanogaster and Homo sapiens 80S ribosomes in complex with the translation factor eEF2, E-site transfer RNA and Stm1-like proteins, based on high-resolution cryo-electron-microscopy density maps. These structures not only illustrate the co-evolution of metazoan-specific ribosomal RNA with ribosomal proteins but also reveal the presence of two additional structural layers in metazoan ribosomes, a well-ordered inner layer covered by a flexible RNA outer layer. The human and Drosophila ribosome structures will provide the basis for more detailed structural, biochemical and genetic experiments. PMID:23636399

  7. Purification, characterization and crystallization of the human 80S ribosome

    PubMed Central

    Khatter, Heena; Myasnikov, Alexander G.; Mastio, Leslie; Billas, Isabelle M. L.; Birck, Catherine; Stella, Stefano; Klaholz, Bruno P.

    2014-01-01

    Ribosomes are key macromolecular protein synthesis machineries in the cell. Human ribosomes have so far not been studied to atomic resolution because of their particularly complex structure as compared with other eukaryotic or prokaryotic ribosomes, and they are difficult to prepare to high homogeneity, which is a key requisite for high-resolution structural work. We established a purification protocol for human 80S ribosomes isolated from HeLa cells that allows obtaining large quantities of homogenous samples as characterized by biophysical methods using analytical ultracentrifugation and multiangle laser light scattering. Samples prepared under different conditions were characterized by direct single particle imaging using cryo electron microscopy, which helped optimizing the preparation protocol. From a small data set, a 3D reconstruction at subnanometric resolution was obtained showing all prominent structural features of the human ribosome, and revealing a salt concentration dependence of the presence of the exit site tRNA, which we show is critical for obtaining crystals. With these well-characterized samples first human 80S ribosome crystals were obtained from several crystallization conditions in capillaries and sitting drops, which diffract to 26 Å resolution at cryo temperatures and for which the crystallographic parameters were determined, paving the way for future high-resolution work. PMID:24452798

  8. Audiovisual Technology for the '80's.

    ERIC Educational Resources Information Center

    Wyman, Raymond

    1979-01-01

    Originally part of a symposium on educational media for the deaf, the paper describes the seven formats or media needed in the eighties: (1) sound recording and reproduction, (2) still image recording and reproduction, (3) sound plus still images, (4) silent moving passages, (5) moving passages with sound, (6) sound plus still plus moving images,…

  9. Planning for the 80s and Beyond.

    ERIC Educational Resources Information Center

    De Anza Coll., Cupertino, CA.

    Designed as a guide for policy formation, program development, and resource allocation, this report identifies and evaluates future trends and their implications for California's De Anza College (DAC). Section 1 contains introductory information on the purposes, processes, and components of institutional planning at DAC. Section 2 assesses the…

  10. Complex organic molecules and star formation

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Faure, A.

    2014-12-01

    Star forming regions are characterised by the presence of a wealth of chemical species. For the past two to three decades, ever more complex organic species have been detected in the hot cores of protostars. The evolution of these molecules in the course of the star forming process is still uncertain, but it is likely that they are partially incorporated into protoplanetary disks and then into planetesimals and the small bodies of planetary systems. The complex organic molecules seen in star forming regions are particularly interesting since they probably make up building blocks for prebiotic chemistry. Recently we showed that these species were also present in the cold gas in prestellar cores, which represent the very first stages of star formation. These detections question the models which were until now accepted to account for the presence of complex organic molecules in star forming regions. In this article, we shortly review our current understanding of complex organic molecule formation in the early stages of star formation, in hot and cold cores alike and present new results on the formation of their likely precursor radicals.

  11. Features of 80S mammalian ribosome and its subunits

    PubMed Central

    Budkevich, Tatyana V.; El'skaya, Anna V.; Nierhaus, Knud H.

    2008-01-01

    It is generally believed that basic features of ribosomal functions are universally valid, but a systematic test still stands out for higher eukaryotic 80S ribosomes. Here we report: (i) differences in tRNA and mRNA binding capabilities of eukaryotic and bacterial ribosomes and their subunits. Eukaryotic 40S subunits bind mRNA exclusively in the presence of cognate tRNA, whereas bacterial 30S do bind mRNA already in the absence of tRNA. 80S ribosomes bind mRNA efficiently in the absence of tRNA. In contrast, bacterial 70S interact with mRNA more productively in the presence rather than in the absence of tRNA. (ii) States of initiation (Pi), pre-translocation (PRE) and post-translocation (POST) of the ribosome were checked and no significant functional differences to the prokaryotic counterpart were observed including the reciprocal linkage between A and E sites. (iii) Eukaryotic ribosomes bind tetracycline with an affinity 15 times lower than that of bacterial ribosomes (Kd 30 μM and 1–2 μM, respectively). The drug does not effect enzymatic A-site occupation of 80S ribosomes in contrast to non-enzymatic tRNA binding to the A-site. Both observations explain the relative resistance of eukaryotic ribosomes to this antibiotic. PMID:18632761

  12. Energy in the '80s: a call for leadership

    SciTech Connect

    Not Available

    1981-07-01

    The theme of this conference - Energy in the '80s: A Call for Leadership - was selected to focus attention on what was believed to be what America needs now - to get on with the tasks at hand. This proceedings of the Public Awareness Symposium, held on February 19, featured six speakers; the address of Senator Jackson at the banquet on February 20, which concluded the conference is also included; a separate abstract was prepared for each of these seven presentations. Also, the society-sponsored technical session papers are listed in Appendix A, and the Engineering/Communication scholarships are noted in Appendix B.

  13. Simulation of biomolecular diffusion and complex formation.

    PubMed Central

    Allison, S A; Northrup, S H; McCammon, J A

    1986-01-01

    Diffusion is a phenomenon of very widespread importance in molecular biophysics. Diffusion can determine the rates and character of the assembly of multisubunit structures, the binding of ligands to receptors, and the internal motions of molecules and assemblies that involve solvent surface displacements. Current computer simulation techniques provide much more detailed descriptions of diffusional processes than have been available in the past. Models can be constructed to include such realistic features as structural subunits at the submolecular level (domains, monomers, or atoms); detailed electrostatic charge distributions and corresponding solvent-screened inter- and intramolecular interactions; and hydrodynamic interactions. The trajectories can be analyzed either to provide direct information on biomolecular function (e.g., the bimolecular rate constant for formation of an electron-transfer complex between two proteins), or to provide or test models for the interpretation of experimental data (e.g., the time dependence of fluorescence depolarization for segments of DNA). Here, we first review the theory of diffusional simulations, with special emphasis on new techniques such as those for obtaining transport properties of flexible assemblies and rate constants of diffusion-controlled reactions. Then we survey a variety of recent applications, including studies of large-scale motion in DNA segments and substrate "steering" in enzyme-substrate binding. We conclude with a discussion of current work (e.g., formation of protein complexes) and possible areas for future work. PMID:3955168

  14. Vortex formation in a complex plasma

    NASA Astrophysics Data System (ADS)

    Ishihara, Osamu

    Complex plasma experiments in ground-based laboratories as well as in microgravity conditions have shown the formation of vortex structures in various conditions (e.g., 1,2,3,4). The vortex structures formed in a complex plasma are visible by naked eyes with the help of irradiating laser and the individual dust particles in the structure give us the opportunity to study detailed physics of the commonly observed natural phenomena known such as tornadoes, typhoons, hurricanes and dust devils. Based on the Navier-Stokes equation with proper complex plasma conditions we analyze as much as possible in a universal way the vortex structure and clarifies the role of the controlling parameters like flow velocity and external magnetic field. 1. G. E. Morfill,H. M. Thomas, U. Konopka,H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, Phys,. Rev. Lett. 83, 1598 (1999). 2. E. Nebbat and R. Annou, Phys. Plasmas 17, 093702 (2010). 3. Y. Saitou and O. Ishihara, Phys. Rev. Lett. 111, 185003 (2013). 4. V. N. Tsytovich and N. G. Gusein-zade, Plasma Phys. Rep. 39, 515 (2013).

  15. Visualization of the joining of ribosomal subunits reveals the presence of 80S ribosomes in the nucleus

    PubMed Central

    Al-Jubran, Khalid; Wen, Jikai; Abdullahi, Akilu; Roy Chaudhury, Subhendu; Li, Min; Ramanathan, Preethi; Matina, Annunziata; De, Sandip; Piechocki, Kim; Rugjee, Kushal Nivriti; Brogna, Saverio

    2013-01-01

    In eukaryotes the 40S and 60S ribosomal subunits are assembled in the nucleolus, but there appear to be mechanisms preventing mRNA binding, 80S formation, and initiation of translation in the nucleus. To visualize association between ribosomal subunits, we tagged pairs of Drosophila ribosomal proteins (RPs) located in different subunits with mutually complementing halves of fluorescent proteins. Pairs of tagged RPs expected to interact, or be adjacent in the 80S structure, showed strong fluorescence, while pairs that were not in close proximity did not. Moreover, the complementation signal is found in ribosomal fractions and it was enhanced by translation elongation inhibitors and reduced by initiation inhibitors. Our technique achieved 80S visualization both in cultured cells and in fly tissues in vivo. Notably, while the main 80S signal was in the cytoplasm, clear signals were also seen in the nucleolus and at other nuclear sites. Furthermore, we detected rapid puromycin incorporation in the nucleolus and at transcription sites, providing an independent indication of functional 80S in the nucleolus and 80S association with nascent transcripts. PMID:24129492

  16. Cadmium(II) complex formation with glutathione.

    PubMed

    Mah, Vicky; Jalilehvand, Farideh

    2010-03-01

    Complex formation between heavy metal ions and glutathione (GSH) is considered as the initial step in many detoxification processes in living organisms. In this study the structure and coordination between the cadmium(II) ion and GSH were investigated in aqueous solutions (pH 7.5 and 11.0) and in the solid state, using a combination of spectroscopic techniques. The similarity of the Cd K-edge and L(3)-edge X-ray absorption spectra of the solid compound [Cd(GS)(GSH)]ClO(4).3H(2)O, precipitating at pH 3.0, with the previously studied cysteine compound {Cd(HCys)(2).H(2)O}(2).H(3)O(+).ClO(4) (-) corresponds to Cd(S-GS)(3)O (dominating) and Cd(S-GS)(4) four-coordination within oligomeric complexes with mean bond distances of 2.51 +/- 0.02 A for Cd-S and 2.24 +/- 0.04 A for Cd-O. For cadmium(II) solutions (C (Cd(II)) approximately 0.05 M) at pH 7.5 with moderate excess of GSH (C (GSH)/C (Cd(II)) = 3.0-5.0), a mix of Cd(S-GS)(3)O (dominating) and Cd(S-GS)(4) species is consistent with the broad (113)Cd NMR resonances in the range 632-658 ppm. In alkaline solutions (pH 11.0 and C (GSH)/C (Cd(II)) = 2.0 or 3.0), two distinct peaks at 322 and 674 ppm are obtained. The first peak indicates six-coordinated mononuclear and dinuclear complexes with CdS(2)N(2)(N/O)(2) and CdSN(3)O(2) coordination in fast exchange, whereas the second corresponds to Cd(S-GS)(4) sites. At high ligand excess the tetrathiolate complex, Cd(S-GS)(4), characterized by a sharp delta((113)Cd) NMR signal at 677 ppm, predominates. The average Cd-S distance, obtained from the X-ray absorption spectra, varied within a narrow range, 2.49-2.53 A, for all solutions (pH 7.5 and 11.0) regardless of the coordination geometry. PMID:20035360

  17. Voices of Chinese Post-­80s Students in English Academic Writing

    ERIC Educational Resources Information Center

    Que, Hua; Li, Xuemei

    2015-01-01

    This study looks into the changing voice of Chinese Post-80s' students in English academic writing. Data were collected qualitatively through interviews with four Chinese Post-80s overseas graduate students and through an examination of their English essays with a focus on discursive features. Findings indicate that Chinese Post-80s' voice is…

  18. Formation of β-cyclodextrin complexes in an anhydrous environment.

    PubMed

    Sifaoui, Hocine; Modarressi, Ali; Magri, Pierre; Stachowicz-Kuśnierz, Anna; Korchowiec, Jacek; Rogalski, Marek

    2016-09-01

    The formation of inclusion complexes of β-cyclodextrin was studied at the melting temperature of guest compounds by differential scanning calorimetry. The complexes of long-chain n-alkanes, polyaromatics, and organic acids were investigated by calorimetry and IR spectroscopy. The complexation ratio of β-cyclodextrin was compared with results obtained in an aqueous environment. The stability and structure of inclusion complexes with various stoichiometries were estimated by quantum chemistry and molecular dynamics calculations. Comparison of experimental and theoretical results confirmed the possible formation of multiple inclusion complexes with guest molecules capable of forming hydrogen bonds. This finding gives new insight into the mechanism of formation of host-guest complexes and shows that hydrophobic interactions play a secondary role in this case. Graphical abstract The formation of complexes of β-cyclodextrin with selected n-alkanes, polyaromatics, and organic acids in an anhydrous environment is studied by differential scanning calorimetry, IR spectroscopy, and molecular modeling. The results obtained confirm the possible formation of multiple inclusion complexes with guest molecules capable of forming hydrogen bonds and give a new perspective on the mechanism of formation of host-guest complexes. PMID:27518085

  19. Subseabed Radioactive Waste Disposal Feasibility Program: ocean engineering challenges for the 80's

    SciTech Connect

    Talbert, D. M.

    1980-01-01

    The objective of the Subseabed Disposal Program is to assess the feasibility of disposing of high-level radioactive wastes or spent fuel in suitable geologic formations beneath the deep ocean floor. The program is entering a phase which will address engineering feasibility. While the current phase of the program to determine the scientific and environmental feasibility of the concept is not yet complete, activities to assess the engineering aspects are being initiated in parallel to facilitate the development of the concept on a time scale commensurate with other related programs both in the United States and abroad. It is anticipated that engineering aspects will become the central focus of the program during the early 80's and will continue so through the establishment of a pilot-plant level activity which could occur by the mid-90's.

  20. Bow shock formation in a complex plasma.

    PubMed

    Saitou, Y; Nakamura, Y; Kamimura, T; Ishihara, O

    2012-02-10

    A bow shock is observed in a two-dimensional supersonic flow of charged microparticles in a complex plasma. A thin conducting needle is used to make a potential barrier as an obstacle for the particle flow in the complex plasma. The flow is generated and the flow velocity is controlled by changing a tilt angle of the device under the gravitational force. A void, microparticle-free region, is formed around the potential barrier surrounding the obstacle. The flow is bent around the leading edge of the void and forms an arcuate structure when the flow is supersonic. The structure is characterized by the bow shock as confirmed by a polytropic hydrodynamic theory as well as numerical simulation. PMID:22401079

  1. Formation, structure, and reactivity of palladium superoxo complexes

    SciTech Connect

    Talsi, E.P.; Babenko, V.P.; Shubin, A.A.; Chinakov, V.D.; Nekipelov, V.M.; Zamaraev, K.I.

    1987-11-18

    The mechanism of formation of palladium superoxo complexes, their structure, and their reactivity are discussed. The formation of the palladium superoxo complexes in the reaction of palladium(II) acetate, propionate, trifluororacetate, and bis(acetylacetonate) and palladium(0) tetrakis(triphenylphosphine) with hydrogen peroxide and potassium superoxide has been detected in solution by electron proton resonance. The oxidation of olefins and carbon monoxide by these complexes is considered. Reaction mechanisms and reaction kinetics for these oxidations are reported using the palladium superoxo complexes. 44 references, 8 figures, 2 tables.

  2. Lead(II) complex formation with glutathione.

    PubMed

    Mah, Vicky; Jalilehvand, Farideh

    2012-06-01

    A structural investigation of complexes formed between the Pb(2+) ion and glutathione (GSH, denoted AH(3) in its triprotonated form), the most abundant nonprotein thiol in biological systems, was carried out for a series of aqueous solutions at pH 8.5 and C(Pb(2+)) = 10 mM and in the solid state. The Pb L(III)-edge extended X-ray absorption fine structure (EXAFS) oscillation for a solid compound with the empirical formula [Pb(AH(2))]ClO(4) was modeled with one Pb-S and two short Pb-O bond distances at 2.64 ± 0.04 and 2.28 ± 0.04 Å, respectively. In addition, Pb···Pb interactions at 4.15 ± 0.05 Å indicate dimeric species in a network where the thiolate group forms an asymmetrical bridge between two Pb(2+) ions. In aqueous solution at the mole ratio GSH/Pb(II) = 2.0 (C(Pb(2+)) = 10 mM, pH 8.5), lead(II) complexes with two thiolate ligands form, characterized by a ligand-to-metal charge-transfer band (LMCT) S(-) → Pb(2+) at 317 nm in the UV-vis spectrum and mean Pb-S and Pb-(N/O) bond distances of 2.65 ± 0.04 and 2.51 ± 0.04 Å, respectively, from a Pb L(III)-edge EXAFS spectrum. For solutions with higher mole ratios, GSH/Pb(II) ≥ 3.0, electrospray ionization mass spectroscopy spectra identified a triglutathionyllead(II) complex, for which Pb L(III)-edge EXAFS spectroscopy shows a mean Pb-S distance of 2.65 ± 0.04 Å in PbS(3) coordination, (207)Pb NMR spectroscopy displays a chemical shift of 2793 ppm, and in the UV-vis spectrum, an S(-) → Pb(2+) LMCT band appears at 335 nm. The complex persists at high excess of GSH and also at ∼25 K in frozen glycerol (33%)/water glasses for GSH/Pb(II) mole ratios from 4.0 to 10 (C(Pb(2+)) = 10 mM) measured by Pb L(III)-edge EXAFS spectroscopy. PMID:22594853

  3. Direct electronic probing of biological complexes formation

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Magliulo, Maria; Manoli, Kyriaki; Giordano, Francesco; Palazzo, Gerardo; Torsi, Luisa

    2014-10-01

    Functional bio-interlayer organic field - effect transistors (FBI-OFET), embedding streptavidin, avidin and neutravidin as bio-recognition element, have been studied to probe the electronic properties of protein complexes. The threshold voltage control has been achieved modifying the SiO2 gate diaelectric surface by means of the deposition of an interlayer of bio-recognition elements. A threshold voltage shift with respect to the unmodified dielectric surface toward more negative potential values has been found for the three different proteins, in agreement with their isoelectric points. The relative responses in terms of source - drain current, mobility and threshold voltage upon exposure to biotin of the FBI-OFET devices have been compared for the three bio-recognition elements.

  4. Formation of a Bridging Phosphinidene Thorium Complex.

    PubMed

    Behrle, Andrew C; Castro, Ludovic; Maron, Laurent; Walensky, Justin R

    2015-12-01

    The synthesis and structural determination of the first thorium phosphinidene complex are reported. The reaction of 2 equiv of (C5Me5)2Th(CH3)2 with H2P(2,4,6-(i)Pr3C6H2) at 95 °C produces [(C5Me5)2Th]2(μ2-P[(2,6-CH2CHCH3)2-4-(i)PrC6H2] as well as 4 equiv of methane, 2 equiv from deprotonation of the phosphine and 2 equiv from C-H bond activation of one methyl group of each of the isopropyl groups at the 2- and 6-positions. Transition state calculations indicate that the steps in the mechanism are P-H, C-H, C-H, and then P-H bond activation to form the phosphinidene. PMID:26575219

  5. Mild hydrocracking in heavy oils in the 80's

    SciTech Connect

    Sonnemans, J.W.M.; D'Amico, V.J.; Desai, P.H.; Dixon, P.H.; Plantenga, F.L.

    1984-03-01

    Many refiners have determined that mild hydrocracking (MHC) is an attractive alternative for converting heavy fuel oils to lighter mid-distillates which are increasingly in demand. Important advantages of MHC are the selective formation of high quality diesel blendstock and the ability to apply this technology in existing vacuum gas oil (VGO) desulfurizers. This paper discusses the criteria for optimizing both catalyst choice and utilization to maximize the economic benefits of MHC. The MHC performance of conventional hydrotreating catalysts and a new generation of MHC catalysts developed by AKZO Chemie's Ketjen Catalyst Group is compared. By applying these new catalysts, conversion levels of 45%, representing an absolute increase of up to 12% over conventional catalysts, may be realized. The improved MHC catalysts have excellent stability. Application studies demonstrate that more than one catalyst type may be needed to optimize conversion for a specific application. Reactor configuration (e.g. single versus multiple bed), feedstock and processing conditions determine the choice of the optimal catalyst(s). Process studies and economic evaluations by Lummus-Crest Inc. indicate that the mild hydrocracking process is an effective way to upgrade heavy oils. For a 20,000 BPSD unit, additional revenue as high as 15 million dollars per year may be realized when going from the HDS to MHC mode of operation. Payout times for revamp investments, when necessary to optimize either conversion and/or the refiner's product slate, are estimated to be about one year.

  6. Dynamics of Lane Formation in Driven Binary Complex Plasmas

    SciTech Connect

    Suetterlin, K. R.; Ivlev, A. V.; Raeth, C.; Thomas, H. M.; Rubin-Zuzic, M.; Morfill, G. E.; Wysocki, A.; Loewen, H.; Goedheer, W. J.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.

    2009-02-27

    The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane-formation process is in good agreement with computer simulations of a binary Yukawa model with Langevin dynamics. The laning is quantified in terms of the anisotropic scaling index, leading to a universal order parameter for driven systems.

  7. Complex molecule formation around massive young stellar objects.

    PubMed

    Oberg, Karin I; Fayolle, Edith C; Reiter, John B; Cyganowski, Claudia

    2014-01-01

    Interstellar complex organic molecules were first identified in the hot inner regions of massive young stellar objects (MYSOs), but have more recently been found in many colder sources, indicating that complex molecules can form at a range of temperatures. However, individually these observations provide limited constraints on how complex molecules form, and whether the same formation pathways dominate in cold, warm and hot environments. To address these questions, we use spatially resolved observations from the Submillimeter Array of three MYSOs together with mostly unresolved literature data to explore how molecular ratios depend on environmental parameters, especially temperature. Towards the three MYSOs, we find multiple complex organic emission peaks characterized by different molecular compositions and temperatures. In particular, CH3CCH and CH3CN seem to always trace a lukewarm (T = 60 K) and a hot (T > 100 K) complex chemistry, respectively. These spatial trends are consistent with abundance-temperature correlations of four representative complex organics--CH3CCH, CH3CN, CH3OCH3 and CH3CHO--in a large sample of complex molecule hosts mined from the literature. Together, these results indicate a general chemical evolution with temperature, i.e. that new complex molecule formation pathways are activated as a MYSO heats up. This is qualitatively consistent with model predictions. Furthermore, these results suggest that ratios of complex molecules may be developed into a powerful probe of the evolutionary stage of a MYSO, and may provide information about its formation history. PMID:25302375

  8. Complex molecule formation around massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Öberg, Karin I.; Fayolle, Edith C.; Reiter, John B.; Cyganowski, Claudia

    2014-02-01

    Interstellar complex organic molecules were first identified in the hot inner regions of massive young stellar objects (MYSOs), but have more recently been found in many colder sources, indicating that complex molecules can form at a range of temperatures. However, individually these observations provide limited constraints on how complex molecules form, and whether the same formation pathways dominate in cold, warm and hot environments. To address these questions, we use spatially resolved observations from the Submillimeter Array of three MYSOs together with mostly unresolved literature data to explore how molecular ratios depend on environmental parameters, especially temperature. Towards the three MYSOs, we find multiple complex organic emission peaks characterized by different molecular compositions and temperatures. In particular, CH3CCH and CH3CN seem to always trace a lukewarm (T ≈ 60 K) and a hot (T > 100 K) complex chemistry, respectively. These spatial trends are consistent with abundance-temperature correlations of four representative complex organics - CH3CCH, CH3CN, CH3OCH3 and CH3CHO - in a large sample of complex molecule hosts mined from the literature. Together, these results indicate a general chemical evolution with temperature, i.e. that new complex molecule formation pathways are activated as a MYSO heats up. This is qualitatively consistent with model predictions. Furthermore, these results suggest that ratios of complex molecules may be developed into a powerful probe of the evolutionary stage of a MYSO, and may provide information about its formation history.

  9. Studies on chemical kinetics of positronium complex formation

    NASA Astrophysics Data System (ADS)

    Du, Youming; Zhang, Tianbao; Cao, Chun; Chen, Yun-Ti; Liang, Jiachang

    1993-09-01

    The complex formation between ortho-positronium and N-( p-substituted-phenyl) glycine ( p-RPhG, G=NHCH 2COOH; R=NO 2, Cl, H, CH 3, CH 3O) or N-( m-substituted-phenyl) glycine ( m-RPhG, R=NO 2, Cl) in solutions of 30% (v/v) ethanol—water and 20% (v/v) dioxane—water is discussed. The application of a BaF 2 scintillation counter to a positron annihilation lifetime spectrometer is described. By means of this new type of spectrometer, the complex formation reaction rate constants of ortho-positronium with the glycine derivatives in solutions are determined. The results indicate that the rate constants mainly depend on the conjugation effect at the benzene ring, the induction effects of the substitutes on the phenyl and solvents. There exists a linear free-energy relationship between rate constants and the basicities of N-substituted phenyl glycines in ortho-positronium—glycine complex formation. It means that the transient complex formation of ortho-positronium with molecules is like a general chemical reaction and obeys classical rules.

  10. Geology of the Biwabik Iron Formation and Duluth Complex.

    PubMed

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact. PMID:17997209

  11. Geology of the Biwabik Iron Formation and Duluth Complex

    USGS Publications Warehouse

    Jirsa, M.A.; Miller, J.D., Jr.; Morey, G.B.

    2008-01-01

    The Biwabik Iron Formation is a ???1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by ???1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact. ?? 2007 Elsevier Inc. All rights reserved.

  12. Surface-Guided Formation of an Organocobalt Complex.

    PubMed

    Weber, Peter B; Hellwig, Raphael; Paintner, Tobias; Lattelais, Marie; Paszkiewicz, Mateusz; Casado Aguilar, Pablo; Deimel, Peter S; Guo, Yuanyuan; Zhang, Yi-Qi; Allegretti, Francesco; Papageorgiou, Anthoula C; Reichert, Joachim; Klyatskaya, Svetlana; Ruben, Mario; Barth, Johannes V; Bocquet, Marie-Laure; Klappenberger, Florian

    2016-05-01

    Organocobalt complexes represent a versatile tool in organic synthesis as they are important intermediates in Pauson-Khand, Friedel-Crafts, and Nicholas reactions. Herein, a single-molecule-level investigation addressing the formation of an organocobalt complex at a solid-vacuum interface is reported. Deposition of 4,4'-(ethyne-1,2-diyl)dibenzonitrile and Co atoms on the Ag(111) surface followed by annealing resulted in genuine complexes in which single Co atoms laterally coordinated to two carbonitrile groups undergo organometallic bonding with the internal alkyne moiety of adjacent molecules. Alternative complexation scenarios involving fragmentation of the precursor were ruled out by complementary X-ray photoelectron spectroscopy. According to density functional theory analysis, the complexation with the alkyne moiety follows the Dewar-Chatt-Duncanson model for a two-electron-donor ligand where an alkyne-to-Co donation occurs together with a strong metal-to-alkyne back-donation. PMID:27059261

  13. Formation of complex bacterial colonies via self-generated vortices

    NASA Astrophysics Data System (ADS)

    Czirók, András; Ben-Jacob, Eshel; Cohen, Inon; Vicsek, Tamás

    1996-08-01

    Depending on the environmental conditions bacterial colonies growing on agar surfaces can exhibit complex colony formation and various types of collective motion. Experimental results are presented concerning the hydrodynamics (vortices, migration of bacteria in clusters) and colony formation of a morphotype of Bacillus subtilis. Some of these features are not specific to this morphotype but also have been observed in several other bacterial strains, suggesting the presence of universal effects. A simple model of self-propelled particles is proposed, which is capable of describing the hydrodynamics on the intermediate level, including the experimentally observed rotating disks of bacteria. The colony formation is captured by a complex generic model taking into account nutrient diffusion, reproduction, and sporulation of bacteria, extracellular slime deposition, chemoregulation, and inhomogeneous population. Our model also sheds light on some possible biological benefits of this ``multicellular behavior.''

  14. Positronium formation studies in crystalline molecular complexes: Triphenylphosphine oxide - Acetanilide

    NASA Astrophysics Data System (ADS)

    Oliveira, F. C.; Denadai, A. M. L.; Guerra, L. D. L.; Fulgêncio, F. H.; Windmöller, D.; Santos, G. C.; Fernandes, N. G.; Yoshida, M. I.; Donnici, C. L.; Magalhães, W. F.; Machado, J. C.

    2013-04-01

    Hydrogen bond formation in the triphenylphosphine oxide (TPPO), acetanilide (ACN) supramolecular heterosynton system, named [TPPO0.5·ACN0.5], has been studied by Positron Annihilation Lifetime Spectroscopy (PALS) and supported by several analytical techniques. In toluene solution, Isothermal Titration Calorimetry (ITC) presented a 1:1 stoichiometry and indicated that the complexation process is driven by entropy, with low enthalpy contribution. X-ray structure determination showed the existence of a three-dimensional network of hydrogen bonds, allowing also the confirmation of the existence of a 1:1 crystalline molecular complex in solid state. The results of thermal analysis (TGA, DTA and DSC) and FTIR spectroscopy showed that the interactions in the complex are relatively weaker than those found in pure precursors, leading to a higher positronium formation probability at [TPPO0.5·ACN0.5]. These weak interactions in the complex enhance the possibility of the n- and π-electrons to interact with positrons and consequently, the probability of positronium formation is higher. Through the present work is shown that PALS is a sensible powerful tool to investigate intermolecular interactions in solid heterosynton supramolecular systems.

  15. Formation of Complex Molecules via radiative association reactions

    NASA Astrophysics Data System (ADS)

    Acharyya, Kinsuk; Herbst, Eric

    2016-07-01

    The detection of increasing numbers of complex organic molecules in the various phases of star formation plays a key role since they follow the same chemical rules of carbon-based chemistry that are observed in our planet Earth. Many of these molecules are believed to be formed on the surfaces of grains, and can then be released to the gas phase when these grains are heated. This is evident when we observe a rich chemistry in hot core regions. However, recently complex organic molecules have also been observed in cold clouds. Therefore, it is necessary to re-examine various pathways for the formation of these molecules in the gas phase. In this presentation, I will discuss role of radiative association reactions in the formation of complex molecules in the gas phase and at low temperature. We will compare abundance of assorted molecules with and without new radiative association reactions and will show that the abundance of a few complex molecules such as HCOOCH3, CH3OCH3 etc. can go up due to introduction of these reactions, which can help to explain their observed abundances.

  16. Accelerating procelain formation by incorporating a complex additive

    SciTech Connect

    Maslennikova, G.N.; Dubovitskii, S.A.; Moroz, I.K.

    1986-05-01

    The authors studied the influence of a complex additive consisting of oxides of calcium, zinc, and magnesium on the formaton of porcelain. In order to achieve a more uniform distribution of the complex additive in the porcelain body it was incorporated in the form of water soluble salts-nitrates, which ensured comparability of results and excluded the effect of the different types of anions. The study of the main parameters of sintering (porosity, shrinkage, and mechanical strength) for the test bodies showed that they sinter at lower temperatures and attain zero porosity, maximum shrinkage, and mechanical strength. The most typical bodies indentified in this way were investigated by methods of complex differential thermal analysis and x-ray diffraction. Thus, the introduction of complex additives consisting of calcium, zinc, and magnesium oxides contributes to the earlier formation of porcelain. With the reduction of firing temperatures by 100/sup 0/C the authors observe an improvement in the basic properties of porcelain.

  17. Star Formation in Giant Complexes: the Cat's Paw Nebula

    NASA Astrophysics Data System (ADS)

    Ascenso, Joana; Wolk, Scott; Lombardi, Marco; Alves, João; Rathborne, Jill; Forbrich, Jan; Leibundgut, Bruno; Hilker, Michael

    2013-07-01

    NGC 6334, the Cat's Paw Nebula, is a 106 M⊙ molecular cloud, one of the most massive known clouds in the Galaxy. It hosts the youngest massive cluster complex within 2 kpc of the Sun, and is therefore an ideal laboratory to investigate the onset and early evolution of star formation in an environment comparable to that of massive, extra-galactic complexes. Using multi-wavelength data, we are conducting the most sensitive and most complete characterization of this unique region to date.

  18. Demixing-stimulated lane formation in binary complex plasma

    SciTech Connect

    Du, C.-R.; Jiang, K.; Suetterlin, K. R.; Ivlev, A. V.; Morfill, G. E.

    2011-11-29

    Recently lane formation and phase separation have been reported for experiments with binary complex plasmas in the PK3-Plus laboratory onboard the International Space Station (ISS). Positive non-additivity of particle interactions is known to stimulate phase separation (demixing), but its effect on lane formation is unknown. In this work, we used Langevin dynamics (LD) simulation to probe the role of non-additivity interactions on lane formation. The competition between laning and demixing leads to thicker lanes. Analysis based on anisotropic scaling indices reveals a crossover from normal laning mode to a demixing-stimulated laning mode. Extensive numerical simulations enabled us to identify a critical value of the non-additivity parameter {Delta} for the crossover.

  19. The Dynamics of Coalition Formation on Complex Networks

    NASA Astrophysics Data System (ADS)

    Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.

    2015-08-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects.

  20. The catalytic role of uranyl in formation of polycatechol complexes

    PubMed Central

    2011-01-01

    To better understand the association of contaminant uranium with natural organic matter (NOM) and the fate of uranium in ground water, spectroscopic studies of uranium complexation with catechol were conducted. Catechol provides a model for ubiquitous functional groups present in NOM. Liquid samples were analyzed using Raman, FTIR, and UV-Vis spectroscopy. Catechol was found to polymerize in presence of uranyl ions. Polymerization in presence of uranyl was compared to reactions in the presence of molybdate, another oxyion, and self polymerization of catechol at high pH. The effect of time and dissolved oxygen were also studied. It was found that oxygen was required for self-polymerization at elevated pH. The potential formation of phenoxy radicals as well as quinones was monitored. The benzene ring was found to be intact after polymerization. No evidence for formation of ether bonds was found, suggesting polymerization was due to formation of C-C bonds between catechol ligands. Uranyl was found to form outer sphere complexes with catechol at initial stages but over time (six months) polycatechol complexes were formed and precipitated from solution (forming humic-like material) while uranyl ions remained in solution. Our studies show that uranyl acts as a catalyst in catechol-polymerization. PMID:21396112

  1. The Dynamics of Coalition Formation on Complex Networks

    PubMed Central

    Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.

    2015-01-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects. PMID:26303622

  2. The Dynamics of Coalition Formation on Complex Networks.

    PubMed

    Auer, S; Heitzig, J; Kornek, U; Schöll, E; Kurths, J

    2015-01-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation ("coalitions") on an acquaintance network. We include both the network's influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects. PMID:26303622

  3. Correlations between Community Structure and Link Formation in Complex Networks

    PubMed Central

    Liu, Zhen; He, Jia-Lin; Kapoor, Komal; Srivastava, Jaideep

    2013-01-01

    Background Links in complex networks commonly represent specific ties between pairs of nodes, such as protein-protein interactions in biological networks or friendships in social networks. However, understanding the mechanism of link formation in complex networks is a long standing challenge for network analysis and data mining. Methodology/Principal Findings Links in complex networks have a tendency to cluster locally and form so-called communities. This widely existed phenomenon reflects some underlying mechanism of link formation. To study the correlations between community structure and link formation, we present a general computational framework including a theory for network partitioning and link probability estimation. Our approach enables us to accurately identify missing links in partially observed networks in an efficient way. The links having high connection likelihoods in the communities reveal that links are formed preferentially to create cliques and accordingly promote the clustering level of the communities. The experimental results verify that such a mechanism can be well captured by our approach. Conclusions/Significance Our findings provide a new insight into understanding how links are created in the communities. The computational framework opens a wide range of possibilities to develop new approaches and applications, such as community detection and missing link prediction. PMID:24039818

  4. Complex formation between polyelectrolytes and oppositely charged oligoelectrolytes.

    PubMed

    Zhou, Jiajia; Barz, Matthias; Schmid, Friederike

    2016-04-28

    We study the complex formation between one long polyanion chain and many short oligocation chains by computer simulations. We employ a coarse-grained bead-spring model for the polyelectrolyte chains and model explicitly the small salt ions. We systematically vary the concentration and the length of the oligocation and examine how the oligocations affects the chain conformation, the static structure factor, the radial and axial distribution of various charged species, and the number of bound ions in the complex. At low oligocation concentration, the polyanion has an extended structure. Upon increasing the oligocation concentration, the polyanion chain collapses and forms a compact globule, but the complex still carries a net negative charge. Once the total charge of the oligocations is equal to that of the polyanion, the collapse stops and is replaced by a slow expansion. In this regime, the net charge on the complexes is positive or neutral, depending on the microion concentration in solution. The expansion can be explained by the reduction of the oligocation bridging. We find that the behavior and the structure of the complex are largely independent of the length of oligocations, and very similar to that observed when replacing the oligocations by multivalent salt cations, and conclude that the main driving force keeping the complex together is the release of monovalent counterions and coions. We speculate on the implications of this finding for the problem of controlled oligolyte release and oligolyte substitution. PMID:27131564

  5. Complex formation between polyelectrolytes and oppositely charged oligoelectrolytes

    NASA Astrophysics Data System (ADS)

    Zhou, Jiajia; Barz, Matthias; Schmid, Friederike

    2016-04-01

    We study the complex formation between one long polyanion chain and many short oligocation chains by computer simulations. We employ a coarse-grained bead-spring model for the polyelectrolyte chains and model explicitly the small salt ions. We systematically vary the concentration and the length of the oligocation and examine how the oligocations affects the chain conformation, the static structure factor, the radial and axial distribution of various charged species, and the number of bound ions in the complex. At low oligocation concentration, the polyanion has an extended structure. Upon increasing the oligocation concentration, the polyanion chain collapses and forms a compact globule, but the complex still carries a net negative charge. Once the total charge of the oligocations is equal to that of the polyanion, the collapse stops and is replaced by a slow expansion. In this regime, the net charge on the complexes is positive or neutral, depending on the microion concentration in solution. The expansion can be explained by the reduction of the oligocation bridging. We find that the behavior and the structure of the complex are largely independent of the length of oligocations, and very similar to that observed when replacing the oligocations by multivalent salt cations, and conclude that the main driving force keeping the complex together is the release of monovalent counterions and coions. We speculate on the implications of this finding for the problem of controlled oligolyte release and oligolyte substitution.

  6. Titanium complex formation of organic ligands in titania gels.

    PubMed

    Nishikiori, Hiromasa; Todoroki, Kenta; Setiawan, Rudi Agus; Teshima, Katsuya; Fujii, Tsuneo; Satozono, Hiroshi

    2015-01-27

    Thin films of organic ligand-dispersing titania gels were prepared from titanium alkoxide sols containing ligand molecules by steam treatment without heating. The formation of the ligand-titanium complex and the photoinduced electron transfer process in the systems were investigated by photoelectrochemical measurements. The complex was formed between the 8-hydroxyquinoline (HQ) and titanium species, such as the titanium ion, on the titania nanoparticle surface through the oxygen and nitrogen atoms of the quinolate. A photocurrent was observed in the electrodes containing the complex due to the electron injection from the LUMO of the complex into the titania conduction band. A bidentate ligand, 2,3-dihydroxynaphthalene (DHN), formed the complex on the titania surface through dehydration between its two hydroxyl groups of DHN and two TiOH groups of the titania. The electron injection from the HOMO of DHN to the titania conduction band was observed during light irradiation. This direct electron injection was more effective than the two-step electron injection. PMID:25535798

  7. Formation of a Ternary Complex for Selenocysteine Biosynthesis in Bacteria.

    PubMed

    Silva, Ivan R; Serrão, Vitor H B; Manzine, Livia R; Faim, Lívia M; da Silva, Marco T A; Makki, Raphaela; Saidemberg, Daniel M; Cornélio, Marinônio L; Palma, Mário S; Thiemann, Otavio H

    2015-12-01

    The synthesis of selenocysteine-containing proteins (selenoproteins) involves the interaction of selenocysteine synthase (SelA), tRNA (tRNA(Sec)), selenophosphate synthetase (SelD, SPS), a specific elongation factor (SelB), and a specific mRNA sequence known as selenocysteine insertion sequence (SECIS). Because selenium compounds are highly toxic in the cellular environment, the association of selenium with proteins throughout its metabolism is essential for cell survival. In this study, we demonstrate the interaction of SPS with the SelA-tRNA(Sec) complex, resulting in a 1.3-MDa ternary complex of 27.0 ± 0.5 nm in diameter and 4.02 ± 0.05 nm in height. To assemble the ternary complex, SPS undergoes a conformational change. We demonstrated that the glycine-rich N-terminal region of SPS is crucial for the SelA-tRNA(Sec)-SPS interaction and selenoprotein biosynthesis, as revealed by functional complementation experiments. Taken together, our results provide new insights into selenoprotein biosynthesis, demonstrating for the first time the formation of the functional ternary SelA-tRNA(Sec)-SPS complex. We propose that this complex is necessary for proper selenocysteine synthesis and may be involved in avoiding the cellular toxicity of selenium compounds. PMID:26378233

  8. GABAergic complex basket formations in the human neocortex.

    PubMed

    Blazquez-Llorca, Lidia; García-Marín, Virginia; DeFelipe, Javier

    2010-12-15

    Certain GABAergic interneurons in the cerebral cortex, basket cells, establish multiple connections with cell bodies that typically outline the somata and proximal dendrites of pyramidal cells. During studies into the distribution of the vesicular GABA transporter (VGAT) in the human cerebral cortex, we were struck by the presence of a very dense, pericellular arrangement of multiple VGAT-immunoreactive (-ir) terminals in certain cortical areas. We called these terminals "Complex basket formations" (Cbk-formations) to distinguish them from the simpler and more typical pericellular GABAergic innervations of most cortical neurons. Here we examined the distribution of these VGAT-ir Cbk-formations in various cortical areas, including the somatosensory (area 3b), visual (areas 17 and 18), motor (area 4), associative frontal (dorsolateral areas 9, 10, 45, 46, and orbital areas 11, 12, 13, 14, 47), associative temporal (areas 20, 21, 22, and 38), and limbic cingulate areas (areas 24, 32). Furthermore, we used dual or triple staining techniques to study the chemical nature of the innervated cells. We found that VGAT-ir Cbk-formations were most frequently found in area 4 followed by areas 3b, 13, and 18. In addition, they were mostly observed in layer III, except in area 17, where they were most dense in layer IV. We also found that 70% of the innervated neurons were pyramidal cells, while the remaining 30% were multipolar cells. Most of these multipolar cells expressed the calcium-binding protein parvalbumin and the lectin Vicia villosa agglutinin. PMID:21031559

  9. The ribosome-associated complex antagonizes prion formation in yeast

    PubMed Central

    Amor, Alvaro J; Castanzo, Dominic T; Delany, Sean P; Selechnik, Daniel M; van Ooy, Alex; Cameron, Dale M

    2015-01-01

    Abstract The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI+] prion – an alternative conformer of Sup35 protein – and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in Δzuo1 strains. Consistent with this finding, Δzuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome. PMID:25739058

  10. Formation and Redox Interconversion of Niobium Methylidene and Methylidyne Complexes.

    PubMed

    Searles, Keith; Smith, Kyle T; Kurogi, Takashi; Chen, Chun-Hsing; Carroll, Patrick J; Mindiola, Daniel J

    2016-06-01

    The niobium methylidene [{(Ar'O)2 Nb}2 (μ2 -Cl)2 (μ2 -CH2 )] (2) can be cleanly prepared via thermolysis or photolysis of [(Ar'O)2 Nb(CH3 )2 Cl] (1) (OAr'=2,6-bis(diphenylmethyl)-4-tert-butylphenoxide). Reduction of 2 with two equivalents of KC8 results in formation of the first niobium methylidyne [K][{(Ar'O)2 Nb}2 (μ2 -CH)(μ2 -H)(μ2 -Cl)] (3) via a binuclear α-hydrogen elimination. Oxidation of 3 with two equiv of ClCPh3 reforms 2. In addition to solid state X-ray analysis, all these complexes were elucidated via multinuclear NMR experiments and isotopic labelling studies, including a crossover experiment, support the notion for a radical mechanism as well as a binuclear α-hydrogen abstraction pathway being operative in the formation of 2 from 1. PMID:27110689

  11. Formation of glutathionyl dinitrosyl iron complexes protects against iron genotoxicity.

    PubMed

    Lewandowska, Hanna; Sadło, Jarosław; Męczyńska, Sylwia; Stępkowski, Tomasz M; Wójciuk, Grzegorz; Kruszewski, Marcin

    2015-07-28

    Dinitrosyl iron(i) complexes (DNICs), intracellular NO donors, are important factors in nitric oxide-dependent regulation of cellular metabolism and signal transduction. It has been shown that NO diminishes the toxicity of iron ions and vice versa. To gain insight into the possible role of DNIC in this phenomenon, we examined the effect of GS-DNIC formation on the ability of iron ions to mediate DNA damage, by treatment of the pUC19 plasmid with physiologically relevant concentrations of GS-DNIC. It was shown that GS-DNIC formation protects against the genotoxic effect of iron ions alone and iron ions in the presence of a naturally abundant antioxidant, GSH. This sheds new light on the iron-related protective effect of NO under the circumstances of oxidative stress. PMID:26079708

  12. Formation of gold mineralization in ultramafic alkalic magmatic complexes

    NASA Astrophysics Data System (ADS)

    Ryabchikov, I. D.; Kogarko, L. N.; Sazonov, A. M.; Kononkova, N. N.

    2016-06-01

    Study of mineral inclusions within alluvial gold particles of the Guli Complex (East Siberia) and findings of lode gold in rocks of the same intrusion have demonstrated that gold mineralization occurs in interstitions of both early high-magnesium rocks (dunite) and later alkalic and carbonatite rocks. In dunite the native gold occurs in association with Fe-Ni sulfides (monosulfide solid solution, pentlandite, and heazlewoodite). Formation of the gold-bearing alloys took place under a low oxygen potential over a broad range of temperatures: from those close to 600°C down to below 400°C.

  13. Complex formation between uranyl and various thiosemicarbazide derivatives

    SciTech Connect

    Chuguryan, D.G.; Dzyubenko, V.I.

    1987-01-01

    Complex formation between hexavalent uranium and salicylaldehyde thiosemicarbazone (H/sub 2/L), salicylaldehyde S-methyl-isothiosemicarbazone (H/sub 2/Q), S-methyl-N/sub 1/,N/sub 4/-bis(salicylidene)isothiosemicarbazide(H/sub 2/Z), and thiosemicarbazidodiacetic acid (H/sub 2/R) has been studied spectrophotometrically in solution. Stability constants for complexes having the composition UO/sub 2/A have been calculated. Solid uranyl derivatives having the composition UO/sub 2/L x 2H/sub 2/O, UO/sub 2/Q x 2H/sub 2/O, UO/sub 2/Z x 2H/sub 2/O, and UO/sub 2/R x 2H/sub 2/O have been obtained. These derivatives were isolated and their IR spectroscopic behavior and thermal properties were investigated.

  14. Redox reactions and complex formation of transplutonium elements in solutions

    SciTech Connect

    Krot, N.N.; Myasoedov, B.F.

    1986-01-01

    This paper gives a brief analysis of the kinetics and mechanism of a number of redox processes and the complex formation of transplutonium elements in unusual oxidation states. The composition and strength of complexes of TPE with various addends have been determined. The new experimental data on the oxidation potentials of americium and berkelium ions in solutions are cited in abbreviated form. It follows from the data that in phosphoric acid solutions, when the H/sub 3/PO/sub 4/ concentration is increased from 10 to 15 M, the oxidation potential of the couple Am(IV)-Am(III) decreases. The oxidation potentials of the couples Am(VI)-Am(V), Cm(V)-Cm(IV), and Bk(IV)Bk(III) are also presented.

  15. Advertising for the 80's. Marketing and Distributive Education. Advertising. Instructor's Guide.

    ERIC Educational Resources Information Center

    Ault, Craig; Elias, John

    This module contains a teacher's guide, student materials for a seminar on "advertising for the 80's" conducted for small business representatives, a 35mm slide presentation, and an audiocassette. The instructor guide contains an outline of the course, time plan, end-of-course critique, a script for the slide-tape presentation (with content on the…

  16. Futurism in the Education of the Deaf: Directions and Alternatives for the 80's.

    ERIC Educational Resources Information Center

    Marshall, William J. A.

    The author presents a rationale for the study of futurism in education and analyzes the effects of significant future changes upon deaf education in the 80s. The roles that change agents play in influencing the permanence of innovations within the school are examined: advocacy, information sharing, and organizational development training.…

  17. Therapeutic Discourse and ACOA Films of the '80s and '90s.

    ERIC Educational Resources Information Center

    Lynch, Joan Driscoll

    2000-01-01

    Argues that many family melodramas in films of the '80s and '90s focus their narrative on the negative dynamics of the parental relationship. Identifies underlying generic patterns and ideas found in these films. Explores representations of mothers, fathers, and children; gender representation and codependency; and familial dysfunction. Broadens…

  18. Characterization of Hydrogen Complex Formation in III-V Semiconductors

    SciTech Connect

    Williams, Michael D

    2006-09-28

    Atomic hydrogen has been found to react with some impurity species in semiconductors. Hydrogenation is a methodology for the introduction of atomic hydrogen into the semiconductor for the express purpose of forming complexes within the material. Efforts to develop hydrogenation as an isolation technique for AlGaAs and Si based devices failed to demonstrate its commercial viability. This was due in large measure to the low activation energies of the formed complexes. Recent studies of dopant passivation in long wavelength (0.98 - 1.55m) materials suggested that for the appropriate choice of dopants much higher activation energies can be obtained. This effort studied the formation of these complexes in InP, This material is extensively used in optoelectronics, i.e., lasers, modulators and detectors. The experimental techniques were general to the extent that the results can be applied to other areas such as sensor technology, photovoltaics and to other material systems. The activation energies for the complexes have been determined and are reported in the scientific literature. The hydrogenation process has been shown by us to have a profound effect on the electronic structure of the materials and was thoroughly investigated. The information obtained will be useful in assessing the long term reliability of device structures fabricated using this phenomenon and in determining new device functionalities.

  19. Interference-mediated synaptonemal complex formation with embedded crossover designation

    PubMed Central

    Zhang, Liangran; Espagne, Eric; de Muyt, Arnaud; Zickler, Denise; Kleckner, Nancy E.

    2014-01-01

    Biological systems exhibit complex patterns at length scales ranging from the molecular to the organismic. Along chromosomes, events often occur stochastically at different positions in different nuclei but nonetheless tend to be relatively evenly spaced. Examples include replication origin firings, formation of chromatin loops along chromosome axes and, during meiosis, localization of crossover recombination sites (“crossover interference”). We present evidence in the fungus Sordaria macrospora that crossover interference is part of a broader pattern that includes synaptonemal complex (SC) nucleation. This pattern comprises relatively evenly spaced SC nucleation sites, among which a subset are crossover sites that show a classical interference distribution. This pattern ensures that SC forms regularly along the entire length of the chromosome as required for the maintenance of homolog pairing while concomitantly having crossover interactions locally embedded within the SC structure as required for both DNA recombination and structural events of chiasma formation. This pattern can be explained by a threshold-based designation and spreading interference process. This model can be generalized to give diverse types of related and/or partially overlapping patterns, in two or more dimensions, for any type of object. PMID:25380597

  20. Incipient species formation in salamanders of the Ensatina complex

    PubMed Central

    Wake, David B.

    1997-01-01

    The Ensatina eschscholtzii complex of plethodontid salamanders, a well-known “ring species,” is thought to illustrate stages in the speciation process. Early research, based on morphology and coloration, has been extended by the incorporation of studies of protein variation and mitochondrial DNA sequences. The new data show that the complex includes a number of geographically and genetically distinct components that are at or near the species level. The complex is old and apparently has undergone instances of range contraction, isolation, differentiation, and then expansion and secondary contact. While the hypothesis that speciation is retarded by gene flow around the ring is not supported by molecular data, the general biogeographical hypothesis is supported. There is evidence of a north to south range expansion along two axes, with secondary contact and completion of the ring in southern California. Current research targets regions once thought to show primary intergradation, but which molecular markers reveal to be zones of secondary contact. Here emphasis is on the subspecies E. e. xanthoptica, which is involved in four distinct secondary contacts in central California. There is evidence of renewed genetic interactions upon recontact, with greater genetic differentiation within xanthoptica than between it and some of the interacting populations. The complex presents a full array of intermediate conditions between well-marked species and geographically variable populations. Geographically differentiated segments represent a diversity of depths of time of isolation and admixture, reflecting the complicated geomorphological history of California. Ensatina illustrates the continuing difficulty in making taxonomic assignments in complexes studied during species formation. PMID:9223261

  1. Cadmium(II) Complex Formation with Cysteine and Penicillamine

    PubMed Central

    Jalilehvand, Farideh; Leung, Bonnie O.; Mah, Vicky

    2009-01-01

    The complex formation between cadmium(II) and the ligands cysteine (H2Cys) or penicillamine (H2Pen = 3, 3′-dimethylcysteine) in aqueous solutions, containing CCd(II) ∼ 0.1 mol dm-3 and CH2L = 0.2 – 2 mol dm-3, was studied at pH = 7.5 and 11.0 by means of 113Cd-NMR and Cd K- and L3-edge X-ray absorption spectroscopy. For all cadmium(II)-cysteine mole ratios the mean Cd-S and Cd-(N/O) bond distances were found in the ranges 2.52 – 2.54 Å and 2.27 – 2.35 Å, respectively. The corresponding cadmium(II)-penicillamine complexes showed slightly shorter Cd-S bonds, 2.50 – 2.53 Å, but with the Cd-(N/O) bond distances in a similar wide range, 2.28 – 2.33 Å. For the mole ratio CH2L / CCd(II) = 2, the 113Cd chemical shifts, in the range 509 – 527 ppm at both pH values, indicated complexes with distorted tetrahedral CdS2N(N/O) coordination geometry. With a large excess of cysteine (mole ratios CH2Cys / CCd(II) ≥ 10) complexes with CdS4 coordination geometry dominate, consistent with the 113Cd NMR chemical shifts, δ ∼ 680 ppm at pH 7.5 and 636 - 658 ppm at pH 11.0, and their mean Cd-S distances of 2.53 ± 0.02 Å. At pH 7.5, the complexes are almost exclusively sulfur-coordinated as [Cd(S-cysteinate)4]n-, while at higher pH the deprotonation of the amine groups promotes chelate formation, and at pH 11.0 a minor amount of the [Cd(Cys)3]4- complex with CdS3N coordination is formed. For the corresponding penicillamine solutions with mole ratios CH2Pen / CCd(II) ≥ 10, the 113Cd-NMR chemical shifts, δ ∼ 600 ppm at pH 7.5 and 578 ppm at pH 11.0, together with the average bond distances Cd-S 2.53 ± 0.02 Å and Cd-O 2.30 – 2.33 Å, indicate that [Cd(penicillaminate)3]n- complexes with chelating CdS3(N/O) coordination dominate already at pH 7.5, and become mixed with CdS2N(N/O) complexes at pH 11.0. The present study reveals differences between cysteine and penicillamine as ligands to the cadmium(II) ion that can explain why cysteine-rich metallothionines

  2. Cadmium(II) complex formation with cysteine and penicillamine.

    PubMed

    Jalilehvand, Farideh; Leung, Bonnie O; Mah, Vicky

    2009-07-01

    The complex formation between cadmium(II) and the ligands cysteine (H(2)Cys) and penicillamine (H(2)Pen = 3,3'-dimethylcysteine) in aqueous solutions, having C(Cd(II)) approximately 0.1 mol dm(-3) and C(H(2)L) = 0.2-2 mol dm(-3), was studied at pH = 7.5 and 11.0 by means of (113)Cd NMR and Cd K- and L(3)-edge X-ray absorption spectroscopy. For all cadmium(II)-cysteine molar ratios, the mean Cd-S and Cd-(N/O) bond distances were found in the ranges 2.52-2.54 and 2.27-2.35 A, respectively. The corresponding cadmium(II)-penicillamine complexes showed slightly shorter Cd-S bonds, 2.50-2.53 A, but with the Cd-(N/O) bond distances in a similar wide range, 2.28-2.33 A. For the molar ratio C(H(2)L)/C(Cd(II)) = 2, the (113)Cd chemical shifts, in the range 509-527 ppm at both pH values, indicated complexes with distorted tetrahedral CdS(2)N(N/O) coordination geometry. With a large excess of cysteine (molar ratios C(H(2)Cys)/C(Cd(II)) >or= 10), complexes with CdS(4) coordination geometry dominate, consistent with the (113)Cd NMR chemical shifts, delta approximately 680 ppm at pH 7.5 and 636-658 ppm at pH 11.0, and their mean Cd-S distances were 2.53 +/- 0.02 A. At pH 7.5, the complexes are almost exclusively sulfur-coordinated as [Cd(S-cysteinate)(4)](n-), while at higher pH, the deprotonation of the amine groups promotes chelate formation. At pH 11.0, a minor amount of the [Cd(Cys)(3)](4-) complex with CdS(3)N coordination is formed. For the corresponding penicillamine solutions with molar ratios C(H(2)Pen)/C(Cd(II)) >or= 10, the (113)Cd NMR chemical shifts, delta approximately 600 ppm at pH 7.5 and 578 ppm at pH 11.0, together with the average bond distances, Cd-S 2.53 +/- 0.02 A and Cd-(N/O) 2.30-2.33 A, indicate that [Cd(penicillaminate)(3)](n-) complexes with chelating CdS(3)(N/O) coordination dominate already at pH 7.5 and become mixed with CdS(2)N(N/O) complexes at pH 11.0. The present study reveals differences between cysteine and penicillamine as ligands to the

  3. Diffusion impregnation of alloys under conditions of complex formation

    SciTech Connect

    Pavlina, V.S.; Matychak, Y.S.

    1985-05-01

    In most cases, diffusion impregnation of alloys with elements for the purpose of improving their service properties occurs with chemical interaction with the constituents of the base. Such processes are described within the limits of the model of reaction diffusion, assuming the formation and growth of new continuous layers by the Fick equation. At the same time, instantaneous reaction of the elements is assumed, as the result of which the rate of the whole process is limited by diffusion. Together with this, diffusion processes and chemical transformations occur simultaneously, as the result of which continuous phases are not formed (internal oxidation, nitriding, etc.). The purpose of this work was an analytical investigation of diffusion impregnation by element A from a constant source of a flat specimen initially uniformly alloyed with a mobile impurity B. The model presented makes it possible to investigate the initial stage of homogeneous formation of complexes and to reveal their influence on the kinetics of redistribution of the diffusing elements.

  4. Image formation in the eye: very specified complexity

    NASA Astrophysics Data System (ADS)

    Stoltzmann, David E.

    2005-08-01

    The formation of an image, and its correct interpretation by sighted living creatures, is a unique example of specified complexity unlike anything else in nature. While many of the functional aspects of living organisms are extremely complex, only an image requires a unique mapping process by the eye-brain system to be useful to the organism. The transfer of light from an object scene to a visual detection system (eye + brain) conveys an enormous amount of information. But unless that information is correctly organized into a useful image, the exchange of information is degraded and of questionable use. This paper examines the "connections" necessary for images to be interpreted correctly, as well as addressing the additional complexity requirement of dual-image mapping for stereovision capabilities. Statistics are presented for "simple eyes" consisting of a few pixels to illustrate the daunting task that random chance has to produce any form of a functional eye. For example, a 12-pixel eye (or camera) has 12! (479,001,600) possible pixel-to-brain (computer) wiring combinations, which can then be compared to the 126 million rods/cones of the actual human eye. If one tries to "connect the wires" (correctly interpret the information contained) in a 12-pixel image by random processes, by the time 6 pixels become correctly connected, over 99.9% of all the trials are incorrect, producing "noise" rather than a recognizable image. Higher numbers of pixels quickly make the problem astronomically worse for achieving any kind of useful image. This paper concludes that random-chance purposeless undirected processes cannot account for how images are perceived by living organisms.

  5. Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex.

    PubMed

    Jambhekar, Sunil S; Breen, Philip

    2016-02-01

    Cyclodextrins are cyclic oligosaccharides that have been recognized as pharmaceutical adjuvants for the past 20 years. The molecular structure of these glucose derivatives, which approximates a truncated cone, bucket, or torus, generates a hydrophilic exterior surface and a nonpolar interior cavity. Cyclodextrins can interact with appropriately sized drug molecules to yield an inclusion complex. These noncovalent inclusion complexes offer a variety of advantages over the noncomplexed form of a drug. Cyclodextrins are primarily used to enhance the aqueous solubility, physical chemical stability, and bioavailability of drugs. Their other applications include preventing drug-drug interactions, converting liquid drugs into microcrystalline powders, minimizing gastrointestinal and ocular irritation, and reducing or eliminating unpleasant taste and smell. Here, we discuss the physical chemical properties of various cyclodextrins, including the effects of substitutions on these properties. Additionally, we report on the regulatory status of their use, commercial products containing cyclodextrins, toxicological considerations, and the forces involved in complex formation. We also highlight the types of complex formed and discuss the methods used to determine the types of complex present. PMID:26686054

  6. Structural basis of complement membrane attack complex formation.

    PubMed

    Serna, Marina; Giles, Joanna L; Morgan, B Paul; Bubeck, Doryen

    2016-01-01

    In response to complement activation, the membrane attack complex (MAC) assembles from fluid-phase proteins to form pores in lipid bilayers. MAC directly lyses pathogens by a 'multi-hit' mechanism; however, sublytic MAC pores on host cells activate signalling pathways. Previous studies have described the structures of individual MAC components and subcomplexes; however, the molecular details of its assembly and mechanism of action remain unresolved. Here we report the electron cryo-microscopy structure of human MAC at subnanometre resolution. Structural analyses define the stoichiometry of the complete pore and identify a network of interaction interfaces that determine its assembly mechanism. MAC adopts a 'split-washer' configuration, in contrast to the predicted closed ring observed for perforin and cholesterol-dependent cytolysins. Assembly precursors partially penetrate the lipid bilayer, resulting in an irregular β-barrel pore. Our results demonstrate how differences in symmetric and asymmetric components of the MAC underpin a molecular basis for pore formation and suggest a mechanism of action that extends beyond membrane penetration. PMID:26841837

  7. Integrin activation and focal complex formation in cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.

    2000-01-01

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  8. Lipogenic Enzymes Complexes and Cytoplasmic Lipid Droplet Formation During Adipogenesis.

    PubMed

    Padilla-Benavides, Teresita; Velez-delValle, Cristina; Marsch-Moreno, Meytha; Castro-Muñozledo, Federico; Kuri-Harcuch, Walid

    2016-10-01

    Lipid droplets are dynamic organelles that store triglycerides and participate in their mobilization in adipose cells. These organelles require the reorganization of some structural components, the cytoskeleton, and the activation of lipogenic enzymes. Using confocal microscopy, we analyzed the participation of cytoskeletal components and two lipogenic enzymes, fatty acid synthase and glycerophosphate dehydrogenase, during lipid droplet biogenesis in differentiating 3T3-F442A cells into adipocytes. We show that subcortical actin microfilaments are extended at the basal side of the cells in parallel arrangement to the culture dish substrate, and that the microtubule network traverses the cytoplasm as a scaffold that supports the round shape of the mature adipocyte. By immunoprecipitation, we show that vimentin and perilipin1a associate during the early stages of the differentiation process for lipid droplet formation. We also report that the antibody against perilipin1 detected a band that might correspond to a modified form of the molecule. Finally, the cytosolic distribution and punctate organization of lipogenic enzymes and their co-localization in the proximity of lipid droplets suggest the existence of dynamic protein complexes involved in synthesis and storage of triglycerides. J. Cell. Biochem. 117: 2315-2326, 2016. © 2016 Wiley Periodicals, Inc. PMID:26928794

  9. Adhesion and formation of microbial biofilms in complex microfluidic devices

    SciTech Connect

    Kumar, Aloke; Karig, David K; Neethirajan, Suresh; Suresh, Anil K; Srijanto, Bernadeta R; Mukherjee, Partha P; Retterer, Scott T; Doktycz, Mitchel John

    2012-01-01

    Shewanella oneidensis is a metal reducing bacterium, which is of interest for bioremediation and clean energy applications. S. oneidensis biofilms play a critical role in several situations such as in microbial energy harvesting devices. Here, we use a microfluidic device to quantify the effects of hydrodynamics on the biofilm morphology of S. oneidensis. For different rates of fluid flow through a complex microfluidic device, we studied the spatiotemporal dynamics of biofilms, and we quantified several morphological features such as spatial distribution, cluster formation and surface coverage. We found that hydrodynamics resulted in significant differences in biofilm dynamics. The baffles in the device created regions of low and high flow in the same device. At higher flow rates, a nonuniform biofilm develops, due to unequal advection in different regions of the microchannel. However, at lower flow rates, a more uniform biofilm evolved. This depicts competition between adhesion events, growth and fluid advection. Atomic force microscopy (AFM) revealed that higher production of extra-cellular polymeric substances (EPS) occurred at higher flow velocities.

  10. Structural basis of complement membrane attack complex formation

    NASA Astrophysics Data System (ADS)

    Serna, Marina; Giles, Joanna L.; Morgan, B. Paul; Bubeck, Doryen

    2016-02-01

    In response to complement activation, the membrane attack complex (MAC) assembles from fluid-phase proteins to form pores in lipid bilayers. MAC directly lyses pathogens by a `multi-hit' mechanism; however, sublytic MAC pores on host cells activate signalling pathways. Previous studies have described the structures of individual MAC components and subcomplexes; however, the molecular details of its assembly and mechanism of action remain unresolved. Here we report the electron cryo-microscopy structure of human MAC at subnanometre resolution. Structural analyses define the stoichiometry of the complete pore and identify a network of interaction interfaces that determine its assembly mechanism. MAC adopts a `split-washer' configuration, in contrast to the predicted closed ring observed for perforin and cholesterol-dependent cytolysins. Assembly precursors partially penetrate the lipid bilayer, resulting in an irregular β-barrel pore. Our results demonstrate how differences in symmetric and asymmetric components of the MAC underpin a molecular basis for pore formation and suggest a mechanism of action that extends beyond membrane penetration.

  11. Structural basis of complement membrane attack complex formation

    PubMed Central

    Serna, Marina; Giles, Joanna L.; Morgan, B. Paul; Bubeck, Doryen

    2016-01-01

    In response to complement activation, the membrane attack complex (MAC) assembles from fluid-phase proteins to form pores in lipid bilayers. MAC directly lyses pathogens by a ‘multi-hit' mechanism; however, sublytic MAC pores on host cells activate signalling pathways. Previous studies have described the structures of individual MAC components and subcomplexes; however, the molecular details of its assembly and mechanism of action remain unresolved. Here we report the electron cryo-microscopy structure of human MAC at subnanometre resolution. Structural analyses define the stoichiometry of the complete pore and identify a network of interaction interfaces that determine its assembly mechanism. MAC adopts a ‘split-washer' configuration, in contrast to the predicted closed ring observed for perforin and cholesterol-dependent cytolysins. Assembly precursors partially penetrate the lipid bilayer, resulting in an irregular β-barrel pore. Our results demonstrate how differences in symmetric and asymmetric components of the MAC underpin a molecular basis for pore formation and suggest a mechanism of action that extends beyond membrane penetration. PMID:26841837

  12. The activity of the acidic phosphoproteins from the 80 S rat liver ribosome.

    PubMed

    MacConnell, W P; Kaplan, N O

    1982-05-25

    The selective removal of acidic phosphoproteins from the 80 S rat liver ribosome was accomplished by successive alcohol extractions at low salt concentration. The resulting core ribosomes lost over 90% of their translation activity and were unable to support the elongation factor 2 GTPase reaction. Both activities were partially restored when the dialyzed extracts were added back to the core ribosome. The binding of labeled adenosine diphosphoribosyl-elongation factor 2 to ribosomes was also affected by extraction and could be reconstituted, although not to the same extent as the GTPase activity associated with elongation factor 2 in the presence of the ribosome. The alcohol extracts of the 80 S ribosome contained mostly phosphoproteins P1 and P2 which could be dephosphorylated and rephosphorylated in solution by alkaline phosphatase and protein kinase, respectively. Dephosphorylation of the P1/P2 mixture in the extracts caused a decrease in the ability of these proteins to reactivate the polyphenylalanine synthesis activity of the core ribosome. However, treatment of the dephosphorylated proteins with the catalytic subunit of 3':5'-cAMP-dependent protein kinase in the presence of ATP reactivated the proteins when compared to the activity of the native extracts. Rabbit antisera raised against the alcohol-extracted proteins were capable of impairing both the polyphenylalanine synthesis reaction and the elongation factor 2-dependent GTPase reaction in the intact ribosomes. PMID:6121796

  13. The thermodynamic characteristics of complex formation between calcium ions and L-leucine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Kurochkin, V. Yu.; Chernikov, V. V.; Orlova, T. D.

    2011-04-01

    Complex formation of L-leucine with calcium ions in aqueous solution was studied by potentiometric titration at 298.15 K and ionic strength values I = 0.5, 1.0, and 1.5 (KNO3). The formation of the CaL+ and CaHL2+ complex particles was established and their stability constants were determined. The enthalpies of protolytic equilibria of leucine and formation of calcium ion complexes with leucine were determined calorimetrically at 298.15 K and I = 0.5 (KNO3). The thermodynamic characteristics of complex formation between calcium ions and L-leucine were calculated.

  14. Architecture of the caveolar coat complex

    PubMed Central

    Nichols, Benjamin James; Sandin, Sara

    2016-01-01

    ABSTRACT Caveolae are specialized membrane domains that are crucial for the correct function of endothelial cells, adipocytes and muscle cells. Caveolins and cavins are both required for caveolae formation, and assemble into a large (80S) caveolar coat complex (80S-CCC). The architecture of the 80S-CCC, however, has not been analyzed. Here, we study the 80S-CCC isolated from mammalian cells using negative stain electron microscopy and 3D cryo-electron tomography. We show that the 80S-CCC is a hollow sphere with a diameter of 50–80 nm, and so has the same size and shape as individual caveolar bulbs. This provides strong evidence that the distinctive membrane shape of caveolae is generated by the shape of the 80S-CCC itself. The particle appears to be made up of two layers, an inner coat composed of polygonal units of caveolins that form a polyhedral cage, and an outer filamentous coat composed of cavins. The data suggest that the peripheral cavin coat is aligned along the edges of the inner polyhedral cage, thereby providing a mechanism for the generation of a morphologically stable caveolar coat. PMID:27369768

  15. Architecture of the caveolar coat complex.

    PubMed

    Ludwig, Alexander; Nichols, Benjamin James; Sandin, Sara

    2016-08-15

    Caveolae are specialized membrane domains that are crucial for the correct function of endothelial cells, adipocytes and muscle cells. Caveolins and cavins are both required for caveolae formation, and assemble into a large (80S) caveolar coat complex (80S-CCC). The architecture of the 80S-CCC, however, has not been analyzed. Here, we study the 80S-CCC isolated from mammalian cells using negative stain electron microscopy and 3D cryo-electron tomography. We show that the 80S-CCC is a hollow sphere with a diameter of 50-80 nm, and so has the same size and shape as individual caveolar bulbs. This provides strong evidence that the distinctive membrane shape of caveolae is generated by the shape of the 80S-CCC itself. The particle appears to be made up of two layers, an inner coat composed of polygonal units of caveolins that form a polyhedral cage, and an outer filamentous coat composed of cavins. The data suggest that the peripheral cavin coat is aligned along the edges of the inner polyhedral cage, thereby providing a mechanism for the generation of a morphologically stable caveolar coat. PMID:27369768

  16. Reactions of a Dinitrogen Complex of Molybdenum: Formation of a Carbon-Nitrogen Bond.

    ERIC Educational Resources Information Center

    Busby, David C.; And Others

    1981-01-01

    Reports a procedure for the formation of alkyldiazenido complexes of molybdenum in the absence of dioxygen, suitable for inclusion in an advanced inorganic chemistry laboratory. Includes background information and experimental procedures for two complexes. (SK)

  17. Ethanol oxidation by imidorhenium(V) complexes: formation of amidorhenium(III) complexes.

    PubMed

    Suing, A L; Dewan, C R; White, P S; Thorp, H H

    2000-12-25

    The reaction of Re(NC6H4R)Cl3(PPh3)2 (R = H, 4-Cl, 4-OMe) with 1,2-bis(diphenylphosphino)ethane (dppe) is investigated in refluxing ethanol. The reaction produces two major products, Re(NC6H4R)Cl(dppe)(2)2+ (R = H, 1-H; R = Cl, 1-Cl; R = OMe, 1-OMe) and the rhenium(III) species Re(NHC6H4R)Cl(dppe)2+ (R = H, 2-H; R = Cl, 2-Cl). Complexes 1-H (orthorhombic, Pcab, a = 22.3075(10) A, b = 23.1271(10) A, c = 23.3584(10) A, Z = 8), 1-Cl (triclinic, P1, a = 11.9403(6) A, b = 14.6673(8) A, c = 17.2664(9) A, alpha = 92.019(1) degrees, beta = 97.379(1) degrees, gamma = 90.134(1) degrees, Z = 2), and 1-OMe (triclinic, P1, a = 11.340(3) A, b = 13.134(4) A, c = 13.3796(25) A, alpha = 102.370(20) degrees, beta = 107.688(17) degrees, gamma = 114.408(20) degrees, Z = 1) are crystallographically characterized and show an average Re-N bond length (1.71 A) typical of imidorhenium(V) complexes. There is a small systematic decrease in the Re-N bond length on going from Cl to H to OMe. Complex 2-Cl (monoclinic, Cc, a = 24.2381(11) A, b = 13.4504(6) A, c = 17.466(8) A, beta = 97.06900(0) degrees, Z = 4) is also crystallographically characterized and shows a Re-N bond length (1.98 A) suggestive of amidorhenium(III). The rhenium(III) complexes exhibit unusual proton NMR spectra where all of the resonances are found at expected locations except those for the amido protons, which are at 37.8 ppm for 2-Cl and 37.3 ppm for 1-H. The phosphorus resonances are also unremarkable, but the 13C spectrum of 2-Cl shows a significantly shifted resonance at 177.3 ppm, which is assigned to the ipso carbon of the phenylamido ligand. The extraordinary shifts of the amido hydrogen and ipso carbon are attributed to second-order magnetism that is strongly focused along the axially compressed amido axis. The reducing equivalents for the formation of the Re(III) product are provided by oxidation of the ethanol solvent, which produces acetal and acetaldehyde in amounts as much as 30 equiv based on the quantity of

  18. Double layer formation at the interface of complex plasmas

    SciTech Connect

    Yaroshenko, V. V.; Thoma, M. H.; Thomas, H. M.; Morfill, G. E.

    2008-08-15

    Necessary conditions are formulated for the generation of a double layer at the interface of a complex plasma and a particle-free electron-ion plasma in a weakly collisional discharge. Examples are calculated for realistic observed complex plasmas, and it is shown that situations of both ''smooth'' transitions and 'sharp' transitions can exist. The model can explain the abrupt boundaries observed.

  19. The Influence of Kinetics on the Formation of Complexes Between Mercury and Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Miller, C. L.; Gu, B.; Brooks, S.; Southworth, G.

    2008-12-01

    Strong complexes between mercury (Hg) and dissolved organic matter (DOM) dominate the speciation of Hg(II) in most oxygenated aquatic systems but the rate of formation of these complexes has not be thoroughly investigated. Kinetic experiments were used to measure the formation rate of strong Hg(II)-DOM complexes in water collected from the Upper East Fork Poplar Creek (UEFPC) in Oak Ridge, TN and in solution prepared using various DOM isolates. The loss of reactive mercury (HgR), defined as the amount of Hg reducible by stannous chloride (SnCl2), was used to examine the formation rates of strong Hg-DOM complexes which are nonreactive with SnCl2. We found that the formation of nonreactive Hg complexes followed first-order reaction kinetics, and the rate constant for the formation these complexes is similar both in creek water and solutions containing unfractionated DOM isolates ( ~4.8 day-1 ). C-18 Solid phase extractions were also used to examine the association of Hg(II) with different fractions of DOM as the mercury transformed from reactive, inorganic complexes to strong Hg-DOM complexes. In both the UEFPC and in laboratory solutions containing Hg and an unfractionated DOM isolate, the complexation of Hg shifted from hydrophilic to hydrophobic complexes as the strong Hg-DOM complexes were formed. This study concludes that, while equilibrium models suggest that strong Hg-DOM complexes dominate the speciation of Hg under equilibrium conditions, the formation of these complexes is kinetically limited. The slow formation of strong Hg-DOM complexes may have important implications in understanding the cycling, transport and bioavailability of Hg in systems such as the UEFPC with varying input sources of organic and inorganic Hg complexes.

  20. Coexistence facilitates interspecific biofilm formation in complex microbial communities.

    PubMed

    Madsen, Jonas S; Røder, Henriette L; Russel, Jakob; Sørensen, Helle; Burmølle, Mette; Sørensen, Søren J

    2016-09-01

    Social interactions in which bacteria respond to one another by modifying their phenotype are central determinants of microbial communities. It is known that interspecific interactions influence the biofilm phenotype of bacteria; a phenotype that is central to the fitness of bacteria. However, the underlying role of fundamental ecological factors, specifically coexistence and phylogenetic history, in biofilm formation remains unclear. This study examines how social interactions affect biofilm formation in multi-species co-cultures from five diverse environments. We found prevalence of increased biofilm formation among co-cultured bacteria that have coexisted in their original environment. Conversely, when randomly co-culturing bacteria across these five consortia, we found less biofilm induction and a prevalence of biofilm reduction. Reduction in biofilm formation was even more predominant when co-culturing bacteria from environments where long-term coexistence was unlikely to have occurred. Phylogenetic diversity was not found to be a strong underlying factor but a relation between biofilm induction and phylogenetic history was found. The data indicates that biofilm reduction is typically correlated with an increase in planktonic cell numbers, thus implying a behavioral response rather than mere growth competition. Our findings suggest that an increase in biofilm formation is a common adaptive response to long-term coexistence. PMID:27119650

  1. Structure of tetracarbonylethyleneosmium: ethylene structure changes upon complex formation.

    PubMed

    Karunatilaka, Chandana; Tackett, Brandon S; Washington, John; Kukolich, Stephen G

    2007-08-29

    Rotational spectra of seven isotopomers of tetracarbonylethyleneosmium, Os(CO)4(eta2-C2H4), were measured in the 4-12 GHz range using a Flygare-Balle-type pulsed-beam Fourier transform microwave spectrometer system. Olefin-transition metal complexes of this type occur extensively in recent organic syntheses and serve as important models for transition states in the metal-mediated transformations of alkenes. Three osmium ((192)Os, (190)Os, and (188)Os) and three unique 13C isotopomers (13C in ethylene, axial, and equatorial positions) were observed in natural abundance. Additional spectra were measured for a perdeuterated sample, Os(CO)4(eta2-C2D4). The measured rotational constants for the main osmium isotopomer ((192)Os) are A = 929.3256(6), B = 755.1707(3), and C = 752.7446(3) MHz, indicating a near-prolate asymmetric top molecule. The approximately 140 assigned b-type transitions were fit using a Watson S-reduced Hamiltonian including A, B, C, and five centrifugal distortion constants. A near-complete r0 gas-phase structure has been determined from a least-squares structural fit using eight adjustable structural parameters to fit the 21 measured rotational constants. Changes in the structure of ethylene on coordination to Os(CO)4 are large and well-determined. For the complex, the experimental ethylene C-C bond length is 1.432(5) A, which falls between the free ethylene value of 1.3391(13) A and the ethane value of 1.534(2) A. The angle between the plane of the CH2 group and the extended ethylene C-C bond ( angleout-of-plane) is 26.0(3) degrees , indicating that this complex is better described as a metallacyclopropane than as a pi-bonded olefin-metal complex. The Os-C-C-H dihedral angle is 106.7(2) degrees , indicating that the ethylene carbon atoms have near sp3 character in the complex. Kraitchman analysis of the available rotational constants gave principal axis coordinates for the carbon and hydrogen atoms in excellent agreement with the least-squares fit

  2. Crystal structures of complexes of NAD{sup +}-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    SciTech Connect

    Filippova, E. V. Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-07-15

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI{sub 2} with the coupled reduction of nicotinamide adenine dinucleotide (NAD{sup +}). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD{sup +}-azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 A resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state.

  3. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments.

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; And Others

    1988-01-01

    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

  4. Economy of operon formation: cotranscription minimizes shortfall in protein complexes.

    PubMed

    Sneppen, Kim; Pedersen, Steen; Krishna, Sandeep; Dodd, Ian; Semsey, Szabolcs

    2010-01-01

    Genes of prokaryotes and Archaea are often organized in cotranscribed groups, or operons. In contrast, eukaryotic genes are generally transcribed independently. Here we show that there is a substantial economic gain for the cell to cotranscribe genes encoding protein complexes because it synchronizes the fluctuations, or noise, in the levels of the different components. This correlation substantially reduces the shortfall in production of the complex. This benefit is relatively large in small cells such as bacterial cells, in which there are few mRNAs and proteins per cell, and is diminished in larger cells such as eukaryotic cells. PMID:20877578

  5. Structural Basis of Clostridium perfringens Toxin Complex Formation

    SciTech Connect

    Adams,J.; Gregg, K.; Bayer, E.; Boraston, A.; Smith, S.

    2008-01-01

    The virulent properties of the common human and livestock pathogen Clostridium perfringens are attributable to a formidable battery of toxins. Among these are a number of large and highly modular carbohydrate-active enzymes, including the {mu}-toxin and sialidases, whose catalytic properties are consistent with degradation of the mucosal layer of the human gut, glycosaminoglycans, and other cellular glycans found throughout the body. The conservation of noncatalytic ancillary modules among these enzymes suggests they make significant contributions to the overall functionality of the toxins. Here, we describe the structural basis of an ultra-tight interaction (Ka = 1.44 x 1011 M-1) between the X82 and dockerin modules, which are found throughout numerous C. perfringens carbohydrate-active enzymes. Extensive hydrogen-bonding and van der Waals contacts between the X82 and dockerin modules give rise to the observed high affinity. The {mu}-toxin dockerin module in this complex is positioned {approx}180 relative to the orientation of the dockerin modules on the cohesin module surface within cellulolytic complexes. These observations represent a unique property of these clostridial toxins whereby they can associate into large, noncovalent multitoxin complexes that allow potentiation of the activities of the individual toxins by combining complementary toxin specificities.

  6. DNA and buffers: the hidden danger of complex formation.

    PubMed

    Stellwagen, N C; Gelfi, C; Righetti, P G

    2000-08-01

    The free solution electrophoretic mobility of DNA differs significantly in different buffers, suggesting that DNA-buffer interactions are present in certain buffer systems. Here, capillary and gel electrophoresis data are combined to show that the Tris ions in Tris-acetate-EDTA (TAE) buffers are associated with the DNA helix to approximately the same extent as sodium ions. The borate ions in Tris-borate-EDTA (TBE) buffers interact with DNA to form highly charged DNA-borate complexes, which are stable both in free solution and in polyacrylamide gels. DNA-borate complexes are not observed in agarose gels, because of the competition of the agarose gel fibers for the borate residues. The resulting agarose-borate complexes increase the negative charge of the agarose gel fibers, leading to an increased electroendosmotic flow of the solvent in agarose-TBE gels. The combined results indicate that the buffers in which DNA is studied cannot automatically be assumed to be innocuous. PMID:10861374

  7. Biological pattern formation: from basic mechanisms to complex structures

    SciTech Connect

    Koch, A.J.; Meinhardt, H. )

    1994-10-01

    The reliable development of highly complex organisms is an intriguing and fascinating problem. The genetic material is, as a rule, the same in each cell of an organism. How then do cells, under the influence of their common genes, produce spatial patterns Simple models are discussed that describe the generation of patterns out of an initially nearly homogeneous state. They are based on nonlinear interactions of at least two chemicals and on their diffusion. The concepts of local autocatalysis and of long-range inhibition play a fundamental role. Numerical simulations show that the models account for many basic biological observations such as the regeneration of a pattern after excision of tissue or the production of regular (or nearly regular) arrays of organs during (or after) completion of growth. Very complex patterns can be generated in a reproducible way by hierarchical coupling of several such elementary reactions. Applications to animal coats and to the generation of polygonally shaped patterns are provided. It is further shown how to generate a strictly periodic pattern of units that themselves exhibit a complex and polar fine structure. This is illustrated by two examples: the assembly of photoreceptor cells in the eye of [ital Drosophila] and the positioning of leaves and axillary buds in a growing shoot. In both cases, the substructures have to achieve an internal polarity under the influence of some primary pattern-forming system existing in the fly's eye or in the plant. The fact that similar models can describe essential steps in organisms as distantly related as animals and plants suggests that they reveal some universal mechanisms.

  8. Module Based Complexity Formation: Periodic Patterning in Feathers and Hairs

    PubMed Central

    Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall

    2012-01-01

    Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism's lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specified number, size, and spacing. We explore how a field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical-chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators / inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (micro-environment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macro-environment) prevent this. Different wave patterns can be simulated by Cellular Automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to “organ metamorphosis”, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential evolutionary novel steps using this module based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. PMID:23539312

  9. The formation and study of titanium, zirconium, and hafnium complexes

    NASA Technical Reports Server (NTRS)

    Wilson, Bobby; Sarin, Sam; Smith, Laverne; Wilson, Melanie

    1989-01-01

    Research involves the preparation and characterization of a series of Ti, Zr, Hf, TiO, and HfO complexes using the poly(pyrazole) borates as ligands. The study will provide increased understanding of the decomposition of these coordination compounds which may lead to the production of molecular oxygen on the Moon from lunar materials such as ilmenite and rutile. The model compounds are investigated under reducing conditions of molecular hydrogen by use of a high temperature/pressure stainless steel autoclave reactor and by thermogravimetric analysis.

  10. Ganymede and Callisto - Complex crater formation and planetary crusts

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.

    1991-01-01

    Results are presented on measurements of crater depths and other morphological parameters (such as central peak and terrace frequency) of fresh craters on Ganymede and Callisto, two geophysically very similar but geologically divergent large icy satellites of Jupiter. These data were used to investigate the crater mechanics on icy satellites and the intersatellite crater scaling and crustal properties. The morphological transition diameters of and complex crater depths on Ganymede and Callisto were found to be similar, indicating that the crusts of both satellites are dominated by water ice with only a minor rocky component.

  11. New Pathways for the Formation of Complex Organics and Prebiotic Synthesis in the Gas Phase

    NASA Astrophysics Data System (ADS)

    El-Shall, M. S.

    2010-04-01

    We study the formation mechanisms of complex organics that are present in interstellar clouds. The reaction of acetylene ion with water produces vinyl alcohol while the reaction of benzene ion with acetylene produces naphthalene-type ion.

  12. The complex interplay between semantics and grammar in impression formation.

    PubMed

    Shreves, Wyley B; Hart, William; Adams, John M; Guadagno, Rosanna E; Eno, Cassie A

    2014-09-01

    We sought to bridge findings showing that (a) describing a person's behavior with the perfective verb aspect (did), compared to the imperfective aspect (was doing), increases processing of semantic knowledge unrelated to the target's action such as stereotypes and (b) an increased recognition of stereotypical thoughts often promotes a judgment correction for the stereotypes. We hypothesized an interplay between grammar (verb conjugation) and semantic information (gender) in impression-formation. Participants read a resume, attributed to a male or female, for a traditionally masculine job. When the resume was written in the imperfective, people rated a male (vs. female) more positively. When the resume was in the perfective, this pattern reversed. Only these latter effects of gender were influenced by cognitive load. Further, people more quickly indicated the applicant's gender in the perfective condition, suggesting an enhanced focus on gender during processing. PMID:24950389

  13. Subcellular location for the formation of the retinol/retinol-binding protein complex in rat liver

    SciTech Connect

    Crumbaugh, L.M.; Green, E.L.; Smith, J.E.

    1986-03-01

    Retinol complexes with retinol-binding protein (RBP) within the hepatocyte, however the subcellular location where complex formation occurs has not previously been identified. A model similar to that of lipoproteins formation has been hypothesized. The authors have identified the initial site of retinol/RBP complex formation. Furthermore, the authors have elucidated the progression of the complex through the subcellular organelles. Intravenous injections of /sup 3/H-retinol suspended in Tween 40 were administered to vitamin A depleted rats. After intervals of 2, 3, 4, 5, 10, 15, 20, and 30 minutes the rat livers were removed and fractions enriched in rough and smooth microsomes and Golgi apparatus were prepared. Extracts of these subcellular fractions were chromatographed on Sephadex G-100. Simultaneous elution of /sup 3/H-retinol and immunoreactive RBP indicated the presence of the complex. The retinol/RBP complex was observed in rough microsomes 2 minute after the injection of /sup 3/H-retinal. The complex appeared subsequently in smooth microsomes and Golgi apparatus. The complex was first detected serum around 10 minutes after injection. Based on the data, they believe that the retinol/RBP complex formation occurs in rough microsomes.

  14. Carbon–heteroatom bond formation catalysed by organometallic complexes

    PubMed Central

    Hartwig, John F.

    2010-01-01

    At one time the synthetic chemist’s last resort, reactions catalysed by transition metals are now the preferred method for synthesizing many types of organic molecule. A recent success in this type of catalysis is the discovery of reactions that form bonds between carbon and heteroatoms (such as nitrogen, oxygen, sulphur, silicon and boron) via complexes of transition metals with amides, alkoxides, thiolates, silyl groups or boryl groups. The development of these catalytic processes has been supported by the discovery of new elementary reactions that occur at metal–heteroatom bonds and by the identification of factors that control these reactions. Together, these findings have led to new synthetic processes that are in daily use and have formed a foundation for the development of processes that are likely to be central to synthetic chemistry in the future. PMID:18800130

  15. Enhancing the Reduction Potential of Quinones via Complex Formation.

    PubMed

    Nepal, Binod; Scheiner, Steve

    2016-05-20

    Quantum calculations are used to study the manner in which quinones interact with proton-donating molecules. For neutral donors, a stacked geometry is favored over a H-bond structure. The former is stabilized by charge transfers from the N or O lone pairs to the quinone's π* orbitals. Following the addition of an electron to the quinone, the radical anion forms strong H-bonded complexes with the various donors. The presence of the donor enhances the electron affinity of the quinone. This enhancement is on the order of 15 kcal/mol for neutral donors, but up to as much as 85 kcal/mol for a cationic donor. The increase in electron affinity is larger for electron-rich quinones than for their electron-deficient counterparts, containing halogen substituents. Similar trends are in evidence when the systems are immersed in aqueous solvent. PMID:27135719

  16. Formation, Migration, and Reactivity of Au CO Complexes on Gold Surfaces

    DOE PAGESBeta

    Wang, Jun; McEntee, Monica; Tang, Wenjie; Neurock, Matthew; Baddorf, Arthur P.; Maksymovych, Petro; Yates, Jr, John T.

    2016-01-12

    Here, we report experimental as well as theoretical evidence that suggests Au CO complex formation upon the exposure of CO to active sites (step edges and threading dislocations) on a Au(111) surface. Room-temperature scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy, transmission infrared spectroscopy, and density functional theory calculations point to Au CO complex formation and migration. Room-temperature STM of the Au(111) surface at CO pressures in the range from 10^ 8 to 10^ 4 Torr (dosage up to 10^6 langmuir) indicates Au atom extraction from dislocation sites of the herringbone reconstruction, mobile Au CO complex formation and diffusion, and Aumore » adatom cluster formation on both elbows and step edges on the Au surface. The formation and mobility of the Au CO complex result from the reduced Au Au bonding at elbows and step edges leading to stronger Au CO bonding and to the formation of a more positively charged CO (CO +) on Au. These studies indicate that the mobile Au CO complex is involved in the Au nanoparticle formation and reactivity, and that the positive charge on CO increases due to the stronger adsorption of CO at Au sites with lower coordination numbers.« less

  17. Formation, Migration, and Reactivity of Au-CO Complexes on Gold Surfaces.

    PubMed

    Wang, Jun; McEntee, Monica; Tang, Wenjie; Neurock, Matthew; Baddorf, Arthur P; Maksymovych, Petro; Yates, John T

    2016-02-10

    We report experimental as well as theoretical evidence that suggests Au-CO complex formation upon the exposure of CO to active sites (step edges and threading dislocations) on a Au(111) surface. Room-temperature scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy, transmission infrared spectroscopy, and density functional theory calculations point to Au-CO complex formation and migration. Room-temperature STM of the Au(111) surface at CO pressures in the range from 10(-8) to 10(-4) Torr (dosage up to 10(6) langmuir) indicates Au atom extraction from dislocation sites of the herringbone reconstruction, mobile Au-CO complex formation and diffusion, and Au adatom cluster formation on both elbows and step edges on the Au surface. The formation and mobility of the Au-CO complex result from the reduced Au-Au bonding at elbows and step edges leading to stronger Au-CO bonding and to the formation of a more positively charged CO (CO(δ+)) on Au. Our studies indicate that the mobile Au-CO complex is involved in the Au nanoparticle formation and reactivity, and that the positive charge on CO increases due to the stronger adsorption of CO at Au sites with lower coordination numbers. PMID:26754257

  18. Complex Formation History of Highly Evolved Basaltic Shergottite, Zagami

    NASA Technical Reports Server (NTRS)

    Niihara, T.; Misawa, K.; Mikouchi, T.; Nyquist, L. E.; Park, J.; Hirata, D.

    2012-01-01

    Zagami, a basaltic shergottite, contains several kinds of lithologies such as Normal Zagami consisting of Fine-grained (FG) and Coarse-grained (CG), Dark Mottled lithology (DML), and Olivine-rich late-stage melt pocket (DN). Treiman and Sutton concluded that Zagami (Normal Zagami) is a fractional crystallization product from a single magma. It has been suggested that there were two igneous stages (deep magma chamber and shallow magma chamber or surface lava flow) on the basis of chemical zoning features of pyroxenes which have homogeneous Mg-rich cores and FeO, CaO zoning at the rims. Nyquist et al. reported that FG has a different initial Sr isotopic ratio than CG and DML, and suggested the possibility of magma mixing on Mars. Here we report new results of petrology and mineralogy for DML and the Olivine-rich lithology (we do not use DN here), the most evolved lithology in this rock, to understand the relationship among lithologies and reveal Zagami s formation history

  19. Substrate Binding Promotes Formation of the Skp1-Cul1-Fbxl3 (SCFFbxl3) Protein Complex*

    PubMed Central

    Yumimoto, Kanae; Muneoka, Tetsuya; Tsuboi, Tomohiro; Nakayama, Keiichi I.

    2013-01-01

    The Skp1–Cul1–F-box protein (SCF) complex is one of the most well characterized types of ubiquitin ligase (E3), with the E3 activity of the complex being regulated in part at the level of complex formation. Fbxl3 is an F-box protein that is responsible for the ubiquitylation and consequent degradation of cryptochromes (Crys) and thus regulates oscillation of the circadian clock. Here we show that formation of the SCFFbxl3 complex is regulated by substrate binding in vivo. Fbxl3 did not associate with Skp1 and Cul1 to a substantial extent in transfected mammalian cells. Unexpectedly, however, formation of the SCFFbxl3 complex was markedly promoted by forced expression of its substrate Cry1 in these cells. A mutant form of Fbxl3 that does not bind to Cry1 was unable to form an SCF complex, suggesting that interaction of Cry1 with Fbxl3 is essential for formation of SCFFbxl3. In contrast, recombinant Fbxl3 associated with recombinant Skp1 and Cul1 in vitro even in the absence of recombinant Cry1. Domain-swap analysis revealed that the COOH-terminal leucine-rich repeat domain of Fbxl3 attenuates the interaction of Skp1, suggesting that a yet unknown protein associated with the COOH-terminal domain of Fbxl3 and inhibited SCF complex formation. Our results thus provide important insight into the regulation of both SCF ubiquitin ligase activity and circadian rhythmicity. PMID:24085301

  20. The imidazole role in strontium beta-diketonate complexes formation.

    PubMed

    Marchetti, Fabio; Pettinari, Claudio; Pettinari, Riccardo; Cingolani, Augusto; Gobetto, Roberto; Chierotti, Michele R; Drozdov, Andrei; Troyanov, Sergey I

    2006-04-01

    A selection of new strontium beta-diketonate derivatives (imH2)2[Sr2(beta-dike)6] [where imH = imidazole and beta-dike = tfac (tfacH = 1,1,1-trifluoro-2,4-pentanedione), tfbz (tfbzH = 1,1,1-trifluoro-4-phenyl-2,4-butanedione), or hfac (hfacH = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione)], [Sr2(tfac)4(Meim)2(H2O)2], (MeimH)2[Sr(beta-dike)4] (where Meim = 1-methylimidazole and beta-dike = tfbz or hfac), [Sr2(thd)4(imH)2(EtOH)], and [Sr2(thd)4(Meim)2(EtOH)] (where thdH = 2,2,6,6-tetramethyl-3,5-heptanedione) have been synthesized and fully characterized. (imH2)2[Sr2(beta-dike)6] and (MeimH)2[Sr(beta-dike)4] are di- and mononuclear Sr anionic complexes, respectively, while [Sr2(tfac)4(Meim)2(H2O)2], [Sr2(thd)4(imH)2(EtOH)], and [Sr2(thd)4(Meim)2(EtOH)] are neutral dinuclear molecular derivatives. The derivative (imH2)2[Sr2(hfac)6] slowly decomposes in solution under aerobic conditions, giving (imH2)2[Sr(H2O)2(tfa)3](tfa) (tfaH = trifluoroacetic acid), which is an ionic compound containing polynuclear anionic chains composed of Sr(H2O)2(tfa)3 units. When a deficiency of imH is employed, the thdH proligand forms not only the dinuclear derivative [Sr2(thd)4(imH)2(EtOH)] but also an additional product with the formula [Sr(thd)2(H2O)2(EtOH)], in which the Sr atom is seven-coordinated. A complete solid-state characterization has been accomplished by comparing X-ray and solid-state 13C NMR data. Elucidation of the H-bond interaction between the heterocyclic rings and metal complexes by cross-polarization magic-angle-spinning 15N NMR is also reported. PMID:16562964

  1. An illustration of the complexity of continent formation

    NASA Technical Reports Server (NTRS)

    Burke, Kevin

    1988-01-01

    It was pointed out that a consensus may be emerging in crustal growth models, considering the clustering of most growth curves and their uncertainties. Curves most distant from this clustering represent models involving extensive recycling of continental material back into the mantle, but the author wondered if geochemical signatures for this would be recognizable considering the lack of evidence from seismic tomography for discrete mantle reservoirs, and the likelihood of core-mantle interaction based on recent high pressure experiments. Unreactivated Archean rocks represent only 2 percent of present continental area, and the author was uncomfortable about basing inferences on what the early Earth was like on such a small amount of information. He feels that the hypothesis of continental assembly that needs testing is that of banging together of island arcs, such as in Indonesia today. As an example of how complex this process can be, the author described the geology of the Caribbean arc system, which shows evidence for reversals of subduction polarity, numerous collisional events, and substantial strike-slip movements. It seemed unlikely to the author that Archean examples would have been less complicated.

  2. Interferogram formation in the presence of complex and large deformation

    USGS Publications Warehouse

    Yun, S.-H.; Zebker, H.; Segall, P.; Hooper, A.; Poland, M.

    2007-01-01

    Sierra Negra volcano in Isabela island, Gala??pagos, erupted from October 22 to October 30 in 2005. During the 8 days of eruption, the center of Sierra Negra's caldera subsided about 5.4 meters. Three hours prior to the onset of the eruption, an earthquake (Mw 5.4) occurred, near the caldera. Because of the large and complex phase gradient due to the huge subsidence and the earthquake, it is difficult to form an interferogram inside the caldera that spans the eruption. The deformation is so large and spatially variable that the approximations used in existing InSAR software (ROI, ROI_PAC, DORIS, GAMMA) cannot properly coregister SAR image pairs spanning the eruption. We have developed here a two-step algorithm that can form intra-caldera interferograms from these data. The first step involves a "rubber-sheeting" SAR image coregistration. In the second step we use range offset estimates to mitigate the steep phase gradient. Using this new algorithm, we retrieve an interferogram with the best coverage to date inside the caldera of Sierra Negra. Copyright 2007 by the American Geophysical Union.

  3. Oxidative peptide /and amide/ formation from Schiff base complexes

    NASA Technical Reports Server (NTRS)

    Strehler, B. L.; Li, M. P.; Martin, K.; Fliss, H.; Schmid, P.

    1982-01-01

    One hypothesis of the origin of pre-modern forms of life is that the original replicating molecules were specific polypeptides which acted as templates for the assembly of poly-Schiff bases complementary to the template, and that these polymers were then oxidized to peptide linkages, probably by photo-produced oxidants. A double cycle of such anti-parallel complementary replication would yield the original peptide polymer. If this model were valid, the Schiff base between an N-acyl alpha mino aldehyde and an amino acid should yield a dipeptide in aqueous solution in the presence of an appropriate oxidant. In the present study it is shown that the substituted dipeptide, N-acetyl-tyrosyl-tyrosine, is produced in high yield in aqueous solution at pH 9 through the action of H2O2 on the Schiff-base complex between N-acetyl-tyrosinal and tyrosine and that a great variety of N-acyl amino acids are formed from amino acids and aliphatic aldehydes under similar conditions.

  4. Interferogram formation in the presence of complex and large deformation

    NASA Astrophysics Data System (ADS)

    Yun, Sang-Ho; Zebker, Howard; Segall, Paul; Hooper, Andrew; Poland, Michael

    2007-06-01

    Sierra Negra volcano in Isabela island, Galápagos, erupted from October 22 to October 30 in 2005. During the 8 days of eruption, the center of Sierra Negra's caldera subsided about 5.4 meters. Three hours prior to the onset of the eruption, an earthquake (Mw 5.4) occurred, near the caldera. Because of the large and complex phase gradient due to the huge subsidence and the earthquake, it is difficult to form an interferogram inside the caldera that spans the eruption. The deformation is so large and spatially variable that the approximations used in existing InSAR software (ROI, ROI_PAC, DORIS, GAMMA) cannot properly coregister SAR image pairs spanning the eruption. We have developed here a two-step algorithm that can form intra-caldera interferograms from these data. The first step involves a ``rubber-sheeting'' SAR image coregistration. In the second step we use range offset estimates to mitigate the steep phase gradient. Using this new algorithm, we retrieve an interferogram with the best coverage to date inside the caldera of Sierra Negra.

  5. The adenylate cyclase receptor complex and aqueous humor formation.

    PubMed Central

    Caprioli, J.; Sears, M.

    1984-01-01

    The secretory tissue of the eye, the ciliary processes, contains an enzyme receptor complex, composed of membrane proteins, the catalytic moiety of the enzyme adenylate cyclase, a guanyl nucleotide regulatory protein (or N protein), and other features. The enzyme can be activated by well-known neurohumoral or humoral agents, catecholamines, glycoprotein hormones produced by the hypothalamic pituitary axis, and other related compounds, including placental gonadotropin, organic fluorides, and forskolin, a diterpene. These compounds cause the ciliary epithelia to produce cyclic AMP at an accelerated rate. Cyclic AMP, as a second messenger, causes, either directly or indirectly, a decrease in the net rate of aqueous humor inflow that may be modulated by cofactors. Clinical syndromes fit the experimental data so that an integrated explanation can be given for the reduced intraocular pressure witnessed under certain central nervous system and adrenergic influences. The molecular biology of this concept provides important leads for future investigations that bear directly both upon the regulation of intraocular pressure and upon glaucoma. Images FIG. 11 PMID:6093393

  6. Structure of soybean serine acetyltransferase and formation of the cysteine regulatory complex as a molecular chaperone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serine acetyltransferase (SAT) catalyzes the limiting reaction in plant and microbial biosynthesis of cysteine. In addition to its enzymatic function, SAT forms a macromolecular complex with O-acetylserine sulfhydrylase (OASS). Formation of the cysteine regulatory complex (CRC) is a critical biochem...

  7. Phosphorylation-dependent formation of a quaternary complex at the c-fos SRE.

    PubMed Central

    Gille, H; Kortenjann, M; Strahl, T; Shaw, P E

    1996-01-01

    The rapid and transient induction of the human proto-oncogene c-fos in response to a variety of stimuli depends on the serum responses element (SRE). In vivo footprinting experiments show that this promoter element is bound by a multicomponent complex including the serum response factor (SRF) and a ternary complex factor such as Elk-1. SRF is thought to recruit a ternary complex factor monomer into an asymmetric complex. In this report, we describe a quaternary complex over the SRE which, in addition to an SRF dimer, contains two Elk-1 molecules. Its formation at the SRE is strictly dependent on phosphorylation of S-383 in the Elk-1 regulatory domain and appears to involve a weak intermolecular association between the two Elk-1 molecules. The influence of mutations in Elk-1 on quaternary complex formation in vitro correlates with their effect on the induction of c-fos reporter expression in response to mitogenic stimuli in vivo. PMID:8622654

  8. MICROCALORIMETRIC STUDIES ON THE FORMATION OF MAGNESIUM COMPLEXES OF ADENINE NUCLEOTIDES

    PubMed Central

    Belaich, J. P.; Sari, J. C.

    1969-01-01

    Values for the thermodynamic quantities (ΔF, ΔH, ΔS) in reactions in which complexes of adenine nucleotides with magnesium ion (ATPMg--, ADPMg-, AMPMg) are formed have been obtained by a microcalorimetric technique by using an isothermic Calvet's apparatus. Experimental values measured at ionic strength μ = 0.2 indicate that complex formation reactions are driven by the entropic factor and that stability of complexes increases with length of the phosphate chain. PMID:5261047

  9. Evidence of iron(III)-oxalato complex formation in aqueous solution from x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Magini, Mauro

    1981-02-01

    An aqueous solution of ferric ammonium oxalate has been examined to provide direct experimental evidence of complex formation between iron(III) and a typical organic complexing ligand. The radial distribution function as well as analysis of the structure function lead to the conclusion that the dominant species present in solution is the trioxalato-iron(III) complex in which each oxalate ion occupies two corners of a distorted octahedron around the Fe 3+ ions.

  10. Ribosomal Protein Rps26 Influences 80S Ribosome Assembly in Saccharomyces cerevisiae

    PubMed Central

    Belyy, Alexander; Levanova, Nadezhda; Tabakova, Irina; Rospert, Sabine

    2016-01-01

    ABSTRACT The eukaryotic ribosome consists of a small (40S) and a large (60S) subunit. Rps26 is one of the essential ribosomal proteins of the 40S subunit and is encoded by two almost identical genes, RPS26a and RPS26b. Previous studies demonstrated that Rps26 interacts with the 5′ untranslated region of mRNA via the eukaryote-specific 62-YXXPKXYXK-70 (Y62–K70) motif. Those observations suggested that this peptide within Rps26 might play an important and specific role during translation initiation. By using alanine-scanning mutagenesis and engineered strains of the yeast Saccharomyces cerevisiae, we found that single amino acid substitutions within the Y62–K70 motif of Rps26 did not affect the in vivo function of the protein. In contrast, complete deletion of the Y62–K70 segment was lethal. The simultaneous replacement of five conserved residues within the Y62–K70 segment by alanines resulted in growth defects under stress conditions and produced distinct changes in polysome profiles that were indicative of the accumulation of free 60S subunits. Human Rps26 (Rps26-Hs), which displays significant homology with yeast Rps26, supported the growth of an S. cerevisiae Δrps26a Δrps26b strain. However, the Δrps26a Δrps26b double deletion strain expressing Rps26-Hs displayed substantial growth defects and an altered ratio of 40S/60S ribosomal subunits. The combined data strongly suggest that the eukaryote-specific motif within Rps26 does not play a specific role in translation initiation. Rather, the data indicate that Rps26 as a whole is necessary for proper assembly of the 40S subunit and the 80S ribosome in yeast. IMPORTANCE Rps26 is an essential protein of the eukaryotic small ribosomal subunit. Previous experiments demonstrated an interaction between the eukaryote-specific Y62–K70 segment of Rps26 and the 5′ untranslated region of mRNA. The data suggested a specific role of the Y62–K70 motif during translation initiation. Here, we report that single

  11. Positronium formation studies in solid molecular complexes: Triphenylphosphine oxide-triphenylmethanol

    NASA Astrophysics Data System (ADS)

    Oliveira, F. C.; Denadai, A. M. L.; Fulgêncio, F. H.; Magalhães, W. F.; Alcântara, A. F. C.; Windmöller, D.; Machado, J. C.

    2012-06-01

    Positronium formation in triphenylphosphine oxide (TPPO), triphenylmethanol (TPM), and systems [TPPO(1-X)ṡTPMX] has been studied. The low probability of positronium formation in complex [TPPO0.5ṡTPM0.5] was attributed to strong hydrogen bond and sixfold phenyl embrace interactions. These strong interactions in complex reduce the possibility of the n- and π-electrons to interact with positrons on the spur and consequently, the probability of positronium formation is lower. The τ3 parameter and free volume (correlated to τ3) were also sensitive to the formation of hydrogen bonds and sixfold phenyl embrace interactions within the complex. For physical mixture the positron annihilation parameters remained unchanged throughout the composition range.

  12. The chitosan-gelatin (bio)polyelectrolyte complexes formation in an acidic medium.

    PubMed

    Voron'ko, Nicolay G; Derkach, Svetlana R; Kuchina, Yuliya A; Sokolan, Nina I

    2016-03-15

    The interaction of cationic polysaccharide chitosan and gelatin accompanied by the stoichiometric (bio)polyelectrolyte complexes formation has been studied by the methods of capillary viscometry, UV and FTIR spectroscopy and dispersion of light scattering. Complexes were formed in the aqueous phase, with pH being less than the isoelectric point of gelatin (pIgel). The particle size of the disperse phase increases along with the growth of the relative viscosity in comparison with sols of the individual components-polysaccharide and gelatin. Possible models and mechanism of (bio)polyelectrolyte complexes formation have been discussed. It was shown that the complex formation takes place not only due to the hydrogen bonds, but also due to the electrostatic interactions between the positively charged amino-groups of chitosan and negatively charged amino acid residues (glutamic Glu and aspartic Asp acids) of gelatin. PMID:26794762

  13. Position of the CrPV IRES on the 40S subunit and factor dependence of IRES/80S ribosome assembly.

    PubMed

    Pestova, Tatyana V; Lomakin, Ivan B; Hellen, Christopher U T

    2004-09-01

    The cricket paralysis virus intergenic region internal ribosomal entry site (CrPV IGR IRES) can assemble translation initiation complexes by binding to 40S subunits without Met-tRNA(Met)(i) and initiation factors (eIFs) and then by joining directly with 60S subunits, yielding elongation-competent 80S ribosomes. Here, we report that eIF1, eIF1A and eIF3 do not significantly influence IRES/40S subunit binding but strongly inhibit subunit joining and the first elongation cycle. The IRES can avoid their inhibitory effect by its ability to bind directly to 80S ribosomes. The IRES's ability to bind to 40S subunits simultaneously with eIF1 allowed us to use directed hydroxyl radical cleavage to map its position relative to the known position of eIF1. A connecting loop in the IRES's pseudoknot (PK) III domain, part of PK II and the entire domain containing PK I are solvent-exposed and occupy the E site and regions of the P site that are usually occupied by Met-tRNA(Met)(i). PMID:15332113

  14. Citizen Involvement in the Public Schools. Trends for the 80's.

    ERIC Educational Resources Information Center

    Simon, Toby R.

    This is a resource booklet designed to facilitate the involvement of all citizens, not just parents, in the public schools. Citizen involvement in education is examined from an historical perspective, and legal mandates for citizen involvement in the state of New Jersey are outlined. Presented in the pamphlet are guidelines for the formation of…

  15. Complexes of sulfur-containing ligands. I. Factors influencing complex formation between D-penicillamine and copper (II) ion.

    PubMed

    Gergely, A; Sóvágó, I

    1978-07-01

    Complex formation and redox reactions between copper (II) ion and D-penicillamine were studied in detail as functions of the metal/-ligand ratio and the concentration of halide ions. It was established that a copper (I)- D-penicillamine polymeric complex of amphoteric character is formed when excess D-penicillamine is present. When the D-penicillamine/copper (II) ratio = 1.45 in the starting reaction mixture, a mixed valence complex with an intense red-violet color is formed. The formation of this compound, which contains 44% copper (II) ion, is greatly influenced by the experimental conditions, primarily by the concentration of halide ions. The main chemical and physical characteristics of the mixed valence complex were determined via magnetic and spectroscopic measurements. It was further established that a very intense blue complex is formed when the D-penicillamine/copper (II) ratio = 2 and halide ions are present. On the basis of the nature of the products formed under various conditions it was concluded that the copper (II)-D-penicillamine system may serve as a good model for studying the binding sites of copper-containing proteins. PMID:210846

  16. SEPALLATA3: the 'glue' for MADS box transcription factor complex formation

    PubMed Central

    Immink, Richard GH; Tonaco, Isabella AN; de Folter, Stefan; Shchennikova, Anna; van Dijk, Aalt DJ; Busscher-Lange, Jacqueline; Borst, Jan W; Angenent, Gerco C

    2009-01-01

    Background Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation capacity of the Arabidopsis MADS box family. SEPALLATA3 (SEP3) has been shown to mediate complex formation and, therefore, special attention is paid to this factor in this study. Results In total, 106 multimeric complexes were identified; in more than half of these at least one SEP protein was present. Besides the known complexes involved in determining floral organ identity, various complexes consisting of combinations of proteins known to play a role in floral organ identity specification, and flowering time determination were discovered. The capacity to form this latter type of complex suggests that homeotic factors play essential roles in down-regulation of the MADS box genes involved in floral timing in the flower via negative auto-regulatory loops. Furthermore, various novel complexes were identified that may be important for the direct regulation of the floral transition process. A subsequent detailed analysis of the APETALA3, PISTILLATA, and SEP3 proteins in living plant cells suggests the formation of a multimeric complex in vivo. Conclusions Overall, these results provide strong indications that higher-order complex formation is a general and essential molecular mechanism for plant MADS box protein functioning and attribute a pivotal role to the SEP3 'glue' protein in mediating multimerization. PMID:19243611

  17. Spectrophotometric study of complex formation between oxovanadium (IV) and antiamebic drugs.

    PubMed

    Abu-Eittah, R; El-Nasr, M S

    1976-09-01

    Complex formation between oxovanadium(IV) and the antiamebic drugs 5, 7-dibromo-8-quinolinol and 5, 7-dichloro-8-quinolinol was studied in the pH 1.5-2.0 range, using ethanol, dioxane-water, and dimethylformamide as solvents. The composition of the formed complexes was determined by more than one procedure. In ethanol and dioxane-water, the 1:1 and 1:2 complexes were formed; in dimethylformamide, the 1:1, 1:2 and 1:3 complexes were formed. The stability constants were computed using two procedures: the molar ratio method and the extrapolation method. The reproducibility or results in satisfactory. PMID:966156

  18. Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine.

    PubMed

    Miyazaki, Takamasa; Tanaka, Hiromasa; Tanabe, Yoshiaki; Yuki, Masahiro; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-10-20

    The N≡N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions. PMID:25214300

  19. Complex Formation of Human Proelastases with Procarboxypeptidases A1 and A2.

    PubMed

    Szabó, András; Pilsak, Claudia; Bence, Melinda; Witt, Heiko; Sahin-Tóth, Miklós

    2016-08-19

    The pancreas secretes digestive proenzymes typically in their monomeric form. A notable exception is the ternary complex formed by proproteinase E, chymotrypsinogen C, and procarboxypeptidase A (proCPA) in cattle and other ruminants. In the human and pig pancreas binary complexes of proCPA with proelastases were found. To characterize complex formation among human pancreatic protease zymogens in a systematic manner, we performed binding experiments using recombinant proelastases CELA2A, CELA3A, and CELA3B; chymotrypsinogens CTRB1, CTRB2, CTRC, and CTRL1; and procarboxypeptidases CPA1, CPA2, and CPB1. We found that proCELA3B bound not only to proCPA1 (KD 43 nm) but even more tightly to proCPA2 (KD 18 nm), whereas proCELA2A bound weakly to proCPA1 only (KD 152 nm). Surprisingly, proCELA3A, which shares 92% identity with proCELA3B, did not form stable complexes due to the evolutionary replacement of Ala(241) with Gly. The polymorphic nature of position 241 in both CELA3A (∼4% Ala(241) alleles) and CELA3B (∼2% Gly(241) alleles) points to individual variations in complex formation. The functional effect of complex formation was delayed procarboxypeptidase activation due to increased affinity of the inhibitory activation peptide, whereas proelastase activation was unchanged. We conclude that complex formation among human pancreatic protease zymogens is limited to a subset of proelastases and procarboxypeptidases. Complex formation stabilizes the inhibitory activation peptide of procarboxypeptidases and thereby increases zymogen stability and controls activation. PMID:27358403

  20. Effects of chemical and enzymatic modifications on starch-oleic acid complex formation.

    PubMed

    Arijaje, Emily Oluwaseun; Wang, Ya-Jane

    2015-04-29

    The solubility of starch-inclusion complexes affects the digestibility and bioavailability of the included molecules. Acetylation with two degrees of substitution, 0.041 (low) and 0.091 (high), combined without or with a β-amylase treatment was employed to improve the yield and solubility of the inclusion complex between debranched potato starch and oleic acid. Both soluble and insoluble complexes were recovered and analyzed for their degree of acetylation, complexation yields, molecular size distributions, X-ray diffraction patterns, and thermal properties. Acetylation significantly increased the amount of recovered soluble complexes as well as the complexed oleic acid in both soluble and insoluble complexes. High-acetylated debranched-only starch complexed the highest amount of oleic acid (38.0 mg/g) in the soluble complexes; low-acetylated starch with or without the β-amylase treatment resulted in the highest complexed oleic acid in the insoluble complexes (37.6-42.9 mg/g). All acetylated starches displayed the V-type X-ray pattern, and the melting temperature generally decreased with acetylation. The results indicate that starch acetylation with or without the β-amylase treatment can improve the formation and solubility of the starch-oleic acid complex. PMID:25877005

  1. Thermodynamics of the formation of copper(II) complexes with L-histidine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Gorboletova, G. G.; Metlin, A. A.

    2015-02-01

    The heat effects from the reaction between L-histidine solutions and Cu(NO3)2 solutions at 298.15 K in the 0.2 to 1.0 (KNO3) range of ionic strength are measured by means of direct calorimetry. The experimental data is treated with allowance for the simultaneous proceeding of several processes. The heat effects of the formation of complexes Cu(His)+, Cu(His)2, CuHHis2+, CuH(His){2/+} and CuH2(His){2/2+} are calculated from calorimetric measurements. The standard enthalpies of formation for complexes of L-histidine with Cu2+ ions are obtained via extrapolation to zero ionic strength. The relationship between the thermodynamic characteristics of the formation of complexes of copper(II) with L-histidine and their structure is determined.

  2. Direct computer simulation of ferredoxin and FNR complex formation in solution

    NASA Astrophysics Data System (ADS)

    Kovalenko, I. B.; Diakonova, A. N.; Abaturova, A. M.; Riznichenko, G. Yu; Rubin, A. B.

    2010-06-01

    Ferredoxin reduced by Photosystem I in light serves as an electron donor for the reduction of NADP+ to NADPH, and this reaction is catalyzed by enzyme ferredoxin:NADP+-reductase (FNR). Kinetics and mechanisms of this reaction have been extensively studied experimentally by site-specific mutagenesis, laser flash photolysis and stopped-flow methods. We have applied a method of multiparticle computer simulation to study the effects of electrostatic interactions upon the reaction rate of Fd-FNR complex formation. Using the model we calculated rate constants of Fd-FNR complex formation for the wild-type proteins and some mutant forms of FNR at different values of ionic strength. Simulation revealed that electrostatic interactions play an important role in Fd-FNR complex formation and define its specificity.

  3. Direct computer simulation of ferredoxin and FNR complex formation in solution.

    PubMed

    Kovalenko, I B; Diakonova, A N; Abaturova, A M; Riznichenko, G Yu; Rubin, A B

    2010-01-01

    Ferredoxin reduced by Photosystem I in light serves as an electron donor for the reduction of NADP(+) to NADPH, and this reaction is catalyzed by enzyme ferredoxin:NADP(+)-reductase (FNR). Kinetics and mechanisms of this reaction have been extensively studied experimentally by site-specific mutagenesis, laser flash photolysis and stopped-flow methods. We have applied a method of multiparticle computer simulation to study the effects of electrostatic interactions upon the reaction rate of Fd-FNR complex formation. Using the model we calculated rate constants of Fd-FNR complex formation for the wild-type proteins and some mutant forms of FNR at different values of ionic strength. Simulation revealed that electrostatic interactions play an important role in Fd-FNR complex formation and define its specificity. PMID:20453296

  4. High density of REC8 constrains sister chromatid axes and prevents illegitimate synaptonemal complex formation.

    PubMed

    Agostinho, Ana; Manneberg, Otto; van Schendel, Robin; Hernández-Hernández, Abrahan; Kouznetsova, Anna; Blom, Hans; Brismar, Hjalmar; Höög, Christer

    2016-06-01

    During meiosis, cohesin complexes mediate sister chromatid cohesion (SCC), synaptonemal complex (SC) assembly and synapsis. Here, using super-resolution microscopy, we imaged sister chromatid axes in mouse meiocytes that have normal or reduced levels of cohesin complexes, assessing the relationship between localization of cohesin complexes, SCC and SC formation. We show that REC8 foci are separated from each other by a distance smaller than 15% of the total chromosome axis length in wild-type meiocytes. Reduced levels of cohesin complexes result in a local separation of sister chromatid axial elements (LSAEs), as well as illegitimate SC formation at these sites. REC8 but not RAD21 or RAD21L cohesin complexes flank sites of LSAEs, whereas RAD21 and RAD21L appear predominantly along the separated sister-chromatid axes. Based on these observations and a quantitative distribution analysis of REC8 along sister chromatid axes, we propose that the high density of randomly distributed REC8 cohesin complexes promotes SCC and prevents illegitimate SC formation. PMID:27170622

  5. Can arsenic-phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus?

    PubMed

    Raab, Andrea; Ferreira, Katia; Meharg, Andrew A; Feldmann, Jörg

    2007-01-01

    The formation of arsenic-phytochelatin (As-PC) complexes is thought to be part of the plant detoxification strategy for arsenic. This work examines (i) the arsenic (As) concentration-dependent formation of As-PC complex formation and (ii) redistribution and metabolism of As after arrested As uptake in Helianthus annuus. HPLC with parallel ICP-MS/ES-MS detection was used to identify and quantify the species present in plant extracts exposed to arsenate (As(V)) (between 0 and 66.7 micromol As l-1 for 24 h). At As concentrations below the EC50 value for root growth (22 micromol As l-1) As uptake is exponential, but it is reduced at concentrations above. Translocation between root and shoot seemed to be limited to the uptake phase of arsenic. No redistribution of As between root and shoot was observed after arresting As exposure. The formation of As-PC complexes was concentration-dependent. The amount and number of As-PC complexes increased exponentially with concentration up to 13.7 micromol As l-1. As(III)-PC3 and GS-As(III)-PC2 complexes were the dominant species in all samples. The ratio of PC-bound As to unbound As increased up to 1.3 micromol As l-1 and decreased at higher concentrations. Methylation of inorganic As was only a minor pathway in H. annuus with about 1% As methylated over a 32 d period. The concentration dependence of As-PC complex formation, amount of unbound reduced and oxidized PC2, and the relative uptake rate showed that As starts to influence the cellular metabolism of H. annuus negatively at As concentrations well below the EC50 value determined by more traditional means. Generally, As-PC complexes and PC-synthesis rate seem to be the more sensitive parameters to be studied when As toxicity values are to be estimated. PMID:17283372

  6. Studies of formation of bivalent copper complexes with native and denatured DNA.

    PubMed

    Sorokin, V A; Blagoi, Y P; Valeev, V A; Kornilova, S V; Gladchenko, G O; Reva, I D; Sokhan, V I

    1987-06-01

    The formation of Cu2+ complexes with native and denatured DNA is studied by the methods of differential UV spectroscopy, CD spectroscopy, and viscometry. On ion binding to the bases of native DNA the latter transforms into a new conformation. This transition is accompanied with a sharp increase in UV absorption and a decrease in the intrinsic viscosity though the high degree of helicity persists. Possible sites of Cu2+ ion binding on DNA of various conformations are found along with corresponding constants of complex formation. PMID:3598574

  7. Thermodynamic functions of formation of n-alkane complexes with crystalline urea

    SciTech Connect

    Tolmachev, V.V.; Semenov, L.V.; Gaile, A.A.; Proskuryakov, V.A.

    1987-07-10

    For optimization of the conditions of deparaffination of petroleum fractions with the aid of urea, with the composition of the feedstock taken into account, it is important to know the equilibrium constants of formation of complexes of urea with n-alkanes differing in the number of carbon atoms in their molecules, as functions of temperature. In this investigation they obtained experimental data necessary for calculating the thermodynamic functions of formation of n-alkane complexes with crystalline urea up to the decomposition temperature, using Kirchhoff's equations.

  8. Formation of ATP by the adenosine triphosphatase complex from spinach chloroplasts reconstituted together with bacteriorhodopsin.

    PubMed

    Winget, G D; Kanner, N; Racker, E

    1977-06-01

    The energy-linked ATPase complex has been isolated from spinach chloroplasts. This protein complex contained all the subunits of the chloroplast coupling factor (CF1) as well as several hydrophobic compoenents. When the activated complex was reconstituted with added soybean phospholipids, it catalyzed the exchange of radioactive inorganic phosphate with ATP. Sonication of the complex into proteoliposomes together with bacteriorhodopsin yield vesicles that catalyzed light-dependent ATP formation. Both the 32Pi-ATP exchange reactions and ATP formation were sensitive to uncouplers such as 3-tert-butyl-5,2'-dichloro-4'-nitrosalicylanilide, bis-(hexafluoroacetonyl)acetone and carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone, that act to dissipate a proton gradient. The energy transfer inhibitors dicyclohexylcarbodiimide, triphenyltin chloride and 2-beta-D-glucopyranosyl-4,6'-dihydroxydihydrochalcone were also effective inhibitors of both reactions. PMID:141938

  9. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    NASA Astrophysics Data System (ADS)

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-01

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  10. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    SciTech Connect

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-13

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  11. Synergistic effect of ATP for RuvA–RuvB–Holliday junction DNA complex formation

    PubMed Central

    Iwasa, Takuma; Han, Yong-Woon; Hiramatsu, Ryo; Yokota, Hiroaki; Nakao, Kimiko; Yokokawa, Ryuji; Ono, Teruo; Harada, Yoshie

    2015-01-01

    The Escherichia coli RuvB hexameric ring motor proteins, together with RuvAs, promote branch migration of Holliday junction DNA. Zero mode waveguides (ZMWs) constitute of nanosized holes and enable the visualization of a single fluorescent molecule under micromolar order of the molecules, which is applicable to characterize the formation of RuvA–RuvB–Holliday junction DNA complex. In this study, we used ZMWs and counted the number of RuvBs binding to RuvA–Holliday junction DNA complex. Our data demonstrated that different nucleotide analogs increased the amount of Cy5-RuvBs binding to RuvA–Holliday junction DNA complex in the following order: no nucleotide, ADP, ATPγS, and mixture of ADP and ATPγS. These results suggest that not only ATP binding to RuvB but also ATP hydrolysis by RuvB facilitates a stable RuvA–RuvB–Holliday junction DNA complex formation. PMID:26658024

  12. Formation of P450•P450 Complexes and Their Effect on P450 Function

    PubMed Central

    Reed, James R.; Backes, Wayne L.

    2011-01-01

    Cytochromes P450 (P450) are membrane-bound enzymes that catalyze the monooxygenation of a diverse array of xenobiotic and endogenous compounds. The P450s responsible for foreign compound metabolism generally are localized in the endoplasmic reticulum of the liver, lung and small intestine. P450 enzymes do not act alone but require an interaction with other electron transfer proteins such as NADPH-cytochrome P450 reductase (CPR) and cytochrome b5. Because P450s are localized in the endoplasmic reticulum with these and other ER-resident proteins, there is a potential for protein-protein interactions to influence P450 function. There has been increasing evidence that P450 enzymes form complexes in the ER, with compelling support that formation of P450•P450 complexes can significantly influence their function. Our goal is to review the research supporting the formation of P450•P450 complexes, their specificity, and how drug metabolism may be affected. This review describes the potential mechanisms by which P450s may interact, and provides evidence to support each of the possible mechanisms. Additionally, evidence for the formation of both heteromeric and homomeric P450 complexes are reviewed. Finally, direct physical evidence for P450 complex formation in solution and in membranes is summarized, and questions directing the future research of functional P450 interactions are discussed with respect to their potential impact on drug metabolism. PMID:22155419

  13. Production of unstable proteins through the formation of stable core complexes

    PubMed Central

    Levy, Nicolas; Eiler, Sylvia; Pradeau-Aubreton, Karine; Maillot, Benoit; Stricher, François; Ruff, Marc

    2016-01-01

    Purification of proteins that participate in large transient complexes is impeded by low amounts, heterogeneity, instability and poor solubility. To circumvent these difficulties we set up a methodology that enables the production of stable complexes for structural and functional studies. This procedure is benchmarked and applied to two challenging protein families: the human steroid nuclear receptors (SNR) and the HIV-1 pre-integration complex. In the context of transcriptional regulation studies, we produce and characterize the ligand-binding domains of the glucocorticoid nuclear receptor and the oestrogen receptor beta in complex with a TIF2 (transcriptional intermediary factor 2) domain containing the three SNR-binding motifs. In the context of retroviral integration, we demonstrate the stabilization of the HIV-1 integrase by formation of complexes with partner proteins and DNA. This procedure provides a powerful research tool for structural and functional studies of proteins participating in non-covalent macromolecular complexes. PMID:26983699

  14. Production of unstable proteins through the formation of stable core complexes.

    PubMed

    Levy, Nicolas; Eiler, Sylvia; Pradeau-Aubreton, Karine; Maillot, Benoit; Stricher, François; Ruff, Marc

    2016-01-01

    Purification of proteins that participate in large transient complexes is impeded by low amounts, heterogeneity, instability and poor solubility. To circumvent these difficulties we set up a methodology that enables the production of stable complexes for structural and functional studies. This procedure is benchmarked and applied to two challenging protein families: the human steroid nuclear receptors (SNR) and the HIV-1 pre-integration complex. In the context of transcriptional regulation studies, we produce and characterize the ligand-binding domains of the glucocorticoid nuclear receptor and the oestrogen receptor beta in complex with a TIF2 (transcriptional intermediary factor 2) domain containing the three SNR-binding motifs. In the context of retroviral integration, we demonstrate the stabilization of the HIV-1 integrase by formation of complexes with partner proteins and DNA. This procedure provides a powerful research tool for structural and functional studies of proteins participating in non-covalent macromolecular complexes. PMID:26983699

  15. Formation of Stable Cationic Lipid/DNA Complexes for Gene Transfer

    NASA Astrophysics Data System (ADS)

    Hofland, Hans E. J.; Shephard, Lee; Sullivan, Sean M.

    1996-07-01

    Stable cationic lipid/DNA complexes were formed by solubilizing cationic liposomes with 1% octylglucoside and complexing a DNA plasmid with the lipid in the presence of detergent. Removal of the detergent by dialysis yielded a lipid/DNA suspension that was able to transfect tissue culture cells up to 90 days after formation with no loss in activity. Similar levels of gene transfer were obtained by mixing the cationic lipid in a liposome form with DNA just prior to cell addition. However, expression was completely lost 24 hr after mixing. The transfection efficiency of the stable complex in 15% fetal calf serum was 30% of that obtained in the absence of serum, whereas the transient complex was completely inactivated with 2% fetal calf serum. A 90-day stability study comparing various storage conditions showed that the stable complex could be stored frozen or as a suspension at 4 degrees C with no loss in transfection efficiency. Centrifugation of the stable complex produced a pellet that contained approximately 90% of the DNA and 10% of the lipid. Transfection of cells with the resuspended pellet and the supernatant showed that the majority of the transfection activity was in the pellet and all the toxicity was in the supernatant. Formation of a stable cationic lipid/DNA complex has produced a transfection vehicle that can be stored indefinitely, can be concentrated with no loss in transfection efficiency, and the toxicity levels can be greatly reduced when the active complex is isolated from the uncomplexed lipid.

  16. Quantitative assessment of complex formation of nuclear-receptor accessory proteins.

    PubMed

    Graumann, K; Jungbauer, A

    2000-02-01

    Like other nuclear receptors, steroid hormone receptors form large protein hetero-complexes in their inactive, ligand-friendly state. Several heat-shock proteins, immunophilins and others have been identified as members of these highly dynamic complexes. The interaction kinetics and dynamics of hsp90, hsp70, p60 (Hop), FKBP52, FKBP51, p48 (Hip) and p23 have been assessed by a biosensor approach measuring the complex formation in real time. A core chaperone complex has been reconstituted from p60, hsp90 and hsp70. p60 forms a molecular bridge between hsp90 and hsp70 with an affinity in the range of 10(5) M(-1). Dynamics of hsp90-p60 complex formation is modulated by ATP through changes in the co-operativity of interaction. At low protein concentrations ATP stabilizes the complex. Binding of p23 to hsp90 did not change the affinity of the hsp90-p60 complex and the stabilizing effect of ATP. Saturation of the p48-hsp70 interaction could not be achieved, suggesting multiple binding sites. A picture of the protein complex, including stoichiometric coefficients, co-operativity of interaction and equilibrium-binding constants, has been formed. PMID:10642522

  17. TAR RNA decoys inhibit tat-activated HIV-1 transcription after preinitiation complex formation.

    PubMed Central

    Bohjanen, P R; Liu, Y; Garcia-Blanco, M A

    1997-01-01

    The ability of the HIV-1 Tat protein to trans -activate HIV-1 transcription in vitro is specifically inhibited by a circular TAR RNA decoy. This inhibition is not overcome by adding an excess of Tat to the reaction but is partially overcome by adding Tat in combination with nuclear extract, suggesting that TAR RNA might function by interacting with a complex containing Tat and cellular factor(s). A cell-free transcription system involving immobilized DNA templates was used to further define the factor(s) that interact with TAR RNA. Preinitiation complexes formed in the presence or absence of Tat were purified on immobilized templates containing the HIV-1 promoter. After washing, nucleotides and radiolabelled UTP were added and transcription was measured. The presence of Tat during preinitiation complex formation resulted in an increase in the level of full-length HIV-1 transcripts. This Tat-activated increase in HIV-1 transcription was not inhibited by circular TAR decoys added during preinitiation complex formation but was inhibited by circular TAR decoys subsequently added during the transcription reaction. These results suggest that TAR decoys inhibit Tat-activated HIV-1 transcription after preinitiation complex formation, perhaps by interacting with components of transcription complexes. PMID:9358155

  18. Methionine oxidation of amyloid peptides by peroxovanadium complexes: inhibition of fibril formation through a distinct mechanism.

    PubMed

    He, Lei; Wang, Xuesong; Zhu, Dengsen; Zhao, Cong; Du, Weihong

    2015-12-01

    Fibril formation of amyloid peptides is linked to a number of pathological states. The prion protein (PrP) and amyloid-β (Aβ) are two remarkable examples that are correlated with prion disorders and Alzheimer's disease, respectively. Metal complexes, such as those formed by platinum and ruthenium compounds, can act as inhibitors against peptide aggregation primarily through metal coordination. This study revealed the inhibitory effect of two peroxovanadium complexes, (NH4)[VO(O2)2(bipy)]·4H2O (1) and (NH4)[VO(O2)2(phen)]·2H2O (2), on amyloid fibril formation of PrP106-126 and Aβ1-42via site-specific oxidation of methionine residues, besides direct binding of the complexes with the peptides. Complexes 1 and 2 showed higher anti-amyloidogenic activity on PrP106-126 aggregation than on Aβ1-42, though their regulation on the cytotoxicity induced by the two peptides could not be differentiated. The action efficacy may be attributed to the different molecular structures of the vanadium complex and the peptide sequence. Results reflected that methionine oxidation may be a crucial action mode in inhibiting amyloid fibril formation. This study offers a possible application value for peroxovanadium complexes against amyloid proteins. PMID:26444976

  19. Complexes of DNA with cationic peptides: conditions of formation and factors effecting internalization by mammalian cells.

    PubMed

    Dizhe, E B; Ignatovich, I A; Burov, S V; Pohvoscheva, A V; Akifiev, B N; Efremov, A M; Perevozchikov, A P; Orlov, S V

    2006-12-01

    This work was devoted to the study of conditions of the formation of DNA/K8 complex and analysis of factors effecting the entry of DNA/K8 complex into mammalian cells in comparison with DNA complexes with arginine-rich fragment (47-57) of human immunodeficiency virus (type 1) transcription factor Tat (Tat peptide). The stoichiometry of positively charged DNA/K8 complexes has been studied for the first time. Non-cooperative character of DNA-K8 interaction was revealed. It has been shown that along with the positive charge of such complexes, the presence of an excess of free K8 peptide in the culture medium is a necessary condition for maximal efficiency of cell transfection with DNA/K8 complexes. A stimulatory effect of free K8 peptide on the efficiency of mammalian cell transfection by DNA/K8 complexes is likely to be mediated by the interactions of cationic peptide K8 with negatively charged proteoglycans on the cell surface, which leads to protection of DNA/K8 complexes from disruption by cellular heparan sulfates. However, the protective role of free cationic peptides depends not only on their positive charge, but also on the primary structure of the peptide. In contrast with the results obtained for DNA complexes with molecular conjugates based on poly-L-lysine, the aggregation of DNA/K8 complexes leads to a significant increase in the expression of transferred gene. PMID:17223788

  20. Formation of copper complexes in landfill leachate and their toxicity to zebrafish embryos

    SciTech Connect

    Fraser, J.K.; Butler, C.A.; Timperley, M.H.; Evans, C.W.

    2000-05-01

    Toxic metal organic complexes have not been found in natural waters, although some organic acids form bioavailable lipophilic and metabolite-type metal complexes. Landfill leachates usually contain organic acids and in the urban environment these leachates, when mixed with storm waters containing Cu, could be a source of toxic Cu organic complexes in streams and estuaries. The authors investigated the formation of Cu complexes in the leachate from an active urban landfill and found that some of the complexes formed were toxic to zebrafish embryos. High and low nominal molecular weight (NMWT) fractions; >5,000 Da and <700 Da, of leachate both formed Cu complexes with almost identical Cu complexing characteristics but the toxicity was due solely to the low NMWT complexes formed in the <700 Da fraction. Chemical equilibrium modeling with MINTEQA2 and H and Cu complex conditional association constants and ligand concentrations obtained from pH and Cu titrations with a Cu ion-selective electrode and van den Berg-Ruzic analyses of the titration data was used to calculate the copper speciation in the embryo test solutions. This calculated speciation, which was confirmed by measurements of Cu{sup 2+} in the test solutions, enabled the toxicity due to the free Cu ion and to the Cu complexes to be distinguished.

  1. Identification of functional targets of the Zta transcriptional activator by formation of stable preinitiation complex intermediates.

    PubMed Central

    Lieberman, P

    1994-01-01

    Transcriptional activator proteins stimulate the formation of a preinitiation complex that may be distinct from a basal-level transcription complex in its composition and stability. Components of the general transcription factors that form activator-dependent stable intermediates were determined by the use of Sarkosyl and oligonucleotide challenge experiments. High-level transcriptional activation by the Epstein-Barr virus-encoded Zta protein required an activity in the TFIID fraction that is distinct from the TATA-binding protein (TBP) and the TBP-associated factors. This additional activity copurifies with and is likely to be identical to the previously defined coactivator, USA (M. Meisterernst, A. L. Roy, H. M. Lieu, and R. G. Roeder, Cell 66:981-994, 1991). The formation of a stable preinitiation complex intermediate resistant to Sarkosyl required the preincubation of the promoter DNA with Zta, holo-TFIID (TBP and TBP-associated factors), TFIIB, TFIIA, and the coactivator USA. The formation of a Zta response element-resistant preinitiation complex required the preincubation of promoter DNA with Zta, holo-TFIID, TFIIB, and TFIIA. Agarose gel electrophoretic mobility shift showed that a preformed Zta-holo-TFIID-TFIIA complex was resistant to Sarkosyl and to Zta response element oligonucleotide challenge. DNase I footprinting suggests that only Zta, holo-TFIID, and TFIIA make significant contacts with the promoter DNA. These results provide functional and physical evidence that the Zta transcriptional activator influences at least two distinct steps in preinitiation complex assembly, the formation of the stable holo-TFIID-TFIIA-promoter complex and the subsequent binding of TFIIB and a USA-like coactivator. Images PMID:7969171

  2. Controlling energy transfer in ytterbium complexes: oxygen dependent lanthanide luminescence and singlet oxygen formation.

    PubMed

    Watkis, Andrew; Hueting, Rebekka; Sørensen, Thomas Just; Tropiano, Manuel; Faulkner, Stephen

    2015-11-01

    Pyrene-appended ytterbium complexes have been prepared using Ugi reactions to vary the chromophore-lanthanide separation. Formation of the ytterbium(iii) excited state is sensitised via both the singlet and triplet excited states of the chromophore. Energy transfer from the latter is relatively slow, and gives rise to oxygen-dependent luminescence. PMID:26346499

  3. Enthalpies of complex formation of boron and aluminum bromides with organic bases of high donor power

    SciTech Connect

    Grigor-ev, A.A.; Kondrat'ev, Y.V.; Suvorov, A.V.

    1986-11-20

    By the calorimetric method enthalpies of complex formation were determined for boron and aluminum bromides with piperidine and hexamethylphosphoric triamide in benzene solutions and for boron bromide with pyridine in dichloroethane, and also enthalpies of solution were determined for BBr/sub 3/ and the adducts AlBr/sub 3/ x PPy and BBr/sub 2/ x Py in benzene and pyridine.

  4. Three-Coordinate Terminal Imidoiron(III) Complexes: Structure, Spectroscopy, and Mechanism of Formation

    PubMed Central

    Cowley, Ryan E.; DeYonker, Nathan J.; Eckert, Nathan A.; Cundari, Thomas R.; DeBeer, Serena; Bill, Eckhard; Ottenwaelder, Xavier; Flaschenriem, Christine; Holland, Patrick L.

    2010-01-01

    Reaction of 1-adamantyl azide with iron(I) diketiminate precursors gives metastable but isolable imidoiron(III) complexes LFe=NAd (L = bulky β-diketiminate ligand; Ad = 1-adamantyl). This paper addresses: (1) the spectroscopic and structural characterization of the Fe=N multiple bond in these interesting three-coordinate iron imido complexes, and (2) the mechanism through which the imido complexes form. The iron(III) imido complexes have been examined by 1H NMR and EPR spectroscopies and temperature-dependent magnetic susceptibility (SQUID), and structurally characterized by crystallography and/or X-ray absorption (EXAFS) measurements. These data show that the imido complexes have quartet ground states and short (1.68 ± 0.01 Å) iron-nitrogen bonds. The formation of the imido complexes proceeds through unobserved iron–RN3 intermediates, which are indicated by QM/MM computations to be best described as iron(II) with an RN3 radical anion. The radical character on the organoazide bends its NNN linkage to enable easy N2 loss and imido complex formation. The product distribution between imidoiron(III) products and hexazene-bridged diiron(II) products is solvent-dependent, and the solvent dependence can be explained by coordination of certain solvents to the iron(I) precursor prior to interaction with the organoazide. PMID:20524625

  5. Effect of entropy-packing fraction relation on the formation of complex metallic materials

    NASA Astrophysics Data System (ADS)

    Tourki Samaei, Arash; Mohammadi, Ehsan

    2015-09-01

    By combining a number of elements to form complex metallic materials without a base element, it was recently shown that one can obtain rather complex structures, including random solute solutions, multi-phased mixtures and amorphous structures with/without nano-precipitations. Compared to conventional metallic materials, these complex ones could show excellent mechanical and physical properties across a wide range of temperatures, therefore being a promising advanced material for high-temperature applications; however, designing these complex materials, at present, still lacks a unified physical approach but relies on the choice of a few metallurgical parameters, such as atomic size mismatch, heat of mixing and valence electron concentration. Here, we identify a physical mechanism through the optimization of the excess configurational entropy of mixing in the control of phase formation in these metallic materials. The theoretical framework herein established is expected to provide a new paradigm in pursuit of complex metallic materials with superior properties.

  6. Formation of complex impact craters - Evidence from Mars and other planets

    NASA Technical Reports Server (NTRS)

    Pike, R. J.

    1980-01-01

    An analysis of the depth vs diameter data of Arthur (1980), is given along with geomorphic data for 73 Martian craters. The implications for the formation of complex impact craters on solid planets is discussed. The analysis integrates detailed morphological observations on planetary craters with geologic data from terrestrial meteorite and explosion craters. The simple to complex transition for impact craters on Mars appears at diameters in the range of 3 to 8 km. Five features appear sequentially with increasing crater size, flat floors, central peaks and shallower depths, scalloped rims, and terraced walls. This order suggests that a shallow depth of excavation and a rebound mechanism have produced the central peaks, not centripetal collapse and deep sliding. Simple craters are relatively uniform in shape from planet to planet, but complex craters vary considerably. Both the average onset diameter for complex impact craters on Mars and the average depth of complex craters vary inversely with gravitational acceleration on four planets.

  7. Recrystallized Impact Glasses of the Onaping Formation and the Sudbury Igneous Complex, Sudbury Structure, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Dressler, B. O.; Weiser, T.; Brockmeyer, P.

    1996-01-01

    The origin of the Sudbury Structure and of the associated heterolithic breccias of the Onaping Formation and the Sudbury Igneous Complex have been controversial. While an impact origin of the structure has gained wide acceptance over the last 15 years, the origin of the recrystallized Onaping Formation glasses and of the igneous complex is still being debated. Recently the interpretation of the breccias of the Onaping Formation as suevitic fall-back impact breccias has been challenged. The igneous complex is interpreted either as a differentiated impact melt sheet or as a combination of an upper impact melt represented by the granophyre, and a lower, impact-triggered magmatic body consisting of the norite-sublayer formations. The Onaping Formation contains glasses as fluidal and nonfluidal fragments of various shapes and sizes. They are recrystallized, and our research indicates that they are petrographically heterogeneous and span a wide range of chemical compositions. These characteristics are not known from glasses of volcanic deposits. This suggests an origin by shock vitrification, an interpretation consistent with their association with numerous and varied country rock clasts that exhibit microscopic shock metamorphic features. The recrystallized glass fragments represent individual solid-state and liquid-state vitrified rocks or relatively small melt pods. The basal member lies beneath the Gray and Black members of the Onaping Formation and, where not metamorphic, has an igneous matrix. Igneous-textured melt bodies occur in the upper two members and above the Basal Member. A comparison of the chemical compositions of recrystallized glasses and of the matrices of the Basal Member and the melt bodies with the components and the bulk composition of the igneous complex is inconclusive as to the origin of the igneous complex. Basal Member matrix and Melt Bodies, on average, are chemically similar to the granophyre of the Sudbury Igneous Complex, suggesting that

  8. The role of plasma proteins in formation of obstructive protamine complexes

    SciTech Connect

    De Paulis, R.; Mohammad, S.F.; Chiariello, L.; Morea, M.; Olsen, D.B. )

    1991-06-01

    Formation of complexes between heparin and protamine (in saline), or heparin, plasma proteins, and protamine (in plasma) was assessed by measurements of light transmission through different test solutions. To examine the formation of these complexes, 125I-labeled protamine was used. Addition of 125I-protamine to plasma or blood resulted in the sedimentation of 125I-protamine in the form of insoluble complexes. This complex formation was not affected by the presence of heparin, suggesting that protamine-plasma protein interaction may be primarily responsible for precipitation of 125I-protamine. To assess the capability of these complexes to obstruct the pulmonary circulation, an in vitro experimental model was developed. Citrated serum, plasma, blood, or saline were allowed to flow through a glass bead column with the help of a peristaltic pump. A pressure transducer positioned before the column allowed pressure measurements at a constant flow rate during the experiment. Mixing of protamine with plasma or blood prior to their passage through the glass bead column resulted in a significant increase in pressure suggesting that the column was being clogged with insoluble complexes. The increase in pressure occurred both in the presence and absence of heparin in plasma or blood. Under identical experimental conditions, the increase in pressure was insignificant when protamine was added to saline or serum regardless of whether heparin was present or absent. This was further confirmed by the use of 125I-protamine. These observations suggest that protamine forms insoluble complexes with certain plasma proteins. Based on these observations, it is hypothesized that following intravenous administration, protamine immediately forms complexes in circulating blood.

  9. Gating of single molecule junction conductance by charge transfer complex formation

    NASA Astrophysics Data System (ADS)

    Vezzoli, Andrea; Grace, Iain; Brooke, Carly; Wang, Kun; Lambert, Colin J.; Xu, Bingqian; Nichols, Richard J.; Higgins, Simon J.

    2015-11-01

    The solid-state structures of organic charge transfer (CT) salts are critical in determining their mode of charge transport, and hence their unusual electrical properties, which range from semiconducting through metallic to superconducting. In contrast, using both theory and experiment, we show here that the conductance of metal |single molecule| metal junctions involving aromatic donor moieties (dialkylterthiophene, dialkylbenzene) increase by over an order of magnitude upon formation of charge transfer (CT) complexes with tetracyanoethylene (TCNE). This enhancement occurs because CT complex formation creates a new resonance in the transmission function, close to the metal contact Fermi energy, that is a signal of room-temperature quantum interference.The solid-state structures of organic charge transfer (CT) salts are critical in determining their mode of charge transport, and hence their unusual electrical properties, which range from semiconducting through metallic to superconducting. In contrast, using both theory and experiment, we show here that the conductance of metal |single molecule| metal junctions involving aromatic donor moieties (dialkylterthiophene, dialkylbenzene) increase by over an order of magnitude upon formation of charge transfer (CT) complexes with tetracyanoethylene (TCNE). This enhancement occurs because CT complex formation creates a new resonance in the transmission function, close to the metal contact Fermi energy, that is a signal of room-temperature quantum interference. Electronic supplementary information (ESI) available: Synthesis of 1c; experimental details of conductance measurements, formation of charge transfer complexes of 1c and 2 in solution; further details of theoretical methods. See DOI: 10.1039/c5nr04420k

  10. Arsenic-Lipid Complex Formation During the Active Transport of Arsenate in Yeast

    PubMed Central

    Cerbón, Jorge

    1969-01-01

    In studying formation of an arsenic-lipid complex during the active transport of 74As-arsenate in yeast, it was found that adaptation of yeast to arsenate resulted in cell populations which showed a deficient inflow of arsenate as compared to the nonadapted yeast. Experiments with both types of cells showed a direct correlation between the arsenate taken up and the amount of As-lipid complex formed. 74As-arsenate was bound exclusively to the phosphoinositide fraction of the cellular lipids. When arsenate transport was inhibited by dinitrophenol and sodium azide, the formation of the As-lipid complex was also inhibited. Phosphate did not interfere with the arsenate transport at a non-inhibitory concentration of external arsenate (10−9m). The As-adapted cells but not the unadapted cells were able to take up phosphate when growing in the presence of 10−2m arsenate. PMID:5773018

  11. Standard thermodynamic functions of complex formation between Cu2+ and glycine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Gorboletova, G. G.; Metlin, A. A.

    2013-05-01

    Heat effects of the interaction of copper(II) solutions with aminoacetic acid (glycine) are measured by the direct calorimetry at 298.15 K and ionic strengths of 0.5, 1.0, and 1.5 against a background of potassium nitrate. Standard enthalpy values for reactions of the formation of aminoacetic acid copper complexes in aqueous solutions are obtained using an equation with a single individual parameter by extrapolating it to zero ionic strength. The standard thermodynamic characteristics of complex formation in the Cu2+-glycine system are calculated. It is shown that glycine-like coordination is most likely in Cu(II) complexes with L-asparagine, L-glutamine, and L-valine.

  12. Stability of furosemide polymorphs and the effects of complex formation with β-cyclodextrin and maltodextrin.

    PubMed

    Garnero, Claudia; Chattah, Ana Karina; Longhi, Marcela

    2016-11-01

    The effect of the formation of supramolecular binary complexes with β-cyclodextrin and maltodextrin on the chemical and physical stability of the polymorphs I and II of furosemide was evaluated in solid state. The solid samples were placed under accelerated storage conditions and exposed to daylight into a stability chamber for a 6-month. Chemical stability was monitored by high performance liquid chromatography, while the physical stability was studied by solid state nuclear magnetic resonance, powder X-ray diffraction and scanning electron microscopy. Changes in the physical appearance of the samples were evaluated. The studies showed a significant stabilizing effect of β-cyclodextrin on furosemide form II. Our results suggest that the complex formation is a useful tool for improving the stability of furosemide polymorphs. These new complexes are promising candidates that can be used in the pharmaceutical industry for the preparation of alternative matrices that improve physicochemical properties. PMID:27516309

  13. Coordination of lanthanides by two polyamino polycarboxylic macrocycles: formation of highly stable lanthanide complexes

    SciTech Connect

    Loncin, M.F.; Desreux, J.F.; Merciny, E.

    1986-07-16

    The formation constants of a few lanthanide complexes with DOTA (1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) and TETA (1,4,8,11-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid) have been measured by potentiometric and competition methods. The ligand DOTA forms the most stable lanthanide chelates known so far (log K/sub ML/ = 28.2-29.2) while the stability of the TETA compounds at 80 /sup 0/C (log K/sub ML/ = 14.5-16.5) is comparable to the stability of the EDTA complexes. A competition method with the oxalate anion as a probe had to be used for determining the formation constants of the DOTA lanthanide chelates because of the high stability of these compounds. The relative stability of the DOTA and TETA complexes in accounted for by steric factors with reference to known solution- and solid-state structures. 20 references, 2 tables.

  14. The significance of ACTH for the process of formation of complex heparin compounds in the blood during immobilization stress

    NASA Technical Reports Server (NTRS)

    Kudryashov, B. A.; Shapiro, F. B.; Lomovskaya, F. B.; Lyapina, L. A.

    1979-01-01

    Adrenocorticotropin (ACTH) was administered to rats at different times following adrenalectomy. Adrenocorticotropin caused a significant increase in the formation of heparin complexes even in the absence of stress factor. When ACTH secretion is blocked, immobilization stress is not accompanied by an increase in the process of complex formation. The effect of ACTH on the formation of heparin complexes was mediated through its stimulation of the adrenal cortex.

  15. Formation and stability of lanthanide complexes and their encapsulation into polymeric microspheres

    SciTech Connect

    Mumper, R.J.; Jay, M.

    1992-10-15

    The complexation of lanthanides (Ln) with dicarbonyl compounds (acetylacetone, acac; ethyl acetoacetate; 3-ethyl-2,4-pentanedione; 2,4-hexanedione; 3-methyl-2,4-pentanedione; and diethyl malonate) was investigated using a potentiometric titration technique. The ability of a dicarbonyl compound to complex with the lanthanide elements was greatly dependent on its pK{sub a} and on the pH of the titrated solution. Selected lanthanide complexes (Ln complexes) were incorporated into spherical poly(L-lactic acid)(PLA) matrices and irradiated in a nuclear reactor with neutrons to produce short-lived high-energy {Beta}-particle-emitting radioisotopes. The lanthanides investigated (Ho, Dy, Sm, and La) were chosen on the basis of their physical and nuclear properties. A transition element (Re) was also studied. The small decrease in the ionic radii of the lanthanides with increasing atomic number led to (a) greater ability to extract and complex from an aqueous solution with complexing agents, (b) larger formation and stability constants for the Ln complexes, (c) increased solubility of the Ln complexes in chloroform, and (d) increase in the maximum percent incorporation of the stable lanthanides in PLA spheres. Ho(aca) was found to be the most promising candidate of the complexes studied on the basis of the above observations and due to the favorable physical properties of {sup 165}Ho and nuclear properties of {sup 166}Ho. 21 refs., 5 figs., 4 tabs.

  16. Lethal synergism between organic and inorganic wood preservatives via formation of an unusual lipophilic ternary complex

    SciTech Connect

    Sheng, Zhi-Guo; Li, Yan; Fan, Rui-Mei; Chao, Xi-Juan; Zhu, Ben-Zhan

    2013-02-01

    We have shown previously that exposing bacteria to wood preservatives pentachlorophenol (PCP) and copper-containing compounds together causes synergistic toxicity. However, it is not clear whether these findings also hold true in mammalian cells; and if so, what is the underlying molecular mechanism? Here we show that PCP and a model copper complex bis-(1,10-phenanthroline) cupric (Cu(OP){sub 2}), could also induce synergistic cytotoxicity in human liver cells. By the single crystal X-ray diffraction and atomic absorption spectroscopy assay, the synergism was found to be mainly due to the formation of a lipophilic ternary complex with unusual structural and composition characteristics and subsequent enhanced cellular copper uptake, which markedly promoted cellular reactive oxygen species (ROS) production, leading to apoptosis by decreasing mitochondrial membrane potential, increasing pro-apoptotic protein expression, releasing cytochrome c from mitochondria and activating caspase-3, and -9. Analogous results were observed with other polychlorinated phenols (PCPs) and Cu(OP){sub 2}. Synergistic cytotoxicity could be induced by PCP/Cu(OP){sub 2} via formation of an unusual lipophilic complex in HepG2 cells. The formation of ternary complexes with similar lipophilic character could be of relevance as a general mechanism of toxicity, which should be taken into consideration especially when evaluating the toxicity of environmental pollutants found at currently-considered non- or sub-toxic concentrations. -- Highlights: ► The combination of PCP/Cu(OP){sub 2} induces synergistic cytotoxicity in HepG2 cells. ► The synergism is mainly due to forming a lipophilic ternary complex between them. ► The formation of lipophilic ternary complex enhances cellular copper uptake. ► PCP/Cu(OP){sub 2} stimulates the cellular ROS production. ► The ROS promoted by PCP/Cu(OP){sub 2} induces mitochondria-dependent apoptosis.

  17. Complex formation with nucleic acids and aptamers alters the antigenic properties of platelet factor 4

    PubMed Central

    Jaax, Miriam E.; Krauel, Krystin; Marschall, Thomas; Brandt, Sven; Gansler, Julia; Fürll, Birgitt; Appel, Bettina; Fischer, Silvia; Block, Stephan; Helm, Christiane A.; Müller, Sabine; Preissner, Klaus T.

    2013-01-01

    The tight electrostatic binding of the chemokine platelet factor 4 (PF4) to polyanions induces heparin-induced thrombocytopenia, a prothrombotic adverse drug reaction caused by immunoglobulin G directed against PF4/polyanion complexes. This study demonstrates that nucleic acids, including aptamers, also bind to PF4 and enhance PF4 binding to platelets. Systematic assessment of RNA and DNA constructs, as well as 4 aptamers of different lengths and secondary structures, revealed that increasing length and double-stranded segments of nucleic acids augment complex formation with PF4, while single nucleotides or single-stranded polyA or polyC constructs do not. Aptamers were shown by circular dichroism spectroscopy to induce structural changes in PF4 that resemble those induced by heparin. Moreover, heparin-induced anti-human–PF4/heparin antibodies cross-reacted with human PF4/nucleic acid and PF4/aptamer complexes, as shown by an enzyme immunoassay and a functional platelet activation assay. Finally, administration of PF4/44mer–DNA protein C aptamer complexes in mice induced anti–PF4/aptamer antibodies, which cross-reacted with murine PF4/heparin complexes. These data indicate that the formation of anti-PF4/heparin antibodies in postoperative patients may be augmented by PF4/nucleic acid complexes. Moreover, administration of therapeutic aptamers has the potential to induce anti-PF4/polyanion antibodies and a prothrombotic diathesis. PMID:23673861

  18. [Contraceptive development--the view from the U.S.A. in the mid 80s].

    PubMed

    Potts, M; Siemens, A; Burton, N

    1986-03-01

    Contraceptive research and development in the US has been slowed by declining investment at a time of rising costs and increasingly complex US Food and Drug Administration (FDA) regulation. Public and private investment in contraceptive research reached its maximum in the early 1970s. Since then, investment has stagnated while research and development costs have continued to rise. Development of a new product costs between 50-60 million dollars and corresponds to over 2/3 of its legal life of 17 years. In addition, the majority of pharmaceutical liability cases in the past few years have involved contraceptives. Although recent epidemiological studies have demonstrated that oral contraceptives (OCs) have some significant benefits, such as prevention of at least 2 types of cancer, OCs continue to be held responsible for secondary cardiovascular effects as well as for some effects whose true etiology has not been demonstrated. The growing use of contraceptive sterilization at the expense of most other methods and the opposition to making contraceptives easily available among those who believe that contraception encourages premarital sexual activity are other factors which have resulted in the near abandonment of contraceptive research and development by American pharmaceutical companies, who no longer consider family planning a viable market. In the US, most research and innovation in the field of contraception now comes from not-for-profit institutions such as Family Health International (FHI) the Population Council, and to a lesser extent the Program of Applied Research for Fertility Regulation and some universities. Such organizations receive some research funds from the Agency for International Development and the National Institutes of Health. The role of FHI in the development of the contraceptive sponge and of the Population Council in developemnt of the Copper T 380A IUD demonstrate the transfer of supremacy in contraceptive development from the

  19. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria.

    PubMed

    Turrens, J F; Alexandre, A; Lehninger, A L

    1985-03-01

    Much evidence indicates that superoxide is generated from O2 in a cyanide-sensitive reaction involving a reduced component of complex III of the mitochondrial respiratory chain, particularly when antimycin A is present. Although it is generally believed that ubisemiquinone is the electron donor to O2, little experimental evidence supporting this view has been reported. Experiments with succinate as electron donor in the presence of antimycin A in intact rat heart mitochondria, which contain much superoxide dismutase but little catalase, showed that myxothiazol, which inhibits reduction of the Rieske iron-sulfur center, prevented formation of hydrogen peroxide, determined spectrophotometrically as the H2O2-peroxidase complex. Similarly, depletion of the mitochondria of their cytochrome c also inhibited formation of H2O2, which was restored by addition of cytochrome c. These observations indicate that factors preventing the formation of ubisemiquinone also prevent H2O2 formation. They also exclude ubiquinol, which remains reduced under these conditions, as the reductant of O2. Since cytochrome b also remains fully reduced when myxothiazol is added to succinate- and antimycin A-supplemented mitochondria, reduced cytochrome b may also be excluded as the reductant of O2. These observations, which are consistent with the Q-cycle reactions, by exclusion of other possibilities leave ubisemiquinone as the only reduced electron carrier in complex III capable of reducing O2 to O2-. PMID:2983613

  20. Kinetic mechanism for formation of the active, dimeric UvrD helicase-DNA complex.

    PubMed

    Maluf, Nasib K; Ali, Janid A; Lohman, Timothy M

    2003-08-22

    Escherichia coli UvrD protein is a 3' to 5' SF1 helicase required for DNA repair as well as DNA replication of certain plasmids. We have shown previously that UvrD can self-associate to form dimers and tetramers in the absence of DNA, but that a UvrD dimer is required to form an active helicase-DNA complex in vitro. Here we have used pre-steady state, chemical quenched flow methods to examine the kinetic mechanism for formation of the active, dimeric helicase-DNA complex. Experiments were designed to examine the steps leading to formation of the active complex, separate from the subsequent DNA unwinding steps. The results show that the active dimeric complex can form via two pathways. The first, faster path involves direct binding to the DNA substrate of a pre-assembled UvrD dimer (dimer path), whereas the second, slower path proceeds via sequential binding to the DNA substrate of two UvrD monomers (monomer path), which then assemble on the DNA to form the dimeric helicase. The rate-limiting step within the monomer pathway involves dimer assembly on the DNA. These results show that UvrD dimers that pre-assemble in the absence of DNA are intermediates along the pathway to formation of the functional dimeric UvrD helicase. PMID:12788954

  1. Complex coacervates obtained from peptide leucine and gum arabic: formation and characterization.

    PubMed

    Gulão, Eliana da S; de Souza, Clitor J F; Andrade, Cristina T; Garcia-Rojas, Edwin E

    2016-03-01

    In this study, interactions between polypeptide-leucine (0.2% w/w) and gum arabic (0.03, 0.06, 0.09, 0.12, and 0.15% w/w) were examined at concentrations of NaCl (0, 0.01, 0.25, 0.3, 0.5mol/l) and at different pH values (from 1.0 to 12.0). Formation of insoluble complex coacervates was highest at pH 4.0. At pH 2.0, which is the pKa of the gum Arabic, the dissociation of precipitate occurred. The pHØ2 positively shifted with the addition of higher concentrations of salt. Samples containing 0.2% PL and 0.03% GA and no salt had higher turbidity and increased formation of precipitates showing greater turbidity and particle sizes. The Fourier transform infrared spectroscopy confirms the complex coacervate formation of leucine and gum arabic, and rheological measurements suggest the elastic behavior of 0.2% PL and 0.03% GA complex. Overall, the study suggests that complex coacervates of PLs could be one feasible ways of incorporating amino acids in food products. PMID:26471607

  2. Complex formation of alkaline-earth cations with crown ethers and cryptands in methanol solutions

    SciTech Connect

    Buschman, H.J.

    1986-06-01

    The complexation of alkaline-earth cations by different crown ethers, azacrown ethers, and cryptands has been studied in methanol solutions by means of calorimetric and potentiometric titrations. The smallest monocyclic ligands examined from 2:1 complexes (ratio of ligand to cation) with cations which are too large to fit into the ligand cavity. With the smallest cryptand, only Sr/sup 2 +/ and Ba/sup 2 +/ ions are able to form exclusive complexes. In the case of the reaction of cryptand (211) with Ca/sup 2 +/, a separate estimation of stability constants for the formation of exclusive and inclusive complexes was possible for the first time. Higher values for stability constants are found for the reaction of alkaline-earth cations with cryptands compared to the reaction with alkali ions. This increase is only caused by favorable entropic contributions.

  3. The formation of molecular aggregates of sulfophthalocyanine in complexes with semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Dadadzhanov, D. R.; Martynenko, I. V.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Baranov, A. V.

    2015-11-01

    In this study, complexes of CdSe/ZnS quantum dots and quantum rods with sulfophthalocyanine molecules have been formed. Analysis of spectral and luminescent properties of solutions of the complexes has revealed that an increase in the number of molecules per one nanocrystal in a mixed solution results in a noticeable decrease in the intensity of the luminescence of the quantum dots and quantum rods. In addition, it has been found that, upon an increase in the concentration of sulfophthalocyanine molecules, the absorption spectra of the samples in the region of their first absorption band have signs of formation of nonluminiscent aggregates of sulfophthalocyanine molecules. Analysis of the absorption spectra of the mixed solutions has made it possible to demonstrate that the complexes with the quantum rods have a content of the sulfophthalocyanine aggregates significantly lower than the complexes with the quantum dots.

  4. An autocatalytic radical chain pathway in formation of an iron(IV)-oxo complex by oxidation of an iron(II) complex with dioxygen and isopropanol.

    PubMed

    Morimoto, Yuma; Lee, Yong-Min; Nam, Wonwoo; Fukuzumi, Shunichi

    2013-03-28

    Evidence of an autocatalytic radical chain pathway has been reported in formation of a non-heme iron(IV)-oxo complex by oxidation of an iron(II) complex with dioxygen and isopropanol in acetonitrile at 298 K. The radical chain reaction is initiated by hydrogen abstraction from isopropanol by the iron(IV)-oxo complex. PMID:23423328

  5. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    PubMed Central

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R.

    2013-01-01

    Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF + ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation. PMID:22634003

  6. Numerical Modeling of Hydraulic Fractures Interaction in Complex Naturally Fractured Formations

    NASA Astrophysics Data System (ADS)

    Kresse, Olga; Weng, Xiaowei; Gu, Hongren; Wu, Ruiting

    2013-05-01

    A recently developed unconventional fracture model (UFM) is able to simulate complex fracture network propagation in a formation with pre-existing natural fractures. A method for computing the stress shadow from fracture branches in a complex hydraulic fracture network (HFN) based on an enhanced 2D displacement discontinuity method with correction for finite fracture height is implemented in UFM and is presented in detail including approach validation and examples. The influence of stress shadow effect from the HFN generated at previous treatment stage on the HFN propagation and shape at new stage is also discussed.

  7. 3D structure and formation of hydrothermal vent complexes in the Møre Basin

    NASA Astrophysics Data System (ADS)

    Kjoberg, Sigurd; Schmiedel, Tobias; Planke, Sverre; Svensen, Henrik H.; Galland, Oliver; Jerram, Dougal A.

    2016-04-01

    The mid-Norwegian Møre margin is regarded as a type example of a volcanic rifted margin, with its formation usually related to the influence of the Icelandic plume activity. The area is characterized by the presence of voluminous basaltic complexes such as extrusive lava sequences, intrusive sills and dikes, and hydrothermal vent complexes within the Møre Basin. Emplacement of hydrothermal vent complexes is accommodated by deformation of the host rock. The edges of igneous intrusions mobilize fluids by heat transfer into the sedimentary host rock (aureoles). Fluid expansion may lead to formation of piercing structures due to upward fluid migration. Hydrothermal vent complexes induce bending of overlying strata, leading to the formation of dome structures at the paleo-surface. These dome structures are important as they indicate the accommodation created for the intrusions by deformation of the upper layers of the stratigraphy, and may form important structures in many volcanic margins. Both the morphological characteristics of the upper part and the underlying feeder-structure (conduit-zone) can be imaged and studied on 3D seismic data. Seismic data from the Tulipan prospect located in the western part of the Møre Basin have been used in this study. The investigation focusses on (1) the vent complex geometries, (2) the induced surface deformation patterns, (3) the relation to the intrusions (heat source), as well as (4) the emplacement depth of the hydrothermal vent complexes. We approach this by doing a detailed 3D seismic interpretation of the Tulipan seismic data cube. The complexes formed during the initial Eocene, and are believed to be a key factor behind the rapid warming event called the Paleocene-Eocene thermal maximum (PETM). The newly derived understanding of age, eruptive deposits, and formation of hydrothermal vent complexes in the Møre Basin enables us to contribute to the general understanding of the igneous plumbing system in volcanic basins and

  8. Temperature and salt effects on the formation of preinitiation complexes between RNA polymerase and phage DNA.

    PubMed

    Escarmis, C; Domingo, E; Warner, R C

    1975-08-21

    The influence of temperature and KCl concentration on the formation of rifampicin-resistant preinitiation complexes by holo RNA polymerase has been compared for T4 DNA and Azotobacter phage A21 DNA. The sharp transition with respect to temperature between an inactive complex of polymerase and DNA and a preinitiation complex reflects an equilibrium between the two complexes, the position of which depends on the temperature and the salt concentration. The transition is shifted to higher temperatures by increasing the KCl concentration. The position of this transition is characteristically different for T4 and A21 DNA. The midpoint for A21 DNA is about 15 degrees C above that for T4 at 0.006 M KCl. At 0.15 M KCl the transition for A21 DNA cannot be observed below 37 degrees C. This difference is responsible for the apparent inhibition of a21 dna transcription by KCl and for the low template activity of A21 DNA under the conditions of the standard assay. Both holo and core RNA polymerases are able to form complexes with A21 DNA that are resistant to attack by rifampicin. The second-order rate constant for the inactivation of the complex with the core enxyme is three times greater than that for the complex with the holoenzyme. PMID:1100115

  9. Integrin-Associated Complexes Form Hierarchically with Variable Stoichiometry during Nascent Adhesion Formation

    PubMed Central

    Bachir, Alexia I.; Zareno, Jessica; Moissoglu, Konstadinos; Plow, Edward; Gratton, Enrico; Horwitz, Alan R.

    2014-01-01

    Summary Background A complex network of putative molecular interactions underlies the architecture and function of cell-matrix adhesions. Most of these interactions are implicated from co-immunoprecipitation studies using expressed components; but few have been demonstrated or characterized functionally in living cells. Results We introduce fluorescence fluctuation methods to determine, at high spatial and temporal resolution, ‘when’ and ‘where’ molecular complexes form and their stoichiometry in nascent adhesions (NAs). We focus on integrin-associated molecules implicated in integrin-activation and in the integrin-actin linkage in NAs and show that these molecules form integrin containing complexes hierarchically within the adhesion itself. Integrin and kindlin reside in a molecular complex as soon as adhesions are visible; talin, while also present early, associates with the integrin-kindlin complex only after NAs have formed and in response to myosin II activity. Furthermore, talin and vinculin association precedes the formation of the integrin-talin complex. Finally, α-actinin enters NAs periodically and in clusters that transiently associate with integrins. The absolute number and stoichiometry of these molecules varies among the molecules studied and changes as adhesions mature. Conclusions These observations suggest a working model for NA assembly, whereby transient α-actinin- integrin complexes help nucleate NAs within the lamellipodium. Subsequently integrin complexes containing kindlin, but not talin, emerge. Once NAs have formed, myosin II activity promotes talin association with the integrin-kindlin complex in a stoichiometry consistent with each talin molecule linking two integrin-kindlin complexes. PMID:25088556

  10. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Yudha, Septian P.; Mutiara, Nur Afisa Lintang

    2016-02-01

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  11. Formation equilibria of nickel complexes with glycyl-histidyl-lysine and two synthetic analogues.

    PubMed

    Conato, Chiara; Kozłowski, Henryk; Swiatek-Kozłowska, Jolanta; Młynarz, Piotr; Remelli, Maurizio; Silvestri, Sergio

    2004-01-01

    Complex-formation equilibria between the Ni(II) ion and the natural tripeptide glycyl-L-histidyl-L-lysine have been investigated. Two synthetic analogues, where the histidine residue has been substituted with L-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (L-Spinacine) and L-1,2,3,4-tetrahydro-isoquinolin-3-carboxylic acid (Tic), respectively, have been considered, as well. Different experimental techniques have been employed: potentiometry, calorimetry, visible spectrophotometry and CD spectroscopy. Structural hypotheses on the main complex species are suggested. Evidences on the formation of tetrameric species with the first ligand are shown. No involvement of the side-chain amino group of lysine residue in metal ion coordination was found. PMID:14659644

  12. Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation.

    PubMed

    Daniely, Yaron; Dimitrova, Diana D; Borowiec, James A

    2002-08-01

    We recently discovered that heat shock causes nucleolin to relocalize from the nucleolus to the nucleoplasm, whereupon it binds replication protein A and inhibits DNA replication initiation. We report that nucleolin mobilization also occurs following exposure to ionizing radiation (IR) and treatment with camptothecin. Mobilization was selective in that another nucleolar marker, upstream binding factor, did not relocalize in response to IR. Nucleolin relocalization was dependent on p53 and stress, the latter initially stimulating nucleolin-p53 complex formation. Nucleolin relocalization and complex formation in vivo were independent of p53 transactivation but required the p53 C-terminal regulatory domain. Nucleolin and p53 also interact directly in vitro, with a similar requirement for p53 domains. These data indicate a novel p53-dependent mechanism in which cell stress mobilizes nucleolin for transient replication inhibition and DNA repair. PMID:12138209

  13. Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements

    NASA Astrophysics Data System (ADS)

    Davis, Caroline A.; Atekwana, Estella; Atekwana, Eliot; Slater, Lee D.; Rossbach, Silvia; Mormile, Melanie R.

    2006-09-01

    Complex conductivity measurements (0.1-1000 Hz) were obtained from biostimulated sand-packed columns to investigate the effect of microbial growth and biofilm formation on the electrical properties of porous media. Microbial growth was verified by direct microbial counts, pH measurements, and environmental scanning electron microscope imaging. Peaks in imaginary (interfacial) conductivity in the biostimulated columns were coincident with peaks in the microbial cell concentrations extracted from sands. However, the real conductivity component showed no discernible relationship to microbial cell concentration. We suggest that the observed dynamic changes in the imaginary conductivity (σ″) arise from the growth and attachment of microbial cells and biofilms to sand surfaces. We conclude that complex conductivity techniques, specifically imaginary conductivity measurements are a proxy indicator for microbial growth and biofilm formation in porous media. Our results have implications for microbial enhanced oil recovery, CO2 sequestration, bioremediation, and astrobiology studies.

  14. Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia

    PubMed Central

    Tanaka, Hiromasa; Arashiba, Kazuya; Kuriyama, Shogo; Sasada, Akira; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-01-01

    It is vital to design effective nitrogen fixation systems that operate under mild conditions, and to this end we recently reported an example of the catalytic formation of ammonia using a dinitrogen-bridged dimolybdenum complex bearing a pincer ligand, where up to twenty three equivalents of ammonia were produced based on the catalyst. Here we study the origin of the catalytic behaviour of the dinitrogen-bridged dimolybdenum complex bearing the pincer ligand with density functional theory calculations, based on stoichiometric and catalytic formation of ammonia from molecular dinitrogen under ambient conditions. Comparison of di- and mono-molybdenum systems shows that the dinitrogen-bridged dimolybdenum core structure plays a critical role in the protonation of the coordinated molecular dinitrogen in the catalytic cycle. PMID:24769530

  15. Factor Xa dimerization competes with prothrombinase complex formation on platelet-like membrane surfaces.

    PubMed

    Koklic, Tilen; Chattopadhyay, Rima; Majumder, Rinku; Lentz, Barry R

    2015-04-01

    Exposure of phosphatidylserine (PS) molecules on activated platelet membrane surface is a crucial event in blood coagulation. Binding of PS to specific sites on factor Xa (fXa) and factor Va (fVa) promotes their assembly into a complex that enhances proteolysis of prothrombin by approximately 10⁵. Recent studies demonstrate that both soluble PS and PS-containing model membranes promote formation of inactive fXa dimers at 5 mM Ca²⁺. In the present study, we show how competition between fXa dimerization and prothrombinase formation depends on Ca²⁺ and lipid membrane concentrations. We used homo-FRET measurements between fluorescein-E-G-R-chloromethylketone (CK)-Xa [fXa irreversibly inactivated by alkylation of the active site histidine residue with FEGR (FEGR-fXa)] and prothrombinase activity measurements to reveal the balance between fXa dimer formation and fXa-fVa complex formation. Changes in FEGR-fXa dimer homo-FRET with addition of fVa to model-membrane-bound FEGR-fXa unambiguously demonstrated that formation of the FEGR-fXa-fVa complex dissociated the dimer. Quantitative global analysis according to a model for protein interaction equilibria on a surface provided an estimate of a surface constant for fXa dimer dissociation (K(fXa×fXa)(d, σ)) approximately 10-fold lower than K(fXa×fVa)(d,σ) for fXa-fVa complex. Experiments performed using activated platelet-derived microparticles (MPs) showed that competition between fXa dimerization and fXa-fVa complex formation was even more prominent on MPs. In summary, at Ca²⁺ concentrations found in the maturing platelet plug (2-5 mM), fVa can compete fXa off of inactive fXa dimers to significantly amplify thrombin production, both because it releases dimer inhibition and because of its well-known cofactor activity. This suggests a hitherto unanticipated mechanism by which PS-exposing platelet membranes can regulate amplification and propagation of blood coagulation. PMID:25572019

  16. Electron Bihole Complex Formation in Neutralization of Ne{sup +} on LiF(001)

    SciTech Connect

    Khemliche, H.; Villette, J.; Borisov, A. G.; Momeni, A.; Roncin, P.

    2001-06-18

    Neutralization of low keV Ne{sup +} ions at a LiF(001) surface is studied in a grazing incidence geometry. The combination of energy loss and electron spectroscopy in coincidence reveals two neutralization channels of comparable importance. Besides the Auger process, the Ne{sup +} neutralization can proceed via peculiar target excitation, corresponding to the formation of an electron bihole complex termed trion.

  17. The standard enthalpies of combustion and formation of crystalline cobalt tetrakis(4-metoxyphenyl)porphin complex

    NASA Astrophysics Data System (ADS)

    Tarasov, R. P.; Volkov, A. V.; Bazanov, M. I.; Semeikin, A. S.

    2009-05-01

    The energy of combustion of cobalt tetrakis(4-metoxyphenyl)porphin was determined in an isothermic-shell liquid calorimeter with a stationary calorimetric bomb. The standard enthalpies of combustion and formation of the complex were calculated, -Δ c H o = 27334.06 ± 50.98 kJ/mol and Δf H o = 3062.90 ± 50.97 kJ/mol.

  18. DNA strand exchange stimulated by spontaneous complex formation with cationic comb-type copolymer.

    PubMed

    Kim, Won Jong; Akaike, Toshihiro; Maruyama, Atsushi

    2002-10-30

    Cationic comb-type copolymers (CCCs) composed of a polycation backbone and water-soluble side chains accelerate by 4-5 orders the DNA strand exchange reaction (SER) between double helical DNA and its homologous single-strand DNA. The accelerating effect is considered due to alleviation of counterion association during transitional intermediate formation in sequential displacement pathway. CCCs stabilize not only matured hybrids but also the nucleation complex to accelerate hybridization. PMID:12392411

  19. Display format and highlight validity effects on search performance using complex visual displays

    NASA Technical Reports Server (NTRS)

    Donner, Kimberly A.; Mckay, Tim; O'Brien, Kevin M.; Rudisill, Marianne

    1991-01-01

    Display format and highlight validity were shown to affect visual display search performance; however, these studies were conducted on small, artificial displays of alphanumeric stimuli. A study manipulating these variables was conducted using realistic, complex Space Shuttle information displays. A 2x2x3 within-subjects analysis of variance found that search times were faster for items in reformatted displays than for current displays. The significant format by highlight validity interaction showed that there was little difference in response time to both current and reformatted displays when the highlight validity was applied; however, under the non or invalid highlight conditions, search times were faster with reformatted displays. Benefits of highlighting and reformatting displays to enhance search and the necessity to consider highlight validity and format characteristics in tandem for predicting search performance are discussed.

  20. Microscopic Mechanism and Kinetics of Ice Formation at Complex Interfaces: Zooming in on Kaolinite.

    PubMed

    Sosso, Gabriele C; Li, Tianshu; Donadio, Davide; Tribello, Gareth A; Michaelides, Angelos

    2016-07-01

    Most ice in nature forms because of impurities which boost the exceedingly low nucleation rate of pure supercooled water. However, the microscopic details of ice nucleation on these substances remain largely unknown. Here, we have unraveled the molecular mechanism and the kinetics of ice formation on kaolinite, a clay mineral playing a key role in climate science. We find that the formation of ice at strong supercooling in the presence of this clay is about 20 orders of magnitude faster than homogeneous freezing. The critical nucleus is substantially smaller than that found for homogeneous nucleation and, in contrast to the predictions of classical nucleation theory (CNT), it has a strong two-dimensional character. Nonetheless, we show that CNT describes correctly the formation of ice at this complex interface. Kaolinite also promotes the exclusive nucleation of hexagonal ice, as opposed to homogeneous freezing where a mixture of cubic and hexagonal polytypes is observed. PMID:27269363

  1. Simultaneous Measurement of Amyloid Fibril Formation by Dynamic Light Scattering and Fluorescence Reveals Complex Aggregation Kinetics

    PubMed Central

    Streets, Aaron M.; Sourigues, Yannick; Kopito, Ron R.; Melki, Ronald; Quake, Stephen R.

    2013-01-01

    An apparatus that combines dynamic light scattering and Thioflavin T fluorescence detection is used to simultaneously probe fibril formation in polyglutamine peptides, the aggregating subunit associated with Huntington's disease, in vitro. Huntington's disease is a neurodegenerative disorder in a class of human pathologies that includes Alzheimer's and Parkinson's disease. These pathologies are all related by the propensity of their associated protein or polypeptide to form insoluble, β-sheet rich, amyloid fibrils. Despite the wide range of amino acid sequence in the aggregation prone polypeptides associated with these diseases, the resulting amyloids display strikingly similar physical structure, an observation which suggests a physical basis for amyloid fibril formation. Thioflavin T fluorescence reports β-sheet fibril content while dynamic light scattering measures particle size distributions. The combined techniques allow elucidation of complex aggregation kinetics and are used to reveal multiple stages of amyloid fibril formation. PMID:23349924

  2. Microscopic Mechanism and Kinetics of Ice Formation at Complex Interfaces: Zooming in on Kaolinite

    PubMed Central

    2016-01-01

    Most ice in nature forms because of impurities which boost the exceedingly low nucleation rate of pure supercooled water. However, the microscopic details of ice nucleation on these substances remain largely unknown. Here, we have unraveled the molecular mechanism and the kinetics of ice formation on kaolinite, a clay mineral playing a key role in climate science. We find that the formation of ice at strong supercooling in the presence of this clay is about 20 orders of magnitude faster than homogeneous freezing. The critical nucleus is substantially smaller than that found for homogeneous nucleation and, in contrast to the predictions of classical nucleation theory (CNT), it has a strong two-dimensional character. Nonetheless, we show that CNT describes correctly the formation of ice at this complex interface. Kaolinite also promotes the exclusive nucleation of hexagonal ice, as opposed to homogeneous freezing where a mixture of cubic and hexagonal polytypes is observed. PMID:27269363

  3. ESI formation of a Meisenheimer complex from tetryl and its unusual dissociation.

    PubMed

    Hubert, Cécile; Dossmann, Héloïse; Machuron-Mandard, Xavier; Tabet, Jean-Claude

    2013-03-01

    The reactivity of the explosive tetryl (N-methyl-N,2,4,6-tetranitroaniline; Mw = 287 u) was studied using electrospray ionization in negative mode. The main species detected in the spectrum corresponds to the ion observed at m/z 318 (previously assumed to be the odd-electron ion [tetryl + HNO](-•), C7H6O9N6). In this study, we show using D-labeling combined with high-resolution mass spectrometry that this species corresponds to an even-electron anion (i.e. C8H8O9N5), resulting from the formation of a Meisenheimer complex between tetryl and the methanol used as the solvent. Fragmentation of this complex under CID conditions revealed an unexpected fragment: the formation of a 2,4,6-trinitrophenoxide anion at m/z 228. (18)O-labeling combined with quantum chemical calculations helped us better understand the reaction pathways and mechanisms involved in the formation of this product ion. This occurs via a transition state leading to a SN2-type reaction, consequently evolving toward an ion-dipole complex. The latter finally dissociates into deprotonated picric acid. PMID:23494785

  4. Novel checkpoint response to genotoxic stress mediated by nucleolin-replication protein a complex formation.

    PubMed

    Kim, Kyung; Dimitrova, Diana D; Carta, Kristine M; Saxena, Anjana; Daras, Mariza; Borowiec, James A

    2005-03-01

    Human replication protein A (RPA), the primary single-stranded DNA-binding protein, was previously found to be inhibited after heat shock by complex formation with nucleolin. Here we show that nucleolin-RPA complex formation is stimulated after genotoxic stresses such as treatment with camptothecin or exposure to ionizing radiation. Complex formation in vitro and in vivo requires a 63-residue glycine-arginine-rich (GAR) domain located at the extreme C terminus of nucleolin, with this domain sufficient to inhibit DNA replication in vitro. Fluorescence resonance energy transfer studies demonstrate that the nucleolin-RPA interaction after stress occurs both in the nucleoplasm and in the nucleolus. Expression of the GAR domain or a nucleolin mutant (TM) with a constitutive interaction with RPA is sufficient to inhibit entry into S phase. Increasing cellular RPA levels by overexpression of the RPA2 subunit minimizes the inhibitory effects of nucleolin GAR or TM expression on chromosomal DNA replication. The arrest is independent of p53 activation by ATM or ATR and does not involve heightened expression of p21. Our data reveal a novel cellular mechanism that represses genomic replication in response to genotoxic stress by inhibition of an essential DNA replication factor. PMID:15743838

  5. The LINC complex component Sun4 plays a crucial role in sperm head formation and fertility

    PubMed Central

    Pasch, Elisabeth; Link, Jana; Beck, Carolin; Scheuerle, Stefanie; Alsheimer, Manfred

    2015-01-01

    ABSTRACT LINC complexes are evolutionarily conserved nuclear envelope bridges, physically connecting the nucleus to the peripheral cytoskeleton. They are pivotal for dynamic cellular and developmental processes, like nuclear migration, anchoring and positioning, meiotic chromosome movements and maintenance of cell polarity and nuclear shape. Active nuclear reshaping is a hallmark of mammalian sperm development and, by transducing cytoskeletal forces to the nuclear envelope, LINC complexes could be vital for sperm head formation as well. We here analyzed in detail the behavior and function of Sun4, a bona fide testis-specific LINC component. We demonstrate that Sun4 is solely expressed in spermatids and there localizes to the posterior nuclear envelope, likely interacting with Sun3/Nesprin1 LINC components. Our study revealed that Sun4 deficiency severely impacts the nucleocytoplasmic junction, leads to mislocalization of other LINC components and interferes with the formation of the microtubule manchette, which finally culminates in a globozoospermia-like phenotype. Together, our study provides direct evidence for a critical role of LINC complexes in mammalian sperm head formation and male fertility. PMID:26621829

  6. Complex formation between neptunium(V) and various thiosemicarbazide derivatives in aqueous solution

    SciTech Connect

    Chuguryan, D.G.; Dzyubenko, V.I.; Gerbeleu, N.V.

    1987-01-01

    Complex formation between neptunium(V) and various thiosemicarbazide derivatives in solution has been studied spectrophotometrically in the pH range 4-10. Stepwise formation of three types of complexes, with composition NpO/sub 2/HA, NpO/sub 2/A/sup -/, and NpOHA/sup 2 -/, has been demonstrated with salicylaldehyde thiosemicarbazone (H/sub 2/L) and salicylaldehyde S-methyl-isothiosemicarbazone (H/sub 2/Q) at t = 25 +/- 1/sup 0/C and ..mu.. = 0.05. The logarithmic stability constants of the first two complexes are 5.14 +/- 0.06, 11.85 +/- 0.04 and 8.42 +/- 0.09, 13.33 +/- 0.015 for H/sub 2/L and H/sub 2/Q, respectively; equilibrium constants for the formation of hydroxo complexes of the form NpO/sub 2/OHL/sup 2 -/ and NpO/sub 2/OHQ/sup 2 -/ were also determined, and found to be equal to (2.23 +/-0.37) x 10/sup -5/ and (5.02 +/- 0.9) x 10/sup -5/, respectively. In the case of S-methyl-N/sub 1/,N/sub 4/-bis(salicylidene)isothiosemicarbazide (H/sub 2/Z), only one type of complex is formed under these experimental conditions, namely, NpO/sub 2/Z/sup -/, with a logarithmic stability constant of 4.78 +/- 0.03. Dissociation constants for H/sub 2/Q and H/sub 2/Z were also determined.

  7. Formylglycinamide Ribonucleotide Amidotransferase from Thermotoga maritima: Structural Insights into Complex Formation

    SciTech Connect

    Morar, Mariya; Hoskins, Aaron A.; Stubbe, JoAnne; Ealick, Steven E.

    2008-10-02

    In the fourth step of the purine biosynthetic pathway, formyl glycinamide ribonucleotide (FGAR) amidotransferase, also known as PurL, catalyzes the conversion of FGAR, ATP, and glutamine to formyl glycinamidine ribonucleotide (FGAM), ADP, P{sub i}, and glutamate. Two forms of PurL have been characterized, large and small. Large PurL, present in most Gram-negative bacteria and eukaryotes, consists of a single polypeptide chain and contains three major domains: the N-terminal domain, the FGAM synthetase domain, and the glutaminase domain, with a putative ammonia channel located between the active sites of the latter two. Small PurL, present in Gram-positive bacteria and archaea, is structurally homologous to the FGAM synthetase domain of large PurL, and forms a complex with two additional gene products, PurQ and PurS. The structure of the PurS dimer is homologous with the N-terminal domain of large PurL, while PurQ, whose structure has not been reported, contains the glutaminase activity. In Bacillus subtilis, the formation of the PurLQS complex is dependent on glutamine and ADP and has been demonstrated by size-exclusion chromatography. In this work, a structure of the PurLQS complex from Thermotoga maritima is described revealing a 2:1:1 stoichiometry of PurS:Q:L, respectively. The conformational changes observed in TmPurL upon complex formation elucidate the mechanism of metabolite-mediated recruitment of PurQ and PurS. The flexibility of the PurS dimer is proposed to play a role in the activation of the complex and the formation of the ammonia channel. A potential path for the ammonia channel is identified.

  8. Formation and Recondensation of Complex Organic Molecules during Protostellar Luminosity Outbursts

    NASA Astrophysics Data System (ADS)

    Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.

    2016-04-01

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion–molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.

  9. Disruption of PF4/H multimolecular complex formation with a minimally anticoagulant heparin (ODSH)

    PubMed Central

    Joglekar, Manali V.; Quintana Diez, Pedro M.; Marcus, Stephen; Qi, Rui; Espinasse, Benjamin; Wiesner, Mark R.; Pempe, Elizabeth; Liu, Jian; Monroe, Dougald M.; Arepally, Gowthami M.

    2015-01-01

    Summary Recent studies have shown that ultra-large complexes (ULCs) of platelet factor 4 (PF4) and heparin (H) play an essential role in the pathogenesis of Heparin-Induced Thrombocytopenia (HIT), an immune-mediated disorder caused by PF4/H antibodies. Because antigenic PF4/H ULCs assemble through non-specific electrostatic interactions, we reasoned that disruption of charge-based interactions can modulate the immune response to antigen. We tested a minimally anticoagulant compound (2-O, 3-O desulfated heparin or ODSH) with preserved charge to disrupt PF4/H complex formation and immunogenicity. We show that ODSH disrupts complexes when added to pre-formed PF4/H ULCs and prevents ULC formation when incubated simultaneously with PF4 and UFH. In other studies, we show that excess ODSH reduces HIT antibody (Ab) binding in immunoassays and that PF4/ODSH complexes do not cross-react with HIT Abs. When ODSH and UFH are mixed at equimolar concentrations, we show that there is a negligible effect on amount of protamine required for heparin neutralization and reduced immunogenicity of PF4/UFH in the presence of ODSH. Taken together, these studies suggest that ODSH can be used concurrently with UFH to disrupt PF4/H charge interactions and provides a novel strategy to reduce antibody mediated complications in HIT. PMID:22318669

  10. Structure formation in metal complex/polymer hybrid nanomaterials prepared by miniemulsion.

    PubMed

    Hauser, Christoph P; Jagielski, Nicole; Heller, Jeannine; Hinderberger, Dariush; Spiess, Hans W; Lieberwirth, Ingo; Weiss, Clemens K; Landfester, Katharina

    2011-11-01

    Polymer/complex hybrid nanostructures were prepared using a variety of hydrophobic metal β-diketonato complexes. The mechanism of structure formation was investigated by electron paramagnetic resonance (EPR) spectroscopy and small-angle X-ray scattering (SAXS) in the liquid phase. Structure formation is attributed to an interaction between free coordination sites of metal β-diketonato complexes and coordinating anionic surfactants. Lamellar structures are already present in the miniemulsion. By subsequent polymerization the lamellae can be embedded in a great variety of different polymeric matrices. The morphology of the lamellar structures, as elucidated by transmission electron microscopy (TEM), can be controlled by the choice of anionic surfactant. Using sodium alkylsulfates and sodium dodecylphosphate, "nano-onions" are formed, while sodium carboxylates lead to "kebab-like" structures. The composition of the hybrid nanostructures can be described as bilayer lamellae, embedded in a polymeric matrix. The metal complexes are separated by surfactant molecules which are arranged tail-to-tail; by increasing the carbon chain length of the surfactant the layer distance of the structured nanomaterial can be adjusted between 2 and 5 nm. PMID:21977909

  11. Formation and fate of a complete 31-protein RNA polymerase II transcription preinitiation complex.

    PubMed

    Murakami, Kenji; Calero, Guillermo; Brown, Christopher R; Liu, Xin; Davis, Ralph E; Boeger, Hinrich; Kornberg, Roger D

    2013-03-01

    Whereas individual RNA polymerase II (pol II)-general transcription factor (GTF) complexes are unstable, an assembly of pol II with six GTFs and promoter DNA could be isolated in abundant homogeneous form. The resulting complete pol II transcription preinitiation complex (PIC) contained equimolar amounts of all 31 protein components. An intermediate in assembly, consisting of four GTFs and promoter DNA, could be isolated and supplemented with the remaining components for formation of the PIC. Nuclease digestion and psoralen cross-linking mapped the PIC between positions -70 and -9, centered on the TATA box. Addition of ATP to the PIC resulted in quantitative conversion to an open complex, which retained all 31 proteins, contrary to expectation from previous studies. Addition of the remaining NTPs resulted in run-off transcription, with an efficiency that was promoter-dependent and was as great as 17.5% with the promoters tested. PMID:23303183

  12. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice.

    PubMed

    Tay, J; Richter, J D

    2001-08-01

    CPEB is a sequence-specific RNA binding protein that regulates translation during vertebrate oocyte maturation. Adult female CPEB knockout mice contained vestigial ovaries that were devoid of oocytes; ovaries from mid-gestation embryos contained oocytes that were arrested at the pachytene stage. Male CPEB null mice also contained germ cells arrested at pachytene. The germ cells from the knockout mice harbored fragmented chromatin, suggesting a possible defect in homologous chromosome adhesion or synapsis. Two CPE-containing synaptonemal complex protein mRNAs, which interact with CPEB in vitro and in vivo, contained shortened poly(A) tails and mostly failed to sediment with polysomes in the null mice. Synaptonemal complexes were not detected in these animals. CPEB therefore controls germ cell differentiation by regulating the formation of the synaptonemal complex. PMID:11702780

  13. Mössbauer study of peroxynitrito complex formation with FeIII-chelates

    NASA Astrophysics Data System (ADS)

    Homonnay, Zoltan; Buszlai, Peter; Nádor, Judit; Sharma, Virender K.; Kuzmann, Erno; Vértes, Attila

    2012-03-01

    The reaction of the μ-oxo-diiron(III)-L complex (L = EDTA, ethylene diamine tetraacetate, HEDTA, hydroxyethyl ethylene diamine triacetate, and CyDTA, cyclohexane diamine tetraacetate) with peroxynitrite in alkaline solution was studied by Mössbauer spectroscopy using rapid-freezing technique. These complexes yield an (L)FeIII( η 2-O2)^{3-} complex ion when they react with hydrogen peroxide and the formation of the peroxide adduct results in a deep purple coloration of the solution. The same color appears when the reaction occurs with peroxinitrite. Although spectrophotometry indicated some difference between the molar extinction coefficients of the peroxo and the peroxinitrito adducts, the Mössbauer parameters proved to be the same within experimental error. It is concluded that the peroxynitrite ion decomposes when reacting with FeIII(L) and the peroxo adduct forms.

  14. Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring

    NASA Astrophysics Data System (ADS)

    Ciobanasu, Corina; Faivre, Bruno; Le Clainche, Christophe

    2014-01-01

    The force generated by the actomyosin cytoskeleton controls focal adhesion dynamics during cell migration. This process is thought to involve the mechanical unfolding of talin to expose cryptic vinculin-binding sites. However, the ability of the actomyosin cytoskeleton to directly control the formation of a talin-vinculin complex and the resulting activity of the complex are not known. Here we develop a microscopy assay with pure proteins in which the self-assembly of actomyosin cables controls the association of vinculin to a talin-micropatterned surface in a reversible manner. Quantifications indicate that talin refolding is limited by vinculin dissociation and modulated by the actomyosin network stability. Finally, we show that the activation of vinculin by stretched talin induces a positive feedback that reinforces the actin-talin-vinculin association. This in vitro reconstitution reveals the mechanism by which a key molecular switch senses and controls the connection between adhesion complexes and the actomyosin cytoskeleton.

  15. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    SciTech Connect

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found

  16. Linear free energy relationship rate constants and basicities of N-substituted phenyl glycines in positronium-glycine complex formation

    NASA Astrophysics Data System (ADS)

    Chen, Rongti; Liang, Jiachang; Du, Youming; Cao, Chun; Yin, Dinzhen; Wang, Shuying; Zhang, Tianbao

    1987-06-01

    Complex formation between positronium and glycine derivatives in solution is discussed and the complex reaction rate constants obtained by means of a positron annihilation lifetime spectrometer with BaF 2 detectors. Rate constants mainly depend on the conjugation effect at the benzene ring and the induction effect of the substituents at the phenyl. There is a linear free energy relationship between rate constants and basicities of N-substituted phenyl glycines in orthopositronium-glycine complex formation.

  17. Structural Complexities Influencing Biostratigraphic Interpretations of the Permian Nansen Formation type-section, Ellesmere Island, Canada

    NASA Astrophysics Data System (ADS)

    Hill, M.; Guest, B.

    2011-12-01

    The Carboniferous to Permian aged Nansen Formation is a cyclic carbonate shelf deposit and potential hydrocarbon reservoir. This formation is the thickest, most widespread carbonate sequence in the Sverdrup Basin. Deformed during the Eurekan Orogeny, the Nansen Fm. is topographically prominent and responsible for the rugged topography on Axel Heiburg and Ellesmere Island. The type-section for the Nansen Fm. is located on the north side of Hare Fiord, along Girty Creek. At this location there is an estimated stratigraphic thickness of 2 km. Due to easier access most of the stratigraphic work has been completed on nearby glacially exposed sections that traverse parallel to Girty Creek along glacial margins. Extensive biostratigraphy was completed on a glacier section to the west, however, in a glacier section to the east of Girty Creek, structural complexities appear to be repeating sections of the formation. Here, the Nansen formation is bounded by two regional reverse faults. This has produced duplex structures, with clearly exposed stacked horses, footwall synclines, and truncations. By projecting the structures observed along the eastern glacier section to the western glacier section that was used for biostratigraphic studies, it is clear that these structures would affect biostratigraphic interpretations. It was previously noted by biostratigraphers that thrust faults appear to be repeating sections of the Nansen formation. However by correlating all observed faults with the biostratigraphy, we can determine the extent to which the faulting has affected the interpretations, and whether all faults or stratigraphic repetitions are accounted for.

  18. Influence of Substrate Complexity on the Diastereoselective Formation of Spiroiminodihydantoin and Guanidinohydantoin from Chromate Oxidation

    PubMed Central

    Gremaud, Julia N.; Martin, Brooke D.; Sugden, Kent D.

    2009-01-01

    Chromate is a human carcinogen with a poorly defined mechanism of DNA damage. In vitro and prokaryotic studies have shown that DNA damage may occur via the formation of the hydantoin lesions guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) from further oxidation of 8-oxo-7,8-dihydroguanine (8oxoG). The unusual structure of these lesions coupled with their enhanced mutagenicity make them attractive for study with regard to their role in chromate-induced cancer. We have studied the formation of Gh versus Sp and their associated diastereomers following oxidation by model Cr(V) complexes and from in situ chromate reduction by ascorbate and glutathione. Identification of the two optically assigned diastereomers of Sp (R-Sp, S-Sp) as well as the two diastereomers of Gh, (Gh1 and Gh2; not yet optically assigned) were carried out using increasingly sterically hindered substrates (nucleoside → ssDNA → dsDNA). Lesion formation and diastereomeric preference was found to be highly oxidant- and substrate-dependent. The Ir(IV) positive control showed a shift from near equal levels of Gh and Sp, and near equal levels of all four diastereomers in the nucleoside, to all Gh formation in dsDNA, with a 5-fold enhancement in Gh2 over Gh1. The two model Cr(V) complexes used in this study, Cr(V)-salen and Cr(V)-ehba, showed opposite trends going from nucleoside to dsDNA with Cr(V)-salen giving enhanced Sp formation (with mainly R-Sp formed) and the Cr(V)-ehba having an oxidation profile nearly identical to that of Ir(IV). The two chromate reduction systems, Cr6+/ascorbate and Cr6+/glutathione, designed to model the intracellular reduction of chromate, showed lower levels of oxidation in all substrates. Notable in this group was the shift in the formation of the lesions to essentially all Sp for the Cr6+/ascorbate system with the most sterically hindered substrate, dsDNA. These results, when coupled with the known diastereomeric preference for excision of hydantoin lesions by

  19. Molybdenum Hydride and Dihydride Complexes Bearing Diphosphine Ligands with a Pendant Amine: Formation of Complexes With Bound Amines

    SciTech Connect

    Zhang, Shaoguang; Bullock, R. Morris

    2015-07-06

    CpMo(CO)(PNP)H complexes (PNP = (R2PCH2)2NMe, R = Et or Ph) were synthesized by displacement of two CO ligands of CpMo(CO)3H by the PNP ligand; these complexes were characterized by IR and variable temperature 1H and 31P NMR spectroscopy. CpMo(CO)(PNP)H complexes are formed as mixture of cis and trans-isomers. Both cis-CpMo(CO)(PEtNMePEt)H and trans-CpMo(CO)(PPhNMePPh)H were analyzed by single crystal X-ray diffraction. Electrochemical oxidation of CpMo(CO)(PEtNMePEt)H and CpMo(CO)(PPhNMePPh)H in CH3CN are both irreversible at slow scan rates and quasi-reversible at higher scan rates, with E1/2 = -0.36 V (vs. Cp2Fe+/0) for CpMo(CO)(PEtNMePEt)H and E1/2 = -0.18 V for CpMo(CO)(PPhNMePPh)H. Hydride abstraction from CpMo(CO)(PNP)H with [Ph3C]+[A]- (A = B(C6F5)4 or BArF4; [ArF = 3,5-bis(trifluoromethyl)phenyl]) afforded “tuck-in” [CpMo(CO)(κ3-PNP)]+ complexes that feature the amine bound to the metal. Displacement of the κ3 Mo-N bond by CD3CN gives [CpMo(CO)(PNP)(CD3CN)]+. The kinetics of this reaction were studied by NMR spectroscopy, providing the activation parameters ΔH‡ = 22.1 kcal/mol, ΔS‡ = 1.89 cal/(mol·K), Ea = 22.7 kcal/mol. Protonation of CpMo(CO)(PEtNMePEt)H affords [CpMo(CO)(κ2-PEtNMePEt)(H)2]+ as a Mo dihydride complex, which loses H2 to generate [CpMo(CO)(κ3-PEtNMePEt)]+ at room temperature. CpMo(CO)(dppp)H (dppp = 1,2-bis(diphenylphosphino)propane) was studied as a Mo diphosphine analogue without a pendant amine, and the product of protonation of this complex gives [CpMo(CO)(dppp)(H)2]+. Our results show that the pendant amine has a strong driving force to form stable “tuck-in” [CpMo(CO)(κ3-PNP)]+ complexes, and also promotes hydrogen elimination from [CpMo(CO)(PNP)(H)2]+ complexes by formation of Mo-N dative bond. We thank the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences for support. Pacific Northwest National Laboratory is operated by

  20. In vivo dynamics of chromatin-associated complex formation in mammalian nucleotide excision repair

    PubMed Central

    Moné, Martijn J.; Bernas, Tytus; Dinant, Christoffel; Goedvree, Feliks A.; Manders, Erik M. M.; Volker, Marcel; Houtsmuller, Adriaan B.; Hoeijmakers, Jan H. J.; Vermeulen, Wim; van Driel, Roel

    2004-01-01

    Chromatin is the substrate for many processes in the cell nucleus, including transcription, replication, and various DNA repair systems, all of which require the formation of multiprotein machineries on the chromatin fiber. We have analyzed the kinetics of in vivo assembly of the protein complex that is responsible for nucleotide excision repair (NER) in mammalian cells. Assembly is initiated by UV irradiation of a small area of the cell nucleus, after which the accumulation of GFP-tagged NER proteins in the DNA-damaged area is measured, reflecting the establishment of the dual-incision complex. The dynamic behavior of two NER proteins, ERCC1-XPF and TFIIH, was studied in detail. Results show that the repair complex is assembled with a rate of ≈30 complexes per second and is not diffusion limited. Furthermore, we provide in vivo evidence that not only binding of TFIIH, but also its helicase activity, is required for the recruitment of ERCC1-XPF. These studies give quantitative insight into the de novo assembly of a chromatin-associated protein complex in living cells. PMID:15520397

  1. Spectrophotometric and AAS determination of ramipril and enalapril through ternary complex formation.

    PubMed

    Ayad, Magda M; Shalaby, Abdalla A; Abdellatef, Hisham E; Hosny, Mervat M

    2002-04-15

    Two sensitive, spectrophotometric and atomic absorption spectrometric procedures are developed for the determination of two antihypertensive agents (enalapril maleate and ramipril). The spectrophotometric procedures for the two cited drugs are based on ternary complex formation. The first ternary complex (copper(II), eosin, and enalapril) was estimated by two methods; the first depends on its extraction with chloroform measuring at 533.4 nm. Beer's law was obeyed in concentration range from 56 to 112 microg ml(-1). The second method for the same complex depends on its direct measurement after addition of methylcellulose as surfactant at the pH value 5 at 558.8 nm. The concentration range is from 19 to 32 microg ml(-1). The second ternary complex (iron(III), thiocyanate, and ramipril) was extracted with methylene chloride, measuring at 436.6 nm, with a concentration range 60-132 microg ml(-1). The direct atomic absorption spectrometric method through the quantitative determination of copper or iron content of the complex was also investigated for the purpose of enhancing the sensitivity of the determination. The spectrophotometric and atomic absorption spectrometric procedures hold their accuracy and precision well when applied to the determination of ramipril and enalapril dosage forms. PMID:11929674

  2. Revised nomenclature and stratigraphic relationships of the Fredericksburg Complex and Quantico Formation of the Virginia Piedmont

    USGS Publications Warehouse

    Pavlides, Louis

    1980-01-01

    The Fredericksburg Complex, in part a migmatitic terrane in northeast Virginia, is subdivided on the basis of lithology, as well as aeromagnetic and aeroradiometric data, into two metamorphic suites. These suites are separated by the northeast-trending Spotsylvania lineament, a rectilinear geophysical feature that is probably the trace of an old fault zone. East of the lineament, the Po River Metamorphic Suite, of Proterozoic Z and (or) early Paleozoic age, consists dominantly of biotite gneiss, generally augen gneiss, and lesser amounts of hornblende gneiss and mica schist. West of the Spotsylvania lineament is the Ta River Metamorphic Suite, composed mostly of amphibolite and amphibole gneiss. However, to the southwest, along its strike belt, the Ta River contains abundant biotite gneiss and mica schist. Both the Ta River and Po River contain abundant foliated granitoid and pegmatoid bodies as concordant tabular masses and as crosscutting dikes; these rocks are considered part of the Ta River and Po River Metamorphic Suites. The amphibolitic Holly Corner Gneiss is interpreted to be a western allochthonous equivalent of the Ta River. Both the Ta River and Holly Corner are considered to be coeval, eastern, distal facies of the Lower Cambrian(?) Chopawamsic Formation. The Paleozoic Falls Run Granite Gneiss intrudes the Ta River Metamorphic Suite and the Holly Corner Gneiss; locally the Falls Run is interpreted to have been transported westward with the Holly Corner after intrusion. The Quantico Formation, in the core of the Quantico-Columbia synclinorium, rests with angular unconformity along its northwest and southeast limbs, respectively, on the Chopawamsic Formation and the Ta River Metamorphic Suite. The Quantico Formation is assigned the same Late Ordovician age and similar stratigraphic position as the Arvonia Slate of the Arvonia syncline. The youngest rocks of the area are the granitoid and pegmatoid bodies of the Falmouth Intrusive Suite. They consist of

  3. Maturation of suprathreshold auditory nerve activity involves cochlear CGRP-receptor complex formation.

    PubMed

    Dickerson, Ian M; Bussey-Gaborski, Rhiannon; Holt, Joseph C; Jordan, Paivi M; Luebke, Anne E

    2016-07-01

    In adult animals, the neuropeptide calcitonin gene-related peptide (CGRP) is contained in cochlear efferent fibers projecting out to the cochlea, and contributes to increased suprathreshold sound-evoked activity in the adult auditory nerve. Similarly, CGRP applied to the lateral-line organ (hair cell organ) increases afferent nerve activity in adult frogs (post-metamorphic day 30), yet this increase is developmentally delayed from post-metamorphic day 4-30. In this study, we discovered that there was also a developmental delay in increased suprathreshold sound-evoked activity auditory nerve between juvenile and adult mice similar to what had been observed previously in frog. Moreover, juvenile mice with a targeted deletion of the αCGRP gene [CGRP null (-/-)] did not show a similar developmental increase in nerve activity, suggesting CGRP signaling is involved. This developmental delay is not due to a delay in CGRP expression, but instead is due to a delay in receptor formation. We observed that the increase in sound-evoked nerve activity is correlated with increased formation of cochlear CGRP receptors, which require three complexed proteins (CLR, RAMP1, RCP) to be functional. CGRP receptor formation in the cochlea was incomplete at 1 month of age (juvenile), but complete by 3 months (adult), which corresponded to the onset of suprathreshold enhancement of sound-evoked activity in wild-type animals. Taken together, these data support a model for cochlear function that is enhanced by maturation of CGRP receptor complexes. PMID:27440744

  4. Carbon Dioxide Influence on the Thermal Formation of Complex Organic Molecules in Interstellar Ice Analogs

    NASA Astrophysics Data System (ADS)

    Vinogradoff, V.; Duvernay, F.; Fray, N.; Bouilloud, M.; Chiavassa, T.; Cottin, H.

    2015-08-01

    Interstellar ices are submitted to energetic processes (thermal, UV, and cosmic-ray radiations) producing complex organic molecules. Laboratory experiments aim to reproduce the evolution of interstellar ices to better understand the chemical changes leading to the reaction, formation, and desorption of molecules. In this context, the thermal evolution of an interstellar ice analogue composed of water, carbon dioxide, ammonia, and formaldehyde is investigated. The ice evolution during the warming has been monitored by IR spectroscopy. The formation of hexamethylenetetramine (HMT) and polymethylenimine (PMI) are observed in the organic refractory residue left after ice sublimation. A better understanding of this result is realized with the study of another ice mixture containing methylenimine (a precursor of HMT) with carbon dioxide and ammonia. It appears that carbamic acid, a reaction product of carbon dioxide and ammonia, plays the role of catalyst, allowing the reactions toward HMT and PMI formation. This is the first time that such complex organic molecules (HMT, PMI) are produced from the warming (without VUV photolysis or irradiation with energetic particles) of abundant molecules observed in interstellar ices (H2O, NH3, CO2, H2CO). This result strengthens the importance of thermal reactions in the ices’ evolution. HMT and PMI, likely components of interstellar ices, should be searched for in the pristine objects of our solar system, such as comets and carbonaceous chondrites.

  5. Formation of host-guest complexes of β-cyclodextrin and perfluorooctanoic acid.

    PubMed

    Karoyo, Abdalla H; Borisov, Alex S; Wilson, Lee D; Hazendonk, Paul

    2011-08-11

    Structural characterization and dynamic properties of solid-state inclusion complexes of β-cyclodextrin (β-CD) with perfluorooctanoic acid (PFOA) were investigated by (19)F/(13)C solid-state and (19)F/(1)H solution NMR spectroscopy. The complexes in the solid state were prepared using dissolution and slow cool methods, where thermal analyses (DSC and TGA), PXRD, and FT-IR results provided complementary support that inclusion complexes were formed between β-CD and PFOA with variable stoichiometry and inclusion geometry. (19)F DP (direct polarization) and (13)C CP (cross-polarization) with magic-angle spinning (MAS) solids NMR, along with (19)F/(1)H solution NMR were used to characterize the complexes in the solid and solution phases, respectively. The dynamics of the guest molecules in the inclusion complexes (ICs) were studied using variable temperature (VT) (19)F DP/MAS NMR experiments in the solid state. The guest molecules were observed to be in several different molecular environments, providing strong evidence of variable host-guest stoichiometry and inclusion geometry, in accordance with the preparation method of the complex and the conformational preference of PFOA. It was concluded from PXRD that β-CD and PFOA form inclusion complexes with "channel-type" structures. Variable spin rate (VSR) (19)F DP/MAS NMR was used to assess the phase purity of the complexes, and it was revealed that slow cooling resulted in relatively pure phases. In the solution state, (1)H and (19)F NMR complexation-induced chemical shifts (CISs) of β-CD and PFOA, respectively, provided strong support for the formation of 1:1 and 2:1 β-CD/PFOA inclusion complexes. The dynamics of the guest molecule in the β-CD/PFOA complexes in D(2)O solutions were probed using VT (19)F NMR and revealed some guest conformational and exchange dynamics as a function of temperature and the relative concentrations of the host and guest. PMID:21688796

  6. Model of formation of the Khibiny-Lovozero ore-bearing volcanic-plutonic complex

    NASA Astrophysics Data System (ADS)

    Arzamastsev, A. A.; Arzamastseva, L. V.; Zhirova, A. M.; Glaznev, V. N.

    2013-09-01

    The paper presents the results of a study of the large Paleozoic ore-magmatic system in the northeastern Fennoscandian Shield comprising the Khibiny and Lovozero plutons, the Kurga intrusion, volcanic rocks, and numerous alkaline dike swarms. As follows from the results of deep drilling and 3D geophysical simulation, large bodies of rocks pertaining to the ultramafic alkaline complex occur at the lower level of the ore-magmatic system. Peridotite, pyroxenite, melilitolite, melteigite, and ijolite occupy more than 50 vol % of the volcanic-plutonic complex within the upper 15 km accessible to gravity exploration. The proposed model represents the ore-magmatic system as a conjugate network of mantle magmatic sources localized at different depth levels and periodically supplying the melts belonging to the two autonomous groups: (1) ultramafic alkaline rocks with carbonatites and (2) alkali syenites-peralkaline syenites, which were formed synchronously having a common system of outlet conduits. With allowance for the available isotopic datings and new geochronological evidence, the duration of complex formation beginning from supply of the first batches of melt into calderas and up to postmagmatic events, expressed in formation of late pegmatoids, was no less than 25 Ma.

  7. Complex formation of Am(III) and Am(IV) with phosphate ions in acetonitrile solutions

    SciTech Connect

    Perevalov, S.A.; Lebedev, I.A.; Myasoedov, B.F.

    1988-05-01

    The first dissociation constant of H/sub 3/PO/sub 4/ in acetonitrile solution (K/sub 1//sup 0/ = 1.75/centered dot/10/sup /minus/13/) and the constant of formation of H(H/sub 2/PO/sub 4/)/sub 2//sup /minus// dimers (K/sub d//sup 0/ = 8/centered dot/10/sup 2/) were determined by the method of pH-potentiometry. The complex formation of Am(III) in acetonitrile solutions containing 0.05-2.0 M H/sub 3/PO/sub 4/ was investigated by a spectrophotometric method; the stability constants of the complexes AmH/sub 2/PO/sub 4//sup 2+/ (/beta//sub 1//sup III/ = 1.0/centered dot/10/sup 12/) and Am(H/sub 2/PO/sub 4/)/sub 2//sup +/ (/beta//sub 2//sup III/ = 4.3/centered dot/10/sup 24/) were determined. The formal potentials of the couple Am/sup (IV)//Am/sup (III)/ in 0.3-1.9 M solutions of H/sub 3/PO/sub 4/ in acetonitrile were measured, and the stability constant of the phosphate complex of tetravalent americium Am(H/sub 2/PO/sub 4/)/sub 3//sup +/ (/beta//sub 3//sup IV/ = 2.5/centered dot/10/sup 46/) was calculated according to the value of the shift of the potential relative to the standard.

  8. SOHLH2 is essential for synaptonemal complex formation during spermatogenesis in early postnatal mouse testes

    PubMed Central

    Park, Miree; Lee, Youngeun; Jang, Hoon; Lee, Ok-Hee; Park, Sung-Won; Kim, Jae-Hwan; Hong, Kwonho; Song, Hyuk; Park, Se-Pill; Park, Yun-Yong; Ko, Jung Jae; Choi, Youngsok

    2016-01-01

    Spermatogenesis- and oogenesis-specific helix-loop-helix transcription factor 2 (SOHLH2) is exclusively expressed in germ cells of the gonads. Previous studies show that SOHLH2 is critical for spermatogenesis in mouse. However, the regulatory mechanism of SOHLH2 during early spermatogenesis is poorly understood. In the present study, we analyzed the gene expression profile of the Sohlh2-deficient testis and examined the role of SOHLH2 during spermatogenesis. We found 513 genes increased in abundance, while 492 genes decreased in abundance in 14-day-old Sohlh2-deficient mouse testes compared to wildtype mice. Gene ontology analysis revealed that Sohlh2 disruption effects the relative abundance of various meiotic genes during early spermatogenesis, including Spo11, Dmc1, Msh4, Prdm9, Sycp1, Sycp2, Sycp3, Hormad1, and Hormad2. Western blot analysis and immunostaining showed that SYCP3, a component of synaptonemal complex, was significantly less abundant in Sohlh2-deficient spermatocytes. We observed a lack of synaptonemal complex formation during meiosis in Sohlh2-deficient spermatocytes. Furthermore, we found that SOHLH2 interacted with two E-boxes on the mouse Sycp1 promoter and Sycp1 promoter activity increased with ectopically expressed SOHLH2. Taken together, our data suggest that SOHLH2 is critical for the formation of synaptonemal complexes via its regulation of Sycp1 expression during mouse spermatogonial differentiation. PMID:26869299

  9. Gas Phase Uranyl Activation: Formation of a Uranium Nitrosyl Complex from Uranyl Azide

    SciTech Connect

    Gong, Yu; De Jong, Wibe A.; Gibson, John K.

    2015-05-13

    Activation of the oxo bond of uranyl, UO22+, was achieved by collision induced dissociation (CID) of UO2(N3)Cl2– in a quadrupole ion trap mass spectrometer. The gas phase complex UO2(N3)Cl2– was produced by electrospray ionization of solutions of UO2Cl2 and NaN3. CID of UO2(N3)Cl2– resulted in the loss of N2 to form UO(NO)Cl2–, in which the “inert” uranyl oxo bond has been activated. Formation of UO2Cl2– via N3 loss was also observed. Density functional theory computations predict that the UO(NO)Cl2– complex has nonplanar Cs symmetry and a singlet ground state. Analysis of the bonding of the UO(NO)Cl2– complex shows that the side-on bonded NO moiety can be considered as NO3–, suggesting a formal oxidation state of U(VI). Activation of the uranyl oxo bond in UO2(N3)Cl2– to form UO(NO)Cl2– and N2 was computed to be endothermic by 169 kJ/mol, which is energetically more favorable than formation of NUOCl2– and UO2Cl2–. The observation of UO2Cl2– during CID is most likely due to the absence of an energy barrier for neutral ligand loss.

  10. Selective repression of light harvesting complex 2 formation in Rhodobacter azotoformans by light under semiaerobic conditions.

    PubMed

    Yue, Huiying; Zhao, Chungui; Li, Kai; Yang, Suping

    2015-11-01

    Photosystem formation in anaerobic anoxygenic phototrophic bacteria (APB) is repressed by oxygen but is de-repressed when oxygen tension decreases. Under semiaerobic conditions, the synthesis of photopigments and pigment protein complexes in Rhodobacter (Rba.) sphaeroides are repressed by light. AppA, a blue-light receptor, mediates this regulation. In the present study, it was showed that the synthesis of bacteriochlorophyll, carotenoid, and pigment protein complexes in Rba. azotoformans 134K20 was significantly repressed by oxygen. Oxygen exposure also led to a conversion of spheroidene to spheroidenone. In semiaerobically growing cells, light irradiation resulted in a decrease in the formation of photosystem, and blue light was found to be the most effective light source. Blue light reduced the contents of bacteriochlorophyll and carotenoid slightly, but had negligible effects on light harvesting complex (LH) 1 content, whereas the content of LH2 was significantly decreased indicating that blue light selectively repressed the synthesis of LH2 in semiaerobically growing 134K20. It was concluded that, similar to Rba. sphaeroides, a blue light receptor presented in strain 134K20 played important roles in its light-dependent repression. A possible mechanism involved in controlling the differential inhibitory of blue light on the synthesis of photosystem was discussed. PMID:26193456

  11. Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluids

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Sharma, Vivek

    Liquid transfer and drop formation processes underlying jetting, spraying, coating, and printing - inkjet, screen, roller-coating, gravure, nanoimprint hot embossing, 3D - often involve formation of unstable columnar necks. Capillary-driven thinning of such necks and their pinchoff dynamics are determined by a complex interplay of inertial, viscous and capillary stresses for simple, Newtonian fluids. Micro-structural changes in response to extensional flow field that arises within the thinning neck give rise to additional viscoelastic stresses in complex, non- Newtonian fluids. Using FLOW-3D, we simulate flows realized in prototypical geometries (dripping and liquid bridge stretched between two parallel plates) used for studying pinch-off dynamics and influence of microstructure and viscoelasticity. In contrast with often-used 1D or 2D models, FLOW-3D allows a robust evaluation of the magnitude of the underlying stresses and extensional flow field (both uniformity and magnitude). We find that the simulated radius evolution profiles match the pinch-off dynamics that are experimentally-observed and theoretically-predicted for model Newtonian fluids and complex fluids.

  12. Gas phase uranyl activation: formation of a uranium nitrosyl complex from uranyl azide.

    PubMed

    Gong, Yu; de Jong, Wibe A; Gibson, John K

    2015-05-13

    Activation of the oxo bond of uranyl, UO2(2+), was achieved by collision induced dissociation (CID) of UO2(N3)Cl2(-) in a quadrupole ion trap mass spectrometer. The gas phase complex UO2(N3)Cl2(-) was produced by electrospray ionization of solutions of UO2Cl2 and NaN3. CID of UO2(N3)Cl2(-) resulted in the loss of N2 to form UO(NO)Cl2(-), in which the "inert" uranyl oxo bond has been activated. Formation of UO2Cl2(-) via N3 loss was also observed. Density functional theory computations predict that the UO(NO)Cl2(-) complex has nonplanar Cs symmetry and a singlet ground state. Analysis of the bonding of the UO(NO)Cl2(-) complex shows that the side-on bonded NO moiety can be considered as NO(3-), suggesting a formal oxidation state of U(VI). Activation of the uranyl oxo bond in UO2(N3)Cl2(-) to form UO(NO)Cl2(-) and N2 was computed to be endothermic by 169 kJ/mol, which is energetically more favorable than formation of NUOCl2(-) and UO2Cl2(-). The observation of UO2Cl2(-) during CID is most likely due to the absence of an energy barrier for neutral ligand loss. PMID:25906363

  13. Influence of structural features of carrageenan on the formation of polyelectrolyte complexes with chitosan.

    PubMed

    Volod'ko, A V; Davydova, V N; Glazunov, V P; Likhatskaya, G N; Yermak, I M

    2016-03-01

    The polyelectrolyte complexes (PEC) of carrageenans (CG)-κ-, κ/β-, λ-and x-CG with chitosan were obtained. The formation of PEC was detected by Fourier-transform infrared (FTIR) spectroscopy and by centrifugation in a Percoll gradient. The influence of the structural peculiarities of CG on its interaction with chitosan was studied. The results of centrifugation showed that x-CG with a high degree of sulphation (SD) was completely bound to chitosan, unlike low SD κ-CG and κ/β-CG. Binding constant values showed there was a high affinity of CG for chitosan. CG with flexible macromolecule conformation and high SD exhibited the greatest binding affinity for chitosan. The full-atomic 3D-structures of the PEC κ-CG: chitosan in solution have been obtained by the experiments in silico for the first time. The amino groups of chitosan make the largest contribution to the energy of the complex formation by means of hydrogen and ionic bonds. The most probable complexes have stoichiometries of 1:1 and 1:1.5. PMID:26712704

  14. Struvite crystal growth inhibition by trisodium citrate and the formation of chemical complexes in growth solution

    NASA Astrophysics Data System (ADS)

    Prywer, Jolanta; Mielniczek-Brzóska, Ewa; Olszynski, Marcin

    2015-05-01

    Effect of trisodium citrate on the crystallization of struvite was studied. To evaluate such an effect an experiment of struvite growth from artificial urine was performed. The investigations are related to infectious urinary stones formation. The crystallization process was induced by the addition of aqueous ammonia solution to mimic the bacterial activity. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to struvite formation and decreases the growth efficiency of struvite. The inhibitory effect of trisodium citrate on the nucleation and growth of struvite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is related with the fact that trisodium citrate binds NH4 + and Mg2+ ions in the range of pH from 7 to 9.5 characteristic for struvite precipitation. The most important is the MgCit- complex whose concentration strongly depends on an increase in pH rather than on an increase in citrate concentrations.

  15. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex

    PubMed Central

    Suppiger, Angela; Schmid, Nadine; Aguilar, Claudio; Pessi, Gabriella; Eberl, Leo

    2013-01-01

    The Burkholderia cepacia complex (Bcc) consists of 17 closely related species that are problematic opportunistic bacterial pathogens for cystic fibrosis patients and immunocompromised individuals. These bacteria are capable of utilizing two different chemical languages: N-acyl homoserine lactones (AHLs) and cis-2-unsaturated fatty acids. Here we summarize the current knowledge of the underlying molecular architectures of these communication systems, showing how they are interlinked and discussing how they regulate overlapping as well as specific sets of genes. A particular focus is laid on the role of these signaling systems in the formation of biofilms, which are believed to be highly important for chronic infections. We review genes that have been implicated in the sessile lifestyle of this group of bacteria. The new emerging role of the intracellular second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) as a downstream regulator of the fatty acid signaling cascade and as a key factor in biofilm formation is also discussed. PMID:23799665

  16. Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution.

    PubMed

    Shimada, Masato; Takai, Eisuke; Ejima, Daisuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2015-02-01

    Heat-induced aggregation of myosin into an elastic gel plays an important role in the water-holding capacity and texture of meat products. Here, we investigated thermal aggregation of porcine myosin in high-salt solution over a wide temperature range by dynamic light scattering experiments. The myosin samples were readily dissolved in 1.0 M NaCl at 25 °C followed by dilution into various salt concentrations. The diluted solutions consistently contained both myosin monomers and soluble filaments. The filament size decreased with increasing salt concentration and temperature. High temperatures above Tm led to at least partial dissociation of soluble filaments and thermal unfolding, resulting in the formation of soluble oligomers and binding to the persistently present soluble filaments. Such a complex formation between the oligomers and filaments has never been observed. Our results provide new insight into the heat-induced myosin gelation in high-salt solution. PMID:25445683

  17. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    PubMed

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains. PMID:25256478

  18. Magnetically Regulated Star Formation in Three Dimensions: The Case of the Taurus Molecular Cloud Complex

    NASA Astrophysics Data System (ADS)

    Nakamura, Fumitaka; Li, Zhi-Yun

    2008-11-01

    We carry out three-dimensional MHD simulations of star formation in turbulent, magnetized clouds, including ambipolar diffusion and feedback from protostellar outflows. The calculations focus on relatively diffuse clouds threaded by a strong magnetic field capable of resisting severe tangling by turbulent motions and retarding global gravitational contraction in the cross field direction. They are motivated by observations of the Taurus molecular cloud complex (and, to a lesser extent, Pipe Nebula), which shows an ordered large-scale magnetic field, as well as elongated condensations that are generally perpendicular to the large-scale field. We find that stars form in earnest in such clouds when enough material has settled gravitationally along the field lines that the mass-to-flux ratios of the condensations approach the critical value. Only a small fraction (of order 1% or less) of the nearly magnetically critical, condensed material is turned into stars per local free-fall time, however. The slow star formation takes place in condensations that are moderately supersonic; it is regulated primarily by magnetic fields, rather than turbulence. The quiescent condensations are surrounded by diffuse halos that are much more turbulent, as observed in the Taurus complex. Strong support for magnetic regulation of star formation in this complex comes from the extremely slow conversion of the already condensed, relatively quiescent C18O gas into stars, at a rate 2 orders of magnitude below the maximum, free-fall value. We analyze the properties of dense cores, including their mass spectrum, which resembles the stellar initial mass function.

  19. Charge-transfer complex formation in gelation: the role of solvent molecules with different electron-donating capacities.

    PubMed

    Basak, Shibaji; Bhattacharya, Sumantra; Datta, Ayan; Banerjee, Arindam

    2014-05-01

    A naphthalenediimide (NDI)-based synthetic peptide molecule forms gels in a particular solvent mixture (chloroform/aromatic hydrocarbon, 4:1) through charge-transfer (CT) complex formation; this is evident from the corresponding absorbance and fluorescence spectra at room temperature. Various aromatic hydrocarbon based solvents, including benzene, toluene, xylene (ortho, meta and para) and mesitylene, have been used for the formation of the CT complex. The role of different solvent molecules with varying electron-donation capacities in the formation of CT complexes has been established through spectroscopic and computational studies. PMID:24677404

  20. Effect of fat type in baked bread on amylose-lipid complex formation and glycaemic response.

    PubMed

    Lau, Evelyn; Zhou, Weibiao; Henry, Christiani Jeyakumar

    2016-06-01

    The formation of amylose-lipid complexes (ALC) had been associated with reduced starch digestibility. A few studies have directly characterised the extent of ALC formation with glycaemic response. The objectives of this study were to investigate the effect of using fats with varying degree of saturation and chain length on ALC formation as well as glycaemic and insulinaemic responses after consumption of bread. Healthy men consumed five test breads in a random order: control bread without any added fats (CTR) and breads baked with butter (BTR), coconut oil (COC), grapeseed oil (GRP) or olive oil (OLV). There was a significant difference in glycaemic response between the different test breads (P=0·002), primarily due to COC having a lower response than CTR (P=0·016), but no significant differences between fat types were observed. Insulinaemic response was not altered by the addition of fats/oils. Although BTR was more insulinotropic than GRP (P<0·05), postprandial β-cell function did not differ significantly. The complexing index (CI), a measure of ALC formation, was significantly higher for COC and OLV compared with BTR and GRP (P<0·05). CI was significantly negatively correlated with incremental AUC (IAUC) of change in blood glucose concentrations over time (IAUCglucose) (r -0·365, P=0·001). Linear regression analysis showed that CI explained 13·3 % of the variance and was a significant predictor of IAUCglucose (β=-1·265, P=0·001), but IAUCinsulin did not predict IAUCglucose. Our study indicated that a simple way to modulate glycaemic response in bread could lie in the choice of fats/oils, with coconut oil showing the greatest attenuation of glycaemic response. PMID:27102847

  1. Formation of charge-transfer-complex in organic:metal oxides systems

    NASA Astrophysics Data System (ADS)

    Wu, S. P.; Kang, Y.; Liu, T. L.; Jin, Z. H.; Jiang, N.; Lu, Z. H.

    2013-04-01

    It is found that composite systems consisting of 4,4'-bis(carbazol-9-yl)biphenyl (CBP) and molybdenum trioxide (MoO3) form an IR absorption band around 847 nm. It is also found that the vibrational modes of the CBP, as measured by Fourier Transform Infrared Spectroscopy, are quenched upon the formation of charge-transfer-complex (CTC) between CBP and MoO3. By examining several sets of organic:metal oxides systems, we discovered that the IR absorption band of the CTCs follow two distinct mechanisms depending on the nature and location of the HOMOs in the organic molecules.

  2. Time-resolved fluorescence spectroscopic investigation of cationic polymer/DNA complex formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, Cosimo; Bassi, Andrea; Taroni, Paola; Pezzoli, Daniele; Volonterio, Alessandro; Candiani, Gabriele

    2011-07-01

    Since DNA is not internalized efficiently by cells, the success of gene therapy depends on the availability of carriers to efficiently deliver genetic material into target cells. Gene delivery vectors can be broadly categorized into viral and non-viral ones. Non-viral gene delivery systems are represented by cationic lipids and polymers rely on the basics of supramolecular chemistry termed "self-assembling": at physiological pH, they are cations and spontaneously form lipoplexes (for lipids) and polyplexes (for polymers) complexing nucleic acids. In this scenario, cationic polymers are commonly used as non-viral vehicles. Their effectiveness is strongly related to key parameters including DNA binding ability and stability in different environments. Time-resolved fluorescence spectroscopy of SYBR Green I (DNA dye) was carried out to characterize cationic polymer/DNA complex (polyplex) formation dispersed in aqueous solution. Both fluorescence amplitude and lifetime proved to be very sensitive to the polymer/DNA ratio (N/P ratio, +/-).

  3. Modified bimolecular fluorescence complementation assay to study the inhibition of transcription complex formation by JAZ proteins.

    PubMed

    Qi, Tiancong; Song, Susheng; Xie, Daoxin

    2013-01-01

    The jasmonate (JA) ZIM-domain (JAZ) proteins of Arabidopsis thaliana repress JA signaling and negatively regulate the JA responses. Recently, JAZ proteins have been found to inhibit the transcriptional function of several transcription factors, among which the basic helix-loop-helix (bHLH) (GLABRA3 [GL3], ENHANCER OF GLABRA3 [EGL3], and TRANSPARENT TESTA8 [TT8]) and R2R3-MYB (GL1 and MYB75) that can interact with each other to form bHLH-MYB complexes and further control gene expression. The bimolecular fluorescence complementation (BiFC) assay is a widely used technique to study protein-protein interactions in living cells. Here we describe a modified BiFC experimental procedure to study the inhibition of the formation of the bHLH (GL3)-MYB (GL1) complex by JAZ proteins. PMID:23615997

  4. Arachidonic acid stimulates formation of a novel complex containing nucleolin and RhoA.

    PubMed

    Garcia, Melissa C; Williams, Jason; Johnson, Katina; Olden, Kenneth; Roberts, John D

    2011-02-18

    Arachidonic acid (AA) stimulates cell adhesion through a p38 mitogen activated protein kinase-mediated RhoA signaling pathway. Here we report that a proteomic screen following AA-treatment identified nucleolin, a multifunctional nucleolar protein, in a complex with the GTPase, RhoA, that also included the Rho kinase, ROCK. AA-stimulated cell adhesion was inhibited by expression of nucleolin-targeted shRNA and formation of the multiprotein complex was blocked by expression of dominant-negative RhoA. AA-treatment also induced ROCK-dependent serine phosphorylation of nucleolin and translocation of nucleolin from the nucleus to the cytoplasm, where it appeared to co-localize with RhoA. These data suggest the existence of a new signaling pathway through which the location and post-translational state of nucleolin are modulated. PMID:21281639

  5. Formation and dynamics of "waterproof" photoluminescent complexes of rare earth ions in crowded environment.

    PubMed

    Ignatova, Tetyana; Blades, Michael; Duque, Juan G; Doorn, Stephen K; Biaggio, Ivan; Rotkin, Slava V

    2014-12-28

    Understanding behavior of rare-earth ions (REI) in crowded environments is crucial for several nano- and bio-technological applications. Evolution of REI photoluminescence (PL) in small compartments inside a silica hydrogel, mimic to a soft matter bio-environment, has been studied and explained within a solvation model. The model uncovered the origin of high PL efficiency to be the formation of REI complexes, surrounded by bile salt (DOC) molecules. Comparative study of these REI-DOC complexes in bulk water solution and those enclosed inside the hydrogel revealed a strong correlation between an up to 5×-longer lifetime of REIs and appearance of the DOC ordered phase, further confirmed by dynamics of REI solvation shells, REI diffusion experiments and morphological characterization of microstructure of the hydrogel. PMID:25379879

  6. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    SciTech Connect

    Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai; Obara, Chizuka; Yasuda, Takeshi; Gotoh, Takaya; Tanaka, Izumi; Yakumaru, Haruko; Ishihara, Hiroshi; Tajima, Katsushi

    2014-04-18

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood. Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.

  7. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation

    PubMed Central

    Montagnoli, Alessia; Fiore, Francesca; Eytan, Esther; Carrano, Andrea C.; Draetta, Giulio F.; Hershko, Avram; Pagano, Michele

    1999-01-01

    The cellular abundance of the cyclin-dependent kinase (Cdk) inhibitor p27 is regulated by the ubiquitin–proteasome system. Activation of p27 degradation is seen in proliferating cells and in many types of aggressive human carcinomas. p27 can be phosphorylated on threonine 187 by Cdks, and cyclin E/Cdk2 overexpression can stimulate the degradation of wild-type p27, but not of a threonine 187-to-alanine p27 mutant [p27(T187A)]. However, whether threonine 187 phosphorylation stimulates p27 degradation through the ubiquitin–proteasome system or an alternative pathway is still not known. Here, we demonstrate that p27 ubiquitination (as assayed in vivo and in an in vitro reconstituted system) is cell-cycle regulated and that Cdk activity is required for the in vitro ubiquitination of p27. Furthermore, ubiquitination of wild-type p27, but not of p27(T187A), can occur in G1-enriched extracts only upon addition of cyclin E/Cdk2 or cyclin A/Cdk2. Using a phosphothreonine 187 site-specific antibody for p27, we show that threonine 187 phosphorylation of p27 is also cell-cycle dependent, being present in proliferating cells but undetectable in G1 cells. Finally, we show that in addition to threonine 187 phosphorylation, efficient p27 ubiquitination requires formation of a trimeric complex with the cyclin and Cdk subunits. In fact, cyclin B/Cdk1 which can phosphorylate p27 efficiently, but cannot form a stable complex with it, is unable to stimulate p27 ubiquitination by G1 extracts. Furthermore, another p27 mutant [p27(CK−)] that can be phosphorylated by cyclin E/Cdk2 but cannot bind this kinase complex, is refractory to ubiquitination. Thus throughout the cell cycle, both phosphorylation and trimeric complex formation act as signals for the ubiquitination of a Cdk inhibitor. PMID:10323868

  8. Cadmium(II) N-acetylcysteine complex formation in aqueous solution.

    PubMed

    Jalilehvand, Farideh; Amini, Zahra; Parmar, Karnjit; Kang, Eun Young

    2011-12-21

    The complex formation between Cd(II) ions and N-acetylcysteine (H(2)NAC) in aqueous solution was investigated using Cd K- and L(3)-edge X-ray absorption and (113)Cd NMR spectroscopic techniques. Two series of 0.1 M Cd(II) solutions with the total N-acetylcysteine concentration c(H2NAC) varied between 0.2-2 M were studied at pH 7.5 and 11.0, respectively. At pH = 11 a novel mononuclear [Cd(NAC)(4)](6-) complex with the average Cd-S distance 2.53(2) Å and the chemical shift δ((113)Cd) = 677 ppm was found to dominate at a concentration of the free deprotonated ligand [NAC(2-)] > 0.1 M, consistent with our previous reports on cadmium tetrathiolate complex formation with cysteine and glutathione. At pH 7.5 much higher ligand excess ([HNAC(-)] > 0.6 M) is required to make this tetrathiolate complex the major species. The (113)Cd NMR spectrum of a solution containing c(Cd(II)) = 0.5 M and c(H2NAC) = 1.0 M measured at 288 K showed three broad signals at 421, 583 and 642 ppm, which can be attributed to CdS(3)O(3), CdS(3)O and CdS(4) coordination sites, respectively, in oligomeric Cd(II)-NAC species with single thiolate bridges between the cadmium ions. PMID:22012146

  9. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis.

    PubMed

    Shin, Yong-Hyun; Choi, Youngsok; Erdin, Serpil Uckac; Yatsenko, Svetlana A; Kloc, Malgorzata; Yang, Fang; Wang, P Jeremy; Meistrich, Marvin L; Rajkovic, Aleksandar

    2010-11-01

    Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1(-/) (-)) testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1(-/) (-) testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with γH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1(-/) (-) ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1(-/) (-) oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing. PMID:21079677

  10. Asymmetrical Macromolecular Complex Formation of Lysophosphatidic Acid Receptor 2 (LPA2) Mediates Gradient Sensing in Fibroblasts*

    PubMed Central

    Ren, Aixia; Moon, Changsuk; Zhang, Weiqiang; Sinha, Chandrima; Yarlagadda, Sunitha; Arora, Kavisha; Wang, Xusheng; Yue, Junming; Parthasarathi, Kaushik; Heil-Chapdelaine, Rick; Tigyi, Gabor; Naren, Anjaparavanda P.

    2014-01-01

    Chemotactic migration of fibroblasts toward growth factors relies on their capacity to sense minute extracellular gradients and respond to spatially confined receptor-mediated signals. Currently, mechanisms underlying the gradient sensing of fibroblasts remain poorly understood. Using single-particle tracking methodology, we determined that a lysophosphatidic acid (LPA) gradient induces a spatiotemporally restricted decrease in the mobility of LPA receptor 2 (LPA2) on chemotactic fibroblasts. The onset of decreased LPA2 mobility correlates to the spatial recruitment and coupling to LPA2-interacting proteins that anchor the complex to the cytoskeleton. These localized PDZ motif-mediated macromolecular complexes of LPA2 trigger a Ca2+ puff gradient that governs gradient sensing and directional migration in response to LPA. Disruption of the PDZ motif-mediated assembly of the macromolecular complex of LPA2 disorganizes the gradient of Ca2+ puffs, disrupts gradient sensing, and reduces the directional migration of fibroblasts toward LPA. Our findings illustrate that the asymmetric macromolecular complex formation of chemoattractant receptors mediates gradient sensing and provides a new mechanistic basis for models to describe gradient sensing of fibroblasts. PMID:25542932

  11. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

    SciTech Connect

    Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2008-01-31

    Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.

  12. Asymmetrical macromolecular complex formation of lysophosphatidic acid receptor 2 (LPA2) mediates gradient sensing in fibroblasts.

    PubMed

    Ren, Aixia; Moon, Changsuk; Zhang, Weiqiang; Sinha, Chandrima; Yarlagadda, Sunitha; Arora, Kavisha; Wang, Xusheng; Yue, Junming; Parthasarathi, Kaushik; Heil-Chapdelaine, Rick; Tigyi, Gabor; Naren, Anjaparavanda P

    2014-12-26

    Chemotactic migration of fibroblasts toward growth factors relies on their capacity to sense minute extracellular gradients and respond to spatially confined receptor-mediated signals. Currently, mechanisms underlying the gradient sensing of fibroblasts remain poorly understood. Using single-particle tracking methodology, we determined that a lysophosphatidic acid (LPA) gradient induces a spatiotemporally restricted decrease in the mobility of LPA receptor 2 (LPA2) on chemotactic fibroblasts. The onset of decreased LPA2 mobility correlates to the spatial recruitment and coupling to LPA2-interacting proteins that anchor the complex to the cytoskeleton. These localized PDZ motif-mediated macromolecular complexes of LPA2 trigger a Ca(2+) puff gradient that governs gradient sensing and directional migration in response to LPA. Disruption of the PDZ motif-mediated assembly of the macromolecular complex of LPA2 disorganizes the gradient of Ca(2+) puffs, disrupts gradient sensing, and reduces the directional migration of fibroblasts toward LPA. Our findings illustrate that the asymmetric macromolecular complex formation of chemoattractant receptors mediates gradient sensing and provides a new mechanistic basis for models to describe gradient sensing of fibroblasts. PMID:25542932

  13. E-ring conformation has a key role in cleavable complex formation: homocamptothecin versus camptothecins

    NASA Astrophysics Data System (ADS)

    Chauvier, D.; Chourpa, I.; Maizieres, M.; Riou, J.-F.; Dauchez, M.; Alix, A. J. P.; Manfait, M.

    2003-06-01

    Homocamptothecin (hCPT) is a new camptothecin (CPT) derivative with a seven-membered β-hydroxylactone E-ring. This modification provides higher lactone stability and did not impair its activity against topoisomerase I (top1), but rather appears to improve it compared to CPT. Such lactone modification was unexpected regarding the previous structure-activity relationship data inside the CPT series, and may have crucial mechanistic implications in the ternary cleavable complex formation. In this study, the detailed characterization of the E-ring homologation and lactone/carboxylate conversion, self-aggregation, influence of pH and polarity of the molecular environment have been performed for hCPT by frequency-domain fluorescence. The real-time spectrofluorometry confirmed the enhanced stability of hCPT. We have also investigated the E-ring status of hCPT within the top1 ternary complex with DNA, and with top1 or DNA binary complexes. Unlike CPT, no modification of the (β-hydroxy-) lactone-carboxylate conversion rates was observed, suggesting that E-ring opening is not required for cleavable complex stabilization in presence of hCPT. Comparison of the two structures by molecular modeling revealed similar conformation and steric volumes between the β-hydroxylactone ring conformation of hCPT and the opened ring of CPT. The lack of hCPT E-ring opening was discussed in the light of these molecular modeling results.

  14. Formation and function of the Rbl2p-beta-tubulin complex.

    PubMed

    Archer, J E; Magendantz, M; Vega, L R; Solomon, F

    1998-03-01

    The yeast protein Rbl2p suppresses the deleterious effects of excess beta-tubulin as efficiently as does alpha-tubulin. Both in vivo and in vitro, Rbl2p forms a complex with beta-tubulin that does not contain alpha-tubulin, thus defining a second pool of beta-tubulin in the cell. Formation of the complex depends upon the conformation of beta-tubulin. Newly synthesized beta-tubulin can bind to Rbl2p before it binds to alpha-tubulin. Rbl2p can also bind beta-tubulin from the alpha/beta-tubulin heterodimer, apparently by competing with alpha-tubulin. The Rbl2p-beta-tubulin complex has a half-life of approximately 2.5 h and is less stable than the alpha/beta-tubulin heterodimer. The results of our experiments explain both how excess Rbl2p can rescue cells overexpressing beta-tubulin and how it can be deleterious in a wild-type background. They also suggest that the Rbl2p-beta-tubulin complex is part of a cellular mechanism for regulating the levels and dimerization of tubulin chains. PMID:9488492

  15. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex

    PubMed Central

    Mekler, Vladimir; Minakhin, Leonid; Borukhov, Sergei; Mustaev, Arkady; Severinov, Konstantin

    2014-01-01

    Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT-rich. Further shortening of downstream DNA dramatically reduces efficiency of transcription initiation. The boundary of minimal downstream DNA duplex needed for efficient transcription initiation shifted further away from the catalytic center upon increasing the GC content of promoter melting region or in the presence of bacterial stringent response regulators DksA and ppGpp. These results indicate that the strength of RNAP-downstream DNA interactions has to reach a certain threshold to retain the catalytically competent conformation of the initiation complex and that establishment of contacts between RNAP and downstream DNA can be coupled with promoter melting. The data further suggest that RNAP interactions with DNA immediately downstream of the transcription bubble are particularly important for initiation of transcription. We hypothesize that these active center-proximal contacts stabilize the DNA template strand in the active center cleft and/or position the RNAP clamp domain to allow RNA synthesis. PMID:25311862

  16. Hedgehog induces formation of PKA-Smoothened complexes to promote Smoothened phosphorylation and pathway activation

    PubMed Central

    Li, Shuang; Ma, Guoqiang; Wang, Bing; Jiang, Jin

    2015-01-01

    Hedgehog (Hh) is a secreted glycoprotein that binds its receptor Patched to activate the G protein-coupled receptor-like protein Smoothened (Smo). In Drosophila, protein kinase A (PKA) phosphorylates and activates Smo in cells stimulated with Hh. In unstimulated cells, PKA phosphorylates and inhibits the transcription factor Cubitus interruptus (Ci). Here, we found that in cells exposed to Hh, the catalytic subunit of PKA (PKAc) bound to the juxtamembrane region of the C terminus of Smo. PKA-mediated phosphorylation of Smo further enhanced its association with PKAc to form stable kinase-substrate complexes that promoted the PKA-mediated trans-phosphorylation of Smo dimers. We identified multiple basic residues in the C-terminus of Smo that were required for interaction with PKAc, Smo phosphorylation, and Hh pathway activation. Hh induced a switch from the association of PKAc with a cytosolic complex of Ci and the kinesin-like protein Costal2 (Cos2) to a membrane-bound Smo-Cos2 complex. Thus, our study uncovers a previously uncharacterized mechanism for regulation of PKA activity and demonstrates that the signal-regulated formation of kinase-substrate complexes plays a central role in Hh signal transduction. PMID:24985345

  17. Study of ground state EDA complex formation between [70]fullerene and a series of polynuclear aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sumanta; Nayak, Sandip K.; Chattopadhyay, Subrata; Banerjee, Manas; Mukherjee, Asok K.

    2002-01-01

    [70]fullerene has been shown to form 1:1 EDA complex with anthracene, naphthalene, phenanthrene, pyrene and acenaphthene in CCl 4 medium. Charge transfer (CT) bands have been detected in all the cases. Isosbestic points have been observed in the cases of phenanthrene and acenaphthene complexes. Ionisation potentials of the donors and CT transition energies have been found to correlate in accordance with Mulliken equation and from this correlation the electron affinity of C 70 has been found to be 2.59 eV. Enthalpies and entropies of formation of the complexes have been estimated from the formation constants of the complexes determined spectrophotometrically at three different temperatures.

  18. Extraction of pyridines into fluorous solvents based on hydrogen bond complex formation with carboxylic acid receptors.

    PubMed

    O'Neal, Kristi L; Geib, Steven; Weber, Stephen G

    2007-04-15

    A molecular receptor embedded in a 'poor-solvent' receiving phase, such as a fluorous phase, should offer the ideal medium for selective extraction and sensing. The limited solubility of most solutes in fluorous phases enhances selectivity by reducing the extraction of unwanted matrix components. Thus, receptor-doped fluorous phases may be ideal extraction media. Unfortunately, sufficient data do not exist to judge the capability of this approach. The solubilities of very few nonfluorous solutes are known. As far as we are aware, such important quantities as the strength of a hydrogen bond in a fluorous environment are not known. Thus, it is currently impossible to predict whether a particular receptor/solute complex based on a particular set of noncovalent interactions will provide enough thermodynamic stabilization to extract the solute into the fluorous phase. In this work, fluorous carboxylic acids (a carboxylic acid-terminated perfluoropolypropylene oxide called Krytox and perfluorodecanoic acid (PFDA)) were used as receptors and substituted pyridines as solutes to show that the fluorous receptor dramatically enhances the liquid-liquid extraction of the polar substrates from chloroform into perfluorohexanes. The method of continuous variations was used to determine the receptor-pyridine complex stoichiometry of 3:1. The free energies of formation of the 3:1 complexes from one pyridine and 3/2 H-bonded cyclic dimers of the fluorous carboxylic acid are -30.4 (Krytox) and -37.3 kJ mol-1 (PFDA). The free energy required to dissociate the dimer in perfluorohexanes is +16.5 kJ mol-1 (Krytox). The crystal structure of the complex showed a 1:1 stoichiometry with a mixed strong-weak hydrogen-bonded motif. Based on the stoichiometry, crystal structure, and UV and IR spectroscopic shifts, we propose that the 3:1 complex has four hydrogen bonds and the carboxylic acid transfers a proton to pyridine. The resulting pyridinium carboxylate N+H-O- hydrogen bond is accompanied

  19. Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity.

    PubMed

    Zeng, Menglong; Shang, Yuan; Araki, Yoichi; Guo, Tingfeng; Huganir, Richard L; Zhang, Mingjie

    2016-08-25

    Postsynaptic densities (PSDs) are membrane semi-enclosed, submicron protein-enriched cellular compartments beneath postsynaptic membranes, which constantly exchange their components with bulk aqueous cytoplasm in synaptic spines. Formation and activity-dependent modulation of PSDs is considered as one of the most basic molecular events governing synaptic plasticity in the nervous system. In this study, we discover that SynGAP, one of the most abundant PSD proteins and a Ras/Rap GTPase activator, forms a homo-trimer and binds to multiple copies of PSD-95. Binding of SynGAP to PSD-95 induces phase separation of the complex, forming highly concentrated liquid-like droplets reminiscent of the PSD. The multivalent nature of the SynGAP/PSD-95 complex is critical for the phase separation to occur and for proper activity-dependent SynGAP dispersions from the PSD. In addition to revealing a dynamic anchoring mechanism of SynGAP at the PSD, our results also suggest a model for phase-transition-mediated formation of PSD. PMID:27565345

  20. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Swett, K.; Mark, J.

    1991-01-01

    Carbonates and rare shales of the ca 700-800 Ma old Draken Conglomerate Formation, northeastern Spitsbergen, preserve a record of environmental variation within a Neoproterozoic tidal flat/lagoon complex. Forty-two microfossil taxa have been recognized in Draken rocks, and of these, 39 can be characterized in terms of their paleoenvironmental distributions along a gradient from the supratidal zone to permanently submerged lagoons. Supratidal to subtidal trends include: increasing microbenthic diversity, increasing abundance and diversity of included allochthonous (presumably planktonic) elements, decreasing sheath thickness of mat-building organisms (with significant taphonomic consequences), and an increasing sediment/fossil ratio in fossiliferous rocks. Five principal and several minor biofacies can be distinguished. The paleoecological resolution obtainable in the Draken Conglomerate Formation rivals that achieved for most Phanerozoic fossil deposits. It documents the complexity and diversity of Proterozoic coastal ecosystems and indicates that both environment and taphonomy need to be taken into explicit consideration in attempts to understand evolutionary trends in early fossil record. Three species, Coniunctiophycus majorinum, Myxococcoides distola, and M. chlorelloidea, are described as new; Siphonophycus robustum, Siphonophycus septatum, and Gorgonisphaeridium maximum are proposed as new combinations.

  1. PROSTAGLANDIN E2 MODIFIES SMAD2 AND PROMOTES SMAD2-SMAD4 COMPLEX FORMATION

    PubMed Central

    Yang, Chen; Chen, Chen; Sorokin, Andrey

    2014-01-01

    We report that PGE2 promotes Smad2-Smad4 complex formation and this phenomenon could be blocked by DIDS, an anion transporter inhibitor. Our data suggest that PGE2 had no effects on Smad2 phosphorylation, suggesting that PGE2-mediated Smad2-Smad4 complex formation is independent of TGF-β signaling and that PGE2 induced Smad2 modification which is different from TGF-β-mediated phosphorylation. We demonstrate that in primary human glomerular mesangial cells PGE2 caused modification of Smad2 as detected by Smad2N antibody, raised against a peptide near the N-terminus of Smad2. We hypothesize that Smad2 protein is post-translationaly modified by PGE2. Direct evidence of Smad2 modification by PGE2 was achieved by avidin pulldown assay which showed that endogenous Smad2 and recombinant Smad2 protein were attached by biotin-labeled PGE2. Taken together, our results provided evidence that post-translational modification of Smad2 could be a mechanism for the action of PGE2 in the pathogenesis of human pathologies. PMID:24613014

  2. Through the '80s: thinking globally, acting locally. [Combined Canadian Futures Society and Third General Assembly of World Future Society

    SciTech Connect

    Feather, F.

    1980-01-01

    This volume was prepared in conjunction with the First Global Conference on the Future, held in Toronto, Canada, July 20-24, 1980. The conference combined the Third General Assembly of the World Future Society and the fifth annual conference of the Canadian Futures Society. The 59 papers presented here were selected from the very large number submitted to the conference committee; space limitations permitted only a small number of papers to be published in this volume. Included also are: the foreword, Mystery of the Future, by Edward R. Schreyer, Governor General of Canada; preface, A Time for Action, by Maurice F. Strong; introduction, Transition to Harmonic Globalism, by Frank Feather; conclusion, What We Must Do: An Agenda for Futurists; and postscript, The Challenge of the '80s, by Aurelio Peccei. The papers were presented under the following topics: The Trauma of Change (4); A Global Perspective (7); Inventorying Our Resources (7); The International Context (8); Economics: Getting Down to Business (9); Human Values: Personal, Social, Religious (6); Communications: Connecting Ourselves Together (4); Education: Learning to Meet Tomorrow (4); Health: New Approaches to Staying Fit (3); Futurism as a Way of Life (5); and Dreams into Action: Methods and Real-Life Experience (2).

  3. Disassembly of yeast 80S ribosomes into subunits is a concerted action of ribosome-assisted folding of denatured protein.

    PubMed

    Chakraborty, Biprashekhar; Bhakta, Sayan; Sengupta, Jayati

    2016-01-22

    It has been shown by several groups that ribosome can assist folding of denatured protein in vitro and the process is conserved across the species. Domain V of large ribosomal rRNA which occupies the intersubunit side of the large subunit was identified as the key player responsible for chaperoning the folding process. Thus, it is conceivable that denatured protein needs to access the intersubunit space of the ribosome in order to get folded. In this study, we have investigated the mechanism of release of the protein from the eukaryotic ribosome following reactivation. We have observed significant splitting of yeast 80S ribosome when incubated with the denatured BCAII protein. Energy-free disassembly mechanism functions in low Mg(+2) ion concentration for prokaryotic ribosomes. Eukaryotic ribosomes do not show significant splitting even at low Mg(+2) ion concentration. In this respect, denatured protein-induced disassembly of eukaryotic ribosome without the involvement of any external energy source is intriguing. For prokaryotic ribosomes, it was reported that the denatured protein induces ribosome splitting into subunits in order to access domain V-rRNA. In contrast, our results suggest an alternative mechanism for eukaryotic ribosomal rRNA-mediated protein folding and subsequent separation of the subunits by which release of the activated-protein occurs. PMID:26723252

  4. Studies on chalcone derivatives: Complex formation, thermal behavior, stability constant and antioxidant activity

    NASA Astrophysics Data System (ADS)

    El-Sayed, Yusif S.; Gaber, M.

    2015-02-01

    The chalcone 3-[4‧-dimethylaminophenyl]-1-(2-pyridyl) prop-2-en-1-one (DMAPP) and 3-(4‧-diethylaminophenyl)-1-(2-pyridinyl) prop-2-en-1-one abbreviated as DEAPP have been synthesized and characterized with IR, 1H NMR, 13C NMR spectroscopic techniques as described previously (El-Daly et al., 2008; Gaber et al., 2009; El-Sayed, 2013). By using UV visible spectroscopy method the mole fraction ratio for copper with DMAPP and DEAPP complexes were determined and it was found to be 1:1. The stability constants of this complex have been determined by Job's method. The stability constant (Kf) of copper with DMAPP and DEAPP complexes in universal buffer pH = 3.2 was determined to be 9.9 × 104 and 5.2 × 104 respectively. The effect of Cu(II) ion on the emission spectrum of the free chalcone is also assigned. Adherence to Beer's law and Ringbom optimum concentration ranges are determined. The thermal decomposition of the metal complexes is studied by TGA technique. The kinetic parameters like activation energy, pre-exponential factor and entropy of activation are estimated. The structure of complexes was energetically optimized through molecular mechanics applying MM+ force field coupled with molecular dynamics simulation. The bond lengths and bond angles have been calculated to confirm the geometry of the ligands and their Cu(II) complexes. The mode of interaction of the chalcone to copper nanoparticles was studied. The apparent association constants of the colloidal copper nanoparticles:chalcone complexes in solution were evaluated using the spectral method and compared with the formation constant of the Cu(II) chalcone complexes. Antioxidant activity of these chalcones was evaluated by using 1,1‧-diphenyl-2-picrylhydrazyl (DPPHrad) radicals scavenging method, which showed that the antioxidant activity of DMAPP has higher value than the DEAPP. Semi-empirical study results showed that DMAPP have higher dipole moment than DEAPP [1].

  5. Formation of Neoproterozoic metamorphic complex during oblique convergence (Eastern Desert, Egypt)

    NASA Astrophysics Data System (ADS)

    Fritz, H.; Wallbrecher, E.; Khudeir, A. A.; Abu el Ela, F.; Dallmeyer, D. R.

    1996-10-01

    Major portions of the Pan-African Orogen in the Eastern Desert of Egypt were formed by island-arc accretion in the Neoproterozoic. These areas are characterized by their lack of major crustal thickening. Metamorphic core complexes occur parallel to the strike of the Eastern Desert Orogen. These domes exhibit polyphase metamorphism and deformation in contrast to the structurally overlying nappes which include ophiolitic melanges and island-arc volcanic rocks. These nappes show northwest directed, orogen-parallel thrusting in the internal parts and west to southwest directed imbrication in the external parts of the orogen. Structures related to exhumation of the metamorphic core complexes partition into different displacement paths localized within a crustal-scale wrench corridor of the Najd fault system. Northwest trending orogen-parallel, sinistral strike-slip faults define the western and eastern margins of the domes. North and south dipping low-angle normal faults developed along the northern and southern margins of the domes and form extensional bridges between them. {40Ar}/{39Ar} ages obtained from syntectonic muscovites within the shear zones gave Neoproterozoic ages of 595.9±0.5 and 588.2±0.3 Ma. The synchronous activity of strike-slip and normal faults suggests a regional east-west shortening which was accomodated by deep-level basal decollement beneath the metamorphic core complexes and a coeval northwest-southeast, orogen-parallel extension. This extension was accompanied by intramontane molasse sedimentation and emplacement of calc-alkaline plutons. Since the rapid exhumation of gneisses in the core complexes cannot be explained by thickening of the crust, the authors favour a model which calls for enhanced heat flow along the Najd fault system which would have enabled the formation of syn-extensional plutonism and triggered the exhumation of the metamorphic core complexes. Lateral buoyancy forces were concentrated within the Najd wrench corridor and

  6. Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe–S Assembly Complex

    PubMed Central

    Fox, Nicholas G.; Das, Deepika; Chakrabarti, Mrinmoy; Lindahl, Paul A.; Barondeau, David P.

    2015-01-01

    Iron–sulfur (Fe–S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe–S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe–S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe–S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe–S assembly complex. Here the kinetics of Fe–S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe–S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe–S assembly complex. PMID:26016518

  7. Nucleoprotein complex formation by the enhancer binding protein nifA.

    PubMed

    Wang, X Y; Kolb, A; Cannon, W; Buck, M

    1997-09-01

    The nitrogen fixation protein NifA is a member of the protein family activating transcription by the alternative eubacterial sigmaN (sigma54) RNA polymerase holoenzyme. Binding sites for NifA, upstream activator sequences (UASs), are remotely located. Interaction between holoenzyme bound in a closed promoter complex and NiFA is facilitated by bending of the intervening DNA by integration host factor (IHF). We have examined NifA contact with the Klebsiella pneumoniae nifH promoter UAS in the presence and absence of holoenzyme and IHF. Footprints with UV light were made on 5-BrdU-substituted DNA and DNase I and laser UV footprints on conventional DNA templates. Results establish that the consensus thymidine residues of the UAS motif 5'-TGT are in close proximity to NifA. Reactivity suggests that each UAS thymidine is not structurally equivalent. Titration of NifA binding to the UAS in the presence or absence of the closed promoter complex indicates that the interaction of NifA with the UAS is not strongly co-operative with holoenzyme or IHF, a result supportive of an activation mechanism not reliant upon simple recruitment of factors to the promoter. Laser footprints demonstrated that holoenzyme suppressed reactivity of promoter consensus -14, -15 and -16 T residues, indicating close contact. Binding of holoenzyme resulted in a specific increase in 5-BrdU reactivity at -9 within the holoenzyme binding site, likely reflecting DNA distortion. Enhanced -9 reactivity required sigmaNN-terminal sequences that are necessary for activation. Since T-9 is melted in open complexes the closed complex appears poised for melting. Open promoter complex formation was accompanied by a distinct change in laser footprint signal at -11, consistent with the view that nucleation of strand separation occurs within or close to the -12 promoter element. PMID:9254707

  8. Formation of complex organic molecules in cold objects: the role of gas-phase reactions

    NASA Astrophysics Data System (ADS)

    Balucani, Nadia; Ceccarelli, Cecilia; Taquet, Vianney

    2015-04-01

    While astrochemical models are successful in reproducing many of the observed interstellar species, they have been struggling to explain the observed abundances of complex organic molecules. Current models tend to privilege grain surface over gas-phase chemistry in their formation. One key assumption of those models is that radicals trapped in the grain mantles gain mobility and react on lukewarm ( ≳ 30 K) dust grains. Thus, the recent detections of methyl formate (MF) and dimethyl ether (DME) in cold objects represent a challenge and may clarify the respective role of grain-surface and gas-phase chemistry. We propose here a new model to form DME and MF with gas-phase reactions in cold environments, where DME is the precursor of MF via an efficient reaction overlooked by previous models. Furthermore, methoxy, a precursor of DME, is also synthesized in the gas phase from methanol, which is desorbed by a non-thermal process from the ices. Our new model reproduces fairly well the observations towards L1544. It also explains, in a natural way, the observed correlation between DME and MF. We conclude that gas-phase reactions are major actors in the formation of MF, DME and methoxy in cold gas. This challenges the exclusive role of grain-surface chemistry and favours a combined grain-gas chemistry.

  9. Probing the Formation of Complex Organic Molecules in Interstellar Ices - Beyond the FTIR - RGA Limitation

    NASA Astrophysics Data System (ADS)

    Kaiser, Ralf I.

    2015-08-01

    An understanding of the formation of key classes of complex organic molecules (COMs) within interstellar ices is of core value to the laboratory astrophysics community with structural isomers - molecules with the same molecular formula but different connectivities of atoms - serving as a molecular clock and tracers in defining the evolutionary stage of cold molecular clouds and star forming regions. Here, the lack of data on products, branching ratios, and rate constants of their formation and how they depend on the ice temperature and composition limits the understanding how COMs are synthesized. Classically, infrared spectroscopy combined with mass spectrometry of the irradiated and subliming ices have been exploited for the last decades, but the usefulness of these methods has reached the limits when it comes to the identification of CMS in those ices. Here, infrared spectroscopy can only untangle the functional groups of COMs; mass spectrometry coupled with electron impact ionization cannot discriminate structural isomers and suffers from extensive fragmentation. This talk presents a novel approach to elucidate the formation of COMs by exploiting - besides classical infrared, Raman, and ultraviolet-visual spectroscopy - reflectron time-of-flight mass spectrometry (ReTOF) coupled with tunable vacuum ultraviolet (VUV) soft photoionization (ReTOF-PI). This technique has the unique power to identify the molecules based on a cross correlation of their mass-to-charge ratios, their ionization energies (IE), and their sublimation temperatures ultimately unraveling an inventory of individual COMs molecules formed upon interaction of ionizing radiation with interstellar analog ices.

  10. A Multi-wavelength Study of Star Formation Activity in the S235 Complex

    NASA Astrophysics Data System (ADS)

    Dewangan, L. K.; Ojha, D. K.; Luna, A.; Anandarao, B. G.; Ninan, J. P.; Mallick, K. K.; Mayya, Y. D.

    2016-03-01

    We have carried out an extensive multi-wavelength study to investigate the star formation process in the S235 complex. The S235 complex has a spherelike shell appearance at wavelengths longer than 2 μm and harbors an O9.5V type star approximately at its center. A near-infrared extinction map of the complex traces eight subregions (having AV > 8 mag), and five of them appear to be distributed in an almost regularly spaced manner along the spherelike shell surrounding the ionized emission. This picture is also supported by the integrated 12CO and 13CO intensity maps and by Bolocam 1.1 mm continuum emission. The position-velocity analysis of CO reveals an almost semi-ringlike structure, suggesting an expanding H ii region. We find that the Bolocam clump masses increase as we move away from the location of the ionizing star. This correlation is seen only for those clumps that are distributed near the edges of the shell. Photometric analysis reveals 435 young stellar objects (YSOs), 59% of which are found in clusters. Six subregions (including five located near the edges of the shell) are very well correlated with the dust clumps, CO gas, and YSOs. The average values of Mach numbers derived using NH3 data for three (East 1, East 2, and Central E) out of these six subregions are 2.9, 2.3, and 2.9, indicating these subregions are supersonic. The molecular outflows are detected in these three subregions, further confirming the ongoing star formation activity. Together, all these results are interpreted as observational evidence of positive feedback of a massive star.

  11. BAG3 regulates formation of the SNARE complex and insulin secretion

    PubMed Central

    Iorio, V; Festa, M; Rosati, A; Hahne, M; Tiberti, C; Capunzo, M; De Laurenzi, V; Turco, M C

    2015-01-01

    Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release. PMID:25766323

  12. Substrate-Na{sup +} complex formation: Coupling mechanism for {gamma}-aminobutyrate symporters

    SciTech Connect

    Pallo, Anna; Simon, Agnes; Bencsura, Akos; Heja, Laszlo; Kardos, Julianna

    2009-07-24

    Crystal structures of transmembrane transport proteins belonging to the important families of neurotransmitter-sodium symporters reveal how they transport neurotransmitters across membranes. Substrate-induced structural conformations of gated neurotransmitter-sodium symporters have been in the focus of research, however, a key question concerning the mechanism of Na{sup +} ion coupling remained unanswered. Homology models of human glial transporter subtypes of the major inhibitory neurotransmitter {gamma}-aminobutyric acid were built. In accordance with selectivity data for subtype 2 vs. 3, docking and molecular dynamics calculations suggest similar orthosteric substrate (inhibitor) conformations and binding crevices but distinguishable allosteric Zn{sup 2+} ion binding motifs. Considering the occluded conformational states of glial human {gamma}-aminobutyric acid transporter subtypes, we found major semi-extended and minor ring-like conformations of zwitterionic {gamma}-aminobutyric acid in complex with Na{sup +} ion. The existence of the minor ring-like conformation of {gamma}-aminobutyric acid in complex with Na{sup +} ion may be attributed to the strengthening of the intramolecular H-bond by the electrostatic effect of Na{sup +} ion. Coupling substrate uptake into cells with the thermodynamically favorable Na{sup +} ion movement through substrate-Na{sup +} ion complex formation may be a mechanistic principle featuring transmembrane neurotransmitter-sodium symporter proteins.

  13. Spectrophotometric determination of tizanidine and orphenadrine via ion pair complex formation using eosin Y

    PubMed Central

    2011-01-01

    A simple, sensitive and rapid spectrophotometric method was developed and validated for the determination of two skeletal muscle relaxants namely, tizanidine hydrochloride (I) and orphenadrine citrate (II) in pharmaceutical formulations. The proposed method is based on the formation of a binary complex between the studied drugs and eosin Y in aqueous buffered medium (pH 3.5). Under the optimum conditions, the binary complex showed absorption maxima at 545 nm for tizanidine and 542 nm for orphenadrine. The calibration plots were rectilinear over concentration range of 0.5-8 μg/mL and 1-12 μg/mL with limits of detection of 0.1 μg/mL and 0.3 μg/mL for tizanidine and orphenadrine respectively. The different experimental parameters affecting the development and stability of the complex were studied and optimized. The method was successfully applied for determination of the studied drugs in their dosage forms; and to the content uniformity test of tizanidine in tablets. PMID:21982341

  14. BAG3 regulates formation of the SNARE complex and insulin secretion.

    PubMed

    Iorio, V; Festa, M; Rosati, A; Hahne, M; Tiberti, C; Capunzo, M; De Laurenzi, V; Turco, M C

    2015-01-01

    Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release. PMID:25766323

  15. Formation of the light-harvesting complex I (B870) of anoxygenic phototrophic purple bacteria.

    PubMed

    Drews, G

    1996-09-01

    The light-harvesting (LH) complex I (B870) of anoxygenic photosynthetic purple bacteria is the oligomeric form of its subunit B820 consisting of the low-molecular-weight polypeptides alpha, beta, bacteriochlorophyll (BChl), and carotenoids in the stoichiometric ratio [alpha1 beta1 (BChl2) Crt1-2]n. LHI surrounds the photochemical reaction center (RC). The major absorption band of the LHI complex is species-specific and is found at 870-890 nm; those of the subunit and the monomeric BChl a (dissolved in methanol) absorb at 820 and 770 nm, respectively. The isolated LHI complex can be reversibly dissociated to the B820 subunit or to the polypeptides and pigments by addition of detergents. Reconstitution of the B820 or the functional B870 complex is still possible after partial truncation of the N- or C-terminal regions of the alpha- or beta-polypeptide or of the beta-polypeptide only. The minimal structural requirements for reconstitution of a spectrally wild-type form after truncation of the polypeptides and/or modifications of the BChl molecule are described. The insertion of the LHIalpha- and LHIbeta-polypeptides into the membrane and the in vivo assembly of LHI, studied in a cell-free system and in whole cells of Rhodobacter capsulatus, depend on the primary structures of both polypeptides, BChl, the chaperones DnaK and GroEL, membrane-bound proteins, and energized membranes. Exchanges, deletions, or insertions of amino acyl residues, especially in the conserved region of the N-terminus of the LHIalpha-polypeptide, prevent or reduce the efficiency and stability of the LHI assembly. Therefore, reconstitution of LHI in a detergent micelle does not exactly reproduce the formation of the LHI complex in the photosynthetic membrane in vivo. The N-terminal domains play a crucial role in the formation of the oligomeric protein scaffold and of the pigment array. Facultatively phototrophic bacteria such as Rhodospirillum (Rsp.) rubrum or Rhodobacter (Rba.) capsulatus can

  16. Formation of host-guest complexes on gold surface investigated by surface-enhanced IR absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Inokuchi, Yoshiya; Mizuuchi, Takahiro; Ebata, Takayuki; Ikeda, Toshiaki; Haino, Takeharu; Kimura, Tetsunari; Guo, Hao; Furutani, Yuji

    2014-01-01

    We apply surface-enhanced infrared absorption (SEIRA) spectroscopy to host-guest complexes in liquid phase to examine the structural change in the complex formation. Two thiol derivatives of 18-crown-6 (18C6) are chemisorbed on a gold surface, and aqueous solutions of MCl salts (M = Li, Na, K, Rb, and Cs) are put to form M+·18C6 complexes. Infrared spectra of these complexes in the 900-2000 cm-1 region are obtained by SEIRA spectroscopy. The observed IR spectra show noticeable peaks due to the complex formation, demonstrating that SEIRA spectroscopy will be a powerful method to investigate the structure of host-guest complexes in supramolecular chemistry.

  17. The formation of glycine and other complex organic molecules in exploding ice mantles.

    PubMed

    Rawlings, J M C; Williams, D A; Viti, S; Cecchi-Pestellini, C; Duley, W W

    2014-01-01

    Complex Organic Molecules (COMs), such as propylene (CH3CHCH2) and the isomers of C2H4O2 are detected in cold molecular clouds (such as TMC-1) with high fractional abundances (Marcelino et al., Astrophys. J., 2007, 665, L127). The formation mechanism for these species is the subject of intense speculation, as is the possibility of the formation of simple amino acids such as glycine (NH2CH2COOH). At typical dark cloud densities, normal interstellar gas-phase chemistries are inefficient, whilst surface chemistry is at best ill defined and does not easily reproduce the abundance ratios observed in the gas phase. Whatever mechanism(s) is/are operating, it/they must be both efficient at converting a significant fraction of the available carbon budget into COMs, and capable of efficiently returning the COMs to the gas phase. In our previous studies we proposed a complementary, alternative mechanism, in which medium- and large-sized molecules are formed by three-body gas kinetic reactions in the warm high density gas phase. This environment exists, for a very short period of time, after the total sublimation of grain ice mantles in transient co-desorption events. In order to drive the process, rapid and efficient mantle sublimation is required and we have proposed that ice mantle 'explosions' can be driven by the catastrophic recombination of trapped hydrogen atoms, and other radicals, in the ice. Repeated cycles of freeze-out and explosion can thus lead to a cumulative molecular enrichment of the interstellar medium. Using existing studies we based our chemical network on simple radical addition, subject to enthalpy and valency restrictions. In this work we have extended the chemistry to include the formation pathways of glycine and other large molecular species that are detected in molecular clouds. We find that the mechanism is capable of explaining the observed molecular abundances and complexity in these sources. We find that the proposed mechanism is easily capable

  18. Directed formation of a ferrocenyl-decorated organotin sulfide complex and its controlled degradation.

    PubMed

    You, Zhiliang; Dehnen, Stefanie

    2013-11-01

    Attachment of ferrocenyl (Fc) units to an organo-functionalized precursor yielded the Fc-decorated complex [(R(Fc)Sn)4Sn6S10] [1; R(Fc) = CMe2CH2C(Me)═N-N═C(Me)Fc], which shows different ligand dynamics in solution than in the solid state, as confirmed by NMR spectroscopy and by cyclic and differential pulse voltammetry. The addition of different amounts of hydrochloric acid to a solution of 1 produced the derivatives [(R(Fc)SnCl2)2S] (2) and [R(Fc)SnCl3·HCl] (3), the latter of which acts as a precursor to the formation/recovery of 2 or 1, respectively. PMID:24128383

  19. Formation of impeller-like helical DNA–silica complexes by polyamines induced chiral packing

    PubMed Central

    Liu, Ben; Han, Lu; Che, Shunai

    2012-01-01

    The helicity of DNA and its long-range chiral packing are widespread phenomena; however, the packing mechanism remains poorly understood both in vivo and in vitro. Here, we report the extraordinary DNA chiral self-assembly by silica mineralization, together with circular dichroism measurements and electron microscopy studies on the structure and morphology of the products. Mg2+ ion and diethylenetriamine were found to induce right- and left-handed chiral DNA packing with two-dimensional-square p4mm mesostructures, respectively, to give corresponding enantiomeric impeller-like helical DNA–silica complexes. Moreover, formation of macroscopic impeller-like helical architectures depends on the types of polyamines and co-structure-directing agents and pH values of reaction solution. It has been suggested that interaction strength between negatively charged DNA phosphate strands and positively charged counterions may be the key factor for the induction of DNA packing handedness. PMID:24098845

  20. Polyelectrolyte complex formation mediated immobilization of chitosan-invertase neoglycoconjugate on pectin-coated chitin.

    PubMed

    Gómez, Leissy; Ramírez, Hector L; Neira-Carrillo, Andrónico; Villalonga, Reynaldo

    2006-05-01

    Saccharomyces cerevisiae invertase, chemically modified with chitosan, was immobilized on pectin-coated chitin support via polyelectrolyte complex formation. The yield of immobilized enzyme protein was determined as 85% and the immobilized biocatalyst retained 97% of the initial chitosan-invertase activity. The optimum temperature for invertase was increased by 10 degrees C and its thermostability was enhanced by about 10 degrees C after immobilization. The immobilized enzyme was stable against incubation in high ionic strength solutions and was 4-fold more resistant to thermal treatment at 65 degrees C than the native counterpart. The biocatalyst prepared retained 96 and 95% of the original catalytic activity after ten cycles of reuse and 74 h of continuous operational regime in a packed bed reactor, respectively. PMID:16775742

  1. Spontaneous formation of complex structures made from elastic membranes in an aluminum-hydroxide-carbonate system

    NASA Astrophysics Data System (ADS)

    Kiehl, Micah; Kaminker, Vitaliy; Pantaleone, James; Nowak, Piotr; Dyonizy, Agnieszka; Maselko, Jerzy

    2015-06-01

    A popular playground for studying chemo-hydrodynamic patterns and instabilities is chemical gardens, also known as silicate gardens. In these systems, complex structures spontaneously form, driven by buoyant forces and either osmotic or mechanical pumps. Here, we report on systems that differ somewhat from classical chemical gardens in that the membranes are much more deformable and soluble. These properties lead to structures that self-construct and evolve in new ways. For example, they exhibit the formation of chemical balloons, a new growth mechanism for tubes, and also the homologous shrinking of these tubes. The stretching mechanism for the membranes is probably different than for other systems by involving membrane "self-healing." Other unusual properties are osmosis that sometimes occurs out of the structure and also small plumes that flow away from the structure, sometimes upwards, and sometimes downwards. Mathematical models are given that explain some of the observed phenomena.

  2. Al-O complex formation in ion implanted Czochralski and floating-zone Si substrates

    NASA Astrophysics Data System (ADS)

    La Ferla, A.; Torrisi, L.; Galvagno, G.; Rimini, E.; Ciavola, G.; Carnera, A.; Gasparotto, A.

    1993-01-01

    Aluminum ions at 100 MeV were implanted into floating-zone (FZ) and Czochralski (CZ) grown Si substrates. At this energy the influence of the surface on the subsequent thermal treatment is negligible. In FZ samples the electrical active dose, as measured by spreading resistance profilometry, is independent of the annealing time at 1200 °C. In the CZ samples instead it considerably decreases with time. Secondary ion mass spectrometry analysis in CZ samples have revealed the presence of a multipeak structure around the projected range region for both Al and O signals. In FZ the structure is just detectable. The results imply that the Al-O complex formation is enhanced by the presence of oxygen but that it is catalyzed by the damage created during the implant. The carrier profiles coincide in both CZ and FZ diffused substrates by predeposition of Al from a solid source, i.e., in damage-free samples.

  3. Redox-Active-Ligand-Mediated Formation of an Acyclic Trinuclear Ruthenium Complex with Bridging Nitrido Ligands.

    PubMed

    Bagh, Bidraha; Broere, Daniël L J; Siegler, Maxime A; van der Vlugt, Jarl Ivar

    2016-07-11

    Coordination of a redox-active pyridine aminophenol ligand to Ru(II) followed by aerobic oxidation generates two diamagnetic Ru(III) species [1 a (cis) and 1 b (trans)] with ligand-centered radicals. The reaction of 1 a/1 b with excess NaN3 under inert atmosphere resulted in the formation of a rare bis(nitrido)-bridged trinuclear ruthenium complex with two nonlinear asymmetrical Ru-N-Ru fragments. The spontaneous reduction of the ligand centered radical in the parent 1 a/1 b supports the oxidation of a nitride (N(3-) ) to half an equivalent of N2 . The trinuclear omplex is reactive toward TEMPO-H, tin hydrides, thiols, and dihydrogen. PMID:27321547

  4. Formation of complexes of antimicrobial agent norfloxacin with antitumor antibiotics of anthracycline series

    NASA Astrophysics Data System (ADS)

    Evstigneev, M. P.; Rybakova, K. A.; Davies, D. B.

    2007-05-01

    The formation of complexes in solutions of the norfloxacin antimicrobial agent (NOR) with daunomycin (DAU) and nogalamycin (NOG), antitumor anthracycline antibiotics, was studied using 1H NMR spectroscopy. Based on the concentration and temperature dependences of the chemical shifts of the protons of interacting molecules, the equilibrium constants and thermodynamic parameters (enthalpy and entropy) of heteroassociation of the antibiotics were calculated. It was shown that NOR interacts with DAU (NOG) in aqueous solutions forming stacked heterocomplexes with parallel orientation of the molecular chromophores. The conclusion was drawn that such interactions should be taken into account when anthracyclines and quinolones are jointly administered during combined chemotherapy, since they can contribute to the medico-biological synergistic effect of these antibiotics.

  5. Thermodynamics of Complex Sulfide Inclusion Formation in Ca-Treated Al-Killed Structural Steel

    NASA Astrophysics Data System (ADS)

    Guo, Yin-tao; He, Sheng-ping; Chen, Gu-jun; Wang, Qian

    2016-08-01

    Controlling the morphology of the sulfide inclusion is of vital importance in enhancing the properties of structural steel. Long strip-shaped sulfides in hot-rolled steel can spherize when, instead of the inclusion of pure single-phase MnS, the guest is a complex sulfide, such as an oxide-sulfide duplex and a solid-solution sulfide particle. In this study, the inclusions in a commercial rolled structural steel were investigated. Spherical and elongated oxide-sulfide duplex as well as single-phase (Mn,Ca)S solid solution inclusions were observed in the steel. A thermodynamic equilibrium between the oxide and sulfide inclusions was proposed to understand the oxide-sulfide duplex inclusion formation. Based on the equilibrium solidification principle, thermodynamic discussions on inclusion precipitation during the solidification process were performed for both general and resulfurized structural steel. The predicted results of the present study agreed well with the experimental ones.

  6. Thermodynamics of Complex Sulfide Inclusion Formation in Ca-Treated Al-Killed Structural Steel

    NASA Astrophysics Data System (ADS)

    Guo, Yin-tao; He, Sheng-ping; Chen, Gu-jun; Wang, Qian

    2016-05-01

    Controlling the morphology of the sulfide inclusion is of vital importance in enhancing the properties of structural steel. Long strip-shaped sulfides in hot-rolled steel can spherize when, instead of the inclusion of pure single-phase MnS, the guest is a complex sulfide, such as an oxide-sulfide duplex and a solid-solution sulfide particle. In this study, the inclusions in a commercial rolled structural steel were investigated. Spherical and elongated oxide-sulfide duplex as well as single-phase (Mn,Ca)S solid solution inclusions were observed in the steel. A thermodynamic equilibrium between the oxide and sulfide inclusions was proposed to understand the oxide-sulfide duplex inclusion formation. Based on the equilibrium solidification principle, thermodynamic discussions on inclusion precipitation during the solidification process were performed for both general and resulfurized structural steel. The predicted results of the present study agreed well with the experimental ones.

  7. Nuclear pore complex assembly studied with a biochemical assay for annulate lamellae formation.

    PubMed

    Meier, E; Miller, B R; Forbes, D J

    1995-06-01

    Formation of the nuclear pore is an intricate process involving membrane fusion and the ordered assembly of up to 1,000 pore proteins. As such, the study of pore assembly is not a simple one. Interestingly, annulate lamellae, a cytoplasmic organelle consisting of stacks of flattened membrane cisternae perforated by numerous pore complexes, have been found to form spontaneously in a reconstitution system derived from Xenopus egg extracts, as determined by electron microscopy (Dabauvalle et al., 1991). In this work, a biochemical assay for annulate lamellae (AL) formation was developed and used to study the mechanism of AL assembly in general and the assembly of individual nucleoporins into pore complexes in particular. Upon incubation of Xenopus egg cytosol and membrane vesicles, the nucleoporins nup58, nup60, nup97, nup153, and nup200 initially present in a disassembled form in the cytosol became associated with membranes and were pelletable. The association was time and temperature dependent and could be measured by immunoblotting. Thin-section electron microscopy as well as negative staining confirmed that annulate lamellae were forming coincident with the incorporation of pore proteins into membranes. Homogenization and subsequent flotation of the membrane fraction allowed us to separate a population of dense membranes, containing the integral membrane pore protein gp210 and all other nucleoporins tested, from the bulk of cellular membranes. Electron microscopy indicated that annulate lamellae were enriched in this dense, pore protein-containing fraction. GTP gamma S prevented incorporation of the soluble pore proteins into membranes. To address whether AL form in the absence of N-acetylglucosaminylated pore proteins, AL assembly was carried out in WGA-sepharose-depleted cytosol. Under these conditions, annulate lamellae formed but were altered in appearance. When the membrane fraction containing this altered AL was homogenized and subjected to flotation, the

  8. Validation of a Parcel-Based Reduced-Complexity Model for River Delta Formation (Invited)

    NASA Astrophysics Data System (ADS)

    Liang, M.; Geleynse, N.; Passalacqua, P.; Edmonds, D. A.; Kim, W.; Voller, V. R.; Paola, C.

    2013-12-01

    Reduced-Complexity Models (RCMs) take an intuitive yet quantitative approach to represent processes with the goal of getting maximum return in emergent system-scale behavior with minimum investment in computational complexity. This approach is in contrast to reductionist models that aim at rigorously solving the governing equations of fluid flow and sediment transport. RCMs have had encouraging successes in modeling a variety of geomorphic systems, such as braided rivers, alluvial fans, and river deltas. Despite the fact that these models are not intended to resolve detailed flow structures, questions remain on how to interpret and validate the output of RCMs beyond qualitative behavior-based descriptions. Here we present a validation of the newly developed RCM for river delta formation with channel dynamics (Liang, 2013). The model uses a parcel-based 'weighted-random-walk' method that resolves the formation of river deltas at the scale of channel dynamics (e.g., avulsions and bifurcations). The main focus of this validation work is the flow routing model component. A set of synthetic test cases were designed to compare hydrodynamic results from the RCM and Delft3D, including flow in a straight channel, around a bump, and flow partitioning at a single bifurcation. Output results, such as water surface slope and flow field, are also compared to field observations collected at Wax Lake Delta. Additionally, we investigate channel avulsion cycles and flow path selection in an alluvial fan with differential styles of subsidence and compare model results to laboratory experiments, as a preliminary effort in pairing up numerical and experimental models to understand channel organization at process scale. Strengths and weaknesses of the RCM are discussed and potential candidates for model application identified.

  9. Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research

    PubMed Central

    Michel, Maximilian; Lyons, Lisa C.

    2014-01-01

    Across phylogeny, the endogenous biological clock has been recognized as providing adaptive advantages to organisms through coordination of physiological and behavioral processes. Recent research has emphasized the role of circadian modulation of memory in generating peaks and troughs in cognitive performance. The circadian clock along with homeostatic processes also regulates sleep, which itself impacts the formation and consolidation of memory. Thus, the circadian clock, sleep and memory form a triad with ongoing dynamic interactions. With technological advances and the development of a global 24/7 society, understanding the mechanisms underlying these connections becomes pivotal for development of therapeutic treatments for memory disorders and to address issues in cognitive performance arising from non-traditional work schedules. Invertebrate models, such as Drosophila melanogaster and the mollusks Aplysia and Lymnaea, have proven invaluable tools for identification of highly conserved molecular processes in memory. Recent research from invertebrate systems has outlined the influence of sleep and the circadian clock upon synaptic plasticity. In this review, we discuss the effects of the circadian clock and sleep on memory formation in invertebrates drawing attention to the potential of in vivo and in vitro approaches that harness the power of simple invertebrate systems to correlate individual cellular processes with complex behaviors. In conclusion, this review highlights how studies in invertebrates with relatively simple nervous systems can provide mechanistic insights into corresponding behaviors in higher organisms and can be used to outline possible therapeutic options to guide further targeted inquiry. PMID:25136297

  10. Complex organic molecules during low-mass star formation: Pilot survey results

    SciTech Connect

    Öberg, Karin I.; Graninger, Dawn; Lauck, Trish

    2014-06-10

    Complex organic molecules (COMs) are known to be abundant toward some low-mass young stellar objects (YSOs), but how these detections relate to typical COM abundance are not yet understood. We aim to constrain the frequency distribution of COMs during low-mass star formation, beginning with this pilot survey of COM lines toward six embedded YSOs using the IRAM 30 m Telescope. The sample was selected from the Spitzer c2d ice sample and covers a range of ice abundances. We detect multiple COMs, including CH{sub 3}CN, toward two of the YSOs, and tentatively toward a third. Abundances with respect to CH{sub 3}OH vary between 0.7% and 10%. This sample is combined with previous COM observations and upper limits to obtain a frequency distributions of CH{sub 3}CN, HCOOCH{sub 3}, CH{sub 3}OCH{sub 3}, and CH{sub 3}CHO. We find that for all molecules more than 50% of the sample have detections or upper limits of 1%-10% with respect to CH{sub 3}OH. Moderate abundances of COMs thus appear common during the early stages of low-mass star formation. A larger sample is required, however, to quantify the COM distributions, as well as to constrain the origins of observed variations across the sample.

  11. Formation of Large Polysulfide Complexes during the Lithium-Sulfur Battery Discharge

    SciTech Connect

    Wang, Bin; Alhassan, Saeed M.; Pantelides, Sokrates T

    2014-01-01

    Sulfur cathodes have much larger capacities than transition-metal-oxide cathodes used in commercial lithium-ion batteries but suffer from unsatisfactory capacity retention and long-term cyclability. Capacity degradation originates from soluble lithium polysulfides gradually diffusing into the electrolyte. Understanding of the formation and dynamics of soluble polysulfides during the discharging process at the atomic level remains elusive, which limits further development of lithium-sulfur (Li-S) batteries. Here we report first-principles molecular dynamics simulations and density functional calculations, through which the discharging products of Li-S batteries are studied. We find that, in addition to simple Li2Sn (1 n 8) clusters generated from single cyclooctasulfur (S8) rings, large Li-S clusters form by collectively coupling several different rings to minimize the total energy. At high lithium concentration, a Li-S network forms at the sulfur surfaces. The results can explain the formation of the soluble Li-S complex, such as Li2S8, Li2S6, and Li2S4, and the insoluble Li2S2 and Li2S structures. In addition, we show that the presence of oxygen impurities in graphene, particularly oxygen atoms bonded to vacancies and edges, may stabilize the lithium polysulfides that may otherwise diffuse into the electrolyte.

  12. Formation rates of complex organics in UV irradiated CH_3OH-rich ices. I. Experiments

    NASA Astrophysics Data System (ADS)

    Öberg, K. I.; Garrod, R. T.; van Dishoeck, E. F.; Linnartz, H.

    2009-09-01

    Context: Gas-phase complex organic molecules are commonly detected in the warm inner regions of protostellar envelopes, so-called hot cores. Recent models show that photochemistry in ices followed by desorption may explain the observed abundances. There is, however, a general lack of quantitative data on UV-induced complex chemistry in ices. Aims: This study aims to experimentally quantify the UV-induced production rates of complex organics in CH3OH-rich ices under a variety of astrophysically relevant conditions. Methods: The ices are irradiated with a broad-band UV hydrogen microwave-discharge lamp under ultra-high vacuum conditions, at 20-70 K, and then heated to 200 K. The reaction products are identified by reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD), through comparison with RAIRS and TPD curves of pure complex species, and through the observed effects of isotopic substitution and enhancement of specific functional groups, such as CH3, in the ice. Results: Complex organics are readily formed in all experiments, both during irradiation and during the slow warm-up of the ices after the UV lamp is turned off. The relative abundances of photoproducts depend on the UV fluence, the ice temperature, and whether pure CH3OH ice or CH3OH:CH4/CO ice mixtures are used. C2H6, CH3CHO, CH3CH2OH, CH3OCH3, HCOOCH3, HOCH2CHO and (CH2OH)2 are all detected in at least one experiment. Varying the ice thickness and the UV flux does not affect the chemistry. The derived product-formation yields and their dependences on different experimental parameters, such as the initial ice composition, are used to estimate the CH3OH photodissociation branching ratios in ice and the relative diffusion barriers of the formed radicals. At 20 K, the pure CH3OH photodesorption yield is 2.1(±1.0)×10-3 per incident UV photon, the photo-destruction cross section 2.6(±0.9)×10-18 cm^2. Conclusions: Photochemistry in CH3OH ices is efficient enough to

  13. The development of folds and cleavages in slate belts by underplating in accretionary complexes: A comparison of the Kodiak Formation, Alaska and the Calaveras Complex, California

    NASA Astrophysics Data System (ADS)

    Paterson, Scott R.; Sample, James C.

    1988-08-01

    The development of folds and cleavages in slate and graywacke belts is commonly attributed to arc-continent or continent-continent collisions. However, the Kodiak Formation of southern Alaska and the Calaveras Complex of the western Sierra Nevada, California, are two slate and graywacke belts in which folds and slaty cleavages developed during simple underthrusting and underplating within accretionary wedges. The Maastrichtian Kodiak Formation is composed dominantly of coherent turbidites but includes lesser pebbly mudstone, minor conglomerate, and rare chert. The Kodiak Formation is part of a large accretionary complex that youngs in age seaward, but bedding tops generally show landward younging. A progression of structures has been determined by crosscutting relationships and includes (1) syndeformational depositional features; (2) broken formation; (3) slaty cleavage, folds, and thrust faults; (4) crenulations and crenulation cleavage; (5) late brittle thrust faults; and (6) right-lateral strike-slip faults. Broken formation, slaty cleavage, thrust faults, and folds developed during underthrusting and underplating within an accretionary wedge. Crenulations and brittle thrust faults are related to subsequent intrawedge shortening. Based on peak metamorphism in the uppermost zeolite to prehnite-pumpellyite facies, underplating occurred at a minimum depth of 10 km. The Calaveras Complex is composed of argillite, chert, graywacke, pebbly mudstone, limestone, and volcanic rocks. Its age of deposition has a maximum range from Permian to Early Jurassic. Overall, the unit appears to young westward, but local facing indicators show eastward younging of individual blocks. The sequence of structures developed in the Calaveras Complex is (1) syn-depositional olistostromes; (2) broken formation; (3) slaty cleavage, folds, and thrust faults; and (4) younger Jura-Triassic folds and crenulation cleavages. Broken formation and slaty cleavage developed during underthrusting and

  14. Functionalized organotin-chalcogenide complexes that exhibit defect heterocubane scaffolds: formation, synthesis, and characterization.

    PubMed

    Eußner, Jens P; Barth, Beatrix E K; Leusmann, Eliza; You, Zhiliang; Rinn, Niklas; Dehnen, Stefanie

    2013-10-01

    The synthesis of new functionalized organotin-chalcogenide complexes was achieved by systematic optimization of the reaction conditions. The structures of compounds [(R(1, 2) Sn)3 S4 Cl] (1, 2), [((R(2) Sn)2 SnS4 )2 (μ-S)2 ] (3), [(R(1, 2) Sn)3 Se4 ][SnCl3 ] (4, 5), and [Li(thf)n ][(R(3) Sn)(HR(3) Sn)2 Se4 Cl] (6), in which R(1) =CMe2 CH2 C(O)Me, R(2) =CMe2 CH2 C(NNH2 )Me, and R(3) =CH2 CH2 COO, are based on defect heterocubane scaffolds, as shown by X-ray diffraction, (119) Sn NMR spectroscopy, and ESI mass spectrometry analyses. Compounds 4, 5, and 6 constitute the first examples of defect heterocubane-type metal-chalcogenide complexes that are comprised of selenide ligands. Comprehensive DFT calculations prompted us to search for the formal intermediates [(R(1) SnCl2 )2 (μ-S)] (7) and [(R(1) SnCl)2 (μ-S)2 ] (8), which were isolated and helped to understand the stepwise formation of compounds 1-6. PMID:23963989

  15. Protein complex formation and intranuclear dynamics of NAC1 in cancer cells.

    PubMed

    Nakayama, Naomi; Kato, Hiroaki; Sakashita, Gyosuke; Nariai, Yuko; Nakayama, Kentaro; Kyo, Satoru; Urano, Takeshi

    2016-09-15

    Nucleus accumbens-associated protein 1 (NAC1) is a cancer-related transcription regulator protein that is also involved in the pluripotency and differentiation of embryonic stem cells. NAC1 is overexpressed in various carcinomas including ovarian, cervical, breast, and pancreatic carcinomas. NAC1 knock-down was previously shown to result in the apoptosis of ovarian cancer cell lines and to rescue their sensitivity to chemotherapy, suggesting that NAC1 may be a potential therapeutic target, but protein complex formation and the dynamics of intranuclear NAC1 in cancer cells remain poorly understood. In this study, analysis of HeLa cell lysates by fast protein liquid chromatography (FPLC) on a sizing column showed that the NAC1 peak corresponded to an apparent molecular mass of 300-500 kDa, which is larger than the estimated molecular mass (58 kDa) of the protein. Furthermore, live cell photobleaching analyses with green fluorescent protein (GFP)-fused NAC1 proteins revealed the intranuclear dynamics of NAC1. Collectively our results demonstrate that NAC1 forms a protein complex to function as a transcriptional regulator in cancer cells. PMID:27424155

  16. Localization and dynamics of amylose-lipophilic molecules inclusion complex formation in starch granules.

    PubMed

    Manca, Marianna; Woortman, Albert J J; Mura, Andrea; Loos, Katja; Loi, Maria Antonietta

    2015-03-28

    Inclusion complex formation between lipophilic dye molecules and amylose polymers in starch granules is investigated using laser spectroscopy and microscopy. By combining confocal laser scanning microscopy (CLSM) with spatial resolved photoluminescence (PL) spectroscopy, we are able to discriminate the presence of amylose in the peripheral region of regular and waxy granules from potato and corn starch, associating a clear optical fingerprint with the interaction between starch granules and lipophilic dye molecules. We show in particular that in the case of regular starch the polar head of the lipophilic dye molecules remains outside the amylose helix experiencing a water-based environment. The measurements performed on samples that have been extensively washed provide a strong proof of the specific interaction between lipid dye molecules and amylose chains in regular starch. These measurements also confirm the tendency of longer amylopectin chains, located in the hilum of waxy starch granules, to form inclusion complexes with ligands. Through real-time recording of CLSM micrographs, within a time frame of tens of seconds, we measured the dynamics of occurrence of the inclusion process between lipids and amylose located at the periphery of starch granules. PMID:25715960

  17. Enhanced conformational sampling to visualize a free-energy landscape of protein complex formation.

    PubMed

    Iida, Shinji; Nakamura, Haruki; Higo, Junichi

    2016-06-15

    We introduce various, recently developed, generalized ensemble methods, which are useful to sample various molecular configurations emerging in the process of protein-protein or protein-ligand binding. The methods introduced here are those that have been or will be applied to biomolecular binding, where the biomolecules are treated as flexible molecules expressed by an all-atom model in an explicit solvent. Sampling produces an ensemble of conformations (snapshots) that are thermodynamically probable at room temperature. Then, projection of those conformations to an abstract low-dimensional space generates a free-energy landscape. As an example, we show a landscape of homo-dimer formation of an endothelin-1-like molecule computed using a generalized ensemble method. The lowest free-energy cluster at room temperature coincided precisely with the experimentally determined complex structure. Two minor clusters were also found in the landscape, which were largely different from the native complex form. Although those clusters were isolated at room temperature, with rising temperature a pathway emerged linking the lowest and second-lowest free-energy clusters, and a further temperature increment connected all the clusters. This exemplifies that the generalized ensemble method is a powerful tool for computing the free-energy landscape, by which one can discuss the thermodynamic stability of clusters and the temperature dependence of the cluster networks. PMID:27288028

  18. A calorimetric study of the hydrolysis and peroxide complex formation of the uranyl(VI) ion.

    PubMed

    Zanonato, Pier Luigi; Di Bernardo, Plinio; Grenthe, Ingmar

    2014-02-14

    The enthalpies of reaction for the formation of uranyl(vi) hydroxide {[(UO2)2(OH)2](2+), [(UO2)3(OH)4](2+), [(UO2)3(OH)5](+), [(UO2)3(OH)6](aq), [(UO2)3(OH)7](-), [(UO2)3(OH)8](2-), [(UO2)(OH)3](-), [(UO2)(OH)4](2-)} and peroxide complexes {[UO2(O2)(OH)](-) and [(UO2)2(O2)2(OH)](-)} have been determined from calorimetric titrations at 25 °C in a 0.100 M tetramethyl ammonium nitrate ionic medium. The hydroxide data have been used to test the consistency of the extensive thermodynamic database published by the Nuclear Energy Agency (I. Grenthe, J. Fuger, R. J. M. Konings, R. J. Lemire, A. B. Mueller, C. Nguyen-Trung and H. Wanner, Chemical Thermodynamics of Uranium, North-Holland, Amsterdam, 1992 and R. Guillaumont, T. Fanghänel, J. Fuger, I. Grenthe, V. Neck, D. J. Palmer and M. R. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Elsevier, Amsterdam, 2003). A brief discussion is given about a possible structural relationship between the trinuclear complexes [(UO2)3(OH)n](6-n), n = 4-8. PMID:24301256

  19. Influence of RNA Strand Rigidity on Polyion Complex Formation with Block Catiomers.

    PubMed

    Hayashi, Kotaro; Chaya, Hiroyuki; Fukushima, Shigeto; Watanabe, Sumiyo; Takemoto, Hiroyasu; Osada, Kensuke; Nishiyama, Nobuhiro; Miyata, Kanjiro; Kataoka, Kazunori

    2016-03-01

    Polyion complexes (b-PICs) are prepared by mixing single- or double-stranded oligo RNA (aniomer) with poly(ethylene glycol)-b-poly(L-lysine) (PEG-PLL) (block catiomer) to clarify the effect of aniomer chain rigidity on association behaviors at varying concentrations. Here, a 21-mer single-stranded RNA (ssRNA) (persistence length: 1.0 nm) and a 21-mer double-stranded RNA (small interfering RNA, siRNA) (persistence length: 62 nm) are compared. Both oligo RNAs form a minimal charge-neutralized ionomer pair with a single PEG-PLL chain, termed unit b-PIC (uPIC), at low concentrations (<≈ 0.01 mg mL(-1)). Above the critical association concentration (≈ 0.01 mg mL(-1)), ssRNA b-PICs form secondary associates, PIC micelles, with sizes up to 30-70 nm, while no such multimolecular assembly is observed for siRNA b-PICs. The entropy gain associated with the formation of a segregated PIC phase in the multimolecular PIC micelles may not be large enough for rigid siRNA strands to compensate with appreciably high steric repulsion derived from PEG chains. Chain rigidity appears to be a critical parameter in polyion complex association. PMID:26765970

  20. In Silico Inhibition Studies of Jun-Fos-DNA Complex Formation by Curcumin Derivatives

    PubMed Central

    Kumar, Anil; Bora, Utpal

    2012-01-01

    Activator protein-1 (AP1) is a transcription factor that consists of the Jun and Fos family proteins. It regulates gene expression in response to a variety of stimuli and controls cellular processes including proliferation, transformation, inflammation, and innate immune responses. AP1 binds specifically to 12-O-tetradecanoylphorbol-13-acetate (TPA) responsive element 5′-TGAG/CTCA-3′ (AP1 site). It has been found constitutively active in breast, ovarian, cervical, and lung cancers. Numerous studies have shown that inhibition of AP1 could be a promising strategy for cancer therapeutic applications. The present in silico study provides insights into the inhibition of Jun-Fos-DNA complex formation by curcumin derivatives. These derivatives interact with the amino acid residues like Arg155 and Arg158 which play a key role in binding of Jun-Fos complex to DNA (AP1 site). Ala151, Ala275, Leu283, and Ile286 were the residues present at binding site which could contribute to hydrophobic contacts with inhibitor molecules. Curcumin sulphate was predicted to be the most potent inhibitor amongst all the natural curcumin derivatives docked. PMID:25374685

  1. Dynamics of DNA-protein complex formation in rat liver during induction by phenobarbital and triphenyldioxane.

    PubMed

    Pustylnyak, V O; Zacharova, L Yu; Gulyaeva, L F; Lyakhovich, V V; Slynko, N M

    2004-10-01

    CYP2B gene expression in liver of rats treated with phenobarbital and triphenyldioxane at early stage of induction (40 min-18 h) was studied using electrophoretic mobility shift assay (EMSA) and RT-PCR. During first 6 h after induction, differences in the dynamics of formation of DNA-protein complexes were shown for each inducer. Later (18 h after induction), the intensity pattern of these complexes became the same for both phenobarbital and triphenyldioxane treated animals. This suggests the existence of specific signaling for each inducer only in early stages of CYP2B activation. Increase in nuclear protein (possible transcription factor) binding to Barbie-box regulatory sequence of CYP2B genes was accompanied by their increased expression. Thus, we have demonstrated for the first time that early stages of induction (40 min and 3 h after administration of phenobarbital and triphenyldioxane, respectively) are accompanied by activation of nuclear proteins that can bind to Barbie-box element of CYP2B. Although various chemical inducers cause distinct activation of such binding, this process involves activation of gene transcription. PMID:15527410

  2. Enhanced conformational sampling to visualize a free-energy landscape of protein complex formation

    PubMed Central

    Iida, Shinji; Nakamura, Haruki; Higo, Junichi

    2016-01-01

    We introduce various, recently developed, generalized ensemble methods, which are useful to sample various molecular configurations emerging in the process of protein–protein or protein–ligand binding. The methods introduced here are those that have been or will be applied to biomolecular binding, where the biomolecules are treated as flexible molecules expressed by an all-atom model in an explicit solvent. Sampling produces an ensemble of conformations (snapshots) that are thermodynamically probable at room temperature. Then, projection of those conformations to an abstract low-dimensional space generates a free-energy landscape. As an example, we show a landscape of homo-dimer formation of an endothelin-1-like molecule computed using a generalized ensemble method. The lowest free-energy cluster at room temperature coincided precisely with the experimentally determined complex structure. Two minor clusters were also found in the landscape, which were largely different from the native complex form. Although those clusters were isolated at room temperature, with rising temperature a pathway emerged linking the lowest and second-lowest free-energy clusters, and a further temperature increment connected all the clusters. This exemplifies that the generalized ensemble method is a powerful tool for computing the free-energy landscape, by which one can discuss the thermodynamic stability of clusters and the temperature dependence of the cluster networks. PMID:27288028

  3. A spectroscopic study on the formation of Cm(III) acetate complexes at elevated temperatures.

    PubMed

    Fröhlich, Daniel R; Skerencak-Frech, Andrej; Panak, Petra J

    2014-03-14

    The complexation of Cm(III) with acetate is studied by time resolved laser fluorescence spectroscopy (TRLFS) as a function of ionic strength, ligand concentration, temperature and background electrolyte (NaClO4, NaCl and CaCl2 solution). The speciation of Cm(III) is determined by peak deconvolution of the emission spectra. To obtain the thermodynamic stability constants (log K) for the formation of [Cm(Ac)n](3-n) (n = 1-3), the experimental data are extrapolated to zero ionic strength according to the specific ion interaction theory (SIT). The results show a continuous increase of the stability constants with increasing temperature (20-90 °C). The standard reaction enthalpies and entropies (ΔrH, ΔrS) of the respective reactions are derived from the integrated Van't Hoff equation. The results show that all complexation steps are endothermic and thus entropy driven (ΔrH and ΔrS > 0). PMID:24448229

  4. Interactions between plutonism and detachments during metamorphic core complex formation, Serifos Island (Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Rabillard, Aurélien; Arbaret, Laurent; Jolivet, Laurent; Le Breton, Nicole; Gumiaux, Charles; Augier, Romain; Grasemann, Bernhard

    2015-06-01

    In order to better understand the interactions between plutonic activity and strain localization during metamorphic core complex formation, the Miocene granodioritic pluton of Serifos (Cyclades, Greece) is studied. This pluton (11.6-9.5 Ma) intruded the Cycladic Blueschists during thinning of the Aegean domain along a system of low-angle normal faults belonging to the south dipping West Cycladic Detachment System (WCDS). Based on structural fieldwork, together with microstructural observations and anisotropy of magnetic susceptibility, we recognize a continuum of deformation from magmatic to brittle conditions within the magmatic body. This succession of deformation events is kinematically compatible with the development of the WCDS. The architecture of the pluton shows a marked asymmetry resulting from its interaction with the detachments. We propose a tectonic scenario for the emplacement of Serifos pluton and its subsequent cooling during the Aegean extension: (1) A first stage corresponds to the metamorphic core complex initiation and associated southwestward shearing along the Meghàlo Livadhi detachment. (2) In the second stage, the Serifos pluton has intruded the dome at shallow crustal level, piercing through the ductile/brittle Meghàlo Livadhi detachment. Southwest directed extensional deformation was contemporaneously transferred upward in the crust along the more localized Kàvos Kiklopas detachment. (3) The third stage was marked by synmagmatic extensional deformation and strain localization at the contact between the pluton and the host rocks resulting in nucleation of narrow shear zones, which (4) continued to develop after the pluton solidification.

  5. Reactivity of thiosemicarbazides with redox active metal ions: controlled formation of coordination complexes versus heterocyclic compounds.

    PubMed

    López-Torres, Elena; Dilworth, Jonathan R

    2009-01-01

    The reactions of 1,1-dimethyl-4-phenylthiosemicarbazide (LH) with Cu(II) and Sn(IV) have been investigated. If THF or methanol is used as solvent with Cu(II), oxidative cyclisation and coupling are observed, yielding a 1,2,4-thiadiazole or a 1,3,4-thiadiazolium salt. SnI(4) is also able to induce oxidative coupling of two thiosemicarbazide ligands, yielding 1,2,4-thiadiazolium or 1,2,4-triazolium salts, with I(3)(-) as the counterion, depending on the reaction conditions. By contrast, reaction of LH with SnI(4) in acetone yields a 1,3-thiazolium salt, with I(-) as counterion. Reaction with Cu(II) salts or SnI(4) in basic media leads to the formation of metal complexes containing two deprotonated thiosemicarbazide ligands. In the reaction of CuCl(2) in water in the presence of acid a complex containing two neutral ligands is obtained. Reactions with SnCl(4) are not able to induce ligand cyclisation, although a coordination compound with two neutral ligands was isolated from methanol. PMID:19180593

  6. MOZ increases p53 acetylation and premature senescence through its complex formation with PML.

    PubMed

    Rokudai, Susumu; Laptenko, Oleg; Arnal, Suzzette M; Taya, Yoichi; Kitabayashi, Issay; Prives, Carol

    2013-03-01

    Monocytic leukemia zinc finger (MOZ)/KAT6A is a MOZ, Ybf2/Sas3, Sas2, Tip60 (MYST)-type histone acetyltransferase that functions as a coactivator for acute myeloid leukemia 1 protein (AML1)- and Ets family transcription factor PU.1-dependent transcription. We previously reported that MOZ directly interacts with p53 and is essential for p53-dependent selective regulation of p21 expression. We show here that MOZ is an acetyltransferase of p53 at K120 and K382 and colocalizes with p53 in promyelocytic leukemia (PML) nuclear bodies following cellular stress. The MOZ-PML-p53 interaction enhances MOZ-mediated acetylation of p53, and this ternary complex enhances p53-dependent p21 expression. Moreover, we identified an Akt/protein kinase B recognition sequence in the PML-binding domain of MOZ protein. Akt-mediated phosphorylation of MOZ at T369 has a negative effect on complex formation between PML and MOZ. As a result of PML-mediated suppression of Akt, the increased PML-MOZ interaction enhances p21 expression and induces p53-dependent premature senescence upon forced PML expression. Our research demonstrates that MOZ controls p53 acetylation and transcriptional activity via association with PML. PMID:23431171

  7. Electrocatalytic Oxidation of Formate with Nickel Diphosphane Dipeptide Complexes. Effect of Ligands Modified with Amino Acids

    SciTech Connect

    Galan, Brandon R.; Reback, Matthew L.; Jain, Avijita; Appel, Aaron M.; Shaw, Wendy J.

    2013-09-03

    A series of nickel bis-diphosphine complexes with dipeptides appended to the ligands were investigated for the catalytic oxidation of formate. Typical rates of ~7 s-1 were found, similar to the parent complex (~8 s-1), with amino acid size and positioning contributing very little to rate or operating potential. Hydroxyl functionalities did result in lower rates, which were recovered by protecting the hydroxyl group. The results suggest that the overall dielectric introduced by the dipeptides does not play an important role in catalysis, but free hydroxyl groups do influence activity suggesting contributions from intra- or intermolecular interactions. These observations are important in developing a fundamental understanding of the affect that an enzyme-like outer coordination sphere can have upon molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (BRG, AJ, AMA, WJS), the US DOE Basic Energy Sciences, Physical Bioscience program (MLR). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  8. Complement C1q formation of immune complexes with milk caseins and wheat glutens in schizophrenia

    PubMed Central

    Severance, Emily G.; Gressitt, Kristin; Halling, Meredith; Stallings, Cassie R.; Origoni, Andrea E.; Vaughan, Crystal; Khushalani, Sunil; Alaedini, Armin; Dupont, Didier; Dickerson, Faith B.; Yolken, Robert H.

    2012-01-01

    Immune system factors including complement pathway activation are increasingly linked to the etiology and pathophysiology of schizophrenia. Complement protein, C1q, binds to and helps to clear immune complexes composed of immunoglobulins coupled to antigens. The antigenic stimuli for C1q activation in schizophrenia are not known. Food sensitivities characterized by elevated IgG antibodies to bovine milk caseins and wheat glutens have been reported in individuals with schizophrenia. Here, we examined the extent to which these food products might comprise the antigen component of complement C1q immune complexes in individuals with recent onset schizophrenia (n=38), non-recent onset schizophrenia (n=61) and non-psychiatric controls (n=63). C1q seropositivity was significantly associated with both schizophrenia groups (recent onset, odds ratio (OR)=8.02, p≤0.008; non-recent onset, OR=3.15, p≤0.03) compared to controls (logistic regression models corrected for age, sex, race and smoking status). Casein- and/or gluten-IgG binding to C1q was significantly elevated in the non-recent onset group compared to controls (OR=4.36, p≤0.01). Significant amounts of C1q-casein/gluten-related immune complexes and C1q correlations with a marker for gastrointestinal inflammation in non-recent onset schizophrenia suggests a heightened rate of food antigens in the systemic circulation, perhaps via a disease-associated altered intestinal permeability. In individuals who are in the early stages of disease onset, C1q activation may reflect the formation of immune complexes with non-casein- or non-gluten-related antigens, the presence of C1q autoantibodies, and/or a dissociated state of immune complex components. In conclusion, complement activation may be a useful biomarker to diagnose schizophrenia early during the course of the disease. Future prospective studies should evaluate the impacts of casein- and gluten-free diets on C1q activation in schizophrenia. PMID:22801085

  9. (PEO)n:Na4P2O7- a Report on Complex Formation

    NASA Astrophysics Data System (ADS)

    Bhide, Amrtha; Hariharan, K.

    2006-06-01

    A new polymer electrolyte, based on poly (ethylene oxide) complexed with Na4P2O7 is investigated. (PEO)n:Na4P2O7 polymer metal salt complexes with different n = [ethylene oxide]/ Na ratio (80,100,120,160 and 200) are prepared by solution casting method. Dissolution of the salt into the polymer host is investigated by X-ray diffraction, differential calorimetry and Scanning electron microscopy techniques. The formation of the complex has been confirmed by (i) the broadening and reduction in the intensity of the Bragg peaks (ii) the reduction in the percentage of crystallinity by DSC and (iii) the increase in the glass transition temperature of the polymer with addition of the salt. Maximum reduction in crystallinity from 76.1 % to 56.2 % is observed for (PEO)120:Na4P2O7 system. Qualitative analysis of FTIR spectra in the range 3000-500 cm-1, reveals broadening of the bands corresponding to the C-O-C symmetric stretching modes around 840 cm-1 and 1057-1160 cm-1. These conformal changes have inferred the coordination of the ether oxygen of the PEO with the metal salt ion. Compositional dependence of conductivity studies show a maximum value of 7.58 × 0-7 S/cm at 351 K for O:Na = 120.Conductivity of the above electrolytes proceeds via an activated conduction mechanism with two activation energies, 0.62 eV and 0.78 eV above and below the softening of the polymer. The electronic transport number measured by dc polarization technique shows that, the conducting species are ionic in nature.

  10. Nucleophilicity and P-C Bond Formation Reactions of a Terminal Phosphanido Iridium Complex.

    PubMed

    Serrano, Ángel L; Casado, Miguel A; Ciriano, Miguel A; de Bruin, Bas; López, José A; Tejel, Cristina

    2016-01-19

    The diiridium complex [{Ir(ABPN2)(CO)}2(μ-CO)] (1; [ABPN2](-) = [(allyl)B(Pz)2(CH2PPh2)](-)) reacts with diphenylphosphane affording [Ir(ABPN2)(CO)(H) (PPh2)] (2), the product of the oxidative addition of the P-H bond to the metal. DFT studies revealed a large contribution of the terminal phosphanido lone pair to the HOMO of 2, indicating nucleophilic character of this ligand, which is evidenced by reactions of 2 with typical electrophiles such as H(+), Me(+), and O2. Products from the reaction of 2 with methyl chloroacetate were found to be either [Ir(ABPN2)(CO)(H)(PPh2CH2CO2Me)][PF6] ([6]PF6) or [Ir(ABPN2)(CO)(Cl)(H)] (7) and the free phosphane (PPh2CH2CO2Me), both involving P-C bond formation, depending on the reaction conditions. New complexes having iridacyclophosphapentenone and iridacyclophosphapentanone moieties result from reactions of 2 with dimethyl acetylenedicarboxylate and dimethyl maleate, respectively, as a consequence of a further incorporation of the carbonyl ligand. In this line, the terminal alkyne methyl propiolate gave a mixture of a similar iridacyclophosphapentanone complex and [Ir(ABPN2){CH═C(CO2Me)-CO}{PPh2-CH═CH(CO2Me)}] (10), which bears the functionalized phosphane PPh2-CH═CH(CO2Me) and an iridacyclobutenone fragment. Related model reactions aimed to confirm mechanistic proposals are also studied. PMID:26695592

  11. Oceanic crust formation in the Egeria Fracture Zone Complex (Central Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Le Minor, Marine; Gaina, Carmen; Sigloch, Karin; Minakov, Alexander

    2016-04-01

    This study aims to analyse in detail the oceanic crust fabric and volcanic features (seamounts) formed for the last 10 million years at the Central Indian Ridge between 19 and 21 latitude south. Multibeam bathymetry and magnetic data has been collected in 2013 as part of the French-German expedition RHUM-RUM (Reunion hotspot and upper mantle - Reunion's unterer mantel). Three long profiles perpendicular on the Central Indian Ridge (CIR), south of the Egeria fracture zone, document the formation of oceanic crust since 10 million years, along with changes in plate kinematics and variations in the magmatic input. We have inspected the abyssal hill geometry and orientation along conjugate oceanic flanks and within one fracture zone segment where we could identify J-shaped features that are indicators of changes in plate kinematics. The magnetic anomaly data shows a slight asymmetry in seafloor spreading rates on conjugate flanks: while a steady increase in spreading rate from 10 Ma to the present is shown by the western flank, the eastern part displays a slowing down from 5 Ma onwards. The deflection of the anti J-shaped abyssal hill lineations suggest that the left-stepping Egeria fracture zone complex (including the Egeria, Flinders and an un-named fracture zone to the southeast) was under transpression from 9 to 6 Ma and under transtension since 3 Ma. The transpressional event was triggered by a clockwise mid-ocean ridge reorientation and a decrease of its offset, whereas the transtensional regime was probably due to a counter-clockwise change in the spreading direction and an increase of the ridge offset. The new multibeam data along the three profiles reveal that crust on the eastern side is smoother (as shown by the abyssal hill number and structure) and hosts several seamounts (with age estimations of 7.67, 6.10 and 0.79 Ma), in contrast to the rougher conjugate western flank. Considering that the western flank was closer to the Reunion plume, and therefore

  12. Glutathione Complex Formation With Mercury(Ii) in Aqueous Solution at Physiological Ph

    SciTech Connect

    Mah, V.; Jalilehvand, F.; /SLAC

    2012-08-23

    consistent with the formation of dimeric Hg(II)-GSH complexes proposed in a recent EXAFS study.

  13. Real-time Live Imaging of T-cell Signaling Complex Formation

    PubMed Central

    Barda-Saad, Mira

    2013-01-01

    Protection against infectious diseases is mediated by the immune system 1,2. T lymphocytes are the master coordinators of the immune system, regulating the activation and responses of multiple immune cells 3,4. T-cell activation is dependent on the recognition of specific antigens displayed by antigen presenting cells (APCs). The T-cell antigen receptor (TCR) is specific to each T-cell clone and determines antigen specificity 5. The binding of the TCR to the antigen induces the phosphorylation of components of the TCR complex. In order to promote T-cell activation, this signal must be transduced from the membrane to the cytoplasm and the nucleus, initiating various crucial responses such as recruitment of signaling proteins to the TCR;APC site (the immune synapse), their molecular activation, cytoskeletal rearrangement, elevation of intracellular calcium concentration, and changes in gene expression 6,7. The correct initiation and termination of activating signals is crucial for appropriate T-cell responses. The activity of signaling proteins is dependent on the formation and termination of protein-protein interactions, post translational modifications such as protein phosphorylation, formation of protein complexes, protein ubiquitylation and the recruitment of proteins to various cellular sites 8. Understanding the inner workings of the T-cell activation process is crucial for both immunological research and clinical applications. Various assays have been developed in order to investigate protein-protein interactions; however, biochemical assays, such as the widely used co-immunoprecipitation method, do not allow protein location to be discerned, thus precluding the observation of valuable insights into the dynamics of cellular mechanisms. Additionally, these bulk assays usually combine proteins from many different cells that might be at different stages of the investigated cellular process. This can have a detrimental effect on temporal resolution. The use of

  14. From PII Signaling to Metabolite Sensing: A Novel 2-Oxoglutarate Sensor That Details PII - NAGK Complex Formation

    PubMed Central

    Lüddecke, Jan; Forchhammer, Karl

    2013-01-01

    The widespread PII signal transduction proteins are known for integrating signals of nitrogen and energy supply and regulating cellular behavior by interacting with a multitude of target proteins. The PII protein of the cyanobacterium Synechococcus elongatus forms complexes with the controlling enzyme of arginine synthesis, N-acetyl-L-glutamate kinase (NAGK) in a 2-oxoglutarate- and ATP/ADP-dependent manner. Fusing NAGK and PII proteins to either CFP or YFP yielded a FRET sensor that specifically responded to 2-oxoglutarate. The impact of the fluorescent tags on PII and NAGK was evaluated by enzyme assays, surface plasmon resonance spectroscopy and isothermal calorimetric experiments. The developed FRET sensor provides real-time data on PII - NAGK interaction and its modulation by the effector molecules ATP, ADP and 2-oxoglutarate in vitro. Additionally to its utility to monitor 2-oxoglutarate levels, the FRET assay provided novel insights into PII - NAGK complex formation: (i) It revealed the formation of an encounter-complex between PII and NAGK, which holds the proteins in proximity even in the presence of inhibitors of complex formation; (ii) It revealed that the PII T-loop residue Ser49 is neither essential for complex formation with NAGK nor for activation of the enzyme but necessary to form a stable complex and efficiently relieve NAGK from arginine inhibition; (iii) It showed that arginine stabilizes the NAGK hexamer and stimulates PII - NAGK interaction. PMID:24349456

  15. From PII signaling to metabolite sensing: a novel 2-oxoglutarate sensor that details PII-NAGK complex formation.

    PubMed

    Lüddecke, Jan; Forchhammer, Karl

    2013-01-01

    The widespread PII signal transduction proteins are known for integrating signals of nitrogen and energy supply and regulating cellular behavior by interacting with a multitude of target proteins. The PII protein of the cyanobacterium Synechococcus elongatus forms complexes with the controlling enzyme of arginine synthesis, N-acetyl-L-glutamate kinase (NAGK) in a 2-oxoglutarate- and ATP/ADP-dependent manner. Fusing NAGK and PII proteins to either CFP or YFP yielded a FRET sensor that specifically responded to 2-oxoglutarate. The impact of the fluorescent tags on PII and NAGK was evaluated by enzyme assays, surface plasmon resonance spectroscopy and isothermal calorimetric experiments. The developed FRET sensor provides real-time data on PII - NAGK interaction and its modulation by the effector molecules ATP, ADP and 2-oxoglutarate in vitro. Additionally to its utility to monitor 2-oxoglutarate levels, the FRET assay provided novel insights into PII - NAGK complex formation: (i) It revealed the formation of an encounter-complex between PII and NAGK, which holds the proteins in proximity even in the presence of inhibitors of complex formation; (ii) It revealed that the PII T-loop residue Ser49 is neither essential for complex formation with NAGK nor for activation of the enzyme but necessary to form a stable complex and efficiently relieve NAGK from arginine inhibition; (iii) It showed that arginine stabilizes the NAGK hexamer and stimulates PII - NAGK interaction. PMID:24349456

  16. Double-decker phthalocyanine complex: Scanning tunneling microscopy study of film formation and spin properties

    NASA Astrophysics Data System (ADS)

    Komeda, Tadahiro; Katoh, Keiichi; Yamashita, Masahiro

    2014-05-01

    interesting spin configuration. The center metal atom, including a lanthanoid metal of Tb, tends to be 3+ cation, while the Pc ligand to be 2- anion. This realizes two-spin system, in which spins from 4f electrons and π radical coexist. Though the spins of 4f orbitals of those molecules have been studied, the importance of the π radicals has been highlighted recently from the measurement of electronic conductance properties of these molecules. In this article, recent researches on multi-decker Pc molecules are reviewed. The manuscript is organized with groups of chapters as follows: (1) Film formation, (2) Spin of TbPc2 film and Kondo resonance observation, (3) Rotation of double-decker Pc complex and chemical modification for spin control, (4) Device formation using double-decker Pc complex.

  17. Mercury(II) Complex Formation With Glutathione in Alkaline Aqueous Solution

    SciTech Connect

    Mah, V.; Jalilehvand, F.

    2009-05-19

    The structure and speciation of the complexes formed between mercury(II) ions and glutathione (GSH = L-glutamyl-L-cysteinyl-glycine) have been studied for a series of alkaline aqueous solutions (C{sub Hg{sup 2+}} {approx} 18 mmol dm{sup -3} and C{sub GSH} = 40-200 mmol dm{sup -3} at pH {approx} 10.5) by means of extended X-ray absorption fine structure (EXAFS) and {sup 199}Hg NMR spectroscopy at ambient temperature. The dominant complexes are [Hg(GS){sub 2}]{sup 4-} and [Hg(GS){sub 3}]{sup 7-}, with mean Hg-S bond distances of 2.32(1) and 2.42(2) {angstrom} observed in digonal and trigonal Hg-S coordination, respectively. The proportions of the Hg{sup 2+}-glutathione complexes were evaluated by fitting linear combinations of model EXAFS oscillations representing each species to the experimental EXAFS spectra. The [Hg(GS){sub 4}]{sup 10-} complex, with four sulfur atoms coordinated at a mean Hg-S bond distance of 2.52(2) {angstrom}, is present in minor amounts (<30%) in solutions containing a large excess of glutathione (C{sub GSH} {ge} 160 mmol dm{sup -3}). Comparable alkaline mercury(II) cysteine (H{sub 2}Cys) solutions were also investigated and a reduced tendency to form higher complexes was observed, because the deprotonated amino group of Cys{sup 2-} allows the stable [Hg(S,N-Cys){sub 2}]{sup 2-} chelate to form. The effect of temperature on the distribution of the Hg{sup 2+}-glutathione complexes was studied by comparing the EXAFS spectra at ambient temperature and at 25 K of a series of glycerol/water (33/67, v/v) frozen glasses with and C{sub Hg{sup 2+}} {approx} 7 mmol dm{sup -3} and C{sub GSH} = 16-81 mmol dm{sup -3}. Complexes with high Hg-S coordination numbers, [Hg(GS){sub 3}]{sup 7-} and [Hg(GS){sub 4}]{sup 10-}, became strongly favored when just a moderate excess of glutathione (C{sub GSH} {ge} 28 mmol dm{sup -3}) was used in the glassy samples, as expected for a stepwise exothermic bond formation. Addition of glycerol had no effect on the Hg

  18. Complex formation of cadmium with sugar residues, nucleobases, phosphates, nucleotides, and nucleic acids.

    PubMed

    Sigel, Roland K O; Skilandat, Miriam; Sigel, Astrid; Operschall, Bert P; Sigel, Helmut

    2013-01-01

    Cadmium(II), commonly classified as a relatively soft metal ion, prefers indeed aromatic-nitrogen sites (e.g., N7 of purines) over oxygen sites (like sugar-hydroxyl groups). However, matters are not that simple, though it is true that the affinity of Cd(2+) towards ribose-hydroxyl groups is very small; yet, a correct orientation brought about by a suitable primary binding site and a reduced solvent polarity, as it is expected to occur in a folded nucleic acid, may facilitate metal ion-hydroxyl group binding very effectively. Cd(2+) prefers the guanine(N7) over the adenine(N7), mainly because of the steric hindrance of the (C6)NH(2) group in the adenine residue. This Cd(2+)-(N7) interaction in a guanine moiety leads to a significant acidification of the (N1)H meaning that the deprotonation reaction occurs now in the physiological pH range. N3 of the cytosine residue, together with the neighboring (C2)O, is also a remarkable Cd(2+) binding site, though replacement of (C2)O by (C2)S enhances the affinity towards Cd(2+) dramatically, giving in addition rise to the deprotonation of the (C4)NH(2) group. The phosphodiester bridge is only a weak binding site but the affinity increases further from the mono- to the di- and the triphosphate. The same also holds for the corresponding nucleotides. Complex stability of the pyrimidine-nucleotides is solely determined by the coordination tendency of the phosphate group(s), whereas in the case of purine-nucleotides macrochelate formation takes place by the interaction of the phosphate-coordinated Cd(2+) with N7. The extents of the formation degrees of these chelates are summarized and the effect of a non-bridging sulfur atom in a thiophosphate group (versus a normal phosphate group) is considered. Mixed ligand complexes containing a nucleotide and a further mono- or bidentate ligand are covered and it is concluded that in these species N7 is released from the coordination sphere of Cd(2+). In the case that the other ligand

  19. Thermochemical study of processes of complex formation of Cu2+ ions with L-glutamine in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Gorboletova, G. G.; Gridchin, S. N.; Lutsenko, A. A.

    2010-11-01

    Heats of the interaction of Cu(NO3)2 solutions with L-glutamine solutions were measured directly by calorimetry at a temperature of 298.15 K and ionic strength values of 0.5, 1.0, and 1.5 (KNO3). Using RRSU universal software, the experimental data were subjected to rigorous mathematical treatment with allowances made for several concurrent processes in the system. The heats of formation of the CuL+ and CuL2 complexes were calculated from the calorimetric measurements. The standard heats of the complex formation of Cu2+ with L-glutamine were obtained by extrapolation to zero ionic strength. The complete thermodynamic characteristic (Δr H o, Δr G o, Δr S o) of the complex formation processes in a Cu2+—L-glutamine system was obtained.

  20. Polyprotein-Driven Formation of Two Interdependent Sets of Complexes Supporting Hepatitis C Virus Genome Replication

    PubMed Central

    Gomes, Rafael G. B.; Isken, Olaf; Tautz, Norbert; McLauchlan, John

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) requires proteins from the NS3-NS5B polyprotein to create a replicase unit for replication of its genome. The replicase proteins form membranous compartments in cells to facilitate replication, but little is known about their functional organization within these structures. We recently reported on intragenomic replicons, bicistronic viral transcripts expressing an authentic replicase from open reading frame 2 (ORF2) and a second duplicate nonstructural (NS) polyprotein from ORF1. Using these constructs and other methods, we have assessed the polyprotein requirements for rescue of different lethal point mutations across NS3-5B. Mutations readily tractable to rescue broadly fell into two groupings: those requiring expression of a minimum NS3-5A and those requiring expression of a minimum NS3-5B polyprotein. A cis-acting mutation that blocked NS3 helicase activity, T1299A, was tolerated when introduced into either ORF within the intragenomic replicon, but unlike many other mutations required the other ORF to express a functional NS3-5B. Three mutations were identified as more refractile to rescue: one that blocked cleavage of the NS4B5A boundary (S1977P), another in the NS3 helicase (K1240N), and a third in NS4A (V1665G). Introduced into ORF1, these exhibited a dominant negative phenotype, but with K1240N inhibiting replication as a minimum NS3-5A polyprotein whereas V1665G and S1977P only impaired replication as a NS3-5B polyprotein. Furthermore, an S1977P-mutated NS3-5A polyprotein complemented other defects shown to be dependent on NS3-5A for rescue. Overall, our findings suggest the existence of two interdependent sets of protein complexes supporting RNA replication, distinguishable by the minimum polyprotein requirement needed for their formation. IMPORTANCE Positive-strand RNA viruses reshape the intracellular membranes of cells to form a compartment within which to replicate their genome, but little is known about the functional

  1. Pore-controlled formation of 0D metal complexes in anionic 3D metal-organic frameworks

    SciTech Connect

    Zhang, MW; Bosch, M; Zhou, HC

    2015-01-01

    The host-guest chemistry between a series of anionic MOFs and their trapped counterions was investigated by single crystal XRD. The PCN-514 series contains crystallographically identifiable metal complexes trapped in the pores, where their formation is controlled by the size and shape of the MOF pores. A change in the structure and pore size of PCN-518 indicates that the existence of guest molecules may reciprocally affect the formation of host MOFs.

  2. Protostellar Interferometric Line Survey (PILS): Constraining the formation of complex organic molecules with ALMA

    NASA Astrophysics Data System (ADS)

    Jorgensen, Jes K.; Coutens, Audrey; Bourke, Tyler L.; Favre, Cecile; Garrod, Robin; Lykke, Julie; Mueller, Holger; Oberg, Karin I.; Schmalzl, Markus; van der Wiel, Matthijs; van Dishoeck, Ewine; Wampfler, Susanne F.

    2015-08-01

    Understanding how, when and where complex organic and potentially prebiotic molecules are formed is a fundamental goal of astrochemistry and an integral part of origins of life studies. Already now ALMA is showing its capabilities for studies of the chemistry of solar-type stars with its high sensitivity for faint lines, high spectral resolution which limits line confusion, and high angular resolution making it possible to study the structure of young protostars on solar-system scales. We here present the first results from a large unbiased survey “Protostellar Interferometric Line Survey (PILS)” targeting one of the astrochemical template sources, the low-mass protostellar binary IRAS 16293-2422. The survey is more than an order of magnitude more sensitive than previous surveys of the source and provide imaging down to 25 AU scales (radius) around each of the two components of the binary. An example of one of the early highlights from the survey is unambiguous detections of the (related) prebiotic species glycolaldehyde, ethylene glycol (two lowest energy conformers), methyl formate and acetic acid. The glycolaldehyde-ethylene glycol abundance ratio is high in comparison to comets and other protostars - but agrees with previous measurements, e.g., in the Galactic Centre clouds possibly reflecting different environments and/or evolutionary histories. Complete mapping of this and other chemical networks in comparison with detailed chemical models and laboratory experiments will reveal the origin of complex organic molecules in a young protostellar system and investigate the link between these protostellar stages and the early Solar System.

  3. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages

    SciTech Connect

    Lancaster, J.R. Jr.; Hibbs, J.B. Jr. )

    1990-02-01

    Activated macrophage cytotoxicity is characterized by loss of intracellular iron and inhibition of certain enzymes that have catalytically active nonheme-iron coordinated to sulfur. This phenomenon involves the oxidation of one of the terminal guanidino nitrogen atoms of L-arginine, which results in the production of citrulline and inorganic nitrogen oxides (NO2-, NO3-, and NO). We report here the results of an electron paramagnetic resonance spectroscopic study performed on cytotoxic activated macrophage (CAM) effector cells, which develop the same pattern of metabolic inhibition as their targets. Examination of activated macrophages from mice infected with Mycobacterium bovis (strain bacillus Calmette-Guerin) that were cultured in medium with lipopolysaccharide and L-arginine showed the presence of an axial signal at g = 2.039, which is similar to previously described iron-nitrosyl complexes formed from the destruction of iron-sulfur centers by nitric oxide (NO). Inhibition of the L-arginine-dependent pathway by addition of NG-monomethyl-L-arginine (methyl group on a terminal guanidino nitrogen) inhibits the production of nitrite, nitrate, citrulline, and the g = 2.039 signal. Comparison of the hyperfine structure of the signal from cells treated with L-arginine with terminal guanidino nitrogen atoms of natural abundance N14 atoms or labeled with N15 atoms showed that the nitrosyl group in this paramagnetic species arises from one of these two atoms. These results show that loss of iron-containing enzyme function in CAM is a result of the formation of iron-nitrosyl complexes induced by the synthesis of nitric oxide from the oxidation of a terminal guanidino nitrogen atom of L-arginine.

  4. Formation of Complex Organic molecules from Formaldehyde Chemistry in Cometary Ice Analogues

    NASA Astrophysics Data System (ADS)

    Duvernay, fabrice; Vinogradoff, Vassilissa; Danger, Grégoire; Theulé, Patrice; Chiavassa, Thierry

    2015-04-01

    There is convincing evidence that the formation of complex organic molecules occurred in a variety of astrophysical environments. Among them, precursors of biomolecules are of particular significance due to their exobiological implications. Hexamethylenetetramine (HMT, C6H12N4) and the polyoxymethylene (POM, -(CH2-O)n-) are of prime interest since they are supposed to be present in cometary environments. They are also ones of the main components of the organic residue formed from the warming of photolysed interstellar/cometary ice analogs. In this work, we study the warming of water-dominated cometary ice analogs containing formaldehyde (H2CO). Based on infrared and mass spectrometry measurements, and complemented by quantum chemical calculations, we report that NH2CH2OH, HOCH2OH, and POM are the only reaction products when the ice also contains NH3. The branching ratio between the three products strongly depends on the initial H2CO/NH3 concentration ratio. Moreover, the influence of the initial ice composition on the formation of POM oligomers (HO-(CH2O)n-H, n<5) as well as their thermal instability between 200 and 320 K are investigated. Finally, the implications of these results with respect to cometary nucleus chemistry and their impact on POM detection by the Rosetta mission are discussed. In addition, the mechanism for HMT formation in interstellar or cometary ice analogs containing H2CO, NH3, and HCOOH has been determined by combining laboratory experiments and DFT calculations. We show that HMT is thermally formed from H2CO and NH3 activated by HCOOH. Two intermediates has been unambiguously detected: NH2CH2OH and the trimer of CH2NH (1,3,5-triazinane, TMT). Unlike to what it was previously thought, HMT is not an indicator of ice photochemistry, but an indicator of thermal processing of ice. These results strengthen the hypothesis that HMT and its intermediates should be present in comets, where they may be detected with the COSAC or COSIMA instrument of

  5. Ab-initio calculation study on the formation mechanism of boron-oxygen complexes in c-Si

    SciTech Connect

    Yu, Xuegong; Chen, Peng; Chen, Xianzi; Liu, Yong; Yang, Deren

    2015-07-15

    Boron-oxygen (B-O) complex in crystalline silicon (c-Si) solar cells is responsible for the light-induced efficiency degradation of solar cell. However, the formation mechanism of B-O complex is not clear yet. By Ab-initio calculation, it is found that the stagger-type oxygen dimer (O{sub 2i}{sup st}) should be the component of B-O complex, whose movement occurs through its structure reconfiguration at low temperature, instead of its long-distance diffusion. The O{sub 2i}{sup st} can form two stable “latent centers” with the B{sub s}, which are recombination-inactive. The latent centers can be evolved into the metastable recombination centers via their structure transformation in the presence of excess carriers. These results can well explain the formation behaviors of B-O complexes in c-Si.

  6. Age range of formation of sedimentary-volcanogenic complex of the Vetreny Belt (the southeast of the Baltic Shield)

    NASA Astrophysics Data System (ADS)

    Mezhelovskaya, S. V.; Korsakov, A. K.; Mezhelovskii, A. D.; Bibikova, E. V.

    2016-03-01

    As a result of studying the Vetreny Belt greenstone structure (the southeast of the Baltic Shield), zircons from terrigenous deposits of the Toksha Formation, underlying the section of the sedimentary-volcanogenic complex, and zircons of the Vetreny Belt Formation, deposits of which crown the section, were dated. The results of analysis of age data of detrital zircons from quartzites of the Toksha Formation indicate that Mesoarchean greenstone complexes and paleo-Archean granitogneisses of the Vodlozero Block (Karelia) were the provenance area from which these zircons were derived. The occurrence of the youngest zircons with age of 2654.3 ± 38.5 Ma is evidence that the formation of the Vetreny Belt, including the Toksha Formation, began no earlier than this time. Zircons from volcanic rocks of the Vetreny Belt yielded the age of 2405 ± 5 Ma. Thus, the age interval of the formation of the sedimentary-volcanogenic complex of the Vetreny Belt ranges from 2654.3 ± 38.5 to 2405 ± 5 Ma.

  7. Apatite formation behaviour during metasomatism in the Bathtub Intrusion (Babbitt deposit, Duluth Complex, USA)

    NASA Astrophysics Data System (ADS)

    Raič, Sara; Mogessie, Aberra; Krenn, Kurt; Hauzenberger, Christoph A.; Tropper, Peter

    2016-04-01

    The mineralized troctolitic Bathtub intrusion (Duluth Complex, NE-Minnesota) is known for its famous Cu-Ni-Sulfide±PGM Babbitt deposit, where platinum group minerals (PGMs) are either hosted by primary magmatic sulfides (base metal sulfides) or associated with hydrothermally altered portions. This secondary generation of PGMs is present in alteration patches and suggests the involvement of hydrothermal fluids in the mobilization of platinum-group elements (PGEs). Accessory fluorapatite in these samples reveals besides H2O- and CO2-rich primary fluid inclusions, textural and compositional variations that also record magmatic and metasomatic events. Based on detailed back-scattered electron imaging (BSE) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS), a primary magmatic origin is reflected by homogeneous or zoned grains, where zoning patterns are either concentric or oscillatory, with respect to LREE. Late magmatic to hydrothermal processes are indicated by grains with bright LREE-enriched rims or conversion textures with REE-enriched patches in the interior of the apatite. A metasomatic formation of monazite from apatite is documented by the presence of monazite inclusions in apatite and newly grown monazite at altered apatite rims. They formed by the release of REEs from the apatite during a fluid-induced alteration, based on the coupled substitution Ca2+ + P5+ = REE3+ + Si4+ (Rønsbo 1989; Rønsbo 2008). Samples with monazite inclusions in apatite further display occurrences of PGMs associated with hydrothermal alteration patches (chlorite + amphibole). The presence of H2O- and CO2-rich fluid inclusions in apatite, the metasomatically induced monazite growth, as well as the occurrence of PGMs in hydrothermally alteration zones, also suggest the involvement of aqueous chloride complexes in a H2O dominated fluid in the transportation of LREE and redistribution of the second generation of PGEs. Rønsbo, J.G. (1989): Coupled substitutions

  8. Computation of infinite dilute activity coefficients of binary liquid alloys using complex formation model

    NASA Astrophysics Data System (ADS)

    Awe, O. E.; Oshakuade, O. M.

    2016-04-01

    A new method for calculating Infinite Dilute Activity Coefficients (γ∞s) of binary liquid alloys has been developed. This method is basically computing γ∞s from experimental thermodynamic integral free energy of mixing data using Complex formation model. The new method was first used to theoretically compute the γ∞s of 10 binary alloys whose γ∞s have been determined by experiments. The significant agreement between the computed values and the available experimental values served as impetus for applying the new method to 22 selected binary liquid alloys whose γ∞s are either nonexistent or incomplete. In order to verify the reliability of the computed γ∞s of the 22 selected alloys, we recomputed the γ∞s using three other existing methods of computing or estimating γ∞s and then used the γ∞s obtained from each of the four methods (the new method inclusive) to compute thermodynamic activities of components of each of the binary systems. The computed activities were compared with available experimental activities. It is observed that the results from the method being proposed, in most of the selected alloys, showed better agreement with experimental activity data. Thus, the new method is an alternative and in certain instances, more reliable approach of computing γ∞s of binary liquid alloys.

  9. Late neoproterozoic igneous complexes of the western Baikal-Muya Belt: Formation stages

    NASA Astrophysics Data System (ADS)

    Fedotova, A. A.; Razumovskiy, A. A.; Khain, E. V.; Anosova, M. O.; Orlova, A. V.

    2014-07-01

    The paper presents new geological, geochemical, and isotopic data on igneous rocks from a thoroughly studied area in the western Baikal-Muya Belt, which is a representative segment of the Neoproterozoic framework of the Siberian Craton. Three rock associations are distinguished in the studied area: granulite-enderbite-charnockite and ultramafic-mafic complexes followed by the latest tonalite-plagiogranitegranite series corresponding to adakite in geochemical characteristics. Tonalites and granites intrude the metamorphic and gabbroic rocks of the Tonky Mys Point, as well as Slyudyanka and Kurlinka intrusions. The tonalites yielded a U-Pb zircon age of 595 ± 5 Ma. The geochronological and geological information indicate that no later than a few tens of Ma after granulite formation they were transferred to the upper lithosphere level. The Sm-Nd isotopic data show that juvenile material occurs in rocks of granitoid series (ɛNd(t) = 3.2-7.1). Ophiolites, island-arc series, eclogites, and molasse sequences have been reviewed as indicators of Neoproterozoic geodynamic settings that existed in the Baikal-Muya Belt. The implications of spatially associated granulites and ultramafic-mafic intrusions, as well as granitoids with adakitic geochemical characteristics for paleogeodynamic reconstructions of the western Baikal-Muya Belt, are discussed together with other structural elements of the Central Asian Belt adjoining the Siberian Platform in the south.

  10. Decamethylytterbocene complexes of bipyridines and diazabutadines: multiconfigurational ground states and open-shell singlet formation

    SciTech Connect

    Bauer, Eric D; Booth, C H; Walter, M D; Kazhdan, D; Hu, Y - J; Lukens, Wayne; Maron, Laurent; Eisentein, Odile; Anderson, Richard

    2009-01-01

    Partial ytterbium f-orbital occupancy (i.e. intermediate valence) and open-shell singlet Draft 12/formation are established for a variety of bipyridine and diazabutadiene adducts to decamethylytterbocene, (C{sub 5}Me{sub 5}){sub 2}Yb or Cp*{sub 2}Yb. Data used to support this claim includes ytterbium valence measurements using Yb Lm-edge x-ray absorption near-edge structure (XANES) spectroscopy, magnetic susceptibility and Complete Active Space Self-Consistent Field (CASSCF) multi configurational calculations, as well as structural measurements compared to density-functional theory (DFT) calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground state wave function that has both an open-shell singlet f{sup 13} and a closed-shell singlet f{sup 14} component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the presence of intermediate valence and its lack of any significant temperature dependence. These results have implications for understanding chemical bonding not only in organolanthanide complexes, but also for organometallic chemistry in general, as well as understanding magnetic interactions in nanopartic1es and devices.

  11. Decamethylytterbocene Complexes of Bipyridines and Diazabutadienes: Multiconfigurational Ground States and Open-Shell Singlet Formation

    SciTech Connect

    Booth, Corwin H.; Walter, Marc D.; Kazhdan, Daniel; Hu, Yung-Jin; Lukens, Wayne W.; Bauer, Eric D.; Maron, Laurent; Eisenstein, Odile; Andersen, Richard A.

    2009-04-22

    Partial ytterbium f-orbital occupancy (i.e., intermediate valence) and open-shell singlet formation are established for a variety of bipyridine and diazabutadiene adducts with decamethylytterbocene, (C5Me5)2Yb, abbreviated as Cp*2Yb. Data used to support this claim include ytterbium valence measurements using Yb LIII-edge X-ray absorption near-edge structure spectroscopy, magnetic susceptibility, and complete active space self-consistent field (CASSCF) multiconfigurational calculations, as well as structural measurements compared to density functional theory calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground-state wave function that has both an open-shell singlet f13(?*)1, where pi* is the lowest unoccupied molecular orbital of the bipyridine or dpiazabutadiene ligands, and a closed-shell singlet f14 component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the lack of temperature dependence of the measured intermediate valence. These results have implications for understanding chemical bonding not only in organolanthanide complexes but also for f-element chemistry in general, as well as understanding magnetic interactions in nanoparticles and devices.

  12. SEPT12-Microtubule Complexes Are Required for Sperm Head and Tail Formation

    PubMed Central

    Kuo, Pao-Lin; Chiang, Han-Sun; Wang, Ya-Yun; Kuo, Yung-Che; Chen, Mei-Feng; Yu, I-Shing; Teng, Yen-Ni; Lin, Shu-Wha; Lin, Ying-Hung

    2013-01-01

    The septin gene belongs to a highly conserved family of polymerizing GTP-binding cytoskeletal proteins. SEPTs perform cytoskeletal remodeling, cell polarity, mitosis, and vesicle trafficking by interacting with various cytoskeletons. Our previous studies have indicated that SEPTIN12+/+/+/− chimeras with a SEPTIN12 mutant allele were infertile. Spermatozoa from the vas deferens of chimeric mice indicated an abnormal sperm morphology, decreased sperm count, and immotile sperm. Mutations and genetic variants of SEPTIN12 in infertility cases also caused oligozoospermia and teratozoospermia. We suggest that a loss of SEPT12 affects the biological function of microtublin functions and causes spermiogenesis defects. In the cell model, SEPT12 interacts with α- and β-tubulins by co-immunoprecipitation (co-IP). To determine the precise localization and interactions between SEPT12 and α- and β-tubulins in vivo, we created SEPTIN12-transgene mice. We demonstrate how SEPT12 interacts and co-localizes with α- and β-tubulins during spermiogenesis in these mice. By using shRNA, the loss of SEPT12 transcripts disrupts α- and β-tubulin organization. In addition, losing or decreasing SEPT12 disturbs the morphogenesis of sperm heads and the elongation of sperm tails, the steps of which are coordinated and constructed by α- and β-tubulins, in SEPTIN12+/+/+/− chimeras. In this study, we discovered that the SEPTIN12-microtubule complexes are critical for sperm formation during spermiogenesis. PMID:24213608

  13. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation

    PubMed Central

    de Vries, Femke A.T.; de Boer, Esther; van den Bosch, Mike; Baarends, Willy M.; Ooms, Marja; Yuan, Li; Liu, Jian-Guo; van Zeeland, Albert A.; Heyting, Christa; Pastink, Albert

    2005-01-01

    In meiotic prophase, synaptonemal complexes (SCs) closely appose homologous chromosomes (homologs) along their length. SCs are assembled from two axial elements (AEs), one along each homolog, which are connected by numerous transverse filaments (TFs). We disrupted the mouse gene encoding TF protein Sycp1 to analyze the role of TFs in meiotic chromosome behavior and recombination. Sycp1-/- mice are infertile, but otherwise healthy. Sycp1-/- spermatocytes form normal AEs, which align homologously, but do not synapse. Most Sycp1-/- spermatocytes arrest in pachynema, whereas a small proportion reaches diplonema, or, exceptionally, metaphase I. In leptotene Sycp1-/- spermatocytes, γH2AX (indicative of DNA damage, including double-strand breaks) appears normal. In pachynema, Sycp1-/- spermatocytes display a number of discrete γH2AX domains along each chromosome, whereas γH2AX disappears from autosomes in wild-type spermatocytes. RAD51/DMC1, RPA, and MSH4 foci (which mark early and intermediate steps in pairing/recombination) appear in similar numbers as in wild type, but do not all disappear, and MLH1 and MLH3 foci (which mark late steps in crossing over) are not formed. Crossovers were rare in metaphase I of Sycp1-/- mice. We propose that SYCP1 has a coordinating role, and ensures formation of crossovers. Unexpectedly, Sycp1-/- spermatocytes did not form XY bodies. PMID:15937223

  14. Formation and Identification of Unresolved Complex Mixtures in Lacustrine Biodegraded Oil from Nanxiang Basin, China

    PubMed Central

    Guo, Pengfei; He, Sheng; Zhu, Shukui; Chai, Derong; Yin, Shiyan; Dai, Wei; Zhang, Wanfeng

    2014-01-01

    A comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOFMS) method has been developed for the formation and identification of unresolved complex mixtures (UCMs) in lacustrine biodegraded oils that with the same source rock, similar maturity, and increasing degradation rank from Nanxiang Basin, China. Normal alkanes, light hydrocarbons, isoprenoids, steranes, and terpanes are degraded gradually from oil B330 to oil G574. The compounds in biodegraded oil (oil G574) have fewer types, the polarity difference of compounds in different types is minor, and the relative content of individual compounds is similar. All the features make the compounds in biodegraded oil coelute in GC analysis and form the raised “baseline hump” named UCMs. By injecting standard materials and analyzing mass spectrums of target compounds, it is shown that cyclic alkanes with one to five rings are the major components of UCMs. Furthermore, UCMs were divided into six classes. Classes I and II, composed of alkyl-cyclohexanes, alkyl-naphthanes, and their isomers, are originated from the enrichment of hydrocarbons resistant to degradation in normal oils. Classes III ~ VI, composed of sesquiterpenoids, tricyclic terpanes, low molecular steranes, diasteranes, norhopanes, and their isomers, are probably from some newly formed compounds during the microbial transformation of oil. PMID:25177711

  15. SipB-SipC complex is essential for translocon formation.

    PubMed

    Myeni, Sebenzile K; Wang, Lu; Zhou, Daoguo

    2013-01-01

    The delivery of effector proteins by Salmonella across the host cell membrane requires a subset of effectors secreted by the type III secretion system (TTSS) known as translocators. SipC and SipB are translocator proteins that are inserted into host membranes and presumably form a channel that translocates type III effectors into the host cell. The molecular events of how these translocators insert into the host cell membrane remain unknown. We have previously shown that the SipC C-terminal amino acid region (321-409) is required for the translocation of effectors into host cells. In this study, we demonstrate that the ability to form SipC-SipB complex is essential for their insertion into the host membrane. The SipB-interacting domain of SipC is near its C-terminal amino acid region (340-409). In the absence of SipB, SipC was not detected in the membrane fraction. Furthermore, SipC mutants that no longer interact with SipB are defective in inserting into the host cell membrane. We propose a mechanism whereby SipC binds SipB through its C-terminal region to facilitate membrane-insertion and subsequent translocon formation in the host cell membrane. PMID:23544147

  16. [Pattern formation in microcosm: the role of self-assembly in complex biological envelopes development].

    PubMed

    Gabaraeva, N I; Hemsley, A R

    2010-01-01

    The data on the development of pollen/spore walls (of sporoderm) were reconsidered in the light of our hypothesis regarding a considerable role of self-assembling processes in the formation of this complex pattern. The premises that (1) glycocalyx (cell surface coating) is a self-assembling colloidal solution, and that (2) exine, formed on a glycocalyx framework, appears as a result of the self-assembly of the biopolymer (sporopollenin microemulsion), were independently suggested by the authors of this paper (Gabarayeva, 1990, 1993; Hemsley et al., 1992). Afterwards a joint hypothesis has been worked out which interpreted the processes of sporoderm development through regularities of colloidal chemistry. It was shown that all of the successive developmental stages, seen in transmission electron microscope (TEM) in the course of pollen wall development, correspond to successive micelle mesophases of a colloidal solution of surface-active substances which self-assemble when their concentration increases. Such an interpretation implies that all of the microstructures, observed in mature pollen walls (granules; rods-columellae; hexagonally packed layers of rods; bilayers, separated with a gap) are somewhat like "stiff history" of their appearance as a micellar sequence, immortalized by chemically resistant sporopollenin. Since self-assembling processes have nonlinear, spasmodic character, and microstructures of pollen wall, mentioned above, are arranged, as a rule, in successive layers, it has been suggested that these layers of heterogeneous microstructures occur as a result of the abrupt phase transitions typical for self-assembling micellar systems. PMID:20865932

  17. A cyclo‐P6 Ligand Complex for the Formation of Planar 2D Layers

    PubMed Central

    Heindl, Claudia; Peresypkina, Eugenia V.; Lüdeker, David; Brunklaus, Gunther; Virovets, Alexander V.

    2016-01-01

    Abstract The all‐phosphorus analogue of benzene, stabilized as middle deck in triple‐decker complexes, is a promising building block for the formation of graphene‐like sheet structures. The reaction of [(CpMo)2(μ,η6:η6‐P6)] (1) with CuX (X=Br, I) leads to self‐assembly into unprecedented 2D networks of [{(CpMo)2P6}(CuBr)4]n (2) and [{(CpMo)2P6}(CuI)2]n (3). X‐ray structural analyses show a unique deformation of the previously planar cyclo‐P6 ligand. This includes bending of one P atom in an envelope conformation as well as a bisallylic distortion. Despite this, 2 and 3 form planar layers. Both polymers were furthermore analyzed by 31P{1H} magic angle spinning (MAS) NMR spectroscopy, revealing signals corresponding to six non‐equivalent phosphorus sites. A peak assignment is achieved by 2D correlation spectra as well as by DFT chemical shift computations. PMID:26711699

  18. Multi-scale modeling of complex neuronal networks: a view towards striatal cholinergic pattern formations.

    PubMed

    Noori, Hamid Reza

    2012-09-01

    The phenomena related to brain function occur as the interplay of various modules at different spatial and temporal scales. Particularly, the integration of the dynamical behavior of cells within the complex brain topology reveals a heterogeneous multi-scale problem, which has, to date, mainly been addressed by methods of statistical physics such as mean-field approximations. In contrast, the present study introduces an abstract mathematical model of a deterministic nature that provides a robust integral transformation of the microscopic activities into macroscopic spatiotemporal patterns. The existence of the transformation operator is guaranteed by the convergence of a repetitive patching of the network domain with its fundamental domains that express the local topologies of the tissue. Depending on the choice of the local connectivity function, this framework represents a computationally efficient generalization of the classical Kirchhoff's, Hebbian, and Hopfield's approaches. The capabilities of this multi-scale method have been evaluated within the structure of the dorsal striatum of rats, a brain region with major involvement in motor and cognitive information processing. Numerical simulations suggest the formation of characteristic spatiotemporal patterns due to the activation of cholinergic interneurons. PMID:24615222

  19. Cluster formation by allelomimesis in real-world complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Juanico, Dranreb Earl; Monterola, Christopher; Saloma, Caesar

    2005-04-01

    Animal and human clusters are complex adaptive systems and many organize in cluster sizes s that obey the frequency distribution D(s)∝s-τ . The exponent τ describes the relative abundance of the cluster sizes in a given system. Data analyses reveal that real-world clusters exhibit a broad spectrum of τ values, 0.7 (tuna fish schools) ⩽τ⩽4.61 (T4 bacteriophage gene family sizes). Allelomimesis is proposed as an underlying mechanism for adaptation that explains the observed broad τ spectrum. Allelomimesis is the tendency of an individual to imitate the actions of others and two cluster systems have different τ values when their component agents display unequal degrees of allelomimetic tendencies. Cluster formation by allelomimesis is shown to be of three general types: namely, blind copying, information-use copying, and noncopying. Allelomimetic adaptation also reveals that the most stable cluster size is formed by three strongly allelomimetic individuals. Our finding is consistent with available field data taken from killer whales and marmots.

  20. Floatation-spectrophotometric Determination of Thorium, Using Complex Formation with Eriochrome Cyanine R

    PubMed Central

    Shiri, Sabah; Delpisheh, Ali; Haeri, Ali; Poornajaf, Abdolhossein; Khezeli, Tahereh; Badkiu, Nadie

    2011-01-01

    A novel and sensitive floatation-spectrophotometric method is presented for determination of trace amounts of thorium in water samples. The method is based on the ion-associated formation between thorium, Eriochrome cyanine R and Brij-35 at pH = 4 media. The complex was floated in the interface of the aqueous phase and n-hexane by vigorous shaking. After removing the aqueous phase the floated particles were dissolved in methanol and the absorbance was measured at 607 nm. The influence of different important parameters such as Eriochrome cyanine R and surfactants concentration, pH, volume of n-hexane, standing time and interfering ions were evaluated. Under optimized conditions the calibration graph was linear in the range of 6–230 ng mL−1 of thorium with a correlation coefficient of 0.9985. The limit of detections (LOD), based on signal to noise ratio (S/N) of 3 was 1.7 ng mL−1. The relative standard deviations for determination of 150 and 30 ng ml−1 of thorium were 3.26 and 4.41%, respectively (n = 10). The method showed a good linearity, recoveries, as well as some advantages such as sensitivity, simplicity, affordability and a high feasibility. The method was successfully applied to determine thorium in different water and urine samples. PMID:21340019

  1. Resolving detailed molecular structures in complex organic mixtures and modeling their secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Goodman-Rendall, Kevin A. S.; Zhuang, Yang R.; Amirav, Aviv; Chan, Arthur W. H.

    2016-03-01

    Characterization of unresolved complex mixtures (UCMs) remains an ongoing challenge towards developing detailed and accurate inputs for modeling secondary organic aerosol (SOA) formation. Traditional techniques based on gas chromatography/electron impact-mass spectrometry induce excessive fragmentation, making it difficult to speciate and quantify isomers precisely. The goal of this study is to identify individual organic isomers by gas chromatography/mass spectrometry with supersonic molecular beam (SMB-GC/MS, also known as GC/MS with Cold EI) and to incorporate speciated isomers into an SOA model that accounts for the specific structures elucidated. Two samples containing atmospherically relevant UCMs are analyzed. The relative isomer distributions exhibit remarkably consistent trends across a wide range of carbon numbers. Constitutional isomers of different alkanes are speciated and individually quantified as linear, branched - for the first time by position of branching - multiply branched, or unsaturated - by degree of ring substitution and number of rings. Relative amounts of exact molecular structures are used as input parameters in an SOA box model to study the effects of molecular structures on SOA yields and volatility evolution. Highly substituted cyclic, mono-substituted cyclic, and linear species have the highest SOA yields while branched alkanes formed the least SOA. The rate of functionalization of a representative UCM is found to be in agreement with current volatility basis set (VBS) parameterizations based on detailed knowledge of composition and known oxidation mechanisms, confirming the validity of VBS parameters currently used in air quality models.

  2. Interaction between mosquito-larvicidal Lysinibacillus sphaericus binary toxin components: analysis of complex formation.

    PubMed

    Kale, Avinash; Hire, Ramesh S; Hadapad, Ashok B; D'Souza, Stanislaus F; Kumar, Vinay

    2013-11-01

    The two components (BinA and BinB) of Lysinibacillus sphaericus binary toxin together are highly toxic to Culex and Anopheles mosquito larvae, and have been employed world-wide to control mosquito borne diseases. Upon binding to the membrane receptor an oligomeric form (BinA2.BinB2) of the binary toxin is expected to play role in pore formation. It is not clear if these two proteins interact in solution as well, in the absence of receptor. The interactions between active forms of BinA and BinB polypeptides were probed in solution using size-exclusion chromatography, pull-down assay, surface plasmon resonance, circular dichroism, and by chemically crosslinking BinA and BinB components. We demonstrate that the two proteins interact weakly with first association and dissociation rate constants of 4.5×10(3) M(-1) s(-1) and 0.8 s(-1), resulting in conformational change, most likely, in toxic BinA protein that could kinetically favor membrane translocation of the active oligomer. The weak interactions between the two toxin components could be stabilized by glutaraldehyde crosslinking. The cross-linked complex, interestingly, showed maximal Culex larvicidal activity (LC50 value of 1.59 ng mL(-1)) reported so far for combination of BinA/BinB components, and thus is an attractive option for development of new bio-pesticides for control of mosquito borne vector diseases. PMID:23974012

  3. Bound Na(+) is a Negative Effecter for Thrombin-Substrate Stereospecific Complex Formation.

    PubMed

    Kurisaki, Ikuo; Takayanagi, Masayoshi; Nagaoka, Masataka

    2016-05-26

    Thrombin has been studied as a paradigmatic protein of Na(+)-activated allosteric enzymes. Earlier structural studies suggest that Na(+)-binding promotes the thrombin-substrate association reaction. However, it is still elusive because (1) the structural change, driven by Na(+)-binding, is as small as the thermal fluctuation, and (2) the bound Na(+) is close to Asp189 in the primary substrate binding pocket (S1-pocket), possibly preventing substrate access via repulsive interaction. It still remains a matter of debate whether Na(+)-binding actually promotes the reaction. To solve this problem, we examined the effect of Na(+) on the reaction by employing molecular dynamics (MD) simulations. By executing independent 210 MD simulations of apo and holo systems, we obtained 80 and 26 trajectories undergoing substrate access to S1-pocket, respectively. Interestingly, Na(+)-binding results in a 3-fold reduction of the substrate access. Furthermore, we examined works for the substrate access and release, and found that Na(+)-binding is disadvantageous for the presence of the substrate in the S1-pocket. These observations provide the insight that the bound Na(+) is essentially a negative effecter in thrombin-substrate stereospecific complex formation. The insight rationalizes an enigmatic feature of thrombin, relatively low Na(+)-binding affinity. This is essential to reduce the disadvantage of Na(+)-binding in the substrate-binding. PMID:27164318

  4. Feedback control of prion formation and propagation by the ribosome-associated chaperone complex

    PubMed Central

    Kiktev, Denis A.; Melomed, Mikhail M.; Lu, Caroline D.; Newnam, Gary P.; Chernoff, Yury O.

    2015-01-01

    Summary Cross-beta fibrous protein aggregates (amyloids and amyloid-based prions) are found in mammals (including humans) and fungi (including yeast), and are associated with both diseases and heritable traits. The Hsp104/70/40 chaperone machinery controls propagation of yeast prions. The Hsp70 chaperones Ssa and Ssb show opposite effects on [PSI+], a prion form of the translation termination factor Sup35 (eRF3). Ssb is bound to translating ribosomes via ribosome-associated complex (RAC), composed of Hsp40-Zuo1 and Hsp70-Ssz1. Here we demonstrate that RAC disruption increases de novo prion formation in a manner similar to Ssb depletion, but interferes with prion propagation in a manner similar to Ssb overproduction. Release of Ssb into the cytosol in RAC-deficient cells antagonizes binding of Ssa to amyloids. Thus, propagation of an amyloid formed due to lack of ribosome-associated Ssb can be counteracted by cytosolic Ssb, generating a feedback regulatory circuit. Release of Ssb from ribosomes is also observed in wild type cells during growth in poor synthetic medium. Ssb is, in a significant part, responsible for the prion destabilization in these conditions, underlining the physiological relevance of the Ssb-based regulatory circuit. PMID:25649498

  5. A cyclo-P6 Ligand Complex for the Formation of Planar 2D Layers.

    PubMed

    Heindl, Claudia; Peresypkina, Eugenia V; Lüdeker, David; Brunklaus, Gunther; Virovets, Alexander V; Scheer, Manfred

    2016-02-01

    The all-phosphorus analogue of benzene, stabilized as middle deck in triple-decker complexes, is a promising building block for the formation of graphene-like sheet structures. The reaction of [(CpMo)2 (μ,η(6) :η(6) -P6 )] (1) with CuX (X=Br, I) leads to self-assembly into unprecedented 2D networks of [{(CpMo)2 P6 }(CuBr)4 ]n (2) and [{(CpMo)2 P6 }(CuI)2 ]n (3). X-ray structural analyses show a unique deformation of the previously planar cyclo-P6 ligand. This includes bending of one P atom in an envelope conformation as well as a bisallylic distortion. Despite this, 2 and 3 form planar layers. Both polymers were furthermore analyzed by (31) P{(1) H} magic angle spinning (MAS) NMR spectroscopy, revealing signals corresponding to six non-equivalent phosphorus sites. A peak assignment is achieved by 2D correlation spectra as well as by DFT chemical shift computations. PMID:26711699

  6. Study of the complex formation between amine local anesthetics and uncouplers of oxidative phosphorylation carbonyl cyanide phenylhydrazones.

    PubMed

    Kolajová, M; Antalík, M; Sturdík, E

    1993-06-01

    Spectroscopic evidence is presented which indicates that the anionic uncoupler carbonyl cyanide-4-nitro-2-chloro-phenylhydrazone and the amine local anesthetics form a complex in aqueous solution. The complex formation studies were carried out for several pharmacologically important tertiary amines and some primary amines. Their relative potencies to form a complex with uncoupler have followed the order: procaine < trimecaine < tetracaine < dibucaine < dodecylamine < dicyclohexylamine < hexadecylamine. As to the more lipophilic nature of the complex the emphasized penetration into octanol and reinforced retention into mitochondria was observed. The higher ability of the complex to colapse the mitochondrial membrane potential confirms this fact. The effective concentration of amine local anesthetics to form a complex was correlated with their physicochemical properties namely lipophilicity and acidobasicity. The highest effectivities for complex formation is shown by the most lipophilic and the most ionized molecules of amines. Present results point to the importance of considering the role of amine anesthetic-uncoupler complex in interpreting physiological or ion transport data in which these substances have been used together. PMID:8224779

  7. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    PubMed Central

    Braun, Hans-Georg; Meyer, Evelyn

    2013-01-01

    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233

  8. Inducer effect on the complex formation between rat liver nuclear proteins and cytochrome P450 2B gene regulatory elements.

    PubMed

    Duzhak, T G; Schwartz, E I; Gulyaeva, L F; Lyakhovich, V V

    2002-09-01

    DNA gel retardation assay has been applied to the investigation of complexes between rat liver nuclear proteins and Barbie box positive regulatory element of cytochrome P450 2B (CYP2B) genes. The intensities of B1 and B2 bands detected in the absence of an inducer increased after 30 min protein incubation with phenobarbital (PB) or triphenyldioxane (TPD), but not with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOPOB). In addition, a new complex (B3 band) was for the first time detected under induction by PB, TPD, and TCPOPOB. Increase in the incubation time up to 2 h facilitated the formation of other new complexes (B4 and B5 bands), which were detected only in the presence of TPD. The use of [3H]TPD in hybridization experiments revealed that this inducer, capable of binding to Barbie box DNA, is also present in B4 and B5 complexes. It is probable that the investigated compounds activate the same proteins at the initial induction steps, which correlates with the formation of B1, B2, and B3 complexes. The further induction step might be inducer-specific, as indicated by the formation of B4 and B5 complexes in the presence of TPD only. Thus, the present data suggest the possibility of specific gene activation signaling pathways that are dependent on a particular inducer. PMID:12387719

  9. Reactions of a chromium(III)-superoxo complex and nitric oxide that lead to the formation of chromium(IV)-oxo and chromium(III)-nitrito complexes.

    PubMed

    Yokoyama, Atsutoshi; Cho, Kyung-Bin; Karlin, Kenneth D; Nam, Wonwoo

    2013-10-01

    The reaction of an end-on Cr(III)-superoxo complex bearing a 14-membered tetraazamacrocyclic TMC ligand, [Cr(III)(14-TMC)(O2)(Cl)](+), with nitric oxide (NO) resulted in the generation of a stable Cr(IV)-oxo species, [Cr(IV)(14-TMC)(O)(Cl)](+), via the formation of a Cr(III)-peroxynitrite intermediate and homolytic O-O bond cleavage of the peroxynitrite ligand. Evidence for the latter comes from electron paramagnetic resonance spectroscopy, computational chemistry and the observation of phenol nitration chemistry. The Cr(IV)-oxo complex does not react with nitrogen dioxide (NO2), but reacts with NO to afford a Cr(III)-nitrito complex, [Cr(III)(14-TMC)(NO2)(Cl)](+). The Cr(IV)-oxo and Cr(III)-nitrito complexes were also characterized spectroscopically and/or structurally. PMID:24066924

  10. Methamphetamine-Induced Dopamine Transporter Complex Formation and Dopaminergic Deficits: The Role of D2 Receptor Activation

    PubMed Central

    Hadlock, Gregory C.; Chu, Pei-Wen; Walters, Elliot T.; Hanson, Glen R.

    2010-01-01

    Methamphetamine (METH) abuse is a serious public health issue. Of particular concern are findings that repeated high-dose administrations of METH cause persistent dopaminergic deficits in rodents, nonhuman primates, and humans. Previous studies have also revealed that METH treatment causes alterations in the dopamine transporter (DAT), including the formation of higher molecular mass DAT-associated complexes. The current study extends these findings by examining mechanisms underlying DAT complex formation. The association among DAT complex formation and other METH-induced phenomena, including alterations in vesicular monoamine transporter 2 (VMAT2) immunoreactivity, astrocytic activation [as assessed by increased glial fibrillary acidic protein (GFAP) immunoreactivity], and persistent dopaminergic deficits was also explored. Results revealed that METH-induced DAT complex formation and reductions in VMAT2 immunoreactivity precede increases in GFAP immunoreactivity. Furthermore, and as reported previously for DAT complexes, pretreatment with the D2 receptor antagonist eticlopride [S-(−)-3-chloro-5-ethyl-N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-hydroxy-2-methoxybenzamide hydrochloride] attenuated the decrease in VMAT2 immunoreactivity as assessed 24 h after METH treatment. DAT complexes distinct from those present 24 h after METH treatment, decreases in VMAT2 immunoreactivity, and increased GFAP immunoreactivity were present 48 to 72 h after METH treatment. Pretreatment with eticlopride attenuated each of these phenomena. Finally, DAT complexes were present 7 days after METH treatment, a time point at which VMAT2 and DAT monomer immunoreactivity were also reduced. Eticlopride pretreatment attenuated each of these phenomena. These findings provide novel insight into not only receptor-mediated mechanisms underlying the effects of METH but also the interaction among factors that probably are associated with the persistent dopaminergic deficits caused by the stimulant. PMID

  11. Titanium oxide complexes with dinitrogen. Formation and characterization of the side-on and end-on bonded titanium oxide-dinitrogen complexes in solid neon.

    PubMed

    Zhou, Mingfei; Zhuang, Jia; Zhou, Zijian; Li, Zhen Hua; Zhao, Yanying; Zheng, Xuming; Fan, Kangnian

    2011-06-23

    The reactions of titanium oxide molecules with dinitrogen have been studied by matrix isolation infrared spectroscopy. The titanium monoxide molecule reacts with dinitrogen to form the TiO(N(2))(x) (x = 1-4) complexes spontaneously on annealing in solid neon. The TiO(η(1)-NN) complex is end-on bonded and was predicted to have a (3)A'' ground state arising from the (3)Δ ground state of TiO. Argon doping experiments indicate that TiO(η(1)-NN) is able to form complexes with one or more argon atoms. Argon atom coordination induces a large red-shift of the N-N stretching frequency. The TiO(η(2)-N(2))(2) complex was characterized to have C(2v) symmetry, in which both the N(2) ligands are side-on bonded to the titanium metal center. The tridinitrogen complex TiO(η(1)-NN)(3) most likely has C(3v) symmetry with three end-on bonded N(2) ligands. The TiO(η(1)-NN)(4) complex was determined to have a C(4v) structure with four equivalent end-on bonded N(2) ligands. In addition, evidence is also presented for the formation of the TiO(2)(η(1)-NN)(x) (x = 1-4) complexes, which were predicted to be end-on bonded. PMID:21604730

  12. Ablation of MMP9 gene ameliorates paracellular permeability and fibrinogen-amyloid beta complex formation during hyperhomocysteinemia.

    PubMed

    Muradashvili, Nino; Tyagi, Reeta; Metreveli, Naira; Tyagi, Suresh C; Lominadze, David

    2014-09-01

    Increased blood level of homocysteine (Hcy), called hyperhomocysteinemia (HHcy) accompanies many cognitive disorders including Alzheimer's disease. We hypothesized that HHcy-enhanced cerebrovascular permeability occurs via activation of matrix metalloproteinase-9 (MMP9) and leads to an increased formation of fibrinogen-β-amyloid (Fg-Aβ) complex. Cerebrovascular permeability changes were assessed in C57BL/6J (wild type, WT), cystathionine-β-synthase heterozygote (Cbs+/-, a genetic model of HHcy), MMP9 gene knockout (Mmp9-/-), and Cbs and Mmp9 double knockout (Cbs+/-/Mmp9-/-) mice using a dual-tracer probing method. Expression of vascular endothelial cadherin (VE-cadherin) and Fg-Aβ complex formation was assessed in mouse brain cryosections by immunohistochemistry. Short-term memory of mice was assessed with a novel object recognition test. The cerebrovascular permeability in Cbs+/- mice was increased via mainly the paracellular transport pathway. VE-cadherin expression was the lowest and Fg-Aβ complex formation was the highest along with the diminished short-term memory in Cbs+/- mice. These effects of HHcy were ameliorated in Cbs+/-/Mmp9-/- mice. Thus, HHcy causes activation of MMP9 increasing cerebrovascular permeability by downregulation of VE-cadherin resulting in an enhanced formation of Fg-Aβ complex that can be associated with loss of memory. These data may lead to the identification of new targets for therapeutic intervention that can modulate HHcy-induced cerebrovascular permeability and resultant pathologies. PMID:24865997

  13. Assessment of the CCSD and CCSD(T) Coupled-Cluster Methods in Calculating Heats of Formation for Zn Complexes

    NASA Astrophysics Data System (ADS)

    Weaver, Michael N.; Yang, Yue; Merz, Kenneth M.

    2009-08-01

    Heats of formation were calculated using coupled-cluster methods for a series of zinc complexes. The calculated values were evaluated against previously conducted computational studies using density functional methods as well as experimental values. Heats of formation for nine neutral ZnXn complexes [X = -Zn, -H, -O, -F2, -S, -Cl, -Cl2, -CH3, (-CH3)2] were determined at the CCSD and CCSD(T) levels using the 6-31G** and TZVP basis sets as well as the LANL2DZ-6-31G** (LACVP**) and LANL2DZ-TZVP hybrid basis sets. The CCSD(T)/6-31G** level of theory was found to predict the heat of formation for the nonalkyl Zn complexes most accurately. The alkyl Zn species were problematic in that none of the methods that were tested accurately predicted the heat of formation for these complexes. In instances where experimental geometric parameters were available, these were most accurately predicted by the CCSD/6-31G** level of theory; going to CCSD(T) did not improve agreement with the experimental values. Coupled-cluster methods did not offer a systemic improvement over DFT calculations for a given functional/basis set combination. With the exceptions of ZnH and ZnF2, there are multiple density functionals that outperform coupled-cluster calculations with the 6-31G** basis set.

  14. A Developmental Framework for Complex Plasmodesmata Formation Revealed by Large-Scale Imaging of the Arabidopsis Leaf Epidermis[W

    PubMed Central

    Fitzgibbon, Jessica; Beck, Martina; Zhou, Ji; Faulkner, Christine; Robatzek, Silke; Oparka, Karl

    2013-01-01

    Plasmodesmata (PD) form tubular connections that function as intercellular communication channels. They are essential for transporting nutrients and for coordinating development. During cytokinesis, simple PDs are inserted into the developing cell plate, while during wall extension, more complex (branched) forms of PD are laid down. We show that complex PDs are derived from existing simple PDs in a pattern that is accelerated when leaves undergo the sink–source transition. Complex PDs are inserted initially at the three-way junctions between epidermal cells but develop most rapidly in the anisocytic complexes around stomata. For a quantitative analysis of complex PD formation, we established a high-throughput imaging platform and constructed PDQUANT, a custom algorithm that detected cell boundaries and PD numbers in different wall faces. For anticlinal walls, the number of complex PDs increased with increasing cell size, while for periclinal walls, the number of PDs decreased. Complex PD insertion was accelerated by up to threefold in response to salicylic acid treatment and challenges with mannitol. In a single 30-min run, we could derive data for up to 11k PDs from 3k epidermal cells. This facile approach opens the door to a large-scale analysis of the endogenous and exogenous factors that influence PD formation. PMID:23371949

  15. Monitoring the formation of carbide crystal phases during the thermal decomposition of 3d transition metal dicarboxylate complexes

    SciTech Connect

    Huba, ZJ; Carpenter, EE

    2014-06-06

    Single molecule precursors can help to simplify the synthesis of complex alloys by minimizing the amount of necessary starting reagents. However, single molecule precursors are time consuming to prepare with very few being commercially available. In this study, a simple precipitation method is used to prepare Fe, Co, and Ni fumarate and succinate complexes. These complexes were then thermally decomposed in an inert atmosphere to test their efficiency as single molecule precursors for the formation of metal carbide phases. Elevated temperature X-ray diffraction was used to identify the crystal phases produced upon decomposition of the metal dicarboxylate complexes. Thermogravimetric analysis coupled with an infrared detector was used to identify the developed gaseous decomposition products. All complexes tested showed a reduction from the starting M2+ oxidation state to the M oxidation state, upon decomposition. Also, each complex tested showed CO2 and H2O as gaseous decomposition products. Nickel succinate, iron succinate, and iron fumarate complexes were found to form carbide phases upon decomposition. This proves that transition metal dicarboxylate salts can be employed as efficient single molecule precursors for the formation of metal carbide crystal phases.

  16. Formation of κ-carrageenan-gelatin polyelectrolyte complexes studied by (1)H NMR, UV spectroscopy and kinematic viscosity measurements.

    PubMed

    Voron'ko, Nicolay G; Derkach, Svetlana R; Vovk, Mikhail A; Tolstoy, Peter M

    2016-10-20

    The intermolecular interactions between an anionic polysaccharide from the red algae κ-carrageenan and a gelatin polypeptide, forming stoichiometric polysaccharide-polypeptide (bio)polyelectrolyte complexes in the aqueous phase, were examined. The major method of investigation was high-resolution (1)H NMR spectroscopy. Additional data were obtained by UV absorption spectroscopy, light scattering dispersion and capillary viscometry. Experimental data were interpreted in terms of the changing roles of electrostatic interactions, hydrophobic interactions and hydrogen bonds when κ-carrageenan-gelatin complexes are formed. At high temperatures, when biopolymer macromolecules in solution are in the state of random coil, hydrophobic interactions make a major contribution to complex stabilization. At the temperature of gelatin's coil→helix conformational transition and at lower temperatures, electrostatic interactions and hydrogen bonds play a defining role in complex formation. A proposed model of the κ-carrageenan-gelatin complex is discussed. PMID:27474666

  17. The effects of pH and PEG 400-water cosolvents on oxytetracycline-magnesium complex formation and stability.

    PubMed

    Tongaree, S; Goldberg, A M; Flanagan, D R; Poust, R I

    2000-01-01

    The effects of pH and PEG 400 on the stoichiometry, conformation, and stability of the magnesium-oxytetracycline (Mg+2-OTC) complex were evaluated. Circular dichroism (CD) and HPLC were used to investigate Mg+2-OTC complex formation and determine the stability of the complexes formed. The stoichiometry of the complex was determined to be a 1:1 molar ratio of Mg+2 to OTC regardless of changes in pH, in the range 7-10, and regardless of the percentage of polyethylene glycol (PEG) 400 in solution. CD showed that the conformation assumed by Mg+2-OTC complex is sensitive to changes in pH, however, little to no effect was found when the PEG 400 concentration was varied. PEG 400 was found to effect the magnitude of complexation as evident by the dependence of CD peak intensity on the cosolvent concentration in solution. The Job's method confirmed that the formation of this complex increased with increasing PEG 400 concentration and was most favored at pH 8. HPLC analyses of OTC solutions at pH 9 revealed the formation of multiple degradation products after storage at 50 degrees C. The incidence and magnitude of OTC degradation products were reduced in the presence of Mg+2 and PEG 400. Despite the HPLC results of maintained OTC stability in magnesium-complexed solutions over time, visual inspection showed these solutions to have darkened, indicating that an oxidative process is responsible for initial degradation of OTC. Therefore, the need for additional measures (i.e., antioxidants) was established to ensure the long-term stability of OTC in solution. PMID:10810749

  18. Ternary complex formation and competition quench fluorescence of ZnAF family zinc sensors.

    PubMed

    Staszewska, Anna; Kurowska, Ewa; Bal, Wojciech

    2013-11-01

    Our current understanding of the intracellular thermodynamics and kinetics of Zn(ii) ions is largely based on the application of fluorescent sensor molecules, used to study and visualize the concentration, distribution and transport of Zn(ii) ions in real time. Such agents are designed for high selectivity for zinc in respect to other biological metal ions. However, the issue of their sensitivity to physiological levels of low molecular weight Zn(ii) ligands (LMWLs) has not been addressed. We followed the effects of eight such compounds on the fluorescence of ZnAF-1 and ZnAF-2F, two representatives of the ZnAF family of fluorescein-based zinc sensors containing the N,N-bis(2-pyridylmethyl)ethylenediamine chelating unit. Fluorescence titrations of equimolar Zn(ii)-ZnAF-1 and Zn(ii)-ZnAF-2F solutions with acetate, phosphate, citrate, glycine, glutamic acid, histidine, ATP and GSH demonstrated strong fluorescence quenching. These results are interpreted in terms of an interplay of the formation of the [ZnAF-Zn(ii)-LMWL] ternary complexes and the competition for Zn(ii) between ZnAF and LMWLs. UV-vis spectroscopic titrations revealed the existence of supramolecular interactions between the fluorescein moiety of ZnAF-1 and ATP and His, which, however, did not contribute to fluorescence quenching. Therefore, the obtained results show that the ZnAF sensors, other currently used zinc sensors containing the N,N-bis(2-pyridylmethyl)ethylenediamine unit, and, in general, all sensors that do not saturate the Zn(ii) coordination sphere may co-report cellular metabolites and Zn(ii) ions, leading to misrepresentations of the concentrations and fluxes of biological zinc. PMID:23939683

  19. Synaptonemal Complex Proteins of Budding Yeast Define Reciprocal Roles in MutSγ-Mediated Crossover Formation.

    PubMed

    Voelkel-Meiman, Karen; Cheng, Shun-Yun; Morehouse, Savannah J; MacQueen, Amy J

    2016-07-01

    During meiosis, crossover recombination creates attachments between homologous chromosomes that are essential for a precise reduction in chromosome ploidy. Many of the events that ultimately process DNA repair intermediates into crossovers during meiosis occur within the context of homologous chromosomes that are tightly aligned via a conserved structure called the synaptonemal complex (SC), but the functional relationship between SC and crossover recombination remains obscure. There exists a widespread correlation across organisms between the presence of SC proteins and successful crossing over, indicating that the SC or its building block components are procrossover factors . For example, budding yeast mutants missing the SC transverse filament component, Zip1, and mutant cells missing the Zip4 protein, which is required for the elaboration of SC, fail to form MutSγ-mediated crossovers. Here we report the reciprocal phenotype-an increase in MutSγ-mediated crossovers during meiosis-in budding yeast mutants devoid of the SC central element components Ecm11 or Gmc2, and in mutants expressing a version of Zip1 missing most of its N terminus. This novel phenotypic class of SC-deficient mutants demonstrates unequivocally that the tripartite SC structure is dispensable for MutSγ-mediated crossover recombination in budding yeast. The excess crossovers observed in SC central element-deficient mutants are Msh4, Zip1, and Zip4 dependent, clearly indicating the existence of two classes of SC proteins-a class with procrossover function(s) that are also necessary for SC assembly and a class that is not required for crossover formation but essential for SC assembly. The latter class directly or indirectly limits MutSγ-mediated crossovers along meiotic chromosomes. Our findings illustrate how reciprocal roles in crossover recombination can be simultaneously linked to the SC structure. PMID:27184389

  20. Complex formation between heme oxygenase and phytochrome during biosynthesis in Pseudomonas syringae pv. tomato.

    PubMed

    Shah, Rashmi; Schwach, Julia; Frankenberg-Dinkel, Nicole; Gärtner, Wolfgang

    2012-06-01

    The plant pathogen Pseudomonas syringae pv. tomato carries two genes encoding bacterial phytochromes. Sequence motifs identify both proteins (PstBphP1 and PstBphP2, respectively) as biliverdin IXα (BV)-binding phytochromes. PstbphP1 is arranged in an operon with a heme oxygenase (PstBphO)-encoding gene (PstbphO), whereas PstbphP2 is flanked downstream by a gene encoding a CheY-type response regulator. Expression of the heme oxygenase PstBphO yielded a green protein (λ(max) = 650 nm), indicative for bound BV. Heterologous expression of PstbphP1 and PstbphP2 and in vitro assembly with BV IXα yielded the apoproteins for both phytochromes, but only in the case of PstBphP1 a light-inducible chromoprotein. Attempts to express the endogenous heme oxygenase BphO and either of the two phytochromes from two plasmids yielded only holo-PstBphP1. Relatively small amounts of soluble holo-PstBphP2 were just obtained upon co-expression with BphO from P. aeruginosa. Expression of the operon containing PstbphO:PstbphP1 led to an improved yield and better photoreactivity for PstBphP1, whereas an identical construct, exchanging PstbphP1 for PstbphP2 (PstbphO:PstbphP2), again yielded only minute amounts of chromophore-loaded BphP2-holoprotein. The improved yield for PstBphP1 from the PstbphO:PstbphP1 operon expression is apparently caused by complex formation between both proteins during biosynthesis as affinity chromatography of either protein using two different tags always co-purified the reaction partner. These results support the importance of protein-protein interactions during tetrapyrrole metabolism and phytochrome assembly. PMID:22415794

  1. Protection of Metal Artifacts with the Formation of Metal–Oxalates Complexes by Beauveria bassiana

    PubMed Central

    Joseph, Edith; Cario, Sylvie; Simon, Anaële; Wörle, Marie; Mazzeo, Rocco; Junier, Pilar; Job, Daniel

    2012-01-01

    Several fungi present high tolerance to toxic metals and some are able to transform metals into metal–oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g L−1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal–oxalates can be used in the restoration and conservation of archeological and modern metal artifacts. The production of copper oxalates was confirmed directly using metallic pieces (both archeological and modern). The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal–oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates. However, the formation of a homogeneous layer on the object is not yet optimal. On silver, a co-precipitation of copper and silver oxalates occurred. As this greenish patina would not be acceptable on silver objects, silver reduction was explored as a tarnishing remediation. First experiments showed the transformation of silver nitrate into nanoparticles of elemental silver by an unknown extracellular mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artifacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals. PMID:22291684

  2. A complex cortical reaction leads to formation of the fertilization envelope in the lobster, Homarus.

    PubMed

    Talbot, P; Goudeau, M

    1988-01-01

    We have examined the formation of the fertilization envelope in the lobsters Homarus americanus and H gammarus. Oocytes were fixed for electron microscopy either in the ovary or following extrusion from the gonopore. Mature ovarian oocytes are surrounded by a coat (envelope 1), which is comprised of small electron-dense granules and structures resembling "bottlebrushes." At least part of this coat is synthesized by the follicle cells of the ovary. The cortex of ovarian oocytes contains four types of vesicles that we refer to as high-density vesicles (HDV), low-density vesicles (LDV), moderately dense vesicles (MDV), and ring vesicles (RV). Oocytes that were electrically extruded from the gonopore and fixed immediately had an envelope identical to that of ovarian oocytes. The cortex of gonopore oocytes contained the four types of vesicles found in ovarian oocytes. When unfertilized gonopore oocytes were allowed to incubate in sea water, the oocyte cortex appeared unaltered, but envelope 1 swelled and the bottlebrushes dispersed. When recently fertilized oocytes were fixed during natural spawning or following in-vitro fertilization, each type of vesicle was released in sequence from the cortex of the oocyte. The contents of the HDV and LDV appeared first in the perivitelline space, but their fate could not be determined at later times. The ring-shaped elements of the RV and the moderately electron-dense material of the MDV were released exocytotically somewhat later; these materials coalesced in the perivitelline space to form a new coat (envelope 2). Envelope 1 subsequently condensed to its original thickness and appeared firmly attached to envelope 2. Our results show that the fertilized lobster egg is surrounded by two discrete coats. The outer coat, which is formed in the ovary, undergoes a swelling/condensation cycle at spawning. The inner coat originates from a complex cortical reaction. Together these coats comprise the fertilization envelope of the lobster

  3. Protein Phosphatase 2A Regulates Interleukin-2 Receptor Complex Formation and JAK3/STAT5 Activation*

    PubMed Central

    Ross, Jeremy A.; Cheng, Hanyin; Nagy, Zsuzsanna S.; Frost, Jeffrey A.; Kirken, Robert A.

    2010-01-01

    Reversible protein phosphorylation plays a key role in interleukin-2 (IL-2) receptor-mediated activation of Janus tyrosine kinase 3 (JAK3) and signal transducer and activator of transcription 5 (STAT5) in lymphocytes. Although the mechanisms governing IL-2-induced tyrosine phosphorylation and activation of JAK3/STAT5 have been extensively studied, the role of serine/threonine phosphorylation in controlling these effectors remains to be elucidated. Using phosphoamino acid analysis, JAK3 and STAT5 were determined to be serine and tyrosine-phosphorylated in response to IL-2 stimulation of the human natural killer-like cell line, YT. IL-2 stimulation also induced serine/threonine phosphorylation of IL-2Rβ, but not IL-2Rγ. To investigate the regulation of serine/threonine phosphorylation in IL-2 signaling, the roles of protein phosphatase 1 (PP1) and 2A (PP2A) were examined. Inhibition of phosphatase activity by calyculin A treatment of YT cells resulted in a significant induction of serine phosphorylation of JAK3 and STAT5, and serine/threonine phosphorylation of IL-2Rβ. Moreover, inhibition of PP2A, but not PP1, diminished IL-2-induced tyrosine phosphorylation of IL-2Rβ, JAK3, and STAT5, and abolished STAT5 DNA binding activity. Serine/threonine phosphorylation of IL-2Rβ by a staurosporine-sensitive kinase also blocked its association with JAK3 and IL-2Rγ in YT cells. Taken together, these data indicate that serine/threonine phosphorylation negatively regulates IL-2 signaling at multiple levels, including receptor complex formation and JAK3/STAT5 activation, and that this regulation is counteracted by PP2A. These findings also suggest that PP2A may serve as a therapeutic target for modulating JAK3/STAT5 activation in human disease. PMID:19923221

  4. Petrological and geochemical constraints on granitoid formation: The Waldoboro Pluton Complex, Maine

    SciTech Connect

    Barton, M. . Dept. of Geological Science); Sidle, W.S. )

    1992-01-01

    The Waldoboro Pluton Complex (WPC) comprises seven units ranging from qtz-diorite to aplite. The country rocks are biotite-rich metagraywackes with minor shales mostly belonging to the Proterozoic Z-Ordovician Bucksport Formation. Field evidence strongly suggests that the WPC formed in-situ: contacts with the country rock are cryptic, transitional and concordant; restitic minerals in the granitoids are identical to those in the country rocks; prolific metasedimentary enclaves in the WPC are locally derived. Major and trace element data for country rock and the most voluminous units of the WPC define consistent linear trends suggesting limited melt segregation and retention of a high proportion of restite. Mixing models and partial melting models require 54--76% melting for generation of the gneissic granites and two-mica granites. Garnet-biotite geothermometry and garnet-Al[sub 2]SiO[sub 5]-SiO[sub 2]-plagioclase geobarometry indicate that the WPC formed at T = 740--780 C and P = 0.4--0.7 GPa. Published experimental data show that < 50% melting is likely under these conditions if melting is controlled by dehydration reactions. Bucksport lithologies contain < 20% biotite, suggesting that the maximum amount of melt that could have formed by dehydration melting is < 20%, even if all biotite was consumed during melting. It seems probable that a free fluid phase was required to generate the WPC. Migmatization is apparent in all lithologies (including amphibolites) in the vicinity of the WPC, consistent with fluid-present melting. Fluid may have ingressed along the St. George thrust, but the source of the fluid is unknown.

  5. Electrocatalytic Oxidation of Formate by [Ni(PR2NR`2)2(CH3CN)]2+ Complexes

    SciTech Connect

    Galan, Brandon R.; Schoffel, Julia; Linehan, John C.; Seu, Candace; Appel, Aaron M.; Roberts, John A.; Helm, Monte L.; Kilgore, Uriah J.; Yang, Jenny Y.; DuBois, Daniel L.; Kubiak, Cliff

    2011-09-07

    New [Ni(PR2NR`2)2(CH3CN)]2+ complexes with R = Ph, R` = 4-MeOPh; R = Cy, R` = Ph and a mixed ligand [Ni(PR2NR`2)(PR``2NR`2)]2+ with R = Cy, R` = Ph, R`` = Ph have been synthesized and characterized by single crystal X-ray crystallography. These complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO2, protons, and electrons with rates which are first order in catalyst and in formate at formate concentrations below approximately 0.05 M. For the catalysts studied, maximum observed turnover frequencies vary from <1.1 s-1 to 12.5 s-1 at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. A mechanistic scheme is proposed which involves an initial nickel complex bound 1-OC(O)H followed by a rate limiting hydride transfer step. An acetate complex demonstrating the 1-OC(O)CH3 binding mode to nickel has also been synthesized and characterized by single crystal X-ray crystallography. The pendant amines have been demonstrated to be essential for this electrocatalytic activity as no activity toward formate was found for the similar [Ni(depe)2][BF4]2 (depe = diethylphosphinoethane) complex. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  6. Effect of pH and chemical mechanical planarization process conditions on the copper–benzotriazole complex formation

    NASA Astrophysics Data System (ADS)

    Cho, Byoung-Jun; Kim, Jin-Yong; Hamada, Satomi; Shima, Shohei; Park, Jin-Goo

    2016-06-01

    Benzotriazole (BTA) has been used to protect copper (Cu) from corrosion during Cu chemical mechanical planarization (CMP) processes. However, an undesirable Cu–BTA complex is deposited after Cu CMP processes and it should be completely removed at post-Cu CMP cleaning for next fabrication process. Therefore, it is very important to understand of Cu–BTA complex formation behavior for its applications such as Cu CMP and post-Cu CMP cleaning. The present study investigated the effect of pH and polisher conditions on the formation of Cu–BTA complex layers using electrochemical techniques (potentiodynamic polarization and electrochemical impedance spectroscopy) and the surface contact angle. The wettability was not a significant factor for the polishing interface, as no difference in the contact angles was observed for these processes. Both electrochemical techniques revealed that BTA had a unique advantage of long-term protection for Cu corrosion in an acidic condition (pH 3).

  7. Determination of complex formation constants by phase sensitive alternating current polarography: Cadmium-polymethacrylic acid and cadmium-polygalacturonic acid.

    PubMed

    Garrigosa, Anna Maria; Gusmão, Rui; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2007-10-15

    The use of phase sensitive alternating current polarography (ACP) for the evaluation of complex formation constants of systems where electrodic adsorption is present has been proposed. The applicability of the technique implies the previous selection of the phase angle where contribution of capacitive current is minimized. This is made using Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) in the analysis of ACP measurements at different phase angles. The method is checked by the study of the complexation of Cd by polymethacrylic (PMA) and polygalacturonic (PGA) acids, and the optimal phase angles have been ca. -10 degrees for Cd-PMA and ca. -15 degrees for Cd-PGA systems. The goodness of phase sensitive ACP has been demonstrated comparing the determined complex formation constants with those obtained by reverse pulse polarography, a technique that minimizes the electrode adsorption effects on the measured currents. PMID:19073101

  8. Characterizing Extragalactic Star Formation with GALEX Legacy Photometric Analysis of UV-Bright Stellar Complexes

    NASA Astrophysics Data System (ADS)

    Thilker, David

    At the close of nearly a decade of observing, GALEX has accumulated an unprecedented archive of ultraviolet (UV) images revealing both the scope and intricacy of star formation (SF) in many thousands of galaxies inhabiting the local universe. If the observed hierarchical SF morphology can be quantified systematically, and physically interpreted with multi-wavelength ancillary data and modeling, then the low redshift GALEX legacy will approach completion. However, the GALEX GR6 pipeline database contains a highly incomplete census of young stellar complexes even for very well-studied galaxies. We propose to apply a dedicated photometry algorithm that has been optimized for measuring the properties of irregularly shaped sources in crowded galaxy images containing spatially variant, diffuse intra-clump emission. Structures will be selected in the UV, but we will compile UV-visible-MIR SEDs for each detection utilizing Pan-STARRS1+SDSS and WISE data. These SEDs will then be fit using population-synthesis models to derive estimated stellar mass, age, and extinction. Processing will be completed for the entire diameter-limited GALEX Large Galaxy Atlas (GLGA) sample of 20,000+ galaxies, at a variety of standardized spatial resolutions. Although the precise categorization of the cataloged substructures will depend on galaxy distance, the outcome of our analysis will be a catalog similar to the stellar association surveys of past decades for very nearby galaxies based on resolved stars (e.g. van den Bergh 1964, Hodge 1986, Efremov et al. 1987), except that our investigation will probe a galaxy sample of dramatically larger size using the integrated UV light from such groupings of young stars. Our algorithm is multi-scale in nature and will thus preserve the hierarchical properties of the stellar distribution, by linking sub-clumps to their larger-scale parent feature(s). The resulting database will be a fundamental resource for follow-up multi-wavelength studies probing SF

  9. Crystal structure and solution species of Ce(III) and Ce(IV) formates: from mononuclear to hexanuclear complexes.

    PubMed

    Hennig, Christoph; Ikeda-Ohno, Atsushi; Kraus, Werner; Weiss, Stephan; Pattison, Philip; Emerich, Hermann; Abdala, Paula M; Scheinost, Andreas C

    2013-10-21

    Cerium(III) and cerium(IV) both form formate complexes. However, their species in aqueous solution and the solid-state structures are surprisingly different. The species in aqueous solutions were investigated with Ce K-edge EXAFS spectroscopy. Ce(III) formate shows only mononuclear complexes, which is in agreement with the predicted mononuclear species of Ce(HCOO)(2+) and Ce(HCOO)2(+). In contrast, Ce(IV) formate forms in aqueous solution a stable hexanuclear complex of [Ce6(μ3-O)4(μ3-OH)4(HCOO)x(NO3)y](12-x-y). The structural differences reflect the different influence of hydrolysis, which is weak for Ce(III) and strong for Ce(IV). Hydrolysis of Ce(IV) ions causes initial polymerization while complexation through HCOO(-) results in 12 chelate rings stabilizing the hexanuclear Ce(IV) complex. Crystals were grown from the above-mentioned solutions. Two crystal structures of Ce(IV) formate were determined. Both form a hexanuclear complex with a [Ce6(μ3-O)4(μ3-OH)4](12+) core in aqueous HNO3/HCOOH solution. The pH titration with NaOH resulted in a structure with the composition [Ce6(μ3-O)4(μ3-OH)4(HCOO)10(NO3)2(H2O)3]·(H2O)9.5, while the pH adjustment with NH3 resulted in [Ce6(μ3-O)4(μ3-OH)4(HCOO)10(NO3)4]·(NO3)3(NH4)5(H2O)5. Furthermore, the crystal structure of Ce(III) formate, Ce(HCOO)3, was determined. The coordination polyhedron is a tricapped trigonal prism which is formed exclusively by nine HCOO(-) ligands. The hexanuclear Ce(IV) formate species from aqueous solution is widely preserved in the crystal structure, whereas the mononuclear solution species of Ce(III) formate undergoes a polymerization during the crystallization process. PMID:24090406

  10. Formation, Detection and the Distribution of Complex Organic Molecules with the Atacama Large Millimeter/submillimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    Remijan, Anthony John

    2015-08-01

    The formation and distribution of complex organic material in astronomical environments continues to be a focused research area in astrochemistry. For several decades now, emphasis has been placed on the millimeter/submillimeter regime of the radio spectrum for trying to detect new molecular species and to constrain the chemical formation route of complex molecules by comparing and contrasting their relative distributions towards varying astronomical environments. This effort has been extremely laborious as millimeter/submillimeter facilities have been only able to detect and map the distribution of the strongest transition(s) of the simplest organic molecules. Even then, these single transition "chemical maps" have been very low spatial resolution because early millimeter/submillimeter facilities did not have access to broadband spectral coverage or the imaging capabilities to truly ascertain the morphology of the molecular emission. In the era of ALMA, these limitations have been greatly lifted. Broadband spectral line surveys now hold the key to uncovering the full molecular complexity in astronomical environments. In addition, searches for complex organic material is no longer limited to investigating the strongest lines of the simplest molecules toward the strongest sources of emission in the Galaxy. ALMA is issuing a new era of exploration as the search for complex molecules will now be available to an increased suite of sources in the Galaxy and our understanding of the formation of this complex material will be greatly increased as a result. This presentation will highlight the current and future ALMA capabilities in the search for complex molecules towards astronomical environments, highlight the recent searches that ALMA scientists have conducted from the start of ALMA Early Science and provide the motivation for the next suite of astronomical searches to investigate our pre-biotic origins in the universe.

  11. The formation at 37 C of a nondissociable receptor-estradiol complex.

    PubMed

    Fishman, J H; Fishman, J

    1985-08-30

    The receptor-estradiol complex formed in rat uterine cytosol when heated at 37 C converts from a dissociable to a nondissociable form. The conversion is best observed in cytosols pretreated with charcoal at 0 C which renders the subsequently formed receptor-estradiol complexes thermostable at 37 C. In the presence of dithiothreitol the heated complex remains dissociable. Tamoxifen does not form nondissociable complexes with the estradiol receptor. It is proposed that the nondissociable form of the receptor complex is a required phase in the mechanism of estradiol action. PMID:2412556

  12. Thermodynamic Investigation and Mixed Ligand Complex Formation of 1,4-Bis-(3-aminopropyl)-piperazine and Biorelevant Ligands

    PubMed Central

    El-Sherif, Ahmed A.; Shehata, Mohamed R.; Shoukry, Mohamed M.; Barakat, Mohammad H.

    2012-01-01

    Thermodynamic parameters for protonation of 1,4-bis(3-aminopropyl)-piperazine (BAPP) and its metal complexation with some divalent metal ions were determined in aqueous solution at constant ionic strength (0.1 M NaNO3) using a potentiometric technique. The order of –ΔG0 and –ΔH0 was found to obey Co2+ < Ni2+ < Cu2+ > Zn2+, in accordance with the Irving-Williams order. The formation equilibria of zinc (II) complexes and the ternary complexes Zn(BAPP)L, where L = amino acid, amides, or DNA constituents), have been investigated. Ternary complexes are formed by a simultaneous mechanism. The concentration distribution of the complexes in solution was evaluated as a function of pH. Stoichiometry and stability constants for the complexes formed are reported and discussed. The stability of ternary complexes was quantitatively compared with their corresponding binary complexes in terms of the parameter Δlog K. PMID:23226992

  13. Formation of Soluble Organo-Chromium(III) Complexes after Chromate Reduction in the Presence of Cellular Organics

    SciTech Connect

    Puzon, Geoffrey J.; Roberts, Arthur G.; Kramer, David M.; Xun, Luying

    2005-04-01

    Microbial reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] has been investigated as a method for bioremediation of Cr(VI) contaminated environments. The produced Cr(III) is thought to be insoluble Cr(OH)3; however, recent reports suggested a more complex fate of Cr(III). A bacterial enzyme system, using NADH as the reductant, converts Cr(VI) to a soluble NAD+-Cr(III) complex, and cytochrome c-mediated Cr(VI) reduction produces cytochrome c-Cr(III) adducts. In this study, Cr(VI) reduction in the presence of cellular organic metabolites formed both soluble and insoluble organo-Cr(III) end-products. Several soluble end-products were characterized by absorbance spectroscopy and electron paramagnetic resonance spectrometry as organo-Cr(III) complexes, similar to the known ascorbate-Cr(III) complex. The complexes remained soluble and stable upon dialysis against distilled H2O and over a broad pH range. The ready formation of stable organo-Cr(III) complexes suggests that organo-Cr(III) complexes are rather common, likely representing an integral part of the natural cycling of chromium. Finally, thus, organo-Cr(III) complexes may account for the mobile form of Cr(III) detected in the environment.

  14. Review: Formation of Peptide Radical Ions Through Dissociative Electron Transfer in Ternary Metal-Ligand-Peptide Complexes

    SciTech Connect

    Chu, Ivan K.; Laskin, Julia

    2011-12-31

    The formation and fragmentation of odd-electron ions of peptides and proteins is of interest to applications in biological mass spectrometry. Gas-phase redox chemistry occurring during collision-induced dissociation of ternary metal-ligand-peptide complexes enables the formation of a variety of peptide radicals including the canonical radical cations, M{sup +{sm_bullet}}, radical dications, [M{sup +}H]{sup 2+{sm_bullet}}, radical anions, [M-2H]{sup -{sm_bullet}}. In addition, odd-electron peptide ions with well-defined initial location of the radical site are produced through side chain losses from the radical ions. Subsequent fragmentation of these species provides information on the role of charge and the location of the radical site on the competition between radical-induced and proton-driven fragmentation of odd-electron peptide ions. This account summarizes current understanding of the factors that control the efficiency of the intramolecular electron transfer (ET) in ternary metal-ligand-peptide complexes resulting in formation of odd-electron peptide ions. Specifically, we discuss the effect of the metal center, the ligand and the peptide structure on the competition between the ET, proton transfer (PT), and loss of neutral peptide and neutral peptide fragments from the complex. Fundamental studies of the structures, stabilities, and the energetics and dynamics of fragmentation of such complexes are also important for detailed molecular-level understanding of photosynthesis and respiration in biological systems.

  15. Mechanism of Formation and Stabilization of Nanoparticles Produced by Heating Electrostatic Complexes of WPI-Dextran Conjugate and Chondroitin Sulfate.

    PubMed

    Dai, Qingyuan; Zhu, Xiuling; Yu, Jingyang; Karangwa, Eric; Xia, Shuqin; Zhang, Xiaoming; Jia, Chengsheng

    2016-07-13

    Protein conformational changes were demonstrated in biopolymer nanoparticles, and molecular forces were studied to elucidate the formation and stabilization mechanism of biopolymer nanoparticles. The biopolymer nanoparticles were prepared by heating electrostatic complexes of whey protein isolate (WPI)-dextran conjugate (WD) and chondroitin sulfate (ChS) above the denaturation temperature and near the isoelectric point of WPI. The internal characteristics of biopolymer nanoparticles were analyzed by several spectroscopic techniques. Results showed that grafted dextran significantly (p < 0.05) prevented the formation of large aggregates of WD dispersion during heat treatment. However, heat treatment slightly induced the hydrophobicity changes of the microenvironment around fluorophores of WD. ChS electrostatic interaction with WD changed the fluorescence intensity of WD regardless of heat treatment. Far-UV circular dichroism (CD) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopies confirmed that glycosylation and ionic polysaccharide did not significantly cause protein conformational changes in WD and ChS (WDC) during heat treatment. In addition, hydrophobic bonds were the major molecular force for the formation and stabilization of biopolymer nanoparticles. However, hydrogen bonds slightly influenced their formation and stabilization. Ionic bonds only promoted the formation of biopolymer nanoparticles, while disulfide bonds partly contributed to their stability. This work will be beneficial to understand protein conformational changes and molecular forces in biopolymer nanoparticles, and to prepare the stable biopolymer nanoparticles from heating electrostatic complexes of native or glycosylated protein and polysaccharide. PMID:27329490

  16. Entropy-driven complex formation of malvidin-3- O-glucoside with common polyphenols in ethanol-water binary solutions

    NASA Astrophysics Data System (ADS)

    Kunsági-Máté, Sándor; Ortmann, Erika; Kollár, László; Nikfardjam, Martin Pour

    2008-09-01

    The complex formation of malvidin-3- O-glucoside with several polyphenols, the so-called "copigmentation" phenomenon, was studied in aqueous solutions. To simulate the copigmentation process during fermentation, the stability of the formed complexes was examined in dependence of the ethanol content of the aqueous solution. Results indicate that stronger and larger complexes are formed, when the ethanol content exceeds a critical margin of 8 vol.% However, the size of complexes of malvidin/procyanidin and malvidin/epicatechin is drastically reduced above this critical concentration. Fluorescence lifetime and solvent relaxation measurements give insight into the particular processes at molecular level and will help us comprehend the first important steps during winemaking in order to recommend an optimized winemaking technology to ensure extraordinary colour stability in red wines.

  17. Designing ancillary ligands for heteroleptic/homoleptic zinc complex formation: synthesis, structures and application in ROP of lactides.

    PubMed

    Jędrzkiewicz, D; Ejfler, J; Gulia, N; John, Ł; Szafert, S

    2015-08-14

    Synthesis and characterization of a series of new amino-phenol/naphthol ligands (L(1,2)-H) have been developed and their respective zinc complexes ( 1 and 2-Zn ) have been synthesized. The molecular structures of L(1)-H and 1, 2-Zn were explored in detail by NMR, single-crystal X-ray studies and DFT calculations, which confirmed the existence of complexes as stabile dimers both in a solution and in the solid state. All complexes mediate the ring-opening polymerization (ROP) of lactide highly efficiently, at room temperature, in a controlled fashion. The influence of the architecture of the ligand on the desired homo/heteroleptic complex formation, as well as the relationship between the initiator design and the catalytic activity have been investigated. PMID:26150026

  18. Formation and base hydrolysis of oxidimethaneamine bridges in CoIII-amine complexes.

    PubMed

    Morgenstern, Bernd; Neis, Christian; Zaschka, Anton; Romba, Jens; Weyhermüller, Thomas; Hegetschweiler, Kaspar

    2013-10-21

    cis-[CoL2](3+) (1a(3+)), trans-[CoL2](3+) (2a(3+)), cis-[Co(MeL)2](3+) (1b(3+)), and trans-[Co(MeL)2](3+) (2b(3+)), L = 1,4-diazepan-6-amine (daza) and MeL = 6-methyl-1,4-diazepan-6-amine (Medaza), were allowed to react as templates in acetonitrile with paraformaldehyde and triethylamine. Several Co(III) complexes, where two adjacent amino groups of two ligand moieties are interlinked by an oxidimethaneamine bridge, were obtained. Connection of a primary with a secondary amino group (prim-sec bridging) was found to be predominant. The singly and doubly bridged daza- and Medaza-derivatives 7a(3+), 9a(3+) and 7b(3+), 9b(3+) were characterized by crystal-structure analysis. The bridging process resulted in a slight lengthening of the mean Co-N distance, a red shift of the A1g-T1g transition, and an increase of the Co(III)/Co(II) reduction potential. Several minor components, which could be only partially separated by chromatographic methods, were also formed. The daza-derivatives 6a(3+) (prim-prim bridged) and 10a(3+) (bidentate coordination of one daza frame) formed in small quantities. The Medaza derivatives 3b(3+) and 4b(3+) (trans configuration of the Medaza frames, with additional pending carbinolamino groups), and 8b(3+) (with a methylideneimino group) represent intermediates of the condensation process. Their structure was again corroborated by X-ray diffraction. All bridged species (6a(3+), 7a(3+), 7b(3+), 8b(3+), 9a(3+), 9b(3+), and 10a(3+)) exhibited exclusively a cis orientation of the two diazepane frames, even if the trans configured 2a(3+) or 2b(3+) were used as starting materials. Molecular mechanics calculations indicate that in the bridged species with a trans configuration steric strain is substantially more pronounced. In alkaline aqueous media, 9a(3+) and 9b(3+) revealed a complete degradation of the bridges whereby the original 1a(3+) and 1b(3+) reformed. The pseudo-first-order rate constant k(obs) of the degradation reaction was found to depend

  19. Assessment of oxidative DNA damage formation by organic complex mixtures from airborne particles PM(10).

    PubMed

    Gábelová, Alena; Valovicová, Zuzana; Lábaj, Juraj; Bacová, Gabriela; Binková, Blanka; Farmer, Peter B

    2007-07-01

    The free radical generating activity of airborne particulate matter (PM(10)) has been proposed as a primary mechanism in biological activity of ambient air pollution. In an effort to determine the impact of the complex mixtures of extractable organic matter (EOM) from airborne particles on oxidative damage to DNA, the level of 8-oxo-2'-deoxyguanosine (8-oxodG), the most prevalent and stable oxidative lesion, was measured in the human metabolically competent cell line Hep G2. Cultured cells were exposed to equivalent EOM concentrations (5-150microg/ml) and oxidative DNA damage was analyzed using a modified single cell gel electrophoresis (SCGE), which involves the incubation of whole cell DNA with repair specific DNA endonuclease, which cleaves oxidized DNA at the sites of 8-oxodG. EOMs were extracted from PM(10) collected daily (24h intervals) in three European cities: Prague (Czech Republic, two monitoring sites, Libus and Smíchov), Kosice (Slovak Republic) and Sofia (Bulgaria) during 3-month sampling periods in the winter and summer seasons. No substantial time- and dose-dependent increase of oxidative DNA lesions was detected in EOM-treated cells with the exception of the EOM collected at the monitoring site Kosice, summer sampling. In this case, 2h cell exposure to EOM resulted in a slight but significant increase of oxidative DNA damage at three from total of six concentrations. The mean 8-oxodG values at these concentrations ranged from 15.3 to 26.1 per 10(6) nucleotides with a value 3.5 per 10(6) nucleotides in untreated cells. B[a]P, the positive control, induced a variable but insignificant increase of oxidative DNA damage in Hep G2 cell (approximately 1.6-fold increase over control value). Based on these data we believe that EOM samples extracted from airborne particle PM(10) play probably only a marginal role in oxidative stress generation and oxidative lesion formation to DNA. However, adsorbed organic compounds can undergo various interactions

  20. Complexities of Identity Formation: A Narrative Inquiry of an EFL Teacher

    ERIC Educational Resources Information Center

    Tsui, Amy B. M.

    2007-01-01

    This article explores teachers' identity formation through a narrative inquiry of the professional identity of an EFL teacher, Minfang, in the People's Republic of China. Drawing on Wenger's (1998) social theory of identity formation as a dual process of identification and negotiation of meanings, it examines the lived experience of Minfang as an…

  1. The mediator complex subunit Med10 regulates heart valve formation in zebrafish by controlling Tbx2b-mediated Has2 expression and cardiac jelly formation.

    PubMed

    Just, Steffen; Hirth, Sofia; Berger, Ina M; Fishman, Mark C; Rottbauer, Wolfgang

    2016-09-01

    In search for novel key regulators of cardiac valve formation, we isolated the zebrafish cardiac valve mutant ping pong (png). We find that an insertional promoter mutation within the zebrafish mediator complex subunit 10 (med10) gene is leading to impaired heart valve formation. Expression of the T-box transcription factor 2b (Tbx2b), known to be essential in cardiac valve development, is severely reduced in png mutant hearts. We demonstrate here that transient reconstitution of Tbx2b expression rescues AV canal development in png mutant zebrafish. By contrast, overexpression of Forkhead box N4 (Foxn4), a known upstream regulator of Tbx2b, is not capable to reconstitute tbx2b expression and heart valve formation in Med10-deficient png mutant hearts. Interestingly, hyaluronan synthase 2 (has2), a known downstream target of Tbx2 and producer of hyaluronan (HA) - a major ECM component of the cardiac jelly and critical for proper heart valve development - is completely absent in ping pong mutant hearts. We propose here a rather unique role of Med10 in orchestrating cardiac valve formation by mediating Foxn4 dependent tbx2b transcription, expression of Has2 and subsequently proper development of the cardiac jelly. PMID:27343557

  2. Unusual dimer formation of cyclometalated ruthenium NHC p-cymene complexes.

    PubMed

    Schleicher, David; Tronnier, Alexander; Leopold, Hendrik; Borrmann, Horst; Strassner, Thomas

    2016-02-28

    We present the synthesis and structural characterization of novel ruthenium complexes containing C^C* cyclometalated N-heterocyclic carbene ligands, η(6)-arene (p-cymene) ligands and one bridging chlorine ion. Complexes of the general formula [Ru(p-cymene)(C^C*)Cl] were prepared via a one-pot synthesis using in situ transmetalation from the correspondent silver NHC complexes. These complexes react with sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBAr(F)4) to form dinuclear complexes of the general structure [Ru(p-cymene)(C^C*)-μ-Cl-(p-cymene)(C^C*)Ru](+)[BAr(F)4](-). Solid-state structures confirm that the pseudo-tetrahedral coordination around the metal center with the η(6)-ligand aligned perpendicularly to the C^C* ligand and the i-Pr group "atop" is retained in the bimetallic complexes. PMID:26839062

  3. Spectrofluorimetric estimation of salbutamol sulphate in different dosage forms by formation of inclusion complex with β-cyclodextrin.

    PubMed

    Pandya, Harshit Narmadashankar; Berawala, Hiren Harshadlal; Khatri, Deepak Mohanlal; Mehta, Priti Jignesh

    2010-10-01

    A simple, precise, reproducible and accurate spectrofluorimetric method for estimation of Salbutamol sulphate (SAL) in bulk drug and various dosage forms has been developed. This method is based on formation of inclusion complex of SAL in β-cyclodextrin (BCD) which gives fluorescence at excitation wavelength of 279.6 nm and emission wavelength of 609.8 nm in water. Formation of inclusion complex of drug with BCD enhances fluorescence intensity of drug leads to increased sensitivity. The developed method was validated according to ICH guidelines with respect to accuracy, precision, linearity, limit of detection, limit of quantification. Linearity was observed in the range of 4-20 μg/ml with correlation coefficient of 0.9982. The simplicity of the method permitted rapid analysis suitable for routine control. The developed method was successfully applied for the estimation of SAL in different marketed dosage forms like tablets, syrup and aerosol. PMID:23781416

  4. Down-regulation of MUC1 in cancer cells inhibits cell migration by promoting E-cadherin/catenin complex formation

    SciTech Connect

    Yuan Zhenglong; Wong, Sandy; Borrelli, Alexander; Chung, Maureen A.

    2007-10-26

    MUC1, a tumor associated glycoprotein, is over-expressed in most cancers and can promote proliferation and metastasis. The objective of this research was to study the role of MUC1 in cancer metastasis and its potential mechanism. Pancreatic (PANC1) and breast (MCF-7) cancer cells with stable 'knockdown' of MUC1 expression were created using RNA interference. {beta}-Catenin and E-cadherin protein expression were upregulated in PANC1 and MCF-7 cells with decreased MUC1 expression. Downregulation of MUC1 expression also induced {beta}-catenin relocation from the nucleus to the cytoplasm, increased E-cadherin/{beta}-catenin complex formation and E-cadherin membrane localization in PANC1 cells. PANC1 cells with 'knockdown' MUC1 expression had decreased in vitro cell invasion. This study suggested that MUC1 may affect cancer cell migration by increasing E-cadherin/{beta}-catenin complex formation and restoring E-cadherin membrane localization.

  5. Polyphenol-Aluminum Complex Formation: Implications for Aluminum Tolerance in Plants.

    PubMed

    Zhang, Liangliang; Liu, Ruiqiang; Gung, Benjamin W; Tindall, Steven; Gonzalez, Javier M; Halvorson, Jonathan J; Hagerman, Ann E

    2016-04-20

    Natural polyphenols may play an important role in aluminum detoxification in some plants. We examined the interaction between Al(3+) and the purified high molecular weight polyphenols pentagalloyl glucose (940 Da) and oenothein B (1568 Da), and the related compound methyl gallate (184 Da) at pH 4 and 6. We used spectrophotometric titration and chemometric modeling to determine stability constants and stoichiometries for the aluminum-phenol (AlL) complexes. The structures and spectral features of aluminum-methyl gallate complexes were evaluated with quantum chemical calculations. The high molecular weight polyphenols formed Al3L2 complexes with conditional stability constants (β) ∼ 1 × 10(23) at pH 6 and AlL complexes with β ∼ 1 × 10(5) at pH 4. Methyl gallate formed AlL complexes with β = 1 × 10(6) at pH 6 but did not complex aluminum at pH 4. At intermediate metal-to-polyphenol ratios, high molecular weight polyphenols formed insoluble Al complexes but methyl gallate complexes were soluble. The high molecular weight polyphenols have high affinities and solubility features that are favorable for a role in aluminum detoxification in the environment. PMID:27022835

  6. Formation of inclusion complexes between high amylose starch and octadecyl ferulate via steam jet cooking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amylose can form inclusion complexes with guest molecules and represents an interesting approach to deliver bioactive molecules. However, ferulic acid has been shown not to form single helical inclusion complexes with amylose. To overcome this problem a ferulic acid ester, octadecyl ferulate, posses...

  7. Cobalamin reduction by dithionite. Evidence for the formation of a six-coordinate cobalamin(II) complex.

    PubMed

    Salnikov, Denis S; Silaghi-Dumitrescu, Radu; Makarov, Sergei V; van Eldik, Rudi; Boss, Gerry R

    2011-10-14

    Evidence for the formation of a unique, six-coordinate cobalamin(II) complex with the anion-radical SO(2)(-) during the reduction of aquacobalamin(III) by sodium dithionite, was obtained from spectrophotometric and EPR measurements. The pK(a) value of the weakly coordinated dimethylbenzimidazole group was found to be 4.8 ± 0.1 at 25 °C. PMID:21879074

  8. Focal adhesion kinase (FAK) phosphorylation is not required for genistein-induced FAK-beta-1-integrin complex formation.

    PubMed

    Liu, Y; Kyle, E; Lieberman, R; Crowell, J; Kellof, G; Bergan, R C

    2000-01-01

    It has previously been shown that changes in the activity of focal adhesion kinase (FAK), and its binding to beta-1-integrin, accompany genistein-induced adhesion of prostate cells. Consumption of genistein world wide is associated with a lower incidence of metastatic prostate cancer. Early human clinical trials of genistein are under way to evaluate genistein's potential causal role in this regard. Though an important cell adhesion-associated signaling molecule, FAK's role in regulating prostate cell adhesion was not clear. Elucidation of this process would provide important information relating to both biology and potential clinical endpoints. It was hypothesized that FAK activation and complex formation are temporally related in prostate cells, and can thus be separated. Significant activation of FAK was demonstrated when cells adhered to fibronectin, as compared to poly-L-lysine, thus demonstrating that beta-1-integrin plays a significant role in activating FAK. Neither FAK activation, nor FAK-integrin complex formation, required beta-1-integrin ligand. However, disruption of the cellular cytoskeleton by cytochalasin D prevented FAK activation, but did not block genistein-induced complex formation. In the face of a disrupted cytoskeleton, signaling through FAK could not be restored through either integrin cross linking, or re-establishment of tensile forces via attachment to solid matrix. These studies demonstrate that FAK-beta-1-integrin complex formation does not require FAK activation, suggesting that it is an early event in prostate cell adhesion. An intact cytoskeleton is necessary for FAK activation. The functional importance of beta-1-integrin in prostate cells is demonstrated. Current findings support plans to test genistein in prostate cancer. PMID:11315093

  9. Formation of Complex Organics by Gas Phase and Intracluster Ion-Molecule Reactions Involving Acetylene and Hydrogen Cyanide

    NASA Astrophysics Data System (ADS)

    El-Shall, S.; Hamed, A.; Soliman, A. R.; Momoh, P. O.

    2011-05-01

    Many complex organics including polycyclic aromatic hydrocarbons are present in flames and combustion processes as well as in interstellar clouds and solar nebulae. Here, we present evidence for the formation of complex covalent organics by gas phase and intracluster reactions of the benzene, phenylium, pyridine, pyrimidine, phenylacetylene and benzonitrile cations with acetylene and hydrogen cyanide molecules. These reactions are studied using mass-selected ion mobility, chemical reactivity, collisional dissociation, and ab initio calculations. Measurements of collision cross sections in helium provide structural information on the adducts and allow probing structural changes at different temperatures (isomerization). We observed multiple additions of five acetylene molecules on the pyridine cation at room temperature. This is a remarkable result considering that only two acetylene molecules were added to the phenyl cation and no addition was observed on the benzene cation at room temperature. The experimental results are in full agreement with the ab initio calculations which predict that the first and second acetylenes add to the pyridine ion in barrierless, highly exothermic reactions. Similar reactions have been observed for the pyrimidine radical cation although the extent of the addition reactions is limited to only two acetylene molecules at room temperature. The results provide the first evidence for the incorporation of nitrogen in the formation cyclic hydrocarbons via the gas phase reactions of pyridine and pyrimidine ions with acetylene molecules. In addition, the formation of covalent adducts in the ionized acetylene/HCN system will be reported for the first time. Sequential reactions leading to the formation of pyridine and pyrimidine radical cations and higher adducts are observed over a wide range of temperature and pressure. The formation of these covalent adducts may represent a general class of addition reactions that can form complex

  10. Photosynthesis. Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation.

    PubMed

    Cox, Nicholas; Retegan, Marius; Neese, Frank; Pantazis, Dimitrios A; Boussac, Alain; Lubitz, Wolfgang

    2014-08-15

    The photosynthetic protein complex photosystem II oxidizes water to molecular oxygen at an embedded tetramanganese-calcium cluster. Resolving the geometric and electronic structure of this cluster in its highest metastable catalytic state (designated S3) is a prerequisite for understanding the mechanism of O-O bond formation. Here, multifrequency, multidimensional magnetic resonance spectroscopy reveals that all four manganese ions of the catalyst are structurally and electronically similar immediately before the final oxygen evolution step; they all exhibit a 4+ formal oxidation state and octahedral local geometry. Only one structural model derived from quantum chemical modeling is consistent with all magnetic resonance data; its formation requires the binding of an additional water molecule. O-O bond formation would then proceed by the coupling of two proximal manganese-bound oxygens in the transition state of the cofactor. PMID:25124437

  11. Epithelial junction formation requires confinement of Cdc42 activity by a novel SH3BP1 complex

    PubMed Central

    Elbediwy, Ahmed; Zihni, Ceniz; Terry, Stephen J.; Clark, Peter

    2012-01-01

    Epithelial cell–cell adhesion and morphogenesis require dynamic control of actin-driven membrane remodeling. The Rho guanosine triphosphatase (GTPase) Cdc42 regulates sequential molecular processes during cell–cell junction formation; hence, mechanisms must exist that inactivate Cdc42 in a temporally and spatially controlled manner. In this paper, we identify SH3BP1, a GTPase-activating protein for Cdc42 and Rac, as a regulator of junction assembly and epithelial morphogenesis using a functional small interfering ribonucleic acid screen. Depletion of SH3BP1 resulted in loss of spatial control of Cdc42 activity, stalled membrane remodeling, and enhanced growth of filopodia. SH3BP1 formed a complex with JACOP/paracingulin, a junctional adaptor, and CD2AP, a scaffolding protein; both were required for normal Cdc42 signaling and junction formation. The filamentous actin–capping protein CapZ also associated with the SH3BP1 complex and was required for control of actin remodeling. Epithelial junction formation and morphogenesis thus require a dual activity complex, containing SH3BP1 and CapZ, that is recruited to sites of active membrane remodeling to guide Cdc42 signaling and cytoskeletal dynamics. PMID:22891260

  12. Complex Formation of Myrosinase Isoenzymes in Oilseed Rape Seeds Are Dependent on the Presence of Myrosinase-Binding Proteins1

    PubMed Central

    Eriksson, Susanna; Andréasson, Erik; Ekbom, Barbara; Granér, Georg; Pontoppidan, Bo; Taipalensuu, Jan; Zhang, Jiaming; Rask, Lars; Meijer, Johan

    2002-01-01

    The enzyme myrosinase (EC 3.2.3.1) degrades the secondary compounds glucosinolates upon wounding and serves as a defense to generalist pests in Capparales. Certain myrosinases are present in complexes together with other proteins such as myrosinase-binding proteins (MBP) in extracts of oilseed rape (Brassica napus) seeds. Immunhistochemical analysis of wild-type seeds showed that MBPs were present in most cells but not in the myrosin cells, indicating that the complex formation observed in extracts is initiated upon tissue disruption. To study the role of MBP in complex formation and defense, oilseed rape antisense plants lacking the seed MBPs were produced. Western blotting and immunohistochemical staining confirmed depletion of MBP in the transgenic seeds. The exclusive expression of myrosinase in idioblasts (myrosin cells) of the seed was not affected by the down-regulation of MBP. Using size-exclusion chromatography, we have shown that myrosinases with subunit molecular masses of 62 to 70 kD were present as free dimers from the antisense seed extract, whereas in the wild type, they formed complexes. In accordance with this, MBPs are necessary for myrosinase complex formation of the 62- to 70-kD myrosinases. The product formed from sinalbin hydrolysis by myrosinase was the same whether MBP was present or not. The performance of a common beetle generalist (Tenebrio molitor) fed with seeds, herbivory by flea beetles (Phyllotreta undulata) on cotyledons, or growth rate of the Brassica fungal pathogens Alternaria brassicae or Lepthosphaeria maculans in the presence of seed extracts were not affected by the down-regulation of MBP, leaving the physiological function of this protein family open. PMID:12177471

  13. Complex formation of myrosinase isoenzymes in oilseed rape seeds are dependent on the presence of myrosinase-binding proteins.

    PubMed

    Eriksson, Susanna; Andréasson, Erik; Ekbom, Barbara; Granér, Georg; Pontoppidan, Bo; Taipalensuu, Jan; Zhang, Jiaming; Rask, Lars; Meijer, Johan

    2002-08-01

    The enzyme myrosinase (EC 3.2.3.1) degrades the secondary compounds glucosinolates upon wounding and serves as a defense to generalist pests in Capparales. Certain myrosinases are present in complexes together with other proteins such as myrosinase-binding proteins (MBP) in extracts of oilseed rape (Brassica napus) seeds. Immunhistochemical analysis of wild-type seeds showed that MBPs were present in most cells but not in the myrosin cells, indicating that the complex formation observed in extracts is initiated upon tissue disruption. To study the role of MBP in complex formation and defense, oilseed rape antisense plants lacking the seed MBPs were produced. Western blotting and immunohistochemical staining confirmed depletion of MBP in the transgenic seeds. The exclusive expression of myrosinase in idioblasts (myrosin cells) of the seed was not affected by the down-regulation of MBP. Using size-exclusion chromatography, we have shown that myrosinases with subunit molecular masses of 62 to 70 kD were present as free dimers from the antisense seed extract, whereas in the wild type, they formed complexes. In accordance with this, MBPs are necessary for myrosinase complex formation of the 62- to 70-kD myrosinases. The product formed from sinalbin hydrolysis by myrosinase was the same whether MBP was present or not. The performance of a common beetle generalist (Tenebrio molitor) fed with seeds, herbivory by flea beetles (Phyllotreta undulata) on cotyledons, or growth rate of the Brassica fungal pathogens Alternaria brassicae or Lepthosphaeria maculans in the presence of seed extracts were not affected by the down-regulation of MBP, leaving the physiological function of this protein family open. PMID:12177471

  14. Formation constants of copper(I) complexes with cysteine, penicillamine and glutathione: implications for copper speciation in the human eye.

    PubMed

    Königsberger, Lan-Chi; Königsberger, Erich; Hefter, Glenn; May, Peter M

    2015-12-21

    Protonation constants for the biologically-important thioamino acids cysteine (CSH), penicillamine (PSH) and glutathione (GSH), and the formation constants of their complexes with Cu(I), have been measured at 25 °C and an ionic strength of 1.00 mol dm(-3) (Na)Cl using glass electrode potentiometry. The first successful characterisation of binary Cu(I)-CSH and Cu(I)-GSH species over the whole pH range was achieved in this study by the addition of a second thioamino acid, which prevented the precipitation that normally occurs. Appropriate combinations of binary and ternary (mixed ligand) titration data were used to optimise the speciation models and formation constants for the binary species. The results obtained differ significantly from literature data with respect to the detection and quantification of protonated and polynuclear complexes. The present results are thought to be more reliable because of the exceptionally wide pH and concentration ranges employed, the excellent reproducibility of the data, the close agreement between the calculated and observed formation functions, and the low standard deviations and absence of numerical correlation in the constants. The present formation constants were incorporated into a large Cu speciation model which was used to predict, for the first time, metal-ligand equilibria in the biofluids of the human eye. This simulation provided an explanation for the precipitation of metallic copper in lens and cornea, which is known to occur as a consequence of Wilson's disease. PMID:26505238

  15. Molecular Mechanisms of Transcription Initiation-Structure, Function, and Evolution of TFE/TFIIE-Like Factors and Open Complex Formation.

    PubMed

    Blombach, Fabian; Smollett, Katherine L; Grohmann, Dina; Werner, Finn

    2016-06-19

    Transcription initiation requires that the promoter DNA is melted and the template strand is loaded into the active site of the RNA polymerase (RNAP), forming the open complex (OC). The archaeal initiation factor TFE and its eukaryotic counterpart TFIIE facilitate this process. Recent structural and biophysical studies have revealed the position of TFE/TFIIE within the pre-initiation complex (PIC) and illuminated its role in OC formation. TFE operates via allosteric and direct mechanisms. Firstly, it interacts with the RNAP and induces the opening of the flexible RNAP clamp domain, concomitant with DNA melting and template loading. Secondly, TFE binds physically to single-stranded DNA in the transcription bubble of the OC and increases its stability. The identification of the β-subunit of archaeal TFE enabled us to reconstruct the evolutionary history of TFE/TFIIE-like factors, which is characterised by winged helix (WH) domain expansion in eukaryotes and loss of metal centres including iron-sulfur clusters and Zinc ribbons. OC formation is an important target for the regulation of transcription in all domains of life. We propose that TFE and the bacterial general transcription factor CarD, although structurally and evolutionary unrelated, show interesting parallels in their mechanism to enhance OC formation. We argue that OC formation is used as a way to regulate transcription in all domains of life, and these regulatory mechanisms coevolved with the basal transcription machinery. PMID:27107643

  16. Oxo-group-14-element bond formation in binuclear uranium(V) Pacman complexes.

    PubMed

    Jones, Guy M; Arnold, Polly L; Love, Jason B

    2013-07-29

    Simple and versatile routes to the functionalization of uranyl-derived U(V)-oxo groups are presented. The oxo-lithiated, binuclear uranium(V)-oxo complexes [{(py)3LiOUO}2(L)] and [{(py)3LiOUO}(OUOSiMe3)(L)] were prepared by the direct combination of the uranyl(VI) silylamide "ate" complex [Li(py)2][(OUO)(N")3] (N" = N(SiMe3)2) with the polypyrrolic macrocycle H4L or the mononuclear uranyl (VI) Pacman complex [UO2(py)(H2L)], respectively. These oxo-metalated complexes display distinct U-O single and multiple bonding patterns and an axial/equatorial arrangement of oxo ligands. Their ready availability allows the direct functionalization of the uranyl oxo group leading to the binuclear uranium(V) oxo-stannylated complexes [{(R3Sn)OUO}2(L)] (R = nBu, Ph), which represent rare examples of mixed uranium/tin complexes. Also, uranium-oxo-group exchange occurred in reactions with [TiCl(OiPr)3] to form U-O-C bonds [{(py)3LiOUO}(OUOiPr)(L)] and [(iPrOUO)2(L)]. Overall, these represent the first family of uranium(V) complexes that are oxo-functionalised by Group 14 elements. PMID:23794441

  17. Formation of inclusion complexes between high amylose starch and octadecyl ferulate via steam jet cooking.

    PubMed

    Kenar, James A; Compton, David L; Little, Jeanette A; Peterson, Steve C

    2016-04-20

    Amylose-ligand inclusion complexes represent an interesting approach to deliver bioactive molecules. However, ferulic acid has been shown not to form single helical inclusion complexes with amylose from high amylose maize starch. To overcome this problem a lipophilic ferulic acid ester, octadecyl ferulate, was prepared and complexed with amylose via excess steam jet cooking. Jet-cooking octadecyl ferulate and high amylose starch gave an amylose-octadecyl ferulate inclusion complex in 51.0% isolated yield. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) confirmed that a 61 V-type inclusion complex was formed. Amylose and extraction assays showed the complex to be enriched in amylose (91.9±4.3%) and contain 70.6±5.6mgg(-1) octadecyl ferulate, although, minor hydrolysis (∼4%) of the octadecyl ferulate was observed under the excess steam jet-cooking conditions utilized. This study demonstrates that steam jet cooking is a rapid and scalable process in which to prepare amylose-octadecyl ferulate inclusion complexes. PMID:26876851

  18. Shatter Complex Formation in the Twin Craters Lava Flow, Zuni-Bandera Field, New Mexico

    NASA Astrophysics Data System (ADS)

    von Meerscheidt, H. C.; Bleacher, J. E.; Brand, B. D.; deWet, A.; Samuels, R.; Hamilton, C.; Garry, W. B.; Bandfield, J. L.

    2013-12-01

    . Prominent ';a';a channels travel around the bluff, leaving a 'wake' of uncovered ground on the downstream side. We interpret this shatter area to have been a branching tube network within an active sheet. The limestone bluff acted as an obstacle that caused a backup of lava within the tubes, driving episodes of shattering. The mounds likely represent earlier solidified sections between active, possibly braided, tube branches, which remained as mounds within the shatter area after the adjacent crust subsided. When lava broke out from the pressurized sheet-like lobe, it formed the ';a';a channels. This section of the flow field is interpreted using inferences from shatter ring formation, but is perhaps better termed a shatter sheet or shatter complex. This study has implications for understanding lava flow dynamics at constriction points, as well as the evolution and morphology of shatter rings.

  19. Stoichiometric complex formation by proliferating cell nuclear antigen (PCNA) and its interacting protein: purification and crystallization of the DNA polymerase and PCNA monomer mutant complex from Pyrococcus furiosus

    SciTech Connect

    Nishida, Hirokazu; Matsumiya, Shigeki; Tsuchiya, Daisuke; Ishino, Yoshizumi; Morikawa, Kosuke

    2006-03-01

    A stable stoichiometric complex of archaeal DNA polymerase with proliferating cell nuclear antigen (PCNA) was formed using a PCNA monomer mutant and the complex was successfully crystallized. Replicative DNA polymerase interacts with processivity factors, the β-subunit of DNA polymerase III or proliferating cell nuclear antigen (PCNA), in order to function with a long template DNA. The archaeal replicative DNA polymerase from Pyrococcus furiosus interacts with PCNA via its PCNA-interacting protein (PIP) motif at the C-terminus. The PCNA homotrimeric ring contains one PIP interacting site on each monomer and since the ring can accommodate up to three molecules simultaneously, formation of a stable stoichiometric complex of PCNA with its interacting protein has been difficult to control in vitro. A stable complex of the DNA polymerase with PCNA, using a PCNA monomer mutant, has been purified and crystallized. The best ordered crystal diffracted to 3.0 Å resolution using synchrotron radiation. The crystals belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 225.3, b = 123.3, c = 91.3 Å.

  20. Temperature-dependence of open-complex formation at two Escherichia coli promoters with extended -10 sequences.

    PubMed Central

    Burns, H D; Belyaeva, T A; Busby, S J; Minchin, S D

    1996-01-01

    We have studied the formation of open complexes between purified RNA polymerase from Escherichia coli and DNA fragments carrying the galP1 promoter, a promoter with an extended -10 region. Unusually, these complexes are formed readily at low temperatures. This low-temperature opening is unaffected by deletions of either upstream or downstream promoter sequences. We conclude that low-temperature open-complex formation is due to specific base sequences in and just upstream of the extended -10 region. In contrast, open complexes are not formed at low temperatures with DNA fragments carrying the E. coli cysG promoter, which also has an extended -10 region. This demonstrates that an extended -10 sequence alone is not sufficient for low-temperature opening. Additionally, we report the temperature dependence of a hybrid galP1-cysG promoter, the related galP2 and galP3 promoters and a derivative of galP1 with an improved -10 hexamer sequence. PMID:8694780

  1. Formation of substrate and transition-state analogue complexes in crystals of phosphoglucomutase after removing the crystallization salt.

    PubMed

    Ray, W J; Puvathingal, J M; Liu, Y W

    1991-07-16

    Crystals of phosphoglucomutase, grown in 2.1 M ammonium sulfate, "desalted", and suspended in a 30% polyoxyethylene-8000/1 M glycine solution as described in the accompanying paper [Ray, W. J., Jr., Puvathingal, J. M., Bolin, J. T., Minor, W., Liu, Y., & Muchmore, S. W. (1991) Biochemistry 30 (preceding paper in this issue)], were treated with glucose phosphates to form an equilibrium mixture of the catalytically active substrate/product complexes. However, this treatment extensively fractured the crystals, even when very dilute solutions of glucose phosphates were used. But formation of the desired complexes was achieved, without fracturing, by introducing the glucose phosphates at high salt concentration, where they do not bind significantly to the enzyme, and maintaining their presence during subsequent sulfate-removal steps, in order to obtain essentially uniform binding throughout the crystal at all times. Although this procedure produced unfractured crystals of the catalytically active complexes, an adjustment in water activity was required to prevent the crystals from slowly liquefying in the presence of the added glucose phosphates. After this adjustment, the quality of diffraction-grade crystals subjected to this treatment was not significantly altered. An even larger adjustment in water activity was required to stabilize crystals that had been largely converted into a mixture of vanadate-based transition-state analogue complexes [cf. Ray, W. J., Jr., & Puvathingal, J. M. (1990) Biochemistry 29, 2790-2801] by means of an analogous procedure. The rationale for, and the implications of, this adjustment of water activity are discussed. The phenomenon of lattice-based binding cooperativity also is discussed together with a possible role for such cooperativity in the fracturing of protein crystals during formation of ligand complexes and possible ways to circumvent such fracturing based on the annealing of crystals at fractional saturation. An assay for

  2. Complex formation of blueberry (Vaccinium angustifolium) anthocyanins during freeze-drying and its influence on their biological activity.

    PubMed

    Correa-Betanzo, Julieta; Padmanabhan, Priya; Corredig, Milena; Subramanian, Jayasankar; Paliyath, Gopinadhan

    2015-03-25

    Biological activity of polyphenols is influenced by their uptake and is highly influenced by their interactions with the food matrix. This study evaluated the complex formation of blueberry polyphenols with fruit matrixes such as pectin and cellulose and their effect on the biological and antiproliferative properties of human colon cell lines HT-29 and CRL 1790. Free or complexed polyphenols were isolated by dialyzing aqueous or methanolic blueberry homogenates. Seven phenolic compounds and thirteen anthocyanins were identified in blueberry extracts. Blueberry extracts showed varying degrees of antioxidant and antiproliferative activities, as well as α-glucosidase activity. Fruit matrix containing cellulose and pectin, or purified polygalacturonic acid and cellulose, did not retain polyphenols and showed very low antioxidant or antiproliferative activities. These findings suggest that interactions between polyphenols and the food matrix may be more complex than a simple association and may play an important role in the bioefficacy of blueberry polyphenols. PMID:25727778

  3. A Consideration of Cognitive Complexity and Primacy - Recency Effects in Impression Formation

    ERIC Educational Resources Information Center

    Petronko, Michael R.; Perin, Charles T.

    1970-01-01

    Classifies subjects as cognitively simple" or cognitively complex" and notes that the latter are much nore successful at reconciling inconsistent information than are the former, whose impressions are formed by the information which makes the greatest impact. (RW)

  4. Formation and characterization of magnesium bisozonide and carbonyl complexes in solid argon.

    PubMed

    Wang, Guanjun; Gong, Yu; Zhang, Qingqing; Zhou, Mingfei

    2010-10-14

    The reactions of magnesium atoms with dioxygen and dioxygen/carbon monoxide mixture have been investigated by matrix isolation infrared absorption spectroscopy. Magnesium atoms react with dioxygen in solid argon to form the inserted MgO(2) molecules under UV excitation, which were previously characterized. Annealing allows the dioxygen molecules to diffuse and to react with MgO(2) and form the magnesium bisozonide complex, Mg(O(3))(2), which is proposed to be coordinated by two argon atoms in solid argon matrix. The Mg(O(3))(2)(Ar)(2) complex is characterized to have two equivalent side-on bonded ozonide ligands with a D(2h) symmetry. The coordinated argon atoms can be replaced by carbon monoxide to give the magnesium bisozonide dicarbonyl complex, Mg(O(3))(2)(CO)(2), a neutral magnesium carbonyl complex with CO binding to the Mg(2+) center. PMID:20857987

  5. Ephrin B1 Regulates Bone Marrow Stromal Cell Differentiation and Bone Formation by Influencing TAZ Transactivation via Complex Formation with NHERF1▿

    PubMed Central

    Xing, Weirong; Kim, Jonghyun; Wergedal, Jon; Chen, Shin-Tai; Mohan, Subburaman

    2010-01-01

    Mutations of ephrin B1 in humans result in craniofrontonasal syndrome. Because little is known of the role and mechanism of action of ephrin B1 in bone, we examined the function of osteoblast-produced ephrin B1 in vivo and identified the molecular mechanism by which ephrin B1 reverse signaling regulates bone formation. Targeted deletion of the ephrin B1 gene in type 1α2 collagen-producing cells resulted in severe calvarial defects, decreased bone size, bone mineral density, and trabecular bone volume, caused by impairment in osterix expression and osteoblast differentiation. Coimmunoprecipitation of the TAZ complex with TAZ-specific antibody revealed a protein complex containing ephrin B1, PTPN13, NHERF1, and TAZ in bone marrow stromal (BMS) cells. Activation of ephrin B1 reverse signaling with soluble EphB2-Fc led to a time-dependent increase in TAZ dephosphorylation and shuttling from cytoplasm to nucleus. Treatment of BMS cells with exogenous EphB2-Fc resulted in a 4-fold increase in osterix expression as determined by Western blotting. Disruption of TAZ expression using specific lentivirus small hairpin RNA (shRNA) decreased TAZ mRNA by 80% and ephrin B1 reverse signaling-mediated increases in osterix mRNA by 75%. Knockdown of NHERF1 expression reduced basal levels of osterix expression by 90% and abolished ephrin B1-mediated induction of osterix expression. We conclude that locally produced ephrin B1 mediates its effects on osteoblast differentiation by a novel molecular mechanism in which activation of reverse signaling leads to dephosphorylation of TAZ and subsequent release of TAZ from the ephrin B1/NHERF1/TAZ complex to translocate to the nucleus to induce expression of the osterix gene and perhaps other osteoblast differentiation genes. Our findings provide strong evidence that ephrin B1 reverse signaling in osteoblasts is critical for BMS cell differentiation and bone formation. PMID:19995908

  6. Ephrin B1 regulates bone marrow stromal cell differentiation and bone formation by influencing TAZ transactivation via complex formation with NHERF1.

    PubMed

    Xing, Weirong; Kim, Jonghyun; Wergedal, Jon; Chen, Shin-Tai; Mohan, Subburaman

    2010-02-01

    Mutations of ephrin B1 in humans result in craniofrontonasal syndrome. Because little is known of the role and mechanism of action of ephrin B1 in bone, we examined the function of osteoblast-produced ephrin B1 in vivo and identified the molecular mechanism by which ephrin B1 reverse signaling regulates bone formation. Targeted deletion of the ephrin B1 gene in type 1alpha2 collagen-producing cells resulted in severe calvarial defects, decreased bone size, bone mineral density, and trabecular bone volume, caused by impairment in osterix expression and osteoblast differentiation. Coimmunoprecipitation of the TAZ complex with TAZ-specific antibody revealed a protein complex containing ephrin B1, PTPN13, NHERF1, and TAZ in bone marrow stromal (BMS) cells. Activation of ephrin B1 reverse signaling with soluble EphB2-Fc led to a time-dependent increase in TAZ dephosphorylation and shuttling from cytoplasm to nucleus. Treatment of BMS cells with exogenous EphB2-Fc resulted in a 4-fold increase in osterix expression as determined by Western blotting. Disruption of TAZ expression using specific lentivirus small hairpin RNA (shRNA) decreased TAZ mRNA by 80% and ephrin B1 reverse signaling-mediated increases in osterix mRNA by 75%. Knockdown of NHERF1 expression reduced basal levels of osterix expression by 90% and abolished ephrin B1-mediated induction of osterix expression. We conclude that locally produced ephrin B1 mediates its effects on osteoblast differentiation by a novel molecular mechanism in which activation of reverse signaling leads to dephosphorylation of TAZ and subsequent release of TAZ from the ephrin B1/NHERF1/TAZ complex to translocate to the nucleus to induce expression of the osterix gene and perhaps other osteoblast differentiation genes. Our findings provide strong evidence that ephrin B1 reverse signaling in osteoblasts is critical for BMS cell differentiation and bone formation. PMID:19995908

  7. Inhibition of PRL-2·CNNM3 Protein Complex Formation Decreases Breast Cancer Proliferation and Tumor Growth*

    PubMed Central

    Kostantin, Elie; Hardy, Serge; Valinsky, William C.; Kompatscher, Andreas; de Baaij, Jeroen H. F.; Zolotarov, Yevgen; Landry, Melissa; Uetani, Noriko; Martínez-Cruz, Luis Alfonso; Hoenderop, Joost G. J.; Shrier, Alvin; Tremblay, Michel L.

    2016-01-01

    The oncogenic phosphatase of regenerating liver 2 (PRL-2) has been shown to regulate intracellular magnesium levels by forming a complex through an extended amino acid loop present in the Bateman module of the CNNM3 magnesium transporter. Here we identified highly conserved residues located on this amino acid loop critical for the binding with PRL-2. A single point mutation (D426A) of one of those critical amino acids was found to completely disrupt PRL-2·human Cyclin M 3 (CNNM3) complex formation. Whole-cell voltage clamping revealed that expression of CNNM3 influenced the surface current, whereas overexpression of the binding mutant had no effect, indicating that the binding of PRL-2 to CNNM3 is important for the activity of the complex. Interestingly, overexpression of the CNNM3 D426A-binding mutant in cancer cells decreased their ability to proliferate under magnesium-deprived situations and under anchorage-independent growth conditions, demonstrating a PRL-2·CNNM3 complex-dependent oncogenic advantage in a more stringent environment. We further confirmed the importance of this complex in vivo using an orthotopic xenograft breast cancer model. Finally, because molecular modeling showed that the Asp-426 side chain in CNNM3 buries into the catalytic cavity of PRL-2, we showed that a PRL inhibitor could abrogate complex formation, resulting in a decrease in proliferation of human breast cancer cells. In summary, we provide evidence that this fundamental regulatory aspect of PRL-2 in cancer cells could potentially lead to broadly applicable and innovative therapeutic avenues. PMID:26969161

  8. Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation

    PubMed Central

    Lee, Hye-Young; Jeong, Young-IL; Choi, Ki-Choon

    2011-01-01

    Background p-Phenylenediamine (PDA) or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic. Methods PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(γ-glutamic acid) (PGA). To reinforce PDA/PGA ion complexes, glycol chitosan (GC) was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier- transform infrared (FT-IR) spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD). Results Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm), and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was observed, and then PDA was continuously released over 1 week. Cytotoxicity testing against HaCaT human skin keratinocyte cells showed PDA-incorporated nanoparticles had lower toxicity than PDA itself. Furthermore, PDA-incorporated nanoparticles showed reduced apoptosis and necrosis reaction at HaCaT cells. Conclusion The authors suggest that these microparticles are ideal

  9. Inhibition of PRL-2·CNNM3 Protein Complex Formation Decreases Breast Cancer Proliferation and Tumor Growth.

    PubMed

    Kostantin, Elie; Hardy, Serge; Valinsky, William C; Kompatscher, Andreas; de Baaij, Jeroen H F; Zolotarov, Yevgen; Landry, Melissa; Uetani, Noriko; Martínez-Cruz, Luis Alfonso; Hoenderop, Joost G J; Shrier, Alvin; Tremblay, Michel L

    2016-05-13

    The oncogenic phosphatase of regenerating liver 2 (PRL-2) has been shown to regulate intracellular magnesium levels by forming a complex through an extended amino acid loop present in the Bateman module of the CNNM3 magnesium transporter. Here we identified highly conserved residues located on this amino acid loop critical for the binding with PRL-2. A single point mutation (D426A) of one of those critical amino acids was found to completely disrupt PRL-2·human Cyclin M 3 (CNNM3) complex formation. Whole-cell voltage clamping revealed that expression of CNNM3 influenced the surface current, whereas overexpression of the binding mutant had no effect, indicating that the binding of PRL-2 to CNNM3 is important for the activity of the complex. Interestingly, overexpression of the CNNM3 D426A-binding mutant in cancer cells decreased their ability to proliferate under magnesium-deprived situations and under anchorage-independent growth conditions, demonstrating a PRL-2·CNNM3 complex-dependent oncogenic advantage in a more stringent environment. We further confirmed the importance of this complex in vivo using an orthotopic xenograft breast cancer model. Finally, because molecular modeling showed that the Asp-426 side chain in CNNM3 buries into the catalytic cavity of PRL-2, we showed that a PRL inhibitor could abrogate complex formation, resulting in a decrease in proliferation of human breast cancer cells. In summary, we provide evidence that this fundamental regulatory aspect of PRL-2 in cancer cells could potentially lead to broadly applicable and innovative therapeutic avenues. PMID:26969161

  10. An Estimation of the Star Formation Rate in the Perseus Complex

    NASA Astrophysics Data System (ADS)

    Mercimek, Seyma

    2016-07-01

    The detailed study of all sources are carried on, by comparing the number of existing cores and YSOs from observations with the prediction from column density PDFs. With this investigation, we found a relation between starless cores and protostars that cores may be considered progenitors of the next generation of protostars, assuming the rate of star formation in the recent past is similar to the rate in the near future. These are also new results which have not been investigated previously. In addition, we also calculate the mean density of each starless core and its corresponding free-fall time in order to estimate star formation rate in near future. Following that, we obtained star formation efficiency from the existing stellar cores which later was used to estimate average stellar mass from standard IMF. Finally, we estimate how many starless cores will turn into stars in the predicted free fall time and how many stars will form from calculated core mass.

  11. REACTIVE DESORPTION AND RADIATIVE ASSOCIATION AS POSSIBLE DRIVERS OF COMPLEX MOLECULE FORMATION IN THE COLD INTERSTELLAR MEDIUM

    SciTech Connect

    Vasyunin, A. I.; Herbst, Eric E-mail: eh2ef@virginia.edu

    2013-05-20

    The recent discovery of terrestrial-type organic species such as methyl formate and dimethyl ether in the cold interstellar gas has proved that the formation of organic matter in the Galaxy begins at a much earlier stage of star formation than was previously thought. This discovery represents a challenge for astrochemical modelers. The abundances of these molecules cannot be explained by the previously developed ''warm-up'' scenario, in which organic molecules are formed via diffusive chemistry on surfaces of interstellar grains starting at 30 K, and then released to the gas at higher temperatures during later stages of star formation. In this article, we investigate an alternative scenario in which complex organic species are formed via a sequence of gas-phase reactions between precursor species formed on grain surfaces and then ejected into the gas via efficient reactive desorption, a process in which non-thermal desorption occurs as a result of conversion of the exothermicity of chemical reactions into the ejection of products from the surface. The proposed scenario leads to reasonable if somewhat mixed results at temperatures as low as 10 K and may be considered as a step toward the explanation of abundances of terrestrial-like organic species observed during the earliest stages of star formation.

  12. Local adaptive mechanism and hierarchic social entropy in opinion formation on complex networks

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Hu, Yanqing; Di, Zengru; Fan, Ying

    2010-10-01

    In this paper we study the opinion formation using co-evolution model, in which network's structure interacts with the nodes' opinion. A local adaptive model is proposed to investigate the effects of local information on the opinion formation, including local rewiring and influencing mechanism. The results show that under the local adaptive mechanism, systems could reach steady state of consensus or fragmentation. Considering the local influencing factor only, we find that transition occurs under proper condition and local parameter affects the transition point. At last, the diversity of opinions is considered, and hierarchic social entropy is used as a macroscopic measurement which is proved to be well.

  13. Siderophile element systematics of IAB complex iron meteorites: New insights into the formation of an enigmatic group

    NASA Astrophysics Data System (ADS)

    Worsham, Emily A.; Bermingham, Katherine R.; Walker, Richard J.

    2016-09-01

    Siderophile trace element abundances and the 187Re-187Os isotopic systematics of the metal phases of 58 IAB complex iron meteorites were determined in order to investigate formation processes and how meteorites within chemical subgroups may be related. Close adherence of 187Re-187Os isotopic data of most IAB iron meteorites to a primordial isochron indicates that the siderophile elements of most members of the complex remained closed to elemental disturbance soon after formation. Minor, presumably late-stage open-system behavior, however, is observed in some members of the sLM, sLH, sHL, and sHH subgroups. The new siderophile element abundance data are consistent with the findings of prior studies suggesting that the IAB subgroups cannot be related to one another by any known crystallization process. Equilibrium crystallization, coupled with crystal segregation, solid-liquid mixing, and subsequent fractional crystallization can account for the siderophile element variations among meteorites within the IAB main group (MG). The data for the sLM subgroup are consistent with equilibrium crystallization, combined with crystal segregation and mixing. By contrast, the limited fractionation of siderophile elements within the sLL subgroup is consistent with metal extraction from a chondritic source with little subsequent processing. The limited data for the other subgroups were insufficient to draw robust conclusions about crystallization processes involved in their formation. Collectively, multiple formational processes are represented in the IAB complex, and modeling results suggest that fractional crystallization within the MG may have been a more significant process than has been previously recognized.

  14. Evaluation of CO2 migration and formation storage capacity in the Dalders formations, Baltic Sea - Preliminary analysis by means of models of increasing complexity

    NASA Astrophysics Data System (ADS)

    Niemi, Auli; Yang, Zhibing; Tian, Liang; Jung, Byeongju; Fagerlund, Fritjof; Joodaki, Saba; Pasquali, Riccardo; O'Neill, Nick; Vernon, Richard

    2014-05-01

    We present preliminary data analysis and modeling of CO2 injection into selected parts of the Dalders Monocline and Dalders Structure, formations situated under the Baltic Sea and of potential interest for CO2 geological storage. The approach taken is to use models of increasing complexity successively, thereby increasing the confidence and reliability of the predictions. The objective is to get order-of-magnitude estimates of the behavior of the formations during potential industrial scale CO2 injection and subsequent storage periods. The focus has been in regions with best cap-rock characteristics, according to the present knowledge. Data has been compiled from various sources available, such as boreholes within the region. As the first approximation we use analytical solutions, in order to get an initial estimate the CO2 injection rates that can be used without causing unacceptable pressure increases. These preliminary values are then used as basis for more detailed numerical analyses with TOUGH2/TOUGH2-MP (e.g. Zhang et al, 2008) simulator and vertical equilibrium based (e.g. Gasda et al, 2009) models. With the numerical models the variations in material properties, formation thickness etc., as well as more processes such as CO2 dissolution can also be taken into account. The presentation discusses results from these preliminary analyses in terms of estimated storage capacity, CO2 and pressure plume extent caused by various injection scenarios, as well as CO2 travel time after the end of the injection. The effect of factors such as number of injection wells and the positioning of these, the effect of formation properties and the boundary conditions are discussed as are the benefits and disadvantages of the various modeling approaches used. References: Gasda S.E. et al, 2009. Computational Geosciences 13, 469-481. Zhang et al, 2008. Report LBNL-315E, Lawrence Berkeley National Laboratory.

  15. Formation and decomplexation kinetics of copper(ii) complexes with cyclen derivatives having mixed carboxylate and phosphonate pendant arms.

    PubMed

    Ševčík, R; Vaněk, J; Michalicová, R; Lubal, P; Hermann, P; Santos, I C; Santos, I; Campello, M P C

    2016-08-01

    The kinetic properties of Cu(ii) complexes of H4dota and its analogues with one (H5do3ap), two in the 1,7-position (trans-H6do2a2p), three (H7doa3p) and four (H8dotp) phosphonic acid pendant arms were investigated. The formation of a Cu(ii) complex with H4dota, trans-H6do2a2p and H8dotp at a slightly acidic pH is faster for the phosphonic acid derivatives than for H4dota, but with no simple dependence on the number of -CH2PO3H2 substituents (trans-H6do2a2p > H8dotp > H4dota; pH 4-6). Relative differences in the reactivity among the differently protonated species (HnL(x-)) of the same ligand are successively decreased with the more phosphonic acid groups in the ligand. The faster complexation is probably caused by the higher ability of phosphonates to bind the metal ion and/or to assist in the transfer of protons from the ring amine groups to the bulk water. The acid-assisted decomplexation kinetics of the complexes was followed in highly acidic solutions ([H(+)] = 0.01-5 M) and at different temperatures (15-70 °C) to determine the activation parameters of the reaction. The kinetic inertness of the Cu(ii) complexes follows the order: H4dota > H5do3ap > trans-H6do2a2p > H7doa3p > H8dotp. To obtain information on the influence of additional pendant arms, analogous data were obtained for trans-H2do2a. The ligand is less reactive than H4dota, but the kinetic inertness of its Cu(ii) complex is similar to that of the H4dota complex. As it was considered that the published thermodynamics data on the Cu(ii)-H8dotp system are probably incorrect, the system was re-investigated. It showed a very high stability for the [Cu(dotp)](6-) species and the easy formation of several Cu2L species in the presence of an excess of the metal ion. Also, the structure of the (H6doa3p)(-) anion in the solid state was determined. These experimental data demonstrate that the substitution of acetic acid pendant arms by methylphosphonic acid ones in H4dota-like ligands increases the rate of

  16. Role of alpha chain-IL-2 complex in the formation of the ternary complex of IL-2 and high-affinity IL-2 receptor.

    PubMed

    Kamio, M; Uchiyama, T; Arima, N; Itoh, K; Ishikawa, T; Hori, T; Uchino, H

    1990-01-01

    Using anti-Tac (anti-alpha chain) and 2R-B (anti-beta chain) antibodies, we studied the roles of IL-2 receptor subunits (alpha and beta chains) in the formation of IL-2 and high-affinity IL-2 receptor complex, which is the initial event of IL-2 induced T cell growth. High-affinity IL-2 binding which was undetectable in the presence of 2R-B antibody at 4 degrees C became fully detectable when examined at 37 degrees C, which explained the lack of inhibition by 2R-B antibody of IL-2-induced proliferation of the cells expressing high-affinity IL-2 receptor. We further studied the mechanism of the 'reappearance' of high-affinity IL-2 binding in the presence of 2R-B antibody. The addition of IL-2 to the cells preincubated with radiolabeled or fluorescence-labeled 2R-B antibody resulted in a marked decrease in the antibody bound to the cells expressing high-affinity IL-2 receptor at 37 degrees C. This decrease was blocked by the presence of anti-Tac antibody, which inhibited IL-2 binding to alpha chain, but not by 7G7/B6 antibody, which recognized a non-IL-2 binding site of its chain. Furthermore, the decrease in cell-bound 2R-B antibody was not due to the internalization of beta chain-2R-B antibody complex, because the amount of cell-bound Mik-beta3 antibody recognizing a non-IL-2 binding epitope of beta chain remained unchanged, nor to the inhibition by simple competitive binding of IL-2 molecules to beta chain as judged from comparative studies of competitive binding inhibition. Taking these data together, the reappearance of high-affinity IL-2 binding was considered to be caused by the replacement of 2R-B antibody at the IL-2 binding site of beta chain by alpha chain-mediated IL-2, and it was strongly suggested that alpha chain-IL-2 complex has a key role in the formation of the ternary complex of IL-2 and high-affinity IL-2 receptor. alpha chain may function as a dimension converter of IL-2 to effectively deliver IL-2 molecules to a relatively small number of beta

  17. Study of Benzyl Salicylate/beta-Cyclodextrin Inclusion Complex Formation by Positron Annihilation

    NASA Astrophysics Data System (ADS)

    Bellitto, V. J.; Hsu Hadley, F. H., Jr.; Trinh, T.

    1996-11-01

    Results of positron annihilation lifetime spectra of beta-cyclodextrin and beta-cyclodextrin complexed with benzyl salicylate,benzyl acetate, or ethyl salicylate in air and vacuum were used to determine the fraction of beta-cyclodextrin which remains uncomplexed in the benzyl salicylate/beta-cyclodextrin 1:2 molar ratio inclusion complex. The intensity of the longest-lived component in vacuum was shown to decrease when the beta-cyclodextrin cavity was filled with benzyl salicylate, benzyl acetate, or ethyl salicylate guest molecules. Comparison of the intensity for beta-cyclodextrin, benzyl salicylate/beta-cyclodextrin 1:2 molar ratio, and 1:1 molar ratio indicated that the benzyl and salicylate moieties each formed an inclusion complex with a molecule of beta-cyclodextrin in the benzyl salicylate/beta-cyclodextrin 1:2 complex. It was determined that the benzyl moiety of the benzyl salicylate molecule is preferred by the beta-cyclodextrin "host" and that only 34of the salicylate moieties are complexed in the benzyl salicylate/beta-cyclodextrin 1:2 sample.

  18. Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes

    SciTech Connect

    Wang Bei; Suzuki, Hiroyuki Kato, Mitsuyasu

    2008-11-14

    TGF-{beta} activates receptor-regulated Smad (R-Smad) through phosphorylation by type I receptors. Activated R-Smad binds to Smad4 and the complex translocates into the nucleus and stimulates the transcription of target genes through association with co-activators including p300. It is not clear, however, how activated Smad complexes are removed from target genes. In this study, we show that TGF-{beta} enhances the mono-ubiquitination of Smad4. Smad4 mono-ubiquitination was promoted by p300 and suppressed by the c-Ski co-repressor. Smad4 mono-ubiquitination disrupted the interaction with Smad2 in the presence of constitutively active TGF-{beta} type I receptor. Furthermore, mono-ubiquitinated Smad4 was not found in DNA-binding Smad complexes. A Smad4-Ubiquitin fusion protein, which mimics mono-ubiquitinated Smad4, enhanced localization to the cytoplasm. These results suggest that mono-ubiquitination of Smad4 occurs in the transcriptional activator complex and facilitates the turnover of Smad complexes at target genes.

  19. Theoretical study on the transition-metal oxoboryl complex: M-BO bonding nature, mechanism of the formation reaction, and prediction of a new oxoboryl complex.

    PubMed

    Zeng, Guixiang; Sakaki, Shigeyoshi

    2012-04-16

    The Pt-BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe(3))(2), were theoretically investigated with the density functional theory method. The BO(-) ligand was quantitatively demonstrated to have extremely strong σ-donation but very weak d(π)-electron-accepting abilities. Therefore, it exhibits a strong trans influence. The formation reaction occurs through a four-center transition state, in which the B(δ+)-Br(δ-) polarization and the Br → Si and O p(π) → B p(π) charge-transfer interactions play key roles. The Gibbs activation energy (ΔG°(++)) and Gibbs reaction energy (ΔG°) of the formation reaction are 32.2 and -6.1 kcal/mol, respectively. The electron-donating bulky phosphine ligand is found to be favorable for lowering both ΔG°(++) and ΔG°. In addition, the metal effect is examined with the nickel and palladium analogues and MBrCl[BBr(OSiMe(3))](CO)(PR(3))(2) (M = Ir and Rh). By a comparison of the ΔG°(++) and ΔG° values, the M-BO (M = Ni, Pd, Ir, and Rh) bonding nature, and the interaction energy between [MBrCl(CO)(PR(3))(2)](+) and BO(-) with those of the platinum system, MBrCl(BO)(CO)(PR(3))(2) (M = Ir and Rh) is predicted to be a good candidate for a stable oxoboryl complex. PMID:22458310

  20. Professional Motivation Formation of Future Specialists under the Conditions of Regional Educational Complex

    ERIC Educational Resources Information Center

    Kargina, Elena Mikhaylovna

    2015-01-01

    Motivation plays the leading role in the organization of the personality structure. It is a driving force of the activity. Motivation accounts for the behavior and activity and has a great impact on professional self-determination and person's satisfaction with the work. The problem of professional motivation formation of a future specialist is…

  1. A Case Study of Teacher Personal Practice Assessment Theories and Complexities of Implementing Formative Assessment

    ERIC Educational Resources Information Center

    Box, Cathy; Skoog, Gerald; Dabbs, Jennifer M.

    2015-01-01

    The value and effectiveness of formative assessment in the classroom has gained an increasing amount of attention during the past decade, especially since the publication of seminal work by Black and Wiliam titled "Assessment and Classroom Learning." Since that time, there has been a renewed interest in describing and evaluating teacher…

  2. Characteristic Formation of Hyaluronan-Cartilage Link Protein-Proteoglycan Complex in Salivary Gland Tumors.

    PubMed

    Kuwabara, Hiroko; Nishikado, Akira; Hayasaki, Hana; Isogai, Zenzo; Yoneda, Masahiko; Kawata, Ryo; Hirose, Yoshinobu

    2016-01-01

    Hyaluronan (HA) and its binding molecules, cartilage link protein (LP) and proteoglycan (PG), are structural components of the hydrated extracellular matrix. Because these molecules play important roles in the tumor microenvironment, we examined the distribution of HA, LP, versican, and aggrecan in salivary gland tumors using histochemical and immunohistochemical methods, including double staining. LP was present in pleomorphic adenoma (PA) and adenoid cystic carcinoma (ACC) tissues, and aggrecan was absent in the malignant tumors that we investigated. LP colocalized with both HA and aggrecan in the chondromyxoid matrix of PA, suggesting the presence of a HA-LP-aggrecan complex. Furthermore, the HA-LP-versican complex could be observed in the pseudocystic space of the cribriform structures in ACC. The characteristic HA-LP-PG complex in PA and ACC might play a role in the behavior of tumors, and immunohistochemical analysis of these molecules could represent a diagnostic adjunct for salivary gland tumors. PMID:26067139

  3. Structural consequences of effector protein complex formation in a diiron hydroxylase

    SciTech Connect

    Bailey, Lucas J.; McCoy, Jason G.; Phillips, Jr., George N.; Fox, Brian G.

    2009-06-12

    Carboxylate-bridged diiron hydroxylases are multicomponent enzyme complexes responsible for the catabolism of a wide range of hydrocarbons and as such have drawn attention for their mechanism of action and potential uses in bioremediation and enzymatic synthesis. These enzyme complexes use a small molecular weight effector protein to modulate the function of the hydroxylase. However, the origin of these functional changes is poorly understood. Here, we report the structures of the biologically relevant effector protein-hydroxylase complex of toluene 4-monooxygenase in 2 redox states. The structures reveal a number of coordinated changes that occur up to 25 {angstrom} from the active site and poise the diiron center for catalysis. The results provide a structural basis for the changes observed in a number of the measurable properties associated with effector protein binding. This description provides insight into the functional role of effector protein binding in all carboxylate-bridged diiron hydroxylases.

  4. Polynuclear Silver(I) Triazole Complexes: Ion Conduction and Nanowire Formation in the Mesophase.

    PubMed

    Su, Padi Y S; Hsu, S J; Tseng, Jing C W; Hsu, Hsiu-Fu; Wang, Wen-Jwu; Lin, Ivan J B

    2016-01-01

    Examples of polynuclear metallomesogens are few. Herein,1,2,4-triazole ligands were used to prepare mono- and polynuclear silver(I) triazole metallomesogens. Besides showing an SmA phase in the mesophase, two interesting properties were observed. First, higher ion conductivity is always found for the polynuclear complexes than for the mononuclear complexes with the same anion, an observation contrary to the knowledge that migration of a monomeric cation should be faster than that of a polymeric cation. Second, thermolysis of the polynuclear silver(I) triazole complexes in the assembled mesophase yielded Ag nanowires, in an excellent demonstration of the assembled nature of the polynuclear silver(I) ions in the thermolysis process. PMID:26602494

  5. Complex formation between excited-state saturated amines and water in n-hexane solution

    SciTech Connect

    Halpern, A.M.; Ruggles, C.J.; Zhang, X.K.

    1987-06-10

    Fluorescence spectra and decay curves of dilute solutions (<3 x 10/sup -4/ M) of triethylamine (TEA), tri-n-propylamine (TPA), and 1,4-diazabicyclo(2.2.2)octane (DABCO) in H/sub 2/O- and D/sub 2/O-saturated n-hexane reveal the presence of a complex formed between the electronically excited amine and water. The decay curves, measured between 273 and 323 K (and at 280 and 360 nm; 300 and 400 nm for DABCO), conform to the standard monomer-excimer photokinetic scheme and are analyzed accordingly. These results indicate that the binding energy of the excited TEA-H/sub 2/O complex (B*) is ca. 7.8 kcal/mol, which is larger than that of the ground-state TEA hydrate. B* for the TPA and DABCO-H/sub 2/O complexes is estimated to be ca. 10 and 8.8 kcal/mol, respectively. Stationary-state measurements are consistent with these assignments. The activation energy for the diffusion of water in n-hexane (assumed to be monomeric) appears to be very small (<1 kcal/mol). The decay constants of the three complexes studied are ca. 3.4 x 10/sup 7/ s/sup -1/ for amine-H/sub 2/O and 2.9 x 10/sup 7/ s/sup -1/ for the amine-D/sub 2/O systems. Intrinsic fluorescence quantum efficiencies of the amine-H/sub 2/O complexes are 0.17, 0.23, and 0.28 for TEA, TPA, and DABCO, respectively, at 303 K. A Foerster cycle analysis of the dry and H/sub 2/O-saturated fluorescence spectra of TEA, when taking the ground-state hydrate into account indicates that the repulsion energy of the post-fluorescence (TEA-H/sub 2/O) complex is ca. 10 kcal/mol.

  6. Unexpected formation of a novel pyridinium-containing catecholate ligand and its manganese(III) complex.

    PubMed

    Sheriff, Tippu S; Watkinson, Michael; Motevalli, Majid; Lesin, Jocelyne F

    2010-01-01

    Nucleophilic aromatic substitution of tetrachloro-o-benzoquinone by pyridine and reduction of the o-quinone to the catechol by hydroxylamine forms 1,2-dihydroxy-3,5,6-trichlorobenzene-4-pyridinium chloride. This compound reacts with manganese(II) acetate in air to form chlorobis(3,5,6-trichlorobenzene 4-pyridinium catecholate)manganese(III), which represents the first complex of this ligand class to be structurally characterized by X-ray diffraction; this complex is active in the catalytic reduction of dioxygen to hydrogen peroxide under ambient conditions and turnover frequencies (TOFs) >10,000 h(-1) can be obtained. PMID:20023930

  7. Considerable fluorescence enhancement upon supramolecular complex formation between berberine and p-sulfonated calixarenes

    NASA Astrophysics Data System (ADS)

    Megyesi, Mónika; Biczók, László

    2006-06-01

    Remarkably strong binding of berberine to 4-sulfonatocalix[8]arene was found in aqueous solution, which led to fluorescence quantum yield increase of a factor about 40 at pH 2. The hypsochromic shift of the fluorescence maximum implied that berberine sensed less polar microenvironment when confined to SCX8. The stability of the supramolecular complex significantly diminished when sulfocalixarenes of smaller ring size served as host compounds but the pH affected the association strength to a much lesser extent. All berberine complexes proved to be barely fluorescent at pH 12.2 because of excited state quenching by the hosts via electron transfer.

  8. Catalytic C-N, C-O, and C-S Bond Formation Promoted by Organoactinide Complexes

    NASA Astrophysics Data System (ADS)

    Eisen, Moris S.

    Throughout this last decade, we have witnessed impressively how the chemistry of electrophilic d0/fn actinides has been prospering either in their new synthetic approaches reaching very interesting compounds or in their use in stoichiometric and catalytic reactions leading to high levels of complexity. The unique rich and complex features of organoactinides prompted the development of this field toward catalysis in demanding chemical transformations. In this review, we present a brief and selective survey of the recent developments in homogenous catalysis of organoactinide complexes, especially toward the formation of new C-N, C-O, and C-S bonds. We start by presenting the synthesis and characterization of the corresponding organoactinide complexes, followed by the homogeneous catalytic chemical transformations that include the hydroamination of terminal alkynes, the polymerization of ɛ-caprolactone and L-lactide, the reduction of azides and hydrazines by high-valent organouranium complexes, the hydrothiolation of terminal alkynes, and the catalytic Tishchenko reaction. For each reaction, the scope and the thermodynamic, kinetic, and mechanistic aspects are presented.

  9. Spalt-mediated dve repression is a critical regulatory motif and coordinates with Iroquois complex in Drosophila vein formation.

    PubMed

    Sugimori, Seiko; Hasegawa, Aya; Nakagoshi, Hideki

    2016-08-01

    Veins are longitudinal cuticular structures that maintain shape of the wing. Drosophila melanogaster has six longitudinal veins (L1-L6) and two cross veins. The Zn-finger transcription factors of Spalt-complex (Sal) are required for positioning of the L2 and L5, and the homeodomain transcription factors of Iroquois complex (Iro-C) are required for formation of the L3 and L5 veins. The homeodomain transcriptional repressor Defective proventriculus (Dve) is uniformly expressed in the wing pouch of the larval imaginal disc. However, dve mutant wings showed loss of the L2 and L5, but not of the L3 and L4 veins. Temporal dve knockdown experiments indicate that the Dve activity is required for vein formation from late third larval instar to the prepupal stage. In the prepupal wing, Dve expression becomes nearly complementary to that of Sal through the Sal-mediated dve repression. Furthermore, coexpression of Dve and Iro-C relieved of Sal-mediated repression is required for the L5 formation in a dose-dependent manner. The relationship between Sal, Dve, and Iro-C in wing vein specification is quite similar to that in ommatidial cell-type specification. Our results provide information about the conserved function of dve regulatory motifs in cell differentiation. PMID:27349585

  10. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes

    PubMed Central

    Szczelkun, Mark D.; Tikhomirova, Maria S.; Sinkunas, Tomas; Gasiunas, Giedrius; Karvelis, Tautvydas; Pschera, Patrizia; Siksnys, Virginijus; Seidel, Ralf

    2014-01-01

    Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems protect bacteria and archaea from infection by viruses and plasmids. Central to this defense is a ribonucleoprotein complex that produces RNA-guided cleavage of foreign nucleic acids. In DNA-targeting CRISPR-Cas systems, the RNA component of the complex encodes target recognition by forming a site-specific hybrid (R-loop) with its complement (protospacer) on an invading DNA while displacing the noncomplementary strand. Subsequently, the R-loop structure triggers DNA degradation. Although these reactions have been reconstituted, the exact mechanism of R-loop formation has not been fully resolved. Here, we use single-molecule DNA supercoiling to directly observe and quantify the dynamics of torque-dependent R-loop formation and dissociation for both Cascade- and Cas9-based CRISPR-Cas systems. We find that the protospacer adjacent motif (PAM) affects primarily the R-loop association rates, whereas protospacer elements distal to the PAM affect primarily R-loop stability. Furthermore, Cascade has higher torque stability than Cas9 by using a conformational locking step. Our data provide direct evidence for directional R-loop formation, starting from PAM recognition and expanding toward the distal protospacer end. Moreover, we introduce DNA supercoiling as a quantitative tool to explore the sequence requirements and promiscuities of orthogonal CRISPR-Cas systems in rapidly emerging gene-targeting applications. PMID:24912165

  11. Contribution of the 80s loop of HIV-1 protease to the multidrug-resistance mechanism: crystallographic study of MDR769 HIV-1 protease variants

    SciTech Connect

    Yedidi, Ravikiran S.; Proteasa, Georghe; Martinez, Jorge L.; Vickrey, John F.; Martin, Philip D.; Wawrzak, Zdzislaw; Liu, Zhigang; Kovari, Iulia A.; Kovari, Ladislau C.

    2011-09-06

    The flexible flaps and the 80s loops (Pro79-Ile84) of HIV-1 protease are crucial in inhibitor binding. Previously, it was reported that the crystal structure of multidrug-resistant 769 (MDR769) HIV-1 protease shows a wide-open conformation of the flaps owing to conformational rigidity acquired by the accumulation of mutations. In the current study, the effect of mutations on the conformation of the 80s loop of MDR769 HIV-1 protease variants is reported. Alternate conformations of Pro81 (proline switch) with a root-mean-square deviation of 3-4.8 {angstrom} in the C{alpha} atoms of the I10V mutant and a side chain with a 'flipped-out' conformation in the A82F mutant cause distortion in the S1/S1' binding pockets that affects inhibitor binding. The A82S and A82T mutants show local changes in the electrostatics of inhibitor binding owing to the mutation from nonpolar to polar residues. In summary, the crystallographic studies of four variants of MDR769 HIV-1 protease presented in this article provide new insights towards understanding the drug-resistance mechanism as well as a basis for design of future protease inhibitors with enhanced potency.

  12. Stability constants for the formation of rare earth-inorganic complexes as a function of ionic strength

    NASA Astrophysics Data System (ADS)

    Millero, Frank J.

    1992-08-01

    Recent studies have been made on the distribution of the rare earths (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in natural waters relative to their concentration in shales. These metals have also been used as models for the behavior of the trivalent actinides. The speciation of the rare earths in natural waters is modelled by using ionic interaction models which require reliable stability constants. In this paper the stability constants for the formation of lanthanide complexes ( k mx∗) with Cl -, NO 3-, SO 42-, OH -, HCO 3-, H 2PO 4-, HPO 42-, and CO 32- determined in NaClO 44 at various ionic strengths have been extrapolated to infinite dilution using the Pitzer interaction model. The activity coefficients for free ions ( γM, γx) needed for this extrapolation have been estimated from the Pitzer equations. The thermodynamic stability constants ( KMX) and activity coefficients of the various ion pairs ( γMX) were determined from In ( solK MX∗/γ Mγ x) = In K mx+ In (γ MX). The activity coefficients of the ion pairs have been used to determine Pitzer parameters ( BMX) for the rare earth complexes. The values of BMX were found to be the same for complexes of the same charge. These results make it possible to estimate the stability constants for the formation of rare earth complexes over a wide range of ionic strengths. The stability constants have been used to determine the speciation of the lanthanides in seawater and in brines. The carbonate complexes dominate for all natural waters where the carbonate alkalinity is greater than 0.001 eq/L at a pH near 8.

  13. In Vivo Protein Interactions and Complex Formation in the Pectobacterium atrosepticum Subtype I-F CRISPR/Cas System

    PubMed Central

    Richter, Corinna; Gristwood, Tamzin; Clulow, James S.; Fineran, Peter C.

    2012-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their associated proteins (Cas; CRISPR associated) are a bacterial defense mechanism against extra-chromosomal elements. CRISPR/Cas systems are distinct from other known defense mechanisms insofar as they provide acquired and heritable immunity. Resistance is accomplished in multiple stages in which the Cas proteins provide the enzymatic machinery. Importantly, subtype-specific proteins have been shown to form complexes in combination with small RNAs, which enable sequence-specific targeting of foreign nucleic acids. We used Pectobacterium atrosepticum, a plant pathogen that causes soft-rot and blackleg disease in potato, to investigate protein-protein interactions and complex formation in the subtype I-F CRISPR/Cas system. The P. atrosepticum CRISPR/Cas system encodes six proteins: Cas1, Cas3, and the four subtype specific proteins Csy1, Csy2, Csy3 and Cas6f (Csy4). Using co-purification followed by mass spectrometry as well as directed co-immunoprecipitation we have demonstrated complex formation by the Csy1-3 and Cas6f proteins, and determined details about the architecture of that complex. Cas3 was also shown to co-purify all four subtype-specific proteins, consistent with its role in targeting. Furthermore, our results show that the subtype I-F Cas1 and Cas3 (a Cas2-Cas3 hybrid) proteins interact, suggesting a protein complex for adaptation and a role for subtype I-F Cas3 proteins in both the adaptation and interference steps of the CRISPR/Cas mechanism. PMID:23226499

  14. Reactions of dioxygen complexes. Oxidative dehydrogenation of 1,6-bis(2-pyridyl)-2,5-diazahexane through cobalt dioxygen complex formation

    SciTech Connect

    Basak, A.K.; Martell, A.E.

    1988-06-01

    The formation constants and oxygenation constants of the cobalt(II) complexes of 1,6-bis(2-pyridyl)-2,5-diazahexane (PYEN) have been determined by potentiometric equilibrium measurements under nitrogen and oxygen. The kinetics of the oxidative degradation of the coordinated ligand in the cobalt dioxygen complex have been measured spectrophotometrically, and the rate constants of two parallel degradation reactions have been determined. Both reactions were found to be second order, first order with respect to the concentration of the dioxygen complex and first order with respect to the hydroxide ion concentration. Kinetics and product analysis reveal that one of the terminal aminomethyl residues of the ligand PYEN undergoes two-electron oxidation to form the corresponding imine, which under the reaction conditions employed is converted to pyridine-2-carboxyaldehyde, identified semiquantitatively as the (2,6-dinitrophenyl)hydrazone. Comparisons of these results with those of systems investigated previously, and the large kinetic deuterium isotope effect for the dehydrogenation reaction, are employed as the basis of a proposed reaction mechanism, which involves deprotonation of an aliphatic amino group in a preequilibrium step. Reaction mechanisms are suggested. 30 references, 10 figures, 3 tables.

  15. Dynamic titration: determination of dissociation constants for noncovalent complexes in multiplexed format using HPLC-ESI-MS.

    PubMed

    Frycák, Petr; Schug, Kevin A

    2008-03-01

    With recent growth in fields such as life sciences and supramolecular chemistry, there has been an ever increasing need for high-throughput methods that would permit determination of binding affinities for noncovalent complexes of various host-guest systems. These are traditionally measured by titration experiments where concentration-dependent signals of species participating in solution-based binding equilibria are monitored by methods such as UV-vis spectrophotometry, calorimetry, or nuclear magnetic resonance spectrometry. Here we present a new titration technique that unifies and allows chromatographic separation of guests with determination of dissociation constants by electrospray mass spectrometry in a multiplexed format. A theoretical model has been derived that describes the complex formation for the guests eluted from a chromatographic column when hosts are admixed postcolumn. The model takes possible competition equilibria into account; i.e., it can deal with unresolved peaks of guests with the possible addition of multiple hosts in one experiment. This on-line workflow makes determination of binding affinities for large libraries of compounds possible. The potential of the method is demonstrated on the determination of dissociation constants for complexes of beta- and gamma-cyclodextrins with nonsteroidal antiinflammatory drugs ibuprofen, naproxen, and flurbiprofen. PMID:18237190

  16. Peculiarities in the formation of complex organic compounds in a nitrogen-methane atmosphere during hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Zaitsev, M. A.; Gerasimov, M. V.; Safonova, E. N.; Vasiljeva, A. S.

    2016-03-01

    Results of the experiments on model impact vaporization of peridotite, a mineral analogue of stony asteroids, in a nitrogen-methane atmosphere are presented. Nd-glass laser (γ = 1.06 µm) was used for simulation. Pulse energy was ~600-700 J, pulse duration ~10-3 s, vaporization tempereature ~4000-5000 K. The gaseous medium (96% vol. of N2 and 4% vol. of CH4, P = 1 atm) was a possible analogue of early atmospheres of terrestrial planets and corresponded to the present-day atmosphere composition of Titan, a satellite of Saturn. By means of pyrolytic gas chromatography/mass spectrometry, it is shown that solid condensates obtained in laser experiments contain relatively complex lowand high-molecular weight (kerogen-like) organic compounds. The main products of condensate pyrolysis were benzene and alkyl benzenes (including long-chain ones), unbranched aliphatic hydrocarbons, and various nitrogen-containing compounds (aliphatic and aromatic nitriles and pyrrol). It is shown that the nitrogen-methane atmosphere favors the formation of complex organic compounds upon hypervelocity impacts with the participation of stony bodies even with a small methane content in it. In this process, falling bodies may not contain carbon, hydrogen, and other chemical elements necessary for the formation of the organic matter. In such conditions, a noticeable contribution to the impact-induced synthesis of complex organic substances is probably made by heterogeneous catalytic reactions, in particular, Fischer-Tropsch type reactions.

  17. Formation and Thermodynamics of Mg-Al-Ti-O Complex Inclusions in Mg-Al-Ti-Deoxidized Steel

    NASA Astrophysics Data System (ADS)

    Ren, Ying; Zhang, Lifeng; Yang, Wen; Duan, Haojian

    2014-12-01

    The formation of Mg-Al-Ti-O complex inclusions in steel was investigated by laboratory experiments and thermodynamic calculation. The composition evolutions of Mg-Al-Ti-O inclusions in steel with different contents of [Al], [Mg], and [Ti] were discussed. Mg-Al-Ti-O complex inclusion with high TiOx content was liquid at 1873 K (1600 °C), indicating MgAl2O4 spinel inclusions can be modified to low melting temperature ones by combining TiOx component. The stability diagram of Al-Mg-Ti-O system inclusions in the molten steel at 1873 K (1600 °C) was calculated, considering many kinds of oxide inclusions such as MgO, Al2O3, TiOx, MgTi2O4, MgAl2O4, Al2TiO5, and liquid inclusion. The thermodynamic calculations are in good agreement with experimental results, which can predict the formation of Al-Mg-Ti-O complex inclusions in molten steel with a large concentration range of [Al], [Mg], and [Ti].

  18. The Non-canonical Tetratricopeptide Repeat (TPR) Domain of Fluorescent (FLU) Mediates Complex Formation with Glutamyl-tRNA Reductase*

    PubMed Central

    Zhang, Min; Zhang, Feilong; Fang, Ying; Chen, Xuemin; Chen, Yuhong; Zhang, Wenxia; Dai, Huai-En; Lin, Rongcheng; Liu, Lin

    2015-01-01

    The tetratricopeptide repeat (TPR)-containing protein FLU is a negative regulator of chlorophyll biosynthesis in plants. It directly interacts through its TPR domain with glutamyl-tRNA reductase (GluTR), the rate-limiting enzyme in the formation of δ-aminolevulinic acid (ALA). Delineation of how FLU binds to GluTR is important for understanding the molecular basis for FLU-mediated repression of synthesis of ALA, the universal tetrapyrrole precursor. Here, we characterize the FLU-GluTR interaction by solving the crystal structures of the uncomplexed TPR domain of FLU (FLUTPR) at 1.45-Å resolution and the complex of the dimeric domain of GluTR bound to FLUTPR at 2.4-Å resolution. Three non-canonical TPR motifs of each FLUTPR form a concave surface and clamp the helix bundle in the C-terminal dimeric domain of GluTR. We demonstrate that a 2:2 FLUTPR-GluTR complex is the functional unit for FLU-mediated GluTR regulation and suggest that the formation of the FLU-GluTR complex prevents glutamyl-tRNA, the GluTR substrate, from binding with this enzyme. These results also provide insights into the spatial regulation of ALA synthesis by the membrane-located FLU protein. PMID:26037924

  19. Pentosan polysulfate increases affinity between ADAMTS-5 and TIMP-3 through formation of an electrostatically driven trimolecular complex.

    PubMed

    Troeberg, Linda; Mulloy, Barbara; Ghosh, Peter; Lee, Meng-Huee; Murphy, Gillian; Nagase, Hideaki

    2012-04-01

    The semi-synthetic sulfated polysaccharide PPS (pentosan polysulfate) increases affinity between the aggrecan-degrading ADAMTSs (adamalysins with thrombospondin motifs) and their endogenous inhibitor, TIMP (tissue inhibitor of metalloproteinases)-3. In the present study we demonstrate that PPS mediates the formation of a high-affinity trimolecular complex with ADAMTS-5 and TIMP-3. A TIMP-3 mutant that lacks extracellular-matrix-binding ability was insensitive to this affinity increase, and truncated forms of ADAMTS-5 that lack the Sp (spacer) domain had reduced PPS-binding ability and sensitivity to the affinity increase. PPS molecules composed of 11 or more saccharide units were 100-fold more effective than those of eight saccharide units, indicating the involvement of extended or multiple protein-interaction sites. The formation of a high-affinity trimolecular complex was completely abolished in the presence of 0.4 M NaCl. These results suggest that PPS enhances the affinity between ADAMTS-5 and TIMP-3 by forming electrostatically driven trimolecular complexes under physiological conditions. PMID:22299597

  20. Effective formation of the segregation-competent complex determines successful partitioning of the bovine papillomavirus genome during cell division.

    PubMed

    Silla, Toomas; Männik, Andres; Ustav, Mart

    2010-11-01

    Effective segregation of the bovine papillomavirus type 1 (BPV1), Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated human herpesvirus type 8 (KSHV) genomes into daughter cells is mediated by a single viral protein that tethers viral genomes to host mitotic chromosomes. The linker proteins that mediate BPV1, EBV, and KSHV segregation are E2, LANA1, and EBNA1, respectively. The N-terminal transactivation domain of BPV1 E2 is responsible for chromatin attachment and subsequent viral genome segregation. Because E2 transcriptional activation and chromatin attachment functions are not mutually exclusive, we aimed to determine the requirement of these activities during segregation by analyzing chimeric E2 proteins. This approach allowed us to separate the two activities. Our data showed that attachment of the segregation protein to chromatin is not sufficient for proper segregation. Rather, formation of a segregation-competent complex which carries multiple copies of the segregation protein is required. Complementation studies of E2 functional domains indicated that chromatin attachment and transactivation functions must act in concert to ensure proper plasmid segregation. These data indicate that there are specific interactions between linker molecules and transcription factors/complexes that greatly increase segregation-competent complex formation. We also showed, using hybrid E2 molecules, that restored segregation function does not involve interactions with Brd4. PMID:20810736

  1. TOM-independent complex formation of Bax and Bak in mammalian mitochondria during TNFalpha-induced apoptosis.

    PubMed

    Ross, K; Rudel, T; Kozjak-Pavlovic, V

    2009-05-01

    The Bcl-2 family proteins Bax and Bak are activated in response to many apoptotic stimuli. As a consequence of activation, Bax and Bak oligomerize and permeabilize the outer mitochondrial membrane to permit the release of apoptosis-inducing factors. It still remains unclear whether these proteins require components of the mitochondrial protein import machinery for their function at the mitochondria. Here, we addressed this question by using inducible RNA interference for the study of protein import in mammalian mitochondria. After induction of apoptosis, we could not detect any impact of the absence of Tom22, Tom70, Tom40, Sam50 or metaxins on the translocation of Bax and formation of Bax and Bak complexes in mitochondria. In in vitro import studies, loss of these import and assembly proteins had no or only slight effect on the formation of complexes by radiolabeled Bax and Bak. We conclude that the import and assembly machineries of mammalian mitochondria have no impact on the translocation and complex assembly of Bax and Bak upon apoptosis induction. PMID:19165229

  2. Light-scattering study of polyelectrolyte complex formation between anionic and cationic nanogels in an aqueous salt-free system.

    PubMed

    Miyake, Masafumi; Ogawa, Kazuyoshi; Kokufuta, Etsuo

    2006-08-15

    We studied complex formation in an aqueous salt-free system (pH approximately 3 and at 25 degrees C) between nanogel particles having opposite charges. Anionic gel (AG) and cationic gel (CG) particles consist of lightly cross-linked N-isopropylacrylamide (NIPA) copolymers with 2-acrylamido-2-methylpropane sulfonic acid and with 1-vinylimidazole, respectively. The number of charges per particle was -4490 for AG and +20 300 for CG, as estimated from their molar masses (3.33 MD for AG and 11.7 MD for CG) by static light scattering (SLS) and their charge densities (1.35 mmol/g for AG and 1.74 mmol/g for CG) by potentiometric titration. The complexes were formed through the addition of AG to CG and vice versa using a turbidimetric titration technique. At the endpoint of the titration, the aggregate formed was a complex based upon stoichiometric charge neutralization: CG(n)()(+) + xAG(m)()(-) --> CG(n)()(+) (AG(m)()(-))(x)() where x = (n)()/(m)(). At different stages of the titration before the endpoint, the resulting complexes were examined in detail using dynamic light scattering, SLS, and electrophoretic light scattering (ELS). The main results are summarized as follows: (i) When AG with a hydrodynamic radius (R(h)) of 119 nm is added to CG (R(h) approximately 156 nm), the (R(h)) of the complex size decreases from 156 to 80 nm. (ii) In contrast to this (R(h)) change, the molar mass increases from 11.7 MD to 24 MD with increasing amounts of added AG. (iii) Upon addition of CG to AG, the complex formed has the same size ((R(h)) approximately 80 nm) and the same molar mass (55 +/- 2.5 MD) until 55 +/- 5% of AG has been consumed in the complexation. To understand these results, we used the following two models: the random model (RM), in which the added AG particles uniformly bind to all of the CG particles in the system via a strong electrostatic attraction, and the all-or-none model (AONM), in which part of the AG particles in the system preferably bind to the added CG

  3. Protein kinase A catalytic subunit primed for action: Time-lapse crystallography of Michaelis complex formation

    SciTech Connect

    Das, Amit; Gerlits, Oksana O.; Parks, Jerry M.; Langan, Paul; Kovalevskyi, Andrey Y.; Heller, William T.

    2015-11-12

    The catalytic subunit of the cyclic AMP-dependent protein kinase A (PKAc) catalyzes the transfer of the γ-phosphate of bound Mg2ATP to a serine or threonine residue of a protein substrate. Here, time-lapse X-ray crystallography was used to capture a series of complexes of PKAc with an oligopeptide substrate and unreacted Mg2ATP, including the Michaelis complex, that reveal important geometric rearrangements in and near the active site preceding the phosphoryl transfer reaction. Contrary to the prevailing view, Mg2+ binds first to the M1 site as a complex with ATP and is followed by Mg2+ binding to the M2 site. Furthermore, the target serine hydroxyl of the peptide substrate rotates away from the active site toward the bulk solvent, which breaks the hydrogen bond with D166. In conclusion, the serine hydroxyl of the substrate rotates back toward D166 to form the Michaelis complex with the active site primed for phosphoryl transfer.

  4. Crystal-like Complex Formation with Binary Charged Block Copolymer Micelles in Dilute Aqueous Media

    NASA Astrophysics Data System (ADS)

    Lee, Misook; Min, Kyung; Hong, Jinkee; Char, Kookheon

    2013-03-01

    The morphology of charged block copolymer micelle (BCM) complexes, consisting of polystyrene-block-poly(acrylic acid) (PS- b-PAA) and polystyrene-block-poly(4-vinyl pyridine) (PS- b-P4VP) micelles, was controlled by pH of aqueous solvent as well as solvent quality. To determine the effective pH range for the inter-corona combination of PAA and P4VP blocks in aqueous media, we studied the dissociation behavior of both coronas using Fourier Transform Infrared Spectroscopy. Lower pH region (pH<5.0) in aqueous media offers stronger interactions between oppositely charged corona blocks, resulting in polymeric hexagonal prism complexes. In the higher pH region (pH>5.5), they first self-assembled into hierarchical spheres induced by the simple adsorption of small PS- b-PAA BCMs on the surfaces of PS- b-P4VP large compound micelles since the degree of ionization of P4VP blocks is relatively low. However, the crew-cut BCM complex morphology with high aggregation number does not allow the hexagonal prism structure to be formed without rearranging strongly aggregated core blocks. We note that the crew-cut BCM complexation in higher DMF content of a mixed solvent induces inter-corona association leading to the hexagonal prism structure due to the decrease in selectivity of water for PS blocks.

  5. Formation of novel TRPC channels by complex subunit interactions in embryonic brain.

    PubMed

    Strübing, Carsten; Krapivinsky, Grigory; Krapivinsky, Luba; Clapham, David E

    2003-10-01

    Mammalian short TRP channels (TRPCs) are putative receptor- and store-operated cation channels that play a fundamental role in the regulation of cellular Ca2+ homeostasis. Assembly of the seven TRPC homologs (TRPC1-7) into homo- and heteromers can create a large variety of different channels. However, the compositions as well as the functional properties of native TRPC complexes are largely undefined. We performed a systematic biochemical study of TRPC interactions in mammalian brain and identified previously unrecognized channel heteromers composed of TRPC1, TRPC4, or TRPC5 and the diacylglycerol-activated TRPC3 or TRPC6 subunits. The novel TRPC heteromers were found exclusively in embryonic brain. In heterologous systems, we demonstrated that assembly of these novel heteromers required the combination of TRPC1 plus TRPC4 or TRPC5 subunits along with diacylglycerol-sensitive subunits in the channel complexes. Functional interaction of the TRPC subunits was verified using a dominant negative TRPC5 mutant (TRPC5DN). Co-expression of TRPC5DN suppressed currents through TRPC5- and TRPC4-containing complexes; TRPC3-associated currents were unaffected by TRPC5DN unless TRPC1 was also co-expressed. This complex assembly mechanism increases the diversity of TRPC channels in mammalian brain and may generate novel heteromers that have specific roles in the developing brain. PMID:12857742

  6. ParB Partition Proteins: Complex Formation and Spreading at Bacterial and Plasmid Centromeres

    PubMed Central

    Funnell, Barbara E.

    2016-01-01

    In bacteria, active partition systems contribute to the faithful segregation of both chromosomes and low-copy-number plasmids. Each system depends on a site-specific DNA binding protein to recognize and assemble a partition complex at a centromere-like site, commonly called parS. Many plasmid, and all chromosomal centromere-binding proteins are dimeric helix-turn-helix DNA binding proteins, which are commonly named ParB. Although the overall sequence conservation among ParBs is not high, the proteins share similar domain and functional organization, and they assemble into similar higher-order complexes. In vivo, ParBs “spread,” that is, DNA binding extends away from the parS site into the surrounding non-specific DNA, a feature that reflects higher-order complex assembly. ParBs bridge and pair DNA at parS and non-specific DNA sites. ParB dimers interact with each other via flexible conformations of an N-terminal region. This review will focus on the properties of the HTH centromere-binding protein, in light of recent experimental evidence and models that are adding to our understanding of how these proteins assemble into large and dynamic partition complexes at and around their specific DNA sites. PMID:27622187

  7. Protein kinase A catalytic subunit primed for action: Time-lapse crystallography of Michaelis complex formation

    DOE PAGESBeta

    Das, Amit; Gerlits, Oksana O.; Parks, Jerry M.; Langan, Paul; Kovalevskyi, Andrey Y.; Heller, William T.

    2015-11-12

    The catalytic subunit of the cyclic AMP-dependent protein kinase A (PKAc) catalyzes the transfer of the γ-phosphate of bound Mg2ATP to a serine or threonine residue of a protein substrate. Here, time-lapse X-ray crystallography was used to capture a series of complexes of PKAc with an oligopeptide substrate and unreacted Mg2ATP, including the Michaelis complex, that reveal important geometric rearrangements in and near the active site preceding the phosphoryl transfer reaction. Contrary to the prevailing view, Mg2+ binds first to the M1 site as a complex with ATP and is followed by Mg2+ binding to the M2 site. Furthermore, themore » target serine hydroxyl of the peptide substrate rotates away from the active site toward the bulk solvent, which breaks the hydrogen bond with D166. In conclusion, the serine hydroxyl of the substrate rotates back toward D166 to form the Michaelis complex with the active site primed for phosphoryl transfer.« less

  8. Protein Kinase A Catalytic Subunit Primed for Action: Time-Lapse Crystallography of Michaelis Complex Formation.

    PubMed

    Das, Amit; Gerlits, Oksana; Parks, Jerry M; Langan, Paul; Kovalevsky, Andrey; Heller, William T

    2015-12-01

    The catalytic subunit of the cyclic AMP-dependent protein kinase A (PKAc) catalyzes the transfer of the γ-phosphate of bound Mg2ATP to a serine or threonine residue of a protein substrate. Here, time-lapse X-ray crystallography was used to capture a series of complexes of PKAc with an oligopeptide substrate and unreacted Mg2ATP, including the Michaelis complex, that reveal important geometric rearrangements in and near the active site preceding the phosphoryl transfer reaction. Contrary to the prevailing view, Mg(2+) binds first to the M1 site as a complex with ATP and is followed by Mg(2+) binding to the M2 site. Concurrently, the target serine hydroxyl of the peptide substrate rotates away from the active site toward the bulk solvent, which breaks the hydrogen bond with D166. Lastly, the serine hydroxyl of the substrate rotates back toward D166 to form the Michaelis complex with the active site primed for phosphoryl transfer. PMID:26585512

  9. [Spectrophotometric study of the interaction between rhenium complexes and phosphatidylcholine during liposome formation].

    PubMed

    Shtemenko, O V; Zeleniuk, M A; Shtemenko, N I; Verbyts'ka, Ia S

    2002-01-01

    The electron absorption spectra of halogenides and halogencarboxylate complex compounds of rhenium (III) having cluster structure with phosphatydilcholine and their lyposome forms were investigated. Some results which evidence for the interaction of these compounds with phosphatydilcholine were obtained. The possible mechanism of this interaction is discussed. PMID:12924020

  10. ParB Partition Proteins: Complex Formation and Spreading at Bacterial and Plasmid Centromeres.

    PubMed

    Funnell, Barbara E

    2016-01-01

    In bacteria, active partition systems contribute to the faithful segregation of both chromosomes and low-copy-number plasmids. Each system depends on a site-specific DNA binding protein to recognize and assemble a partition complex at a centromere-like site, commonly called parS. Many plasmid, and all chromosomal centromere-binding proteins are dimeric helix-turn-helix DNA binding proteins, which are commonly named ParB. Although the overall sequence conservation among ParBs is not high, the proteins share similar domain and functional organization, and they assemble into similar higher-order complexes. In vivo, ParBs "spread," that is, DNA binding extends away from the parS site into the surrounding non-specific DNA, a feature that reflects higher-order complex assembly. ParBs bridge and pair DNA at parS and non-specific DNA sites. ParB dimers interact with each other via flexible conformations of an N-terminal region. This review will focus on the properties of the HTH centromere-binding protein, in light of recent experimental evidence and models that are adding to our understanding of how these proteins assemble into large and dynamic partition complexes at and around their specific DNA sites. PMID:27622187

  11. HIV-1 Tat protein promotes formation of more-processive elongation complexes.

    PubMed Central

    Marciniak, R A; Sharp, P A

    1991-01-01

    The Tat protein of HIV-1 trans-activates transcription in vitro in a cell-free extract of HeLa nuclei. Quantitative analysis of the efficiency of elongation revealed that a majority of the elongation complexes generated by the HIV-1 promoter were not highly processive and terminated within the first 500 nucleotides. Tat trans-activation of transcription from the HIV-1 promoter resulted from an increase in processive character of the elongation complexes. More specifically, the analysis suggests that there exist two classes of elongation complexes initiating from the HIV promoter: a less-processive form and a more-processive form. Addition of purified Tat protein was found to increase the abundance of the more-processive class of elongation complex. The purine nucleoside analog, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) inhibits transcription in this reaction by decreasing the efficiency of elongation. Surprisingly, stimulation of transcription elongation by Tat was preferentially inhibited by the addition of DRB. Images PMID:1756726

  12. Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida.

    PubMed

    Faramarzi, Mohammad A; Brandl, Helmut

    2006-06-01

    A few Pseudomonas species are able to form hydrocyanic acid (HCN), particularly when grown under glycine-rich conditions. In the presence of metals, cyanide can form water-soluble metal complexes of high chemical stability. We studied the possibility to mobilize metals as cyanide complexes from solid minerals using HCN-forming microorganisms. Pseudomonas plecoglossicida was cultivated in the presence of copper- and nickel-containing solid minerals. On powdered elemental nickel, fast HCN generation within the first 12 h of incubation was observed and water-soluble tetracyanaonickelate was formed. Cuprite, tenorite, chrysocolla, malachite, bornite, turquoise, millerite, pentlandite as well as shredded electronic scrap was also subjected to a biological treatment. Maximum concentrations of cyanide-complexed copper corresponded to a solubilization of 42% and 27% when P. plecoglossicida was grown in the presence of cuprite or tenorite, respectively. Crystal system, metal oxidation state and mineral hydrophobicity might have a significant influence on metal mobilization. However, it was not possible to allocate metal mobilization to a single mineral property. Cyanide-complexed gold was detected during growth on manually cut circuit boards. Maximum dicyanoaurate concentration corresponded to a 68.5% dissolution of the total gold added. These findings represent a novel type of microbial mobilization of nickel and copper from solid minerals based on the ability of certain microbes to form HCN. PMID:16684101

  13. Nuclear receptors modulate the interaction of Sp1 and GC-rich DNA via ternary complex formation.

    PubMed Central

    Husmann, M; Dragneva, Y; Romahn, E; Jehnichen, P

    2000-01-01

    Binding sites for transcription factor Sp1 have been implicated in the transcriptional regulation of several genes by hormones or vitamins, and here we show that a GC-rich element contributes to the retinoic acid response of the interleukin 1beta promoter. To explain such observations, it has been proposed that nuclear receptors can interact with Sp1 bound to GC-rich DNA. However, evidence supporting this model has remained indirect. So far, nuclear receptors have not been detected in a complex with Sp1 and GC-rich DNA, and the expected ternary complexes in non-denaturing gels were not seen. In search for these missing links we found that nuclear receptors [retinoic acid receptor (RAR), thyroid hormone receptor (TR), vitamin D(3) receptor, peroxisome-proliferator-activated receptor and retinoic X receptor] induce an electrophoretic mobility increase of Sp1-GC-rich DNA complexes. Concomitantly, binding of Sp1 to the GC-box is enhanced. It is proposed that nuclear receptors may partially replace Sp1 in homo-oligomers at the GC-box. RARs and Sp1 can also combine into a complex with a retinoic acid-response element. The presence of RAR and Sp1 in complexes with either cognate site was revealed in supershift experiments. The C-terminus of Sp1 interacts with nuclear receptors. Both the ligand- and DNA-binding domains of the receptor are important for complex formation with Sp1 and GC-rich DNA. In spite of similar capacity to form ternary complexes, RAR but not TR up-regulated an Sp1-driven reporter in a ligand-dependent way. Thus additional factors limit the transcriptional response mediated by nuclear receptors and Sp1. PMID:11104684

  14. Association of phycoerythrin and phycocyanin: in vitro formation of a functional energy transferring phycobilisome complex of Porphyridium sordidum

    SciTech Connect

    Lipschultz, C.A.; Gantt, E.

    1981-01-01

    Functional in vitro association and dissociation of a phycobiliprotein complex, isolated from phycobilisomes of the red alga Porphyridium sordidum, were studied. The complex contained large bangiophyceaen phycoerythrin and cyanophytan phycocyanin in an equimolar ratio and had absorption maxima at 625, 567, and 550 nm and a shoulder at 495 nm. Emission at 655 nm (with excitation at 545 nm) from phycocyanin indicated functional coupling. The complex was stable over a wide buffer concentration range, and, notably, it was maximally stable in low phosphate, <0.01 M, unlike the phycobilisomes, which dissociate at this concentration. Its molecular weight was estimated to be ca. 510 000, and by electron microscopy it was seen to consist of two units of similar size. The complex in 0.1 M phosphate was separated on a sucrose gradient into a homogeneous phycoerythrin band and a spectrally heterogeneous phycocyanin band. In vitro association of phycoerythrin and phycocyanin resulted in a complex with the same absorbance, emission, sedimentation, and molar pigment ratio as those of the native complex. The spectrally heterogeneous phycocyanin fractions from the dissociation gradient varied in the degree of association with phycoerythrin. Phycocyanin fractions absorbing from 622 to 633 nm exhibited high associability (>70%), whereas those with maxima at 617-620 nm had low associability (<30%). The presence of a 30 000 molecular weight polypeptide accompanied high associability, where it was ca. 2-fold more prominent. It is suggested that this polypeptide is involved in complex formation and could serve either in the stabilization of the conformational state of cyanophytan phycocyanin or as a direct linker between phycobiliproteins.

  15. Initial formation of an indigenous crop complex in eastern North America at 3800 B.P

    PubMed Central

    Smith, Bruce D.; Yarnell, Richard A.

    2009-01-01

    Although geneticists and archaeologists continue to make progress world-wide in documenting the time and place of the initial domestication of a growing number of plants and animals, far less is known regarding the critically important context of coalescence of various species into distinctive sets or complexes of domesticates in each of the world's 10 or more independent centers of agricultural origin. In this article, the initial emergence of a crop complex is described for one of the best-documented of these independent centers, eastern North America (ENA). Before 4000 B.P. there is no indication of a crop complex in ENA, only isolated evidence for single indigenous domesticate species. By 3800 B.P., however, at least 5 domesticated seed-bearing plants formed a coherent complex in the river valley corridors of ENA. Accelerator mass spectrometer radiocarbon dates and reanalysis of archaeobotanical assemblages from a short occupation of the Riverton Site in Illinois documents the contemporary cultivation at 3800 B.P. of domesticated bottle gourd (Lagenaria siceraria), marshelder (Iva annua var. macrocarpa), sunflower (Helianthus annuus var. macrocarpus), and 2 cultivated varieties of chenopod (Chenopodium berlandieri), as well as the possible cultivation of Cucurbita pepo squash and little barley (Hordeum pusillum). Rather than marking either an abrupt developmental break or a necessary response to population-packing or compressed resource catchments, the coalescence of an initial crop complex in ENA appears to reflect an integrated expansion and enhancement of preexisting hunting and gathering economies that took place within a context of stable long-term adaptation to resource-rich river valley settings. PMID:19366669

  16. Initial formation of an indigenous crop complex in eastern North America at 3800 B.P.

    PubMed

    Smith, Bruce D; Yarnell, Richard A

    2009-04-21

    Although geneticists and archaeologists continue to make progress world-wide in documenting the time and place of the initial domestication of a growing number of plants and animals, far less is known regarding the critically important context of coalescence of various species into distinctive sets or complexes of domesticates in each of the world's 10 or more independent centers of agricultural origin. In this article, the initial emergence of a crop complex is described for one of the best-documented of these independent centers, eastern North America (ENA). Before 4000 B.P. there is no indication of a crop complex in ENA, only isolated evidence for single indigenous domesticate species. By 3800 B.P., however, at least 5 domesticated seed-bearing plants formed a coherent complex in the river valley corridors of ENA. Accelerator mass spectrometer radiocarbon dates and reanalysis of archaeobotanical assemblages from a short occupation of the Riverton Site in Illinois documents the contemporary cultivation at 3800 B.P. of domesticated bottle gourd (Lagenaria siceraria), marshelder (Iva annua var. macrocarpa), sunflower (Helianthus annuus var. macrocarpus), and 2 cultivated varieties of chenopod (Chenopodium berlandieri), as well as the possible cultivation of Cucurbita pepo squash and little barley (Hordeum pusillum). Rather than marking either an abrupt developmental break or a necessary response to population-packing or compressed resource catchments, the coalescence of an initial crop complex in ENA appears to reflect an integrated expansion and enhancement of preexisting hunting and gathering economies that took place within a context of stable long-term adaptation to resource-rich river valley settings. PMID:19366669

  17. Prototypes for the 80s.

    ERIC Educational Resources Information Center

    Instructor, 1980

    1980-01-01

    Presented are brief descriptions of the winning entries in this magazine's contest for existing programs to serve as prototypes for wide-scale use in elementary schools of the 1980s. Top prizes went to computer literacy, energy education, and nutrition projects. Twenty runners-up are also described. Project addresses are included. (SJL)

  18. Challenges for the 80's

    SciTech Connect

    Lesch, J.R.

    1980-09-01

    Finding and developing the necessary petroleum reserves in the 1980's will require drilling deeper wells in more hostile environments, drilling in increasing water depths, drilling in hostile Arctic areas and in waters where icebergs must be dealt with, and exploring deeper onshore horizons in more difficult topographical areas. These conditions impose severe demands on drilling and production equipment. The deeper wells will challenge drilling and production capabilities because of higher down-hole temperatures, greater capacity requirements on surface equipment, and more critical demands on the associated down-hole equipment. Drilling fluids, tools, and elastomers will need to withstand higher temperatures and greater stresses. Drilling in deeper waters will require the development and refinement of better and more economical drilling and production platforms. Increased drilling from platforms will necessitate improved drilling fluids to minimize torque, drill string, and casing wear in highly deviated holes. Another technological challenge is rig automation to minimize the physical work and injury factors associated with tripping and to reduce personnel requirements on the drilling rig.

  19. Engineering Hydrogen Gas Production from Formate in a Hyperthermophile by Heterologous Production of an 18-Subunit Membrane-bound Complex*

    PubMed Central

    Lipscomb, Gina L.; Schut, Gerrit J.; Thorgersen, Michael P.; Nixon, William J.; Kelly, Robert M.; Adams, Michael W. W.

    2014-01-01

    Biohydrogen gas has enormous potential as a source of reductant for the microbial production of biofuels, but its low solubility and poor gas mass transfer rates are limiting factors. These limitations could be circumvented by engineering biofuel production in microorganisms that are also capable of generating H2 from highly soluble chemicals such as formate, which can function as an electron donor. Herein, the model hyperthermophile, Pyrococcus furiosus, which grows optimally near 100 °C by fermenting sugars to produce H2, has been engineered to also efficiently convert formate to H2. Using a bacterial artificial chromosome vector, the 16.9-kb 18-gene cluster encoding the membrane-bound, respiratory formate hydrogen lyase complex of Thermococcus onnurineus was inserted into the P. furiosus chromosome and expressed as a functional unit. This enabled P. furiosus to utilize formate as well as sugars as an H2 source and to do so at both 80° and 95 °C, near the optimum growth temperature of the donor (T. onnurineus) and engineered host (P. furiosus), respectively. This accomplishment also demonstrates the versatility of P. furiosus for metabolic engineering applications. PMID:24318960

  20. Tetrapeptide-coumarin conjugate 3D networks based on hydrogen-bonded charge transfer complexes: gel formation and dye release.

    PubMed

    Guo, Zongxia; Gong, Ruiying; Jiang, Yi; Wan, Xiaobo

    2015-08-14

    Oligopeptide-based derivatives are important synthons for bio-based functional materials. In this article, a Gly-(L-Val)-Gly-(L-Val)-coumarin (GVGV-Cou) conjugate was synthesized, which forms 3D networks in ethanol. The gel nanostructures were characterized by UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), SEM and TEM. It is suggested that the formation of charge transfer (CT) complexes between the coumarin moieties is the main driving force for the gel formation. The capability of the gel to encapsulate and release dyes was explored. Both Congo Red (CR) and Methylene Blue (MB) can be trapped in the CT gel matrix and released over time. The present gel might be used as a functional soft material for guest encapsulation and release. PMID:26138931

  1. Formation of Hg(II) Tetrathiolate Complexes with Cysteine at Neutral pH

    PubMed Central

    Warner, Thomas; Jalilehvand, Farideh

    2015-01-01

    Mercury(II) ions precipitate from aqueous cysteine (H2Cys) solutions containing H2Cys/Hg(II) mole ratio ≥ 2.0 as Hg(S-HCys)2. In absence of additional cysteine, the precipitate dissolves at pH ~12 with the [Hg(S,N-Cys)2]2− complex dominating. With excess cysteine (H2Cys/Hg(II) mole ratio ≥ 4.0), higher complexes form and the precipitate dissolves at lower pH values. Previously, we found that tetrathiolate [Hg(S-Cys)4]6− complexes form at pH = 11.0; in this work we extend the investigation to pH values of physiological interest. We examined two series of Hg(II)-cysteine solutions in which CHg(II) varied between 8 – 9 mM and 80 – 100 mM, respectively, with H2Cys/Hg(II) mole ratios from 4 to ~20. The solutions were prepared in the pH range 7.1 – 8.8, at the pH at which the initial Hg(S-HCys)2 precipitate dissolved. The variations in the Hg(II) speciation were followed by 199Hg NMR, X-ray absorption and Raman spectroscopic techniques. Our results show that in the dilute solutions (CHg(II) = 8 – 9 mM), mixtures of di-, tri- (major) and tetrathiolate complexes exist at moderate cysteine excess (CH2Cys ~ 0.16 M) at pH 7.1. In the more concentrated solutions (CHg(II) = 80 – 100 mM) with high cysteine excess (CH2Cys > 0.9 M), tetrathiolate [Hg(S-cysteinate)4]m-6 (m = 0 – 4) complexes dominate in the pH range 7.3 – 7.8, with lower charge than for the [Hg(S-Cys)4]6− complex due to protonation of some (m) of the amino groups of the coordinated cysteine ligands. The results of this investigation could provide a key to the mechanism of biosorption and accumulation of Hg(II) ions in biological / environmental systems. PMID:27064521

  2. Effect of citrate on the local Fe coordination in ferrihydrite, arsenate binding, and ternary arsenate complex formation

    NASA Astrophysics Data System (ADS)

    Mikutta, Christian; Frommer, Jakob; Voegelin, Andreas; Kaegi, Ralf; Kretzschmar, Ruben

    2010-10-01

    In oxic environments contaminated with arsenate (As(V)), small polyhydroxycarboxylates such as citrate may impact the structure of precipitating ferrihydrite (Fh) and thus the surface speciation of As(V). In this study, '2-line' Fh was precipitated from ferric nitrate solutions that were neutralized to pH 6.5 in the presence of increasing citrate concentrations and in the absence or presence of As(V). The initial citrate/Fe and As/Fe ratios were 0-50 mol% and 5 mol%, respectively. The reaction products, enriched with up to 0.32 mol citrate per mole Fe, were characterized by X-ray diffraction, transmission electron microscopy, and Fe and As K-edge X-ray absorption spectroscopy. Citrate decreased the particle size of Fh by impairing the polymerization of Fe(O,OH) 6 octahedra via edge and corner linkages. In the presence of citrate and As(V), coordination numbers of Fe decreased by up to 28% relative to pure Fh. Citrate significantly reduced the static disorder of Fe-O bonds, implying a decreased octahedral distortion in Fh. Mean bond distances in Fh were not affected by citrate and remained constant within error at 1.98 Å for Fe-O, 3.03 Å for Fe-Fe1, and 3.45 Å for Fe-Fe2. Likewise, citrate had no effect on the As-Fe (3.31 Å) bond distance in As(V) coprecipitated with Fh. The As K-edge EXAFS data comply with the formation of (i) only monodentate binuclear ( 2C) As(V) surface complexes and (ii) combinations of 2C, monodentate mononuclear ( 1V), and outersphere As(V) surface complexes. Our results suggest that increasing citrate concentrations led to a decreasing 1V/ 2C ratio and/or that citrate increasingly impaired the formation of outersphere As(V) complexes. Moreover, citrate stabilized colloidal suspensions of Fh (pH 4.3-6.6, I ˜0.45 M) and reduced Fh formation at the expense of soluble Fe(III)-citrate complexes. At initial citrate/Fe ratios ⩾25 mol%, between 8% and 41% of total Fe was bound in Fe(III)-citrate complexes after Fh formation. Polynuclear Fe

  3. CK1δ restrains lipin-1 induction, lipid droplet formation and cell proliferation under hypoxia by reducing HIF-1α/ARNT complex formation

    PubMed Central

    Kourti, Maria; Ikonomou, Georgia; Giakoumakis, Nikolaos-Nikiforos; Rapsomaniki, Maria Anna; Landegren, Ulf; Siniossoglou, Symeon; Lygerou, Zoi; Simos, George; Mylonis, Ilias

    2015-01-01

    Proliferation of cells under hypoxia is facilitated by metabolic adaptation, mediated by the transcriptional activator Hypoxia Inducible Factor-1 (HIF-1). HIF-1α, the inducible subunit of HIF-1 is regulated by oxygen as well as by oxygen-independent mechanisms involving phosphorylation. We have previously shown that CK1δ phosphorylates HIF-1α in its N-terminus and reduces its affinity for its heterodimerization partner ARNT. To investigate the importance of this mechanism for cell proliferation under hypoxia, we visually monitored HIF-1α interactions within the cell nucleus using the in situ proximity ligation assay (PLA) and fluorescence recovery after photobleaching (FRAP). Both methods show that CK1δ-dependent modification of HIF-1α impairs the formation of a chromatin binding HIF-1 complex. This is confirmed by analyzing expression of lipin-1, a direct target of HIF-1 that mediates hypoxic neutral lipid accumulation. Inhibition of CK1δ increases lipid droplet formation and proliferation of both cancer and normal cells specifically under hypoxia and in an HIF-1α- and lipin-1-dependent manner. These data reveal a novel role for CK1δ in regulating lipid metabolism and, through it, cell adaptation to low oxygen conditions. PMID:25744540

  4. Chloroplast SRP54 Was Recruited for Posttranslational Protein Transport via Complex Formation with Chloroplast SRP43 during Land Plant Evolution.

    PubMed

    Dünschede, Beatrix; Träger, Chantal; Schröder, Christine Vera; Ziehe, Dominik; Walter, Björn; Funke, Silke; Hofmann, Eckhard; Schünemann, Danja

    2015-05-22

    In bacteria, membrane proteins are targeted cotranslationally via a signal recognition particle (SRP). During the evolution of higher plant chloroplasts from cyanobacteria, the SRP pathway underwent striking adaptations that enable the posttranslational transport of the abundant light-harvesting chlorophyll-a/b-binding proteins (LHCPs). The conserved 54-kDa SRP subunit in higher plant chloroplasts (cpSRP54) is not bound to an SRP RNA, an essential SRP component in bacteria, but forms a stable heterodimer with the chloroplast-specific cpSRP43. This heterodimeric cpSRP recognizes LHCP and delivers it to the thylakoid membrane whereby cpSRP43 plays a central role. This study shows that the cpSRP system in the green alga Chlamydomonas reinhardtii differs significantly from that of higher plants as cpSRP43 is not complexed to cpSRP54 in Chlamydomonas and cpSRP54 is not involved in LHCP recognition. This divergence is attributed to altered residues within the cpSRP54 tail and the second chromodomain of cpSRP43 that are crucial for the formation of the binding interface in Arabidopsis. These changes are highly conserved among chlorophytes, whereas all land plants contain cpSRP proteins with typical interaction motifs. These data demonstrate that the coevolution of LHCPs and cpSRP43 occurred independently of complex formation with cpSRP54 and that the interaction between cpSRP54 and cpSRP43 evolved later during the transition from chlorophytes to land plants. Furthermore, our data show that in higher plants a heterodimeric form of cpSRP is required for the formation of a low molecular weight transit complex with LHCP. PMID:25833951

  5. Chabazite and dolomite formation in a dolocrete profile: An example of a complex alkaline paragenesis in Lanzarote, Canary Islands

    NASA Astrophysics Data System (ADS)

    Alonso-Zarza, Ana M.; Bustamante, Leticia; Huerta, Pedro; Rodríguez-Berriguete, Álvaro; Huertas, María José

    2016-05-01

    This paper studies the weathering and soil formation processes operating on detrital sediments containing alkaline volcanic rock fragments of the Mirador del Río dolocrete profile. The profile consists of a lower horizon of removilised weathered basalts, an intermediate red sandy mudstones horizon with irregular carbonate layers and a topmost horizon of amalgamated carbonate layers with root traces. Formation occurred in arid to semiarid climates, giving place to a complex mineralogical association, including Mg-carbonates and chabazite, rarely described in cal/dolocretes profiles. Initial vadose weathering processes occurred in the basalts and in directly overlying detrital sediments, producing (Stage 1) red-smectites and dolomicrite. Dominant phreatic (Stage 2) conditions allowed precipitation of coarse-zoned dolomite and chabazite filling porosities. In Stages 3 and 4, mostly pedogenic, biogenic processes played an important role in dolomite and calcite accumulation in the profile. Overall evolution of the profile and its mineralogical association involved initial processes dominated by alteration of host rock, to provide silica and Mg-rich alkaline waters, suitable for chabazite and dolomite formation, without a previous carbonate phase. Dolomite formed both abiogenically and biogenically, but without a previous carbonate precursor and in the absence of evaporites. Dominance of calcite towards the profile top is the result of Mg/Ca decrease in the interstitial meteoric waters due to decreased supply of Mg from weathering, and increased supply of Ca in aeolian dust. Meteoric origin of the water is confirmed by C and O isotope values, which also indicate lack of deep sourced CO2. The dolocrete studied and its complex mineral association reveal the complex interactions that occur at surface during weathering and pedogenesis of basalt-sourced rocks.

  6. Asynchronous timing of extension and basin formation in the South Rhodope core complex, SW Bulgaria, and northern Greece

    NASA Astrophysics Data System (ADS)

    Stübner, Konstanze; Drost, Kerstin; Schoenberg, Ronny; Böhme, Madelaine; Starke, Jessica; Ehlers, Todd A.

    2016-01-01

    Upper crustal extensional structures range from steep normal faults to shallow-dipping detachments. The relationship between extension and formation of synkinematic hanging wall basins including their relative timing is not well understood. The South Rhodope core complex, Southern Balkans, has experienced extension for >40 Ma leading to a number of extensional structures and Cenozoic sedimentary basins. We present new bedrock and basin detrital zircon and apatite (U-Th-Sm)/He ages from the Pirin and Rila Mountains and the Sandanski basin. Results identify three episodes of Cenozoic extension in SW Bulgaria accommodated by (1) the Eocene/Oligocene Mesta detachment; (2) the early to middle Miocene Gorno Spanchevo fault (circa 18-15 Ma), which is the northern prolongation of the Strymon low-angle detachment; and (3) the late Miocene West Pirin fault (≤10 Ma). Detachment faulting on the Strymon fault accommodated tens of kilometers of ENE-WSW extension and created ~1500 m topographic relief, but because the resulting hillslopes were gentle (≤10°), extension did not lead to enhanced footwall erosion or formation of a hanging wall basin. In contrast, the West Pirin normal fault resulted in mostly vertical motion of its footwall causing steep topography, rapid erosion, and formation of the synrift Sandanski basin. Digital topographic analysis of river channel profiles identifies the latest episodes of deformation including westward tilting of the Sandanski and Strymon basins and Quaternary N-S extension. This study demonstrates that basin formation in the South Rhodope core complex is related to normal faulting postdating the main episode of crustal stretching by detachment faulting.

  7. Facies control on reservoir properties within a barrier island complex, Sparta Formation, Pointe Coupee Parish, Louisiana

    SciTech Connect

    Lemoine, R.C.; Moslow, T.F.; Ferrell, R.E.

    1988-02-01

    Analysis of conventional core, well logs, and petrophysical data has yielded an interpretation of the Sparta B sandstone in south-central Louisiana as a prograding barrier island complex. Four sedimentary facies possess reservoir potential: lower shoreface, upper shoreface, storm washover, and tidal-inlet channel sandstone facies. Distinct porosity and permeability values are associated with each reservoir facies. Predictable porosity and permeability trends associated with the Sparta B sandstone barrier island complex allows for identification of distinct fluid flow units within the sequence. In addition, individual sedimentary facies possess characteristic well log signatures; therefore, the geometry, thickness variability, and lateral continuity of each fluid flow unit can be determined and heterogeneities within the reservoir interval can be resolved.

  8. ON MAGNETIC ACTIVITY BAND OVERLAP, INTERACTION, AND THE FORMATION OF COMPLEX SOLAR ACTIVE REGIONS

    SciTech Connect

    McIntosh, Scott W.; Leamon, Robert J.

    2014-11-20

    Recent work has revealed a phenomenological picture of the how the ∼11 yr sunspot cycle of the Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22 yr magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle, we anticipate that those complex active regions may be particularly susceptible to profoundly catastrophic breakdown, producing flares and coronal mass ejections of the most severe magnitude.

  9. Intramolecular complex formation and triplet energy transfer in polynorbornenes incorporating benzophenone

    SciTech Connect

    Fossum, R.D.; Fox, M.A.

    1997-02-12

    The photophysical properties of homopolymers (2) and block copolymers (3) prepared by ring-opening metathesis polymerization of norbornenes substituted with benzophenone, naphthalene, and phenanthrene groups (1) have been investigated. When benzophenone is attached to this polynorbornene backbone, its excited state behavior differs from that observed for monomeric benzophenone. A new intramolecular excited state complex can be observed in the transient absorption and emission measurements of the benzophenone-substituted homopolymer. In copolymers bearing benzophenone and naphthalene or phenanthrene substituent blocks, triplet energy transfer from the sensitizer (benzophenone) to the arene is observed. This energy transfer dominates over the intramolecular complexation that characterizes group interactions in the homopolymer. 41 refs., 14 figs., 7 tabs.

  10. Spectrophotometric Determination of Metoprolol Tartrate in Pharmaceutical Dosage Forms on Complex Formation with Cu(II)

    PubMed Central

    Cesme, Mustafa; Tarinc, Derya; Golcu, Aysegul

    2011-01-01

    A new, simple, sensitive and accurate spectrophotometric method has been developed for the assay of metoprolol tartrate (MPT), which is based on the complexation of drug with copper(II) [Cu(II)] at pH 6.0, using Britton-Robinson buffer solution, to produce a blue adduct. The latter has a maximum absorbance at 675 nm and obeys Beer's law within the concentration range 8.5-70 μg/mL. Regression analysis of the calibration data showed a good correlation coefficient (r = 0.998) with a limit of detection of 5.56 μg/mL. The proposed procedure has been successfully applied to the determination of this drug in its tablets. In addition, the spectral data and stability constant for the binuclear copper(II) complex of MPT (Cu2MPT2Cl2) have been reported.

  11. Almost enclosed buckyball joints: synthesis, complex formation, and computational simulations of pentypticene-extended tribenzotriquinacene.

    PubMed

    Henne, Stefan; Bredenkötter, Björn; Alaghemandi, Mohammad; Bureekaew, Sareeya; Schmid, Rochus; Volkmer, Dirk

    2014-12-01

    We report the synthesis of a tribenzotriquinacene-based (TBTQ) receptor (3) for C60 fullerene, which is extended by pentiptycene moieties to provide an almost enclosed concave ball bearing. The system serves as a model for a self-assembling molecular rotor with a flexible and adapting stator. Unexpectedly, nuclear magnetic resonance spectroscopic investigations reveal a surprisingly low complex stability constant of K1 =213±37 M(-1) for [C60 ⊂3], seemingly inconsistent with the previously reported TBTQ systems. Molecular dynamics (MD) simulations have been conducted for three different [C60 ⊂TBTQ] complexes to resolve this. Because of the dominating dispersive interactions, the binding energies increase with the contact area between guest and host, however, only for rigid host structures. By means of free-energy calculations with an explicit solvent model it can be shown that the novel flexible TBTQ receptor 3 binds weakly because of hampering entropic contributions. PMID:25234364

  12. Formation and characterization of stable fluorescent complexes between neutral conjugated polymers and cyclodextrins.

    PubMed

    Martínez-Tomé, Maria José; Esquembre, Rocío; Mallavia, Ricardo; Mateo, C Reyes

    2013-01-01

    Solubilisation and stabilization of conjugated polymers, CPs, in aqueous media remains a challenge for many researches trying to extend the biological and environmental applications of this kind of polymers. A number of different alternatives have been considered to address this problem, which are mostly based on the enhancement of the macromolecule polarity, by appending hydrophilic side chains on the polymer backbone. In this work we have investigated a new strategy in which water solubilization is reached by external addition of classical cyclodextrins (α-, β- and γ-CDs) to a solution of non-polar CPs. This strategy allows working with such polymers eliminating the need to synthesize new water-soluble species. The polymer selected for the study was poly-[9,9-bis(6'-bromohexyl-2,7-fluoren-dyil)-co-alt-(benzene-1,4-diy)], PFPBr(2), a polyfluorene previously synthesized in our laboratory. Results show that PFPBr(2) forms fluorescent complexes in aqueous media with β-CD and γ-CD, and much less efficiently with α-CD, probably due to the small size of its cavity. The new PFPBr(2)/CD complexes are stable in time and in a large range of pH, however, at high concentration and temperature, they tend to aggregate and precipitate. In order to increase stabilization and minimize polymer aggregation, complexes were encapsulated inside the pores of silica glasses fabricated using the sol-gel process, obtaining transparent and fluorescent hybrid matrices which were stable in time and temperature. In addition, immobilization of the complexes allows an easy manipulation of the material, thus offering promising applications in the development of biological and chemical sensors. PMID:22993121

  13. Glucosylation activity and complex formation of two classes of reversibly glycosylated polypeptides.

    PubMed

    Langeveld, Sandra M J; Vennik, Marco; Kottenhagen, Marijke; Van Wijk, Ringo; Buijk, Ankie; Kijne, Jan W; de Pater, Sylvia

    2002-05-01

    Reversibly glycosylated polypeptides (RGPs) have been implicated in polysaccharide biosynthesis. In plants, these proteins may function, for example, in cell wall synthesis and/or in synthesis of starch. We have isolated wheat (Triticum aestivum) and rice (Oryza sativa) Rgp cDNA clones to study the function of RGPs. Sequence comparisons showed the existence of two classes of RGP proteins, designated RGP1 and RGP2. Glucosylation activity of RGP1 and RGP2 from wheat and rice was studied. After separate expression of Rgp1 and Rgp2 in Escherichia coli or yeast (Saccharomyces cerevisiae), only RGP1 showed self-glucosylation. In Superose 12 fractions from wheat endosperm extract, a polypeptide with a molecular mass of about 40 kD is glucosylated by UDP-glucose. Transgenic tobacco (Nicotiana tabacum) plants, overexpressing either wheat Rgp1 or Rgp2, were generated. Subsequent glucosylation assays revealed that in RGP1-containing tobacco extracts as well as in RGP2-containing tobacco extracts UDP-glucose is incorporated, indicating that an RGP2-containing complex is active. Gel filtration experiments with wheat endosperm extracts and extracts from transgenic tobacco plants, overexpressing either wheat Rgp1 or Rgp2, showed the presence of RGP1 and RGP2 in high-molecular mass complexes. Yeast two-hybrid studies indicated that RGP1 and RGP2 form homo- and heterodimers. Screening of a cDNA library using the yeast two-hybrid system and purification of the complex by an antibody affinity column did not reveal the presence of other proteins in the RGP complexes. Taken together, these results suggest the presence of active RGP1 and RGP2 homo- and heteromultimers in wheat endosperm. PMID:12011358

  14. Ligand-induced formation of a transient tryptophan synthase complex with αββ subunit stoichiometry.

    PubMed

    Ehrmann, Alexander; Richter, Klaus; Busch, Florian; Reimann, Julia; Albers, Sonja-Verena; Sterner, Reinhard

    2010-12-28

    The prototypical tryptophan synthases form a stable heterotetrameric αββα complex in which the constituting TrpA and TrpB1 subunits activate each other in a bidirectional manner. The hyperthermophilic archaeon Sulfolobus solfataricus does not contain a TrpB1 protein but instead two members of the phylogenetically distinct family of TrpB2 proteins, which are encoded within (sTrpB2i) and outside (sTrpB2a) the tryptophan operon. It has previously been shown that sTrpB2a does not functionally or structurally interact with sTrpA, whereas sTrpB2i substantially activates sTrpA in a unidirectional manner. However, in the absence of catalysis, no physical complex between sTrpB2i and sTrpA could be detected. In order to elucidate the structural requirements for complex formation, we have analyzed the interaction between sTrpA (α-monomer) and sTrpB2i (ββ-dimer) by means of spectroscopy, analytical gel filtration, and analytical ultracentrifugation, as well as isothermal titration calorimetry. In the presence of the TrpA ligand glycerol 3-phosphate (GP) and the TrpB substrate l-serine, sTrpA and sTrpB2i formed a physical complex with a thermodynamic dissociation constant of about 1 μM, indicating that the affinity between the α- and ββ-subunits is weaker by at least 1 order of magnitude than the affinity between the corresponding subunits of prototypical tryptophan synthases. The observed stoichiometry of the complex was 1 subunit of sTrpA per 2 subunits of sTrpB2i, which corresponds to a αββ quaternary structure and testifies to a strong negative cooperativity for the binding of the α-monomers to the ββ-dimer. The analysis of the interaction between sTrpB2i and sTrpA in the presence of several substrate, transition state, and product analogues suggests that the αββ complex remains stable during the whole catalytic cycle and disintegrates into α- and ββ-subunits upon the release of the reaction product tryptophan. The formation of a transient tryptophan

  15. C-N Bond Formation from a Masked High-Valent Copper Complex Stabilized by Redox Non-Innocent Ligands.

    PubMed

    Jacquet, Jérémy; Chaumont, Pauline; Gontard, Geoffrey; Orio, Maylis; Vezin, Hervé; Blanchard, Sébastien; Desage-El Murr, Marine; Fensterbank, Louis

    2016-08-26

    The reactivity of a stable copper(II) complex bearing fully oxidized iminobenzoquinone redox ligands towards nucleophiles is described. In sharp contrast with its genuine low-valent counterpart bearing reduced ligands, this complex performs high-yielding C-N bond formations. Mechanistic studies suggest that this behavior could stem from a mechanism akin to reductive elimination occurring at the metal center but facilitated by the ligand: it is proposed that a masked high oxidation state of the metal can be stabilized as a lower copper(II) oxidation state by the redox ligands without forfeiting its ability to behave as a high-valent copper(III) center. These observations are substantiated by a combination of advanced EPR spectroscopy techniques with DFT studies. This work sheds light on the potential of redox ligands as promoters of unusual reactivities at metal centers and illustrates the concept of masked high-valent metallic species. PMID:27504607

  16. Internalization of nucleoside phosphates into live cells by complex formation with different CPPs and JBS-nucleoducin.

    PubMed

    Mussbach, Franziska; Pietrucha, Regina; Schaefer, Buerk; Reissmann, Siegmund

    2011-01-01

    Nucleoside phosphates can bind to many functional proteins like G-proteins or other GTP-binding proteins in signal transduction or translation processes. Till now internalization of nucleoside phosphates into live cells remains a challenge. We study the internalization of a fluorescent-labelled deoxyuridine triphosphate into HeLa cells and other adhesion and suspension cells. We use different cell-penetrating peptides and a cocktail suitable for formation of non-covalent complexes with the nucleotide. Internalization is observed by fluorescence microscopy, and the uptake efficiency is quantitatively estimated by fluorescence spectroscopy. The applied concentrations of CPPs and the cocktail were checked on cell viability (MTT test) and membrane integrity (bioluminescence test with peptidyl-luciferin), indicating that the CPPs and the complexes with the nucleotide are cytotoxic above certain concentrations. These concentrations depend on CPP and cell type and are the limiting factors for the cargo uptake. PMID:21053144

  17. Expression of a kinase-dead form of CPK33 involved in florigen complex formation causes delayed flowering

    PubMed Central

    Kawamoto, Nozomi; Endo, Motomu; Araki, Takashi

    2015-01-01

    Regulation of flowering time is crucial for reproductive success of plants. FLOWERING LOCUS T (FT) protein is a central component of florigen and forms a ternary complex with 14-3-3 and FD, a basic leucine zipper transcription factor, in the shoot apex and promotes flowering. This complex formation requires phosphorylation of threonine residue at position 282 of FD. A calcium-dependent protein kinase CPK33 is responsible for the phosphorylation. However, possibly due to functional redundancy among calcium-dependent protein kinases, impact of the loss of CPK33 reported in the previous study was rather limited. Here, we report that expression of a kinase-dead form of CPK33 caused a clear delayed-flowering phenotype, supporting for an important role of CPK33 in florigen function through FD phosphorylation. PMID:26440648

  18. Enhanced inhibition of bacterial biofilm formation and reduced leukocyte toxicity by chloramphenicol:β-cyclodextrin:N-acetylcysteine complex.

    PubMed

    Aiassa, Virginia; Zoppi, Ariana; Becerra, M Cecilia; Albesa, Inés; Longhi, Marcela R

    2016-11-01

    The purpose of this study was to improve the physicochemical and biological properties of chloramphenicol (CP) by multicomponent complexation with β-cyclodextrin (β-CD) and N-acetylcysteine (NAC). The present work describes the ability of solid multicomponent complex (MC) to decrease biomass and cellular activity of Staphylococcus by crystal violet and XTT assay, and leukocyte toxicity, measuring the increase of reactive oxygen species by chemiluminescence, and using 123-dihydrorhodamine. In addition, MC was prepared by the freeze-drying or physical mixture methods, and then characterized by scanning electron microscopy and powder X-ray diffraction. Nuclear magnetic resonance and phase solubility studies provided information at the molecular level on the structure of the MC and its association binding constants, respectively. The results obtained allowed us to conclude that MC formation is an effective pharmaceutical strategy that can reduce CP toxicity against leukocytes, while enhancing its solubility and antibiofilm activity. PMID:27516318

  19. Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Ying; Wang, Baomin; Luo, Yi; Yang, Dawei; Tong, Peng; Zhao, Jinfeng; Luo, Lun; Zhou, Yuhan; Chen, Si; Cheng, Fang; Qu, Jingping

    2013-04-01

    Although nitrogenase enzymes routinely convert molecular nitrogen into ammonia under ambient temperature and pressure, this reaction is currently carried out industrially using the Haber-Bosch process, which requires extreme temperatures and pressures to activate dinitrogen. Biological fixation occurs through dinitrogen and reduced NxHy species at multi-iron centres of compounds bearing sulfur ligands, but it is difficult to elucidate the mechanistic details and to obtain stable model intermediate complexes for further investigation. Metal-based synthetic models have been applied to reveal partial details, although most models involve a mononuclear system. Here, we report a diiron complex bridged by a bidentate thiolate ligand that can accommodate HN=NH. Following reductions and protonations, HN=NH is converted to NH3 through pivotal intermediate complexes bridged by N2H3- and NH2- species. Notably, the final ammonia release was effected with water as the proton source. Density functional theory calculations were carried out, and a pathway of biological nitrogen fixation is proposed.

  20. Ganglioside-magnetosome complex formation enhances uptake of gangliosides by cells

    PubMed Central

    Guan, Feng; Li, Xiang; Guo, Jia; Yang, Ganglong; Li, Xiang

    2015-01-01

    Bacterial magnetosomes, because of their nano-scale size, have a large surface-to-volume ratio and are able to carry large quantities of bioactive substances such as enzymes, antibodies, and genes. Gangliosides, a family of sialic acid-containing glycosphingolipids, function as distinctive cell surface markers and as specific determinants in cellular recognition and cell-to-cell communication. Exogenously added gangliosides are often used to study biological functions, transport mechanisms, and metabolism of their endogenous counterparts. Absorption of gangliosides into cells is typically limited by their tendency to aggregate into micelles in aqueous media. We describe here a simple strategy to remove proteins from the magnetosome membrane by sodium dodecyl sulfate treatment, and efficiently immobilize a ganglioside (GM1 or GM3) on the magnetosome by mild ultrasonic treatment. The maximum of 11.7±1.2 µg GM1 and 11.6±1.5 μg GM3 was loaded onto 1 mg magnetosome, respectively. Complexes of ganglioside-magnetosomes stored at 4°C for certain days presented the consistent stability. The use of GM1-magnetosome complex resulted in the greatest enhancement of ganglioside incorporation by cells. GM3-magnetosome complex significantly inhibited EGF-induced phosphorylation of the epidermal growth factor receptor. Both of these effects were further enhanced by the presence of a magnetic field. PMID:26609230

  1. Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ

    PubMed Central

    Pertsinidis, Alexandros; Mukherjee, Konark; Sharma, Manu; Pang, Zhiping P.; Park, Sang Ryul; Zhang, Yunxiang; Brunger, Axel T.; Südhof, Thomas C.; Chu, Steven

    2013-01-01

    Membrane fusion is mediated by complexes formed by SNAP-receptor (SNARE) and Secretory 1 (Sec1)/mammalian uncoordinated-18 (Munc18)-like (SM) proteins, but it is unclear when and how these complexes assemble. Here we describe an improved two-color fluorescence nanoscopy technique that can achieve effective resolutions of up to 7.5-nm full width at half maximum (3.2-nm localization precision), limited only by stochastic photon emission from single molecules. We use this technique to dissect the spatial relationships between the neuronal SM protein Munc18-1 and SNARE proteins syntaxin-1 and SNAP-25 (25 kDa synaptosome-associated protein). Strikingly, we observed nanoscale clusters consisting of syntaxin-1 and SNAP-25 that contained associated Munc18-1. Rescue experiments with syntaxin-1 mutants revealed that Munc18-1 recruitment to the plasma membrane depends on the Munc18-1 binding to the N-terminal peptide of syntaxin-1. Our results suggest that in a primary neuron, SNARE/SM protein complexes containing syntaxin-1, SNAP-25, and Munc18-1 are preassembled in microdomains on the presynaptic plasma membrane. Our superresolution imaging method provides a framework for investigating interactions between the synaptic vesicle fusion machinery and other subcellular systems in situ. PMID:23821748

  2. Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic.

    PubMed

    Li, Yang; Li, Ying; Wang, Baomin; Luo, Yi; Yang, Dawei; Tong, Peng; Zhao, Jinfeng; Luo, Lun; Zhou, Yuhan; Chen, Si; Cheng, Fang; Qu, Jingping

    2013-04-01

    Although nitrogenase enzymes routinely convert molecular nitrogen into ammonia under ambient temperature and pressure, this reaction is currently carried out industrially using the Haber-Bosch process, which requires extreme temperatures and pressures to activate dinitrogen. Biological fixation occurs through dinitrogen and reduced NxHy species at multi-iron centres of compounds bearing sulfur ligands, but it is difficult to elucidate the mechanistic details and to obtain stable model intermediate complexes for further investigation. Metal-based synthetic models have been applied to reveal partial details, although most models involve a mononuclear system. Here, we report a diiron complex bridged by a bidentate thiolate ligand that can accommodate HN=NH. Following reductions and protonations, HN=NH is converted to NH3 through pivotal intermediate complexes bridged by N2H3(-) and NH2(-) species. Notably, the final ammonia release was effected with water as the proton source. Density functional theory calculations were carried out, and a pathway of biological nitrogen fixation is proposed. PMID:23511421

  3. The transcriptional corepressor DSP1 inhibits activated transcription by disrupting TFIIA-TBP complex formation.

    PubMed Central

    Kirov, N C; Lieberman, P M; Rushlow, C

    1996-01-01

    Transcriptional repression of eukaryotic genes is essential for many cellular and developmental processes, yet the precise mechanisms of repression remain poorly understood. The Dorsal Switch Protein (DSP1) was identified in a genetic screen for activities which convert Dorsal into a transcriptional repressor. DSP1 shares structural homology with the HMG-1/2 family and inhibits activation by the rel transcription factors Dorsal and NF-kappaB in transfection studies. Here we investigate the mechanism of transcriptional repression by DSP1. We found that DSP1 protein can act as a potent transcriptional repressor for multiple activator families in vitro and in transfection studies. DSP1 bound directly to the TATA binding protein (TBP), and formed a stable ternary complex with TBP bound to DNA. DSP1 preferentially disrupted the DNA binding of TBP complexes containing TFIIA and displaced TFIIA from binding to TBP. Consistent with the inhibition of TFIIA-bound complexes, DSP1 was shown to inhibit activated but not basal transcription reactions in vitro. The ability of DSP1 to interact with TBP and to repress transcription was mapped to the carboxy-terminal domain which contains two HMG boxes. Our results support the model that DSP1 represses activated transcription by interfering with the binding of TFIIA, a general transcription factor implicated in activated transcription pathways. Images PMID:9003783

  4. Metamorphic core complex formation by density inversion and lower-crust extrusion.

    PubMed

    Martinez, F; Goodliffe, A M; Taylor, B

    2001-06-21

    Metamorphic core complexes are domal uplifts of metamorphic and plutonic rocks bounded by shear zones that separate them from unmetamorphosed cover rocks. Interpretations of how these features form are varied and controversial, and include models involving extension on low-angle normal faults, plutonic intrusions and flexural rotation of initially high-angle normal faults. The D'Entrecasteaux islands of Papua New Guinea are actively forming metamorphic core complexes located within a continental rift that laterally evolves to sea-floor spreading. The continental rifting is recent (since approximately 6 Myr ago), seismogenic and occurring at a rapid rate ( approximately 25 mm yr-1). Here we present evidence-based on isostatic modelling, geological data and heat-flow measurements-that the D'Entrecasteaux core complexes accommodate extension through the vertical extrusion of ductile lower-crust material, driven by a crustal density inversion. Although buoyant extrusion is accentuated in this region by the geological structure present-which consists of dense ophiolite overlaying less-dense continental crust-this mechanism may be generally applicable to regions where thermal expansion lowers crustal density with depth. PMID:11418853

  5. Predicting permeability from the characteristic relaxation time and intrinsic formation factor of complex conductivity spectra

    NASA Astrophysics Data System (ADS)

    Revil, A.; Binley, A.; Mejus, L.; Kessouri, P.

    2015-08-01

    Low-frequency quadrature conductivity spectra of siliclastic materials exhibit typically a characteristic relaxation time, which either corresponds to the peak frequency of the phase or the quadrature conductivity or a typical corner frequency, at which the quadrature conductivity starts to decrease rapidly toward lower frequencies. This characteristic relaxation time can be combined with the (intrinsic) formation factor and a diffusion coefficient to predict the permeability to flow of porous materials at saturation. The intrinsic formation factor can either be determined at several salinities using an electrical conductivity model or at a single salinity using a relationship between the surface and quadrature conductivities. The diffusion coefficient entering into the relationship between the permeability, the characteristic relaxation time, and the formation factor takes only two distinct values for isothermal conditions. For pure silica, the diffusion coefficient of cations, like sodium or potassium, in the Stern layer is equal to the diffusion coefficient of these ions in the bulk pore water, indicating weak sorption of these couterions. For clayey materials and clean sands and sandstones whose surface have been exposed to alumina (possibly iron), the diffusion coefficient of the cations in the Stern layer appears to be 350 times smaller than the diffusion coefficient of the same cations in the pore water. These values are consistent with the values of the ionic mobilities used to determine the amplitude of the low and high-frequency quadrature conductivities and surface conductivity. The database used to test the model comprises a total of 202 samples. Our analysis reveals that permeability prediction with the proposed model is usually within an order of magnitude from the measured value above 0.1 mD. We also discuss the relationship between the different time constants that have been considered in previous works as characteristic relaxation time, including

  6. Complex fluid flow revealed by monitoring CO2 injection in a fluvial formation

    NASA Astrophysics Data System (ADS)

    Lu, Jiemin; Cook, Paul J.; Hosseini, Seyyed A.; Yang, Changbing; Romanak, Katherine D.; Zhang, Tongwei; Freifeld, Barry M.; Smyth, Rebecca C.; Zeng, Hongliu; Hovorka, Susan D.

    2012-03-01

    At Cranfield, Mississippi, United States, a large-scale carbon dioxide (CO2) injection through an injection well (˜3,080 m deep) was continuously monitored using U-tube samplers in two observation wells located 68 and 112 m east of the injector. The Lower Tuscaloosa Formation injection zone, which consists of amalgamated fluvial point-bar and channel-fill deposits, presents an interesting environment for studying fluid flow in heterogeneous formations. Continual fluid sampling was carried out during the first month of CO2 injection. Two subsequent tracer tests using sulfur hexafluoride (SF6) and krypton were conducted at different injection rates to measure flow velocity change. The field observations showed significant heterogeneity of fluid flow and for the first time clearly demonstrated that fluid flow evolved with time and injection rate. It was found the wells were connected through numerous, separate flow pathways. CO2 flowed through an increasing fraction of the reservoir and sweep efficiency improved with time. The field study also first documented in situ component exchange between brine and gas phases during CO2 injection. It was found that CH4 degassed from brine and is enriched along the gas-water contact. Multiple injectate flow fronts with high CH4 concentration arrived at different times and led to gas composition fluctuations in the observation wells. The findings provide valuable insights into heterogeneous multiphase flow in rock formations and show that conventional geological models and static fluid flow simulations are unable to fully describe the heterogeneous and dynamic flow during fluid injection.

  7. Formative assessment and design of a complex clinical decision support tool for pulmonary embolism.

    PubMed

    Khan, Sundas; McCullagh, Lauren; Press, Anne; Kharche, Manish; Schachter, Andy; Pardo, Salvatore; McGinn, Thomas

    2016-02-01

    Electronic health record (EHR)-based clinical decision support (CDS) tools are rolled out with the urgency to meet federal requirements without time for usability testing and refinement of the user interface. As part of a larger project to design, develop and integrate a pulmonary embolism CDS tool for emergency physicians, we conducted a formative assessment to determine providers' level of interest and input on designs and content. This was a study to conduct a formative assessment of emergency medicine (EM) physicians that included focus groups and key informant interviews. The focus of this study was twofold, to determine the general attitude towards CDS tool integration and the ideal integration point into the clinical workflow. To accomplish this, we first approached EM physicians in a focus group, then, during key informant interviews, we presented workflow designs and gave a scenario to help the providers visualise how the CDS tool works. Participants were asked questions regarding the trigger location, trigger words, integration into their workflow, perceived utility and heuristic of the tool. Results from the participants' survey responses to trigger location, perceived utility and efficiency, indicated that the providers felt the tool would be more of a hindrance than an aid. However, some providers commented that they had not had exposure to CDS tools but had used online calculators, and thought the tools would be helpful at the point-of-care if integrated into the EHR. Furthermore, there was a preference for an order entry wireframe. This study highlights several factors to consider when designing CDS tools: (1) formative assessment of EHR functionality and clinical environment workflow, (2) focus groups and key informative interviews to incorporate providers' perceptions of CDS and workflow integration and/or (3) the demonstration of proposed workflows through wireframes to help providers visualise design concepts. PMID:26718820

  8. A Highly Efficient Heterogenized Iridium Complex for the Catalytic Hydrogenation of Carbon Dioxide to Formate.

    PubMed

    Park, Kwangho; Gunasekar, Gunniya Hariyanandam; Prakash, Natarajan; Jung, Kwang-Deog; Yoon, Sungho

    2015-10-26

    A heterogenized catalyst on a highly porous covalent triazine framework was synthesized and characterized to have a coordination environment similar to that of its homogeneous counterpart. The catalyst efficiently converted CO2 into formate through hydrogenation with a turnover number of 5000 after 2 h and an initial turnover frequency of up to 5300 h(-1) ; both of these values are the highest reported to date for a heterogeneous catalyst, which makes it attractive toward industrial application. Furthermore, the synthesized catalyst was found to be stable in air and was recycled by simple filtration without significant loss of catalytic activity. PMID:26493515

  9. Dynamique de la formation d'asters de microtubules par des complexes de moteurs

    NASA Astrophysics Data System (ADS)

    Nédélec, François; Surrey, Thomas

    2001-08-01

    The polymerisation of filaments and their moving by motor proteins contribute to the organisation of the cytoskeleton of higher cells. What a mixture of such elements is capable of doing, is not yet understood. Using computer simulations, we study here in a simple system the kinetics of aster formation by motors and growing microtubules. We find that the system can be in three different regimes depending on the value of the microtubule polymerisation rate. We discuss that three types of motor links are present in the network and show how they contribute to each final pattern.

  10. Delivery of rhBMP-2 Plasmid DNA Complexes via a PLLA/Collagen Electrospun Scaffold Induces Ectopic Bone Formation.

    PubMed

    Zhao, Xia; Komatsu, David E; Hadjiargyrou, Michael

    2016-06-01

    The development of effective strategies for gene delivery is a critical goal in DNA-based tissue engineering. Previously, our laboratory utilized the process of electrospinning to fabricate plasmid DNA-based polymeric scaffolds. Although there lease of DNA was robust, the in vitro transfection efficiency was low. In order to optimize these results, we recently modified our approach and utilized a strategy to adsorb plasmid DNA transfection complexes onto a PLLA/Collagen I electrospun scaffold for the delivery of recombinant human Bone Morphogenetic Protein-2 (rhBMP-2). BMP-2 was selected since it is currently clinically used to stimulate osteogenesis. Initially, we tested this approach using β-gal plasmid DNA complexes adsorbed onto PLLA/Collagen I scaffolds and obtained a transfection efficiency of 41% of that of the positive control (over 90%, DNA complexes in solution). Next, we utilized the same approach using the rhBMP-2 plasmid DNA complexes with the pre-osteoblastic. cell line, MC3T3, and detected robust (13-fold) expression of rhBMP-2 mRNA following transfection. Lastly, a mouse muscle pouch model was used to evaluate in vivo gene delivery efficacy and ectopic bone inducing capability of the scaffold adsorbed rhBMP-2 transfection complexes. Results showed that both rhBMP-2mRNA and protein were expressed and stimulated some ectopic bone formation. As such, adsorption of plasmid DNA complexes can be an effective strategy for tissue engineering in vivo, but further research is required to optimize our approach and obtain a clinically meaningful tissue response. PMID:27319221

  11. Self-assembled monolayer and multilayer formation using redox-active Ru complex with phosphonic acids on silicon oxide surface

    NASA Astrophysics Data System (ADS)

    Ishida, Takao; Terada, Kei-ichi; Hasegawa, Kiichi; Kuwahata, Hironao; Kusama, Kazunori; Sato, Ryo; Nakano, Miki; Naitoh, Yasuhisa; Haga, Masa-aki

    2009-08-01

    The formation of self-assembled monolayer and multilayer using redox-active Ru complex molecules with phosphonic acids on SiO 2 surface has been examined using X-ray photoelectron spectroscopy (XPS), ellipsometry, and time of flight secondary mass-ion spectroscopy (TOF-SIMS). We found that an introduction of a Zr adlayer leads to higher surface molecular density of Ru complex SAMs on the SiO 2 surface, compared to that of obtained from the direct adsorption of Ru complex monolayer on the SiO 2 surface. We further tried to fabricate a multilayer film using this molecule with Zr(IV) ion acting as a chemical glue by a successive immersion process. The XPS data revealed that the molecular densities of the multilayers were also higher for the immobilization with Zr adlayer between Ru complex and SiO 2 surface than those without the Zr adlayer, suggesting that Zr adlayer is effective in forming highly packed molecular layer of phosphonic acids on SiO 2 surface. We found the film growth reached a saturation point after 6 layers on the SiO 2 surface. The film growth saturation can be explained by a molecular domain boundary effect encountered due to the large tilt angle of the molecular layer.

  12. Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma.

    PubMed

    Liu, Huan; Liu, Zhiqiang; Du, Juan; He, Jin; Lin, Pei; Amini, Behrang; Starbuck, Michael W; Novane, Nora; Shah, Jatin J; Davis, Richard E; Hou, Jian; Gagel, Robert F; Yang, Jing

    2016-08-24

    Myelomatous bone disease is characterized by the development of lytic bone lesions and a concomitant reduction in bone formation, leading to chronic bone pain and fractures. To understand the underlying mechanism, we investigated the contribution of myeloma-expressed thymidine phosphorylase (TP) to bone lesions. In osteoblast progenitors, TP up-regulated the methylation of RUNX2 and osterix, leading to decreased bone formation. In osteoclast progenitors, TP up-regulated the methylation of IRF8 and thereby enhanced expression of NFATc1 (nuclear factor of activated T cells, cytoplasmic 1 protein), leading to increased bone resorption. TP reversibly catalyzes thymidine into thymine and 2-deoxy-d-ribose (2DDR). Myeloma-secreted 2DDR bound to integrin αVβ3/α5β1 in the progenitors, activated PI3K (phosphoinositide 3-kinase)/Akt signaling, and increased DNMT3A (DNA methyltransferase 3A) expression, resulting in hypermethylation of RUNX2, osterix, and IRF8 This study elucidates an important mechanism for myeloma-induced bone lesions, suggesting that targeting TP may be a viable approach to healing resorbed bone in patients. Because TP overexpression is common in bone-metastatic tumors, our findings could have additional mechanistic implications. PMID:27559096

  13. Mesoscopic Modeling of Thrombus Formation and Growth: Platelet Deposition in Complex Geometries

    NASA Astrophysics Data System (ADS)

    Yazdani, Alireza; Karniadakis, George

    2014-11-01

    Haemodynamics and blood rheology are important contributing factors to thrombus formation at a vulnerable vessel wall, and adhesion of platelets to a vascular surface, particularly in regions of flow stagnation, recirculation and reattachment is significantly important in formation of thrombi. For example, haemodynamic micro-environment can have effects on thrombosis inside the atherosclerotic plaques and aneurysms. To study these effects, we have developed and validated a model for platelet aggregation in blood flow using Dissipative Particle Dynamics (DPD) method. In this model platelets are considered as single DPD particles interacting with each other via Morse potential once activated. We assign an activation delay time to each platelet such that they remain passive during that time. We investigate the effect of different geometries on platelet aggregation by considering arterial stenosis at different levels of occlusion, and aneurysms of different shapes and sizes. The results show a marked increase in platelet aggregation within the boundaries of deceleration zone by increasing the degree of stenosis. Further, we observe enhanced platelet margination and wall deposition in the presence of red blood cells.

  14. The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa.

    PubMed

    Oglesby-Sherrouse, Amanda G; Djapgne, Louise; Nguyen, Angela T; Vasil, Adriana I; Vasil, Michael L

    2014-04-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that is refractory to a variety of current antimicrobial therapeutic regimens. Complicating treatment for such infections is the ability of P. aeruginosa to form biofilms, as well as several innate and acquired resistance mechanisms. Previous studies suggest iron plays a role in resistance to antimicrobial therapy, including the efficacy of an FDA-approved iron chelator, deferasirox (DSX), or Gallium, an iron analog, in potentiating antibiotic-dependent killing of P. aeruginosa biofilms. Here, we show that iron-replete conditions enhance resistance of P. aeruginosa nonbiofilm growth against tobramycin and tigecycline. Interestingly, the mechanism of iron-enhanced resistance to each of these antibiotics is distinct. Whereas pyoverdine-mediated iron uptake is important for optimal resistance to tigecycline, it does not enhance tobramycin resistance. In contrast, heme supplementation results in increased tobramycin resistance, while having no significant effect on tigecycline resistance. Thus, nonsiderophore bound iron plays an important role in resistance to tobramycin, while pyoverdine increases the ability of P. aeruginosa to resist tigecycline treatment. Lastly, we show that iron increases the minimal concentration of tobramycin, but not tigecycline, required to eradicate P. aeruginosa biofilms. Moreover, iron depletion blocks the previous observed induction of biofilm formation by subinhibitory concentrations of tobramycin, suggesting iron and tobramycin signal through overlapping regulatory pathways to affect biofilm formation. These data further support the role of iron in P. aeruginosa antibiotic resistance, providing yet another compelling case for targeting iron acquisition for future antimicrobial drug development. PMID:24436170

  15. Ising-based model of opinion formation in a complex network of interpersonal interactions

    NASA Astrophysics Data System (ADS)

    Grabowski, A.; Kosiński, R. A.

    2006-03-01

    In our work the process of opinion formation in the human population, treated as a scale-free network, is modeled and investigated numerically. The individuals (nodes of the network) are characterized by their authorities, which influence the interpersonal interactions in the population. Hierarchical, two-level structures of interpersonal interactions and spatial localization of individuals are taken into account. The effect of the mass media, modeled as an external stimulation acting on the social network, on the process of opinion formation is investigated. It was found that in the time evolution of opinions of individuals critical phenomena occur. The first one is observed in the critical temperature of the system TC and is connected with the situation in the community, which may be described by such quantifiers as the economic status of people, unemployment or crime wave. Another critical phenomenon is connected with the influence of mass media on the population. As results from our computations, under certain circumstances the mass media can provoke critical rebuilding of opinions in the population.

  16. A Submillimetre Study of Massive Star Formation Within the W51 Complex and Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Parsons, Harriet Alice Louise

    Despite its importance the fundamental question of how massive stars form remains unanswered, with improvements to both models and observations having crucial roles to play. To quote Bate et al. (2003) computational models of star formation are limited because "conditions in molecular clouds are not sufficiently well understood to be able to select a representative sample of cloud cores for the initial conditions". It is this notion that motivates the study of the environments within Giant Molecular Clouds (GMCs) and Infrared Dark Clouds (IRDCs), known sites of massive star formation, at the clump and core level. By studying large populations of these objects, it is possible to make conclusions based on global properties. With this in mind I study the dense molecular clumps within one of the most massive GMCs in the Galaxy: the W51 GMC. New observations of the W51 GMC in the 12CO, 13CO and C18O (3-2) transitions using the HARP instrument on the JCMT are presented. With the help of the clump finding algorithm CLUMPFIND a total of 1575 dense clumps are identified of which 1130 are associated with the W51 GMC, yielding a dense mass reservoir of 1.5 × 10^5 M contained within these clumps. Of these clumps only 1% by number are found to be super-critical, yielding a super-critical clump formation efficiency of 0.5%, below current SFE estimates of the region. This indicates star formation within the W51 GMC will diminish over time although evidence from the first search for molecular outflows presents the W51 GMC in an active light with a lower limit of 14 outflows. The distribution of the outflows within the region searched found them concentrated towards the W51A region. Having much smaller sizes and masses, obtaining global properties of clumps and cores within IRDCs required studying a large sample of these objects. To do this pre-existing data from the SCUBA Legacy Catalogue was utilised to study IRDCs within a catalogues based on 8 μm data. This data identified

  17. Supramolecular alignment of gold nanorods via cucurbit[8]uril ternary complex formation

    NASA Astrophysics Data System (ADS)

    Jones, Samuel T.; Zayed, Jameel M.; Scherman, Oren A.

    2013-05-01

    We have shown, for the first time, that a three component system is capable of aligning gold nanorods (AuNRs) through supramolecular host-guest interactions leading to control over AuNR end-to-end assembly. Viologen end-functionalised AuNRs were prepared that were capable of selectively binding to a cucurbit[8]uril (CB[8]) macrocyclic host molecule. These end-functionalised AuNRs could participate in 1 : 1 : 1 ternary complexation with synthesised telechelic linker molecules bearing second guest moieties, in the presence of CB[8]. When the linker length was long and flexible aggregation and precipitation of AuNRs were readily observed, but with no control over the AuNR conformation. On the other hand, when the linker length was shortened thereby imparting a more rigid connection between neighboring gold nanorods, the end-to-end assembly of AuNRs was achieved. We also note that in the presence of a molecule capable of occupying the entirety of the CB[8] cavity, end-to-end assembly is not observed as the system's ability to form a 1 : 1 : 1 ternary complex is halted. Thus, the end-to-end assembly relies upon both having a relatively short and rigid linker as well as the specific, yet tuneable supramolecular 1 : 1 : 1 ternary complexation between the three components.We have shown, for the first time, that a three component system is capable of aligning gold nanorods (AuNRs) through supramolecular host-guest interactions leading to control over AuNR end-to-end assembly. Viologen end-functionalised AuNRs were prepared that were capable of selectively binding to a cucurbit[8]uril (CB[8]) macrocyclic host molecule. These end-functionalised AuNRs could participate in 1 : 1 : 1 ternary complexation with synthesised telechelic linker molecules bearing second guest moieties, in the presence of CB[8]. When the linker length was long and flexible aggregation and precipitation of AuNRs were readily observed, but with no control over the AuNR conformation. On the other hand

  18. Module-based complexity formation: periodic patterning in feathers and hairs.

    PubMed

    Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall

    2013-01-01

    Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism’s lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specific number, size, and spacing.We explorehowa field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical–chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators/inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (microenvironment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macroenvironment) prevent this. Different wave patterns can be simulated by cellular automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to ‘organ metamorphosis’, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential novel evolutionary steps using this module-based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. PMID:23539312

  19. Fault strength and the formation of rider blocks and domes in continental and oceanic core complexes

    NASA Astrophysics Data System (ADS)

    Buck, W. Roger; Choi, Eunseo

    2014-05-01

    Core complexes are places where slip of normal sense 'detachment' faults exhumes rocks from more than 10 km depth. We first present 2D cross-sectional model results showing that core complex detachment faults are strong and that their strength has to be in a narrow range to allow kilometer scale "rider blocks" to develop. Previous numerical simulations of lithospheric extension produced the large offset, core complex-forming, normal faults only when the faults were weaker than a given threshold. High-resolution simulations are needed to resolve rider blocks and they only form when the faults are stronger than a given level. A narrow range of fault weakening, relative to intact surrounding rock, allows for a consecutive series of rider blocks to emerge in a core complex-like geometry. Rider blocks develop when the dominant form of weakening is by reduction of fault cohesion while faults that weaken primarily by friction reduction do not form distinct rider blocks. The term 'core' refers to the oval region of rocks exhumed from depth and surrounded by rocks formed at shallower depths. Cores are typically 10-15 km wide and longer in the extension direction. 2 and 3D numerical and analog models are used to show that the cores could form as a result of 'continuous casting' of warm, ductile lower plate rocks pulled up against a cold upper plate (Spencer, 1999). Spencer (1999) considered undulations in the surface of a brittle plate while here we consider how a both the surface and base of the plate can be "cast" with a nearly parallel shape. Ridges can locally migrate in time and may do so in response to along-axis variations in the magmatic accommodation of plate separation. We suggest that the core geometry is formed by along strike variations in the horizontal position of the detachment boundary. Long wavelength (compared to the brittle layer thickness) horizontal undulations in the position of the detachment can produce parallel undulations in both the surface and

  20. Formation of water soluble complexes of ?: solid-state reaction between tertiary amines and ?

    NASA Astrophysics Data System (ADS)

    Mohan, H.; Priyadarsini, K. I.; Tyagi, A. K.; Mittal, J. P.

    1996-11-01

    Water soluble complexes of 0953-4075/29/21/015/img3 have been prepared on solid-state mechano-chemical reaction between 0953-4075/29/21/015/img3 and tertiary amines (hexamine, DABCO) at room temperature 0953-4075/29/21/015/img5. The product is characterized by x-ray diffraction and FTIR methods. It is presumably due to the charge transfer interactions between electron affinic 0953-4075/29/21/015/img3 and electron rich tertiary amines.

  1. The TrxG Complex Mediates Cytokine Induced De Novo Enhancer Formation in Islets

    PubMed Central

    Hurley, Peter; Dhillon, Jasmine; Gill, Amol; Whiting, Cheryl

    2015-01-01

    To better understand how β-cells respond to proinflammatory cytokines we mapped the locations of histone 3 lysine 4 monomethylation (H3K4me1), a post-translational histone modification enriched at active and poised cis-regulatory regions, in IFNγ, Il-1β, and TNFα treated pancreatic islets. We identified 96,721 putative cis-regulatory loci, of which 3,590 were generated de novo, 3,204 had increased H3K4me1, and 5,354 had decreased H3K4me1 in IFNγ, Il-1β, and TNFα exposed islets. Roughly 10% of the de novo and increased regions were enriched for the repressive histone modification histone 3 lysine 27 trimethylation (H3K27me3) in untreated cells, and these were frequently associated with chemokine genes. We show that IFNγ, Il-1β, and TNFα exposure overcomes this repression and induces chemokine gene activation in as little as three hours, and that this expression persists for days in absence of continued IFNγ, Il-1β, and TNFα exposure. We implicate trithorax group (TrxG) complexes as likely players in the conversion of these repressed loci to an active state. To block the activity of these complexes, we suppressed Wdr5, a core component of the TrxG complexes, and used the H3K27me3 demethylase inhibitor GSK-J4. We show that GSK-J4 is particularly effective in blunting IFNγ, Il-1β, and TNFα-induced chemokine gene expression in β-cells; however, it induced significant islet-cell apoptosis and β-cell dysfunction. Wdr5 suppression also reduced IFNγ, Il-1β, and TNFα induced chemokine gene expression in β-cells without affecting islet-cell survival or β-cell function after 48hrs, but did begin to increase islet-cell apoptosis and β-cell dysfunction after four days of treatment. Taken together these data suggest that the TrxG complex is potentially a viable target for preventing cytokine induced chemokine gene expression in β-cells. PMID:26505193

  2. An analysis of packaging formats for complex digtal objects: review of principles

    NASA Astrophysics Data System (ADS)

    Bekaert, Jeroen L.; Hochstenbach, Patrick; De Kooning, Emiel; Van de Walle, Rik

    2003-11-01

    During recent years, the number of organizations making digital information available has massively increased. This evolution encouraged the development of standards for packaging and encoding digital representations of complex objects (such as a digital music albums or digitized books and photograph albums). The primary goal of this article is to offer a method to compare these packaging standards and best practices tailored to the needs of the digital library community and the rising digital preservation programs. The contribution of this paper is the definition of an integrated reference model, based on both the OAIS framework and some additional significant properties that affect the quality, usability, encoding and behavior of the digital objects.

  3. Optical enrichment of dansyl-rac-amino acids by formation of crystalline inclusion complexes with cyclodextrins.

    PubMed

    Jin, H L; Stalcup, A; Armstrong, D W

    1989-01-01

    Optical enrichment from racemic dansyl-leucine, dansyl-norleucine, and dansyl-phenylalanine with both beta- and gamma-cyclodextrins in water is reported. Initial crystallization yielded the dansyl-L-Leucine isomer complexed in excess with beta-cyclodextrin with an optical purity of 62-78% depending on experimental conditions. The optical purities obtained for L-norleucine and L-phenylalanine were 71 and 64%, respectively. The optical purity can be increased with continued recrystallization. The dansyl-D-leucine isomer was obtained in the mother liquor with an optical purity of 54-93% depending on experimental conditions. The optical purities obtained for D-norleucine and D-phenylalanine were 72 and 58%. The optical purity of the isomer depended on the molar ratio of host:guest and the pH value of the solution. Optimum enrichment of both enantiomers was achieved with host:guest ratios of 2:1 and 3:1. Although maximum crystalline yield of the dansyl-leucine/CD inclusion complex was obtained at a pH of 3.5, optical purity of both enantiomers was less than that obtained at other pHs. The influence of the molar ratio of host:guest and the pH value of the solution are discussed. This method is suitable for large-scale enantiomeric separations. PMID:2642042

  4. Complex formation between ovalbumin and strong polyanion PSSNa: study of structure and properties.

    PubMed

    Trabelsi, Saber; Aschi, Adel; Othman, Tahar; Gharbi, Abdelhafidh

    2014-09-01

    The mixture system of long-chain polyelectrolyte complexed with a globular protein was investigated based on dynamic light scattering and turbidimetric measurements. We have discussed at different pH values the influence of high salt concentration and mass ratio (protein:PSSNa) on the behavior of the mixture. In dilute concentration regime, the PSSNa chain contracts at pHc by patch binding. We found two critical values of mass ratio: The first corresponds to the maximum shrinking of PSSNa. The second indicates the system that became more stable where the number of proteins attached to the PSSNa chain was constant. The screen of electrostatic interaction shows a high contribution of hydrophobic interaction at large salt concentration to form the coacervates. By building phase diagram, the continuity of pHφ1 in over whole range of salt concentrations and the widening of pH window (pHφ1-pHφ2) were observed. At certain salt concentrations, we can obtain the coexistence of two types of complex particles formed by electrostatic and hydrophobic interactions. PMID:25063122

  5. Formation and Decay of the Arrestin·Rhodopsin Complex in Native Disc Membranes*

    PubMed Central

    Beyrière, Florent; Sommer, Martha E.; Szczepek, Michal; Bartl, Franz J.; Hofmann, Klaus Peter; Heck, Martin; Ritter, Eglof

    2015-01-01

    In the G protein-coupled receptor rhodopsin, light-induced cis/trans isomerization of the retinal ligand triggers a series of distinct receptor states culminating in the active Metarhodopsin II (Meta II) state, which binds and activates the G protein transducin (Gt). Long before Meta II decays into the aporeceptor opsin and free all-trans-retinal, its signaling is quenched by receptor phosphorylation and binding of the protein arrestin-1, which blocks further access of Gt to Meta II. Although recent crystal structures of arrestin indicate how it might look in a precomplex with the phosphorylated receptor, the transition into the high affinity complex is not understood. Here we applied Fourier transform infrared spectroscopy to monitor the interaction of arrestin-1 and phosphorylated rhodopsin in native disc membranes. By isolating the unique infrared signature of arrestin binding, we directly observed the structural alterations in both reaction partners. In the high affinity complex, rhodopsin adopts a structure similar to Gt-bound Meta II. In arrestin, a modest loss of β-sheet structure indicates an increase in flexibility but is inconsistent with a large scale structural change. During Meta II decay, the arrestin-rhodopsin stoichiometry shifts from 1:1 to 1:2. Arrestin stabilizes half of the receptor population in a specific Meta II protein conformation, whereas the other half decays to inactive opsin. Altogether these results illustrate the distinct binding modes used by arrestin to interact with different functional forms of the receptor. PMID:25847250

  6. Formation of a stable complex between the human immunodeficiency virus integrase protein and viral DNA.

    PubMed Central

    Vink, C; Lutzke, R A; Plasterk, R H

    1994-01-01

    The integrase (IN) protein of the human immunodeficiency virus (HIV) mediates two distinct reactions: (i) specific removal of two nucleotides from the 3' ends of the viral DNA and (ii) integration of the viral DNA into target DNA. Although IN discriminates between specific (viral) DNA and nonspecific DNA in physical in vitro assays, a sequence-specific DNA-binding domain could not be identified in the protein. A nonspecific DNA-binding domain, however, was found at the C terminus of the protein. We examined the DNA-binding characteristics of HIV-1 IN, and found that a stable complex of IN and viral DNA is formed in the presence of Mn2+. The IN-viral DNA complex is resistant to challenge by an excess of competitor DNA. Stable binding of IN to the viral DNA requires that the protein contains an intact N-terminal domain and active site (in the central region of the protein), in addition to the C-terminal DNA-binding domain. Images PMID:7937134

  7. Separation of drug stereoisomers by the formation of. beta. -cyclodextrin inclusion complexes

    SciTech Connect

    Armstrong, D.W.; Ward, T.J.; Armstrong, R.D.; Beesley, T.E.

    1986-05-30

    For many drugs, only racemic mixtures are available for clinical use. Because different stereoisomers of drugs often cause different physiological responses, the use of pure isomers could elicit more exact therapeutic effects. Differential complexation of a variety of drug stereoisomers by immobilized ..beta..-cyclodextrin was investigated. Chiral recognition and racemic resolution were observed with a number of compounds from such clinically useful classes as ..beta..-blockers, calcium-channel blockers, sedative hypnotics, antihistamines, anticonvulsants, diuretics, and synthetic opiates. Separation of the diastereomers of the cardioactive and antimalarial cinchona alkaloids and of two antiestrogens was demonstrated as well. Three dimensional projections of ..beta..-cyclodextrin complexes of propanol, which is resolved by this technique, and warfarin, which is not, are compared. These studies have improved the understanding and application of the chiral interactions of ..beta..-cyclodextrin, and they have demonstrated a means to measure optical purity and to isolate or produce pure enantiomers of drugs. In addition, this highly specific technique could also be used in the pharmacological evaluation of enantiometric drugs. 27 references, 3 figures, 2 tables.

  8. The Intrinsic Properties of the Stellar Clusters in the M82 Starburst Complex: Propagating Star Formation?

    NASA Astrophysics Data System (ADS)

    Satyapal, S.; Watson, Dan M.; Pipher, J. L.; Forrest, W. J.; Greenhouse, M. A.; Smith, H. A.; Fischer, J.; Woodward, Charles E.

    1997-07-01

    Near-Infrared spectroscopy combined with high spatial resolution imaging have been used in this work to probe the central 500 pc of M82. Imaging observations in the 2.36 μm CO band head are added to our previously published near-infrared hydrogen recombination line imaging, near-infrared broadband imaging, and 3.29 μm dust feature imaging observations, in order to study the nature of the starburst stellar population. A starburst model is constructed and compared with the observations of the stellar clusters in the starburst complex. Our analysis implies that the typical age for the starburst clusters is 107 yr. In addition, our high spatial resolution observations indicate that there is an age dispersion within the starburst complex that is correlated with projected distance from the center of the galaxy. The inferred age dispersion is 6 × 106 yr. If the starburst in M82 is propagating outward from the center, this age dispersion corresponds to a velocity of propagation, originating in the center, of ~50 km s-1. Our quantitative analysis also reveals that a Salpeter initial mass function, extending from 0.1 to 100 M⊙, can fit the observed properties of M82 without using up more than 30% of the total dynamical mass in the starburst.

  9. Tectonic evolution of the Priest River complex, northern Idaho and Washington: A reappraisal of the Newport fault with new insights on metamorphic core complex formation

    NASA Astrophysics Data System (ADS)

    Doughty, P. Ted; Price, Raymond A.

    1999-06-01

    New geologic mapping, 40Ar/39Ar thermochronometry, and geobarometry in the Middle Eocene Priest River metamorphic core complex provide the basis for unraveling the role of en echelon fault systems in core complex formation and for determining the scale of crustal fragments that form during continental extension. Four faults occur in the Priest River complex. The east verging Purcell Trench fault zone on the eastern side consists of two distinct en echelon fault segments separated by an unfaulted homocline. The U-shaped Newport fault system on the northwestern side is a conjugate normal fault set. The west verging eastern Newport fault terminates within the Silver Point Wrencoe pluton, which was intruded syntectonically into the fault zone. The east verging western Newport fault merges with the east verging Spokane dome mylonite zone in the underlying infrastructure. New geobarometric data show that this midcrustal shear zone, which evidently forms part of the regional basal décollement of the Cordilleran fold and thrust belt, also records significant Eocene extensional shearing. Rocks that formed beneath the mylonite zone at a depth of 30-35 km are juxtaposed against rocks that formed at a depth of 10 km above the zone. Eocene 40Ar/39Ar chrontours in the southern part of the infrastructure record progressive exhumation and quenching that becomes younger eastward. In the northern fragment of the infrastructure, alternating domains of progressive westward exhumation/quenching and progressive eastward exhumation/quenching occur beneath the eastern Newport fault and the northern Purcell Trench fault, respectively. These relationships form the basis for a new model of the evolution of the Priest River complex. The southern part of the infrastructure was exhumed by a major east verging detachment system comprising the western Newport fault and the reactivated eastern part of the Spokane dome mylonite zone, into which the western Newport fault merges. This master

  10. Formate oxidation via β-deprotonation in [Ni(PR2NR′2)2(CH3CN)]2+ complexes

    SciTech Connect

    Seu, Candace; Appel, Aaron M.; Doud, Michael D.; DuBois, Daniel L.; Kubiak, Cliff

    2012-04-01

    Recent studies from our laboratories have shown that the [Ni(P{sub 2}{sup R}N'{sub 2}{sup R}){sub 2}(CH{sub 3}CN)]{sup 2+} complexes originally developed as artificial hydrogenases are also active electrocatalysts for formate oxidation (TOF {approx}16 s{sup -1}). The focus of the current work is to develop a detailed understanding of the catalytic mechanism, which would aid in the design of improved CO{sub 2}/formate interconversion catalysts. Based on electrochemical and spectroscopic experiments, including data for a new [Ni(P{sub 2}{sup Cy}N{sub 2}{sup PhOMe}){sub 2}(CH{sub 3}CN)]{sup 2+} complex, we propose a mechanism in which the rate-determining step is a proton transfer from the Ni-O{sub 2}CH {beta}-H to the ligand pendant base coupled with a 2e{sup -} transfer to Ni(II), circumventing direct hydride transfer to the metal center.

  11. The impact of mantle heterogeneity on oceanic core complex formation, 12-16°N, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Barnard, A.; Casey, J. F.; Chang, T.; Murton, B. J.

    2012-12-01

    The 12-16°N segment of the Mid-Atlantic Ridge has two fundamentally different modes of seafloor spreading: symmetric and asymmetric. The central part of this segment (~14°N) is characterized by continuous axial rift valleys flanked by normal faults with high length/displacement ratios. In contrast, crust that has spread asymmetrically within this segment features shorter fault scarp lengths, outward tilted surfaces, nodal basins, discontinuous neovolcanic zones and has a more irregular bathymetric character. Asymmetric spreading is a result of amagmatic tectonic extension and is accommodated by very-large-offset low-angle normal faults. These faults expose a complete section through the mafic crust to serpentinized mantle on the seafloor. Collectively, tectonic, magmatic and hydrothermal processes lead to the formation and character of oceanic core complexes. Dredged peridotites from this region are predominantly harzburgites. Electron microprobe analyses of accessory chromian spinel suggest at least 16 to 20% melt extraction preceded their exposure. However, it is difficult to reconcile the high melt volumes implied by the peridotite with thin, absent, and asymmetrically spreading crust. This evidence supports our prior suggestions that magma supply, and oceanic core complex formation, within these ridge segments is controlled by mantle heterogeneities. Heterogeneities may include, but are not limited to, garnet-pyroxenite sources that produce high volume melts and ultra-depleted mantle that produce little melt. Large segments of the mantle are likely receiving a free ride to the surface without significant melting in the region.

  12. Effect of pH, salt, and biopolymer ratio on the formation of pea protein isolate-gum arabic complexes.

    PubMed

    Liu, Shuanghui; Low, Nicholas H; Nickerson, Michael T

    2009-02-25

    Turbidity measurements were used to study the formation of soluble and insoluble complexes between pea protein isolate (PPI) and gum arabic (GA) mixtures as a function of pH (6.0-1.5), salt concentration (NaCl, 0-50 mM), and protein-polysaccharide weight mixing ratio (1:4 to 10:1 w/w). For mixtures in the absence of salt and at a 1:1 mixing ratio, two structure-forming transitions were observed as a function of pH. The first event occurred at a pH of 4.2, with the second at pH 3.7, indicating the formation of soluble and insoluble complexes, respectively. Sodium chloride (7.5 mM) due to substantial PPI aggregation. The pH at which maximum PPI-GA interactions occurred was 3.5 and was independent of NaCl levels. As PPI-GA ratios increased, structure-forming transitions shifted to higher pH. PMID:19170635

  13. Electrolysis of trichloromethylated organic compounds under aerobic conditions catalyzed by the B12 model complex for ester and amide formation.

    PubMed

    Shimakoshi, Hisashi; Luo, Zhongli; Inaba, Takuya; Hisaeda, Yoshio

    2016-06-21

    The electrolysis of benzotrichloride at -0.9 V vs. Ag/AgCl in the presence of the B12 model complex, heptamethyl cobyrinate perchlorate, in ethanol under aerobic conditions using an undivided cell equipped with a platinum mesh cathode and a zinc plate anode produced ethylbenzoate in 56% yield with 92% selectivity. The corresponding esters were obtained when the electrolysis was carried out in various alcohols such as methanol, n-propanol, and i-propanol. Benzoyl chloride was detected by GC-MS during the electrolysis as an intermediate for the ester formation. When the electrolysis was carried out under anaerobic conditions, partially dechlorinated products, 1,1,2,2-tetrachloro-1,2-diphenylethane and 1,2-dichlorostilibenes (E and Z forms), were obtained instead of an ester. ESR spin-trapping experiments using 5,5,-dimethylpyrroline N-oxide (DMPO) revealed that the corresponding oxygen-centered radical and carbon-centered radical were steadily generated during the electrolyses under aerobic and anaerobic conditions, respectively. Applications of the aerobic electrolysis to various organic halides, such as substituted benzotrichlorides, are described. Furthermore, the formation of amides with moderate yields by the aerobic electrolysis of benzotrichloride catalyzed by the B12 model complex in the presence of amines in acetonitrile is reported. PMID:27071703

  14. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    PubMed

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood. PMID:25956790

  15. Sensitive NADH detection in a tumorigenic cell line using a nano-biosensor based on the organic complex formation.

    PubMed

    Akhtar, Mahmood H; Mir, Tanveer A; Gurudatt, N G; Chung, Saeromi; Shim, Yoon-Bo

    2016-11-15

    A robust amperometric sensor for β-nicotinamide adenine dinucleotide (NADH) detection was developed through the organic complex formation with ethylenediaminetetraacetic acid (EDTA) bonded on the polyethylenimine (PEI)/activated graphene oxide (AGO) layer. The EDTA immobilized sensor probe (GCE/AGO/PEI-EDTA) revealed a catalytic property towards NADH oxidation that allows for the highly sensitive electrochemical detection of NADH at a low oxidation potential. Surface characterization demonstrated that the negatively charged AGO acted as nanofillers in the positively charged PEI matrix through the charge interaction. The immobilization of EDTA on the polymer layer provided more surface area for NADH to interact with through the enhanced chemical interlocking between them. We observed the strong interaction between NADH and EDTA on the AGO/PEI layer using a quartz crystal microbalance (QCM), X-ray photoelectron spectroscopy (XPS), and the calculation of the minimized energy for complex formation. The dynamic range of NADH was determined to be between 0.05μM and 500μM with a detection limit (LD) of 20.0±1.1nM. The reliability of the developed sensor for biomedical applications was examined by detecting NADH in tumorigenic lung epithelial cells using the standard addition method. PMID:27209575

  16. Robust assessment of protein complex formation in vivo via single-molecule intensity distributions of autofluorescent proteins

    NASA Astrophysics Data System (ADS)

    Meckel, Tobias; Semrau, Stefan; Schaaf, Marcel J. M.; Schmidt, Thomas

    2011-07-01

    The formation of protein complexes or clusters in the plasma membrane is essential for many biological processes, such as signaling. We develop a tool, based on single-molecule microscopy, for following cluster formation in vivo. Detection and tracing of single autofluorescent proteins have become standard biophysical techniques. The determination of the number of proteins in a cluster, however, remains challenging. The reasons are (i) the poor photophysical stability and complex photophysics of fluorescent proteins and (ii) noise and autofluorescent background in live cell recordings. We show that, despite those obstacles, the accurate fraction of signals in which a certain (or set) number of labeled proteins reside, can be determined in an accurate an robust way in vivo. We define experimental conditions under which fluorescent proteins exhibit predictable distributions of intensity and quantify the influence of noise. Finally, we confirm our theoretical predictions by measurements of the intensities of individual enhanced yellow fluorescent protein (EYFP) molecules in living cells. Quantification of the average number of EYFP-C10HRAS chimeras in diffraction-limited spots finally confirm that the membrane anchor of human Harvey rat sarcoma (HRAS) heterogeneously distributes in the plasma membrane of living Chinese hamster ovary cells.

  17. On-Surface Observation of the Formation of Organometallic Complex in a Supramolecular Network

    NASA Astrophysics Data System (ADS)

    Li, Yibao; Cheng, Linxiu; Liu, Chunhua; Liu, Wei; Fan, Yulan; Fan, Xiaolin; Zeng, Qingdao

    2015-06-01

    The on-surface