Science.gov

Sample records for 82o south latitude

  1. South Mid-latitude Gullies

    NASA Technical Reports Server (NTRS)

    2005-01-01

    19 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows deep gullies cut into the wall of a south mid-latitude crater. Erosion has exposed layers in the upper wall of the crater; it is possible that groundwater seeping through a layer or layers in the wall led to the genesis of the gullies. The banked nature of the gully channels suggests that a liquid was involved.

    Location near: 35.5oS, 194.8oW Image width: width: 2 km (1.2 mi) Illumination from: upper left Season: Southern Spring

  2. Center is at Latitude 30 Degrees South, Longitude 210 Degrees

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Center of the orthographic projection is at latitude 30 degrees S., longitude 210 degrees. Toward the top, the lowland plains of Elysium and Utopia Planitiae are separated from the darker heavily cratered highlands by a broad escarpment. The far bottom left is marked by the large light-colored ancient Hellas impact basin. The permanent south polar residual ice cap is located near the bottom.

  3. Center is at Latitude 30 Degrees South., Longitude 330 Degrees

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Center of the orthographic projection is at latitude 30 degrees S., longitude 330 degrees. Heavily cratered highlands dominate this view. Toward the lower right, a conspicuous light-colored circular depression marks the ancient large Hellas impact basin. Directly northeast of Hellas, several large ancient impacts dot the landscape, including Cassini, Schiaparelli, and Huygens. Several large outflow channels are located in the upper left-hand corner. The permanent, residual south polar ice cap is located near the bottom.

  4. Center is at Latitude 30 Degrees South, Longitude 90 Degrees

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Center of the orthographic projection is at latitude 30 degrees S., longitude 90 degrees. The top half is dominated by the Tharsis Montes volcanoes, the large Alba Patera shield volcano, the dark Chryse basin, and a vast canyon system, Valles Marineris. In the central part, a prominent physiographic feature, Thaumasia plateau, includes a complex array of small- and large-scale faults and ridges and ancient volcanoes. The large conspicuous Argyre basin, southeast of the Thaumasia plateau, contains a broad expanse of light-colored plains 800 km across. The permanent south polar ice cap is located near the bottom.

  5. Effect of Latitude and Seasonal Variation on Scrub Typhus, South Korea, 2001-2013.

    PubMed

    Jeung, Ye Sul; Kim, Choon-Mee; Yun, Na Ra; Kim, Seok-Won; Han, Mi Ah; Kim, Dong-Min

    2016-01-01

    In South Korea, scrub typhus is one of the most common rickettsial diseases. The number of scrub typhus patients has increased in South Korea, a total of 69,210 cases were reported from 2001 to 2013. The seasonality and relation of scrub typhus cases to latitude were analyzed in this article using data obtained from the National Notifiable Diseases Surveillance System website of the Korea Centers for Disease Control and Prevention. The incidence of scrub typhus tended to increase in the later months of the year, especially in October-December. In general, lower latitudes were associated with a later peak incidence. Our results suggest for the first time that the monthly observed incidence tended to increase in the later months of the year as the latitude decreased, and on a yearly basis in Korea.

  6. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. In the fall of 2010 (when the North Pole was most visible), there was a strong flow in the North while in the spring of 2011 (when the South Pole was most visible) the flow there was weaker. With these results, we have a possible solution to this polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun s polar regions in general and the polar meridional flow in particular.

  7. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun's polar regions in general and the polar meridonal flow in particular.

  8. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north ]south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north ]south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun fs polar regions in general and the polar meridional flow in particular

  9. Symbiodinium spp. associated with high-latitude scleractinian corals from Jeju Island, South Korea

    NASA Astrophysics Data System (ADS)

    De Palmas, S.; Denis, V.; Ribas-Deulofeu, L.; Loubeyres, M.; Woo, S.; Hwang, S. J.; Song, J. I.; Chen, C. A.

    2015-09-01

    Most studies on endosymbiotic dinoflagellate algae (genus Symbiodinium) associated with scleractinian corals focus on tropical and sub-tropical reefs. Their diversity in outlying, non-reef coral communities at high latitudes is still not fully documented. In this study, we analyzed the Symbiodinium diversity associated with five scleractinian species collected at eight sites around Jeju Island (South Korea, 33.4°N) between 5 and 15 m depth. Denaturing gradient gel electrophoresis of amplified internal transcribed spacer region 2 distinguished five Symbiodinium types. We observed a high level of specificity between host genera and Symbiodinium spp. despite existing in an environment with large seasonal oscillations in temperature and light. Psammocora albopicta and Psammocora profundacella were associated with C1 and Montipora millepora with C17. Alveopora japonica was associated exclusively with an unusual F-type, the only known clade F representative functionally important to a scleractinian coral. Oulastrea crispata was associated with Symbiodinium boreum (type D15), occasionally co-occurring with type C3 (in 4 % of specimens). In addition to increasing the knowledge of Symbiodinium diversity in high-latitude coral communities, this study constitutes an important baseline upon which the effects of projected environmental change in the near future can be assessed. A better understanding of high-latitude coral communities is critical for understanding how a warming planet will affect the tempo and mode of shifts in the composition of temperate marine communities.

  10. North-south asymmetry of the high-latitude thermospheric density: IMF BY effect

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yosuke; Kosch, Michael J.; Sutton, Eric K.

    2015-01-01

    Previous studies have established that the y component of the interplanetary magnetic field (IMF By) plays a role in the north-south asymmetry of the high-latitude plasma convection and wind. The effect of the positive/negative IMF By in the Northern Hemisphere resembles the effect that the negative/positive IMF By would have in the Southern Hemisphere. In this study, we demonstrate that the IMF By effect can also contribute to the hemispheric asymmetry of the thermospheric density. We use high-accuracy air drag measurements from the CHAllenging Minisatellite Payload (CHAMP) satellite and SuperMAG AE index during the period 2001-2006 to examine the response of the high-latitude thermospheric density to geomagnetic activity. Our statistical analysis reveals that the density response at 400 km is greater in the Southern Hemisphere under positive IMF By conditions, and greater in the Northern Hemisphere under negative IMF By conditions. The results suggest that the IMF By effect needs to be taken into account in upper atmospheric modeling for an accurate description of high-latitude densities during periods of enhanced geomagnetic activity.

  11. Magnetically Conjugate Observations of the Low Latitude Ionosphere in Western South America

    NASA Astrophysics Data System (ADS)

    Hickey, D. A.; Martinis, C. R.; Baumgardner, J. L.; Milla, M. A.; Mendillo, M.; Meriwether, J. W.

    2015-12-01

    An all-sky imager (ASI) installed at Villa de Leyva, Colombia (5.6° N, 73.5° W, 16.3° mag lat) in October 2014 is used in conjunction with another ASI near the magnetically conjugate point at El Leoncito in Argentina (31.8° S, 69.3° W, -19.6° mag lat) to study irregularities and perturbations in the ionosphere. A third ASI in Jicamarca, Peru (11.95° S, 76.87° W, 0.1° mag lat) provides context for the structures generated near the magnetic equator on the west coast of South America. The region sampled by these instruments covers from ~40° S to ~15° N and from ~ 80° W to ~65° W . The Jicamarca Radio Observatory has radar systems and other instruments that measure the upper atmosphere which, combined with the ASIs, allow us to uniquely study equatorial and low latitude processes. The ASIs are able to detect airglow depletions at 630 nm associated with equatorial spread F (ESF) that can also observed with coherent radar scatter measurements at Jicamarca. Simultaneous conjugate observations of ESF are compared to see how the large-scale structures behave at these locations. The ASIs are also used to look for a signature of the midnight temperature maximum (MTM) that is seen as an increase in brightness propagating poleward. Radar and Fabry-Perot interferometer data is used to measure this increase in temperature and combining them with the ASI data we will be able to probe the extent of MTM effects and investigate how they vary with latitude in both hemispheres.

  12. High- and low-latitude orbital forcing of early hominin habitats in South Africa

    NASA Astrophysics Data System (ADS)

    Hopley, Philip J.; Weedon, Graham P.; Marshall, Jim D.; Herries, Andy I. R.; Latham, Alf G.; Kuykendall, Kevin L.

    2007-04-01

    Reconstructions of African palaeoenvironments are essential for a full understanding of early hominin evolution, but they are often hampered by low-resolution or discontinuous climatic data. Here we present high-resolution oxygen ( δ18O) and carbon ( δ13C) isotope time series for the Pliocene/early Pleistocene (1.99 to 1.52 Ma) of South Africa, derived from the Buffalo Cave flowstone deposit. The δ18O data are dominated by variations at the orbital precession period (18-23 ka), as is typical for records of sub-tropical monsoon rainfall. The δ13C data indicate the proportion of savannah grasses (C 4 plants) compared to trees and shrubs (C 3 plants), and this signal is dominated by an obliquity periodicity (40 ka), commonly associated with high-latitude ice-sheet dynamics. A rapid increase in savannah grass proportions between 1.78 and 1.69 Ma coincides with a pulse in African mammal turnover, and lends support to an adaptive link between the appearance of African Homo erectus and the increasingly savannah-dominated environment.

  13. North-South Asymmetries in Earth's Magnetic Field - Effects on High-Latitude Geospace

    NASA Astrophysics Data System (ADS)

    Laundal, K. M.; Cnossen, I.; Milan, S. E.; Haaland, S. E.; Coxon, J.; Pedatella, N. M.; Förster, M.; Reistad, J. P.

    2016-07-01

    The solar-wind magnetosphere interaction primarily occurs at altitudes where the dipole component of Earth's magnetic field is dominating. The disturbances that are created in this interaction propagate along magnetic field lines and interact with the ionosphere-thermosphere system. At ionospheric altitudes, the Earth's field deviates significantly from a dipole. North-South asymmetries in the magnetic field imply that the magnetosphere-ionosphere-thermosphere (M-I-T) coupling is different in the two hemispheres. In this paper we review the primary differences in the magnetic field at polar latitudes, and the consequences that these have for the M-I-T coupling. We focus on two interhemispheric differences which are thought to have the strongest effects: 1) A difference in the offset between magnetic and geographic poles in the Northern and Southern Hemispheres, and 2) differences in the magnetic field strength at magnetically conjugate regions. These asymmetries lead to differences in plasma convection, neutral winds, total electron content, ion outflow, ionospheric currents and auroral precipitation.

  14. Geomorphological map of the South Belet region of Titan: An exploration of Mid-Latitude-to-Pole transition zones

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Ashley Marie; M. C Lopes, Rosaly; Malaska, Michael; Solomonidou, Anezina; Birch, Samuel; Hayes, Alexander; Williams, David A.; Janssen, Michael A.; Le Gall, Alice; Turtle, Elizabeth P.; Cassini RADAR Team

    2016-10-01

    We carried out detailed geomorphological mapping of Titan's mid-latitude region south of the Belet Sand Sea. We used radar data collected by Cassini's Synthetic Aperture Radar (SAR) as our basemap, supplemented by spectro-images from VIMS, images from ISS, SARtopo, and microwave emissivity datasets. We mapped at a scale of 1:800,000 in all areas of the South Belet region covered by SAR swaths, taking into consideration the 300 m/pixel resolution of the swaths. For the mid-latitudes, we have defined five broad classes of terrains following Malaska et al. (2016). These terrain classes are craters, hummocky/mountainous, labyrinth, plains, and dunes. We have found that the hummocky/mountainous terrains are the oldest, with a radiometric signature consistent with icy materials. Dunes are the youngest units and return a radiometric signature consistent with organic sediments. The South Belet region of Titan is primarily covered by the dune and plain units (specifically the undifferentiated plains) typical of the mid-latitudes (Malaska et al. 2016). Previous mapping efforts of the mid-latitude regions of Titan (Lopes et al. 2016; Malaska et al. 2016) have indicated that these regions are predominately modified and influenced by aeolian activities. A plain unit designated "scalloped plains" is prominently featured between the 50°S and 60°S latitudes of this region. In this area we also find a terrain unit (dark irregular plains) that has been interpreted as damp materials saturated with liquid hydrocarbons (Malaska et al 2016; Hayes et al. 2008). We also note a higher identification of fluvial channels starting at this latitude zone and extending poleward. We suggest that these features demark the transition zone between mid-latitude/equatorial aeolian-dominated processes and fluvial-dominated processes prevailing at the poles.References: Lopes, R.M.C., et al.: Icarus, 270, 162-182, 2016; Malaska, M., et al.: Icarus, 270, 130-161, 2016; Hayes, A. et al.: Geophys. Res

  15. VHF coherent scatter radar observations of mid-latitude F-region field-aligned irregularities over South Korea

    NASA Astrophysics Data System (ADS)

    Kwak, Y.; Yang, T.; Lee, J.; Hwang, J.; Kil, H.; Park, Y.

    2011-12-01

    We examine the mid-latitude F-region field-aligned irregularity (FAI) activity during 2010-2011 by using the VHF coherent scatter radar data in Daejeon (36.2°N, 127.1°E; dip latitude 26.7°N), South Korea. The VHF radar has been operated since December 2009 and provides a unique opportunity to investigate the variability of the FAI activity with local time, season, solar flux, and magnetic activity. Our preliminary results during the solar minimum show that FAIs preferentially occur at post-sunset and pre-sunrise and during the June solstice. The seasonal variation of the FAI occurrence frequency is similar to that of the electron density irregularities observed by the C/NOFS satellite. For one event, we observed the association of the FAIs with a medium-scale traveling ionospheric disturbance (MSTID). Our study extends to the investigation of the correlations between the irregularities in the equatorial region and middle latitudes and between the conjugate F regions, and the causal linkage of the FAIs with the E-region perturbations. For this purpose, we analyze the VHF radar and C/NOFS data during 2010-2011.

  16. Palynological composition of a Lower Cretaceous South American tropical sequence: Climatic implications and diversity comparisons with other latitudes.

    USGS Publications Warehouse

    Mejia-Velasquez, Paula J.; Dilcher, David L.; Jaramillo, Carlos A.; Fortini, Lucas B.; Manchester, Steven R.

    2012-01-01

    Premise of the study: Reconstruction of floristic patterns during the early diversification of angiosperms is impeded by the scarce fossil record, especially in tropical latitudes. Here we collected quantitative palynological data from a stratigraphic sequence in tropical South America to provide floristic and climatic insights into such tropical environments during the Early Cretaceous. Methods: We reconstructed the floristic composition of an Aptian-Albian tropical sequence from central Colombia using quantitative palynology (rarefied species richness and abundance) and used it to infer its predominant climatic conditions. Additionally, we compared our results with available quantitative data from three other sequences encompassing 70 floristic assemblages to determine latitudinal diversity patterns. Key results: Abundance of humidity indicators was higher than that of aridity indicators (61% vs. 10%). Additionally, we found an angiosperm latitudinal diversity gradient (LDG) for the Aptian, but not for the Albian, and an inverted LDG of the overall diversity for the Albian. Angiosperm species turnover during the Albian, however, was higher in humid tropics. Conclusions: There were humid climates in northwestern South America during the Aptian-Albian interval contrary to the widespread aridity expected for the tropical belt. The Albian inverted overall LDG is produced by a faster increase in per-sample angiosperm and pteridophyte diversity in temperate latitudes. However, humid tropical sequences had higher rates of floristic turnover suggesting a higher degree of morphological variation than in temperate regions.

  17. From South to North: flowering phenological responses at different geographical latitudes in 12 European countries

    NASA Astrophysics Data System (ADS)

    Szabó, Barbara; Lehoczky, Annamária; Filzmoser, Peter; Templ, Matthias; Szentkirályi, Ferenc; Pongrácz, Rita; Ortner, Thomas; Mert, Can; Czúcz, Bálint

    2014-05-01

    Phenological sensitivity of plants strongly depends on regional climate variability, moreover it is also influenced by large-scale atmospheric circulation patterns. Plants in different environmental conditions (determined by geographical latitude and longitude, altitude, continentality) may show diverse responses to climate change. The first results of an international cooperation aiming at the analysis of plant phenological data along a latitudinal gradient over 12 European countries (Macedonia, Bosnia and Herzegovina, Montenegro, Slovenia, Croatia, Hungary, Slovakia, Poland, Lithuania, Latvia, Estonia and Finland) are presented. The spatio-temporal changes in the flowering onset dates of common lilac (Syringa vulgaris L.) during the period of 1970-2000 were analysed. To characterise the environmental conditions driving the phenological responses, climatic variables (atmospheric pressure, air temperature, precipitation) obtained from a gridded observational dataset (E-OBS 9.0) and time series of the North Atlantic Oscillation (NAO) index were used. Preliminary results for this particular species found a gradual advance of mean flowering onsets along latitudes from 40° N to 65° N, at the rate of -0.12 to -0.32 day/year. Significant zonal differences were found in these rates, which can be explained by the sensitivity of flowering to climatic conditions while moving from Mediterranen to boreal regions of Europe. Thus our results were coherent with most observations in the literature, that higher latitudes can exhibit more pronounced responses, particularly in case of spring phenological events.

  18. Vertical behavior and diet of albacore tuna (Thunnus alalunga) vary with latitude in the South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Williams, Ashley J.; Allain, Valerie; Nicol, Simon J.; Evans, Karen J.; Hoyle, Simon D.; Dupoux, Cyndie; Vourey, Elodie; Dubosc, Jeff

    2015-03-01

    Albacore tuna (Thunnus alalunga) are an important upper tropic-level oceanic predator with a circum-global distribution. Little is known of the movements and diet of albacore tuna in the South Pacific Ocean and how variability in both might influence the vulnerability of albacore tuna to fisheries across their range. We coupled data derived from satellite-tagged albacore tuna with stomach samples collected from individuals at the same locations to characterize the vertical behavior, thermal and dietary habits of albacore tuna at tropical (New Caledonia and Tonga) and temperate (New Zealand) latitudes. A total of 18 pop-up satellite archival tags deployed on albacore tuna remained attached for 0-50 days. Position estimates, calculated from 11 tags, described short-term movements of predominantly less than 500 km, although one fish moved more than 1000 km over a period of 50 days. Vertical behavior and diet differed substantially between tropical and temperate latitudes. At tropical latitudes, albacore tuna showed a distinct diel pattern in vertical habitat use, occupying shallower, warmer waters above the mixed layer depth (MLD) at night, and deeper, cooler waters below the MLD during the day. In contrast, there was little evidence of a diel pattern of vertical behavior in albacore tuna at temperate latitudes, with fish limited to shallow waters above the MLD almost all of the time. Spatial patterns of species composition in stomach contents were consistent with vertical movement patterns, with significantly more deepwater prey species consumed in tropical waters than in temperate waters. Albacore in tropical waters also consumed significantly greater diversities of prey than in temperate waters, predominately preying on fish species, whereas those in temperate waters predominately preyed on crustacea. Our results indicate that the vertical distribution of albacore is constrained either by thermal preferences with diet reflecting these preferences, by the vertical

  19. Macrobioerosion in Porites corals in subtropical northern South China Sea: a limiting factor for high-latitude reef framework development

    NASA Astrophysics Data System (ADS)

    Chen, Tianran; Li, Shu; Yu, Kefu

    2013-03-01

    Bioerosion is an important limiting factor in carbonate accretion and reef framework development; however, few studies have quantified the direct impact of macroborers on high-latitude coral communities, which are viewed as potential refuge during a period of global warming. In this study, internal macrobioerosion of Porites corals was examined at Daya Bay, subtropical northern South China Sea. The principal borers were the bivalve Lithophaga spp. and the sponges Cliona spp. and Cliothosa spp. (≥80 %), while sipunculid and polychaete worms and barnacles accounted for small amounts of bioerosion (≤20 %). Porites corals were heavily bioeroded in areas impacted by aquacultural and urban activities (10.34-27.55 %) compared with corals in relatively unpolluted areas (2.18-6.76 %). High levels of bioerosion, especially boring bivalve infestation, significantly weaken the corals and increase their susceptibility to dislodgement and fragmentation in typhoons, limiting accumulation of limestone framework. This study implies that carbonate accretion and reef development for high-latitude coral communities may be limited in future high-CO2 and eutrophication-stressed environments.

  20. Latitude 90 Degrees North to 90 Degrees South and Longitude 0 Degrees to 180 Degrees

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The coordinates of the Lambert azimuthal equal area projection are latitude 90 degrees N. to 90 degrees S. and longitude 0 degree to 180 degrees. Both polar residual ice caps are seen at top and bottom. The central part is dominated by the four largest and youngest volcanoes on Mars--Olympus, Arsia, Pavonis, and Ascraeus Montes--and by a vast system of canyons several thousand kilometers long--Valles Marineris. Directly to the northeast of Valles Marineris, several large outflow channels terminate at a dark depression, Chryse basin. The lower-right corner is marked by the large Argyre basin, defined by an expanse of light-colored plains 800 km across.

  1. Latitude 90 Degrees North to 90 Degrees South and Longitude -180 Degrees to 0 Degrees

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The coordinates of the Lambert azimuthal equal area projection are latitude 90 degrees N. to 90 degrees S. and longitude -180 degrees to 0 degrees. The north polar residual ice cap of the Planum Boreum region, which is cut by spiral-patterned troughs, is located at top. The upper part is marked by large depression, Isidis basin, which contains light-colored plains. The upper part also includes the light-colored smooth plains of Elysium Planitia and dark plains of Vastitas Borealis. Together, these form a vast expanse of contiguous plains. Toward the bottom, on the other hand, the southern hemisphere is almost entirely made up of heavily cratered highlands. Toward the bottom, a conspicuous, relatively bright circular depression marks the ancient large Hellas impact basin.

  2. Geometrical analysis of structural data collected at high South latitude: A modular arithmetic method that addresses meridional convergence

    USGS Publications Warehouse

    Siddoway, C.S.; Siddoway, M.F.

    2007-01-01

    The convergence of meridians toward the South Pole causes unique problems for geometrical comparison of structural geological and geophysical datasets from Antarctica. The true North reference direction ordinarily is used for measuring and reporting vector data (strike, trend) in Antarctica, as elsewhere. However, over a latitude distance of just 100 km at 85° South, the angular difference in the true North direction exceeds 10°. Consequently, when performing a regional tectonic analysis of vector data (strike, trend) for structures such as faults, dike arrays, or geophysical lineaments oriented with respect to North at different sites, it is necessary to rotate the data to a common reference direction. A modular arithmetic function, performed as a spreadsheet calculation, offers the means to unify data sets from sites having different longitude position, by rotation to a common reference direction. The function is SC ≡ SM + ∆L (mod 360), where SC = converted strike; SM = measured strike; ∆L = angle in degrees longitude between reference longitude and study site; and 360, the divisor, is the number of degrees in Earth’s circumference. The method is used to evaluate 1) paleomagnetic rotation of the Ellsworth-Whitmore Mountains with respect to the Transantarctic Mountains, and 2) orogenic curvature of the Ross Orogen

  3. Spring Defrosting of Mass-Movement Material at South High Latitudes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Southern hemisphere spring on Mars will begin this year around May 6, 2003. During the spring, the MOC operations team will be documenting changes as the seasonal carbon dioxide frost cap retreats southward. In preparation for this year's southern spring, the team has been examining images obtained during the last southern spring, which occurred in 2001.

    This pair of images shows gullies and associated scars formed by mass-movement down a slope in the south polar region. The first view, in mid-spring, was acquired in August 2001; it shows a terrain that is largely devoid of the frost that covered everything during winter. However, the aprons of debris from the mass-movements (landslides) are still frosted. By late spring, in the second picture (right), the frost on the aprons had finally sublimed away, and the debris was seen to be not much brighter than their surroundings. The second picture was taken in November 2001, about a week before the first day of summer.

    The fact that the aprons of debris retained frost in mid-spring, whereas the surrounding terrain did not, probably indicates that the debris underlying the frost has different thermal properties than the surroundings. The debris might be more coarse-grained (sand or gravel, perhaps), and remained cooler in the daytime than the surrounding, dust-mantled surfaces.

    The images are both illuminated from the bottom/lower right. North is toward the bottom, and the area imaged is located near 70.9oS, 339.3oW.

  4. Sensitivity of the South American Summer Monsoon to high latitude temperature changes during the Last Glacial period

    NASA Astrophysics Data System (ADS)

    Kanner, L.; Burns, S. J.; Cheng, H.; Edwards, R.

    2011-12-01

    The climate of the Last Glacial period (10-110 kya) is characterized by rapid, millennial-scale climate fluctuations termed Dansgaard/Oeschger (D/O) and Heinrich (H) events. D/O and Heinrich events have been recognized in many terrestrial and marine records, particularly from the Northern Hemisphere. However, the presence of D/O cycles in the Southern Hemisphere and their relationship to Southern Hemisphere monsoons has not been established. We present results from a speleothem-derived proxy of the South American Summer Monsoon (SASM) from 16-50 kya that clearly demonstrate the occurrence of D/O cycles and Heinrich events. Stalagmite P09-PH2 was recently collected from Pacupahuain Cave in the central Peruvian Altiplano (12°S, 76°W, ~3800m elevation). Chronologies were determined by U-Th dating techniques and seventeen 230Th dates, all in stratigraphic order, have analytical errors < 0.4%. Stable oxygen isotope ratios (δ18O) were measured on 834 micromilled samples taken along the growth axis, yielding an average resolution of 30 years. Oxygen isotopic values of stalagmite P09-PH2 range from -14% to -17.5%. The long-term record of δ18O is characterized by a series of high amplitude, millennial-scale events. Rapid enrichments of up to 2.5% occur over a century or less while more gradual depletions occur over a few centuries to millennia. Comparing the millennial-scale variability in the Pacupahuain Cave record to the isotopic fluctuations from Greenland shows that all D/O cycles, with the exception of D/O event 3, are also found our record of SASM intensity. Abrupt oxygen isotopic enrichments in Greenland, which characterize the onset of the D/O events, are positively correlated with millennial-scale isotopic enrichments in P09-PH2. This correlation indicates that warm events at high, northern latitudes are related to intervals of decreased SASM intensity. Heinrich events H1 through H5 are also identified in our reconstruction by highly depleted values in

  5. Extant benthic foraminiferal assemblages used in palaeocological interpretations on a high-latitude coral reef, South Africa

    NASA Astrophysics Data System (ADS)

    Hayman, Stephanie; Mackay, Fiona; Schleyer, Michael

    2015-04-01

    South Africa's coral reefs are located at high latitude, but have high biodiversity and recreational value. Also being marginal, potentially they provide insight into future scenarios of global change for other sub-tropical and/or tropical reefs stimulated by human and climate change pressures. Sodwana Bay has a complex of reefs which are situated on a strongly wind-driven, high energy coastline also influenced significantly by the strong western boundary Agulhas Current. Our aim was to assess the impact of recent changes potentially due to climate change, on these reefs using foraminifera as a proxy for calcifying marine organisms. Limited foraminiferal research has been conducted in this region with none having a palaeoclimate focus. The palaeoclimate was analysed through the collection of three intact bioclastic sediment cores X, Y and Z, which were collected at a depth of 16m. Stable isotope data (δ18O and δ13C) together with down-core foraminiferal assemblage changes allowed for palaeocological interpretations. Sediment cores were collected adjacent to the most accessible part of the reef complex at Two-mile Reef, Sodwana Bay, with the concurrent collection of extant Large Benthic Foraminifera (LBF) using a spatial crossed design of different substrata and habitats. Symbiont bearing LBF showed distinct zonation across the reef and reef associated habitats, with discrete assemblages found in sediment habitats and coral rubble. Distributions of these organisms were influenced by sediment grain size characteristics (% fine sand, % medium sand and % gravel) as well as water chemistry parameters (pH, salinity, temperature and total alkalinity). The living LBF were found predominately on reef rubble. The marginal nature of these reefs was also corroborated through carbonate analysis of water parameters (winter mean ΩAr: 3.00 ±0.37SD; summer mean ΩAr: 3.54 ±0.36SD). Radiocarbon dating from core X provided a calendar age of AD 680-920 (BP 1270 - 1030

  6. Occurrence climatology of F region field-aligned irregularities in middle latitudes as observed by a 40.8 MHz coherent scatter radar in Daejeon, South Korea

    NASA Astrophysics Data System (ADS)

    Yang, Tae-Yong; Kwak, Young-Sil; Kil, Hyosub; Lee, Young-Sook; Lee, Woo Kyoung; Lee, Jae-jin

    2015-11-01

    A new 40.8 MHz coherent scatter radar was built in Daejeon, South Korea (36.18°N, 127.14°E, dip latitude: 26.7°N) on 29 December 2009 and has since been monitoring the occurrence of field-aligned irregularities (FAIs) in the northern middle latitudes. We report on the occurrence climatology of the F region FAIs as observed by the Daejeon radar between 2010 and 2014. The F region FAIs preferentially occur around 250-350 km at 18:00-21:00 local time (postsunset FAI), around 350-450 km near midnight (nighttime FAI), around 250-350 km before sunrise (presunrise FAI), and around 160-300 km after 05:00 local time (postsunrise FAI). The occurrence rates of nighttime and presunrise FAIs are maximal during summer, though the occurrence rates of postsunset and postsunrise FAIs are maximal during the equinoxes. FAIs rarely occur during local winter. The occurrence rate of F region FAIs increases in concert with increases in solar activity. Medium-scale traveling ionospheric disturbances (MSTIDs) are known as an important source of the F region FAIs in middle latitudes. The high occurrence rate of the nighttime FAIs in local summer is consistent with the high occurrence rate of MSTIDs in that season. However, the dependence of the FAI activity on the solar cycle is inconsistent with the MSTID activity. The source of the F region FAIs in middle latitudes is an open question. Our report of different types of FAIs and their occurrence climatology may provide a useful reference for the identification of the source of the middle latitude FAIs.

  7. Exceptionally preserved lacustrine ostracods from the Middle Miocene of Antarctica: implications for high-latitude palaeoenvironment at 77° south

    PubMed Central

    Williams, Mark; Siveter, David J; Ashworth, Allan C; Wilby, Philip R; Horne, David J; Lewis, Adam R; Marchant, David R

    2008-01-01

    A newly discovered Konservat-Lagerstätte from the Middle Miocene of the western Olympus Range, Dry Valleys, Antarctica, yields cypridoidean ostracods complete with preserved body and appendages. This is the first record of three-dimensionally fossilized animal soft tissues from the continent. The ostracods are preserved in goethite, secondary after pyrite, representing a novel mode of exceptional preservation. They signal a high-latitude (greater than 77° south) lake setting (Palaeolake Boreas) viable for benthic animal colonization prior to 14 Myr ago. Their presence supports the notion of warmer, tundra-like environmental conditions persisting in the Dry Valleys until the Middle Miocene. PMID:18647723

  8. Catalog of available clear mylar templates used to determine latitude and longitude of sample localities between the latitudes of 51 degrees 00' and 71 degrees 30' at the scale of 1:63,360 and between the latitude of 49 degrees 00'00" north or south at the scale of 1:250,000

    USGS Publications Warehouse

    Campbell, W.L.; VanTrump, George, Jr.

    1982-01-01

    The present use of electro-mechanical plotting of sample points can give rise to location errors, particularly when map scale changes are involved, unless careful control is maintained. The following catalog of computer-generated mylar templates, with plots of latitude and longitude (longitudes equidistant north to south), sufficient to cover the latitudes between 49?00'00'' and 71?30'00'' N. or S., will help facilitate the plotting of points when there is a map scale change for two different map scales (1:63,360 and 1:250,000). Using the template overlays (available as individual page numbers in Open-File Report 82-724--xerographic clear film overlays from U.S. Geological Survey Open-File Services Section, Branch of Distribution, USGS, Box 25425, Denver, Colorado 80225, telephone (303) 234-5888), the point plotted on a composite final copy may be checked against field maps and notes when only degrees latitude and longitude are given.

  9. Receiver DCB estimation and GPS vTEC study at a low latitude station in the South Pacific

    NASA Astrophysics Data System (ADS)

    Prasad, Ramendra; Kumar, Sushil; Jayachandran, P. T.

    2016-11-01

    The statistical estimation of receiver differential code bias (DCB) of the GSV4004B receiver at a low latitude station, Suva (lat. 18.15°S, long. 178.45°E, Geomag. Lat. 21.07°S), Fiji, and the subsequent behaviour of vTEC, are presented. By means of least squares linear regression fitting technique, the receiver DCB was determined using the GPS vTEC data recorded during the year 2010, CODE TEC and IRI-2012 model for 2010. To substantiate the results, minimization of the standard deviation (SD) method was also used for GPS vTEC data. The overall monthly DCB was estimated to be in the range of 62.6 TECU. The vTEC after removing the resultant monthly DCB was consistent with other low latitude observations. The GPS vTEC 2010 data after eliminating the resultant DCB were lower in comparison to Faraday rotation vTEC measurements at Suva during 1984 primarily due to higher solar activity during 1984 as compared to 2010. Seasonally, vTEC was maximum during summer and minimum during winter. The winter showed least vTEC variability whereas equinox showed the largest daytime variability. The geomagnetic disturbances effect showed that both vTEC and its variability were higher on magnetically disturbed days as compared to quiet days with maximum variability in the daytime. Two geomagnetic storms of moderate strengths with main phases in the local daytime showed long duration (∼52 h) increase in vTEC by 33-67% which can be accounted by changes in E×B drifts due to prompt penetration of storm-time auroral electric field in the daytime and disturbance dynamo electric field in the nighttime to low latitudes.

  10. Statistical characteristics of nighttime mid-latitude F-region field-aligned irregularities observed by Daejeon VHF coherent scattering radar in South Korea

    NASA Astrophysics Data System (ADS)

    Yang, T. Y.; Kwak, Y. S.; Kil, H.; Lee, Y.; Lee, W. K.; Park, Y. D.

    2014-12-01

    We report statistical characteristics of mid-latitude nighttime F-region field-aligned irregularities (FAIs) based on more than three-year observations by Daejeon VHF coherent backscatter radar. This radar has built at Daejeon (36.18°N, 127.14°E, dip lat. 26.7°N) in 2009 with 40.8 MHz operating frequency for continuous monitoring of the behavior of electron density irregularities in the middle latitude. By using long-term observations from January 2010 to December 2013, we obtained the annual, diurnal and seasonal characteristics of a variety of a percentage occurrence, signal-to-noise ratio, and Doppler velocities from the nighttime F-region irregularities over Korea peninsular. From almost four-year observations, the F-region nighttime irregularities occurred most frequently during post-sunset period. These nighttime irregularities usually appeared with occupying different height levels according to local time. This height variation of F-region FAIs was correlated with hmf2 of ionosonde in Icheon, South Korea. The irregularities were least active near the winter solstice and most active near summer solstice. From the annual occurrence variations, F-region nighttime irregularities seem to have tendency with solar activity.

  11. The magnitude and rapidity of the climate change marking the end of the Pleistocene in the mid-latitudes of South America

    USGS Publications Warehouse

    Ashworth, A.C.; Hoganson, J.W.

    1993-01-01

    The chi-squared test of independence and cluster analysis of Otsuka similarity coefficients of fossil beetle assemblages from the Chilean Lake Region in the mid-latitudes of South America support the following conclusions: (1) the mean summer temperature of the glacial climate was 4-5??C lower than today's climate; (2) the climatic change from glacial to interglacial mode was in a single step centered on about 14,000 yr B.P.; (3) the climatic change was rapid, and within 1500 years the biota of a moorland had been completely replaced by a biota of a rain forest; (4) by 12,500 yr B.P., the low elevation beetle fauna of the Chilean Lake Region was similar in composition to that of the present day; and (5) no reversal in the postglacial warming trend, equivalent in age to the Younger Dryas Stade, was detected. ?? 1993.

  12. Mapping Vesta Mid-Latitude Quadrangle V-12EW: Mapping the Edge of the South Polar Structure

    NASA Astrophysics Data System (ADS)

    Hoogenboom, T.; Schenk, P.; Williams, D. A.; Hiesinger, H.; Garry, W. B.; Yingst, R.; Buczkowski, D.; McCord, T. B.; Jaumann, R.; Pieters, C. M.; Gaskell, R. W.; Neukum, G.; Schmedemann, N.; Marchi, S.; Nathues, A.; Le Corre, L.; Roatsch, T.; Preusker, F.; White, O. L.; DeSanctis, C.; Filacchione, G.; Raymond, C. A.; Russell, C. T.

    2011-12-01

    NASA's Dawn spacecraft arrived at the asteroid 4Vesta on July 15, 2011, and is now collecting imaging, spectroscopic, and elemental abundance data during its one-year orbital mission. As part of the geological analysis of the surface, a series of 15 quadrangle maps are being produced based on Framing Camera images (FC: spatial resolution: ~65 m/pixel) along with Visible & Infrared Spectrometer data (VIR: spatial resolution: ~180 m/pixel) obtained during the High-Altitude Mapping Orbit (HAMO). This poster presentation concentrates on our geologic analysis and mapping of quadrangle V-12EW. This quadrangle is dominated by the arcuate edge of the large 460+ km diameter south polar topographic feature first observed by HST (Thomas et al., 1997). Sparsely cratered, the portion of this feature covered in V-12EW is characterized by arcuate ridges and troughs forming a generalized arcuate pattern. Mapping of this terrain and the transition to areas to the north will be used to test whether this feature has an impact or other (e.g., internal) origin. We are also using FC stereo and VIR images to assess whether their are any compositional differences between this terrain and areas further to the north, and image data to evaluate the distribution and age of young impact craters within the map area. The authors acknowledge the support of the Dawn Science, Instrument and Operations Teams.

  13. Holocene shifts of the Subtropical Shelf Front off southeastern South America controlled by high and low latitude atmospheric forcings

    NASA Astrophysics Data System (ADS)

    Bender, Vera B.; Hanebuth, Till J. J.; Chiessi, Cristiano M.

    2013-09-01

    Over the Uruguayan shelf and uppermost slope, the coalescence of northward flowing Subantarctic Shelf Water and southward flowing Subtropical Shelf Water forms a distinct thermohaline front termed the Subtropical Shelf Front (STSF). Running in a SW direction diagonally across the shelf from the coastal waters at 32°S toward the shelf break at ca. 36°S, the STSF represents the shelfward extension of the Brazil-Malvinas Confluence zone. This study reconstructs latitudinal STSF shifts during the Holocene based on benthic foraminifera δ18O and δ13C, total organic carbon, carbonate contents, Ti/Ca, and grain size distribution from a high-accumulation sedimentary record located at an uppermost continental-slope terrace. Our data provide direct evidence for: (1) a southern STSF position (to the South of the core site) at the beginning of the early Holocene (>9.4 cal ka BP) linked to a more southerly position of the Southern Westerly Winds in combination with restricted shelf circulation intensity due to lower sea level; (2) a gradual STSF northward migration (bypassing the core site toward the North) primarily forced by the northward migration of the Southern Westerly Winds from 9.4 cal ka BP onward; (3) a relatively stable position of the front in the interval between 7.2 and 4.0 cal ka BP; (4) millennial-scale latitudinal oscillations close to 36°S of the STSF after 4.0 cal ka BP probably linked to the intensification in El Niño Southern Oscillation; and (5) a southward migration of the STSF during the last 200 years possibly linked to anthropogenic influences on the atmosphere.

  14. Long-term community changes on a high-latitude coral reef in the Greater St Lucia Wetland Park, South Africa.

    PubMed

    Schleyer, Michael H; Kruger, Alke; Celliers, Louis

    2008-03-01

    South African coral reefs are limited in size but, being marginal, provide a model for the study of many of the stresses to which these valuable systems are being subjected globally. Soft coral cover, comprising relatively few species, exceeds that of scleractinians over much of the reefs. The coral communities nevertheless attain a high biodiversity at this latitude on the East African coast. A long-term monitoring programme was initiated in 1993, entailing temperature logging and image analysis of high resolution photographs of fixed quadrats on representative reef. Sea temperatures rose by 0.15 degrees C p.a. at the site up to 2000 but have subsequently been decreasing by 0.07 degrees C p.a. Insignificant bleaching was encountered in the region during the 1998 El Nino Southern Oscillation (ENSO) event, unlike elsewhere in East Africa, but quantifiable bleaching occurred during an extended period of warming in 2000. Peak temperatures on the South African reefs thus appear to have attained the coral bleaching threshold. While this has resulted in relatively little bleaching thus far, the increased temperatures appear to have had a deleterious effect on coral recruitment success as other anthropogenic influences on the reefs are minimal. Recruitment success diminished remarkably up to 2004 but appears again to be improving. Throughout, the corals have also manifested changes in community structure, involving an increase in hard coral cover and reduction in that of soft corals, resulting in a 5.5% drop in overall coral cover. These "silent" effects of temperature increase do not appear to have been reported elsewhere in the literature.

  15. Hypothesis of homeothermy evolution on isolated South China Craton that moved from equator to cold north latitudes 250-200Myr ago.

    PubMed

    Kurbel, Sven

    2014-01-01

    Based on avian and mammalian fossils found in the northeastern Chinese province of Liaoning and physiological traits linked to homeothermy, a hypothesis of evolution of homeothermic animals is proposed. It is based on the importance of muscle function in cold environment, as a strong selection pressure that favors endothermic metabolism during periods of cold climates. The presented hypothesis postulates that in progressively cooling environment, animals will develop thermal insulation, increased basal metabolism if food is available, and torpor when food is scarce. Since late Permian, Triassic and Cretaceous global temperatures were high, an exceptional place that gradually became cold was needed for the homeothermy evolution. South China Craton is here proposed as a plausible candidate for that role since it drifted across the Paleo-Tethys ocean, from equator to high northern latitudes in a journey that lasted from 250 to 200Myr ago. After this small continent collided with North China Craton some 200Myr ago, the already cold-adapted animals had spread to large, mostly empty spaces on the North China Craton, due to their evolutionary advantage of making active living in the cold environment. The most advantageous early homeothermic animals went further north to the cold Liaoning to start an oasis that delivered modern birds during next 50Myr. Modern mammals possibly evolved somewhere in the cold vicinity. This made Liaoning and similarly cold places the cradles of early birds and early mammals since for the following millions of years these places remained too cold for poikilotherms to enter and warm enough for homeotherms to dwell, until the Cretaceous-Paleogene extinction event and subsequent global cooling that diminished poikilotherms. Homeothermy was probably even more important as a survival advantage in cooler climates of Paleogene, when mammals and birds became dominant animals. This interpretation is probably supported by a recent report that a small

  16. Clear mylar templates used to measure latitude and longitude of sample localities at scales of 1:63,360 and 1:250,000 between the latitudes of 49 degrees and 71 degrees 30 minutes north or south

    USGS Publications Warehouse

    Campbell, W.L.; VanTrump, George, Jr.

    1982-01-01

    Clear mylar overlay help expedite the recording of sample localities during both field and office work. These overlays allow for fast and accurate measurement of latitudes and longitudes. Presented here is a booklet computer-generated overlays at scales of 1:63,360 and 1:250,000 between the latitudes of 49?00'00'' N. or S. to 71?30'00'' N. or S. Copies of individual overlays are available from the U.S. Geological Survey Open-File Services Section, Branch of Distribution, USGS, Box 25425, Denver Federal Center, Denver, Colo., 80225, telephone (303) 234-5888.

  17. High Latitude Polygons

    NASA Technical Reports Server (NTRS)

    2005-01-01

    26 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows polygonal patterned ground on a south high-latitude plain. The outlines of the polygons, like the craters and hills in this region, are somewhat enhanced by the presence of bright frost left over from the previous winter. On Earth, polygons at high latitudes would usually be attributed to the seasonal freezing and thawing cycles of ground ice. The origin of similar polygons on Mars is less certain, but might also be an indicator of ground ice.

    Location near: 75.3oS, 113.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  18. Mid-latitude Gullies

    NASA Technical Reports Server (NTRS)

    2005-01-01

    25 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of south mid-latitude gullies on a crater wall. Gullies such as these may have formed by runoff of liquid water.

    Location near: 38.0oS, 167.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  19. Mid-latitude Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    7 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes on the floor of a southern mid-latitude impact crater. Craters are commonly the site of sand dunes, as sand may become trapped in these topographic depressions. In this case, the winds responsible for the dunes generally blew from the south/southeast (bottom/lower right),

    Location near: 51.8oS, 105.5oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  20. South High-latitude Gullies

    NASA Technical Reports Server (NTRS)

    2006-01-01

    1 February 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of gullies on a scarp in Lyell Crater.

    Location near: 69.7oS, 14.0oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  1. Dust measurements at high ecliptic latitudes.

    PubMed

    Baguhl, M; Hamilton, D P; Grün, E; Fechtig, H; Kissel, J; Linkert, D; Linkert, G; Riemann, R; Staubach, P; Dermott, S F; Hanner, M S; Polanskey, C; Lindblad, B A; Mann; McDonnell, J A; Morfill, G E; Schwehm, G; Zook, H A

    1995-05-19

    Along Ulysses' path from Jupiter to the south ecliptic pole, the onboard dust detector measured a dust impact rate that varied slowly from 0.2 to 0.5 impacts per day. The dominant component of the dust flux arrived from an ecliptic latitude and longitude of 100 + 10 degrees and 280 degrees +/- 30 degrees which indicates an interstellar origin. An additional flux of small particles, which do not come from the interstellar direction and are unlikely to be zodiacal dust grains, appeared south of -45 degrees latitude. One explanation is that these particles are beta-meteoroids accelerated away from the sun by radiation pressure and electromagnetic forces. PMID:17774227

  2. Dust measurements at high ecliptic latitudes.

    PubMed

    Baguhl, M; Hamilton, D P; Grün, E; Fechtig, H; Kissel, J; Linkert, D; Linkert, G; Riemann, R; Staubach, P; Dermott, S F; Hanner, M S; Polanskey, C; Lindblad, B A; Mann; McDonnell, J A; Morfill, G E; Schwehm, G; Zook, H A

    1995-05-19

    Along Ulysses' path from Jupiter to the south ecliptic pole, the onboard dust detector measured a dust impact rate that varied slowly from 0.2 to 0.5 impacts per day. The dominant component of the dust flux arrived from an ecliptic latitude and longitude of 100 + 10 degrees and 280 degrees +/- 30 degrees which indicates an interstellar origin. An additional flux of small particles, which do not come from the interstellar direction and are unlikely to be zodiacal dust grains, appeared south of -45 degrees latitude. One explanation is that these particles are beta-meteoroids accelerated away from the sun by radiation pressure and electromagnetic forces.

  3. Titan's Mid-latitude Clouds

    NASA Astrophysics Data System (ADS)

    Roe, Henry G.; Schaller, E. L.; Trujillo, C. A.; Brown, M. E.

    2007-10-01

    In the first few years of spatially resolved observations of Titan's tropospheric methane clouds (2001-2003) all of the clouds were clustered in the south polar region. This time period coincided with the southern summer solstice (October 2002) and these south polar clouds are almost certainly a seasonal phenomenon. Starting in December 2003 we began seeing clouds in a narrow latitude range centered at 40°S latitude. In Roe et al. (2005a) we published this initial discovery and speculated that the clouds might be due either to changes in the seasonal circulation pattern or a process linked to surface geography. Further observations soon revealed that the clouds were significantly clustered over one region of longitude (near 350°W), strongly suggesting a geographically controlled origin (Roe et al. 2005b), although Cassini observations suggest a circulation-induced convergence origin (Griffith et al. 2005). The actual answer is most likely a combination of geographic surface effects with the atmospheric circulation. We report here on our continuing ground-based observation campaign, including observations on 65 nights in the 2006-2007 apparition with the Gemini 8-m telescope. With two more years of observations since the data shown in Roe et al. (2005b) we now have much firmer conclusions with respect to the spatial distribution and temporal characteristics of the mid-latitude clouds. We will present our latest understanding of Titan's mid-latitude clouds given the entire dataset now available to us. References Griffith, C.A., & 26 co-authors 2005. Science, 310, 474. Roe, H.G., A.H. Bouchez, C.A. Trujillo, E.L. Schaller, & M.E. Brown 2005a. ApJL, 618, 49. Roe, H.G., M.E. Brown, E.L. Schaller, A.H. Bouchez, & C.A. Trujillo 2005b. Science, 310, 477. This work is supported by NASA under Grant #NNX07AK74G issued through the Planetary Astronomy Program.

  4. High latitude pulsating aurorae revisited

    SciTech Connect

    Wu, Q.; Rosenberg, T.J. )

    1992-01-03

    Dayside auroral pulsations (10-40 s periods) have been studied for different levels of geomagnetic disturbance with N{sub 2}{sup +} 427.8 nm emission data obtained at South Pole station, Antarctica ({minus}74.2{degree} MLAT). The occurrence distribution exhibits a single peak at magnetic noon under geomagnetically quiet conditions (0 {le} Kp < 1). With increased Kp, the distribution shifts to earlier times, the peak occurring at 1000-1030 MLT for 1 {le} Kp < 4. At these higher Kp levels a secondary occurrence peak is evident in the afternoon sector between 1400 and 1600 MLT, occurring earlier as Kp increases. These results are compared with those obtained separately for pre-noon pulsations observed at Ny Alesund and post-noon pulsations observed at Ny Alesund and post-noon pulsations observed at Davis, northern and southern hemisphere sites at approximately the same magnetic latitude as South Pole. South Pole and Ny Alesund observe morning peaks at the same time and with a similar lack of Kp dependence; South Pole and Davis observe afternoon peaks with similar Kp dependence, though the peak occurs earlier at Davis. In contrast to the results from the earlier studies, the South Pole observations show larger pulsation amplitudes in the morning sector and significantly higher occurrence rates overall.

  5. An assemblage of mollusks associated with the high latitude scleractinian coral Alveopora japonica (Eguchi 1968) in Jeju Island, off the south coast of Korea

    NASA Astrophysics Data System (ADS)

    Noseworthy, Ronald G.; Hong, Hyun-Ki; Keshavmurthy, Shashank; Lee, Hee-Jung; Jeung, Hee-Do; Ju, Se-Jong; Kim, Jong-Bin; Jung, Sukgeun; Choi, Kwang-Sik

    2016-03-01

    Corals reefs and communities support a wide range of flora and fauna. The complete richness and abundance of faunal communities in either coral reefs or communities is not fully understood. This is especially true for high-latitude coral communities. In this work, we carried out an analysis of an Alveopora japonica associated mollusk assemblage, in Jeju Island, Korea. A. japonica is one of the major coral species present in high abundance (88-155 colonies m-2), with a high recruitment rate (7.8 juvenile corals m-2 yr-1) in Jeju Island, and may serve as a habitat for other benthic organisms. In 2012, a total number of 579 A. japonica colonies with sizes ranging between 15.1-346.7 cm2 in the surface area were collected from a 1m× 10m quadrat installed at a depth of 10 m at Keumneung, on the northwest coast of Jeju Island. Numerous benthic invertebrates were found to be associated with A. japonica colonies. Twenty-seven bivalves and gastropods were identified, including a boring mytilid, Lithophaga curta, and an arcid, Barbatia stearnsi. A zonalgeographical examination of the distribution ranges of these mollusks revealed a majority of warmer water species. Our observations also showed that A. japonica may be providing a habitat to grazing gastropod, Turbo cornutus, and encrusting Spondylidae and Chamidae bivalves. A. japonica forms a coral carpet with a distinct assemblage of bivalves. It is thought that the presence of these mollusks species in the coral indicates its use as a nursery for juvenile species, a ready food supply of organic detritus, and a refuge from predators.

  6. Tidi Observations Relating to High Latitude Aeronomy

    NASA Astrophysics Data System (ADS)

    Gell, D.; Niciejewski, R.; Killeen, T.; Wu, Q.; Skinner, W.; Solomon, S.; Ortland, D.; Kafkalidis, J.; Gablehouse, D.; Johnson, R.

    2003-12-01

    Unique observations of the horizontal neutral winds at high latitudes in the altitude range 60 to 180 km have been performed by TIDI (Thermosphere Ionosphere Doppler Interferometer) since January 2002. The satellite orbit is such that the TIDI field of view includes latitudes to both the north pole and the south pole. Though high latitude neutral wind measurements have been obtained from space with the DE-2 satellite and the UARS satellite, TIDI is the first instrument to sample the mesosphere and the lower thermosphere up to and including both polar regions on a long-term basis. Ground based studies have previously reported a strong semi-diurnal tide in the mesosphere over Resolute, Canada. This paper will describe the climatology that has been obtained by the TIDI instrument since early 2002 for high latitudes. The precession rate of TIMED supports two month averaging of data sets in order to sample all local solar time.

  7. Response of the mid-latitude D-region ionosphere to the total solar eclipse of 22 July 2009 studied using VLF signals in South Korean peninsula

    NASA Astrophysics Data System (ADS)

    Phanikumar, D. V.; Kwak, Y.-S.; Patra, A. K.; Maurya, A. K.; Singh, Rajesh; Park, S.-M.

    2014-09-01

    In this paper, we analyze VLF signals received at Busan to study the the D-region changes linked with the solar eclipse event of 22 July 2009 for very short (∼390 km) transmitter-receiver great circle path (TRGCP) during local noon time 00:36-03:13 UT (09:36-12:13 KST). The eclipse crossed south of Busan with a maximum obscuration of ∼84%. Observations clearly show a reduction of ∼6.2 dB in the VLF signal strength at the time of maximum solar obscuration (84% at 01:53 UT) as compared to those observed on the control days. Estimated values of change in Wait ionospheric parameters: reflection height (h‧) in km and inverse scale height parameter (β) in km-1 from Long Wave Propagation Capability (LWPC) model during the maximum eclipse phase as compared to unperturbed ionosphere are 7 km and 0.055 km-1, respectively. Moreover, the D-region electron density estimated from model computation shows 95% depletion in electron density at the height of ∼71 km. The reflection height is found to increase by ∼7 km in the D-region during the eclipse as compared to those on the control days, implying a depletion in the Lyman-α flux by a factor of ∼7. The present observations are discussed in the light of current understanding on the solar eclipse induced D-region dynamics.

  8. Acoustic micronektonic distribution is structured by macroscale oceanographic processes across 20-50°S latitudes in the South-Western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Béhagle, Nolwenn; Cotté, Cédric; Ryan, Tim E.; Gauthier, Olivier; Roudaut, Gildas; Brehmer, Patrice; Josse, Erwan; Cherel, Yves

    2016-04-01

    Micronekton constitutes the largest unexploited marine biomass worldwide. It is one of the most conspicuous and ecologically important components of the still poorly known mesopelagic ecosystem. Acoustic data were collected from both fishing and research vessels along 18 transects for a total of 47 682 linear kilometers to investigate large-scale distribution of micronekton over a long latitudinal gradient (20-50°S) and two contrasted seasons (summer and winter) in the South-Western Indian Ocean. Acoustic backscatter at 38 kHz was used as a proxy of mid-water organisms' abundance (0-800 m depth). Two consistent features were diel vertical migration of backscatters and vertical distribution of micronekton in three distinct layers, namely the surface (SL), intermediate (IL) and deep (DL) layers. Satellite remote sensing data was used to position oceanic fronts, and hence define water masses, from the tropical to low Antarctic zones. A key finding of this study was the significant correlation observed between abundance and distribution of acoustic backscatter and position relative to these front and water masses. Total backscatter peaked in the subtropical zone, with low abundances in the colder Polar Frontal Zone. The high overall abundances in subtropical waters resulted mainly from high backscatters in the IL and DL that contrasted with low SL values, especially during the day (2-11%). The warmer the waters, the higher SL backscatter was, with the highest absolute and relative (38-51% of the total abundance) values observed at night in the Tropical Zone and the lowest abundance in the Antarctic Zone. No significant seasonal pattern was found, but SL backscatters were very low in winter compared to summer in the Polar Frontal Zone. Moreover, the Northern winter shift of the fronts induced a Northern latitudinal shift of the peak in abundance from summer to winter. The present study highlights the value of building large acoustic databases collected from both

  9. Extremely high latitude auroras

    NASA Astrophysics Data System (ADS)

    Gussenhoven, M. S.

    1982-04-01

    It is pointed out that imaging devices on the polar orbiting ISIS and Defense Meteorological Satellite Program (DMSP) satellites have greatly increased the extent of polar cap and auroral zone coverage and have prompted several studies of polar cap arcs. A description is presented of a statistical study of the occurrence conditions for arcs recorded in DMSP images at extremely high latitudes, taking into account corrected geomagnetic latitudes equal to or greater than 80 deg. The 80 deg boundary is chosen to minimize the problems associated with defining a polar cap boundary. Attention is given to the data base and categorization of extremely high latitude auroras, the relationship to magnetic activity, and the relationship to solar wind conditions. It is found that one category of extremely high latitude auroras is distinctly different from the rest. This category includes the oval auroras which expand poleward in the midnight sector.

  10. Tracer exchange between tropics and middle latitudes

    NASA Technical Reports Server (NTRS)

    Rood, Richard; Douglass, Anne; Weaver, Clark

    1992-01-01

    The interaction between the tropics and middle latitudes is studied using a tracer emitted at 50 hPa along a great circle route between Los Angeles, USA and Sydney, Australia. Though designed to examine the impact of stratospheric aircraft, the study more generally addresses the transport between tropics and middle latitudes for a three month period from January through March 1989. The results show that air is transported from the tropics to middle latitudes by planetary scale and tropospheric cyclonic scale waves. Except for intrusions by these wave events, the tropics are substantially isolated throughout the lower stratosphere. These waves draw material out of the tropics which ends up in the middle latitude westerly jets, with little material entering the winter polar latitudes prior to the springtime transition. The summer Southern Hemisphere is characterized by tracer being drawn out in streamers that extend from north and west to south and east. The material in the tropics is zonally asymmetric. The material that reaches the troposphere comes down in the synoptic scale eddies and is concentrated in the middle latitude jet stream. These characteristics are similar to those observed during the dispersion of volcanic clouds.

  11. Characteristics of the E - and F -region field-aligned irregularities in middle latitudes: Initial results obtained from the Daejeon 40.8 MHz VHF radar in South Korea

    NASA Astrophysics Data System (ADS)

    Kwak, Young-Sil; Yang, Tae-Yong; Kil, Hoysub; Phanikumar, D.; Heo, Bok-Haeng; Lee, Jae-Jin; Hwang, Junga; Choi, Seong-Hwan; Park, Young-Deuk; Choi, Ho-Seong

    2014-03-01

    We present preliminary observations of the field-aligned-irregularities (FAIs) in the E and F regions during the solar minimum (2009 - 2010) using the 40.8 MHz coherent backscatter radar at Daejeon (36.18°N, 127.14°E, 26.7°N dip latitude) in South Korea. The radar, which consists of 24 Yagi antennas, observes the FAIs using a single beam with a peak power of 24 kW. The radar has been continuously operated since December 2009. Depending on the manner of occurrence of the backscatter echoes, the E-region echoes are largely divided into two types: quasi-periodic (QP) and continuous echoes. Our observations show that the QP echoes occur frequently above an altitude of 105 km in the post-sunset period and continuous echoes occur preferentially around an altitude of 105 km in the post-sunrise period. QP echoes appear as striated discrete echoes for a period of about 10 - 20 min. The QP-type echoes occur more frequently than the continuoustype echoes do and the echo intensity of the QP type is stronger than that of the continuous type. In the F region, the FAIs occur at night at an altitude interval of 250 - 450 km. As time proceeds, the occurrence height of the FAIs gradually increases until early in the morning and then decreases. The duration of the F-region FAIs is typically a few hours at night, although, in rare cases, FAIs persist throughout the night or appear even after sunrise. We discuss the similarities and differences of the FAIs observed by the Daejeon radar in comparison with other radar observations.

  12. Latitude dependence of narrow bipolar pulse emissions

    NASA Astrophysics Data System (ADS)

    Ahmad, M. R.; Esa, M. R. M.; Cooray, V.; Baharudin, Z. A.; Hettiarachchi, P.

    2015-06-01

    In this paper, we present a comparative study on the occurrence of narrow bipolar pulses (NBPs) and other forms of lightning flashes across various geographical areas ranging from northern regions to the tropics. As the latitude decreased from Uppsala, Sweden (59.8°N) to South Malaysia (1.5°N), the percentage of NBP emissions relative to the total number of lightning flashes increased significantly from 0.13% to 12%. Occurrences of positive NBPs were more common than negative NBPs at all observed latitudes. However, as latitudes decreased, the negative NBP emissions increased significantly from 20% (Uppsala, Sweden) to 45% (South Malaysia). Factors involving mixed-phase region elevations and vertical extents of thundercloud tops are invoked to explain the observed results. These factors are fundamentally latitude dependent. Our results suggest that the NBP emission rate is not a useful measure to monitor thunderstorm severity because regular tropical thunderstorms, where relatively high NBP emissions occur, lack suitable conditions to become severe (i.e., there is modest convective available potential energy and a lack of baroclinity in such regions). Observations of significantly high negative NBP occurrences together with very rare occurrences of positive cloud-to-ground flashes and isolated breakdown pulses in tropical thunderstorms are indicative of a stronger negative screening layer magnitude and weaker lower positive charge region magnitude than those in northern regions.

  13. Cataract and latitude.

    PubMed

    Javitt, J C; Taylor, H R

    For many years, it has been suggested that exposure to sunlight, particularly its ultraviolet component, may be associated with an increased risk of senile cataract. This paper addresses 1) the physical and geographic variables that affect the entry of ultraviolet light in the eye; 2) the epidemiologic evidence that associates cataract with ultraviolet light exposure; and 3) the effectiveness of personal barrier protection (i.e. sunglasses and hats) in reducing ocular exposure to ultraviolet light. The epidemiologic evidence is drawn from studies in Australia, China, Tibet, and the United States. The U.S. evidence consists of data from the Maryland Watermen study and analyses of cataract surgery under the Medicare program which provides health insurance for nearly all Americans age 65 and over (30 million) and pays for 85% of the 1.3 million cataract extractions performed annually in the U.S. Analysis of the Medicard data shown that, after controlling for age, sex, and race, and income of the population and also controlling for supply of ophthalmologists, optometrists, price of surgery and local practice costs, the strongest predictor of cataract surgery likelihood in a Medicare beneficiary is the person's latitude of residence. Latitude correlates directly with the UV-B content of sunlight, because the incident angle of the sun determines the atmospheric penetration of ultraviolet radiation. Data suggest that the probability of cataract surgery in the U.S. increases by 3% for each 1 degree decrease (i.e. more Southerly) in latitude. PMID:7634999

  14. Ulysses solar wind plasma observations at high southerly latitudes.

    PubMed

    Phillips, J L; Bame, S J; Feldman, W C; Gosling, J T; Hammond, C M; McComas, D J; Goldstein, B E; Neugebauer, M; Scime, E E; Suess, S T

    1995-05-19

    Solar wind plasma observations made by the Ulysses spacecraft through -80.2 degrees solar latitude and continuing equatorward to -40.1 degrees are summarized. Recurrent high-speed streams and corotating interaction regions dominated at middle latitudes. The speed of the solar wind was typically 700 to 800 kilometers per second poleward of -35 degrees . Corotating reverse shocks persisted farther south than did forward shocks because of the tilt of the heliomagnetic streamer belt. Sporadic coronal mass ejections were seen as far south as -60.5 degrees . Proton temperature was higher and the electron strahl was broader at higher latitudes. The high-latitude wind contained compressional, pressure-balanced, and Alfvénic structures.

  15. Altitude latitude mapping of plasma depletions

    NASA Astrophysics Data System (ADS)

    Rajesh, P.; Liu, J.; Sinha, H.; Banerje, S.

    2007-12-01

    Plasma depletions, if generated at the geomagnetic equator, are expected to appear in the all sky images as dark bands extending pole ward. The all sky observations conducted from Kavalur (12.5¢ªN, 78.8¢ªE; 4.6¢ªN, geomagnetic), INDIA, but showed dark patches in 630.0 nm entering the imager field of view (FOV) from the northern edge in the post-sunset period. These patches gradually extended towards equator and became fully extended dark bands in the North-South direction by midnight. The series of such images appeared to be the airglow signatures of irregularities that are probably generated at off-equatorial latitudes and mapped to the lower or equatorial latitudes. Similar features were observed in several nights. This appearance of depletions as dark patches from the northern edge of the FOV is explained in this work

  16. Map of Martian Thorium at Mid-Latitudes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This gamma ray spectrometer map of the mid-latitude region of Mars is based on gamma-rays from the element thorium. Thorium is a naturally radioactive element that exists in rocks and soils in extremely small amounts. The region of highest thorium content, shown in red, is found in the northern part of Acidalia Planitia (50 degrees latitude, -30 degrees longitude). Areas of low thorium content, shown in blue, are spread widely across the planet with significant low abundances located to the north of Olympus Mons (near 55 degrees latitude, -155 degrees longitude), to the east of the Tharsis volcanoes (-10 degrees latitude, -80 degrees longitude) and to the south and east of Elysium Mons (20 degrees latitude, 160 degrees longitude). Contours of constant surface elevation are also shown. The long continuous contour line running from east to west marks the approximate separation of the younger lowlands in the north from the older highlands in the south.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The gamma ray spectrometer was provided by the University of Arizona, Tucson. Lockheed Martin Astronautics, Denver, Colo., is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Influence of anthropogenic activities on PAHs in sediments in a significant gulf of low-latitude developing regions, the Beibu Gulf, South China Sea: distribution, sources, inventory and probability risk.

    PubMed

    Li, Pingyang; Xue, Rui; Wang, Yinghui; Zhang, Ruijie; Zhang, Gan

    2015-01-15

    Fifteen polycyclic aromatic hydrocarbons (PAHs) in 41 surface sediment samples and a sediment core (50 cm) from the Beibu Gulf, a significant low-latitude developing gulf, were analyzed. PAHs concentrations were 3.01-388 ng g(-)(1) (mean 95.5 ng g(-)(1)) in the surface sediments and 10.5-87.1 ng g(-)(1) (average 41.1 ng g(-)(1)) in the sediment core. Source apportionment indicated that PAHs were generated from coke production and vehicular emissions (39.4%), coal and biomass combustion (35.8%), and petrogenic sources (24.8%). PAHs were mainly concentrated in the industrialized and urbanized regions and the harbor, and were transported by atmospheric deposition to the marine matrix. The mass inventory (1.57-2.62t) and probability risk showed sediments here served as an important reservoir but low PAH risk. Different from oil and natural gas in developed regions, coal combustion has always been a significant energy consumption pattern in this developing region for the past 30 years (56 ± 5%).

  18. Latitudes: new Indian transnational cinema.

    PubMed

    Villarejo, Amy

    2014-01-01

    This article examines films and video art that speak to conditions of exile and displacement, including the work of Mona Hatoum, Sonali Gulati, and Onir. It proposes the term "latitude" to interrogate the aesthetic and formal properties of these artworks, seeking to understand how lesbian and same-sex eroticism and identities are central to their efficacy. PMID:24972281

  19. Latitudes: new Indian transnational cinema.

    PubMed

    Villarejo, Amy

    2014-01-01

    This article examines films and video art that speak to conditions of exile and displacement, including the work of Mona Hatoum, Sonali Gulati, and Onir. It proposes the term "latitude" to interrogate the aesthetic and formal properties of these artworks, seeking to understand how lesbian and same-sex eroticism and identities are central to their efficacy.

  20. Ionospheric signatures of cusp latitude Pc 3 pulsations

    SciTech Connect

    Engebretson, M.J.; Anderson, B.J. ); Cahill, L.J. Jr. ); Arnoldy, R.L. ); Rosenberg, T.J. ); Carpenter, D.L. ); Gail, W.B. ); Eather, R.H. )

    1990-03-01

    The authors have compared search coil magnetometer, riometer, photometer, and ELF-VLF receiver data obtained at South Pole Station and McMurdo, Antarctica, during selected days in March and April 1986. Narrow-band magnetic pulsations in the Pc 3 period range are observed simultaneously at both stations in the dayside sector during times of low interplanetary magnetic field (IMF) cone angle, but are considerably stronger at South Pole, which is located at a latitude near the nominal foot point of the daysie cusp/cleft region. Pulsations in auroral light a 427.8 nm wavelength are often observed with magnetic pulsations at South Pole, but such optical pulsations are not observed at McMurdo. When Pc 3 pulsations are present, they exhibit nearly identical frequencies, proportional to the magnitude of the IMF, in magnetometer, photometer, and ELF-VLF receiver signals at South Pole Station and in magnetometer signals at McMurdo. Singals from the 30-MHz riometer at South Pole are modulated in concert with the magnetic and optical variations during periods of broadband pulsation activity, but no riometer variations are noted during periods of narrow-band activity. Because riometers are sensitive to electrons of auroral energies (several keV and above), while the 427.8-nm photometer is sensitive to precipitation with much lower energies, they interpret these observatons as showing that precipitating magnetosheathlike electrons (with energies {le} 1 keV) at nominal dayside cleft latitudes are at times modulated with frequencies similar to those of upstream waves. They suggest that these particles may play an important role, via modification of ionospheric currents and conductivities, in the transmission of upstream wave signals into the magnetosphere and in the generation of dayside high-latitude Pc 3 pulsations.

  1. Warming: mechanism and latitude dependence

    NASA Astrophysics Data System (ADS)

    Barkin, Yury

    2010-05-01

    flows distribution with respect the Earth's hemispheres in first caused by eccentric position of the Earth core with respect to the mantle (displaced in present geological epoch in direction to Brasil). Of course the asymmetric distribution of heat loss is a long-term phenomenon in the geological history. But in present epoch due to drift of the core to the North we must observe some increasing of the heat flow of the Northern hemisphere and decreasing of the heat flow of the Southern hemisphere. In reality mentioned changes of heat flows are contrast (asymmetrical) and can have general tendency of increasing heat flows in both hemispheres (due to activization of relative oscillations of the core and mantle relatively polar axis). Contrast secular warming of Northern and Southern hemispheres of the Earth in present epoch. Dependence of warming from latitude. And warm flows are asymmetrically, more intensively warm is redistributed in northern hemisphere of the Earth and less intensively in a southern hemisphere. From here it follows, that the phenomenon of more intensive warming up of northern hemisphere, rather than southern in present period should be observed. Data of climatic observations (in first temperature trends for various latitude belts). More detailed analysis shows, that the phenomenon of warming in different form is shown in various latitudinal belts of the Earth. This phenomenon is more clearly shown in latitudinal belts further situated on latitude from South Pole, i.e. in high northern latitudes. Really, the trend of increase of temperature in northern hemisphere is characterized by greater rate, than a trend of temperature in a southern hemisphere. And not only trend components of temperatures increase with increasing of latitudes from southern pole to northern pole, but also amplitudes of decade fluctuations of temperature in high northern breadthes are more bigger than in southern hemisphere. Thus again it is necessary to expect a contrast and

  2. Relationship between Latitude and Melanoma in Italy.

    PubMed

    Crocetti, Emanuele; Buzzoni, Carlotta; Chiarugi, Alessandra; Nardini, Paolo; Pimpinelli, Nicola

    2012-01-01

    Objective. Evaluate the ecological relationship between skin melanoma epidemiology and latitude in Italy. Methods. We used data from the Italian network of cancer registries (Airtum). In a Poisson model, we evaluated the effect on incidence, mortality, and survival of latitude, adjusting for some demographic, social, phenotypic, and behavioural variables. Results. Incidence increased in Italy by 17% for each degree of increase in latitude. The effect of latitude was statistically significantly present also adjusting for other variables (incidence rate ratio = 1.08). The effect of latitude on increasing mortality (mortality rate ratio = 1.27) and improving survival (relative excess risk of death = 0.93) was no longer present in the multivariate model. Conclusion. Melanoma incidence, mortality, and survival vary in Italy according to latitude. After adjustment for several confounders, incidence still grows with growing latitude. Presumably, latitude expresses other variables that might be related to individual susceptibility and/or local care.

  3. High Latitude Mottling on Jupiter

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The familiar banded appearance of Jupiter at low and middle latitudes gradually gives way to a more mottled appearance at high latitudes in this striking true color image taken Dec. 13, 2000, by NASA's Cassini spacecraft.

    The intricate structures seen in the polar region are clouds of different chemical composition, height and thickness. Clouds are organized by winds, and the mottled appearance in the polar regions suggests more vortex-type motion and winds of less vigor at higher latitudes.

    The cause of this difference is not understood. One possible contributor is that the horizontal component of the Coriolis force, which arises from the planet's rotation and is responsible for curving the trajectories of ocean currents and winds on Earth, has its greatest effect at high latitudes and vanishes at the equator. This tends to create small, intense vortices at high latitudes on Jupiter. Another possibility may lie in that fact that Jupiter overall emits nearly as much of its own heat as it absorbs from the Sun, and this internal heat flux is very likely greater at the poles. This condition could lead to enhanced convection at the poles and more vortex-type structures. Further analysis of Cassini images, including analysis of sequences taken over a span of time, should help us understand the cause of equator-to-pole differences in cloud organization and evolution.

    By the time this picture was taken, Cassini had reached close enough to Jupiter to allow the spacecraft to return images with more detail than what's possible with the planetary camera on NASA's Earth-orbiting Hubble Space Telescope. The resolution here is 114 kilometers (71 miles) per pixel. This contrast-enhanced, edge-sharpened frame was composited from images take at different wavelengths with Cassini's narrow-angle camera, from a distance of 19 million kilometers (11.8 million miles). The spacecraft was in almost a direct line between the Sun and Jupiter, so the solar illumination on

  4. The Latitude, Longitude--Spell It Game.

    ERIC Educational Resources Information Center

    Kirman, Joseph M.

    1990-01-01

    Presents a classroom exercise entitled, "Latitude, Longitude, Spell It" designed to reinforce the concepts of latitude and longitude. Teachers divide the class into teams, provide them with a map and latitude-longitude coordinate cards, and ask them to record cities found within a given radius of each coordinate. Includes necessary materials and…

  5. Heliomagnetic latitude dependence of the heliospheric magnetic field

    NASA Astrophysics Data System (ADS)

    Burton, M. E.; Smith, E. J.; Balogh, A.

    1995-06-01

    Previous studies have revealed systematic variations of the interplanetary magnetic field with heliographic latitude. Luhmann et al. (1987) modeled Pioneer Venus (PVO) and ISEE-3 observations by assuming an asymmetric dependence on heliolatitude with stronger fields in the northern hemisphere. In a subsequent study, using data from ISEE-3/ICE and IMP-8, Burton et al. (1990) found evidence for a similar asymmetry. However, neither model has been completely successful. The model derived from PVO/ICE observations agrees quite well near solar maximum but shows significant discrepancies during the descending phase of the solar cycle. The model derived from the ICE/IMP-8 comparison suffers from significant phase delays between the difference in field magnitude at the two spacecraft and their latitude difference. In an attempt to account for these phase shifts, the IMP-8 and ICE data have been reexamined in heliomagnetic coordinates which are defined by the orientation of the solar magnetic dipole. The latitude and longitude of the dipole inferred from the data have then been compared with those implicit in source surface calculations. The IMP/ICE correlations have been extended into the recent solar maximum and descending phase. Comparisons have also been carried out between IMP-8 and Ulysses as it traveled to -30 deg south heliographic latitude.

  6. Map of Martian Silicon at Mid-Latitudes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This gamma ray spectrometer map of the mid-latitude region of Mars is based on gamma-rays from the element silicon. Silicon is one of the most abundant elements on the surface of both Mars and Earth (second only to oxygen). The most extensive region of highest silicon content, shown in red, is located in the high latitudes north of Tharsis (centered near 45 degrees latitude, -120 degrees longitude). The area of lowest silicon content, shown in blue, lies just to the east of the Hellas Basin (-45 degrees latitude, 90 degrees longitude). Contours of constant surface elevation are also shown. The long continuous contour line running from east to west marks the approximate separation of the younger lowlands in the north from the older highlands in the south.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The gamma ray spectrometer was provided by the University of Arizona, Tucson. Lockheed Martin Astronautics, Denver, Colo., is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Mapping High Latitude Gravity Wave Amplitudes over Antarctica during Summer

    NASA Astrophysics Data System (ADS)

    Badenhausen, P.; Millan, R. M.; Gerrard, A. J.

    2015-12-01

    Appropriate inclusion of gravity wave amplitudes into general circulation models is required to get accurate atmospheric circulation characteristics. However, high latitude gravity wave amplitudes are particularly difficult to obtain due to the challenging experimental and logistical constraints in these regions. In this study, we present gravity wave climatology of high latitudes during austral summer conditions over the Antarctic continent. These data were obtained using high-resolution GPS measurements aboard long duration high altitude balloon flights that were flown as part of the NASA Balloon Array for Radiation-belt Relativistic Electron Losses (BARREL) mission in December 2013-February 2014 and December 2012-February 2013. The results show increased gravity wave activity along the coast of the Antarctic continent, particularly over the Peninsula and Halley Bay, whereas at higher latitudes, particularly over regions near the South Pole, gravity wave amplitudes decrease substantially. Through use of horizontal winds data, we obtained measurements of the vertical transport of horizontal momentum fluxes, which were unusually high for the summer high latitude lower stratosphere. Such unique measurements as these are immediately applicable to understanding of upwelling in the summer middle atmosphere as well as to the formation of overlaying mesospheric clouds formation.

  8. Ulysses solar wind plasma observations at high latitudes

    SciTech Connect

    Riley, P.; Bame, S.J.; Barraclough, B.L.

    1996-10-01

    Ulysses reached its peak northerly heliolatitude of 80.2{degrees}N on July 31, 1995, and now is moving towards aphelion at 5.41 AU which it will reach in May, 1998. We summarize measurements from the solar wind plasma experiment, SWOOPS, emphasizing northern hemispheric observations but also providing southern and equatorial results for comparison. The solar wind momentum flux during Ulysses` fast pole-to- pole transit at solar minimum was significantly higher over the poles than at near-equatorial latitudes, suggesting a non-circular cross section for the heliosphere. Furthermore, modest asymmetries in the wind speed, density, and mass flux were observed between the two hemispheres during the fast latitude scan. The solar wind was faster and less dense in the north than in the south. These asymmetries persist in the most recent high- and mid-latitude data but are less pronounced. As of July 1, 1996 the northern fast solar wind has lacked any strong stream interactions or shocks and, although a comprehensive search has not yet been made, no CMEs have yet been identified during this interval. On the other hand, Alfv{acute e}nic, compressional, and pressure balanced features are abundant at high latitudes. The most recent data, at 4 AU and 32{degrees}N, has begun to show the effects of solar rotation modulated features in the form of recurrent compressed regions.

  9. DNA damage profiles induced by sunlight at different latitudes.

    PubMed

    Schuch, André Passaglia; Yagura, Teiti; Makita, Kazuo; Yamamoto, Hiromasa; Schuch, Nelson Jorge; Agnez-Lima, Lucymara Fassarella; MacMahon, Ricardo Monreal; Menck, Carlos Frederico Martins

    2012-04-01

    Despite growing knowledge on the biological effects of ultraviolet (UV) radiation on human health and ecosystems, it is still difficult to predict the negative impacts of the increasing incidence of solar UV radiation in a scenario of global warming and climate changes. Hence, the development and application of DNA-based biological sensors to monitor the solar UV radiation under different environmental conditions is of increasing importance. With a mind to rendering a molecular view-point of the genotoxic impact of sunlight, field experiments were undertaken with a DNA-dosimeter system in parallel with physical photometry of solar UVB/UVA radiation, at various latitudes in South America. On applying biochemical and immunological approaches based on specific DNA-repair enzymes and antibodies, for evaluating sunlight-induced DNA damage profiles, it became clear that the genotoxic potential of sunlight does indeed vary according to latitude. Notwithstanding, while induction of oxidized DNA bases is directly dependent on an increase in latitude, the generation of 6-4PPs is inversely so, whereby the latter can be regarded as a biomolecular marker of UVB incidence. This molecular DNA lesion-pattern largely reflects the relative incidence of UVA and UVB energy at any specific latitude. Hereby is demonstrated the applicability of this DNA-based biosensor for additional, continuous field experiments, as a means of registering variations in the genotoxic impact of solar UV radiation.

  10. Tropical and mid-latitude forcing of continental Antarctic temperatures

    NASA Astrophysics Data System (ADS)

    Turney, C. S. M.; Fogwill, C. J.; Klekociuk, A. R.; van Ommen, T. D.; Curran, M. A. J.; Moy, A. D.; Palmer, J. G.

    2015-12-01

    Future changes in atmospheric circulation and associated modes of variability are a major source of uncertainty in climate projections. Nowhere is this issue more acute than across the mid-latitudes to high latitudes of the Southern Hemisphere (SH), which over the last few decades have experienced extreme and regionally variable trends in precipitation, ocean circulation and temperature, with major implications for Antarctic ice melt and surface mass balance. Unfortunately there is a relative dearth of observational data, limiting our understanding of the driving mechanism(s). Here we report a new 130-year annually resolved record of δD - a proxy for temperature - from the geographic South Pole where we find a significant influence from extratropical pressure anomalies which act as "gatekeepers" to the meridional exchange of air masses. Reanalysis of global atmospheric circulation suggests these pressure anomalies play a significant influence on mid- to high-latitude SH climate, modulated by the tropical Pacific Ocean. This work adds to a growing body of literature confirming the important roles of tropical and mid-latitude atmospheric circulation variability on Antarctic temperatures. Our findings suggest that future increasing tropical warmth will strengthen meridional circulation, exaggerating current trends, with potentially significant impacts on Antarctic surface mass balance.

  11. Latitude and longitude vertical disparities.

    PubMed

    Read, Jenny C A; Phillipson, Graeme P; Glennerster, Andrew

    2009-12-09

    The literature on vertical disparity is complicated by the fact that several different definitions of the term "vertical disparity" are in common use, often without a clear statement about which is intended or a widespread appreciation of the properties of the different definitions. Here, we examine two definitions of retinal vertical disparity: elevation-latitude and elevation-longitude disparities. Near the fixation point, these definitions become equivalent, but in general, they have quite different dependences on object distance and binocular eye posture, which have not previously been spelt out. We present analytical approximations for each type of vertical disparity, valid for more general conditions than previous derivations in the literature: we do not restrict ourselves to objects near the fixation point or near the plane of regard, and we allow for non-zero torsion, cyclovergence, and vertical misalignments of the eyes. We use these expressions to derive estimates of the latitude and longitude vertical disparities expected at each point in the visual field, averaged over all natural viewing. Finally, we present analytical expressions showing how binocular eye position-gaze direction, convergence, torsion, cyclovergence, and vertical misalignment-can be derived from the vertical disparity field and its derivatives at the fovea.

  12. Occurrence climatology of the electron density irregularities in the mid-latitude E region

    NASA Astrophysics Data System (ADS)

    Kwak, Y.; Yang, T.; Kil, H.

    2013-12-01

    Electron density irregularities in the ionosphere interrupt the propagation of electromagnetic waves and are problematic for navigation and communication systems. For this practical importance, significant efforts have been made to establish information on the occurrence climatology of such irregularities, to understand the onset conditions of such irregularities, and to predict or avoid the impact of these irregularities on the society. While the irregularities occur in all latitudes, less attention has been paid to the irregularities in middle latitudes. This may be because the irregularities in middle latitudes are not as severe as those in other latitude regions. However, middle latitudes are also the place where various forms of irregularities occur. A 40.8 MHz VHF radar was built at Daejeon (36.18°N, 127.14°E, 26.7°N dip latitude) in South Korea aiming at continuous monitoring of the behavior of the middle-latitude electron density irregularities in the Far East Asian sector. The radar has been continuously operated by the Korea Astronomy and Space Science Institute (KASI) since December 2009. Using the Daejeon VHF radar data acquired since December 2009, we examine the occurrence types of the irregularities and the dependence of the irregularities on geophysical conditions (local time, altitude, season, solar cycle, and magnetic activity). These results can be used as a tool for investigating the onset conditions of the middle-latitude irregularities.

  13. Germ Cell Testicular Cancer Incidence, Latitude and Sunlight Associations in the United States and Australia.

    PubMed

    Biggar, Robert J; Baade, Peter D; Sun, Jiandong; Brandon, Lindsay E; Kimlin, Michael

    2016-09-01

    International patterns suggest germ cell testicular cancer (GCTC) incidence may be lower in lower latitudes. To investigate this possibility, we examined GCTC incidence by latitude (population centroid in 2000) for men ≥15 years within two reasonably homogeneous countries, the United States and Australia. In the United States, we examined age-adjusted incidence/latitude trends using data from states (2001-2010) and local-area registries (1980-2011). In Australia, we evaluated incidence/latitude trends in 61 Statistical Divisions (2000-2009). In U.S. White men (68 566 cases), state incidences increased by latitude, rising 5.74% (4.45-7.05%) per 5°North latitude increment. Similar trends were found for seminoma and nonseminoma subtypes (P < 0.001). In U.S. Black men (2256 cases), the association was also seen (4.9%; 0.2-9.7%). In local U.S. data, similar increases in incidence with latitude were present in each of the last three decades. In Australia (6042 cases), the incidence increased by 4.43% (95% CI: 1.54-7.39%) per 5°South, and trends for subtypes were similar. Thus, we found that incidence of GCTC in both White and Black men increased significantly with distance from the equator, approximately 1% per degree within the range of latitudes studied. PMID:27400420

  14. Germ Cell Testicular Cancer Incidence, Latitude and Sunlight Associations in the United States and Australia.

    PubMed

    Biggar, Robert J; Baade, Peter D; Sun, Jiandong; Brandon, Lindsay E; Kimlin, Michael

    2016-09-01

    International patterns suggest germ cell testicular cancer (GCTC) incidence may be lower in lower latitudes. To investigate this possibility, we examined GCTC incidence by latitude (population centroid in 2000) for men ≥15 years within two reasonably homogeneous countries, the United States and Australia. In the United States, we examined age-adjusted incidence/latitude trends using data from states (2001-2010) and local-area registries (1980-2011). In Australia, we evaluated incidence/latitude trends in 61 Statistical Divisions (2000-2009). In U.S. White men (68 566 cases), state incidences increased by latitude, rising 5.74% (4.45-7.05%) per 5°North latitude increment. Similar trends were found for seminoma and nonseminoma subtypes (P < 0.001). In U.S. Black men (2256 cases), the association was also seen (4.9%; 0.2-9.7%). In local U.S. data, similar increases in incidence with latitude were present in each of the last three decades. In Australia (6042 cases), the incidence increased by 4.43% (95% CI: 1.54-7.39%) per 5°South, and trends for subtypes were similar. Thus, we found that incidence of GCTC in both White and Black men increased significantly with distance from the equator, approximately 1% per degree within the range of latitudes studied.

  15. Buried Mid-Latitude Craters

    NASA Technical Reports Server (NTRS)

    2004-01-01

    MGS MOC Release No. MOC2-577, 17 December 2003

    This September 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows six circular features, three of which exhibit concentric, or 'bullseye,' patterns within them. Each circular feature is the remains of a partly-buried, partly-eroded, and partly-filled meteor impact crater. These occur in northeastern Arabia Terra. Areas such as this, located near the middle latitudes of Mars, commonly have a 'scabby' or roughened appearance. The cause of this 'terrain roughening' texture is unknown, although some scientists have speculated that it might result from the erosion and removal (by way of sublimation) of ground ice. This idea remains highly speculative. These features are located near 28.4oN, 317.5oW. The image covers an area 3 km (1.9 mi) wide; sunlight illuminates the scene from the lower left.

  16. Suicide and homicide rates: their relationship to latitude and longitude and to the weather.

    PubMed

    Lester, D

    1986-01-01

    The variation of suicide and homicide rates in the major standard metropolitan statistical areas of the United States was explored to see whether regional variations in temperature and precipitation could account for some of the variation. Controls for temperature eliminated the North-South variation in suicide rates, but not the North-South variation in homicide rates or the East-West variation in suicide rates. Only the correlation between precipitation and homicide rates survived controls for latitude and longitude.

  17. The latitude dependencies of the solar wind. [of interplanetary magnetic field polarity and configurations

    NASA Technical Reports Server (NTRS)

    Rosenberg, R. L.; Winge, C. R., Jr.

    1974-01-01

    The motion of spacecraft following the earth's orbit occurs within the solar latitude range of 7 deg 15 min N on approximately September 7 to 7 deg 15 min S on approximately March 6. The latitude dependencies so far detected within this range have shown that the photospheric dipole-like field of the sun makes very important contributions to the interplanetary magnetic field (IMF) observed near the ecliptic. Changes in geomagnetic activity from even to odd numbered 11-year solar cycles are related to changes in the sun's dipolar field. The north-south IMF component and meridional, nonradial flow are important to a complete understanding of steady-state solar wind dynamics. Coronal conditions must be latitude-dependent in a way that accounts for the observed latitude dependence of the velocity and density of the solar wind.

  18. Do wintering Harlequin Ducks forage nocturnally at high latitudes?

    USGS Publications Warehouse

    Rizzolo, D.J.; Esler, Daniel; Roby, D.D.; Jarvis, R.L.

    2005-01-01

    We monitored radio-tagged Harlequin Ducks (Histrionicus histrionicus) to determine whether nocturnal feeding was part of their foraging strategy during winter in south-central Alaska. Despite attributes of our study site (low ambient temperatures, harsh weather, short day length) and study species (small body size, high daytime foraging rates) that would be expected to favor nocturnal foraging, we found no evidence of nocturnal dive-feeding. Signals from eight radio-tagged Harlequin Ducks never exhibited signal loss due to diving during a total of 780 minutes of nocturnal monitoring. In contrast, the same eight birds exhibited signal loss during 62 ± 7% (SE) of 5-minute diurnal monitoring periods (total of 365 minutes of monitoring). Our results suggest that Harlequin Ducks in south-central Alaska face a stringent time constraint on daytime foraging during midwinter. Harlequin Ducks wintering at high latitudes, therefore, may be particularly sensitive to factors that increase foraging requirements or decrease foraging efficiency.

  19. Mid-latitude afforestation shifts general circulation and tropical precipitation

    PubMed Central

    Swann, Abigail L. S.; Fung, Inez Y.; Chiang, John C. H.

    2012-01-01

    We show in climate model experiments that large-scale afforestation in northern mid-latitudes warms the Northern Hemisphere and alters global circulation patterns. An expansion of dark forests increases the absorption of solar energy and increases surface temperature, particularly in regions where the land surface is unable to compensate with latent heat flux due to water limitation. Atmospheric circulation redistributes the anomalous energy absorbed in the northern hemisphere, in particular toward the south, through altering the Hadley circulation, resulting in the northward displacement of the tropical rain bands. Precipitation decreases over parts of the Amazon basin affecting productivity and increases over the Sahel and Sahara regions in Africa. We find that the response of climate to afforestation in mid-latitudes is determined by the amount of soil moisture available to plants with the greatest warming found in water-limited regions. Mid-latitude afforestation is found to have a small impact on modeled global temperatures and on global CO2, but regional heating from the increase in forest cover is capable of driving unintended changes in circulation and precipitation. The ability of vegetation to affect remote circulation has implications for strategies for climate mitigation. PMID:22190490

  20. Latitude-for-Time Proxy for Climate Change in Lakes

    NASA Astrophysics Data System (ADS)

    Laval, B.; Vagle, S.; Morrison, J.; Carmack, E.

    2014-12-01

    While the full interpretation of climate signals in lake systems requires an understanding of lake-specific physical forcing and response mechanisms, we propose that insight into the response of a lake at a specific latitude to climate change can be acquired by comparing the present conditions of a morphologically and dynamically similar lake at lower latitude. The latitude-for-time shift comes from swapping current latitudinal gradients of air temperature with predicted air temperature trends due to climate change. Of interest is the potential transition of a lake from one mictic state to another, with consequences to the resupply of nutrients to the euphotic zone, and to the phenology of spring and fall phytoplankton blooms. Here we compare the annual thermal histories in seven deep, intermontane lakes in western Canada along a north-south transect from 49o to 61o N, and use predicted trends in air temperature to estimate commensurate changes in duration of summer stratification period. While the actual response of lakes to climate change is likely to be much more complex, this simple model offers support that field observations in large lakes spanning the full range of present day climatic conditions offers a valuable tool for assessing the response of lake dynamics to climate warming.

  1. Preservation of layered paleodeposits in high-latitude pedestal craters on Mars

    NASA Astrophysics Data System (ADS)

    Kadish, Seth J.; Head, James W.

    2011-06-01

    An outstanding question in Mars' climate history is whether or not pedestal craters represent the armored remnants of ice-rich paleodeposits. We address this question using new high-resolution images; in a survey of several hundred high-latitude pedestal craters, we have identified 12 examples in which visible and/or topographically expressed layers are exposed on the marginal scarp of the pedestal. One example, located on the south polar layered deposits, preserves ice-rich layers that have otherwise been completely removed from the polar cap. These observations provide empirical evidence that the pedestal crater formation mechanism is capable of armoring and preserving ice-rich layered paleodeposits. Although layered exposures have not yet been observed in mid-latitude pedestal craters, high-latitude instances of discontinuous, partially covered layers suggest that layers can be readily concealed, likely through mantling and/or mass wasting processes along the marginal scarp. This interpretation is supported by the observation that high-latitude pedestals with exposed layers along their margins are, on average, taller than mid-latitude examples, and have larger, steeper marginal scarps, which may help to maintain layer exposures. These observations favor the interpretation that mid- to high-latitude pedestal craters represent the armored remnants of ice- and dust-rich paleodeposits, which occurred transiently due to changes in the climate regime. Preservation of fine-scale layering of ice and dust at these latitudes implies that the climate change did not involve regional melting conditions.

  2. Ulysses sees differences in solar wind at high, low latitudes

    NASA Astrophysics Data System (ADS)

    1995-06-01

    Scientists presenting results today of their data at the spring meeting of the American Geophysical Union in Baltimore, Md., said the speed of the solar wind over the southern pole is high, compared to its low velocity near the Sun's equator. The solar wind is the hot ionized gas that escapes from the solar corona and expands into interplanetary space. At the present minimum of the solar activity cycle, the angle between the Sun's rotational and magnetic equators has decreased -- in these conditions Ulysses found that the region of low-speed solar winds were confined more closely to the rotational equator than in earlier portions of the solar cycle. Now on its way to the northern solar pole, Ulysses is nearly 62 degrees north of the Sun's equator today. The second phase of the primary mission -- to explore the northern pole of the Sun -- will begin on June 19, when the spacecraft reaches 70 degrees north latitude, The spacecraft will reach a maximum northern latitude of 80,2 degrees on 31 July 1995. Ulysses' trajectory from 80 degrees south of the equator in September 1994, back down to the Sun's equator in March 1995, also brought the spacecraft within 1.3 astronomical units (121 million miles, 194 million km) of the Sun, the closest Ulysses would ever travel to the Sun since it was launched on October 6, 1990. The spacecraft picked up speed during this phase allowing the entire region to be scanned in just six months time. Scientists refer to this phase of the mapping as the "fast latitude scan", Ulysses had left the equatorial plane in early 1992 after a gravitational swingby of Jupiter, and had gradually climbed in latitude until reaching 80 degrees south in September 1994. Ulysses' observations during the fast latitude scan have shown that the solar wind being continuously emitted by the Sun is distinctly different at high and low latitudes, said Dr. Edward J. Smith, Ulysses project scientist at NASA's Jet Propulsion Laboratory, for the joint NASA

  3. Low-latitude ionospheric effects on SBAS

    NASA Astrophysics Data System (ADS)

    Arenas, J.; Sardón, E.; Sainz, A.; Ochoa, B.; Magdaleno, S.

    2016-06-01

    Satellite-based augmentation systems (SBAS) provide augmentation to Global Navigation Satellite Systems (GNSS) users in three areas: (1) broadcasting accurate corrections to GNSS satellite ephemeris, (2) providing a real-time empirical ionospheric model in the service area, and (3) providing integrity information in the form of estimates of the confidence of the ephemeris corrections and ionospheric delays. Ionospheric effects on SBAS are twofold: (a) the input data used by the SBAS will be affected by ionospheric effects, and (b) the more perturbed the ionosphere is, the more difficult it will be to provide accurate and reliable ionospheric information to the users. The ionosphere at low latitudes presents larger variability and more intense phenomena than at midlatitudes. Therefore, SBAS providing service to low-latitude regions will be more affected than those at other latitudes. From the different low-latitude ionospheric effects, this paper will focus on those having the largest impact on SBAS, which are total electron content temporal and spatial gradients, ionospheric scintillations, and depletions. This paper will present the impact of these effects on EGNOS (European Global Navigation Overlay System), the European SBAS. Although EGNOS can be considered as a midlatitude SBAS, it has to provide coverage down to rather low latitudes, so sometimes low-latitude ionospheric effects are observed in the EGNOS data. It will be shown how EGNOS performs under nominal conditions and how its performance is degraded when low-latitude ionospheric phenomena occur. Real EGNOS data affected by low-latitude ionospheric phenomena will be used.

  4. Higher latitude and lower solar radiation influence on anaphylaxis in Chilean children

    PubMed Central

    Hoyos-Bachiloglu, Rodrigo; Morales, Pamela S.; Cerda, Jaime; Talesnik, Eduardo; González, Gilberto; Camargo, Carlos A.; Borzutzky, Arturo

    2014-01-01

    Background Recent studies suggest an association between higher latitude, a proxy of vitamin D (VD) status, and allergic diseases. Chile provides an ideal setting to study this association due to its latitude span and high rates of VD deficiency in southern regions. The aim of this study is to explore the associations of latitude and solar radiation with anaphylaxis admission rates. Methods We reviewed anaphylaxis admissions in Chile’s hospital discharge database between 2001 and 2010 and investigated associations with latitude and solar radiation. Results 2316 anaphylaxis admissions were registered. Median age of patients was 41 years; 53% were female. National anaphylaxis admission rate was 1.41 per 100,000 persons per year. We observed a strong north-south increasing gradient of anaphylaxis admissions (β 0.04, P=0.01), with increasing rates south of latitude 34°S. A significant association was also observed between solar radiation and anaphylaxis admissions (β −0.11, P=0.009). Latitude was associated with food-induced (β 0.05, P=0.02), but not drug-induced (β −0.002, P=0.27), anaphylaxis. The association between latitude and food-induced anaphylaxis was significant in children (β 0.01, P=0.006), but not adults (β 0.003, P=0.16). Anaphylaxis admissions were not associated with regional sociodemographic factors like poverty, rurality, educational level, ethnicity, or physician density. Conclusions Anaphylaxis admission rates in Chile are highest at higher latitudes and lower solar radiation, used as proxies of VD status. The associations appear driven by food-induced anaphylaxis. Our data support a possible role of VD deficiency as an etiological factor in the high anaphylaxis admission rates found in southern Chile. PMID:24628618

  5. Geographic control of Titan's mid-latitude clouds

    NASA Astrophysics Data System (ADS)

    Roe, H. G.; Brown, M. E.; Schaller, E. L.; Bouchez, A. H.; Trujillo, C. A.

    2005-08-01

    Observations of tropospheric clouds (1-6) and the recent Huygens images of channels show that Titan has an active methane hydrological cycle. Titan's south polar clouds are now well known (3-5) and thought to be driven by small seasonal variations in surface temperature (3). The recent discovery (6) and continued observations (7) of significant cloud activity at 40oS latitude led to the suggestion that these mid-latitude clouds are the result of either seasonally evolving global circulation or surface geography (6). We report here further observations of Titan that clearly link the formation of the mid-latitude clouds to a region of Titan's surface centered at ˜350oW longitude, ˜40oS latitude. Analysis of the complete dataset does not support the earlier suggestion (6) that these clouds are a new phenomenon related to seasonal change. The strong link between geographic location and cloud formation along with the lack of evidence for seasonal change in the mid-latitude clouds leads to the conclusion that a geological mechanism is responsible for the formation of these clouds. We propose that geysers or cryovolcanism are sporadically active near ˜350oW longitude, ˜40oS latitude. The implied rate of volatile release would easily supply enough methane to balance the loss to photolytic chemistry in the upper atmosphere. 1. Griffith, C.A., Owen, T., Miller, G.A., Geballe, T., Nature 395, 575-578 (1998). 2. Griffith, C.A., Hall, J.L., Geballe, T.R., Science 290, 509-513 (2000). 3. Brown, M.E., Bouchez, A.H., Griffith, C.A., Nature 420, 795-797 (2002). 4. Roe, H.G., de Pater, I., Macintosh, B.A., McKay, C.P., ApJ 581, 1399-1406 (2002). 5. Bouchez, A.H., Brown, M.E., ApJ 618, L53-L56 (2005). 6. Roe, H.G., Bouchez, A.H., Trujillo, C.A., Schaller, E.L., Brown, M.E., ApJ 618, L49-L52 (2005). 7. Porco, C.C., et al., Nature 434, 159-168 (2005). HGR is supported by an NSF Astronomy & Astrophysics Postdoctoral Fellowship (NSF AST-0401559). ELS is supported by an NSF Graduate

  6. Physiological and behavioral adaptations in bats living at high latitudes.

    PubMed

    Boyles, Justin G; McGuire, Liam P; Boyles, Esmarie; Reimer, Jesika P; Brooks, Christopher A C; Rutherford, Robert W; Rutherford, Teresa A; Whitaker, John O; McCracken, Gary F

    2016-10-15

    Widespread animals at the extremes of the species' distribution experience ecological constraints different than individuals in the core of the distribution. For example, small endotherms at very high latitudes face short summers with cool temperatures and a lack of true darkness. In particular, insectivorous bats at high latitudes may experience constraints because of their unique life history traits, and may have different energy requirements than bats at lower latitudes. To evaluate the extent of these differences, we estimated an energy budget and refueling rates for reproductively active female little brown bats (Myotis lucifugus) roosting in buildings in eastern Alaska (~63°N). Physiological parameters (torpor use and metabolic rates) and daily energy expenditures (25.7±5.3kJd(-1)) were similar to, or slightly lower than, conspecifics at lower latitudes. Northern little brown bats foraged for less time than southerly conspecifics, but measurements of plasma β-hydroxybutyrate concentrations suggest that northern bats refuel at a rate considerably higher than those to the south. It appears that high refueling rates (and therefore foraging intensity) involve a dietary shift to orb-weaver spiders, which are abundant and likely offer higher energetic benefit than the small, flying insects consumed by individuals in other parts of the distribution. Environmental factors may limit species' distributions, but our results provide an example of a population at the limit of their geographic range that has compensated for environmental challenges by adopting unique behavioral strategies while the underlying physiology (including daily energy expenditure) remains similar to populations at the core of the species' range. PMID:27542518

  7. Physiological and behavioral adaptations in bats living at high latitudes.

    PubMed

    Boyles, Justin G; McGuire, Liam P; Boyles, Esmarie; Reimer, Jesika P; Brooks, Christopher A C; Rutherford, Robert W; Rutherford, Teresa A; Whitaker, John O; McCracken, Gary F

    2016-10-15

    Widespread animals at the extremes of the species' distribution experience ecological constraints different than individuals in the core of the distribution. For example, small endotherms at very high latitudes face short summers with cool temperatures and a lack of true darkness. In particular, insectivorous bats at high latitudes may experience constraints because of their unique life history traits, and may have different energy requirements than bats at lower latitudes. To evaluate the extent of these differences, we estimated an energy budget and refueling rates for reproductively active female little brown bats (Myotis lucifugus) roosting in buildings in eastern Alaska (~63°N). Physiological parameters (torpor use and metabolic rates) and daily energy expenditures (25.7±5.3kJd(-1)) were similar to, or slightly lower than, conspecifics at lower latitudes. Northern little brown bats foraged for less time than southerly conspecifics, but measurements of plasma β-hydroxybutyrate concentrations suggest that northern bats refuel at a rate considerably higher than those to the south. It appears that high refueling rates (and therefore foraging intensity) involve a dietary shift to orb-weaver spiders, which are abundant and likely offer higher energetic benefit than the small, flying insects consumed by individuals in other parts of the distribution. Environmental factors may limit species' distributions, but our results provide an example of a population at the limit of their geographic range that has compensated for environmental challenges by adopting unique behavioral strategies while the underlying physiology (including daily energy expenditure) remains similar to populations at the core of the species' range.

  8. Jupiter's Temperatures--Broad Latitude

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is one of the highest resolution images ever recorded of Jupiter's temperature field. It was obtained by NASA's Galileo mission, with its Photopolarimeter-Radiometer (PPR) experiment, during the seventh of its 10 orbits around Jupiter to date. This map, shown in the left panel, indicates the forces powering Jovian winds, and differentiates between areas of strongest upwelling and downwelling winds in the upper part of the atmosphere. A Hubble Space Telescope Planetary Camera color composite of this same region, taken within 10 hours of the PPR map, is shown in the right panel for the same region, as a reference to the visual clouds. An outline of the region mapped by the PPR is also shown.

    This atmospheric observation covered a broad latitude region, and it shows that the visually dark regions generally have warmer temperatures than the visually light ones, indicating that they are regions of downwelling, dry air which clear out cloud condensate particles. The 'little red spot' at the northernmost part of this image is colder than its surroundings, consistent with it being a region of upwelling and cooling gas. The smaller spots to its southeast (lower right) and other lighter spots in the HST image are all colder than their surroundings, consistent with regions of upwelling and cooling gas. The northern half of the brightest band in the map is brighter than the southern half, and it reveals some detailed structure, down to the 1900- kilometer (1200-mile) resolution of the PPR, which is not always readily correlated with variations of the visual cloud field.

    One surprise of this temperature map involved temperatures near the dark blue-gray feature in the map, an area like the one into which the Probe descended. While large regions of downwelling wind heat the local area elsewhere in Jupiter, this region of vigorous downwelling appears close to being thermally neutral. The drying, downwelling winds may be deeper in the atmosphere than sensed by the PPR

  9. A transient solar wind disturbance observed at both low and high heliographic latitudes

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; McComas, D. J.; Phillips, J. L.; Pizzo, V. J.; Goldstein, B. E.; Lepping, R. P.; Forsyth, R. J.

    1995-01-01

    Ulysses observations have revealed a new class of forward-reverse shock pairs in the solar wind that appears to be restricted to high heliographic latitudes. Shock pairs in this new class of events are produced by over-expansion (i.e., expansion driven by a high internal pressure) of coronal mass ejections, CMEs, that have speeds comparable to that of the surrounding solar wind plasma. Here we compare low- and high-latitude observations of an event observed both near Earth by IMP 8 and at high latitudes by Ulysses. At the time of these observations Ulysses was at 3.53 AU and was situated 47.2 deg south and 11.4 deg west of Earth (in the sense of planetary motion about the Sun). A fast CME that departed from the Sun on February 20, 1994 produced both a major (forward) shock wave disturbance in the ecliptic plane at 1 AU (and a large geomagnetic storm) and a forward reverse shock pair associated with over-expansion of the CME at high heliographic latitudes. The combined measurements provide a graphic illustration of how the same fast CME can produce totally different types of disturbances at low and high latitudes. Differences in the disturbances generated by the CME at high and low latitudes are due primarily to the different speeds initially prevailing in the ambient solar wind ahead of it. These observations are consistent with the results of simple numerical simulations of the event.

  10. Amplified mid-latitude planetary waves favour particular regional weather extremes

    NASA Astrophysics Data System (ADS)

    Screen, James A.; Simmonds, Ian

    2014-08-01

    There has been an ostensibly large number of extreme weather events in the Northern Hemisphere mid-latitudes during the past decade. An open question that is critically important for scientists and policy makers is whether any such increase in weather extremes is natural or anthropogenic in origin. One mechanism proposed to explain the increased frequency of extreme weather events is the amplification of mid-latitude atmospheric planetary waves. Disproportionately large warming in the northern polar regions compared with mid-latitudes--and associated weakening of the north-south temperature gradient--may favour larger amplitude planetary waves, although observational evidence for this remains inconclusive. A better understanding of the role of planetary waves in causing mid-latitude weather extremes is essential for assessing the potential environmental and socio-economic impacts of future planetary wave changes. Here we show that months of extreme weather over mid-latitudes are commonly accompanied by significantly amplified quasi-stationary mid-tropospheric planetary waves. Conversely, months of near-average weather over mid-latitudes are often accompanied by significantly attenuated waves. Depending on geographical region, certain types of extreme weather (for example, hot, cold, wet, dry) are more strongly related to wave amplitude changes than others. The findings suggest that amplification of quasi-stationary waves preferentially increases the probabilities of heat waves in western North America and central Asia, cold outbreaks in eastern North America, droughts in central North America, Europe and central Asia, and wet spells in western Asia.

  11. Characteristics of the Afternoon E-region Plasma Density Irregularities in Middle Latitudes

    NASA Astrophysics Data System (ADS)

    Kwak, Y. S.; Yang, T. Y.; Kil, H.; Otsuka, Y.

    2014-12-01

    In middle latitudes, radar probing of E-region ionospheric electron density irregularities has been carried out for several decades. However, no the afternoon (i.e., from noon to pre-sunset time) E-region field-aligned irregularities (FAIs) in middle latitude have been reported yet. On the other hand, a 40.8 MHz VHF radar operated continuously since December 2009 at Daejeon (36.18°N, 127.14°E, 26.7°N dip latitude) in South Korea has often observed the E-region FAIs in the afternoon. In this presentation, therefore, we report firstly the afternoon observations of the mid-latitude E-region FAIs made by the Daejeon radar. We present the characteristics and statistical morphology of the mid-latitude afternoon E-region FAIs based on the continuous and long-term radar observations. And also, to investigate the afternoon E-region FAIs - Sporadic E (Es) relationship, the FAIs have been also compared with Es parameters based on observations made from an ionosonde located at Icheon (37.14°N, 127.54°E, 27.7°N dip latitude), which is 100 km north of Daejeon.

  12. Low Latitude Aurora: Index of Solar Activity

    NASA Astrophysics Data System (ADS)

    Bekli, M. R.; Aissani, D.; Chadou, I.

    2010-10-01

    Observations of aurora borealis at low latitudes are rare, and are clearly associated with high solar activity. In this paper, we analyze some details of the solar activity during the years 1769-1792. Moreover, we describe in detail three low latitude auroras. The first event was reported by ash-Shalati and observed in North Africa (1770 AD). The second and third events were reported by l'Abbé Mann and observed in Europe (1770 and 1777 AD).

  13. THE LATITUDE DISTRIBUTION OF SMALL-SCALE MAGNETIC ELEMENTS IN SOLAR CYCLE 23

    SciTech Connect

    Jin, C. L.; Wang, J. X. E-mail: wangjx@nao.cas.cn

    2012-01-20

    With the unique data set from full-disk observations provided by Michelson Doppler Imager on board the Solar and Heliospheric Observatory in the interval embodying solar cycle 23, we have found that the cyclic variations of numbers and total flux of these small-scale magnetic elements covering fluxes of (2.9-32.0) Multiplication-Sign 10{sup 18} Mx and (4.27-38.01) Multiplication-Sign 10{sup 19} Mx show anticorrelation and correlation with sunspots, respectively. In this study, the time-latitude distributions of these anticorrelated and correlated elements are analyzed. The following results are disclosed: (1) for the correlated elements, the cyclic variations of the total flux in low-latitude and middle-latitude regions show a longer duration of cyclic maximum phase than that of an active region (AR) in the corresponding latitude region; the total flux of these elements shows the accordant south-north asymmetry with that of AR; the time-latitude distribution of their number displays a similar butterfly diagram but with a latitude distribution that is twice as wide as that of sunspots. (2) For the anticorrelated elements, the time-latitude distribution of number shows a solar cycle variation different from the sunspot butterfly diagram; in each latitude, the distribution of anticorrelated elements always shows the anticorrelated variation with that of sunspots; during solar cycle 23, the average speed of the peak latitudinal migration for anticorrelated elements reaches 7.5 deg year{sup -1}, almost three times that for sunspots. These results seem to imply that the correlated elements are the debris of decayed sunspots, and the anticorrelated elements have a different source but are affected or modulated by sunspot magnetic field.

  14. High Latitude Dust in the Earth System

    NASA Technical Reports Server (NTRS)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; McKenna-Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (> or = 50degN and > or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.

  15. Low-latitude mountain glacier evidence for abrupt climate changes

    NASA Astrophysics Data System (ADS)

    Thompson, L. G.; Mosley-Thompson, E. S.; Lin, P.; Davis, M. E.; Mashiotta, T. A.; Brecher, H. H.

    2004-12-01

    Clear evidence that a widespread warming of Earth's climate system is now underway comes from low latitude mountain glaciers. Proxy temperature histories reconstructed from ice cores, and the rapidly accelerating loss of both the total ice area and ice volume on a near global scale suggest that these glaciers responding to increasing rates of melting. In situ observations reveal the startling rates at which many tropical glaciers are disappearing. For example, the retreat of the terminus of the Qori Kalis Glacier in Peru is roughly 200 meters per year, 40 times faster than its retreat rate in 1978. Similarly, in 1912 the ice on Mount Kilimanjaro covered 12.1 km2, but today it covers only 2.6 km2. If the current rate of retreat continues, the perennial ice fields may disappear within the next few decades, making this the first time in the past 11,700 years that Kilimanjaro will be devoid of the ice that shrouds its summit. Tropical glaciers may be considered ``the canaries in the coal mine'' for the global climate system as they integrate and respond to key climatological variables, such as temperature, precipitation, cloudiness, humidity, and incident solar radiation. A composite of the decadally-averaged oxygen isotopic records from three Andean and three Tibetan ice cores extending back over the last two millennia shows an isotopic enrichment in the 20th century that suggests a large-scale warming is underway at lower latitudes. Multiple lines of evidence from Africa, the Middle East, Europe and South America indicate an abrupt mid-Holocene climate event in the low latitudes. If such an event were to occur now with a global human population of 6.3 billion people, the consequences could be severe. Clearly, we need to understand the nature and cause of abrupt climate events.

  16. MEASUREMENTS OF THE SUN'S HIGH-LATITUDE MERIDIONAL CIRCULATION

    SciTech Connect

    Rightmire-Upton, Lisa; Hathaway, David H.; Kosak, Katie E-mail: david.hathaway@nasa.gov

    2012-12-10

    The meridional circulation at high latitudes is crucial to the buildup and reversal of the Sun's polar magnetic fields. Here, we characterize the axisymmetric flows by applying a magnetic feature cross-correlation procedure to high-resolution magnetograms obtained by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. We focus on Carrington rotations 2096-2107 (2010 April to 2011 March)-the overlap interval between HMI and the Michelson Doppler Imager (MDI). HMI magnetograms averaged over 720 s are first mapped into heliographic coordinates. Strips from these maps are then cross-correlated to determine the distances in latitude and longitude that the magnetic element pattern has moved, thus providing meridional flow and differential rotation velocities for each rotation of the Sun. Flow velocities were averaged for the overlap interval and compared to results obtained from MDI data. This comparison indicates that these HMI images are rotated counterclockwise by 0.{sup 0}075 with respect to the Sun's rotation axis. The profiles indicate that HMI data can be used to reliably measure these axisymmetric flow velocities to at least within 5 Degree-Sign of the poles. Unlike the noisier MDI measurements, no evidence of a meridional flow counter-cell is seen in either hemisphere with the HMI measurements: poleward flow continues all the way to the poles. Slight north-south asymmetries are observed in the meridional flow. These asymmetries should contribute to the observed asymmetries in the polar fields and the timing of their reversals.

  17. SIMULATED FARADAY ROTATION MEASURES TOWARD HIGH GALACTIC LATITUDES

    SciTech Connect

    Akahori, Takuya; Kim, Jongsoo; Ryu, Dongsu; Gaensler, B. M. E-mail: akahori@physics.usyd.edu.au E-mail: ryu@canopus.cnu.ac.kr

    2013-04-20

    We study the Faraday rotation measure (RM) due to the Galactic magnetic field (GMF) toward high Galactic latitudes. The RM arises from the global, regular component as well as from the turbulent, random component of the GMF. We model the former based on observations and the latter using the data of magnetohydrodynamic turbulence simulations. For a large number of different GMF models, we produce mock RM maps around the Galactic poles and calculate various statistical quantities with the RM maps. We find that the observed medians of RMs toward the north and south Galactic poles, {approx}0.0 {+-} 0.5 rad m{sup -2} and {approx} + 6.3 {+-} 0.5 rad m{sup -2}, are difficult to explain with any of our many alternate GMF models. The standard deviation of observed RMs, {approx}9 rad m{sup -2}, is clearly larger than that of simulated RMs. The second-order structure function of observed RMs is substantially larger than that of simulated RMs, especially at small angular scales. We discuss other possible contributions to RM toward high Galactic latitudes. Besides observational errors and the intrinsic RM of background radio sources against which RM is observed, we suggest that the RM due to the intergalactic magnetic field may account for a substantial fraction of the observed RM. Finally, we note that reproducing the observed medians may require additional components or/and structures of the GMF that are not present in our models.

  18. Map of Martian Potassium at Mid-Latitudes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This gamma ray spectrometer map of the mid-latitude region of Mars is based on gamma-rays from the element potassium. Potassium, having the chemical symbol K, is a naturally radioactive element and is a minor constituent of rocks on the surface of both Mars and Earth. The region of highest potassium content, shown in red, is concentrated in the northern part of Acidalia Planitia (centered near 55 degrees N, -30 degrees). Several areas of low potassium content, shown in blue, are distributed across the mid-latitudes, with two significant low concentrations, one associated with the Hellas Basin (centered near 35 degrees S, 70 degrees) and the other lying southeast of Elysium Mons (centered near 10 degrees N, 160 degrees). Contours of constant surface elevation are also shown. The long continuous line running from east to west marks the approximate separation of the younger lowlands in the north from the older highlands in the south.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The gamma ray spectrometer was provided by the University of Arizona, Tucson. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Are lower-latitude plants better defended? Palatability of freshwater macrophytes.

    PubMed

    Morrison, Wendy E; Hay, Mark E

    2012-01-01

    Increased herbivory at lower latitudes is hypothesized to select for more effective plant defenses. Feeding assays with seaweeds and salt marsh plants support this hypothesis, with low-latitude plants experiencing greater damage in the field and being less palatable than higher-latitude plants. We tested this hypothesis for freshwater macrophytes because they offered an independent plant lineage and habitat type for testing this general hypothesis and because the patchiness of consumer occupancy across isolated water bodies might produce local variance in herbivory that would override geographic variance and produce different results for this habitat type. When we fed eight congeneric pairs of live plants from four sites in Indiana vs. four sites in South Florida (-215 and 0 frost days/yr respectively) to three species of crayfishes and one species of snail, three of the four herbivores significantly preferred high-latitude to low-latitude plants. For two crayfishes that differed in feeding on live plants (one favoring high-latitude plants and one not), we retested feeding using foods composed of freeze-dried and finely ground plants, thus removing structural characteristics while retaining most chemical/nutritional traits. In this assay, both herbivores strongly preferred high-latitude plants, suggesting that lower-latitude plants had been selected for more deterrent chemical traits. When we collected 22 pairs of congeneric plants from 9 sites throughout Indiana vs. 13 sites in Central Florida (-215 and -95 frost days/yr respectively) and tested these in feeding assays with three crayfishes using dried, ground, and reconstituted plant material, we found a significant effect of latitude for only one of three species of herbivore. Overall, our results suggest a preference for high-latitude plants, but the strength of this relationship varied considerably across small scales of latitude that differed considerably in numbers of frost-free days. The difference in

  20. Quiet time enhancements over African latitudes

    NASA Astrophysics Data System (ADS)

    Orford, Nicola; Katamzi, Zama; Buresova, Dalia

    2016-07-01

    F2 layer disturbances not related to geomagnetic activity are known as quiet time enhancements (QTEs). The phenomenon of QTEs has not yet been studied over African latitudes. We therefore explore the occurrence of QTEs over Africa in order to expand our knowledge on the behaviour of the ionosphere over this region. Several GPS stations in the middle to equatorial latitudes, during the solar minimum (2009) and near solar maximum (2013), are used. This data was examined for possible trends in variation with solar cycle, season and latitude as well as time of commencement of enhancements. Over the southern mid-latitude region of Africa we have observed that the QTEs are more likely to commence during the night in both solar minimum and maximum, however a slightly larger portion of daytime commencements during solar minimum than during solar maximum were observed. The total number of enhancements for the solar minimum period appears greater than during solar maximum. A seasonal trend is seen with the maximum number of enhancements occurring in summer during solar minimum and in winter during solar maximum. We explore further whether these trends are mirrored or different at low latitude/equatorial African regions.

  1. Polarization of competition increases with latitude.

    PubMed

    Barnes, David K A

    2002-10-01

    Many organisms overlap in their use of resources in space and time. Where and when resources are restricted, species must compete for them. Living space, often a critical resource controlling food and mate availability, is directly contested by organisms in most habitats. The ensuing animal interactions generally result in a winner gaining space and a loser, which may die. Contact matrices from studies of interference competition in encrusting marine Bryozoa (clonal and colonial animals), spanning at least 60 degrees latitude in both hemispheres, were analysed and subjected to a modern transitivity index. Only data for Bryozoa were used because (i) use of a single taxon with restricted ecology simplifies the scope for types of encounters, (and therefore) interpretation; and (ii) ecological bias is reduced because bryozoans are abundant at all latitudes. The analysis shows that assemblage competition is more hierarchical towards both poles. Thus, poorer competitors fail more frequently in interactions with increasing latitude. The cause of this trend is the simplification of overall outcomes between competitors, such as fewer ties, reversals in outcome or competitive loops (where low-ranking competitors beat those of higher ranking). The implication of such a trend is that the maintenance of biological diversity at high latitudes may principally be by physical rather than biological (competition) processes. Certainly, ocean surface energy increases with latitude through wind and wave action (and ice scour in polar regions).

  2. Warming increases plant biomass and reduces diversity across continents, latitudes, and species migration scenarios in experimental wetland communities.

    PubMed

    Baldwin, Andrew H; Jensen, Kai; Schönfeldt, Marisa

    2014-03-01

    Atmospheric warming may influence plant productivity and diversity and induce poleward migration of species, altering communities across latitudes. Complicating the picture is that communities from different continents deviate in evolutionary histories, which may modify responses to warming and migration. We used experimental wetland plant communities grown from seed banks as model systems to determine whether effects of warming on biomass production and species richness are consistent across continents, latitudes, and migration scenarios. We collected soil samples from each of three tidal freshwater marshes in estuaries at three latitudes (north, middle, south) on the Atlantic coasts of Europe and North America. In one experiment, we exposed soil seed bank communities from each latitude and continent to ambient and elevated (+2.8 °C) temperatures in the greenhouse. In a second experiment, soil samples were mixed either within each estuary (limited migration) or among estuaries from different latitudes in each continent (complete migration). Seed bank communities of these migration scenarios were also exposed to ambient and elevated temperatures and contrasted with a no-migration treatment. In the first experiment, warming overall increased biomass (+16%) and decreased species richness (-14%) across latitudes in Europe and North America. Species richness and evenness of south-latitude communities were less affected by warming than those of middle and north latitudes. In the second experiment, warming also stimulated biomass and lowered species richness. In addition, complete migration led to increased species richness (+60% in North America, + 100% in Europe), but this higher diversity did not translate into increased biomass. Species responded idiosyncratically to warming, but Lythrum salicaria and Bidens sp. increased significantly in response to warming in both continents. These results reveal for the first time consistent impacts of warming on biomass and

  3. Mid-latitude auroras in Eastern Siberia

    NASA Astrophysics Data System (ADS)

    Mikhalev, Alexander

    We present characteristics of mid-latitude auroras in Eastern Siberia, recorded at the Geophysical Observatory of ISTP SB RAS during optical observations of airglow in 1989-2013. We analyze dependences of intensities of [OI] atomic oxygen (557.7 and 630 nm) emissions on geomagnetic activity level during different phases of geomagnetic storms. Diurnal distribution of registration of mid-latitude auroras and connection with variations of ionospheric parameters are analyzed too. Possible mechanisms of formation and peculiarities of the main types of mid-latitude auroras are discussed. The study was done under RF President Grant of Public Support for RF Leading Scientific Schools (NSh-2942.2014.5) and RFBR Grant No. 12-05-00024 a.

  4. Relative Contributions of Heating and Momentum Forcing to High-Latitude Lower Thermospheric Winds

    NASA Astrophysics Data System (ADS)

    Kwak, Y. S.; Richmond, A. D.

    2015-12-01

    At high latitudes the thermospheric dynamics are gov­erned by various heat and momentum sources. Recently several modeling studies have been attempt­ed to understand the physical process that control the high-latitude lower thermospheric dynamics. Kwak and Richmond [2007] and Kwak et al. [2007] studied the momentum forcing bal­ance that are mainly responsible for maintaining the high-latitude lower thermospheric wind system by using the National Center for Atmospheric Research Thermo­sphere Ionosphere Electrodynamics General Circulation Model (NCAR TIE-GCM). Kwak and Richmond [2014] analyzed the divergence and vorticity of the high-latitude neutral wind field in the lower thermosphere during the south­ern summertime. In this study, we extend previous works by Kwak and Rich­mond [2007, 2014] and Kwak et al. [2007], which helped to better understand the physical processes maintaining thermospheric dynamics at high latitudes, and here perform a "term analysis of the potential vorticity equation" for the high-latitude neu­tral wind field in the lower thermosphere, on the basis of numerical simulations using the NCAR TIE-GCM. These analyses can provide insight into the relative strength of the heating and the momentum forcing responsible for driving rotational winds at the high-latitude lower thermosphere. The heating is the net heat including the heat transfer by downward molecular and eddy heat conduction, the absorption of solar ultraviolet (UV) and extreme ultraviolet (EUV) ra­diation, auroral heating by particles, Joule dissipation of ionospheric currents, release of chemical energy by the atomic oxygen recombination, and radiative CO2, NO and O infrared emissions. The momentum forcing is associated with the viscous force and the frictional drag force from convecting ions.

  5. ULTRAVIOLET EXTINCTION AT HIGH GALACTIC LATITUDES

    SciTech Connect

    Peek, J. E. G.; Schiminovich, David

    2013-07-01

    In order to study the properties and effects of high Galactic latitude dust, we present an analysis of 373,303 galaxies selected from the Galaxy Evolution Explorer All-Sky Survey and Wide-field Infrared Explorer All-Sky Data Release. By examining the variation in aggregate ultraviolet colors and number density of these galaxies, we measure the extinction curve at high latitude. We additionally consider a population of spectroscopically selected galaxies from the Sloan Digital Sky Survey to measure extinction in the optical. We find that dust at high latitude is neither quantitatively nor qualitatively consistent with standard reddening laws. Extinction in the FUV and NUV is {approx}10% and {approx}35% higher than expected, with significant variation across the sky. We find that no single R{sub V} parameter fits both the optical and ultraviolet extinction at high latitude, and that while both show detectable variation across the sky, these variations are not related. We propose that the overall trends we detect likely stem from an increase in very small silicate grains in the interstellar medium.

  6. Ionospheric hot spot at high latitudes

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Sojka, J. J.

    1982-01-01

    Schunk and Raitt (1980) and Sojka et al. (1981) have developed a model of the convecting high-latitude ionosphere in order to determine the extent to which various chemical and transport processes affect the ion composition and electron density at F-region altitudes. The numerical model produces time-dependent, three-dimensional ion density distributions for the ions NO(+), O2(+), N2(+), O(+), N(+), and He(+). Recently, the high-latitude ionospheric model has been improved by including thermal conduction and diffusion-thermal heat flow terms. Schunk and Sojka (1982) have studied the ion temperature variations in the daytime high-latitude F-region. In the present study, a time-dependent three-dimensional ion temperature distribution is obtained for the high-latitude ionosphere for an asymmetric convection electric field pattern with enhanced flow in the dusk sector of the polar region. It is shown that such a convection pattern produces a hot spot in the ion temperature distribution which coincides with the location of the strong convection cell.

  7. Latitude and incidence of ocular melanoma.

    PubMed

    Yu, Guo-Pei; Hu, Dan-Ning; McCormick, Steven A

    2006-01-01

    We investigated the associations between latitude and the incidence of two different types of ocular melanoma, external ocular melanoma (exposed to sunlight) and internal melanoma (not exposed to sunlight), separately. Using 1992-2002 data from the Surveillance, Epidemiology, and End Results (SEER) Program of National Cancer Institute, we identified 2142 ocular melanoma cases in non-Hispanic whites, and then regressed the incidences of various types of ocular melanomas with latitude. Our analysis indicated that the higher the latitude (away from the equator, the less sun exposure), the lower the risk of external ocular melanoma (eyelid and conjunctival melanomas) among non-Hispanic whites (P for trend = 0.018). The incidence increased 2.48 fold from 47-48 degrees to 20-22 degrees. This trend is very similar to that of skin melanoma. The incidence of internal ocular melanoma (uveal melanoma) increased significantly with increasing latitudes (the less sun exposure, P for trend < 0.0001), it increased 4.91 fold from 20-22 degrees to 47-48 degrees. The latitudinal patterns of ocular melanomas may reflect the dual effects of sunlight exposure, i.e. a mutagenic effect of direct solar radiation on external ocular melanomas and a protective effect for internal uveal melanoma, which is similar to the sun radiation protective effects for various internal malignant tumors that are not exposed to the sunlight.

  8. Investigating the Relationship between Latitude and Temperature

    ERIC Educational Resources Information Center

    McGivney-Burelle, Jean; McGivney, Raymond J.; McGivney, Katherine G.

    2008-01-01

    This article describes an engaging, data-gathering activity that allows students to explore relationships between latitude and average monthly temperatures of cities in the Western Hemisphere. This data-gathering activity covered interesting and important mathematical ground and engaged students from the start. While students searched for their…

  9. Higher Education in the High Latitudes.

    ERIC Educational Resources Information Center

    Bollag, Burton

    2002-01-01

    Describes how colleges in 16 countries have joined in a network to serve the educational and research needs of the circumpolar region; the University of the Arctic is a band of high-latitude colleges which seeks to serve indigenous people and preserve a fragile environment. (EV)

  10. Preferred latitudes of the intertropical convergence zone

    NASA Technical Reports Server (NTRS)

    Waliser, Duane E.; Somerville, C. J.

    1994-01-01

    The latitude preference of the intertropical convergence zone (ITCZ) is examined on the basis of observations, theory, and a modeling analysis. Observations show that convection is enhanced at latitudes of about 4 deg to 10 deg relative to the equator, even in regions where the sea surface temperature (SST) is maximum on the equator. Both linear shallow-water theory and a moist primitive equation model suggest a new explanation for the off-equatorial latitude preference of the ITCZ that requires neither the existence of zonally propagating disturbances nor an off-equatorial maximum in SST. The shallow-water theory indicates that a finite-width, zonally oriented, midtropospheric heat source (i.e., an ITCZ) produces the greatest local low-level convergence when placed a finite distance away from the equator. This result suggests that an ITCZ is most likely to be supported via low-level convergence of moist energy when located at these "preferred" latitudes away from the equator. For a plausible range of heating widths and damping parameters, the theoretically predicted latitude is approximately equal to the observed position (s) of the ITCZ (s). Analysis with an axially symmetric, moist, primitive equation model indicates that when the latent heating field is allowed to be determined internally, a positive feedback develops between the midtropospheric latent heating and the low-level convergence, with the effect of enhancing the organization of convection at latitudes of about 4 deg to 12 deg. Numerical experiments show that (1) two peaks in convective precipitation develop straddling the equator when the SST maximum is located on the equator; (2) steady ITCZ-like structures form only when the SST maximum is located away from the equator; and (3) peaks in convection can develop away from the maximum in SST, with a particular preference for latitudes of about 4 deg to 12 deg, even in the ('cold') hemisphere without the SST maximum. The relationship between this

  11. Penetrating of high-latitude-electric-field effects to low latitudes during SUNDIAL 1984

    NASA Astrophysics Data System (ADS)

    Spiro, R. W.; Wolf, R. A.; Fejer, B. G.

    1988-02-01

    Electric-field-penetration events have been identified using F-region vertical-drift measurements obtained in the October 6-13, 1984 period by the Jicamarcan incoherent-backscatter radar and corresponding h-prime F measurements from ionosondes at Fortaleza, Cachoeira Paulista, and Dakar. Predictions made using the Rice Convection Model for the pattern, strength, and duration of the low-latitude electric field occurring in response to an increasing high-latitude convection agree with observations. The observed 1-2 h duration of the low-latitude response to decreased convection can be explained by the fossil-wind theory of Richmond (1983).

  12. Penetrating of high-latitude-electric-field effects to low latitudes during SUNDIAL 1984

    NASA Technical Reports Server (NTRS)

    Spiro, R. W.; Wolf, R. A.; Fejer, B. G.

    1988-01-01

    Electric-field-penetration events have been identified using F-region vertical-drift measurements obtained in the October 6-13, 1984 period by the Jicamarcan incoherent-backscatter radar and corresponding h-prime F measurements from ionosondes at Fortaleza, Cachoeira Paulista, and Dakar. Predictions made using the Rice Convection Model for the pattern, strength, and duration of the low-latitude electric field occurring in response to an increasing high-latitude convection agree with observations. The observed 1-2 h duration of the low-latitude response to decreased convection can be explained by the fossil-wind theory of Richmond (1983).

  13. Latitude for the Observer of Ptolemy's Catalog

    NASA Astrophysics Data System (ADS)

    Schaefer, B. E.

    1999-12-01

    For centuries, researchers have claimed that substantial portions of Ptolemy's Almagest have been taken from Hipparchus in Rhodes (latitude 36.2 north). A substantial portion of these claims rest on the catalog of 1028 stars purported to be observed by Ptolemy in Alexandria (latitude 31.2 north). Various peculiarities is the star positions are inconclusive. However, aspects of the star catalog related to the visibility of stars near the horizon have not been treated with modern techniques. I have extensive experience in the heliacal rise, extinction angle, and the probability of detection (see Schaefer 1993, Vistas in Astronomy, 36, 311 for a review) all of which are critical to the problem. Also, I have been producing my own modern naked-eye star catalog so as to obtain practical knowledge of star visibility (especially near the southern horizon), completeness, and probability of detection. Also, I have determined the seasonal extinction coefficients (both median and best possible) for the eastern Mediterranean in ancient times based on 4000 in situ observations from 9 sites in modern and premodern times, measures of modern pollution components, and global models. Three criteria have been used to determine the latitude of the observer of the star catalog: First, the limiting magnitude (at the 50% level) as a function of declination can be compared against my model to derive the latitude. Second, the most southerly declination (at the 50% level) as a function of magnitude can also be compared against my model. For the first two criteria, quadrants are considered independently as well as individually to account for varying seasonal extinction and precession effects on the completeness of the traditional southern constellations. Third, the cataloged magnitudes are compared with modern magnitudes as a function of declination and compared with my extinction model for various latitudes.

  14. Ionospheric Response to the 2009 Sudden Stratospheric Warming over the Equatorial, Low- and Mid-Latitudes in American Sector.

    NASA Astrophysics Data System (ADS)

    Fagundes, P. R.; Goncharenko, L. P.; de Abreu, A. J.; Gende, M.; de Jesus, R.; Pezzopane, M.; Kavutarapu, V.; Coster, A. J.; Pillat, V. G.

    2014-12-01

    The equatorial and low-latitude ionosphere/thermosphere system is predominantly disturbed by waves (MSTIDs, tides, and planetary waves), which are generated in the lower atmosphere or in-situ, as well as electric fields and TIDs produced by geomagnetic storm and UV, EUV, and X-ray solar radiation. For many years, it was thought that, during geomagnetic quiet conditions, the equatorial and low-latitude F-layer was mainly perturbed by waves that were generated not far away from the observed location or electric fields generated by the Equatorial Electroject (EEJ). On the contrary, during geomagnetic storms when the energy sources are in high latitudes the waves (TIDs) travel a very long distance from high latitude to equatorial region and electric fields can be mapped via magnetic field lines. However, in the recent times an unexpected coupling between high latitude, mid- latitude, and equatorial/low latitudes was discovered during sudden stratospheric warming (SSW) events. All aspects involved in this process must be explored in order to improve our knowledge about the Earth´s atmosphere. The present study investigates the consequences of vertical coupling from lower to the upper atmosphere in the equatorial and low-latitude ionosphere in Southern Hemisphere during a major SSW event, which took place during January-February 2009 in the Northern Hemisphere. Using seventeen ground-based dual-frequency GPS stations and two ionosonde stations spanning from latitude 2.8oN to 53.8oS and from longitude 36.7oW to 67.8oW over the South American sector, it has been observed that the ionosphere was significantly disturbed by the SSW event from Equator to the mid-latitudes. Using one GPS station located in mid-latitude (South America sector) it is reported for the first time that the mid-latitude in southern hemisphere (American Sector) was disturbed by the SSW event in the Northern hemisphere. The VTEC at all 17 GPS and two ionosonde stations show significant deviations

  15. Wind induced composition effects at high latitudes

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.

    1981-01-01

    The temperature and compositional structure of the upper atmosphere are discussed in relation to the impacts of wind-induced diffusion processes. Seasonal variations in thermospheric temperature and composition are explained by energy and mass transport from the summer to the winter hemisphere induced by preferential heating, with the winter oxygen bulge participating in a feedback mechanism which acts to dampen wind velocities and increase temperature contrast. Changes in the eddy diffusion coefficient are considered as a complementary mechanism of producing the seasonal anomalies. The role of winds induced by high-latitude heating by particles and Joule dissipation during magnetic storms and substorms in accounting for thermospheric density increases and N2 and Ar enhancements and O and He depletions at high latitudes are discussed, and the rather weak compositional signature of E x B momentum coupling is distinguished from the effects of Joule dissipation.

  16. Formation of High-Latitude Pedestal Craters

    NASA Technical Reports Server (NTRS)

    Wrobel, K. E.; Schultz, P. H.; Crawford, D. A.

    2005-01-01

    Prior to and just after an impact on Mars, a small fraction of the total impact energy is directly coupled to the ambient atmosphere. A resulting hemispherical shock wave propagates outward leaving a signature that is dependent on initial atmospheric and surface conditions. Here we propose that the distinctive pedestal craters common at high latitudes on Mars are a direct consequence of extreme winds and elevated temperatures generated by this atmospheric blast.

  17. Environmental harshness, latitude and incipient speciation.

    PubMed

    Weir, Jason T

    2014-02-01

    Are rates of evolution and speciation fastest where diversity is greatest - the tropics? A commonly accepted theory links the latitudinal diversity gradient to a speciation pump model whereby the tropics produce species at a faster rate than extra-tropical regions. In this issue of Molecular Ecology, Botero et al. () test the speciation pump model using subspecies richness patterns for more than 9000 species of birds and mammals as a proxy for incipient speciation opportunity. Rather than using latitudinal centroids, the authors investigate the role of various environmental correlates of latitude as drivers of subspecies richness. Their key finding points to environmental harshness as a positive predictor of subspecies richness. The authors link high subspecies richness in environmental harsh areas to increased opportunities for geographic range fragmentation and/or faster rates of trait evolution as drivers of incipient speciation. Because environmental harshness generally increases with latitude, these results suggest that opportunity for incipient speciation is lowest where species richness is highest. The authors interpret this finding as incompatible with the view of the tropics as a cradle of diversity. Their results are consistent with a growing body of evidence that reproductive isolation and speciation occur fastest at high latitudes. PMID:26010836

  18. Spacecraft design project: High latitude communications satellite

    NASA Technical Reports Server (NTRS)

    Josefson, Carl; Myers, Jack; Cloutier, Mike; Paluszek, Steve; Michael, Gerry; Hunter, Dan; Sakoda, Dan; Walters, Wes; Johnson, Dennis; Bauer, Terry

    1989-01-01

    The spacecraft design project was part of AE-4871, Advanced Spacecraft Design. The project was intended to provide experience in the design of all major components of a satellite. Each member of the class was given primary responsibility for a subsystem or design support function. Support was requested from the Naval Research Laboratory to augment the Naval Postgraduate School faculty. Analysis and design of each subsystem was done to the extent possible within the constraints of an eleven week quarter and the design facilities (hardware and software) available. The project team chose to evaluate the design of a high latitude communications satellite as representative of the design issues and tradeoffs necessary for a wide range of satellites. The High-Latitude Communications Satellite (HILACS) will provide a continuous UHF communications link between stations located north of the region covered by geosynchronous communications satellites, i.e., the area above approximately 60 N latitude. HILACS will also provide a communications link to stations below 60 N via a relay Net Control Station (NCS), which is located with access to both the HILACS and geosynchronous communications satellites. The communications payload will operate only for that portion of the orbit necessary to provide specified coverage.

  19. Humans at tropical latitudes produce more females.

    PubMed

    Navara, Kristen J

    2009-08-23

    Skews in the human sex ratio at birth have captivated scientists for over a century. The accepted average human natal sex ratio is slightly male biased, at 106 males per 100 females or 51.5 per cent males. Studies conducted on a localized scale show that sex ratios deviate from this average in response to a staggering number of social, economical and physiological variables. However, these patterns often prove inconsistent when expanded to other human populations, perhaps because the nature of the influences themselves exhibit substantial cultural variation. Here, data collected from 202 countries over a decade show that latitude is a primary factor influencing the ratio of males and females produced at birth; countries at tropical latitudes produced significantly fewer boys (51.1% males) annually than those at temperate and subarctic latitudes (51.3%). This pattern remained strong despite enormous continental variation in lifestyle and socio-economic status, suggesting that latitudinal variables may act as overarching cues on which sex ratio variation in humans is based.

  20. Campanian-Maastrichtian intermediate- to deep-water changes in the high latitudes: benthic foraminiferal evidence

    NASA Astrophysics Data System (ADS)

    Koch, M.; Friedrich, O.

    2012-04-01

    During the latest Cretaceous cooling phase, a positive shift in benthic foraminiferal δ18O values lasting about 1.5 Ma (71.5-70 Ma) can be observed at a global scale (Campanian-Maastrichtian Boundary Event, CMBE). This δ18O excursion is interpreted as being influenced by a change in intermediate- to deep-water circulation or by temporal build-up of Antarctic ice sheets. Here we test if benthic foraminiferal assemblages (BFA) from a southern high-latitudinal site near Antarctica (Ocean Drilling Program Site 690, Maud Rise, Weddell Sea, southern South Atlantic) are influenced by the CMBE. If the δ18O transition reflects a change in intermediate- to deep-water circulation from low-latitude to high-latitude water masses, this change would result in cooler temperatures, higher oxygen concentration, and possibly lower organic-matter flux at the seafloor, resulting in a major BFA change. If, however, the δ18O transition has mainly been triggered by ice formation, no considerable compositional difference in BFA would be expected. Our data show a separation of the studied succession into two parts with distinctly different BFA. Species dominating the older part (73.0 to 70.5 Ma) tolerate less bottom-water oxygenation (e.g. Paralabamina hillebrandti) and are typical components of low-latitude assemblages (e.g. Reussella szajnochae). In contrast, the younger part (70.0 to 68.0 Ma) is characterized by species that indicate well-oxygenated bottom waters (e.g. Nuttallides truempyi) and species common in high-latitude assemblages (Pullenia spp.). We interpret the observed change in BFA towards a well-oxygenated environment to reflect the onset of a shift from low-latitude towards high-latitude dominated intermediate- to deep-water sources. This implies that a change in oceanic circulation rather than ice volume was at least a major component of the CMBE.

  1. Unusual nighttime impulsive foF2 enhancements at low latitudes: Phenomenology and possible explanations

    NASA Astrophysics Data System (ADS)

    Perna, L.; Pezzopane, M.; Zuccheretti, E.; Fagundes, P. R.; de Jesus, R.; Cabrera, M. A.; Ezquer, R. G.

    2014-08-01

    This paper is focused on unusual nighttime impulsive electron density enhancements that are rarely observed at low latitudes on a wide region of South America, under quiet and medium/high geomagnetic conditions. The phenomenon under investigation is very peculiar because besides being of brief duration, it is characterized by a pronounced compression of the ionosphere. The phenomenon was studied and analyzed using both the F2 layer critical frequency (foF2) and the virtual height of the base of the F region (h‧F) values recorded at five ionospheric stations widely distributed in space, namely: Jicamarca (-12.0°, -76.8°, magnetic latitude -2.0°), Peru; Sao Luis (-2.6°, -44.2°, magnetic latitude +6.2°), Cachoeira Paulista (-22.4°, -44.6°, magnetic latitude -13.4°), and São José dos Campos (-23.2°, -45.9°, magnetic latitude -14.1°), Brazil; Tucumán (-26.9°, -65.4°, magnetic latitude -16.8°), Argentina. In a more restricted region over Tucumán, the phenomenon was also investigated by the total electron content (TEC) maps computed by using measurements from 12 GPS receivers. A detailed analysis of isoheight ionosonde plots suggests that traveling ionospheric disturbances (TIDs) caused by gravity wave (GW) propagation could play a significant role in causing the phenomenon both for quiet and for medium/high geomagnetic activity; in the latter case however a recharging of the fountain effect, due to electric fields penetrating from the magnetosphere, joins the TID propagation and plays an as much significant role in causing impulsive electron density enhancements.

  2. The effect of latitude on the risk and seasonal variation in hip fracture in Sweden.

    PubMed

    Odén, Anders; Kanis, John A; McCloskey, Eugene V; Johansson, Helena

    2014-10-01

    Although the optimal requirement of vitamin D for skeletal health in the general community is controversial, vitamin D deficiency impairs bone mineralization and increases bone turnover via secondary hyperparathyroidism, thus accelerating bone loss and increasing fracture risk. Support for a role of vitamin D deficiency in the epidemiology of hip fracture is found in the seasonal variation of hip fracture incidence that is reported in several studies. If the association were causal, then the incidence and amplitude of the seasonal variation in hip fracture risk should vary by latitude. We addressed this hypothesis by examining the incidence of hip fracture in men and women aged 50 years or more from Sweden (latitudes 55 to 69°) between 1987 and 2009. In order to reduce double counting, only one fracture in a period of a year was counted per individual. Men contributed 104,888 fractures in 33,313,065 person years and women 264,362 fractures in 38,387,660 person years. The effects of season and latitude were examined by Poisson regression. As expected, hip fracture rates were higher in women than in men. After adjustment for age, season and population density, hip fracture incidence increased by 3.0% (95% CI: 2.7-3.2%) per degree increase in latitude for men and by 1.9% (95% CI: 1.8-2.1%) for women. There was a marked seasonal variation of hip fracture with the highest risk in February and lower by 37.5% in men and by 23.5% women during the summer. There were significant interactions of amplitude of the seasonal variation with latitude (p < 0.001 for both men and women), indicating that seasonal variation during the year was more pronounced in the north of Sweden than in the south. The associations found with latitude and season is consistent with a role of vitamin D in hip fracture causation.

  3. Breeding season of wolves, Canis lupus, in relation to latitude

    USGS Publications Warehouse

    Mech, L.D.

    2002-01-01

    A significant relationship was found between Wolf (Canis lupus) breeding dates and latitudes between 12 deg. and 80 deg. N, with Wolves breeding earlier at lower latitudes, probably because of differences in seasonality.

  4. Breeding season of Wolves, Canis lupus, in relation to latitude

    USGS Publications Warehouse

    Mech, L.D.

    2002-01-01

    A significant relationship was found between Wolf (Canis lupus) breeding dates and latitudes between 12?? and 80??N, with Wolves breeding earlier at lower latitudes, probably because of differences in seasonality.

  5. Declining effect of latitude on melanoma mortality rates in the United States. A preliminary study.

    PubMed

    Lee, J A

    1997-09-01

    The gradient of mortality from melanoma of the skin with latitude among US whites was estimated from the slopes of semilogarithmic models fitted to the state-specific mortality rates and the latitudes of the states' capital cities. The upward gradient of mortality from north to south for malignant melanoma of the skin has been decreasing since 1950-1959, when data first became available, through 1960-1969, 1970-1979, and 1988-1992. By the early years of the 21st century, rates of melanoma mortality in the contiguous United States are expected to be unaffected by latitude. For the country as a whole, melanoma mortality rates have been rising for many years. This rise has become progressively slower, such that national rates have been projected to stabilize in the near future. While increasing geographic mobility has probably played a role in reducing the latitude effect, melanoma mortality rates may have reached levels at which increased exposure of US whites to sunlight has little incremental effect.

  6. Mid-Latitude Sedimentary Rock: Spallanzani Crater

    NASA Technical Reports Server (NTRS)

    2001-01-01

    [figure removed for brevity, see original site]

    Although most of the best examples of layered sedimentary rock seen on Mars are found at equatorial and sub-tropical latitudes, a few locations seen at mid- and high-latitudes suggest that layered rocks are probably more common than we can actually see from orbit. One extremely good example of these 'atypical' layered rock exposures is found in the 72 km-diameter (45 miles) crater, Spallanzani (58.4oS, 273.5oW). Located southeast of Hellas Planitia, the crater is named for the 18th Century Italian biologist, Lazzaro Spallanzani (1729-1799). Picture A presents a composite of the best Viking orbiter image (VO2-504B55) of the region with 4 pictures obtained June 1999 through January 2001 by the Mars Global Surveyor Mars Orbiter Camera (MOC). Each MOC narrow angle image is 3 km across. Taken in the MOC's 'survey mode,' all four images were acquired at roughly 12 meters (39 ft) per pixel. Picture B zooms-in on the portion of the composite image that includes the 4 MOC images (the 100%-size view is 20 m (66 ft) per pixel). Other craters in the region near Spallanzani show features--at Viking Orbiter scale--that are reminiscent of the layering seen in Spallanzani. Exactly what these layers are made of and how they came to be where we see them today are mysteries, but it is possible that they are similar to the materials seen in the many craters and chasms of the equatorial latitudes on Mars.

  7. Corotating Interaction Regions at High Latitudes

    NASA Astrophysics Data System (ADS)

    Kunow, H.; Lee, M. A.; Fisk, L. A.; Forsyth, R. J.; Heber, B.; Horbury, T. S.; Keppler, E.; Kóta, J.; Lou, Y.-Q.; McKibben, R. B.; Paizis, C.; Potgieter, M. S.; Roelof, E. C.; Sanderson, T. R.; Simnett, G. M.; von Steiger, R.; Tsurutani, B. T.; Wimmer-Schweingruber, R. F.; Jokipii, J. R.

    1999-07-01

    Ulysses observed a stable strong CIR from early 1992 through 1994 during its first journey into the southern hemisphere. After the rapid latitude scan in early 1995, Ulysses observed a weaker CIR from early 1996 to mid-1997 in the northern hemisphere as it traveled back to the ecliptic at the orbit of Jupiter. These two CIRs are the observational basis of the investigation into the latitudinal structure of CIRs. The first CIR was caused by an extension of the northern coronal hole into the southern hemisphere during declining solar activity, whereas the second CIR near solar minimum activity was caused by small warps in the streamer belt. The latitudinal structure is described through the presentation of three 26-day periods during the southern CIR. The first at ˜24°S shows the full plasma interaction region including fast and slow wind streams, the compressed shocked flows with embedded stream interface and heliospheric current sheet (HCS), and the forward and reverse shocks with associated accelerated ions and electrons. The second at 40°S exhibits only the reverse shock, accelerated particles, and the 26-day modulation of cosmic rays. The third at 60°S shows only the accelerated particles and modulated cosmic rays. The possible mechanisms for the access of the accelerated particles and the CIR-modulated cosmic rays to high latitudes above the plasma interaction region are presented. They include direct magnetic field connection across latitude due to stochastic field line weaving or to systematic weaving caused by solar differential rotation combined with non-radial expansion of the fast wind. Another possible mechanism is particle diffusion across the average magnetic field, which includes stochastic field line weaving. A constraint on connection to a distant portion of the CIR is energy loss in the solar wind, which is substantial for the relatively slow-moving accelerated ions. Finally, the weaker northern CIR is compared with the southern CIR. It is weak

  8. EGRET Sources at Intermediate Galactic Latitudes

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1998-01-01

    During the period 15 March 1992 through 31 October 1997, 12 papers using ROSAT data, supported in part by this grant, were published in referred journals, and one paper was published in a conference proceedings. Their bibliographical references are listed in the Appendix, and the abstracts of these papers are given in the next 13 sections of this report. Finally, a summary of the work completed to date on the newest project, for which ROSAT data are still being received, is given in the section entitled "EGRET Sources at Intermediate Galactic Latitude".

  9. Magnetic latitude effects in the solar wind

    NASA Technical Reports Server (NTRS)

    Winge, C. R., Jr.; Coleman, P. J., Jr.

    1972-01-01

    The Weber-Davis model of the solar wind is generalized to include the effects of latitude. The principal assumptions of high electrical conductivity, rotational symmetry, the polytropic relation between pressure and density, and a flow-alined field in a system rotating with the sun, are retained. An approximate solution to the resulting equations for spherical boundary conditions at the base of the corona indicates a small component of latitudinal flow toward the solar poles at large distances from the sun as result of latitudinal magnetic forces.

  10. Moisture transports and budgets of 'moisture bursts'. [of oceanic areas of tropical and subtropical latitudes

    NASA Technical Reports Server (NTRS)

    Thompson, A. H.; Mcguirk, J. P.

    1986-01-01

    The paper discusses moisture fluxes and budgets associated with a pair of 'moisture bursts' in the eastern North Pacific Ocean area, described by Smith et al. (1985). The moisture fluxes were calculated using data obtained during the first Special Observing Period (SOP-1) of the FGGE. The area specifically examined extended from the equator to the latitude 20 deg N and from longitude 180 deg to 100 deg W, with concentration on the region south and southeast of the Hawaiian Islands. From the comparison of the calculations based on dropwindsonde and radiosonde data and reports from commercial and military aircraft, it is concluded that the calculations of water vapor flow across latitude lines probably provide a fair representation of reality, especially when based on the dropwindsonde data. However, water vapor flow out of small volumes is not well represented by the results from either data.

  11. Modeling study of the mid-latitude ionospheric nighttime electron density enhancement by SAMI3

    NASA Astrophysics Data System (ADS)

    Chen, C.; Huba, J. D.; Saito, A.; Lin, C.; Liu, J. G.; Chang, L. C.

    2012-12-01

    The mid-latitude summer nighttime anomaly (MSNA) is a feature that the nighttime electron density is larger than in the daytime around the mid-latitude ionosphere. This anomaly was first detected in the southern hemisphere five decades ago and reported in the northern hemisphere recently. Previous studies presented the electron density structure of MSNA by satellite observation data and found that MSNA is clearly seen at 300 km altitude during local summer around South American, European, and Northeast Asian regions. A three-dimensional self-consistent model, SAMI3 (Sami3 is Also a Model of the Ionosphere), with inputting neutral wind data from TIEGCM (Thermosphere Ionosphere Electrodynamics General Circulation Model) model is used to simulate the MSNA feature and further discuss its mechanisms. The comparisons between observation data and the model simulation results suggest that the equatorial neutral winds play the most important role in the formation of MSNA.

  12. Map of Martian Iron at Mid-Latitudes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This gamma ray spectrometer map of the mid-latitude region of Mars is based on gamma-rays from the element iron. Iron, having the chemical symbol Fe, is among of the most abundant elements on the surface of both Mars and Earth. It is responsible for the red color on the surface of Mars. Regions of highest iron content, shown in red, are concentrated in the area spanning from Utopia Planitia to Amazonis Planitia (right and left sides of the map) and within Acidalia Planitia (just left of center). Contours of constant surface elevation are also shown. The long continuous contour line running from east to west marks the approximate separation of the younger lowlands in the north from the older highlands in the south.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The gamma ray spectrometer was provided by the University of Arizona, Tucson. Lockheed Martin Astronautics, Denver, Colo., is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. The role of latitude in mobilism debates.

    PubMed

    Irving, Edward

    2005-02-01

    In the early 1920s, the continental displacement theory of Wegener, latitude studies of Koppen and Wegener, and Argand's ideas on mountain building led to the first mobilistic paleogeography. In the 1930s and 1940s, many factors caused its general abandonment. Mobilism was revived in the 1950s and 1960s by measurements of long-term displacement of crustal blocks relative to each other (tectonic displacement) and to Earth's geographic pole (latitudinal displacement). Also, short-term or current displacements can now be measured. I briefly outline the categories of tectonic and current displacement and focus on latitudinal displacement. Integration of tectonic and latitudinal displacement in the early 1970s completed the new mobilistic paleogeography, in which the transformation of rock magnetization directions into paleopoles and latitudes and the finite rotation of spherical plates about pivot points play complementary roles; this new synthesis now provides a quantitative basis for studying long-term evolution of Earth's surface features and climate, the changing environments in which life evolves.

  14. The role of latitude in mobilism debates

    PubMed Central

    Irving, Edward

    2005-01-01

    In the early 1920s, the continental displacement theory of Wegener, latitude studies of Köppen and Wegener, and Argand's ideas on mountain building led to the first mobilistic paleogeography. In the 1930s and 1940s, many factors caused its general abandonment. Mobilism was revived in the 1950s and 1960s by measurements of long-term displacement of crustal blocks relative to each other (tectonic displacement) and to Earth's geographic pole (latitudinal displacement). Also, short-term or current displacements can now be measured. I briefly outline the categories of tectonic and current displacement and focus on latitudinal displacement. Integration of tectonic and latitudinal displacement in the early 1970s completed the new mobilistic paleogeography, in which the transformation of rock magnetization directions into paleopoles and latitudes and the finite rotation of spherical plates about pivot points play complementary roles; this new synthesis now provides a quantitative basis for studying long-term evolution of Earth's surface features and climate, the changing environments in which life evolves. PMID:15684058

  15. The role of latitude in mobilism debates.

    PubMed

    Irving, Edward

    2005-02-01

    In the early 1920s, the continental displacement theory of Wegener, latitude studies of Koppen and Wegener, and Argand's ideas on mountain building led to the first mobilistic paleogeography. In the 1930s and 1940s, many factors caused its general abandonment. Mobilism was revived in the 1950s and 1960s by measurements of long-term displacement of crustal blocks relative to each other (tectonic displacement) and to Earth's geographic pole (latitudinal displacement). Also, short-term or current displacements can now be measured. I briefly outline the categories of tectonic and current displacement and focus on latitudinal displacement. Integration of tectonic and latitudinal displacement in the early 1970s completed the new mobilistic paleogeography, in which the transformation of rock magnetization directions into paleopoles and latitudes and the finite rotation of spherical plates about pivot points play complementary roles; this new synthesis now provides a quantitative basis for studying long-term evolution of Earth's surface features and climate, the changing environments in which life evolves. PMID:15684058

  16. TIDI observations relating to low latitude aeronomy

    NASA Astrophysics Data System (ADS)

    Niciejewski, R.; Killeen, T.; Kafkalidis, J.; Wu, Q.; Skinner, W.; Solomon, S.; Ortland, D.; Gell, D.; Gablehouse, D.; Johnson, R.

    2003-04-01

    The TIDI instrument aboard the TIMED satellite has been observing the neutral winds in the upper atmosphere on a routine basis since early January 2002. The instrument simultaneously samples the thin limb of the Earth with four separate telescopes providing two forward views and two rearward views, one of each on either side of the orbital path. At equator crossings, these two side views are separated by about 30 degrees of longitude at the tangent point altitude, or 2 hours of local time. Thus, on any orbit TIDI obtains two horizontal vector winds at the dayside equator crossing and two on the nightside equator crossing as well as for all low latitudes. This is significantly greater than the data output of either the HRDI or the DE-2 satellite observations. This paper will describe the climatology that has been obtained by the TIDI instrument since early 2002 for low latitudes. The precession rate of TIMED supports two month averaging of data sets in order to sample all local solar time. Tidal structure is evident in the resulting zonal and meridional winds for mesosphere and lower thermosphere altitudes.

  17. Human homeostasis in high-latitude environment.

    PubMed

    Panin, L E

    2007-01-01

    Profound changes occur in human metabolism in high-latitude environments under the action of climatic, industrial, and social factors. These changes involve protein, fat, carbohydrate, vitamin, and macro and microelement metabolism. This allowed us to state that "a polar metabolic type" is formed in the Arctic and Antarctic regions. The most pronounced alterations are found in energy metabolism. They can be characterized as "the change-over from carbohydrate-type metabolism to the lipid one." Metabolic changes are reflected in the chemical composition of internal medium (blood) of the human organism and its homeostasis. However, homeostasis in high-latitude environments depends not only on natural, but also on various conditioning factors, in particular, prolonged emotional stress and inactual nutritional pattern. These two factors exert a pronounced effect on adaptive changes in human metabolism and its homeostasis. Both factors often act concurrently and result in sustained and persistent changes of homeostasis, which lead directly to obesity and development of endocrine and cardiovascular pathology. This is observed not only for newcomers, but also for the indigenous population of the Asian North.

  18. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures.

    PubMed

    Douglas, Peter M J; Affek, Hagit P; Ivany, Linda C; Houben, Alexander J P; Sijp, Willem P; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-05-01

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands.

  19. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures

    PubMed Central

    Douglas, Peter M. J.; Affek, Hagit P.; Ivany, Linda C.; Houben, Alexander J. P.; Sijp, Willem P.; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-01-01

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10–17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands. PMID:24753570

  20. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures.

    PubMed

    Douglas, Peter M J; Affek, Hagit P; Ivany, Linda C; Houben, Alexander J P; Sijp, Willem P; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-05-01

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands. PMID:24753570

  1. Paleogeographic implications of high latitude and middle latitude affinities of the ammonoid Uraloceras

    SciTech Connect

    Spinosa, C.; Gallegos, D.M. ); Nassichuk, W.W. ); Snyder, W.S.

    1991-02-01

    The ammonoid genus Uraloceras characterized a Lower Permian Boreal paleogeographic realm. Reported Lower Permian Pangaean uraloceras occurrences have a Boreal or high-latitude distribution. Additional Lower Permian occurrences in Alaska, dominated by Boreal species, are compatible with and reinforce the Boreal distribution of the genus. In contrast, a new Uraloceras species from Nevada and from the Yukon, as well as representatives of the genus form Nei Monggol, inhabited regions of lower latitudes. The latter ammonoid faunas, geographically and paleoecologically transitional between boreal and equatorial realms, include the genus Uraloceras as well as abundant other ammonoid taxa and representatives of equatorial perinitid ammonoids. The lower assemblage of Wrangellia terrane in eastern Alaska, consisting of the Lower Permian Mankomen Group (Slana Spur and Eagle Creek formations), contains abundant Uraloceras and Paragastrioceras of high-latitude affinities. Published paleomagnetic data indicate that the Nikolai Greenstone is of equatorial origin, with paleolatitudes 10 to 17{degree}. The Nikolai Greenstone seems to have a far-traveled history incompatible with ammonoid evidence suggesting cool-water setting on the Pangaean continental shelf. A reinterpretation for the origin of Wrangellia or its magnetic signature may be in order. Alternative hypotheses suggest that the Eagle Creek Uraloceras-Paragastrioceras Boreal fauna was scraped off the craton at higher latitudes (possible 30-45{degree}) and carried with Wrangellia to its present location.

  2. Interaction of mid-latitude air masses with the polar dome area during RACEPAC and NETCARE

    NASA Astrophysics Data System (ADS)

    Bozem, Heiko; Hoor, Peter; Koellner, Franziska; Kunkel, Daniel; Schneider, Johannes; Schulz, Christiane; Herber, Andreas; Borrmann, Stephan; Wendisch, Manfred; Ehrlich, Andre; Leaitch, Richard; Willis, Megan; Burkart, Julia; Thomas, Jennie; Abbatt, Jon

    2016-04-01

    We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories as well as Flexpart particle dispersion modeling we analyze the transport regimes of mid-latitude air masses traveling to the high Arctic prevalent during spring (RACEPAC 2014, NETCARE 2015) and summer (NETCARE 2014). In general more northern parts of the high Arctic (Lat > 75°N) were relatively unaffected from mid-latitude air masses. In contrast, regions further south are influenced by air masses from Asia and Russia (eastern part of Canadian Arctic and European Arctic) as well as from North America (central and western parts of Canadian Arctic). The transition between the mostly isolated high Arctic and more southern regions indicated by tracer gradients is remarkably sharp. This allows for a chemical definition of the Polar dome based on the variability of CO and CO2 as a marker. Isentropic surfaces that slope from the surface to higher altitudes in the high Arctic form the polar dome that represents a transport barrier for mid-latitude air masses to enter the lower troposphere in the high Arctic. Synoptic-scale weather systems frequently disturb this transport barrier and foster the exchange between air masses from the mid-latitudes and polar regions. This can finally lead to enhanced pollution levels in the lower polar troposphere. Mid-latitude pollution plumes from biomass burning or flaring entering the polar dome area lead to an enhancement of 30% of the observed CO mixing ratio within the polar dome area.

  3. Ungulate Reproductive Parameters Track Satellite Observations of Plant Phenology across Latitude and Climatological Regimes

    PubMed Central

    Stoner, David C.; Sexton, Joseph O.; Nagol, Jyoteshwar; Bernales, Heather H.; Edwards, Thomas C.

    2016-01-01

    The effect of climatically-driven plant phenology on mammalian reproduction is one key to predicting species-specific demographic responses to climate change. Large ungulates face their greatest energetic demands from the later stages of pregnancy through weaning, and so in seasonal environments parturition dates should match periods of high primary productivity. Interannual variation in weather influences the quality and timing of forage availability, which can influence neonatal survival. Here, we evaluated macro-scale patterns in reproductive performance of a widely distributed ungulate (mule deer, Odocoileus hemionus) across contrasting climatological regimes using satellite-derived indices of primary productivity and plant phenology over eight degrees of latitude (890 km) in the American Southwest. The dataset comprised > 180,000 animal observations taken from 54 populations over eight years (2004–2011). Regionally, both the start and peak of growing season (“Start” and “Peak”, respectively) are negatively and significantly correlated with latitude, an unusual pattern stemming from a change in the dominance of spring snowmelt in the north to the influence of the North American Monsoon in the south. Corresponding to the timing and variation in both the Start and Peak, mule deer reproduction was latest, lowest, and most variable at lower latitudes where plant phenology is timed to the onset of monsoonal moisture. Parturition dates closely tracked the growing season across space, lagging behind the Start and preceding the Peak by 27 and 23 days, respectively. Mean juvenile production increased, and variation decreased, with increasing latitude. Temporally, juvenile production was best predicted by primary productivity during summer, which encompassed late pregnancy, parturition, and early lactation. Our findings offer a parsimonious explanation of two key reproductive parameters in ungulate demography, timing of parturition and mean annual production

  4. Ungulate Reproductive Parameters Track Satellite Observations of Plant Phenology across Latitude and Climatological Regimes.

    PubMed

    Stoner, David C; Sexton, Joseph O; Nagol, Jyoteshwar; Bernales, Heather H; Edwards, Thomas C

    2016-01-01

    The effect of climatically-driven plant phenology on mammalian reproduction is one key to predicting species-specific demographic responses to climate change. Large ungulates face their greatest energetic demands from the later stages of pregnancy through weaning, and so in seasonal environments parturition dates should match periods of high primary productivity. Interannual variation in weather influences the quality and timing of forage availability, which can influence neonatal survival. Here, we evaluated macro-scale patterns in reproductive performance of a widely distributed ungulate (mule deer, Odocoileus hemionus) across contrasting climatological regimes using satellite-derived indices of primary productivity and plant phenology over eight degrees of latitude (890 km) in the American Southwest. The dataset comprised > 180,000 animal observations taken from 54 populations over eight years (2004-2011). Regionally, both the start and peak of growing season ("Start" and "Peak", respectively) are negatively and significantly correlated with latitude, an unusual pattern stemming from a change in the dominance of spring snowmelt in the north to the influence of the North American Monsoon in the south. Corresponding to the timing and variation in both the Start and Peak, mule deer reproduction was latest, lowest, and most variable at lower latitudes where plant phenology is timed to the onset of monsoonal moisture. Parturition dates closely tracked the growing season across space, lagging behind the Start and preceding the Peak by 27 and 23 days, respectively. Mean juvenile production increased, and variation decreased, with increasing latitude. Temporally, juvenile production was best predicted by primary productivity during summer, which encompassed late pregnancy, parturition, and early lactation. Our findings offer a parsimonious explanation of two key reproductive parameters in ungulate demography, timing of parturition and mean annual production, across

  5. Time trends and latitude dependence of uveal and cutaneous malignant melanoma induced by solar radiation

    SciTech Connect

    Moan, J.; Setlow, R.; Cicarma, E.; Porojnicu, A. C.; Grant, W. B.; Juzeniene, A.

    2010-01-01

    In order to evaluate the role of solar radiation in uveal melanoma etiology, the time and latitude dependency of the incidence rates of this melanoma type were studied in comparison with those of cutaneous malignant melanoma (CMM). Norway and several other countries with Caucasian populations were included. There is a marked north - south gradient of the incidence rates of CMM in Norway, with three times higher rates in the south than in the north. No such gradient is found for uveal melanoma. Similar findings have been published for CMM in other Caucasian populations, with the exception of Europe as a whole. In most populations the ratios of uveal melanoma incidence rates to those of CMM tend to decrease with increasing CMM rates. This is also true for Europe, in spite of the fact that in this region there is an inverse latitude gradient of CMM, with higher rates in the north than in the south. In Norway the incidence rates of CMM have increased until about 1990 but have been constant, or even decreased (for young people) after that time, indicating constant or decreasing sun exposure. The uveal melanoma rates have been increasing after 1990. In most other populations the incidence rates of CMM have been increasing until recently while those of uveal melanoma have been decreasing. These data generally support the assumption that uveal melanomas are not generated by ultraviolet (UV) radiation and that solar UV, via its role in vitamin D photosynthesis, may have a protective effect.

  6. Time trends and latitude dependence of uveal and cutaneous malignant melanoma induced by solar radiation.

    PubMed

    Moan, Johan; Cicarma, Emanuela; Setlow, Richard; Porojnicu, Alina C; Grant, William B; Juzeniene, Asta

    2010-01-01

    In order to evaluate the role of solar radiation in uveal melanoma etiology, the time and latitude dependency of the incidence rates of this melanoma type were studied in comparison with those of cutaneous malignant melanoma (CMM). Norway and several other countries with Caucasian populations were included. there is a marked north-south gradient of the incidence rates of CMM in Norway, with three times higher rates in the south than in the north. No such gradient is found for uveal melanoma. Similar findings have been published for CMM in other Caucasian populations, with the exception of Europe as a whole. In most populations the ratios of uveal melanoma incidence rates to those of CMM tend to decrease with increasing CMM rates. This is also true for Europe, in spite of the fact that in this region there is an inverse latitude gradient of CMM, with higher rates in the north than in the south.In Norway the incidence rates of CMM have increased until about 1990 but have been constant or even decreased (for young people) after that time, indicating constant or decreasing sun exposure. The uveal melanoma rates have been increasing after 1990. In most other populations the incidence rates of CMM have been increasing until recently while those of uveal melanoma have been decreasing. These data generally support the assumption that uveal melanomas are not generated by ultraviolet (UV) radiation and that solar UV, via its role in vitamin D photosynthesis, may have a protective effect.

  7. A high-latitude, low-latitude boundary layer model of the convection current system

    SciTech Connect

    Siscoe, G.L. ); Lotko, W.; Sonnerup, B.U.O. )

    1991-03-01

    Observations suggest that both the high- and low-latitude boundary layers contribute to magnetospheric convection, and that their contributions are linked. In the interpretation pursued here, the high-latitude boundary layer (HBL) generates the voltage while the low-latitude boundary layer (LBL) generates the current for the part of the convection electric circuit that closes through the ionosphere. This paper gives a model that joins the high- and low-latitude boundary layers consistently with the ionospheric Ohm's law. It describes an electric circuit linking both boundary layers, the region 1 Birkeland currents, and the ionospheric Pedersen closure currents. The model works by using the convection electric field that the ionosphere receives from the HBL to determine two boundary conditions to the equations that govern viscous LBL-ionosphere coupling. The result provides the needed self-consistent coupling between the two boundary layers and fully specifies the solution for the viscous LBL-ionosphere coupling equations. The solution shows that in providing the current required by the ionospheric Ohm's law, the LBL needs only a tenth of the voltage that spans the HBL. The solution also gives the latitude profiles of the ionospheric electric field, parallel currents, and parallel potential. It predicts that the plasma in the inner part of the LBL moves sunward instead of antisunward and that, as the transpolar potential decreases below about 40 kV, reverse polarity (region 0) currents appear at the poleward border of the region 1 currents. A possible problem with the model is its prediction of a thin boundary layer ({approximately}1000 km), whereas thicknesses inferred from satellite data tend to be greater.

  8. Dust transport into Martian polar latitudes

    NASA Technical Reports Server (NTRS)

    Murphy, J. R.; Pollack, J. B.

    1992-01-01

    The presence of suspended dust in the Martian atmosphere, and its return to the planet's surface, is implicated in the formation of the polar layered terrain and the dichotomy in perennial CO2 polar cap retention in the two hemispheres. A three dimensional model was used to study Martian global dust storms. The model accounts for the interactive feedbacks between the atmospheric thermal and dynamical states and an evolving radiatively active suspended dust load. Results from dust storm experiments, as well as from simulations in which there is interest in identifying the conditions under which surface dust lifting occurs at various locations and times, indicate that dust transport due to atmospheric eddy motions is likely to be important in the arrival of suspended dust at polar latitudes. The layered terrain in both polar regions of Mars is interpreted as the reality of cyclical episodes of volatile (CO2, H2O) and dust deposition.

  9. High latitude electromagnetic plasma wave emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1983-01-01

    The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.

  10. EGRET sources at intermediate galactic latitude

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P. (Principal Investigator)

    1996-01-01

    This paper presents the abstracts of four papers (using ROSAT data) that are submitted to refereed journals during the current reporting period. The papers are: (1) Extreme x-ray variability in the narrow-line QSO PHL 1092; (2) The Geminga pulsar (soft x-ray variability and an EUVE observation); (3) a broad-band x-ray study of the geminga pulsar; and (4) Classification of IRAS-selected x-ray galaxies in the ROSAT all-sky survey. The abstracts of these papers are given in the next four sections of this report, and their status is given in the Appendix. Finally, two new projects (De-identifying a non-AGN and EGRET sources at intermediate galactic latitude) for which ROSAT data were recently received are currently being studied under this grant. A summary of work in progress on these new projects is given in the last two sections of this report.

  11. Revisiting the question: Does high-latitude solar activity lead low-latitude solar activity in time phase?

    SciTech Connect

    Kong, D. F.; Qu, Z. N.; Guo, Q. L.

    2014-05-01

    Cross-correlation analysis and wavelet transform methods are used to investigate whether high-latitude solar activity leads low-latitude solar activity in time phase or not, using the data of the Carte Synoptique solar filaments archive from 1919 March to 1989 December. From the cross-correlation analysis, high-latitude solar filaments have a time lead of 12 Carrington solar rotations with respect to low-latitude ones. Both the cross-wavelet transform and wavelet coherence indicate that high-latitude solar filaments lead low-latitude ones in time phase. Furthermore, low-latitude solar activity is better correlated with high-latitude solar activity of the previous cycle than with that of the following cycle, which is statistically significant. Thus, the present study confirms that high-latitude solar activity in the polar regions is indeed better correlated with the low-latitude solar activity of the following cycle than with that of the previous cycle, namely, leading in time phase.

  12. Statistical studies of impulsive events at high latitudes

    NASA Technical Reports Server (NTRS)

    Lin, Z. M.; Bering, E. A.; Benbrook, J. R.; Liao, B.; Lanzerotti, L. J.; Maclennan, C. G.; Wolfe, A. N.; Friis-Christensen, E.

    1995-01-01

    A statistical study has been made of the high-latitude impulsive events that were observed during the 1985-1986 South Pole Balloon Campaign. The events were selected by searching for unipolar pulses greater than or equal to 10 nT above background in the vertical component of the magnetic field on the ground and/or pedestal or 'W' shaped horizontal electric field perturbations greater than or equal to 10 mV/m in amplitude and accompanied by perturbations in the vertical electric field at balloon altitude. A main event list comprising 112 events was compiled from the 468 hours of data available. Three aspects of the events were examined: the solar wind conditions prior to the event, local time of observation, and intrinsic properties of the events. The local time distribution was obtained from the 112 entry main event list and was found to be nearly uniform across the dayside, with no midday gap. The event rate found using our low-amplitude selection criteria was 0.7 event/hr, comparable to expectations based on in situ studies of the magnetopause. A total of 42 events were found for which data were available from Interplanetary Monitoring Platform (IMP) 8. Of these events, 12 occurred when the Z(sub GSM) component (B(sub Z)) of the interplanetary magnetic field (IMF) was northward and 30 occurred when B(sub Z) was southward or fluctuating. Only three of the B(sub Z) northward cases and only five of the B(sub Z) southward cases were preceded by pressure pulses greater than 0.4 nPa in amplitude. Ten of the events were studied in detail by means of a model-fitting method discussed elsewhere. This method infers values of several parameters, including the total current flowing in a coaxial or monopole system and a two-dimensional dipole system. The intrinsic properties of the events showed that only approximately 10% of the total current contributed to momentum transfer to the high-latitude ionosphere, that the direction of the motion depended more on local time of

  13. Recurring Slope Lineae in Mid-Latitude and Equatorial Mars

    NASA Astrophysics Data System (ADS)

    McEwen, A. S.; Dundas, C. M.; Mattson, S.; Toigo, A. D.; Ojha, L.; Wray, J. J.; Chojnacki, M.; Byrne, S.; Murchie, S. L.; Thomas, N.

    2013-12-01

    A key to potential present-day habitability of Mars is the presence of liquid H2O (water). Recurring slope lineae (RSL) could be evidence for the seasonal flow of water on relatively warm slopes. RSL are narrow (<5 m), relatively dark markings on steep (25°-40°) slopes that appear and incrementally grow during warm seasons over low-albedo surfaces, fade when inactive, and recur over multiple Mars years. The fans on which RSL terminate have distinctive color and spectral properties. The initially confirmed RSL appear and lengthen in the late southern spring through summer from 48°S to 32°S latitudes, favoring equator-facing slopes--times and places with peak surface temperatures from >250 K to >300 K. In the past year we have monitored active RSL in equatorial (0°-15°S) regions of Mars, especially in the deep canyons of Valles Marineris. They are especially active on north-facing slopes in northern summer and spring and on south-facing slopes in southern spring and summer, following the most normal solar incidence angles on these steep slopes. However, predicted peak temperatures for north-facing slopes are nearly constant throughout the Martian year because orbital periapse occurs near the southern summer solstice. Although warm temperatures and steep low-albedo slopes are required, some additional effect besides temperature may serve to trigger and stop RSL activity. Seasonal variation in the atmospheric column abundance of water does not match the RSL activity. Although seasonal melting of shallow ice could explain the mid-latitude RSL, the equatorial activity requires a different explanation, perhaps migration of briny groundwater. To explain RSL flow lengths, exceeding 1 km in Valles Marineris, the water is likely to be salty. Several RSL attributes are not yet understood: (1) the relation between apparent RSL activity and dustiness of the atmosphere; (2) salt composition and concentration; (3) variability in RSL activity from year to year; (4) seasonal

  14. DOAS measurements of tropospheric bromine oxide in mid-latitudes

    PubMed

    Hebestreit; Stutz; Rosen; Matveiv; Peleg; Luria; Platt

    1999-01-01

    Episodes of elevated bromine oxide (BrO) concentration are known to occur at high latitudes in the Arctic boundary layer and to lead to catalytic destruction of ozone at those latitudes; these events have not been observed at lower latitudes. With the use of differential optical absorption spectroscopy (DOAS), locally high BrO concentrations were observed at mid-latitudes at the Dead Sea, Israel, during spring 1997. Mixing ratios peaked daily at around 80 parts per trillion around noon and were correlated with low boundary-layer ozone mixing ratios.

  15. Latitude and local time dependence of precipitated low energy electrons at high latitudes

    NASA Technical Reports Server (NTRS)

    Gustafsson, G.

    1972-01-01

    Data from particle detectors on board the satellite OGO-4 were used to study the precipitation of electrons in the energy range 0.7 to 24 keV. The latitude dependence of these particles in the local time region from midnight to dawn was investigated in detail. The analysis shows that the precipitation of particles of energies 2.3 to 24 keV is centered at an invariant latitude of about 68 deg at midnight with a clear shift in latitude with increasing local time and this shift is more pronounced for lower energies. The highest fluxes of particles in this energy interval are measured at midnight and they decrease rapidly with local time. The data in the energy range 2.3 to 24 keV support a theory where particles are injected in the midnight region from the tail gaining energy due to a betatron process and then drift eastwards in a combined electric and magnetic field. The main part of the electrons at 0.7 keV show a different behavior. They seem to undergo an acceleration process which is rather local, sometimes giving field aligned fluxes which may be super-imposed on the background precipitation.

  16. Concentrations of foliar quercetin in natural populations of white birch (Betula pubescens) increase with latitude.

    PubMed

    Stark, Sari; Julkunen-Tiitto, Riitta; Holappa, Esa; Mikkola, Kari; Nikula, Ari

    2008-11-01

    We investigated latitudinal and regional variations in the composition and concentrations of foliar flavonoids and condensed tannins in wild populations of white birch (Betula pubescens EHRH) in a large climatic transect in Finland. Concentrations of quercetin derivatives were correlated positively with latitude. By contrast, the concentrations of apigenin and naringenin derivatives were correlated negatively with latitude. These compound-specific latitudinal gradients compensated each other, resulting in no changes in the concentration of total flavonoids. Our results thus demonstrate a qualitative, but not quantitative, latitude-associated gradient in the foliar flavonoids in white birch. Due to higher antioxidant capacity of the quercetin derivatives in relation to other flavonoids, the qualitative change can reflect higher adaptation to light in the north than south. An investigation on a regional scale in the northern boreal zone showed that the temperature sum was correlated positively and soil P concentration was correlated negatively with the concentrations of foliar flavonoid, while the concentration of condensed tannins was correlated with slope. The variation in concentrations of flavonoids at large-scale geographical patterns is in line with the conjecture that foliar flavonoids are synthesized for protection against photooxidative stress.

  17. Regional and Latitude Variability in Diurnally Modulated Neutron Flux Measured by LRO/LEND

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Mitrofanov, I. G.; Bodnarik, J.; Boynton, W. V.; Chin, G.; Evans, L. G.; Harshman, K.; Litvak, M. L.; McClanahan, T. P.; Sagdeev, R.; Sanin, A. B.; Starr, R. D.; SU, J. J.

    2015-12-01

    Diurnal variability of epithermal neutron leakage flux from the Moon has been demonstrated at near-equatorial latitudes, combining neutron flux measurements at 30°S to 30°N from the Lunar Exploration Neutron Detector (LEND), on the polar-orbiting Lunar Reconnaissance Orbiter (LRO) spacecraft. The measured signal demonstrates a minimum at dawn and a maximum in the mid to late afternoon. The pattern is consistent with neutron flux suppression at dawn due to a maximum water concentration in the upper one meter of regolith. The present work expands on this earlier low-latitude effort by investigating specific regions of interest: the nearside Maria, the farside lunar highlands, and the farside South Pole-Aitken Basin region, as well as investigating how latitude affects the measurable diurnal variability. Investigating the possibility of regional variability tied to geologic properties of the surface may help to discriminate between interpretations for the source mechanism driving diurnal variability, temperature or variable hydrogenation/hydration of the surface.

  18. Solar Cycle Effects on Equatorial Electrojet Strength and Low Latitude Ionospheric Variability (P10)

    NASA Astrophysics Data System (ADS)

    Veenadhari, B.; Alex, S.

    2006-11-01

    veena_iig@yahoo.co.in The most obvious indicators of the activity of a solar cycle are sunspots, flares, plages, and soon. These are intimately linked to the solar magnetic fields, heliospheric processes which exhibit complex but systematic variations. The changes in geomagnetic activity, as observed in the ground magnetic records follow systematic correspondence with the solar activity conditions. Thus the transient variations in the magnetic field get modified by differing solar conditions. Also the solar cycle influences the Earth causing changes in geomagnetic activity, the magnetosphere and the ionosphere. Daily variations in the ground magnetic field are produced by different current systems in the earth’s space environment flowing in the ionosphere and magnetosphere which has a strong dependence on latitude and longitude of the location. The north-south (Horizontal) configuration of the earth’s magnetic field over the equator is responsible for the narrow band of current system over the equatorial latitudes and is called the Equatorial electrojet (EEJ) and is a primary driver for Equatorial Ionization anomaly (EIA). Equatorial electric fields and plasma drifts play the fundamental roles on the morphology of the low latitude ionosphere and strongly vary during geomagnetically quiet and disturbed periods. Quantitative study is done to illustrate the development process of EEJ and its influence on ionospheric parameters. An attempt is also made to examine and discuss the response of the equatorial electrojet parameters to the fast varying conditions of solar wind and interplanetary parameters.

  19. Mountains and arid climates of middle latitudes

    SciTech Connect

    Manabe, S.; Broccoli, A.J. )

    1990-01-12

    Simulations from a global climate model with and without orography have been used to investigate the role of mountains in maintaining extensive arid climates in middle latitudes of the Northern hemisphere. Dry climates similar to those observed were simulated over central Asia and western interior North America in the experiment with mountains, whereas relatively moist climates were simulated in these areas in the absence of orography. The experiments suggest that these interior regions are dry because general subsidence and relatively infrequent storm development occur upstream of orographically induced stationary wave troughs. Downstream of these troughs, precipitation-bearing storms develop frequently in association with strong jet streams. In contrast, both atmospheric circulation and precipitation were more zonally symmetric in the experiment without mountains. In addition, orography reduces the moisture transport into the continental interiors from nearby oceanic sources. The relative soil wetness of these regions in the experiment without mountains is consistent with paleoclimatic evidence of less aridity during the late Tertiary, before substantial uplift of the Rocky Mountains and Tibetan Plateau is believed to have occurred.

  20. Mountains and arid climates of middle latitudes.

    PubMed

    Manabe, S; Broccoli, A J

    1990-01-12

    Simulations from a global climate model with and without orography have been used to investigate the role of mountains in maintaining extensive arid climates in middle latitudes of the Northern Hemisphere. Dry climates similar to those observed were simulated over central Asia and western interior North America in the experiment with mountains, whereas relatively moist climates were simulated in these areas in the absence of orography. The experiments suggest that these interior regions are dry because general subsidence and relatively infrequent storm development occur upstream of orographically induced stationary wave troughs. Downstream of these troughs, precipitation-bearing storms develop frequently in association with strong jet streams. In contrast, both atmospheric circulation and precipitation were more zonally symmetric in the experiment without mountains. In addition, orography reduces the moisture transport into the continental interiors from nearby oceanic sources. The relative soil wetness of these regions in the experiment without mountains is consistent with paleoclimatic evidence of less aridity during the late Tertiary, before substantial uplift of the Rocky Mountains and Tibetan Plateau is believed to have occurred.

  1. The Swinburne intermediate-latitude pulsar survey

    NASA Astrophysics Data System (ADS)

    Edwards, R. T.; Bailes, M.; van Straten, W.; Britton, M. C.

    2001-09-01

    We have conducted a survey of intermediate Galactic latitudes using the 13-beam 21-cm multibeam receiver of the Parkes 64-m radio telescope. The survey covered the region enclosed by 5°<|b|<15° and -100°

  2. Low latitude middle atmosphere ionization studies

    NASA Technical Reports Server (NTRS)

    Bassi, J. P.

    1976-01-01

    Low latitude middle atmosphere ionization was studied with data obtained from three blunt conductivity probes and one Gerdien condenser. An investigation was conducted into the effects of various ionization sources in the 40 to 65 Km altitude range. An observed enhancement of positive ion conductivity taking place during the night can be explained by an atmsopheric effect, with cosmic rays being the only source of ionization only if the ion-ion recombination coefficient (alpha sub i) is small(10 to the -7 power cu cm/s) and varies greatly with altitude. More generally accepted values of alpha sub i ( approximately equal to 3x10 to the -7 power cu cm/s) require an additional source of ionization peaking at about 65 Km, and corresponding approximately to the integrated effect of an X-ray flux measured on a rocket flown in conjunction with the ionization measurements. The reasonable assumption of an alpha sub i which does not vary with altitude in the 50-70 Km range implies an even greater value alpha sub i and a more intense and harder X-ray spectrum.

  3. The lower ionosphere at high latitudes

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Sojka, J. J.

    The lower ionosphere is a particularly difficult region to both observe and model. Although radars and rockets have probed this region for more than two decades, our overall understanding of the interplay between radiative, chemical, dynamical, and electrodynamical processes in the lower ionosphere is relatively poor in comparison to the other regions of the solar-terrestrial system. Part of the problem is that the various radar and rocket campaigns have focused on different scientific issues, have been of limited duration, or have been restricted to specific geographical locations. However, the lower ionosphere is a complex region, being acted upon by magnetospheric processes from above and stratospheric processes from below. Within the lower ionosphere are chemical reactions involving negative, positive, and cluster ions; transport processes that sometimes involve ordinary diffusion, turbulence, and wave-particle interactions due to plasma instabilities; radiative processes that could involve multiple scattering effects; and energetics that could result in non-Maxwellian ion velocity distribution functions. A further complication arises in that the processes acting on and within the lower ionosphere do so on widely different spatial and temporal scales, and these scales are directly reproduced in the medium. An overview of our current knowledge of the lower ionosphere is presented in this brief review, with the emphasis on the high latitude region.

  4. AIRS total precipitable water over high latitudes

    NASA Astrophysics Data System (ADS)

    Ye, H.; Fetzer, E. J.; Bromwich, D. H.; Fishbein, E.; Olsen, E. T.; Granger, S.; Lee, S.; Lambrigtsen, B.; Chen, L.

    2006-12-01

    Given the importance of atmospheric conditions over the Arctic and Antarctica to the global climate system, hydrological cycles, and cryopspheric dynamics, and the poor coverage of traditional data over these region, AIRS data will play a significant role in filling the information gaps. In this study, we examine the quality of AIRS total atmospheric precipitable water (PWV) and explore its potential applications over the Antarctica and Arctic. For Antarctica, both Level II matching files and Level III gridded products of AIRS are compared with radiosonde records at Dome C and ECMWF's analysis products during December 10, 2003 to January 26, 2004. Results will testify to the quality of AIRS moisture data over glacial surfaces. For the Arctic region, AIRS level III data are used to compare with AMSR-E data and ECMWF analysis product during September of 2004. Results will reveal the quality of AIRS data over high-latitude water, sea ice, and land surfaces. The potential of AIRS data to improve model simulation will be discussed.

  5. Magnetospheric resonances at low and middle latitudes

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Huba, J. D.

    2015-09-01

    We present results from a numerical study of structure and dynamics of dispersive Alfvén waves in the near-Earth magnetosphere containing proton radiation belt (near L = 1.5 dipole magnetic shell). The interest in this problem is motivated by numerous observations of magnetic oscillations with frequencies in the range of 0.1-4.0 Hz detected on the ground at low and middle latitudes. In a number of studies these oscillations interpreted as shear Alfvén waves standing inside the so-called ionospheric Alfvén resonator. We present results from two-dimensional, time-dependent simulations of the reduced two-fluid MHD model performed in the dipole magnetic field geometry with the realistic parameters of the magnetospheric plasma. These simulations show that these pulsations can be produced by the fundamental mode of the global field line resonator, spanning the entire magnetic field line in the low or middle magnetosphere. Simulations also show that even the waves with the highest considered frequencies (2.44 Hz) are not trapped inside the ionospheric resonator. Therefore, if these waves will be generated by some ionospheric source, then they can reach the equatorial magnetosphere and interact with energetic protons in the proton radiation belt.

  6. Magnetospheric Resonances at Low and Middle Latitudes

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Huba, J. D.

    2015-12-01

    We present results from a numerical study of structure and dynamics of dispersive Alfven waves in the near-earth magnetosphere containing proton radiation belt (near L=1.5 dipole magnetic shell). The interest in this problem is motivated by numerous observations of magnetic oscillations with frequencies in the range of 0.1-4.0 Hz detected on the ground at low and middle latitudes. In a number of studies these oscillations interpreted as shear Alfven waves standing inside the so-called ionopspheric Alfven resonator (IAR). We present results from two-dimensional, time dependent simulations of the reduced two-fluid MHD model performed in the dipole magnetic field geometry with the realistic parameters of the magnetospheric plasma. These simulations show that these pulsations can be produced by the fundamental mode of the global field line resonator (FLR), spanning the entire magnetic field line in the low or middle magnetosphere. Simulations also show that even the waves with the highest considered frequencies (2.44 Hz) are not trapped inside the ionospheric resonator. Therefore, if these waves will be generated by some ionospheric source, then they can reach the equatorial magnetosphere and interact with energetic protons in the proton radiation belt.

  7. Geographic latitude and prevalence of adolescent idiopathic scoliosis.

    PubMed

    Grivas, Theodoros B; Vasiliadis, Elias; Savvidou, Olga; Mouzakis, Vasilios; Koufopoulos, Georgios

    2006-01-01

    Adolescent Idiopathic Scoliosis (AIS) prevalence has been reported to be different in various geographic latitudes and demonstrates higher values in northern countries. A study on epidemiological reports from the literature was conducted to record the prevalence of AIS among the general population of boys and girls, aged 10-16 years old, in different geographic latitudes, in order to test the hypothesis that the prevalence of AIS among boys and girls is different in various geographic latitudes and to examine if there is a possible association between them. Seventeen peer-reviewed published papers reporting AIS prevalence in the general population of boys and girls from most geographic areas of the northern hemisphere were retrieved from the literature. The geographic latitude of each centre where a particular study was originated was documented. The statistical analysis included a linear regression forward modeling procedure of the AIS prevalence by latitude, weighted by sample size. According to the modelling of the data, a significant positive association between prevalence of AIS and latitude was found for girls (p<0.001), following a rather curvilinear trend, but not a significant positive association was found for boys (p<0.111). A positive association between prevalence of AIS and geographic latitude is reported only for girls in the present study. Prevalence of AIS in boys is not associated significantly with geographic latitude. This differing significant association implicates the possible role of environmental factors in the pathogenesis of AIS that may act in a different way between boys and girls.

  8. Latitude: How American Astronomers Solved the Mystery of Variation

    NASA Astrophysics Data System (ADS)

    Ray, Richard D.

    First longitude, now latitude. From Latitude's title we cannot help thinking of Dava Sobel's recent bestseller, Longitude. I suppose it's unlikely to be such a moneymaker, but this delightful new book by Bill and Merri Sue Carter, a father and daughter team, is similar to Sobel's book. Both are physically small, with short chapters, which makes for a quick read. And both have a clear hero: John Harrison and his chronometers for longitude; and Seth Carlo Chandler Jr. and his almucantar for latitude. Both books eschew academic-style footnoting, although Latitude does list a few useful sources for each chapter and provides a comprehensive list of Chandler's astronomical publications. Chandler's name is known to most AGU members for its association with the 14-month wobble of the Earth's pole. He also discovered the slightly smaller annual wobble, and an argument can be made that he was the principal discoverer of polar motion, or latitude variation, in general.

  9. Long-term trends in the East Australian Current separation latitude and eddy driven transport

    NASA Astrophysics Data System (ADS)

    Cetina-Heredia, P.; Roughan, M.; van Sebille, E.; Coleman, M. A.

    2014-07-01

    An observed warming of the Tasman Sea in recent decades has been linked to a poleward shift of the maximum wind stress curl, and a strengthening of the poleward flow along the coast of southeastern Australia. However, changes in the East Australian Current (EAC) separation latitude, as well as in the contribution of the EAC, the EAC extension and its eddy field to the total southward transport due to such a strengthening remain unknown. This study uses 30 years (1980-2010) of the Ocean Forecast for the Earth Simulator (OFES) sea surface height and velocity outputs to obtain a three decade long-time series of (i) the EAC separation latitude, (ii) the southward transport along the coast of southeastern Australia (28°S-39°S), and (iii) the southward transport across the EAC separation latitude. A Lagrangian approach is implemented and the spin parameter Ω is used to provide a quantitative distinction between the transports occurring outside and inside (cyclonic and anticyclonic) eddies. Significant positive trends of the low pass southward transports indicate that the intensification of the poleward flow has occurred both within the EAC and in the EAC extension. In addition, a significant increase in southward transport inside and outside eddies is found. Importantly, the contribution of eddy driven transport has a large temporal variability and shows a sharp increase from 2005 onward. Finally our results show that the EAC has not penetrated further south but it has separated more frequently at the southernmost latitudes within the region where it typically turns eastward.

  10. Differential migration and the link between winter latitude, timing of migration, and breeding in a songbird.

    PubMed

    Woodworth, Bradley K; Newman, Amy E M; Turbek, Sheela P; Dossman, Bryant C; Hobson, Keith A; Wassenaar, Leonard I; Mitchell, Greg W; Wheelwright, Nathaniel T; Norris, D Ryan

    2016-06-01

    Patterns of connectivity between breeding and wintering grounds can have important implications for individual fitness and population dynamics. Using light-level geolocators and stable hydrogen isotopes (δ(2)H) in feathers, we evaluated differential migration of Savannah sparrows (Passerculus sandwichensis) breeding on Kent Island in the Bay of Fundy, New Brunswick, Canada in relation to sex, age, and body size. Based on geolocators recovered from 38 individuals between 2012 and 2014, the winter distribution was centered in North Carolina (median latitude 34°, range 26°-41°), with males overwintering, on average, approximately 275 km further north than females. Based on analyses of tail feather samples collected from 106 individuals from the same population between 2008 and 2012, males and adults had more negative δ(2)H values than females and juveniles, respectively, providing additional evidence that males wintered north of females and that adults wintered north of juveniles. Winter latitude and δ(2)H values within each sex were not found to be related to body size. From geolocator data, males returned to the breeding grounds, on average, 14 days earlier than females. For males, there was some evidence that arrival date on the breeding grounds was negatively correlated with winter latitude and that individuals which arrived earlier tended to breed earlier. Thus, benefits for males of early arrival on the breeding grounds may have contributed to their wintering farther north than females. Social dominance may also have contributed to age and sex differences in winter latitude, whereby dominant males and adults forced subordinate females and juveniles further south.

  11. Carbon cycling in high-latitude ecosystems

    NASA Technical Reports Server (NTRS)

    Townsend, Alan; Frolking, Stephen; Holland, Elizabeth

    1992-01-01

    The carbon-rich soils and peatlands of high-latitude ecosystems could substantially influence atmospheric concentrations of CO2 and CH4 in a changing climate. Currently, cold, often waterlogged conditions retard decomposition, and release of carbon back to the atmosphere may be further slowed by physical protection of organic matter in permafrost. As a result, many northern ecosystems accumulate carbon over time (Billings et al., 1982; Poole and Miller, 1982), and although such rates of accumulation are low, thousands of years of development have left Arctic ecosystems with an extremely high soil carbon content; Schlesinger's (1984) average value of 20.4 kg C/m(sup 2) leads to a global estimate of 163 x 10(exp 15) g C. All GCM simulations of a doubled CO2 climate predict the greatest warming to occur in the polar regions (Dickinson, 1986; Mitchell, 1989). Given the extensive northern carbon pools and the strong sensitivity of decomposition processes to temperature, even a slight warming of the soil could dramatically alter the carbon balance of Arctic ecosystems. If warming accelerates rates of decomposition more than rates of primary production, a sizeable additional accumulation of CO2 in the atmosphere could occur. Furthermore, CH4 produced in anaerobic soils and peatlands of the Arctic already composes a good percentage of the global efflux (Cicerone and Oremlund, 1988); if northern soils become warmer and wetter as a whole, CH4 emissions could dramatically rise. A robust understanding of the primary controls of carbon fluxes in Arctic ecosystems is critical. As a framework for a systematic examination of these controls, we discussed a conceptual model of regional-scale Arctic carbon turnover, including CH4 production, and based upon the Century soil organic matter model.

  12. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    NASA Technical Reports Server (NTRS)

    Simon-Miller, A. A.; Rogers, John H.; Gierasch, Peter J.; Choi, David; Allison, Michael; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-01-01

    We have conducted a detailed study of the cloud features in the strong southern equatorial wind jet near 7.5 S planetographic latitude. To understand the apparent variations in average zonal wind jet velocity at this latitude [e.g.. 1,2,3], we have searched for variations iIi both feature latitude and velocity with longitude and time. In particular, we focused on the repetitive chevron-shaped dark spots visible on most dates and the more transient large anticyclonic system known as the South Equatorial Disturbance (SED). These small dark spots are interpreted as cloud holes, and are often used as material tracers of the wind field.

  13. Relationships of high-latitude geomagnetic variations to interplanetary plasma conditions

    SciTech Connect

    Wolfe, A. AT T Bell Laboratories, Murray Hill, NJ ); Lanzerotti, L.J.; Maclennan, C.G.; Medford, L.V. )

    1987-01-01

    As an extension of the United States program at South Pole Station to study in detail the southern magnetospheric cusp region, the authors have initiated geomagnetic studies at Iqaluit (formerly Frobisher Bay), Baffin Island, Northwest Territories, Canada. This location is approximately geomagnetically conjugate to South Pole Station under quiet geomagnetic conditions. Both sites are just inside the equatorward boundary of the dayside magnetospheric cusps in their respective hemispheres. This research includes studies of the conjugacy of geometric activity at these high latitudes, studies of the conditions under which conjugacy breaks down, and the relationship of geomagnetic variations to energy sources in the interplanetary plasma. In both hemispheres, variations in the magnetic field are measured with fluxgate magnetometers over the range from 0.0 to approximately 0.5 hertz. The field variations are measured in three orthogonal components: Geomagnetic north-south (H-component), geomagnetic east-west (D-component), and vertical (V-component). The magnetic field data are analyzed using a number of statistical techniques, including power spectra analysis. Presented here are the results of a study of hourly power spectra computed for the the H-component magnetic field data acquired at both South Pole and Iqaluit for the 30-day interval 17 July to 15 August 1985. After computing the spectra, the geomagnetic power is calculated over several different bandwidths corresponding, roughly, to frequencies related to hydromagnetic waves in the Earth's magnetosphere.

  14. South Africa

    Atmospheric Science Data Center

    2013-04-16

    article title:  Red Tide Strands South African Rock Lobsters     ... and on atmospheric and oceanic conditions. At Elands Bay in South Africa's Western Cape province, about 1000 tons of rock lobsters beached ...

  15. Quiet geomagnetic field representation for all days and latitudes

    USGS Publications Warehouse

    Campbell, W.H.; Schiffmacher, E.R.; Arora, B.R.

    1992-01-01

    Describes a technique for obtaining the quiet-time geomagnetic field variation expected for all days of the year and distribution of latitudes from a limited set of selected quiet days within a year at a discrete set of locations. A data set of observatories near 75??E longitude was used as illustration. The method relies upon spatial smoothing of the decomposed spectral components. An evaluation of the fidelity of the resulting model shows correlation coefficients usually above 0.9 at the lower latitudes and near 0.7 at the higher latitudes with variations identified as dependent upon season and field element. -from Authors

  16. Effect of high latitude filtering on NWP skill

    NASA Technical Reports Server (NTRS)

    Kalnay, E.; Takacs, L. L.; Hoffman, R. N.

    1984-01-01

    The high latitude filtering techniques commonly employed in global grid point models to eliminate the high frequency waves associated with the convergence of meridians, can introduce serious distortions which ultimately affect the solution at all latitudes. Experiments completed so far with the 4 deg x 5 deg, 9-level GLAS Fourth Order Model indicate that the high latitude filter currently in operation affects only minimally its forecasting skill. In one case, however, the use of pressure gradient filter significantly improved the forecast. Three day forecasts with the pressure gradient and operational filters are compared as are 5-day forecasts with no filter.

  17. Intercomparison of mid latitude storm diagnostics (IMILAST)

    NASA Astrophysics Data System (ADS)

    Neu, U.

    2009-04-01

    Diagnostics of the observed and projection of the future changes of extratropical storms are a key issue e.g. for insurance companies, risk management and adaptation planning. Storm-associated damages are amongst the highest losses due to natural disasters in the mid-latitudes. Therefore the knowledge of the future variability and change in extratropical cyclone frequency, intensity and track locations is crucial for the strategic planning and minimization of the disaster impacts. Future changes in the total number of storms might be small but major signals could occur in the characteristics of cyclone life cycle such as intensity, life time, track locations. The quantification of such trends is not independent from the methodologies for storm track detection applied to observational data and models. Comparison of differences in cyclone characteristics obtained using different methods from a single data set may be as large as or even exceed the differences between the results derived from different data sets using a single methodology. Even more, the metrics used become particularly sensitive, resulting in the fact that scientific studies may find seemingly contradictory results based on the same datasets. For users of storm track analyses and projections the results are very difficult to interprete. Thus, it would be very helpful if the research community would provide information in a kind of "handbook" which contains definitions and a description of the available different identification and tracking schemes as well as of the parameters used for the quantification of cyclone activity. It cannot be expected that there is an optimum or standard scheme that fulfills all needs. Rather, a proper knowledge about advantages and restrictions of different schemes must be obtained to be able to provide a synthesis of results rather than puzzling the scientific and the general public with apparently contradicing statements. The project IMILAST aims at providing a

  18. Hydrated Sulfates in the Southern High Latitudes of Mars

    NASA Astrophysics Data System (ADS)

    Ackiss, S. E.; Wray, J. J.

    2012-12-01

    Sulfates on Mars appear largely concentrated in sedimentary rocks dating to the Late Noachian or Hesperian [e.g., 1], but they are also abundant in Amazonian sand dunes around the north polar cap [2]. The gypsum in those dunes derives from the polar layered deposits [e.g., 3], where it may form when sunlight causes minor melting and weathering of embedded dust. We are investigating whether such processes might have also contributed to sulfate formation elsewhere, specifically in regions surrounding the south polar terrain. Our study regions to date include the Sisyphi Montes (20W-40E and 55-75S) and other mountainous areas near the Thyles Rupes (110-140E and 55-75S), the Ulyxis Rupes (150-180E and 55-70S), and Chamberlin Crater (110-150W and 55-75S). We searched for sulfates using the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). TRR3 images were evaluated using standard CRISM procedures, including the "volcano scan" atmospheric correction. We used spectral parameters to identify regions of interest, from which we extracted spectra, which we divided by spectrally neutral regions in the same scene to remove systematic artifacts. The resulting ratio spectra were visually compared to library spectra to identify possible hydrated mineral constituents. Some sulfates in the southern high latitudes appear localized to mountains of the Sisyphi Montes, which have been interpreted as volcanoes that erupted under a Hesperian ice sheet [4]. These sulfates might have formed via volcanic hydrothermal or acid fog alteration. We found that nearly 50% of the images on putative volcanoes in the Sisyphi Montes show a 1.9 μm absorption consistent with hydration. The percentage for images on the plains between volcanoes is actually higher; i.e., hydration is not unique to the volcanoes. Nevertheless, the three locations at which we found the strongest absorptions are all on volcanoes. In the Thyles Rupes region, 25% of the images on putative volcanoes are hydrated with

  19. Out of the Tropical Lowlands: Latitude versus Elevation.

    PubMed

    Qian, Hong; Ricklefs, Robert E

    2016-10-01

    Temperate plant communities have been assembled from tropical, lowland floras through different evolutionary pathways with respect to invading more recent cool environments at higher latitudes (niche conservatism) and occupying older cool environments at higher elevations within the tropics (niche convergence).

  20. Propagation of Upper Atmospheric Storm Effects Towards Lower Latitudes

    NASA Astrophysics Data System (ADS)

    Prölss, G. W.; Očko, M.

    It has been suggested that both positive ionospheric storms at middle latitudes and anomalous increases in the neutral thermospheric density at low latitudes are caused by traveling atmospheric disturbances (TADs). Here we test this idea using ionosonde measurements and CASTOR satellite data. It is found that the major density enhancements observed during the January 10, March 26, and April 1, 1976 storm events are all preceded by ionospheric perturbations at middle latitudes. These perturbations consist of an increase in layer height followed by an increase in the ionization density. Since these are typical signatures of TADs, the present data set confirms the idea that a significant part of the upper atmosphere storm energy is transported from high to low latitudes by large-scale waves

  1. Widespread Low-Latitude Diurnal CO2 Frost on Mars

    NASA Astrophysics Data System (ADS)

    Piqueux, S.; Kleinböhl, A.; Hayne, P. O.; Heavens, N. G.; Kass, D. M.; McCleese, D. J.; Schofield, J. T.; Shirley, J. H.

    2016-09-01

    We map and characterize MCS nighttime surface temperature observations consistent with the occurrence of CO2 frost on Mars. Low-latitude nighttime CO2 frost is widespread, with potential implications for the physical nature of the surface layer.

  2. The role of TIDs in the creation of the electron density irregularities in the middle-latitude F region

    NASA Astrophysics Data System (ADS)

    Oh, S. J.; Kil, H.; Kwak, Y. S.; Lee, W. K.; Tae-yong, Y.; Park, J.

    2015-12-01

    The creation of the electron density irregularities in the middle latitude F region is often interpreted in association with traveling ionospheric disturbances (TIDs). However, the occurrence climatology of the irregularities is somewhat different from that of TIDs, and therefore, a different source of the irregularities may exist. In this study, we investigate the variability of the middle-latitude irregularities with local time, season, and solar cycle by analyzing the measurements of the ion density by the CHAMP (2001-2009) and Swarm (2014-2015) satellite observations. The occurrence climatology of the field-aligned irregularities (FAIs) in middle latitude is also investigated with the VHF radar observations acquired since January 2010 at Daejeon in South Korea. The role of TIDs in the creation of the middle latitude irregularities and FAIs is investigated by comparing the their occurrence climatology with the climatology of TIDs. The conventional wisdom is that the activity of TID decreases with an increase of the solar activity. However, our preliminary results show that the occurrence rate of the FAI increases with an increase of the solar activity. The distribution of the irregularities derived from the analysis of the satellite observations may provide insight into the relationship between TIDs, FAIs, and irregularities.

  3. Assessment of Plio-Pleistocene Sea Surface Temperature Evolution Across Ocean Basins, Hemispheres, and Latitudes

    NASA Astrophysics Data System (ADS)

    Peterson, L.; Lawrence, K. T.; Mauriello, H.; Wilson, J.; Holte, L.

    2015-12-01

    New sea surface temperature (SST) records from the southern Pacific and southern Atlantic Oceans allow assessment of similarities and differences in climate evolution across ocean basins, hemispheres, and latitudes over the last 5 million years. Our high-resolution, alkenone-derived SST records from ODP Sites 1088 (South Atlantic, 41°S) and 1125 (South Pacific, 42°S) share strong structural similarities. When compared with SST records from the mid-latitudes of the northern hemisphere, these records provide compelling evidence for broadly hemispherically symmetrical open-ocean temperature evolution in both ocean basins as tropical warm pools contracted over the Plio-Pleistocene. This symmetry in temperature evolution occurs despite strong asymmetries in the development of the cryosphere over this interval, which was marked by extensive northern hemisphere ice sheet growth. Parallel SST evolution across ocean basins and hemispheres suggests that on longterm (>105 yr) timescales, many regions of the world ocean are more sensitive to the global energy budget than to local or regional climate dynamics, although important exceptions include coastal upwelling zone SSTs, high latitude SSTs, and benthic δ18O. Our analysis further reveals that throughout the last 5 Ma, temperature evolution in the extra-tropical Pacific of both hemispheres is very similar to the evolution of SST in the eastern equatorial Pacific upwelling zone, revealing tight coupling between the growth of meridional and equatorial Pacific zonal temperature gradients over this interval as both the extra-tropics and the eastern equatorial Pacific cold tongue underwent cooling. Finally, while long term temperature evolution is broadly consistent across latitudes and ocean basins throughout the entire Plio-Pleistocene, we see evidence that climate coupling on orbital timescales strengthened significantly at 2.7 Ma, at which point obliquity-band coherence emerges among diverse SST records. We attribute this

  4. Home Reef, South Pacific

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In the South Pacific, south of Late Island along the Tofua volcanic arc in Tonga, a new volcanic island Home Reef is being re-born. The island is thought to have emerged after a volcanic eruption in mid-August that has also spewed large amounts of floating pumice into Tongan waters and sweeping across to Fiji about 350 km (220 miles) to the west of where the new island has formed. In 2004 a similar eruption created an ephemeral island about 0.5 by 1.5 km (0.3 by 0.9 miles) in size; it was no longer visible in an ASTER image acquired November 2005. This simulated natural color image shows the vegetation-covered stratovolcanic island of Late in the upper right. Home Reef is found in the lower left. The two bluish plumes are hot seawater that is laden with volcanic ash and chemicals; the larger one can be traced for more than 14 km (8.4 miles) to the east. The image was acquired October 10, 2006 and covers an area of 24.3 by 30.2 km. It is located at 18.9 degrees South latitude, 174.7 degrees west longitude.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation

  5. Mapping high-latitude plasma convection with coherent HF radars

    NASA Technical Reports Server (NTRS)

    Ruohoniemi, J. M.; Greenwald, R. A.; Baker, K. B.; Villain, J.-P.; Hanuise, C.

    1989-01-01

    Several methods developed for mapping high-latitude plasma convection with a high-latitude HF radar are described, which utilize coherent backscatter from electron density irregularities at F-region altitudes to observe convective plasma motion. Several examples of two-dimensional convection-velocity maps are presented, showing instances of L-shell-aligned flow in the dusk sector, the reversal of convection near magnetic midnight, and counterstreaming in the dayside cleft.

  6. Dependence of the charge exchange lifetimes on mirror latitude

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Bewtra, N. K.

    1976-01-01

    The dependence of the charge exchange lifetimes on the mirror latitude for ions mirroring off the geomagnetic equator was re-computed using the improved hydrogen distribution models. The Chamberlain model was used to define the spatial distribution of the neutral hydrogen environment through which the ring current ions traverse. The resultant dependence of the charge exchange lifetime on mirror latitude is best fitted by the approximation that contains the charge exchange lifetime for equatorial particles.

  7. Geographic control of Titan's mid-latitude clouds.

    PubMed

    Roe, Henry G; Brown, Michael E; Schaller, Emily L; Bouchez, Antonin H; Trujillo, Chadwick A

    2005-10-21

    Observations of Titan's mid-latitude clouds from the W. M. Keck and Gemini Observatories show that they cluster near 350 degrees W longitude, 40 degrees S latitude. These clouds cannot be explained by a seasonal shift in global circulation and thus presumably reflect a mechanism on Titan such as geysering or cryovolcanism in this region. The rate of volatile release necessary to trigger cloud formation could easily supply enough methane to balance the loss to photolysis in the upper atmosphere. PMID:16239473

  8. Geographic control of Titan's mid-latitude clouds.

    PubMed

    Roe, Henry G; Brown, Michael E; Schaller, Emily L; Bouchez, Antonin H; Trujillo, Chadwick A

    2005-10-21

    Observations of Titan's mid-latitude clouds from the W. M. Keck and Gemini Observatories show that they cluster near 350 degrees W longitude, 40 degrees S latitude. These clouds cannot be explained by a seasonal shift in global circulation and thus presumably reflect a mechanism on Titan such as geysering or cryovolcanism in this region. The rate of volatile release necessary to trigger cloud formation could easily supply enough methane to balance the loss to photolysis in the upper atmosphere.

  9. Cosmology with the WFIRST High Latitude Survey

    NASA Astrophysics Data System (ADS)

    Dore, Olivier

    Cosmic acceleration is the most surprising cosmological discovery in many decades. Testing and distinguishing among possible explanations requires cosmological measurements of extremely high precision that probe the full history of cosmic expansion and structure growth. The WFIRST-AFTA mission, as described in the Science Definition Team (SDT) reports (Spergel 2013, 2015), has the ability to improve these measurements by 1-2 orders of magnitude compared to the current state of the art, while simultaneously extending their redshift grasp, greatly improving control of systematic effects, and taking a unified approach to multiple probes that provide complementary physical information and cross-checks of cosmological results. We have assembled a team with the expertise and commitment needed to address the stringent challenges of the WFIRST dark energy program through the Project's formulation phase. After careful consideration, we have elected to address investigations A (Galaxy Redshift Survey) and C (Weak Lensing and Cluster Growth) of the WFIRST SIT NRA with a unified team, because the two investigations are tightly linked at both the technical level and the theoretical modeling level. The imaging and spectroscopic elements of the High Latitude Survey (HLS) will be realized as an integrated observing program, and they jointly impose requirements on instrument and telescope performance, operations, and data transfer. The methods for simulating and interpreting weak lensing and galaxy clustering observations largely overlap, and many members of our team have expertise in both areas. The team PI, Olivier Dore, is a cosmologist with a broad expertise in cosmic microwave background and large scale structures. Yun Wang and Chris Hirata will serve as Lead Co-Investigators for topics A and C, respectively. Many members of our team have been involved with the design and requirements of a dark energy space mission for a decade or more, including the Co-Chair and three

  10. How Strong is the Case for Proterozoic Low-Latitude Glaciation?

    NASA Astrophysics Data System (ADS)

    Evans, D. A.

    2004-05-01

    The most recent global compilations of paleomagnetic depositional latitudes for Proterozoic glaciogenic formations indicate a dominant mode near the paleo-equator (Evans 2000 AJS; Evans 2003 Tectonophysics). This result would therefore support either the snowball Earth or the large-obliquity hypotheses for Precambrian ice ages, but would reject the uniformitarian comparison to polar-temperate-restricted Phanerozoic glaciogenic deposits. The most reliable low-latitude results come from the Australian Marinoan succession, but a recent summary of these units has suggested that a glaciogenic origin is not yet demonstrated (Eyles and Januszczak 2004 Earth-Sci Reviews). It becomes useful, then, to review the global evidence for Proterozoic low-latitude glaciation. Eyles and Januszczak (ibid.) identified 13 Neoproterozoic deposits with "demonstrated" glacial influence. Among these, poor age constraints and lack of paleomagnetic data prohibit estimation of depositional paleolatitudes for the Fiq, Sturtian, Vreeland, Taoudeni, East Greenland, Port Askaig, and Zhengmuguan units. Moderate paleolatitudes are reasonably well supported for the South China, Gaskiers, Smalfjord, and Moelv units. Among the three remaining units, the Rapitan Group can be assigned a near-equatorial paleolatitude indirectly through use of the Galeros and Franklin-Natkusiak paleomagnetic results, as long as the Rapitan age lies within 750-720 Ma as generally expected. The Moonlight Valley Formation in northern Australia may be assigned a tropical paleolatitude according to high-quality paleomagnetic results from compellingly correlated Marinoan strata in southern Australia. Those strata, including the famous Elatina Formation, have yielded a robust paleomagnetic signature that is commonly interpreted to imply frigid climate (manifest in part by frost-wedge polygons) at near-equatorial latitudes. Concerns that the Neoproterozoic geomagnetic field was either nonaxial or nondipolar are valid in principle

  11. Elliptical polarization of Saturn Kilometric Radiation observed from high latitudes

    NASA Astrophysics Data System (ADS)

    Fischer, G.; Cecconi, B.; Lamy, L.; Ye, S.-Y.; Taubenschuss, U.; Macher, W.; Zarka, P.; Kurth, W. S.; Gurnett, D. A.

    2009-08-01

    The high-inclination orbits of the Cassini spacecraft from autumn 2006 until spring 2007 allowed the Cassini/RPWS (Radio and Plasma Wave Science) instrument to observe Saturn Kilometric Radiation (SKR) from latitudes up to 60° for the first time. This has revealed a surprising new property of SKR: above ˜30° in observational latitude, a significant amount of SKR is strongly elliptically polarized, in marked contrast to previous observations from low latitudes, which showed only circular polarization. There are transitional latitudes where the elliptical polarization occurs in “patches” in the time-frequency spectrograms next to regions of still completely circularly polarized SKR. From ˜45° to 60° in northern latitude, it is found that most of the SKR is elliptically polarized throughout its entire frequency range with an average degree of ˜0.7 in linear polarization. We demonstrate the ellipticity of SKR by using the concept of “apparent polarization” in case of two-antenna measurements, but also show three-antenna measurements from which the polarization can be unambiguously determined. Possible reasons for the variation of SKR polarization with the observer's latitude will be discussed.

  12. Very low latitude (L = 1.08) whistlers

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Cohen, Morris B.; Maurya, Ajeet K.; Veenadhari, B.; Kumar, Sushil; Pant, P.; Said, Ryan K.; Inan, Umran S.

    2012-12-01

    For decades, whistlers observed on the ground at mid and high latitudes have been used for diagnostics of Earth's plasmasphere. Whistlers have also been observed at low latitudes however, the propagation characteristics of low latitude whistlers are poorly understood thus they have not been used effectively as a diagnostic for the low latitude ionosphere. One key limitation with past studies has been lack of knowledge of the whistler source lightning location. Here we present the first cases of low latitude ground whistlers most likely linked with their causative lightning discharges in the conjugate zone. The Global Lightning Dataset 360 (GLD360) detected lightning discharges were found to be located close to the conjugate location of the recording stations, providing direct evidence of inter-hemispheric propagation at the low latitudes. A total of 864 whistlers were observed at Allahabad, India (Geomag. lat. 16.05°N Geomag. long. 155.34°E L = 1.08) during the night of 26 January 2011. Using GLD360 network data, we show the occurrence of thunderstorm activity between 200 and 450 km from the conjugate point of Allahabad. We also report the distribution of peak currents of whistler-producing lightning, which demonstrate a cutoff at 30 kA.

  13. 77 FR 10800 - Requested Administrative Waiver of the Coastwise Trade Laws: Vessel ALTERNATE LATITUDE...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... LATITUDE; Invitation for Public Comments AGENCY: Maritime Administration, Department of Transportation... applicant the intended service of the vessel ALTERNATE LATITUDE is: Intended Commercial Use of...

  14. View looking south from pavilion, showing south entrance house, south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking south from pavilion, showing south entrance house, south wing, and engine house - Fairmount Waterworks, East bank of Schuylkill River, Aquarium Drive, Philadelphia, Philadelphia County, PA

  15. EDITORIAL: Northern Hemisphere high latitude climate and environmental change

    NASA Astrophysics Data System (ADS)

    Groisman, Pavel; Soja, Amber

    2007-10-01

    funded projects (always with international participation) in the United States, Russian Federation, China, European Union, Japan, and Canada have been mutually united to explore the scientifically significant Northern Eurasian region. NEESPI scientists have been quite productive during the past two years (2005 2006) publishing more than 200 books, book chapters, and papers in refereed journals. NEESPI sessions at international conferences are open to everyone who works on environmental and climate change problems in Northern Eurasia and the circumpolar boreal zone. This thematic issue brings together articles from the authors who presented their latest results at the Annual Fall American Geophysical Union Meeting in San Francisco (December 2006). The research letters in this issue are preceded by two editorial papers (Leptoukh et al and Sherstyukov et al) devoted to informational support of research in the NEESPI domain that is critical to the success of the Initiative. The following papers are quite diverse and are assembled into five groups devoted to studies of climate and hydrology, land cover and land use, the biogeochemical cycle and its feedbacks, the cryosphere, and human dimensions in the NEESPI domain and the circumpolar boreal zone. Focus on Northern Hemisphere High Latitude Climate and Environmental Change Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Editorials NASA NEESPI Data and Services Center for Satellite Remote Sensing Information Gregory Leptoukh, Ivan Csiszar, Peter Romanov, Suhung Shen, Tatiana Loboda and Irina Gerasimov NEESPI Science and Data Support Center for Hydrometeorological Information in Obninsk, Russia B G Sherstyukov, V N Razuvaev, O N Bulygina and P Ya Groisman Climate and hydrology Changes in the fabric of the Arctic's greenhouse blanket Jennifer A Francis and Elias Hunter Spatial variations of summer precipitation trends in South Korea, 1973 2005 Heejun

  16. Perspective View of Venus (Center Latitude 0 Degree N., Center Longitude 129 Degrees E.)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This perspective view of Venus, generated by computer from Magellan data and color-coded with emissivity, shows the boundary between the lowland plains and characteristic Venusian highland terrain in Ovda Regio, the western part of the great equatorial highland called Aphrodite Terra. For a view of the highlands to the west, see PIA00309. PIA00311 shows the more complex highland boundary to the south of this area. The conical 'dimples' in the foreground are not real features, but artifacts resulting from erroneous altimeter measurements. Their size gives an idea of the horizontal resolution of the altimeter. The view is perpendicular to the northern boundary of Ovda. Whereas the foreground lowlands are made up of overlapping, relatively dark and unfractured lava flows, the highlands consist mainly of 'tessera terrain'. The tectonic pattern of the tesserae in this image is of intermediate complexity, consisting of east-west trending ridges cut by north-south fractures. Isolated areas in the lowlands (between the smoothest lava flows) contain similarly trending fractures and may be islands of tessera terrain. Magellan MIDR quadrangle* containing this image: C1-00N129. Image resolution (m): 225. Size of region shown (E-W x N-S, in km): 1013 x 1013. Range of emissivities from violet to red: 0.41 -- 0.91. Vertical exaggeration: 50. Azimuth of viewpoint (deg clockwise from East): 225. Elevation of viewpoint (km): 500. *Quadrangle name indicates approximate center latitude (N=north, S=south) and center longitude (East).

  17. Obliquity signals at low latitudes: a result of the cross-equatorial tropical insolation gradient?

    NASA Astrophysics Data System (ADS)

    Bosmans, Joyce; Hilgen, Frederik; Lourens, Lucas

    2013-04-01

    Despite the near-zero obliquity-induced insolation changes at the tropics, an obliquity signal is present in various sediment records at low latitudes. A number of hypotheses have been brought forward to explain the presence of obliquity at the tropics, especially in North-African records of monsoon strength. Firstly, the latitude of the tropics changes from 22° to 24.5°, shifting the area under the influence of the monsoon by ~300 km, which could influence its poleward penetration. A second hypothesis involves the strengthening of the austral winter insolation gradient at times of high obliquity, forcing stronger trade winds which become part of the North-African monsoonal south-westerlies, intensifying the North-African summer monsoon. Thirdly, influences of higher latitudes, where obliquity-induced changes in insolation are larger, could strengthen the North-African monsoon through increased northerly moisture transport into the monsoon region and a strengthened Asian low pressure system. The fourth hypothesis is based on the insolation gradient, specifically the cross-equatorial insolation gradient between the Tropics of Cancer and Capricorn. This insolation gradient drives the differential sensible heating between the two limbs of the winter hemisphere Hadley Cell and therefore the strength of the monsoon. This hypothesis suggests that the obliquity signal in the tropics arises without influence from higher latitudes. Using a high-resolution coupled climate model, EC-Earth, we can oppose the first three hypotheses. Comparing two experiments of low and high obliquity we find a more northward North-African monsoon during high obliquity, as suggested by the first hypothesis. However, we find that precession has a much larger effect on the northward extend of the North-African monsoon. Also, we find a very small increase in trade wind strength over the South-Atlantic for obliquity. Furthermore, spectral analysis shows that the winter hemispheric insolation

  18. High-latitude dust in the Earth system

    NASA Astrophysics Data System (ADS)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gassó, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; McKenna-Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-06-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (≥50°N and ≥40°S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 km2 and contribute at least 80-100 Tg yr-1 of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios.

  19. Space weather and myocardial infarction diseases at subauroral latitudes

    NASA Astrophysics Data System (ADS)

    Samsonov, Sergey; Kleimenova, Natalia; Petrova, Palmira

    The relationship of the number of calls for the emergency medical care in Yakutsk (subauroral latitudes) in connection with myocardial infarction diseases during years near the maximum (1992) and minimum (1998) of the 11-year geomagnetic disturbance cycle to space weather parameters has been studied. It is found that at subauroral latitudes, the increase of geomagnetic activity, namely, the occurrence of night magnetospheric substorms, plays the important role in the exacerbation of myocardial infarctions. Substorms are accompanied by Pi1 irregular geomagnetic pulsations with periods of (0.5-3.0) Hz, coinciding with heart rhythms of a human being, thus, these waves can be a biotropic factor negatively influencing on the occurrence of myocardial infarctions. The comparison of seasonal change of the number of calls for emergency medical care to patients at subauroral latitudes with a simultaneous seasonal change of fatal endings because of an infarction at low latitudes (Bulgaria) has shown their essential difference. Thus, in Bulgaria the maximum of infarctions have been marked in winter, and minimum - in summer, and in Yakutsk a few maxima coinciding with the sharp and considerable increases of the level of the planetary geomagnetic disturbances have been observed. In this case, in Bulgaria the infarctions could be connected with availability of the Pc1 geomagnetic pulsations. Thus, the stable quasi-sinusoidal Pc1 pulsations can be a biotropic factor influencing on the development of myocardial infarctions at middle latitudes and the Pi1 irregular geomagnetic pulsations, which do not propagate to the lower latitudes, could be a biotropic factor at subauroral latitudes.

  20. Geochemical Ecology of a High Latitude Coral: Plesiastrea versipora a new Paleo-Environmental Archive

    NASA Astrophysics Data System (ADS)

    Burgess, S. N.; McCulloch, M. M.; Ward, T.

    2005-12-01

    Corals growing in high latitude waters in Southern Australia are considered to be sensitive to changes in climate, including seasonal fluctuations in sea surface temperature. The annual nature of density bands of Plesiastrea versipora were verified using U/Th ages derived from multi-collector ICP-MS analyses and the resulting extension rates varied from an average of 1.2 mm yr -1 to 9 mm yr -1 for different colonies ranging in age from 120 - 300 years, located within the same reef. High resolution laser-ablation ICP-MS analyses of established paleo-temperature proxies including B/Ca, Mg/Ca, Sr/Ca and U/Ca were obtained from several cores of P. versipora from Gulf St Vincent (34.5°S) and Spencer Gulf (35°S), South Australia. Elemental compositions were compared to in situ sea surface temperature (SST) and satellite (IGOSS) records, and demonstrate significant covariance between Ba/Ca and temperature. Barium may not have been recognised as a temperature proxy in previous studies due to the smaller temperature range for lower latitude environments (~ 5°C versus 12°C for this study) and other factors contributing to the Ba signal such as terrestrially-derived or upwelled sources. Other trace elements analysed gave an indication of both the nutrient availability (P and Mn) and terrestrially derived pollutants (V, Y, Mo, Sn and Pb) correlating strongly with luminescent bands. Several of the stronger luminescent bands coincide temporally with known oil spills at a nearby port refinery and research is ongoing to determine if this is the point source of pollution. These data taken together suggest that P. versipora can provide valuable paleoclimate information in high-latitude environments, recording large seasonal variation in both temperature and productivity regimes with high fidelity and may also be employed to reconstruct anthropogenic activity.

  1. Atmosphere-Ocean Interactions in Mid-latitude Western Boundary Currents

    NASA Astrophysics Data System (ADS)

    Kelly, K. A.

    2008-12-01

    Strong mid-latitude western boundary currents (WBC) in the Northern Atlantic and North Pacific transport heat from the warm tropical regions to the mid-latitudes, where much of the heat is fluxed to the atmosphere. Anomalously large heat transport in the WBC causes an accumulation of heat south of the current core, which in turn drives interannual variations in the fluxes of heat to the atmosphere. The accumulation of heat in this region also inhibits the formation of Subtropical Mode Water (STMW). Changes in the WBCs can be characterized by variations in the latitude and stability of the path and in the intensity of the current. These variations are associated with anomalies in STMW volume, mixing across the current core, and air-sea fluxes. There is increasing evidence that interannual WBC variability is forced by the winds. The effect of the WBCs can be seen in the atmosphere, both in the boundary layer and well into the troposphere. Extratropical storms intensify greatly over the WBCs, particularly in the regions of large air-sea fluxes. Thus, the ocean circulation variability has important implications both for weather and for climate in this region. The WBC variability and air-sea interaction, which are shown clearly in high-resolution satellite observations, are poorly represented in climate models, a problem that has motivated two major field programs: KESS in the Pacific and CLIMODE in the Atlantic. Measurements and analyses from these programs have revealed a wealth of detail on scales not resolved by climate models, in particular the propagation of the smaller ocean scales into the atmosphere over the WBCs. North Pacific and North Atlantic WBC variability and its implications for atmosphere-ocean interaction will be reviewed primarily using high- resolution observations with an emphasis on interannual to decadal time scales.

  2. IMF dependence of high-latitude thermospheric wind pattern derived from CHAMP cross-track measurements

    NASA Astrophysics Data System (ADS)

    Förster, M.; Rentz, S.; Köhler, W.; Liu, H.; Haaland, S. E.

    2008-06-01

    Neutral thermospheric wind pattern at high latitudes obtained from cross-track acceleration measurements of the CHAMP satellite above both North and South polar regions are statistically analyzed in their dependence on the Interplanetary Magnetic Field (IMF) direction in the GSM y-z plane (clock angle). We compare this dependency with magnetospheric convection pattern obtained from the Cluster EDI plasma drift measurements under the same sorting conditions. The IMF-dependency shows some similarity with the corresponding high-latitude plasma convection insofar that the larger-scale convection cells, in particular the round-shaped dusk cell for ByIMF+ (ByIMF-) conditions at the Northern (Southern) Hemisphere, leave their marks on the dominant general transpolar wind circulation from the dayside to the nightside. The direction of the transpolar circulation is generally deflected toward a duskward flow, in particular in the evening to nighttime sector. The degree of deflection correlates with the IMF clock angle. It is larger for ByIMF+ than for ByIMF- and is systematically larger (~5°) and appear less structured at the Southern Hemisphere compared with the Northern. Thermospheric cross-polar wind amplitudes are largest for BzIMF-/ByIMF- conditions at the Northern Hemisphere, but for BzIMF-/ByIMF+ conditions at the Southern because the magnetospheric convection is in favour of largest wind accelerations over the polar cap under these conditions. The overall variance of the thermospheric wind magnitude at Southern high latitudes is larger than for the Northern. This is probably due to a larger "stirring effect" at the Southern Hemisphere because of the larger distance between the geographic and geomagnetic frameworks.

  3. The association of hydrogen with sulfur on Mars across latitudes, longitudes, and compositional extremes

    NASA Astrophysics Data System (ADS)

    Karunatillake, Suniti; Wray, James J.; Gasnault, Olivier; McLennan, Scott M.; Deanne Rogers, A.; Squyres, Steven W.; Boynton, William V.; Skok, J. R.; Button, Nicole E.; Ojha, Lujendra

    2016-07-01

    Midlatitudinal hydrated sulfates on Mars may influence brine pH, atmospheric humidity, and collectively water activity. These factors affect the habitability of the planetary subsurface and the preservation of relict biomolecules. Regolith at grain sizes smaller than gravel, constituting the bulk of the Martian subsurface at regional scales, may be a primary repository of chemical alteration, mechanical alteration, and biosignatures. The Mars Odyssey Gamma Ray Spectrometer with hundreds of kilometers of lateral resolution and compositional sensitivity to decimeter depth provides unique insight into this component of the regolith, which we call soil. Advancing the globally compelling association between H2O and S established by our previous work, we characterize latitudinal variations in the association between H and S, as well as in the hydration state of soil. Represented by H2O:S molar ratios, the hydration state of candidate sulfates increases with latitude in the northern hemisphere. In contrast, hydration states generally decrease with latitude in the south. Furthermore, we observe that H2O concentration may affect the degree of sulfate hydration more than S concentration. Limited H2O availability in soil-atmosphere exchange and in subsurface recharge could explain such control exerted by H2O on salt hydration. Differences in soil thickness, ground ice table depths, atmospheric circulation, and insolation may contribute to hemispheric differences in the progression of hydration with latitude. Our observations support chemical association of H2O with S in the southern hemisphere as suggested by Karunatillake et al. (2014), including the possibility of Fe sulfates as a key mineral group.

  4. Neptune's south polar region

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This image of Neptune's south polar region was obtained by the NASA Voyager narrow-angle camera on Aug. 23, 1989, when it was at a distance of 25 million kilometers (1.6 million miles). The smallest cloud features are 45 kilometers (28 miles) in diameter. The image shows the discovery of shadows in Neptune's atmosphere, shadows cast onto a deep cloud bank by small elevated clouds. Located at about 68 degrees south latitude, they are the first cloud shadows ever seen by the Voyager on any planet. The dark regions adjacent to the small bright clouds are believed to be shadows, because they are on the side of the cloud that is opposite to the incoming sunlight and because they lengthen in places where the sun lies closer to the horizon. Estimates of the height of these discrete clouds above the underlying cloud bank can be obtained by careful analysis of this data. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  5. Arctic sea ice melt, the Polar vortex, and mid-latitude weather: Are they connected?

    NASA Astrophysics Data System (ADS)

    Vihma, Timo; Overland, James; Francis, Jennifer; Hall, Richard; Hanna, Edward; Kim, Seong-Joong

    2015-04-01

    The potential of recent Arctic changes to influence broader hemispheric weather is a difficult and controversial topic with considerable skepticism, as time series of potential linkages are short (<10 years) and the signal-to-noise ratio relative to chaotic weather events is small. A way forward is through further understanding of potential atmospheric dynamic mechanisms. Although not definitive of change in a statistical or in a causality sense, the exceptionally warm Arctic winters since 2007 do contain increased variability according to some climate indices, with six negative (and two positive) Arctic Oscillation atmospheric circulation index events that created meridional flow reaching unusually far north and south. High pressure anomalies developed east of the Ural Mountains in Russia in response to sea-ice loss in the Barents/Kara Seas, which initiated eastward-propagating wave trains of high and low pressure that advected cold air over central and eastern Asia. Increased Greenland blocking and greater geopotential thickness related to low-level temperatures increases led to northerly meridional flow into eastern North America, inducing persistent cold periods. Arctic connections in Europe and western North America are less clear. The quantitative impact of potential Arctic change on mid-latitude weather will not be resolved within the foreseeable future, yet new approaches to high-latitude atmospheric dynamics can contribute to improved extended range forecasts as outlined by the WMO/Polar Prediction Program and other international activities.

  6. Low-Latitude Solar Wind During the Fall 1998 SOHO-Ulysses Quadrature

    NASA Technical Reports Server (NTRS)

    Poletto, G.; Suess, Steven T.; Biesecker, D.; Esser, R.; Gloeckler, G.; Zurbuchen, T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Fall 1998 SOlar-Heliospheric Observatory (SOHO) - Ulysses quadrature occurred when Ulysses was at 5.2 AU, 17.4 deg South of the equator, and off the West line of the Sun. SOHO coronal observations, at heliocentric distances of a few solar radii, showed that the line through the solar center and Ulysses crossed, over the first days of observations, a dark, weakly emitting area and through the northern edge of a streamer complex during the second half of the quadrature campaign. Ulysses in situ observations showed this transition to correspond to a decrease from higher speed wind typical of coronal hole flow to low speed wind. Physical parameters (density, temperature, flow speed) of the low latitude coronal plasma sampled over the campaign are determined using constraints from what is the same plasma measured later in situ and simulating the intensities of the Hydrogen Lyman-alpha and OVI 1032 and 1037 Angstrom lines, measured by the Ultra Violet Coronagraph Spectrometer (UVCS) on SOHO. The densities, temperatures and outflow speed are compared with the same characteristic flow parameters for high-latitude fast wind streams and typical slow solar wind.

  7. Equatorial Precession Drove Mid-Latitude Changes in ENSO-Scale Variation in the Earliest Miocene

    NASA Astrophysics Data System (ADS)

    Fox, B.; D'Andrea, W. J.; Lee, D. E.; Wilson, G. S.

    2014-12-01

    Foulden Maar is an annually laminated lacustrine diatomite deposit from the South Island of New Zealand. The deposit was laid down over ~100 kyr of the latest Oligocene and earliest Miocene, during the peak and deglaciation phase of the Mi-1 Antarctic glaciation event. At this time, New Zealand was located at approximately the same latitude as today (~45°S). Evidence from organic geochemical proxies (δD, δ13C) and physical properties (density, colour) indicates the presence of an 11-kyr cycle at the site. Although it is known that 11-kyr insolation (half-precession) cycles occur between the Tropics, this cycle is rarely seen in sedimentary archives deposited outside the immediate vicinity of the Equator. Records from Foulden Maar correlate well with the amplitude and phase of the modelled equatorial half-precession cycle for the earliest Miocene. High-resolution (50 µm) colour intensity measurements and lamina thickness measurements both indicate the presence of significant ENSO-like (2-8 year) variation in the Foulden Maar sediments. Early results from targeted lamina thickness measurements suggest that ENSO-band variation is modulated by the 11-kyr cycle, with power in the ENSO band increasing during periods of increased insolation at the Equator. This implies that equatorial half-precession had a significant effect on ENSO-like variation in the early Miocene, and that this effect was felt as far afield as the mid-latitudes of the Southern Hemisphere.

  8. Simulation of the low latitude ionosphere response to disturbed winds and electric fields: Brazilian region

    NASA Astrophysics Data System (ADS)

    Batista, Inez S.; Souza, Jonas; Bailey, Graham; Bravo, Manuel

    2016-07-01

    Modeling the ionosphere during disturbed periods is one of the most challenging tasks due to the complexity of the phenomena that affect the electric fields and the thermosphere environment as whole. It is well known that depending on the direction of the interplanetary magnetic field disturbance electric fields (undershielding or overshielding) can penetrate from high to low latitudes causing significant disturbances in the electron density distribution and in the equatorial ionization anomaly (EIA) development. Besides that, the large amount of energy deposited in the polar region during disturbed periods will be responsible for the generation of disturbed winds that will flow towards the equator where they produce a disturbance dynamo which also affects the EIA density distribution. The TIDs and TADs are also sources of disturbances that propagate at high velocity reaching the equator 2-3 hours after the beginning of the magnetic storm. In this work we use the Sheffield University Plasmasphere-Ionosphere Model at INPE (SUPIM-INPE), to simulate the drastic effects that were observed at the low latitude ionosphere in the Brazilian region during a very intense magnetic storm event. A few models are tested for the disturbed electric field and wind. The simulation results showed that the observations are better explained when considering a traveling waveform disturbance propagating from north to south at a velocity equal to 200 m/s.

  9. Mean annual temperatures of mid-latitude regions derived from stable hydrogen isotopes of wood lignin

    NASA Astrophysics Data System (ADS)

    Anhäuser, Tobias; Greule, Markus; Bowen, Gabriel J.; Keppler, Frank

    2016-04-01

    Tree rings are widely used climate archives providing annual resolutions on centennial to millennial timescales. Besides plant physiological parameters such as tree-ring width or maximum latewood density, stable isotope compositions (expressed as δ values) complement or even broaden the potential of the climate archive tree rings. A considerable wood constituent are ether-bonded methoxyl groups as part of lignin which can be used for stable hydrogen isotope studies. The δ²H value of the lignin methoxyl groups reflects the δ²H value of the tree source water as a result of a large uniform fractionation. Hence, this relation can be used to infer δ²H values of precipitation which are in temperate regions primarily controlled by temperature. Here, we measured δ²H values of lignin methoxyl groups (n = 111) of tree rings from various species collected along a ~3500 km north-south transect across Europe with mean annual temperatures (MAT) ranging from ‑4 to +17 °C. We found a significant linear correlation between δ²H values of the lignin methoxyl groups and MAT (R² = 0.81, p < 0.01). We used this relationship to predict MATs from randomly collected wood samples and found general agreement between predicted and observed MATs for the mid-latitudes on a global scale. Thus our results indicate that δ²H values of lignin methoxyl groups are a promising tool for mid-latitude temperature reconstruction of the Holocene.

  10. Observations and Modeling of the Nighttime Electron Density Enhancement in the Mid-latitude Ionosphere

    NASA Astrophysics Data System (ADS)

    Chen, C.; Saito, A.; Lin, C.; Huba, J. D.; Liu, J. G.

    2010-12-01

    In this study, we compare the observational data from FORMOSAT-3/COSMIC and theoretical model results performed by SAMI2 (Sami2 is Another Model of the Ionosphere) for studying the longitudinal structure of the Mid-latitude Summer Nighttime Anomaly (MSNA). In order to study the occurrence of the nighttime electron density enhancement, we defined MSNA index by the ratio of the difference of the nighttime and daytime electron densities. The observational results by the FORMOSAT-3/COSMIC satellites show that there are three obvious nighttime electron density enhancement areas around South American, European, and Northeast Asian regions during local summer. The SAMI2 model can also successfully reproduce the ionospheric MSNA structure during local summer on both hemispheres, except for Northeast Asian region. This difference between observation and model simulation may be caused by the difference between the neutral wind model and the real winds. The physical mechanisms for the longitudinal structure of the MSNA are investigated in the different model conditions. Results show that the equatorward meridional neutral winds can drive the electron density up to a higher altitude along the magnetic field lines and the longer plasma production rate by solar EUV at higher latitudes in the summer time can provide the electron density source in the nighttime ionosphere. We concluded that the combination effect by the neutral wind and the plasma production rate play the important role of the MSNA longitudinal structure.

  11. Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations.

    PubMed

    Loranty, Michael M; Berner, Logan T; Goetz, Scott J; Jin, Yufang; Randerson, James T

    2014-02-01

    The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered and snow-free albedo (Δα), which influences predictions of future warming in coupled climate models, despite being poorly constrained at seasonal and century time scales. Here, we compare satellite observations and coupled climate model representations of albedo and tree cover for the boreal and Arctic region. Our analyses reveal consistent declines in albedo with increasing tree cover, occurring south of latitudinal tree line, that are poorly represented in coupled climate models. Observed relationships between albedo and tree cover differ substantially between snow-covered and snow-free periods, and among plant functional type. Tree cover in models varies widely but surprisingly does not correlate well with model albedo. Furthermore, our results demonstrate a relationship between tree cover and snow-albedo feedback that may be used to accurately constrain high latitude albedo feedbacks in coupled climate models under current and future vegetation distributions.

  12. AN ABSENCE OF FAST RADIO BURSTS AT INTERMEDIATE GALACTIC LATITUDES

    SciTech Connect

    Petroff, E.; Van Straten, W.; Bailes, M.; Barr, E. D.; Coster, P.; Flynn, C.; Keane, E. F.; Johnston, S.; Bates, S. D.; Keith, M. J.; Kramer, M.; Stappers, B. W.; Bhat, N. D. R.; Burgay, M.; Possenti, A.; Tiburzi, C.; Burke-Spolaor, S.; Champion, D.; Ng, C.; Levin, L.; and others

    2014-07-10

    Fast radio bursts (FRBs) are an emerging class of bright, highly dispersed radio pulses. Recent work by Thornton et al. has revealed a population of FRBs in the High Time Resolution Universe (HTRU) survey at high Galactic latitudes. A variety of progenitors have been proposed, including cataclysmic events at cosmological distances, Galactic flare stars, and terrestrial radio frequency interference. Here we report on a search for FRBs at intermediate Galactic latitudes (–15° latitudes. A revised rate estimate or another strong and heretofore unknown selection effect in Galactic latitude would provide closer agreement between the surveys' detection rates. The dearth of detections at low Galactic latitude disfavors a Galactic origin for these bursts.

  13. An Absence of Fast Radio Bursts at Intermediate Galactic Latitudes

    NASA Astrophysics Data System (ADS)

    Petroff, E.; van Straten, W.; Johnston, S.; Bailes, M.; Barr, E. D.; Bates, S. D.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.; Coster, P.; Flynn, C.; Keane, E. F.; Keith, M. J.; Kramer, M.; Levin, L.; Ng, C.; Possenti, A.; Stappers, B. W.; Tiburzi, C.; Thornton, D.

    2014-07-01

    Fast radio bursts (FRBs) are an emerging class of bright, highly dispersed radio pulses. Recent work by Thornton et al. has revealed a population of FRBs in the High Time Resolution Universe (HTRU) survey at high Galactic latitudes. A variety of progenitors have been proposed, including cataclysmic events at cosmological distances, Galactic flare stars, and terrestrial radio frequency interference. Here we report on a search for FRBs at intermediate Galactic latitudes (-15° latitudes. A revised rate estimate or another strong and heretofore unknown selection effect in Galactic latitude would provide closer agreement between the surveys' detection rates. The dearth of detections at low Galactic latitude disfavors a Galactic origin for these bursts.

  14. High-latitude controls of thermocline nutrients and low latitude biological productivity.

    PubMed

    Sarmiento, J L; Gruber, N; Brzezinski, M A; Dunne, J P

    2004-01-01

    The ocean's biological pump strips nutrients out of the surface waters and exports them into the thermocline and deep waters. If there were no return path of nutrients from deep waters, the biological pump would eventually deplete the surface waters and thermocline of nutrients; surface biological productivity would plummet. Here we make use of the combined distributions of silicic acid and nitrate to trace the main nutrient return path from deep waters by upwelling in the Southern Ocean and subsequent entrainment into subantarctic mode water. We show that the subantarctic mode water, which spreads throughout the entire Southern Hemisphere and North Atlantic Ocean, is the main source of nutrients for the thermocline. We also find that an additional return path exists in the northwest corner of the Pacific Ocean, where enhanced vertical mixing, perhaps driven by tides, brings abyssal nutrients to the surface and supplies them to the thermocline of the North Pacific. Our analysis has important implications for our understanding of large-scale controls on the nature and magnitude of low-latitude biological productivity and its sensitivity to climate change.

  15. High-latitude controls of thermocline nutrients and low latitude biological productivity.

    PubMed

    Sarmiento, J L; Gruber, N; Brzezinski, M A; Dunne, J P

    2004-01-01

    The ocean's biological pump strips nutrients out of the surface waters and exports them into the thermocline and deep waters. If there were no return path of nutrients from deep waters, the biological pump would eventually deplete the surface waters and thermocline of nutrients; surface biological productivity would plummet. Here we make use of the combined distributions of silicic acid and nitrate to trace the main nutrient return path from deep waters by upwelling in the Southern Ocean and subsequent entrainment into subantarctic mode water. We show that the subantarctic mode water, which spreads throughout the entire Southern Hemisphere and North Atlantic Ocean, is the main source of nutrients for the thermocline. We also find that an additional return path exists in the northwest corner of the Pacific Ocean, where enhanced vertical mixing, perhaps driven by tides, brings abyssal nutrients to the surface and supplies them to the thermocline of the North Pacific. Our analysis has important implications for our understanding of large-scale controls on the nature and magnitude of low-latitude biological productivity and its sensitivity to climate change. PMID:14702082

  16. Modelled glacier equilibrium line altitudes during the mid-Holocene in the southern mid-latitudes

    NASA Astrophysics Data System (ADS)

    Bravo, C.; Rojas, M.; Anderson, B. M.; Mackintosh, A. N.; Sagredo, E.; Moreno, P. I.

    2015-03-01

    Glacier behaviour during the mid-Holocene (MH, 6000 year BP) in the Southern Hemisphere provides observational data to constrain our understanding of the origin and propagation of palaeo-climatic signals. We examine the climatic forcing of glacier expansion in the MH by evaluating modelled glacier equilibrium line altitude (ELA) and climate conditions during the MH compared with pre-industrial time (PI, year 1750) in the mid latitudes of the Southern Hemisphere, specifically in Patagonia and the South Island of New Zealand. Climate conditions for the MH are obtained from PMIP2 models simulations, which in turn force a simple glacier mass balance model to simulate changes in equilibrium-line altitude during this period. Climate conditions during the MH show significantly (p ≤ 0.05) colder temperatures in summer, autumn and winter, and significantly (p ≤ 0.05) warmer temperatures in spring. These changes are a consequence of insolation differences between the two periods. Precipitation does not show significant changes, but exhibits a temporal pattern with less precipitation from August to September and more precipitation from October to April during the MH. In response to these climatic changes, glaciers in both analysed regions have an ELA that is 15-33 m lower than PI during the MH. The main causes of this difference are the colder temperature during the MH, reinforcing previous results that mid-latitude glaciers are more sensitive to temperature change compared to precipitation changes. Differences in temperature have a dual effect on mass balance. First, during summer and early autumn less energy is available for melting. Second in late autumn and winter, lower temperatures cause more precipitation to fall as snow rather than rain, resulting in more accumulation and higher surface albedo. For these reasons, we postulate that the modelled ELA changes, although small, may help to explain larger glacier extents observed in the mid Holocene in both South America

  17. Why Huddle? Ecological Drivers of Chick Aggregations in Gentoo Penguins, Pygoscelis papua, across Latitudes

    PubMed Central

    Collen, Ben; Johnston, Daniel

    2016-01-01

    Aggregations of young animals are common in a range of endothermic and ectothermic species, yet the adaptive behavior may depend on social circumstance and local conditions. In penguins, many species form aggregations (aka. crèches) for a variety of purposes, whilst others have never been observed exhibiting this behavior. Those that do form aggregations do so for three known benefits: 1) reduced thermoregulatory requirements, 2) avoidance of unrelated-adult aggression, and 3) lower predation risk. In gentoo penguins, Pygoscelis papua, chick aggregations are known to form during the post-guard period, yet the cause of these aggregations is poorly understood. Here, for the first time, we study aggregation behavior in gentoo penguins, examining four study sites along a latitudinal gradient using time-lapse cameras to examine the adaptive benefit of aggregations to chicks. Our results support the idea that aggregations of gentoo chicks decrease an individual’s energetic expenditure when wet, cold conditions are present. However, we found significant differences in aggregation behavior between the lowest latitude site, Maiviken, South Georgia, and two of the higher latitude sites on the Antarctic Peninsula, suggesting this behavior may be colony specific. We provide strong evidence that more chicks aggregate and a larger number of aggregations occur on South Georgia, while the opposite occurs at Petermann Island in Antarctica. Future studies should evaluate multiple seabird colonies within one species before generalizing behaviors based on one location, and past studies may need to be re-evaluated to determine whether chick aggregation and other behaviors are in fact exhibited species-wide. PMID:26840252

  18. Why Huddle? Ecological Drivers of Chick Aggregations in Gentoo Penguins, Pygoscelis papua, across Latitudes.

    PubMed

    Black, Caitlin; Collen, Ben; Johnston, Daniel; Hart, Tom

    2016-01-01

    Aggregations of young animals are common in a range of endothermic and ectothermic species, yet the adaptive behavior may depend on social circumstance and local conditions. In penguins, many species form aggregations (aka. crèches) for a variety of purposes, whilst others have never been observed exhibiting this behavior. Those that do form aggregations do so for three known benefits: 1) reduced thermoregulatory requirements, 2) avoidance of unrelated-adult aggression, and 3) lower predation risk. In gentoo penguins, Pygoscelis papua, chick aggregations are known to form during the post-guard period, yet the cause of these aggregations is poorly understood. Here, for the first time, we study aggregation behavior in gentoo penguins, examining four study sites along a latitudinal gradient using time-lapse cameras to examine the adaptive benefit of aggregations to chicks. Our results support the idea that aggregations of gentoo chicks decrease an individual's energetic expenditure when wet, cold conditions are present. However, we found significant differences in aggregation behavior between the lowest latitude site, Maiviken, South Georgia, and two of the higher latitude sites on the Antarctic Peninsula, suggesting this behavior may be colony specific. We provide strong evidence that more chicks aggregate and a larger number of aggregations occur on South Georgia, while the opposite occurs at Petermann Island in Antarctica. Future studies should evaluate multiple seabird colonies within one species before generalizing behaviors based on one location, and past studies may need to be re-evaluated to determine whether chick aggregation and other behaviors are in fact exhibited species-wide.

  19. Why Huddle? Ecological Drivers of Chick Aggregations in Gentoo Penguins, Pygoscelis papua, across Latitudes.

    PubMed

    Black, Caitlin; Collen, Ben; Johnston, Daniel; Hart, Tom

    2016-01-01

    Aggregations of young animals are common in a range of endothermic and ectothermic species, yet the adaptive behavior may depend on social circumstance and local conditions. In penguins, many species form aggregations (aka. crèches) for a variety of purposes, whilst others have never been observed exhibiting this behavior. Those that do form aggregations do so for three known benefits: 1) reduced thermoregulatory requirements, 2) avoidance of unrelated-adult aggression, and 3) lower predation risk. In gentoo penguins, Pygoscelis papua, chick aggregations are known to form during the post-guard period, yet the cause of these aggregations is poorly understood. Here, for the first time, we study aggregation behavior in gentoo penguins, examining four study sites along a latitudinal gradient using time-lapse cameras to examine the adaptive benefit of aggregations to chicks. Our results support the idea that aggregations of gentoo chicks decrease an individual's energetic expenditure when wet, cold conditions are present. However, we found significant differences in aggregation behavior between the lowest latitude site, Maiviken, South Georgia, and two of the higher latitude sites on the Antarctic Peninsula, suggesting this behavior may be colony specific. We provide strong evidence that more chicks aggregate and a larger number of aggregations occur on South Georgia, while the opposite occurs at Petermann Island in Antarctica. Future studies should evaluate multiple seabird colonies within one species before generalizing behaviors based on one location, and past studies may need to be re-evaluated to determine whether chick aggregation and other behaviors are in fact exhibited species-wide. PMID:26840252

  20. Heliomagnetic latitude dependence of the heliospheric magnetic field

    NASA Astrophysics Data System (ADS)

    Burton, M. E.; Smith, E. J.; Balogh, A.; Murphy, N.

    1996-07-01

    ICE and IMP-8 magnetic field data from 1984-1988 have been analyzed in a magnetic coordinate system defined by the orientation of the solar magnetic dipole. The heliomagnetic latitude dependence of the radial component of the magnetic field (Br) has then been investigated in a wide range of magnetic latitudes above and below the heliospheric current sheet (HCS). Br reverses sign abruptly across the current sheet, consistent with the solar magnetic field models of Pneuman and Kopp [1971] and Wolfson [1985] but inconsistent with the source surface models [Hoeksema, 1986]. No evidence is found for an asymmetry in the magnetic field suggested by earlier studies of interplanetary magnetic field data [Luhmann, 1987, Burton, 1990]. A slight (~.03 nT per degree) latitude gradient has been found which is consistent with the MHD model of Pneuman and Kopp and the recent model of Zhao and Hoeksema [1995].

  1. Latitude variation of recurrent fluxes in the outer solar system

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Stone, E. C.

    1985-01-01

    Recurrent low energy (greater than or = to 0.5 MeV) proton flux enhancements, reliable indicators of corotating plasma interaction regions, were observed on the Voyager 1 and 2 and Pioneer 11 spacecraft in the heliographic latitude range 2 deg S to 23 N and the heliocentric radial range 11 to 20 AU. After a period of rather high correlation between fluxes at different latitudes in early 1983, distinct differences developed in the fluxes during an overall flux decrease. The flux intensities returned to higher levels in early 1984 and differences in both the recurrence frequency and flux intensity persisted into 1985, as Voyager 1 traveled to 23 AU and 25 N latitude. Intercomparison of data from the three spacecraft indicates that the flux differences are most likely due to latitudinal rather than radial or temporal variations.

  2. CORAL REEFS. Genomic determinants of coral heat tolerance across latitudes.

    PubMed

    Dixon, Groves B; Davies, Sarah W; Aglyamova, Galina A; Meyer, Eli; Bay, Line K; Matz, Mikhail V

    2015-06-26

    As global warming continues, reef-building corals could avoid local population declines through "genetic rescue" involving exchange of heat-tolerant genotypes across latitudes, but only if latitudinal variation in thermal tolerance is heritable. Here, we show an up-to-10-fold increase in odds of survival of coral larvae under heat stress when their parents come from a warmer lower-latitude location. Elevated thermal tolerance was associated with heritable differences in expression of oxidative, extracellular, transport, and mitochondrial functions that indicated a lack of prior stress. Moreover, two genomic regions strongly responded to selection for thermal tolerance in interlatitudinal crosses. These results demonstrate that variation in coral thermal tolerance across latitudes has a strong genetic basis and could serve as raw material for natural selection.

  3. On the Origins of the High-latitude Hα Background

    NASA Astrophysics Data System (ADS)

    Witt, Adolf N.; Gold, Benjamin; Barnes, Frank S., III; DeRoo, Casey T.; Vijh, Uma P.; Madsen, Gregory J.

    2010-12-01

    The diffuse high-latitude Hα background is widely believed to be predominantly the result of in situ recombination of ionized hydrogen in the warm interstellar medium of the Galaxy. Instead, we show that both a substantial fraction of the diffuse high-latitude Hα intensity in regions dominated by Galactic cirrus dust and much of the variance in the high-latitude Hα background are the result of scattering by interstellar dust of Hα photons originating elsewhere in the Galaxy. We provide an empirical relation, which relates the expected scattered Hα intensity to the IRAS 100 μm diffuse background intensity, applicable to about 81% of the entire sky. The assumption commonly made in reductions of cosmic microwave background observations, namely that the observed all-sky map of diffuse Hα light is a suitable template for Galactic free-free foreground emission, is found to be in need of reexamination.

  4. Star Formation in High-Latitude Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Magnus McGehee, Peregrine

    2015-08-01

    Galactic star formation preferentially occurs within the dense molecular clouds that reside primarily near the disk mid-plane and are thus seen in projection against the Milky Way. A population of molecular clouds are seen at higher Galactic latitude although distance determinations are required in order to identify those that are actually in extraplanar environments.We review the known high-latitude star formation regions (MBM 12, LDN 1642, and HRK 81.4-77.8) and discuss the nature and environment of other high-latitude molecular clouds. Distances to each of these structures are deduced from optical reddening profiles derived from analysis of Sloan Digital Sky Survey photometry. In particular, we examine those molecular clouds found within the complex of intermediate and high velocity HI clouds that span the Northern 2nd Galactic Quadrant: the Draco clouds, the IVC pair at (l+b) = 135+51 and 135+54, and IREC 306.

  5. Understanding the Relation between Attitude Involvement and Response Latitude Using Item Response Theory

    ERIC Educational Resources Information Center

    Lake, Christopher J.; Withrow, Scott; Zickar, Michael J.; Wood, Nicole L.; Dalal, Dev K.; Bochinski, Joseph

    2013-01-01

    Adapting the original latitude of acceptance concept to Likert-type surveys, response latitudes are defined as the range of graded response options a person is willing to endorse. Response latitudes were expected to relate to attitude involvement such that high involvement was linked to narrow latitudes (the result of selective, careful…

  6. THEORY OF SOLAR MERIDIONAL CIRCULATION AT HIGH LATITUDES

    SciTech Connect

    Dikpati, Mausumi; Gilman, Peter A. E-mail: gilman@ucar.edu

    2012-02-10

    We build a hydrodynamic model for computing and understanding the Sun's large-scale high-latitude flows, including Coriolis forces, turbulent diffusion of momentum, and gyroscopic pumping. Side boundaries of the spherical 'polar cap', our computational domain, are located at latitudes {>=} 60 Degree-Sign . Implementing observed low-latitude flows as side boundary conditions, we solve the flow equations for a Cartesian analog of the polar cap. The key parameter that determines whether there are nodes in the high-latitude meridional flow is {epsilon} = 2{Omega}n{pi}H{sup 2}/{nu}, where {Omega} is the interior rotation rate, n is the radial wavenumber of the meridional flow, H is the depth of the convection zone, and {nu} is the turbulent viscosity. The smaller the {epsilon} (larger turbulent viscosity), the fewer the number of nodes in high latitudes. For all latitudes within the polar cap, we find three nodes for {nu} = 10{sup 12} cm{sup 2} s{sup -1}, two for 10{sup 13}, and one or none for 10{sup 15} or higher. For {nu} near 10{sup 14} our model exhibits 'node merging': as the meridional flow speed is increased, two nodes cancel each other, leaving no nodes. On the other hand, for fixed flow speed at the boundary, as {nu} is increased the poleward-most node migrates to the pole and disappears, ultimately for high enough {nu} leaving no nodes. These results suggest that primary poleward surface meridional flow can extend from 60 Degree-Sign to the pole either by node merging or by node migration and disappearance.

  7. Small, highly reflective ice crystals in low-latitude cirrus

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.; Gerber, H.; Baumgardner, D. G.; Twohy, C. H.; Weinstock, E. M.

    2003-11-01

    At low latitudes, cirrus are ubiquitous and can be in excess of 100°C colder than the surface, limiting the amount of sunlight absorbed by the earth's atmosphere and surface, and reducing its loss of heat. Here we present aircraft measurements within cirrus over southern Florida indicating that ice crystals have smaller sizes and are more reflective than is assumed in most current climate models. If the measurements are generally representative of low-latitude cirrus, they point to a first-order correction to representations of how these clouds affect the earth's climate.

  8. Energy sources of the high latitude upper atmosphere

    NASA Technical Reports Server (NTRS)

    Banks, P. M.

    1981-01-01

    Electrodynamic (Joule) dissipation and plasma wave heating are reviewed as sources of energy for the upper atmosphere at high latitudes. Electrodynamic heating in the thermosphere is described by a generalized energy balance equation taking into account a variety of inelastic processes and energy losses, and the use of height-integrated values of the Joule heating rate to estimate the importance of electrodynamic heating at high latitudes is discussed. Observations of electrons between 95 and 115 km altitude that are up to 1000 K hotter than the neutral atmosphere is presented as evidence for atmospheric heating due to unstable plasma waves arising from the Farley-Buneman modified two-stream instability.

  9. Thermospheric density long-term trend at high latitude

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yosuke; Kosch, Michael

    2016-07-01

    We present a novel technique that has been recently developed to estimate the thermospheric oxygen density using ionospheric measurements from EISCAT radars. The technique is based on an ion momentum equation, which takes into account the collisional interaction between neutrals and ions. We apply the technique to a 30-year long data set from the Tromso UHF radar, which for the first time allows us to evaluate the thermospheric density long-term trend at high latitude. The results are compared with the trend derived from satellite drag, which represents the long-term trend at lower latitudes.

  10. Effect of high latitude filtering on NWP skill

    NASA Technical Reports Server (NTRS)

    Kalnay, E.; Hoffman, R.; Takacs, L. L.

    1983-01-01

    An assessment is made of the extent to which polar filtering may seriously affect the skill of latitude-longitude NWP models, such as the U.S. Navy's NOGAPS, or the GLAS fourth-order model. The limited experiments which have been completed to date with the 4 x 5-deg, 9-level version of the latter model indicate that the high latitude filter currently in operation affects its forecasting skill very little, with only one exception in which the use of the PG filter significantly improved forecasting.

  11. Multistation measurements of high-latitude ionospheric convection

    NASA Astrophysics Data System (ADS)

    Heelis, R. A.; Foster, J. C.; Holt, J.; de La Beaujardiere, O.

    1983-12-01

    Satellite and ground-based observations of the ionospheric drift velocity taken during a MITHRAS campaign have been combined to determine instantaneous pictures of the high-latitude convection pattern. These data, taken when the interplanetary magnetic field has a relatively stable southward/away orientation, show the existence of an asymmetric convection pattern under these conditions. A stability in the high latitude convection geometry can also be seen and changes in response to magnetic disturbances are inferred. Changes in the convection pattern as the interplanetary field turns northward possibly provide some information about the nature of the magnetosphere-solar wind interaction.

  12. Multistation measurements of high-latitude ionospheric convection

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.; Foster, J. C.; Holt, J.; De La Beaujardiere, O.

    1983-01-01

    Satellite and ground-based observations of the ionospheric drift velocity taken during a MITHRAS campaign have been combined to determine instantaneous pictures of the high-latitude convection pattern. These data, taken when the interplanetary magnetic field has a relatively stable southward/away orientation, show the existence of an asymmetric convection pattern under these conditions. A stability in the high latitude convection geometry can also be seen and changes in response to magnetic disturbances are inferred. Changes in the convection pattern as the interplanetary field turns northward possibly provide some information about the nature of the magnetosphere-solar wind interaction.

  13. North-South Migration of West Coast Low Pressure Centers

    ERIC Educational Resources Information Center

    McIntosh, C. Barron

    1974-01-01

    Monthly maps of low pressure centers are presented here to attempt a concrete representation that may help students to understand the seasonal change from dry months to wet months along the mid-latitude west coast as a seasonal north-south migration of factors controlling rain and drought. (Author/JH)

  14. Solar terminator effects on middle- to low-latitude Pi2 pulsations

    NASA Astrophysics Data System (ADS)

    Imajo, Shun; Yoshikawa, Akimasa; Uozumi, Teiji; Ohtani, Shinichi; Nakamizo, Aoi; Demberel, Sodnomsambuu; Shevtsov, Boris Mikhailovich

    2016-08-01

    To clarify the effect of the dawn and dusk terminators on Pi2 pulsations, we statistically analyzed the longitudinal phase and amplitude structures of Pi2 pulsations at middle- to low-latitude stations (GMLat = 5.30°-46.18°) around both the dawn and dusk terminators. Although the H (north-south) component Pi2s were affected by neither the local time (LT) nor the terminator location (at 100 km altitude in the highly conducting E region), some features of the D (east-west) component Pi2s depended on the location of the terminator rather than the LT. The phase reversal of the D component occurred 0.5-1 h after sunrise and 1-2 h before sunset. These phase reversals can be attributed to a change in the contributing currents from field-aligned currents (FACs) on the nightside to the meridional ionospheric currents on the sunlit side of the terminator, and vice versa. The phase reversal of the dawn terminator was more frequent than that of the dusk terminator. The D-to- H amplitude ratio on the dawn side began to increase at sunrise, reaching a peak approximately 2 h after sunrise (the sunward side of the phase reversal region), whereas the ratio on the dusk side reached a peak at sunset (the antisunward side). The dawn-dusk asymmetric features suggest that the magnetic contribution of the nightside FAC relative to the meridional ionospheric current on the dusk side is stronger than that on the dawn side, indicating that the center of Pi2-associated FACs, which probably corresponds to the Pi2 energy source, tends to be shifted duskward on average. Different features and weak sunrise/sunset dependences at the middle-latitude station (Paratunka, GMLat = 46.18°) can be attributed to the larger annual variation in the sunrise/sunset time and a stronger magnetic effect because of closeness from FACs. The D-to- H amplitude ratio decreased with decreasing latitude, suggesting that the azimuthal magnetic field produced by the FACs in darkness and the meridional ionospheric

  15. Relation Between Low Latitude Pc3 Magnetic Micropulsations and Solar Wind (P6)

    NASA Astrophysics Data System (ADS)

    Ansari, I. A.

    2006-11-01

    iaaamphysics@yahoo.co.in iaaphysicsamu@yahoo.com.au Geomagnetic pulsations recorded on the ground are the signatures of the integrated signals from the magnetosphere. Pc3 Geomagnetic pulsations are quasi-sinusoidal variations in the Earth’s Magnetic field in the period range 10-45 seconds. The magnitude of these pulsations ranges from fraction of a nT (nano Tesla) to several nT. These pulsations can be observed in a number of ways. However the application of ground based magnetometer arrays has proven to be one of the most successful methods of studying the spatial structure of hydromagnetic waves in the Earth’s Magnetosphere. The solar wind provides the energy for the Earth’s magnetospheric processes. Pc3-5 geomagnetic pulsations can be generated either externally or internally with respect to the magnetosphere. The Pc3 studies undertaken in the past have been confined to middle and high latitudes. The spatial and temporal variations observed in Pc3 occurrence are of vital importance because they provide evidence which can be directly related to wave generation mechanisms both inside and external to the magnetosphere. At low latitudes (L < 3) wave energy predominates in the Pc3 band and the spatial characteristics of these pulsations have received little attention in the past. An array of four low latitude induction coil magnetometers was established in south-east Australia over a longitudinal range of 17 degrees at L=1.8 to 2.7 for carrying out the study of the effect of the solar wind velocity on these pulsations. Digital dynamic spectra showing Pc3 pulsation activity over a period of about six months have been used to evaluate Pc3 pulsation occurrence. Pc3 occurrence probability at low latitudes has been found to be dominant for the solar wind velocity in the range 400-700 Km/sec. The results suggest that solar wind controls Pc3 occurrence through a mechanism in which Pc3 wave energy is convected through the magnetosheath and coupled to the standing

  16. Southern high latitude dune fields on Mars: Morphology, aeolian inactivity, and climate change

    USGS Publications Warehouse

    Fenton, L.K.; Hayward, R.K.

    2010-01-01

    In a study area spanning the martian surface poleward of 50?? S., 1190 dune fields have been identified, mapped, and categorized based on dune field morphology. Dune fields in the study area span ??? 116400km2, leading to a global dune field coverage estimate of ???904000km2, far less than that found on Earth. Based on distinct morphological features, the dune fields were grouped into six different classes that vary in interpreted aeolian activity level from potentially active to relatively inactive and eroding. The six dune field classes occur in specific latitude zones, with a sequence of reduced activity and degradation progressing poleward. In particular, the first signs of stabilization appear at ???60?? S., which broadly corresponds to the edge of high concentrations of water-equivalent hydrogen content (observed by the Neutron Spectrometer) that have been interpreted as ground ice. This near-surface ground ice likely acts to reduce sand availability in the present climate state on Mars, stabilizing high latitude dunes and allowing erosional processes to change their morphology. As a result, climatic changes in the content of near-surface ground ice are likely to influence the level of dune activity. Spatial variation of dune field classes with longitude is significant, suggesting that local conditions play a major role in determining dune field activity level. Dune fields on the south polar layered terrain, for example, appear either potentially active or inactive, indicating that at least two generations of dune building have occurred on this surface. Many dune fields show signs of degradation mixed with crisp-brinked dunes, also suggesting that more than one generation of dune building has occurred since they originally formed. Dune fields superposed on early and late Amazonian surfaces provide potential upper age limits of ???100My on the south polar layered deposits and ???3Ga elsewhere at high latitudes. No craters are present on any identifiable dune

  17. High latitude regulation of low latitude thermocline ventilation and planktic foraminifer populations across glacial-interglacial cycles

    NASA Astrophysics Data System (ADS)

    Sexton, Philip F.; Norris, Richard D.

    2011-11-01

    One of the earliest discoveries in palaeoceanography was the observation in 1935 that the (sub)tropical planktic foraminifer Globorotalia menardii became absent or extremely rare in the Atlantic Ocean during glacials of the late Pleistocene. Yet a mechanistic explanation for G. menardii's extraordinary biogeographic behaviour has eluded palaeoceanographers for 75 years. Here we show that modern G. menardii, along with two other species that also suffer Atlantic population collapses during glacials, track poorly ventilated waters globally in their thermocline habitats. The ventilation states of low latitude thermoclines are 'set', to a first order, by intermediate water masses originating at high latitudes. In the modern Atlantic this control on low latitude thermocline ventilation is exerted by relatively poorly ventilated, southern-sourced Antarctic Intermediate Water (AAIW) and sub-Antarctic Mode Water (SAMW). We suggest that the glacial Atlantic foraminifer population collapses were a consequence of a low latitude thermocline that was better ventilated during glacials than it is today, in line with geochemical evidence, and driven primarily by a well-ventilated, northern-sourced intermediate water mass. A ventilation mechanism driving the glacial population collapses is further supported by our new constraints on the precise timing of these species' Atlantic proliferation during the last deglaciation — occurring in parallel with a wholesale, bipolar reorganisation of the Atlantic's thermocline-to-abyssal overturning circulation. Our findings demonstrate that a bipolar seesaw in the formation of high latitude intermediate waters has played an important role in regulating the population dynamics of thermocline-dwelling plankton at lower latitudes.

  18. Semi-empirical low-latitude ionospheric model

    SciTech Connect

    Anderson, D.N.; Mendillo, M.; Herniter, B.

    1987-04-01

    Since current empirical models specifying low-latitude electron-density profiles severely underestimate the daytime plasma scale height and total electron content (TEC) values, a semiempirical low-latitude ionospheric model (SLIM) was developed that is not only computationally fast, but also more realistic. Electron-density profiles (180-1800 km) are theoretically calculated as a function of latitude (every 2 deg between 24 N and 24 S dip latitude) and local time (every half hour, over 24 hours LT) by solving the time-dependent plasma-continuity equation. Using simple exponential functions, sets of coefficients themselves are easily stored. quickly retrieved and form the basis for a fast, portable, semi-empirical computer code. This paper describes briefly the input parameters used to theoretically calculate the profiles and the procedures used to generate the coefficients. The SLIM profiles are compared with the Chiu and Bent empirical models for equinox, solar maximum conditions, while calculated at 6300 A airglow intensities and TEC values are compared with available observations. The SLIM profiles, their coefficients, TEC and 6300 A airglow intensities are available in tabular and computer formats.

  19. The Brewer-Dobson circulation and higher latitude ozone changes

    NASA Astrophysics Data System (ADS)

    Budde, Martin; Weber, Mark

    2015-04-01

    The Brewer-Dobson Circulation (BDC) plays a major role in ozone transport from the tropics to the poles and by that it governs the global distribution of total column ozone. Climate models predict a strengthening of the BDC in times of climate change. This would lead to an accelerated recovery of ozone abundance in higher latitudes. However so far there is no clear evidence of this strengthening. The strength of the BDC is dependent on wave forcing which slows the meridional winds and by that disturbs the geostrophic balance of Coriolis force and pressure gradient force. A good measure for the wave forcing is the eddy heat flux in 100hPa. It is highly correlated with changes in the total ozone columns of the polar regions and the tropic. Another major driver of the global ozone distribution is the photochemical destruction of ozone, due to ozone depleting substances (ODS) such as chlorofluorocarbons (CFCs). A special case of this is the rapid depletion of ozone in the presence of polar stratospheric clouds (PSCs). These clouds build up inside the polar vortices, are highly temperature dependent and strengthen the efficiency of ODS. In order to analyse the evolution of the higher latitude ozone abundance as a function of dynamical changes and the change in the abundance of ODS it is necessary to quantify both effects separately. This work focusses on the influence of the mid-latitude 100hpa eddy heat flux on changes in ozone in higher latitudes.

  20. Bioerosion and carbonate mud production on high-latitude shelves

    NASA Astrophysics Data System (ADS)

    Farrow, George E.; Alan Fyfe, J.

    1988-11-01

    Low-latitude carbonate muds often are composed either of entire units of skeletons (e.g., algal muds) or of precipitates, whereas high-latitude carbonate muds are bioerosional or result from maceration. Bioerosion at high latitudes is most intense in the photic zone, particularly down to 25 m depth. Shelly substrata may be crushed, bitten, drilled, bored or scraped. Clionid sponges, endolithic algae, acmaeid gastropods and regular echinoids are the most significant agents. Clionids produce distinctive facetted carbonate silt chips when boring, which have been described from both high- and low-latitudes. Faecal pellets break down to yield mud-sized carbonate particles that are more irregular than those produced by maceration. Exhumed infaunal bivalves are often preferred to epifaunal organisms as substrata. Bioerosion occurs very rapidly; shells may be totally infested with boring algae in three months. A "moth-eaten" appearance therefore does not denote a relict grain. Reliable rates of fine sediment production are not yet available. The mud fraction of northwest European shelf sediment generally contains 10-20% CaCO 3, though an inshore and offshore belt with higher values may be identified. Some Holocene supratidal mud-flats exceed 50% CaCO 3. Much of the shelf represents a modern-day equivalent of the "calcareous shale" facies common in the geological record. Instances of synsedimentary cementation are not uncommon, particularly in association with heavily burrowed muds.

  1. Teaching Latitude and Longitude in the Upper Elementary Grades.

    ERIC Educational Resources Information Center

    Johnson, Peter C.; Gondesen, Mark E.

    1991-01-01

    Discusses the desirability of teaching latitude and longitude concepts to upper elementary students. Includes a four-lesson unit on the topics. Employs hurricane tracking information available from the National Hurricane Center. Provides a foundation for future lessons on Middle and North American geography. (SG)

  2. Programmed Latitude and Longitude, Special Publication Number 10.

    ERIC Educational Resources Information Center

    Hoover, Jean C.

    Designed to measure skills involving latitude and longitude, this is a self-administering linear program for junior-high geography students. Students progress through 59 pages of fill-in-the-blank items, accompanied by appropriate line drawings, for which the correct answers are given below each question. Following the method of programmed…

  3. Statistics of ionospheric scintillation occurrence over European high latitudes

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Aquino, M.

    2014-12-01

    Rapid fluctuation in the amplitude and phase of transionospheric radio signals caused by small scale ionospheric plasma density irregularities is known as scintillation. Over the high latitudes, irregularities causing scintillation are associated with large scale plasma structures and scintillation occurrence is mainly enhanced during geomagnetic storms. This paper presents a statistical analysis of scintillation occurrence on GPS L1C/A signal at a high latitude station located in Bronnoysund (geographic latitude 65.5°N, geographic longitude 12.2°E; corrected geomagnetic (CGM) latitude 62.77°N), Norway, during the periods around the peaks of solar cycles 23 (2002-2003) and 24 (2011-2013). The analysis revealed that the scintillation occurrence at Bronnoysund during both the solar maximum periods maximises close to the midnight magnetic local time (MLT) sector. A higher occurrence of scintillation is observed on geomagnetically active days during both the solar maximum periods. The seasonal pattern of scintillation occurrence indicated peaks during the summer and equinoctial months. A comparison with the interplanetary magnetic field (IMF) components By and Bz showed an association of scintillation occurrence with the southward IMF Bz conditions.

  4. Working Model of a Foucault Pendulum at Intermediate Latitudes

    ERIC Educational Resources Information Center

    Sears, Francis W.

    1969-01-01

    Describes a working model of a Foucault pendulum at intermediate latitudes constructed of a steel drill rod with a steel ball attached at one end. The rod makes an angle of 45 degrees with the rotation axis of a horizontal turntable. The vibrating system is the same as that which led Foucault to construct his first gravity pendulum. (LC)

  5. A solar cycle timing predictor - The latitude of active regions

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1990-01-01

    A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.

  6. Out of the Tropical Lowlands: Latitude versus Elevation.

    PubMed

    Qian, Hong; Ricklefs, Robert E

    2016-10-01

    Temperate plant communities have been assembled from tropical, lowland floras through different evolutionary pathways with respect to invading more recent cool environments at higher latitudes (niche conservatism) and occupying older cool environments at higher elevations within the tropics (niche convergence). PMID:27523604

  7. Redefining the Longitude/Latitude Experience with a Scaffolded Geocache

    ERIC Educational Resources Information Center

    Hammond, Thomas; Bozdin, Alec M.; Stanlick, Sarah E.

    2014-01-01

    Latitude and longitude are foundational concepts for geography education, yet they are typically poorly understood by students and receive indifferent attention from instructors and publishers' materials. Social studies teachers can take advantage of increasingly ubiquitous geolocating devices such as Global Positions Systems (GPS) to provide…

  8. A model of high-latitude thermospheric density

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yosuke; Kosch, Michael J.; Sutton, Eric K.

    2015-09-01

    We present an empirical model of the high-latitude air density at 450 km, derived from accelerometer measurements by the CHAllenging Minisatellite Payload and Gravity Recovery and Climate Experiment satellites during 2002-2006, which we call HANDY (High-Latitude Atmospheric Neutral DensitY). HANDY consists of a quiet model and disturbance model. The quiet model represents the background thermospheric density for "zero geomagnetic activity" conditions. The disturbance model represents the response of the thermospheric density to solar wind forcing at high latitudes. The solar wind inputs used are the following: (1) solar wind electric field ESW, (2) interplanetary magnetic field (IMF) clock angle CSW, and (3) solar wind dynamic pressure PSW. Both quiet and disturbance models are constructed on the basis of spherical harmonic function fitting to the data. Magnetic coordinates are used for the disturbance model, while geographical coordinates are used for the quiet model. HANDY reproduces main features of the solar wind influence on the high-latitude thermospheric density, such as the IMF By effect that produces a hemispheric asymmetry in the density distribution.

  9. The Ionospheric Mid-Latitude Summer Nighttime Anomaly

    NASA Astrophysics Data System (ADS)

    Lin, C.; Chen, C.; Hsu, M.; Liu, C. H.; Liu, J. G.; Burns, A. G.; Wang, W.

    2009-12-01

    This paper presents monthly variations of the mid-latitude summer nighttime anomaly (MSNA) of the ionosphere for the first time by using global observations of the FORMOSAT-3/COSMIC (F3/C), NASA TIMED-GUVI, ground-based radars and GPS receiver network. The MSNA is characterized by greater nighttime (19:00 LT - 24:00 LT, or period of larger solar zenith angles) ionospheric electron density than that during daytime (08:00 - 18:00 LT, or period of smaller solar zenith angles) at middle latitudes during solstices. The anomaly shown in the southern hemisphere during December solstice was previously known as the Weddell Sea Anomaly (WSA) occurring around the Antarctica and the nearby Pacific Ocean, while a WSA-like electron density structure also occurs in the northern hemisphere around June solstice. This study demonstrates that the anomalies occurred in both the northern and southern hemispheres share similar character of greater nighttime density. Moreover, the latitude-altitude cross-section plots of the electron density structure show very similar time-varying electron density evolutions of the MSNA. In both hemispheres, the anomalies with similar electron density characteristics and variations caused by the similar mechanism prompts us to name this phenomenon the mid-latitude summer nighttime anomaly.

  10. Earth-Sun Relationships: Latitude, Longitude and Time.

    ERIC Educational Resources Information Center

    Thomas, Paul F.

    High school students learn about the sun's effects on the earth by examining the concepts of latitude and longitude, seasons, and time. Each of these topics is treated in a separate, but similarly organized, unit. Relevant vocabulary is introduced, and complex terms are clarified with diagrams and illustrations. In the unit on time, potentially…

  11. Lateral ventricle morphology analysis via mean latitude axis.

    PubMed

    Paniagua, Beatriz; Lyall, Amanda; Berger, Jean-Baptiste; Vachet, Clement; Hamer, Robert M; Woolson, Sandra; Lin, Weili; Gilmore, John; Styner, Martin

    2013-03-29

    Statistical shape analysis has emerged as an insightful method for evaluating brain structures in neuroimaging studies, however most shape frameworks are surface based and thus directly depend on the quality of surface alignment. In contrast, medial descriptions employ thickness information as alignment-independent shape metric. We propose a joint framework that computes local medial thickness information via a mean latitude axis from the well-known spherical harmonic (SPHARM-PDM) shape framework. In this work, we applied SPHARM derived medial representations to the morphological analysis of lateral ventricles in neonates. Mild ventriculomegaly (MVM) subjects are compared to healthy controls to highlight the potential of the methodology. Lateral ventricles were obtained from MRI scans of neonates (9-144 days of age) from 30 MVM subjects as well as age- and sex-matched normal controls (60 total). SPHARM-PDM shape analysis was extended to compute a mean latitude axis directly from the spherical parameterization. Local thickness and area was straightforwardly determined. MVM and healthy controls were compared using local MANOVA and compared with the traditional SPHARM-PDM analysis. Both surface and mean latitude axis findings differentiate successfully MVM and healthy lateral ventricle morphology. Lateral ventricles in MVM neonates show enlarged shapes in tail and head. Mean latitude axis is able to find significant differences all along the lateral ventricle shape, demonstrating that local thickness analysis provides significant insight over traditional SPHARM-PDM. This study is the first to precisely quantify 3D lateral ventricle morphology in MVM neonates using shape analysis.

  12. The diffuse interstellar bands and the Galactic latitude

    NASA Astrophysics Data System (ADS)

    McIntosh, Alan; Webster, Adrian

    1993-04-01

    Existing measurements of three of the diffuse interstellar bands are presented in a new way, in order to investigate how the relative strengths of different bands depend on the Galactic latitude of the stars in whose light they are seen. It is found that none of the three ratios of bandstrength amongst 4430, 5780, and 5797 A is constant, but all three are correlated with the modulus of the latitude. The abundance of the carrier of 4430 A relative to the others is found to be greatest at low latitude, while that of the carrier of 5797 A is greatest at high latitude. It is supposed that this dependence reflects a more basic dependence on height above and below the Galactic plane, the carrier of 4430 A evidently preferring conditions near the plane where the gas density is high and the carrier of 5797 A preferring the more tenuous gas further out. In terms of a recent theory in which the carriers are different hydrocarbon molecules and ions of the fullerane family, these results imply that, of the bands studied here, the carrier of 4430 A bears the most hydrogen atoms and that of 5797 A bears the fewest.

  13. Study of propagation characteristics of very low latitude whistlers by means of three-dimensional ray-tracing computations

    NASA Astrophysics Data System (ADS)

    Ohta, Kenji; Nishimura, Yasuhiro; Kitagawa, Tomomi; Hayakawa, Masashi

    1997-04-01

    The propagation mechanism of very low latitude (geomagnetic latitudes of less than 10-15°) whistlers is poorly understood. There is a controversy on their propagation; some workers using the observational facts have suggested field-aligned propagation, but some theoretical (ray tracing) works have all indicated nonducted propagation. This paper reexamines the propagation characteristics of nonducted propagation, but we use three-dimensional ray tracing (different from previous works) for realistic ionosphere/magnetosphere models (the electron density profile with latitudinal and longitudinal gradients and the International Geomagnetic Reference Field (IGRF) magnetic field model instead of the conventional dipole model). By assuming small possible tilts (in the latitudinal and longitudinal direction) of the initial wave normal angle in the input southern hemisphere, we have found that it is possible for us to detect simultaneously, at a very low latitude position in the northern ionosphere, one-hop whistler rays started from slightly spaced locations in the south with different initial wave normal angles and that some of them can penetrate through the ionosphere, but some others cannot. On the basis of systematic analysis of important parameters, we come to the general conclusion that it is possible for us to find a closely spaced set of paths to reproduce the one-hop and three-hop whistlers in the north and to have the dispersion ratio of 1:3. The echo train whistlers, as were often observed by Hayakawa et al. [1990], are realized also by this nonducted propagation without any serious requirements.

  14. Horizontal Shapes of Daytime Mid-latitude Sporadic-E Imaged by GPS Total Electron Content Observations in Japan

    NASA Astrophysics Data System (ADS)

    Maeda, Jun; Heki, Kosuke

    2016-04-01

    Sporadic-E (Es) is a thin densely ionized plasma patch whose occurrence is highly unpredictable. Since the discovery of Es, its two-dimensional (2-D) horizontal shape has long remained ambiguous due to the lack of appropriate observation instruments. Here in our study, 2-D imaging of mid-latitude sporadic-E (Es) is performed by using a dense array of Global Navigation Satellite System (GNSS) receivers in Japan. We used Global Positioning System (GPS) satellites and the densely distributed GNSS receiver network to conduct GPS total electron content (TEC) observations and mapped positive TEC anomalies caused by Es. We analyzed over 70 Es occurrences over Japan to reveal morphological characteristics of daytime mid-latitude Es. Their horizontal shapes are characterized by frontal structure typically elongated in the east-west (E-W) direction by ~100 km with the north-south (N-S) width of 10-30 km. Frontal structures are often found to include smaller-scale structures, which are quasi-periodically located plasma patches. These small-scale patches indicate the operation of shear instability, e.g., Kelvin-Helmholtz (K-H) instability, in the horizontal structuring of daytime mid-latitude Es. In addition, frontal structures are observed to migrate mainly northward in the morning and southward in the afternoon with speeds of 30-100 m/s, which may reflect the directions and velocities of neutral winds controlled by the atmospheric tides.

  15. Potential impacts of wintertime soil moisture anomalies from agricultural irrigation at low latitudes on regional and global climates

    NASA Astrophysics Data System (ADS)

    Wey, Hao-Wei; Lo, Min-Hui; Lee, Shih-Yu; Yu, Jin-Yi; Hsu, Huang-Hsiung

    2015-10-01

    Anthropogenic water management can change surface energy budgets and the water cycle. In this study, we focused on impacts of Asian low-latitude irrigation on regional and global climates during boreal wintertime. A state-of-the-art Earth system model is used to simulate the land-air interaction processes affected by irrigation and the consequent responses in atmospheric circulation. Perturbed experiments show that wet soil moisture anomalies at low latitudes can reduce the surface temperature on a continental scale through atmospheric feedback. The intensity of prevailing monsoon circulation becomes stronger because of larger land-sea thermal contrast. Furthermore, anomalous upper level convergence over South Asia and midlatitude climatic changes indicate tropical-extratropical teleconnections. The wintertime Aleutian low is deepened and an anomalous warm surface temperature is found in North America. Previous studies have noted this warming but left it unexplained, and we provide plausible mechanisms for these remote impacts coming from the irrigation over Asian low-latitude regions.

  16. Energetic Particles at High Latitudes of the Heliosphere

    SciTech Connect

    Zhang Ming

    2004-09-15

    Ulysses has by now made two complete out-of-ecliptic orbits around the sun. The first encounter of the solar poles occurred in 1994-1995, when the sun was near the minimum of its activity cycle, while the second one was in 2000-2001, when the sun was at solar maximum. To our surprise, energetic particles of all origins at high latitude are not much different from those we observe near the ecliptic for at least these two phases of solar cycle. The latitude gradients of galactic and anomalous cosmic rays are positive but small at the 1994-1995 solar minimum and almost zero at the 2000-2001 solar maximum, while temporal solar cycle variation dominates their flux variation at all latitudes. Solar energetic particles from all large gradual events can be seen at both Ulysses and Earth no matter how large their spatial separations from the solar event are, and the particle flux often reaches a uniform level in the entire inner heliosphere within a few days after event onset and remains so throughout the decay phase that can sometimes last over a month. Energetic particles accelerated by low-latitude CIRs can appear at high latitudes, far beyond the latitudinal range of CIRs. All these observations suggest that latitudinal transport of energetic particles is quite easy. In addition, because the average magnetic field is radial at the pole, The Ulysses observations indicate that parallel diffusion and drift in the radial direction need to be reduced at the poles relative to their equatorial values. To achieve such behaviors of particle transport, the heliospheric magnetic field needs a significant latitudinal component at the poles. A non-zero latitudinal magnetic field component can be produced by latitudinal motion of the magnetic field line in solar corona, which can be in form of either random walk suggested by Jokipii or large scale systematic motion suggested by Fisk.

  17. Fish biodiversity and conservation in South America.

    PubMed

    Reis, R E; Albert, J S; Di Dario, F; Mincarone, M M; Petry, P; Rocha, L A

    2016-07-01

    The freshwater and marine fish faunas of South America are the most diverse on Earth, with current species richness estimates standing above 9100 species. In addition, over the last decade at least 100 species were described every year. There are currently about 5160 freshwater fish species, and the estimate for the freshwater fish fauna alone points to a final diversity between 8000 and 9000 species. South America also has c. 4000 species of marine fishes. The mega-diverse fish faunas of South America evolved over a period of >100 million years, with most lineages tracing origins to Gondwana and the adjacent Tethys Sea. This high diversity was in part maintained by escaping the mass extinctions and biotic turnovers associated with Cenozoic climate cooling, the formation of boreal and temperate zones at high latitudes and aridification in many places at equatorial latitudes. The fresh waters of the continent are divided into 13 basin complexes, large basins consolidated as a single unit plus historically connected adjacent coastal drainages, and smaller coastal basins grouped together on the basis of biogeographic criteria. Species diversity, endemism, noteworthy groups and state of knowledge of each basin complex are described. Marine habitats around South America, both coastal and oceanic, are also described in terms of fish diversity, endemism and state of knowledge. Because of extensive land use changes, hydroelectric damming, water divergence for irrigation, urbanization, sedimentation and overfishing 4-10% of all fish species in South America face some degree of extinction risk, mainly due to habitat loss and degradation. These figures suggest that the conservation status of South American freshwater fish faunas is better than in most other regions of the world, but the marine fishes are as threatened as elsewhere. Conserving the remarkable aquatic habitats and fishes of South America is a growing challenge in face of the rapid anthropogenic changes of the 21

  18. Fish biodiversity and conservation in South America.

    PubMed

    Reis, R E; Albert, J S; Di Dario, F; Mincarone, M M; Petry, P; Rocha, L A

    2016-07-01

    The freshwater and marine fish faunas of South America are the most diverse on Earth, with current species richness estimates standing above 9100 species. In addition, over the last decade at least 100 species were described every year. There are currently about 5160 freshwater fish species, and the estimate for the freshwater fish fauna alone points to a final diversity between 8000 and 9000 species. South America also has c. 4000 species of marine fishes. The mega-diverse fish faunas of South America evolved over a period of >100 million years, with most lineages tracing origins to Gondwana and the adjacent Tethys Sea. This high diversity was in part maintained by escaping the mass extinctions and biotic turnovers associated with Cenozoic climate cooling, the formation of boreal and temperate zones at high latitudes and aridification in many places at equatorial latitudes. The fresh waters of the continent are divided into 13 basin complexes, large basins consolidated as a single unit plus historically connected adjacent coastal drainages, and smaller coastal basins grouped together on the basis of biogeographic criteria. Species diversity, endemism, noteworthy groups and state of knowledge of each basin complex are described. Marine habitats around South America, both coastal and oceanic, are also described in terms of fish diversity, endemism and state of knowledge. Because of extensive land use changes, hydroelectric damming, water divergence for irrigation, urbanization, sedimentation and overfishing 4-10% of all fish species in South America face some degree of extinction risk, mainly due to habitat loss and degradation. These figures suggest that the conservation status of South American freshwater fish faunas is better than in most other regions of the world, but the marine fishes are as threatened as elsewhere. Conserving the remarkable aquatic habitats and fishes of South America is a growing challenge in face of the rapid anthropogenic changes of the 21

  19. Mid-latitude composition of mars from thermal and epithermal neutrons

    SciTech Connect

    Prettyman, T. H.; Feldman, W. C.; Elphic, R. C.; Boynton, W. V.; Bish, D. L.; Vaniman, D. T.; Funsten, H. O.; Lawrence, David J. ,; Maurice, S.; McKinney, G. W.; Moore, K. R.; Tokar, R. L.

    2003-01-01

    Epithermal neutron data acquired by Mars Odyssey have been analyzed to determine global maps of water-equivalent hydrogen abundance. By assuming that hydrogen was distributed uniformly with depth within the surface, a map of minimum water abundance was obtained. The addition of thermal neutrons to this analysis could provide information needed to determine water stratigraphy. For example, thermal and epithermal neutrons have been used together to determine the depth and abundance of waterequivalent hydrogen of a buried layer in the south polar region. Because the emission of thermal neutrons from the Martian surface is sensitive to absorption by elements other than hydrogen, analysis of stratigraphy requires that the abundance of these elements be known. For example, recently published studies of the south polar region assumed that the Mars Pathfinder mean soil composition is representative of the regional soil composition, This assumption is partially motivated by the fact that Mars appears to have a well-mixed global dust cover and that the Pathfinder soil composition is representative of the mean composition of the Martian surface. In this study, we have analyzed thermal and epithermal neutron data measured by the neutron spectrometer subsystem of the gamma ray spectrometer to determine the spatial distribution of the composition of elements other than hydrogen. We have restricted our analysis to mid-latitude regions for which we have corrected the neutron counting data for variations in atmospheric thickness.

  20. Connection between high-latitude arcs and the low-latitude boundary layer during periods of northward IMF

    NASA Astrophysics Data System (ADS)

    Maggiolo, R.; Fontaine, D.; Hosokawa, K.; Maes, L.; Zhang, Y.; Fear, R. C.; Cumnock, J. A.; Kozlovsky, A.; Kullen, A.; Milan, S. E.; Shiokawa, K.; Echim, M.

    2014-12-01

    High-latitude auroral arcs are a typical feature of periods of northward IMF. They consist in thin and elongated optical emission similar to discrete auroral arcs but located in the polar ionosphere. Their formation mechanism and the magnetospheric regions to which they are connected are still not well understood. On November 10, 2005, high-latitude arcs were detected by an all-sky camera at Resolute Bay in Canada and by the TIMED/GUVI and DMSP/SUSIE space-based imagers. These observations indicate that they were detaching from the duskside auroral oval and then drifting poleward while pointing in the cusp direction. The same day, the Cluster spacecraft were flying in the dawn-dusk direction from the lobe region at altitudes ~5 RE to the magnetospheric equatorial plane at geocentric distances ~19 RE. Cluster observations reveal the presence of field-aligned acceleration regions above the polar ionosphere associated with the high-latitude arcs detected by the imagers. We analyze Cluster particle observations from the lobe region to the duskside magnetopause. In the high-latitude arcs region, Cluster detects upgoing ions and precipitating electrons accelerated by a quasi-static electric field. These accelerated particles coexist with plasmasheet-like plasma embedded in the lobe region. A comparison between the 4 Cluster spacecraft electron measurements for the most poleward arc reveals that the plasmasheet-like electron population is vanishing on a time scale of a few minutes while the plasmasheet-like ion population doesn't display any temporal evolution. The most equatorward arc is separated from the auroral oval by a "transition" region where weak fluxes of ions with plasmasheet like temperatures are detected. Then the Cluster spacecraft cross the plasmasheet until they reach the low-latitude boundary layer (LLBL) characterized by a mixture of plasmasheet and magnetosheath plasma. The "transition" region and the LLBL are magnetically connected. Using Cluster

  1. Thermal imbalance and shock wave effects on low latitude ionosphere : asymmetric case of a total solar eclipse

    NASA Astrophysics Data System (ADS)

    Vila, P. M.; Fleury, R.; Le Roux, Y.; Kone, E.

    2003-04-01

    The total solar eclipse of June 21 2001 crossed Africa under favourablr conditions for observing distant effects on the ionosphere, especially IN equatorial and subtropical F layer magnetic tubes:1^o)magnetically quiet Solar and magnetospheric activity; 2^o) totality at the noon phase in the GMT meridians of observation; 3^o) totality path nearly parallel to the magnetic equator at about the 10^o south geographic. Two West African digital ionosondes recorded h'f profiles at 5 minute intervals at Korhogo (Ivory Coast, geogr lat. 9.5^oNorth, magn. lat. -2.5^o, where the eclipse occultation was 40%) and Dakar (Senegal, geogr. Latitude 15^oNorth, magn. latitude + 4.8^o, just outside the penumbra). The h'f ionograms have been inverted to trace fp(h,t) variations over both sites from 07 to 17 UT. these plots are completed by the TEC variations observed along the 8 GPS satelltite tracks over the Atlantic and African areas.The results approximate (3D, time)variations as follows : (I). At the mesoscale range from 5^o South to 25^o North latitudes, intense asymmetric cooling of the southern tropic zone around the local noon enhanced the normal southward cross-equator neutral wind; hence a strong southward plasma flow from the less eclipsed northern half of the intertropical ionospheric domain (from Dakar onwards to the 25^o North) to the southern half. The attenuated ionization depletion in the strongly eclipsed Southern crest area from 0^oto 10^o South. Also the GPS meridian segments of TEC records show counter-coupling between i) adiabatic cooling (Raghava Rao's Equatorial Temperature Anomaly), and ii) conjugate photoelectron heat deposition on the equatorial side of the southern F2 density crest. We thereby infer that in West Africa such unstable dynamics often distort crest evolution at post-noon hours, except around the magnetic equinoxes of May 21 and August 20. (II) Two gravity wave modes were identified after eclipse maximum phase on the F2 Korhogo ionogram peak

  2. Ulysses at 50 deg south: Constant immersion in the high-speed solar wind

    NASA Technical Reports Server (NTRS)

    Phillips, J. L.; Balogh, A.; Bame, S. J.; Goldstein, B. E.; Gosling, J. T.; Hoeksema, J. T.; Mccomas, D. J.; Neugebauer, M.; Sheeley, N. R., Jr.; Wang, Y.-M.

    1994-01-01

    We present speed observations from the Ulysses solar wind plasma experiment through 50 deg south latitude. The pronounced speed modulation arising from solar rotation and the tilt of the heliomagnetic current sheet has nearly disappeared. Ulysses is now observing wind speeds in the 700 to 800 km/s range, with a magnetic polarity indicating an origin in the large south polar coronal hole. The strong compressions, rarefractions, and shock waves previously seen have weakened or disappeared. Occasional coronal mass ejections characterized by low plasma density caused by radial expansion have been observed. The coronal configuration was simple and stable in 1993, indicating that the observed solar wind changes were caused by increasing spacecraft latitude. Trends in prevailing speed with increasing latitude support previous findings. A decrease in peak speed southward of 40 deg latitude may indicate that the fastest solar wind comes from the equatorial extensions of the polar coronal holes.

  3. Radiocarbon Anomalies of Surface Waters in the Glacial-to-Deglacial Low-to-Mid-Latitude Atlantic

    NASA Astrophysics Data System (ADS)

    Sarnthein, M.; Balmer, S.; Mudelsee, M.

    2015-12-01

    14C reservoir ages of surface waters are crucial for dating marine sediment records of the last 40,000 yr. In the low-latitude Atlantic, time series of 14C reservoir ages were reconstructed for five sites using the 14C plateau-tuning technique and supplemented by a reservoir age record from southern mid-latitudes (Skinner et al., 2010). Results suggest small-scale spatial and short-term (multi-centennial-scale) changes in reservoir age over last glacial-to-deglacial times, thus modify previously assigned calendar age chronologies by up to 500-2500 yr. During late peak glacial, enhanced summer winds off South Brazil and strengthened southerly trades off Namibia induced local reservoir ages of up to 900-1100 yr, whereas surface water ages in the Cariaco lagoon fell close to zero, a result of dominant CO2 exchange with the atmosphere. Near 16.05 ka, reservoir ages dropped to a minimum of 170-420 yr all over the South Atlantic, possibly the response to an immediately preceding short-term major rise in atmospheric pCO2 and East Antarctic temperatures. Our 14C reservoir ages provide a first basis for systematic data-model comparisons. They largely confirm model-based estimates for the LGM (Butzin et al., 2012) that have been derived from changes in both atmospheric 14C concentration and reductions in AMOC. Deviations are constrained to coastal upwelling zones in part insufficiently resolved by numerical models.

  4. Higher photosynthetic capacity from higher latitude: foliar characteristics and gas exchange of southern, central and northern populations of Populus angustifolia.

    PubMed

    Kaluthota, Sobadini; Pearce, David W; Evans, Luke M; Letts, Matthew G; Whitham, Thomas G; Rood, Stewart B

    2015-09-01

    Narrowleaf cottonwood (Populus angustifolia James) is an obligate riparian poplar that is a foundation species in river valleys along the Rocky Mountains, spanning 16° of latitude from southern Arizona, USA to southern Alberta, Canada. Its current distribution is fragmented, and genetic variation shows regional population structure consistent with the effects of geographic barriers and past climate. It is thus very well-suited for investigating ecophysiological adaptation associated with latitude. In other section Tacamahaca poplar species, genotypes from higher latitudes show evidence of short-season adaptation with foliar traits that contribute to higher photosynthetic capacity. We tested for similar adaptation in three populations of narrowleaf cottonwoods: from Arizona (south), Alberta (north) and Utah, near the centre of the latitudinal distribution. We propagated 20 genotypes from each population in a common garden in Alberta, and measured foliar and physiological traits after 3 years. Leaves of genotypes from the northern population had higher leaf mass per area (LMA), increased nitrogen (N) content and higher carotenoid and chlorophyll content, and these were associated with higher light-saturated net photosynthesis (Asat). In leaves of all populations the majority of stomata were abaxial, with the proportion of abaxial stomata highest in the southern population. Stomatal conductance (gs) and transpiration rates were higher in the northern population but water-use efficiency (Asat/gs) and leaf carbon isotope composition (δ(13)C) did not differ across the populations. These results (i) establish links between Asat and gs, N, chlorophyll and LMA among populations within this species, (ii) are consistent with the discrimination of populations from prior investigation of genetic variation and (iii) support the concept of latitudinal adaptation, whereby deciduous trees from higher latitudes display higher photosynthetic capacity, possibly compensating for a

  5. Higher photosynthetic capacity from higher latitude: foliar characteristics and gas exchange of southern, central and northern populations of Populus angustifolia.

    PubMed

    Kaluthota, Sobadini; Pearce, David W; Evans, Luke M; Letts, Matthew G; Whitham, Thomas G; Rood, Stewart B

    2015-09-01

    Narrowleaf cottonwood (Populus angustifolia James) is an obligate riparian poplar that is a foundation species in river valleys along the Rocky Mountains, spanning 16° of latitude from southern Arizona, USA to southern Alberta, Canada. Its current distribution is fragmented, and genetic variation shows regional population structure consistent with the effects of geographic barriers and past climate. It is thus very well-suited for investigating ecophysiological adaptation associated with latitude. In other section Tacamahaca poplar species, genotypes from higher latitudes show evidence of short-season adaptation with foliar traits that contribute to higher photosynthetic capacity. We tested for similar adaptation in three populations of narrowleaf cottonwoods: from Arizona (south), Alberta (north) and Utah, near the centre of the latitudinal distribution. We propagated 20 genotypes from each population in a common garden in Alberta, and measured foliar and physiological traits after 3 years. Leaves of genotypes from the northern population had higher leaf mass per area (LMA), increased nitrogen (N) content and higher carotenoid and chlorophyll content, and these were associated with higher light-saturated net photosynthesis (Asat). In leaves of all populations the majority of stomata were abaxial, with the proportion of abaxial stomata highest in the southern population. Stomatal conductance (gs) and transpiration rates were higher in the northern population but water-use efficiency (Asat/gs) and leaf carbon isotope composition (δ(13)C) did not differ across the populations. These results (i) establish links between Asat and gs, N, chlorophyll and LMA among populations within this species, (ii) are consistent with the discrimination of populations from prior investigation of genetic variation and (iii) support the concept of latitudinal adaptation, whereby deciduous trees from higher latitudes display higher photosynthetic capacity, possibly compensating for a

  6. Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions

    NASA Astrophysics Data System (ADS)

    Singh, H. B.; Anderson, B. E.; Brune, W. H.; Cai, C.; Cohen, R. C.; Crawford, J. H.; Cubison, M. J.; Czech, E. P.; Emmons, L.; Fuelberg, H. E.; Huey, G.; Jacob, D. J.; Jimenez, J. L.; Kaduwela, A.; Kondo, Y.; Mao, J.; Olson, J. R.; Sachse, G. W.; Vay, S. A.; Weinheimer, A.; Wennberg, P. O.; Wisthaler, A.; The Arctas Science Team

    2010-11-01

    We analyze detailed atmospheric gas/aerosol composition data acquired during the 2008 NASA ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) airborne campaign performed at high northern latitudes in spring (ARCTAS-A) and summer (ARCTAS-B) and in California in summer (ARCTAS-CARB). Biomass burning influences were widespread throughout the ARCTAS campaign. MODIS data from 2000 to 2009 indicated that 2008 had the second largest fire counts over Siberia and a more normal Canadian boreal forest fire season. Near surface arctic air in spring contained strong anthropogenic signatures indicated by high sulfate. In both spring and summer most of the pollution plumes transported to the Arctic region were from Europe and Asia and were present in the mid to upper troposphere and contained a mix of forest fire and urban influences. The gas/aerosol composition of the high latitude troposphere was strongly perturbed at all altitudes in both spring and summer. The reactive nitrogen budget was balanced with PAN as the dominant component. Mean ozone concentrations in the high latitude troposphere were only minimally perturbed (<5 ppb), although many individual pollution plumes sampled in the mid to upper troposphere, and mixed with urban influences, contained elevated ozone (ΔO 3/ΔCO = 0.11 ± 0.09 v/v). Emission and optical characteristics of boreal and California wild fires were quantified and found to be broadly comparable. Greenhouse gas emission estimates derived from ARCTAS-CARB data for the South Coast Air Basin of California show good agreement with state inventories for CO 2 and N 2O but indicate substantially larger emissions of CH 4. Simulations by multiple models of transport and chemistry were found to be broadly consistent with observations with a tendency towards under prediction at high latitudes.

  7. Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes.

    PubMed

    Jones, Natalie T; Gilbert, Benjamin

    2016-03-01

    In seasonal climates, dormancy is a common strategy that structures biodiversity and is necessary for the persistence of many species. Climate change will likely alter dormancy dynamics in zooplankton, the basis of aquatic food webs, by altering two important hatching cues: mean temperatures during the ice-free season, and mean day length when lakes become ice free. Theory suggests that these changes could alter diversity, hatchling abundances and phenology within lakes, and that these responses may diverge across latitudes due to differences in optimal hatching cues and strategies. To examine the role of temperature and day length on hatching dynamics, we collected sediment from 25 lakes across a 1800 km latitudinal gradient and exposed sediment samples to a factorial combination of two photoperiods (12 and 16 h) and two temperatures (8 and 12 °C) representative of historical southern (short photoperiod, warm) and northern (long photoperiod, cool) lake conditions. We tested whether sensitivity to these hatching cues varies by latitudinal origin and differs among taxa. Higher temperatures advanced phenology for all taxa, and these advances were greatest for cladocerans followed by copepods and rotifers. Although phenology differed among taxa, the effect of temperature did not vary with latitude. The latitudinal origin of the egg bank influenced egg abundance and hatchling abundance and diversity, with these latter effects varying with taxa, temperature and photoperiod. Copepod hatchling abundances peaked at mid-latitudes in the high temperature and long photoperiod treatments, whereas hatchling abundances of other zooplankton were greatest at low latitudes and high temperature. The overall diversity of crustacean zooplankton (copepods and cladocerans) also reflected distinct responses of each taxa to our treatments, with the greatest diversity occurring at mid-latitudes (~56 °N) in the shorter photoperiod treatment. Our results demonstrate that hatching cues

  8. Anaglyph, South America

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Location: 15 degrees North to 60 degrees South latitude, 30 to 90 degrees West longitude Orientation: North toward the top, Mercator projection Image Data: shaded SRTM elevation model Original Data Resolution: SRTM 1 arcsecond (about 30 meters or 98 feet) Date Acquired: February 2000

  9. Space Weather Studies Using the Low-Latitude Ionospheric Sensor Network (LISN)

    NASA Astrophysics Data System (ADS)

    Valladares, C. E.; Pacheco, E.

    2014-12-01

    LISN is an array of small instruments that operates as a real-time distributed observatory to understand the complex day-to-day variability and the extreme state of disturbance that occurs in the South American low-latitude ionosphere nearly every day after sunset. The LISN observatory aims to forecast the initiation and transport of plasma bubbles across the South American continent. The occurrence of this type of plasma structures and their embedded irregularities poses a prominent natural hazard to communication, navigation and high precision pointing systems. As commercial and military aviation is increasingly reliant on Global Navigation Satellite Systems (GNSS) any interruption due to ionospheric irregularities or errors due to large density gradients constitutes a serious threat to passengers and crew. Therefore, it is important to understand the conditions and sources that contribute to the formation of these irregularities. To achieve high quality regional nowcasts and forecasts, the LISN system was designed to include a dense coverage of the South American landmass with 47 GPS receivers, 5 flux-gate magnetometers distributed on 2 base lines and 3 Vertical Incidence Pulsed Ionospheric Radar (VIPIR) ionosondes deployed along the same magnetic meridian that intersects the magnetic equator at 68° W. This presentation will provide a summary of recent instrument installations and new processing techniques that have been developed under the LISN project. We will also present the results of recent efforts to detect TIDs and TEC plasma depletions on a near real-time basis. We will describe a method to estimate the zonal velocity and tilt of the plasma bubbles/depletions by combining observations of TEC depletions acquired with adjacent receivers, making it possible to predict precisely their future locations.

  10. Perspective View of Venus (Center Latitude 0 Degree N., Center Longitude 77 Degrees E.)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This perspective view of Venus, generated by computer from Magellan data and color-coded with emissivity, shows the boundary between the lowland plains and characteristic Venusian highland terrain in Ovda Regio, the western part of the great equatorial highland called Aphrodite Terra. For a view of the highlands just to the east, see PIA00310. The view is parallel to the northern boundary of Ovda. The black stripe in the foreground is not a data gap; the front part of the terrain has been 'dropped down' to show a topographic cross-section through the region. The conical 'hill' in the extreme upper right of the image is not a real feature, but an artifact resulting from a single erroneous altimeter measurement. Its size gives an idea of the horizontal resolution of the altimeter. Whereas the lowlands at left are made up of overlapping, relatively dark and unfractured lava flows, the highlands consist mainly of 'tessera terrain'. The tesserae in the center of the image consist mainly of ridges running nearly parallel to the highland boundary, whereas further south (to the right) the pattern is complicated by north-south trending fractures. Local depressions in the highlands, which have been partially filled in by smooth material, are visible in several places. Magellan MIDR quadrangle* containing this image: C1- 00N077. Image resolution (m): 225. Size of region shown (E-W x N-S, in km): 824 x 520. Range of emissivities from violet to red: 0.67 -- 0.87. Vertical exaggeration: 40. Azimuth of viewpoint (deg clockwise from East): 165. Elevation of viewpoint (km): 520. *Quadrangle name indicates approximate center latitude (N=north, S=south) and center longitude (East).

  11. Maritime User Requirements at High Latitudes - the MARENOR Project

    NASA Astrophysics Data System (ADS)

    Behlke, R.

    2014-12-01

    The ionosphere at high latitudes is characterised by a great variety of spatial and temporal variations that influence radio signals. In addition to navigation solutions that are based on Global Navigation Satellite Systems (GNSS), satellite communication systems also suffer from ionospheric degradation. This is worsened by harsh weather conditions, insufficient coverage by geostationary satellites and the absence of land-based augmentation infrastructure. Climate change will lead to a decrease in sea ice extent and thus to an increased use of trans-polar shipping routes, presence of gas and oil industries in the High Arctic and higher focus on Search-and-Rescue (SAR) as well as sovereignty issues. These moments usually require navigation and communication solutions that are accurate and reliable. We describe requirements presented by industrial operators on and around Svalbard. In addition, we present the MARENOR project that aims on evaluating navigation and communication systems at high latitudes including first results

  12. High-Latitude Ionospheric Dynamics During Conditions of Northward IMF

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.

    1996-01-01

    In order to better understand the physical processes operating during conditions of northward interplanetary magnetic field (IMF), in situ measurements from the Dynamics Explorer-2 (low altitude) polar satellite and simultaneous observations from the auroral imager on the Dynamics Explorer-1 (high altitude) satellite were used to investigate the relationships between optical emissions, particle precipitation, and convective flows in the high-latitude ionosphere. Field aligned current and convective flow patterns during IMF north include polar cap arcs, the theta aurora or transpolar arc, and the 'horse-collar' aurora. The initial part of the study concentrated on the electrodynamics of auroral features in the horse-collar aurora, a contracted but thickened emission region in which the dawn and dusk portions can spread to very high latitudes, while the latter part focused on the evolution of one type of IMF north auroral pattern to another, specifically the quiet-time horse-collar pattern to a theta aurora.

  13. Orbital control of low-latitude seasonality during the Eemian

    USGS Publications Warehouse

    Winter, A.; Paul, A.; Nyberg, J.; Oba, T.; Lundberg, J.; Schrag, D.; Taggart, B.

    2003-01-01

    We used Sr/Ca and stable isotope data from well dated and preserved corals from the northeastern Caribbean to determine the seasonal environmental conditions for four continuous years during the Eemian, the last time the Earth was in a prolonged warm phase. We determined that the seasonal range in SST during the Eemian was 25??-30?? C. This is ???1-2?? larger than at present and caused primarily by winter cooling and, only to a small degree, by summer warming. As climate modeling studies indicate, the bias towards colder winters can be explained by changes in low latitude insolation induced by altered orbital parameters, modulated by atmospheric CO2 levels that were lower than today. Milankovitch forcing at higher latitudes was probably less important.

  14. Determination and analysis of local seasonal terms of latitude variations

    NASA Astrophysics Data System (ADS)

    Soloducha, Barbara

    1991-03-01

    Local seasonal terms of latitude variations were determined on the basis of phi data of 17 BIH/IMPS stations and x, y, z data of the BIH global solution during the years 1967-1978. Some models for local corrections R to the latitude introduced by the BIH are created. The corrections R obtained from the least squares adjustment from one year data appear to be the best. The present study shows that it is necessary to determine these more frequently than once a year or to compute them for all stations simultaneously with the ERP. This will be particularly important in view of the future re-reduction of past astrometric data.

  15. High Winds in the Jovian Mid-latitudes

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A high resolution image of the Jovian mid-latitudes taken by Voyager 1 on March 2, 1979, shows distinctly differing characteristics of the planet's meteorology. The well defined pale orange line running from southwest to northeast (North is at the top) marks the high speed north temperate current with wind speeds of about 120 meters per second. These high winds produce a cleaner flow pattern in the surrounding clouds. Toward the top of the picture, a weaker jet of approximately 30 meters per second is characterized by wave patterns and cloud features which have been observed to rotate in a clockwise manner at these latitudes of about 35 North. These clouds have been observed to have lifetimes of about one to two years. The picture was taken from a distance of 4 million kilometers (2.5 million miles).

  16. Diffuse Galactic light at high Galactic latitude: nature and interpretation

    NASA Astrophysics Data System (ADS)

    Zagury, Frédéric

    2006-08-01

    The hypothesis of an extended red emission (ERE) in diffuse Galactic light (DGL) has been put forward in 1998 by Gordon, Witt & Friedmann who found that scattered starlight was not enough to explain the amount of DGL in the R band, in some high Galactic latitude directions. This paper re-investigates, for high Galactic latitudes, the brightnesses and colours of DGL, integrated star and galaxy light (ISGL), and of the total extrasolar light (ISGL+DGL) measured by Pioneer. Under the traditional assumption that DGL is forward scattering of background starlight by interstellar dust on the line of sight, ISGL and Pioneer have very close colours, as it is found by Gordon, Witt & Friedmann. Pioneer observations at high |b| thus accept an alternative and simple interpretation, with no involvement of ERE in DGL.

  17. Cellular structures in the high-latitude thermosphere

    SciTech Connect

    Crowley, G.; Schoendorf, J.; Roble, R.G.

    1996-01-01

    An organized density (and pressure) structure was recently discovered in the neutral thermosphere at high-latitudes. The structure consists of two to four high- and low-density regions having diameters of 1000 to 2000 km. The density in each region is enhanced or depleted from the hemispheric average by up to 30%. The structure is thus a significant feature of the near-Earth space environment at high-latitudes. The authors refer to each distinct region of enhanced or depleted density as a density {open_quotes}cell.{close_quotes} The cells extend upward from about 120 km into the upper thermosphere, and once formed they remain approximately fixed with respect to the geomagnetic pole. A parametric study of the density cell morphology for different magnetic activity levels is described for equinox solar minimum using the National Center for Atmospheric Research thermosphere ionosphere general circulation model (NCAR model). The TIGCM simulations were used to predict the large density perturbations observed by the S85-1 satellite in a circular sun-synchronous orbit near 200 km altitudes. The most obvious manifestations of the cells was the presence of density peaks located near 70{degrees}{Lambda} on the dayside and nightside, and a density minimum near the magnetic pole. Since high-latitude densities are generally expected to increase during magnetic activity, the low densities over the pole are perhaps the most interesting feature of the cell structure discussed here. The satellite data confirm the existence of the cellular structure over a range of magnetic activity levels. The discovery of the cells is important because the structure provides a unifying framework for the analysis and interpretation of high-latitude data from both past and future experiments. The cells result from various forms of coupling between the ionosphere and thermosphere. The cell formation is quantitatively consistent with concepts from dynamic meteorology. 34 refs., 11 figs.

  18. Low-latitude particle precipitation and associated local magnetic disturbances

    SciTech Connect

    Rassoul, H.K. ); Rohrbaugh, R.P.; Tinsley, B.A. )

    1992-04-01

    The time variations of optical emissions during low-latitude auroral events have been shown to correlate well with those of magnetograms in the region where the aurorae are observed. Two events not previously reported are analyzed and are shown to confirm the nature of the correlations found for two earlier events. The maximum optical emissions at mid-latitudes occur in concert with the maximum positive (northward) excursions in the H trace and with rapid fluctuations in the D trace of nearby magnetograms. The fluctuation in {Delta}D is usually from the east (positive) to the west (negative) in the vicinity of the {Delta}H perturbation. The positive excursions in H at low-latitude observatories at the time of the maximum optical emissions are associated with negative H excursions at high latitude observatories in the same longitude sector. The source of the particles has been inferred to be the ring current, with precipitation occurring when the {vert bar}Dst{vert bar} index is large at the time of the large short term excursions in the local magnetic field. This result is consistent with the funding of Voss and Smith (1979), derived from a series of rocket measurements of precipitating heavy particles, that the flux correlates better with the product of {vert bar}Dst{vert bar} and the exponential of K{sub p} than with either alone. In the present case it is shown that the product of {vert bar}Dst{vert bar} and the amplitude of the short term excursions in the horizontal component in local magnetograms has better time resolution and better correlation with the observed emission rates than the index using K{sub p}.

  19. Electron temperature measurements in mid-latitude sporadic E layers

    NASA Technical Reports Server (NTRS)

    Schutz, S. R.; Smith, L. G.

    1976-01-01

    By using rocket-borne Langmuir probes, electron temperature profiles have been obtained in five mid-latitude sporadic E layers. The data show the electron temperature within the layers to be lower than the electron temperature at the adjacent altitudes. This is consistent with the layers' being maintained by a vertical redistribution of ionization. The magnitude of the observed electron temperature variation is, however, larger than expected.

  20. Ionosphere variability at mid latitudes during sudden stratosphere warmings

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.; Maute, A. I.; Maruyama, N.

    2015-12-01

    Variability of the mid latitude ionosphere and thermosphere during the 2009 and 2013 sudden stratosphere warmings (SSWs) is investigated in the present study using a combination of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations and model simulations. The simulations are performed using the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) and Ionosphere Plasmasphere Electrodynamics (IPE) model. Both the COSMIC observations and TIME-GCM simulations reveal perturbations in the F-region peak height (hmF2) at Southern Hemisphere mid latitudes during SSW time periods. The perturbations are ~20-30 km, which corresponds to 10-20% variability in hmF2. The TIME-GCM simulations and COSMIC observations of the hmF2 variability are in overall good agreement, and the simulations can thus be used to understand the physical processes responsible for the hmF2 variability. The simulation results demonstrate that the mid lattiude hmF2 variability is primarily driven by the propagation of the migrating semidiurnal lunar tide (M2) into the thermosphere where it modulates the field aligned neutrals winds, which in-turn raise and lower the F-region peak height. The importance of the thermosphere neutral winds on generating the ionosphere variability at mid latitudes during SSWs is supported by IPE simulations performed both with and without the neutral wind variability. Though there are subtle differences, the consistency of the behavior between the 2009 and 2013 SSWs suggests that variability in the Southern Hemisphere mid latitude ionosphere and thermosphere is a consistent feature of the SSW impact on the upper atmosphere.

  1. Center is at Latitude 30 Degrees North, Longitude 30 Degrees

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Center of the orthographic projection is at latitude 30 degrees N., longitude 30 degrees. The north polar residual ice cap, which is cut by spiral-patterned troughs, is located at the top. The central part is characterized by a dark depression, Chryse basin, where several large outflow channels terminate. The lower-left corner is marked by a vast system of canyons, Valles Marineris, which extends eastward for several thousand kilometers.

  2. Quaternary sedimentation and diagenesis in a high-latitude reef, Houtman Abrolhos Islands, Western Australia

    SciTech Connect

    Rosen, M.R.; Collins, L.B. ); Wyrwoll, K.H.; Hatcher, B.G. )

    1990-05-01

    The Houtman Abrolhos reefs are located 80 km off the west coast of Australia between latitudes 28 and 29{degree} south. The islands are situated on three Pleistocene carbonate reef platforms which rise above the surrounding shelf. The modern coral reefs are close to the geographic limit for coral growth in the southern hemisphere and survive due to the presence of the Leeuwin current (a poleward-flowing warm stream). Two major shallow-water benthic communities coexist in the Abrolhos: a macroalgal-dominated community on the windward platform margins and a coral-dominated community on the leeward margins. These communities overlap-particularly in the platform lagoons, where competition between macroalgae and corals is intense. This interaction has been suggested as a major factor controlling the growth of cord reefs at high latitudes. The Holocene carbonate sediments lack nonskeletal components and are dominated by coral and coralline algal fragments with subordinate molluskan and echinoderm debris. The accumulations can be grouped into the following major facies: (1) coral framestone and coralline algal/serpulid boundstone, (2) submarine sand sheets, (3) subaerial coral storm ridges, (4-) peritidal to subtidal shingle and rubble veneers composed of dominantly coral debris, and (5) eolian dunes and beach sand. The Holocene sediment is a thin (< 2 m) veneer on the Pleistocene reef platform, which is emergent as small islands. The Pleistocene platform is composed of reef facies that can be directly related to the Holocene sediments. The platform is composed of framestone and boundstone facies (corals and coralline algal/serpulid facies), rudstones (submarine coral rubble facies), planar-bedded skeletal grainstones dipping 12-13{degree} (submarine sand sheet and peritidal shingle facies), and large 15-m-high eolianite dunes (eolian dune facies).

  3. Observations and modeling of the coupled latitude-altitude patterns of equatorial plasma depletions

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Zesta, Eftyhia; Shodhan, Sheela; Sultan, Peter J.; Doe, Richard; Sahai, Yogeshwar; Baumgardner, Jeffrey

    2005-09-01

    The equatorial ionosphere is host to the most dramatic and enigmatic plasma instability mechanism in the geospace environment. Equatorial spread F (ESF) was discovered in early ionosonde measurements and interpreted theoretically using Rayleigh-Taylor theory. Subsequent diagnostic and modeling advances have improved substantially our understanding of ESF onset and evolution and its associated effects on the ionosphere throughout the low-latitude domain. The degree to which ESF mechanisms penetrate into the lower midlatitudes is a topic of current study, a reverse of the familiar concept of high-to-low latitude coupling for space weather phenomena. Optical diagnostic systems, first ground based and now space based, reveal the presence of ESF structures via images of airglow depletions that are aligned in the approximately north-south direction spanning the geomagnetic equator. Ground-based all-sky camera systems used to capture the two-dimensional horizontal patterns of airglow depletions are the main source of observations showing that ESF processes intrude to midlatitudes in the L ˜ 1.5 domain. In this paper we review the process of mapping airglow depletions along geomagnetic field lines to the equatorial plane, hence defining the maximum apex heights achieved. A case study comparison of simultaneous radar backscatter data from Kwajalein with optical data from Wake Island, sites that share common magnetic meridians in the Pacific section, confirms the utility of the approach and its applicability to sites at other longitudes. Modeling studies based on buoyancy arguments using flux tube-integrated mean density values versus L shell apex heights show that instability-induced plasma depletions starting at F layer bottomside heights easily reach altitudes above 2000 km in the equatorial plane, implying that ESF intrusions to lower midlatitudes should be a relatively frequent occurrence.

  4. Study of the mid-latitude ionospheric response to geomagnetic storms in the European region

    NASA Astrophysics Data System (ADS)

    Berényi, Kitti Alexandra; Barta, Veronika; Kis, Arpad

    2016-07-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere through different physical and atmospheric processes. The phenomena that can be regarded as a result of these processes, generally is named as "ionospheric storm". The processes depend on altitude, segment of the day, the geomagnetic latitude and longitude, strength of solar activity and the type of the geomagnetic storm. We examine the data of ground-based radio wave ionosphere sounding measurements of European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory) in order to determine how and to what extent a geomagnetic disturbance of a certain strength affects the mid-latitude ionospheric regions in winter and in summer. For our analysis we used disturbed time periods between November 2012 and June 2015. Our results show significant changing of the ionospheric F2 layer parameters on strongly disturbed days compared to quiet ones. We show that the critical frequencies (foF2) increase compared to their quiet day value when the ionospheric storm was positive. On the other hand, the critical frequencies become lower, when the storm was negative. In our analysis we determined the magnitude of these changes on the chosen days. For a more complete analysis we compare also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. The results present the evolution of an ionospheric storm over a geographic meridian. Furthermore, we compared the two type of geomagnetic storms, namely the CME caused geomagnetic storm - the so-called Sudden impulse (Si) storms- and the HSS (High Speed Solar Wind Streams) caused geomagnetic storms -the so-called Gradual storms (Gs)- impact on the ionospheric F2-layer (foF2 parameter). The results show a significant difference between the effect of Si and of the Gs storms on the ionospheric F2-layer.

  5. Mountain biodiversity patterns at low and high latitudes.

    PubMed

    Molau, Ulf

    2004-11-01

    This paper presents an overview of mountain biodiversity at a multitude of scales in space, time, and function. Even though species richness is usually the focal component in nature conservation, genetic diversity within species is equally important. The small-scale distribution of species in the tropical Andes, as exemplified by the plant genera Calceolaria and Bartsia, contrasts against the situation in high-latitude mountains, e.g., the Scandes, where species have wide ranges and many are circumpolar. Recent studies on alpine plants based on molecular methods show that the intraspecific genetic diversity tends to increase with latitude, a situation brought about by the glaciation history with repeated contraction-expansion episodes of species' distributions. In tropical mountains, species distributions are geographically much narrower, often as a result of relatively recent, local speciation. Thus, whereas species richness in mountains decreases from the Equator towards the poles, genetic diversity shows the opposite trend. Finally, a comparison of ecosystem diversity in low- and high-latitude mountain ranges (tropical Andes vs. Scandes) shows that the landscapes differ profoundly with regard to timberline ecotones, snow distribution, and climate variables, and are subject to widely different impacts of global change

  6. Temperature-dependent fecundity associates with latitude in Caenorhabditis briggsae.

    PubMed

    Prasad, Anisha; Croydon-Sugarman, Melanie J F; Murray, Rosalind L; Cutter, Asher D

    2011-01-01

    Populations of organisms separated by latitude provide striking examples of local adaptation, by virtue of ecological gradients that correlate with latitudinal position on the globe. Ambient temperature forms one key ecological variable that varies with latitude, and here we investigate its effects on the fecundity of self-fertilizing nematodes of the species Caenorhabditis briggsae that exhibits strong genetically based differentiation in association with latitude. We find that isogenic strains from a Tropical phylogeographic clade have greater lifetime fecundity when reared at extreme high temperatures and lower lifetime fecundity at extreme low temperatures than do strains from a Temperate phylogeographic clade, consistent with adaptation to local temperature regimes. Further, we determine experimentally that the mechanism underlying reduced fecundity at extreme temperatures differs for low versus high temperature extremes, but that the total number of sperm produced by the gonad is unaffected by rearing temperature. Low rearing temperatures result in facultatively reduced oocyte production by hermaphrodites, whereas extreme high temperatures experienced during development induce permanent defects in sperm fertility. Available and emerging genetic tools for this organism will permit the characterization of the evolutionary genetic basis to this putative example of adaptation in latitudinally separated populations. PMID:20731713

  7. Mid-latitude lidar observations of large sporadic sodium layers

    SciTech Connect

    Senft, D.C.; Collins, R.L.; Gardner, C.S. )

    1989-07-01

    During the early morning of October 31, 1988 two large sporadic Na (Na{sub s}) layers were observed near the mesopause above Urbana, IL (40{degree}N, 88{degree}W) with a Na lidar system. The layers began forming near 102 km at 0026 LST and 0110 LST and moved downward with vertical velocities as high as 4 ms{sup {minus}1} before dissipating between 94 and 96 km. The duration of each layer was approximately 80 min. The layers were narrow ({approximately} 1 km FWHM) and dense with maximum densities approaching 7,800 cm{sup {minus}3}. The characteristics of these two Na{sub s} layers are very similar to those of similar phenomena observed recently at Andoya, Norway and Mauna Kea, Hawaii. Lidar observations of the mesospheric Na layer have been conducted routinely by several groups at mid-latitudes for almost 20 years. Although large Na{sub s} layers now appear to be relatively common at low- and high-latitudes, to our knowledge the two layers described in this letter are only the second observation of this puzzling phenomenon at mid-latitudes.

  8. USGS research on three mid-latitude glaciers

    USGS Publications Warehouse

    Green, J.R.; DeWayne, Cecil L.; Naftz, D.L.; Schuster, P.F.

    2000-01-01

    Low- and mid-latitude regions of the earth are home to 80 to 90 percent of the world's population. Because of this, the U.S. Geological Survey (USGS) is conducting a research program to study the geochemistry of precipitation, snow, ice, and runoff samples from mid-latitude glaciers in Kyrghyzstan, Nepal, and the United States, Areas of research, such as ground-water studies, reconstructing paleoclimate records, describing anthropogenic input of chemicals to the environment, and modeling global climate, are important to the well being of the worlds' population and can be supplemented by the collection and chemical analysis of snow and ice cores. Nearly all the constituents that compose snow and ice-core samples contribute vital information, whether it be the microbial communities that flourish in snow, radionuclides present in various amounts in all the samples, or location-specific deposits of mercury and nitrate. This work is hastened by the fact that mid-latitude glaciers, and the information preserved in them, are rapidly disappearing as a result of global warming. Research collaboration for this project includes 12 national and 7 international universities, and 4 government agencies. Funding is provided by the National Science Foundation, the U.S. Department of Energy, and the USGS.

  9. Electrodynamic structure of the morning high-latitude trough region

    NASA Astrophysics Data System (ADS)

    Vanhamäki, H.; Aikio, A.; Voiculescu, M.; Juusola, L.; Nygrén, T.; Kuula, R.

    2016-03-01

    We describe the electrodynamics of a postmidnight, high-latitude ionospheric trough, observed with the European Incoherent Scatter radar in northern Scandinavia on 24-25 June 2003 around 22:00-02:30 UT during quiet conditions. The UHF radar made meridian scans with a 30 min cadence resulting in nine cross sections of ionospheric parameters. The F region electric field was also determined with the tristatic system. Ionospheric equivalent currents, calculated from ground magnetometer data, mostly show an electrojet-like current that is reasonably uniform in the longitudinal direction. Combined analysis of the conductances and equivalent current with a local Kamide-Richmond-Matsushita (KRM) method yields the ionospheric electric field and field-aligned current (FAC) in a 2-D (latitude-longitude) area around the radar. We conclude that the most likely scenario is one where the trough is initially created poleward of the auroral oval by downward FAC that evacuates the F region, but as the trough moves to lower latitudes during the early morning hours, it becomes colocated with the westward electrojet. There the electron density further decreases due to increased recombination caused by enhanced ion temperature, which in turn is brought about by a larger convection speed. Later in the morning the convection speed decreases and the trough is filled by increasing photoionization.

  10. Atmospheric river landfall-latitude changes in future climate simulations

    NASA Astrophysics Data System (ADS)

    Shields, Christine A.; Kiehl, Jeffrey T.

    2016-08-01

    The latitude of landfall for atmospheric rivers (ARs) is examined in the fully coupled half-degree version of the Community Climate System Model, version 4 (CCSM4) for warm future climate simulations. Two regions are examined: U.S. West Coast/North Pacific ARs and United Kingdom/North Atlantic ARs. Changes in AR landfall-latitude reflect changes in the atmospheric steering flow. West Coast U.S. ARs are projected to push equatorward in response to the subtropical jet climate change. UK AR response is dominated by eddy-driven jets and is seasonally dependent. UK simulated AR response is modest in the winter with the largest relative changes occurring in the seasonal transition months. Precipitation associated with ARs is also projected to increase in intensity under global warming. CCSM4 projects a marked shift to higher rainfall rates for Southern California. Small to modest rainfall rates may increase for all UK latitudes, for the Pacific Northwest, and central and northern California.

  11. Ionosphere Scintillation at Low and High Latitudes (Modelling vs Measurement)

    NASA Astrophysics Data System (ADS)

    Béniguel, Yannick

    2016-04-01

    This paper will address the problem of scintillations characteristics, focusing on the parameters of interest for a navigation system. Those parameters are the probabilities of occurrence of simultaneous fading, the bubbles surface at IPP level, the cycle slips and the fades duration statistics. The scintillation characteristics obtained at low and high latitudes will be compared. These results correspond to the data analysis performed after the ESA Monitor ionosphere measurement campaign [1], [2]. A second aspect of the presentation will be the modelling aspect. It has been observed that the phase scintillation dominates at high latitudes while the intensity scintillation dominates at low latitudes. The way it can be reproduced and implemented in a propagation model (e.g. GISM model [3]) will be presented. Comparisons of measurements with results obtained by modelling will be presented on some typical scenarios. References [1] R. Prieto Cerdeira, Y. Beniguel, "The MONITOR project: architecture, data and products", Ionospheric Effects Symposium, Alexandria (Va), May 2011 [2] Y. Béniguel, R Orus-Perez , R. Prieto-Cerdeira , S. Schlueter , S. Scortan, A. Grosu "MONITOR 2: ionospheric monitoring network in support to SBAS and other GNSS and scientific purposes", IES Conference, Alexandria (Va), May 2015-05-22 [3] Y. Béniguel, P. Hamel, "A Global Ionosphere Scintillation Propagation Model for Equatorial Regions", Journal of Space Weather Space Climate, 1, (2011), doi: 10.1051/swsc/2011004

  12. Latitude, elevation and the tempo of molecular evolution in mammals.

    PubMed

    Gillman, Len N; Keeling, D Jeanette; Ross, Howard A; Wright, Shane D

    2009-09-22

    Faster rates of microevolution have been recorded for plants and marine foraminifera occupying warmer low latitude environments relative to those occurring at higher latitudes. By contrast, because this rate heterogeneity has been attributed to a relationship between thermal habit and mutagenesis via a body temperature linkage, it has been assumed that microevolution in mammals should not also vary systematically with environmental temperature. However, this assumption has not previously been empirically examined. In this study, we tested for a thermally mediated influence on the tempo of microevolution among mammals using a comprehensive global dataset that included 260 mammal species, from 10 orders and 29 families. In contrast to theoretical predictions, we found that substitution rates in the cytochrome b gene have been substantially faster for species living in warmer latitudes and elevations relative to sister species living in cooler habitats. These results could not be attributed to factors otherwise thought to influence rates of microevolution, such as body mass differentials or genetic drift. Instead, the results indicate that the tempo of microevolution among mammals is either responding directly to the thermal environment or indirectly via an ecological mechanism such as the 'Red Queen' effect.

  13. Impacts of climate warming on terrestrial ectotherms across latitude.

    PubMed

    Deutsch, Curtis A; Tewksbury, Joshua J; Huey, Raymond B; Sheldon, Kimberly S; Ghalambor, Cameron K; Haak, David C; Martin, Paul R

    2008-05-01

    The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest.

  14. Optical auroral conjugacy: Viking UV imager - South Pole station ground data

    SciTech Connect

    Burns, G.B.; McEwen, D.J. ); Eather, R.A. ); Berkey, F.T. ); Murphree, J.S. )

    1990-05-01

    High time resolution satellite UV images of the northern auroral oval are compared with South Pole station keogram camera and all-sky camera observations to determine the displacement of the South Pole conjugate point from its location calculated using the international geomagnetic reference field magnetic field model. The results presented extend the study of optical conjugacy to high magnetic latitudes in a solstice period, and to sunlit auroral events. Three high-latitude events were analyzed: a poleward expansion, an arc poleward of the midnight oval, and a substantial movement in the afternoon auroral oval. They were determined to occur on closed field lines. A range of displacement for the South Pole conjugate point of 5.3{degree} in latitude and 1.9 hours in MLT was measured.

  15. Coupled land-ocean-atmosphere processes and South asian monsoon variability.

    PubMed

    Meehl, G A

    1994-10-14

    Results from a global coupled ocean-atmosphere climate model and a model with specified tropical convective heating anomalies show that the South Asian monsoon was an active part of the tropical biennial oscillation (TBO). Convective heating anomalies over Africa and the western Pacific Ocean associated with the TBO altered the simulated pattern of atmospheric circulation for the Northern Hemisphere winter mid-latitude over Asia. This alteration in the mid-latitude circulation maintained temperature anomalies over South Asia through winter and helped set up the land-sea temperature contrast for subsequent monsoon development. South Asian snow cover contributed to monsoon strength but was symptomatic of the larger scale alteration in the mid-latitude atmospheric circulation pattern. PMID:17771448

  16. Microphysical Ice Crystal Properties in Mid-Latitude Frontal Cirrus

    NASA Astrophysics Data System (ADS)

    Schlage, Romy; Jurkat, Tina; Voigt, Christiane; Minikin, Andreas; Weigel, Ralf; Molleker, Sergej; Klingebiel, Marcus; Borrmann, Stephan; Luebke, Anna; Krämer, Martina; Kaufmann, Stefan; Schäfler, Andreas

    2015-04-01

    Cirrus clouds modulate the climate by reflection of shortwave solar radiation and trapping of longwave terrestrial radiation. Their net radiative effect can be positive or negative depending on atmospheric and cloud parameters including ice crystal number density, size and shape. Latter microphysical ice crystal properties have been measured during the mid-latitude cirrus mission ML-CIRRUS with a set of cloud instruments on the new research aircraft HALO. The mission took place in March/April 2014 with 16 flights in cirrus formed above Europe and the Atlantic. The ice clouds were encountered at altitudes from 7 to 14 km in the typical mid-latitude temperature range. A focus of the mission was the detection of frontal cirrus linked to warm conveyor belts (WCBs). Within WCBs, water vapor is transported in the warm sector of an extra-tropical cyclone from the humid boundary layer to the upper troposphere. Cirrus cloud formation can be triggered in the WCB outflow region at moderate updraft velocities and additionally at low updrafts within the high pressure system linked to the WCB. Due to their frequent occurrence, WCBs represent a major source for regions of ice supersaturation and cirrus formation in the mid-latitudes. Here, we use data from the Cloud and Aerosol Spectrometer with detection for POLarization (CAS-POL) and the Cloud Combination Probe (CCP), combining a Cloud Droplet Probe (CDP) and a greyscale Cloud Imaging Probe (CIPgs) to investigate the ice crystal distribution in the size range from 0.5 µm to 1 mm. We derive microphysical cirrus properties in mid-latitude warm front cirrus. Further, we investigate their variability and their dependence on temperature and relative humidity. Finally, we compare the microphysical properties of these frontal cirrus to cirrus clouds that formed at low updrafts within high pressure systems or at high updraft velocities in lee waves. We quantify statistically significant differences in cirrus properties formed in these

  17. Titan's stratospheric condensibles at high northern latitudes during northern winter

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Samuelson, R.; Achterberg, R.

    2012-04-01

    The Infrared Interferometer Spectrometer (IRIS) instrument on board Voyager 1 caught the first glimpse of an unidentified particulate feature in Titan’s stratosphere that spectrally peaks at 221 cm-1. Until recently, this feature that we have termed ‘the haystack,’ has been seen persistently at high northern latitudes with the Composite Infrared Spectrometer (CIRS) instrument onboard Cassini. The strength of the haystack emission feature diminishes rapidly with season, becoming drastically reduced at high northern latitudes, as Titan transitions from northern winter into spring. In contrast to IRIS whose shortest wavenumber was 200 cm-1, CIRS extends down to 10 cm-1, thus revealing an entirely unexplored spectral region in which nitrile ices have numerous broad lattice vibration features. Unlike the haystack, which is only found at high northern latitudes during northern winter/early northern spring, this geometrically thin nitrile cloud pervades Titan’s lower stratosphere, spectrally peaking at 160 cm-1, and is almost global in extent spanning latitudes 85°N to 60°S. The inference of nitrile ices are consistent with the highly restricted altitude ranges over which these features are observed, and appear to be dominated by a mixture of HCN and HC3N. The narrow range in altitude over which the nitrile ices extend is unlike the haystack, whose vertical distribution is significantly broader, spanning roughly 70 km in altitude in Titan’s lower stratosphere. The nitrile clouds that CIRS observes are located in a dynamically stable region of Titan’s atmosphere, whereas CH4 clouds, which ordinarily form in the troposphere, form in a more dynamically unstable region, where convective cloud systems tend to occur. In the unusual situation where Titan’s tropopause cools significantly from the HASI 70.5K temperature minimum, CH4 should condense in Titan’s lower stratosphere, just like the aforementioned nitrile clouds, although in significantly larger

  18. Titan's Stratospheric Condensibles at High Northern Latitudes During Northern Winter

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie; Samuelson, R.; Achterberg, R.

    2012-01-01

    The Infrared Interferometer Spectrometer (IRIS) instrument on board Voyager 1 caught the first glimpse of an unidentified particulate feature in Titan's stratosphere that spectrally peaks at 221 per centimeter. Until recently, this feature that we have termed 'the haystack,' has been seen persistently at high northern latitudes with the Composite Infrared Spectrometer (CIRS) instrument onboard Cassini, The strength of the haystack emission feature diminishes rapidly with season, becoming drastically reduced at high northern latitudes, as Titan transitions from northern winter into spring, In contrast to IRIS whose shortest wavenumber was 200 per centimeter, CIRS extends down to 10 per centimeter, thus revealing an entirely unexplored spectral region in which nitrile ices have numerous broad lattice vibration features, Unlike the haystack, which is only found at high northern latitudes during northern winter/early northern spring, this geometrically thin nitrile cloud pervades Titan's lower stratosphere, spectrally peaking at 160 per centimeter, and is almost global in extent spanning latitudes 85 N to 600 S, The inference of nitrile ices are consistent with the highly restricted altitude ranges over which these features are observed, and appear to be dominated by a mixture of HCN and HC3N, The narrow range in altitude over which the nitrile ices extend is unlike the haystack, whose vertical distribution is significantly broader, spanning roughly 70 kilometers in altitude in Titan's lower stratosphere, The nitrile clouds that CIRS observes are located in a dynamically stable region of Titan's atmosphere, whereas CH4 clouds, which ordinarily form in the troposphere, form in a more dynamically unstable region, where convective cloud systems tend to occur. In the unusual situation where Titan's tropopause cools significantly from the HASI 70.5K temperature minimum, CH4 should condense in Titan's lower stratosphere, just like the aforementioned nitrile clouds, although

  19. Ultraviolet light exposure influences skin cancer in association with latitude.

    PubMed

    Rivas, Miguel; Araya, María C; Caba, Fresia; Rojas, Elisa; Calaf, Gloria M

    2011-04-01

    The increase in the amount of solar ultraviolet (UV) light that reaches the earth is considered to be responsible for the worldwide increase in skin cancer. It has been reported that excessive levels of UVA and UVB light have multiple effects, which can be harmful to humans. Experimental measurements were obtained using wide-band solar light YES biometers from 2006 to 2009 in Arica, Chile and from 2003 to 2006 in Valdivia, Chile, both instruments having been calibrated according to the World Health Organization (WHO) criteria and integrated into the Chilean Meteorological Organization network. To explain the possible effect of radiation on skin cancer, revised pathological reports in Arica and Valdivia were analyzed. In Arica, data on men and women were collected between 1997 and 1998-2002, and in Valdivia, between 1997-2000 and 2001-2007. In this study, comparative values of ultraviolet index (UVI) from the above datasets, were analyzed. Arica is a city located in the subtropical zone of northern Chile, 25 meters above sea level, with a latitude of 18˚49'S and a longitude of 70˚19'W. It has a microclimate characterized by stable meteorological conditions throughout the year, including low precipitation (<5 mm per decade), predictable winds, a high percentage of clear sky days and high ground reflectivity due to the presence of light sand. Due to its location near sea level, the population performs a great number of outdoor activities. Valdivia is a city located in the southern part of Chile, 19 meters above sea level with a latitude of 39˚38'S and a longitude of 73˚5'W. The aim of the present study was to determine the relationship between latitude and the risk of skin cancer in two cities with different latitudes. The incidence of skin cancer per 100,000 persons significantly (P<0.05) increased in both genders between the periods 1997-2000 and 2001-2007 in Arica. However, it decreased in men between the periods 1993-1997 and 1998-2002 in Valdivia. The results

  20. [South] Korea.

    PubMed

    1987-04-01

    The Republic of Korea occupies approximately 38,000 square miles in the southern position of a mountaineous peninsula. It shares a land boundary with North Korea. With a population of more than 40 million people, South Korea has 1 of the highest population densities in the world. The language spoken is a Uralic language, closely akin to Japanese, Hungarian, Finnish, and Mongolian, and the traditional religions are Shamanism and Buddhism. Over the course of time, South Korea has been invaded and fought over by its neighbors. The US and the Soviet Union have never been able to reach a unification agreement for North and South Korea. The 3rd Republic era, begun in 1963, saw a time of rapid industrialization and a great deal of economic growth. The 5th Republic began with a new constitution and new elections brought about the election of a president to a 7-year term of office beginning in 1981. Economic growth has been remarkable over the last 25 years despite the fact that North Korea possesses most of the mineral and hydroelectric resources and the existing heavy industrial base built by the Japanese while South Korea has the limited agricultural resources and had, initially, a large unskilled labor pool. Serious industrial growth began in South Korea in the early 1960s and the GNP grew at an annual rate of 10% during the period 1963-78. Current GNP is now, at $2000, well beyond that of its neighbors to the north. The outlook for longterm growth is good; however, the military threat posed by North Korea and the absence of foreign economic assistance has resulted in Korea spending 1/3 of its budget on defense. South Korea is active in international affairs and in the UN. Economic realities have forced Korea to give economics priority in their foreign policy. There has been an on-again, off-again quality to dialogue between the 2 nations. However, the US is committed to maintaining peace on the Korean peninsula. In order to do so, they have supplied manpower and

  1. [South] Korea.

    PubMed

    1987-04-01

    The Republic of Korea occupies approximately 38,000 square miles in the southern position of a mountaineous peninsula. It shares a land boundary with North Korea. With a population of more than 40 million people, South Korea has 1 of the highest population densities in the world. The language spoken is a Uralic language, closely akin to Japanese, Hungarian, Finnish, and Mongolian, and the traditional religions are Shamanism and Buddhism. Over the course of time, South Korea has been invaded and fought over by its neighbors. The US and the Soviet Union have never been able to reach a unification agreement for North and South Korea. The 3rd Republic era, begun in 1963, saw a time of rapid industrialization and a great deal of economic growth. The 5th Republic began with a new constitution and new elections brought about the election of a president to a 7-year term of office beginning in 1981. Economic growth has been remarkable over the last 25 years despite the fact that North Korea possesses most of the mineral and hydroelectric resources and the existing heavy industrial base built by the Japanese while South Korea has the limited agricultural resources and had, initially, a large unskilled labor pool. Serious industrial growth began in South Korea in the early 1960s and the GNP grew at an annual rate of 10% during the period 1963-78. Current GNP is now, at $2000, well beyond that of its neighbors to the north. The outlook for longterm growth is good; however, the military threat posed by North Korea and the absence of foreign economic assistance has resulted in Korea spending 1/3 of its budget on defense. South Korea is active in international affairs and in the UN. Economic realities have forced Korea to give economics priority in their foreign policy. There has been an on-again, off-again quality to dialogue between the 2 nations. However, the US is committed to maintaining peace on the Korean peninsula. In order to do so, they have supplied manpower and

  2. South Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image of South Africa was acquired on May 14, 2000, by NASA's Moderate-resolution Imaging Spectroradiometer, or MODIS. The image was produced using a combination of the sensor's 250-m and 500-m resolution visible wavelength bands. As part of the opening ceremony to begin the joint U.S.-South Africa SAFARI Field Experiment, NASA presented print copies of this image as GIFts to Dr. Ben Ngubane, Minister of Arts, Science and Technology, and Honorable Advocate Ngoaka Ramathlodi, Premier of the Northern Province, South Africa. The area shown in this image encompasses seven capital cities and a number of the region's distinctive geological features can be seen clearly. Toward the northern (top) central part of the image, the browns and tans comprise the Kalahari Desert of southern Botswana. The Tropic of Capricorn runs right through the heart of the Kalahari and the Botswanan capital city of Gaborone sits on the Limpopo River, southeast of the Kalahari. Along the western coastline of the continent is the country of Namibia, where the Namib Desert is framed against the sea by the Kaokoveld Mountains. The Namibian capital of Windhoek is obscured by clouds. Looking closely in the center of the image, the Orange River can be seen running from east to west, demarcating the boundary between Namibia and South Africa. On the southwestern corner of the continent is the hook-like Cape of Good Hope peninsula and Cape Town, the parliamentary capital of South Africa. Running west to east away from Cape Town are the Great Karroo Mountains. The shadow in this image conveys a sense of the very steep grade of the cliffs along the southern coast of South Africa. Port Elizabeth sits on the southeasternmost point of South Africa, and a large phytoplankton bloom can be seen in the water about 100 miles east of there. Moving northward along the east coast, the Drakensberg Mountains are visible. The two small nations of Lesotho and Swaziland are in this region, completely

  3. On the ionospheric impact of recent storm events on satellite-based augmentation systems in middle and low-latitude sectors

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila; Sparks, Lawrence; Mannucci, Anthony J.; Pi, Xiaoqing

    2003-01-01

    The Ionospheric correction algorithms have been characterized extensively for the mid-latitude region of the ionosphere where benign conditions usually exist. The United States Federal Aviation Administration's (FAA) Wide Area Augmentation System (WAAS) for civil aircraft navigation is focused primarily on the Conterminous United States (CONUS). Other Satellite-based Augmentation Systems (SBAS) include the European Geostationary Navigation Overlay Service (EGNOS) and the Japanese Global Navigation Satellite System (MSAS). Researchers are facing a more serious challenge in addressing the ionospheric impact on navigation using SBAS in other parts of the world such as the South American region on India. At equatorial latitudes, geophysical conditions lead to the so-called Appleton-Hartree (equatorial) anomaly phenomenon, which results in significantly larger ionospheric range delays and range delay spatial gradients than is observed in the CONUS or European sectors. In this paper, we use GPS measurements of geomagnetic storm days to perform a quantitative assessment of WAAS-type ionospheric correction algorithms in other parts of the world such as the low-latitude Brazil and mid-latitude Europe. For the study, we access a world-wide network of 400+ dual frequency GPS receivers.

  4. A mid-latitude ozone model for the US standard atmosphere, 1975 (summary)

    NASA Technical Reports Server (NTRS)

    Krueger, A. J.; Minzner, R. A.

    1974-01-01

    A mid-latitude, Northern-Hemisphere model of the daytime ozone distribution in the troposphere, stratosphere, and lower mesosphere was constructed. Data from rocket soundings in the latitude range 45 deg N + or - 15 deg, results of balloon soundings at altitudes from 41 to 47 deg N, and latitude gradients from satellite ozone observations were combined to produce estimates of the annual mean ozone concentration and its variability at heights to 72 km for an effective latitude of 45 deg N. The model is a revision, for heights above 26 km, of the tentative Mid-Latitude Ozone Model.

  5. Ulysses solar wind plasma observations from peak southerly latitude through perihelion and beyond

    SciTech Connect

    Phillips, J.L.; Bame, S.J.; Feldman, W.C.; Gosling, J.T.; McComas, D.J.; Goldstein, B.E.; Neugebauer, M.; Hammond, C.M.

    1996-07-01

    We present Ulysses solar wind plasma data from the peak southerly latitude of {minus}80.2{degree} through +64.9{degree} latitude on June 7, 1995. Ulysses encountered fast wind throughout this time except for a 43{degree} equatorial band. Mass flux was nearly constant with latitude, while speed (density) had positive (negative) poleward gradients. Momentum flux was highest at high latitudes, suggesting a latitudinal asymmetry in the heliopause cross section. Solar wind energy flux density was also highest at high latitudes. {copyright} {ital 1996 American Institute of Physics.}

  6. Ulysses solar wind plasma observations from peak southerly latitude through perihelion and beyond

    SciTech Connect

    Phillips, J.L.; Bame, S.J.; Feldman, W.C.; Gosling, J.T.; McComas, D.J.; Goldstein, B.E.; Neugebauer, M.; Hammond, C.M.

    1995-09-01

    We present Ulysses solar wind plasma data from the peak southerly latitude of {minus}80.2{degrees} through +64.9{degrees} latitude on June 7, 1995. Ulysses encountered fast wind throughout this time except for a 43{degrees} band centered on the solar equator. Median mass flux was nearly constant with latitude, while speed and density had positive and negative poleward gradients, respectively. Solar wind momentum flux was highest at high latitudes, suggesting a latitudinal asymmetry in the heliopause cross section. Solar wind energy flux density was also highest at high latitudes.

  7. Determining the Current and Future Health of Low-Latitude Andean Glaciers Using an Equilibrium Line Altitude Model and Hypsometric Data from the Randolph Glacier Inventory

    NASA Astrophysics Data System (ADS)

    Malone, A.; MacAyeal, D. R.

    2015-12-01

    Mountain glaciers have been described as the water towers of world, and for many populations in the low-latitude South American Andes, glacial runoff is vital for agricultural, industrial, and basic water needs. Previous studies of low-latitude Andean glaciers suggest a precarious future due to contemporary warming. These studies have looked at trends in freezing level heights or observations of contemporary retreat. However, regional-scale understanding of low-latitude glacial responses to present and future climate change is limited, in part due to incomplete information about the extent and elevation distribution of low-latitude glaciers. The recently published Randolph Glacier Inventory (RGI) (5.0) provides the necessary information about the size and elevation distribution of low-latitude glaciers to begin such studies. We determine the contemporary equilibrium line altitudes (ELAs) for low-latitude Andean glaciers in the RGI, using a numerical energy balance ablation model driven with reanalysis and gridded data products. Contemporary ELAs tend to fall around the peak of the elevation histogram, with an exception being the southern-most outer tropical glaciers whose modeled ELAs tend to be higher than the elevation histogram for that region (see below figure). Also, we use the linear tends in temperature and precipitation from the contemporary climatology to extrapolate 21stcentury climate forcings. Modeled ELAs by the middle on the century are universally predicted to rise, with outer tropical ELAs rising more than the inner tropical glaciers. These trends continue through the end of the century. Finally, we explore how climate variables and parameters in our numerical model may vary for different warming scenarios from United Nation's IPCC AR5 report. We quantify the impacts of these changes on ELAs for various climate change trajectories. These results support previous work on the precarious future of low latitude Andean glaciers, while providing a richer

  8. High-latitude dayside electric field and particle measurements

    NASA Technical Reports Server (NTRS)

    Maynard, N. C.; Johnstone, A. D.

    1973-01-01

    Two rockets carrying electric field and low energy particle instrumentation were launched near noon at 80 deg magnetic latitude. One flight encountered polar cap conditions only while the other traversed part of the polar cusp. Although weak particle precipitation was measured on both flights, bursts of intense magnetosheath-type electron fluxes were detected on the latter. Strong electric fields such as would result from anti-sunward convection were observed during both flights. The measurements are compared with results obtained by other types of space craft and interpreted in the light of those data.

  9. Observations of plasma structure and transport at high latitudes

    SciTech Connect

    Weber, E.J.; Buchau, J.

    1985-01-01

    Radio and optical diagnostics from the AFGL Airborne Ionospheric Observatory are used to study the structure and motion of regions of enhanced F-region density at high latitudes. Plasma flow can be tracked from the poleward edge of the dayside cusp, across the polar cap and into the nightside auroral zone. Simultaneous satellite amplitude and phase scintillation measurements define the degree of structuring or intensity of sub-kilometer ionospheric irregularities within these regions. The combined measurements are used to track large scale plasma flow, and to infer plasma source regions.

  10. Computer model of high-latitude scintillation. [WBMOD program

    SciTech Connect

    Fremouw, E.J.

    1982-01-01

    The DNA Wideband satellite experiment provided extensive data on scintillation produced in high-altitude structured plasmas. A computer program, WBMOD, is being developed to summarize those data in an applications-oriented way. The program contains the phase-screen scattering theory of Rino and a morphological description of ionospheric irregularities (thus far only at auroral latitudes) based on Wideband observations. It permits a user to compute scintillation indices for both phase and intensity as a function of system operating parameters and solar-ionospheric disturbance level. Correction is made for multiple scatter, and the user may choose either one-way (communication) or two-way (radar) propagation.

  11. [Total Elbow Replacement - Implantation of the Latitude Prosthesis (Tornier)].

    PubMed

    Hackl, M; Wegmann, K; Leschinger, T; Ries, C; Burkhart, K J; Müller, L

    2015-10-01

    Due to technical progress, the indication for total elbow arthroplasty could be expanded in recent years. As a result, the demand regarding functionality and mobility of the replaced joint has risen as well. Elbow arthroplasty has to be considered as technically demanding. Only with detailed knowledge of this surgical procedure and its possible intraoperative pitfalls can one provide the best possible results. In this instructional video we explain the implantation of the Latitude elbow prosthesis (Tornier) putting emphasis on the correct approach as well as implantation of the prosthesis and subsequent wound closure.

  12. The brightest high-latitude 12-micron IRAS sources

    NASA Technical Reports Server (NTRS)

    Hacking, P.; Beichman, C.; Chester, T.; Neugebauer, G.; Emerson, J.

    1985-01-01

    The Infrared Astronomical Satellite (IRAS) Point Source catalog was searched for sources brighter than 28 Jy (0 mag) at 12 microns with absolute galactic latitude greater than 30 deg excluding the Large Magellanic Cloud. The search resulted in 269 sources, two of which are the galaxies NGC 1068 and M82. The remaining 267 sources are identified with, or have infrared color indices consistent with late-type stars some of which show evidence of circumstellar dust shells. Seven sources are previously uncataloged stars. K and M stars without circumstellar dust shells, M stars with circumstellar dust shells, and carbon stars occupy well-defined regions of infrared color-color diagrams.

  13. How Altitude and Latitude Control Dune Morphometry on Titan

    NASA Technical Reports Server (NTRS)

    Le Gall, A.; Hayes, A.; Ewing, R.; Janssen, M. A.; Radebaugh, J.; Savage, C.; Encrenaz, P.

    2011-01-01

    Dune fields are one of the dominant landforms and represent the largest known organic reservoir on Titan. SAR-derived topography show that Titan's dune terrains tend to occupy the lowest altitude areas in equatorial regions occurring at mean elevations between approx.-400 and 0 m. In elevated dune terrains, there is a definite trend towards a smaller dune to interdune ratio, interpreted as due to limited sediment availability. A similar linear correlation is observed with latitude, suggesting that the quantity of windblown sand in the dune fields tends to decrease as one moves farther north. These findings place important constraints on Titan's geology and climate.

  14. Latitude distribution of nonradial pulsations in rapidly rotating B stars

    NASA Astrophysics Data System (ADS)

    Jankov, S.; Mathias, P.; Domiciano de Souza, A., Jr.; Uytterhoeven, K.; Aerts, C.

    2004-05-01

    We present a method for the analysis of latitude distribution associated with temperature and/or velocity perturbations of the stellar surface due to non-radial pulsation (NRP) modes in rapidly rotating B stars. The technique is applied together with Fourier Doppler Imaging (FDI) to high resolution and high signal-to-noise ratio spectroscopic observations of ɛ Per. The main advantage of this approach is that it decomposed complex multi-periodic line profile variations into single components, allowing the detailed analysis of each mode seperately. We study the 10.6-d-1 frequency that is particularly important for modal analysis of non-radial pulsations in the star.

  15. Electric fields and electrostatic potentials in the high latitude ionosphere

    NASA Technical Reports Server (NTRS)

    Banks, P. M.; Saint Maurice, J.-P.; Heelis, R. A.; Hanson, W. B.

    1981-01-01

    Recent interpretive studies of electric field-driven ionospheric plasma convection data from the AE-C satellite are described, where the instruments employed include an ion drift meter and an ion-retarding potential analyzer. Electrostatic potential curves are derived from ion drift velocity measurements for high-latitude segments of the satellite's orbit. The potential curves are shown to be useful in determining the character of the global electrostatic potential pattern, with emphasis on the separation of convective cells. Results are given for six orbits, with attention to the mid-day auroral region.

  16. Ionospheric storm effects at subauroral latitudes - A case study

    NASA Technical Reports Server (NTRS)

    Proelss, G. W.; Brace, L. H.; Mayr, H. G.; Carignan, G. R.; Killeen, T. L.

    1991-01-01

    An attempt is made to classify ionospheric storm effects at subauroral latitudes according to their presumed origin. The storm of December 7/8, 1982, serves as an example. It is investigated using ionosonde, electron content, and DE 2 satellite data. The following effects are distinguished: (1) positive storm effects caused by traveling atmospheric disturbances, (2) positive storm effects caused by changes in the large-scale thermospheric wind circulation, (3) positive storm effects caused by the expansion of the polar ionization enhancement, (4) negative storm effects caused by perturbations of the neutral gas composition, and (5) negative storm effects caused by the equatorward displacement of the trough region.

  17. Double-peaked sodium layers at high latitudes

    NASA Technical Reports Server (NTRS)

    Von Zahn, U.; Goldberg, R. A.; Stegman, J.; Witt, G.

    1989-01-01

    Na lidar observations indicate that at high latitudes in summer the neutral Na layer frequently attains a double-peaked structure. The main layer with a maximum near 90 km altitude is supplemented by a secondary, narrow layer near 95 km altitude. Results are presented concerning secondary sodium layers. It appears likely that the formation of secondary Na layers observed frequently above the lidar site is not solely a 'sodium phenomenon', but part of a more comprehensive layering process for metal atoms and ions. Na(+)/Na density ratios close to 0.5 near the peaks of both the main and secondary layers are derived.

  18. Center is at Latitude 30 Degrees North, Longitude 150 Degrees

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Center of the orthographic projection is at latitude 30 degrees N., longitude 150 degrees. The north polar residual ice cap, which is cut by spiral-patterned troughs and surrounded by the dark lowland plains of Vastitas Borealis, is located at the top. The right-central part is dominated by the Tharsis Montes volcanoes. The most prominent of the Tharsis Montes volcanoes is the largest known volcano in the solar system, Olympus Mons. The light-colored lowland plains of Amazonis, Elysium, and Arcadia Planitiae lies north and west of Olympus Mons. The heavily cratered highlands dominate the lower one-third.

  19. Can evolutionary constraints explain the rarity of nitrogen-fixing trees in high-latitude forests?

    PubMed

    Menge, Duncan N L; Crews, Timothy E

    2016-09-01

    Contents 1195 I. 1195 II. 1196 III. 1196 IV. 1200 1200 References 1200 SUMMARY: The rarity of symbiotic nitrogen (N)-fixing trees in temperate and boreal ('high-latitude') forests is curious. One explanation - the evolutionary constraints hypothesis - posits that high-latitude N-fixing trees are rare because few have evolved. Here, we consider traits necessary for high-latitude N-fixing trees. We then use recent developments in trait evolution to estimate that > 2000 and > 500 species could have evolved from low-latitude N-fixing trees and high-latitude N-fixing herbs, respectively. Evolution of N-fixing from nonfixing trees is an unlikely source of diversity. Dispersal limitation seems unlikely to limit high-latitude N-fixer diversity. The greater number of N-fixing species predicted to evolve than currently inhabit high-latitude forests suggests a greater role for ecological than evolutionary constraints. PMID:27411210

  20. Can evolutionary constraints explain the rarity of nitrogen-fixing trees in high-latitude forests?

    PubMed

    Menge, Duncan N L; Crews, Timothy E

    2016-09-01

    Contents 1195 I. 1195 II. 1196 III. 1196 IV. 1200 1200 References 1200 SUMMARY: The rarity of symbiotic nitrogen (N)-fixing trees in temperate and boreal ('high-latitude') forests is curious. One explanation - the evolutionary constraints hypothesis - posits that high-latitude N-fixing trees are rare because few have evolved. Here, we consider traits necessary for high-latitude N-fixing trees. We then use recent developments in trait evolution to estimate that > 2000 and > 500 species could have evolved from low-latitude N-fixing trees and high-latitude N-fixing herbs, respectively. Evolution of N-fixing from nonfixing trees is an unlikely source of diversity. Dispersal limitation seems unlikely to limit high-latitude N-fixer diversity. The greater number of N-fixing species predicted to evolve than currently inhabit high-latitude forests suggests a greater role for ecological than evolutionary constraints.

  1. North South Asymmetry of Zonal and Meridional Flows Determined From Ring Diagram Analysis of Gong ++ Data

    NASA Astrophysics Data System (ADS)

    Zaatri, A.; Komm, R.; González Hernández, I.; Howe, R.; Corbard, T.

    2006-07-01

    We study the North South asymmetry of zonal and meridional components of horizontal, solar subsurface flows during the years 2001 2004, which cover the declining phase of solar cycle 23. We measure the horizontal flows from the near-surface layers to 16 Mm depth by analyzing 44 consecutive Carrington rotations of Global Oscillation Network Group (GONG) Doppler images with a ring-diagram analysis technique. The meridional flow and the errors of both flow components show an annual variation related to the B 0-angle variation, while the zonal flow is less affected by the B 0-angle variation. After correcting for this effect, the meridional flow is mainly poleward but it shows a counter cell close to the surface at high latitudes in both hemispheres. During the declining phase of the solar cycle, the meridional flow mainly increases with time at latitudes poleward of about 20˚, while it mainly decreases at more equatorward latitudes. The temporal variation of the zonal flow in both hemispheres is significantly correlated at latitudes less than about 20˚. The zonal flow is larger in the southern hemisphere than the northern one, and this North South asymmetry increases with depth. Details of the North South asymmetry of zonal and meridional flow reflect the North South asymmetry of the magnetic flux. The North South asymmetries of the flows show hints of a variation with the solar cycle.

  2. 137Cs in the western South Pacific Ocean.

    PubMed

    Yamada, Masatoshi; Wang, Zhong-Liang

    2007-09-01

    The 137Cs activities were determined for seawater samples from the East Caroline, Coral Sea, New Hebrides, South Fiji and Tasman Sea (two stations) Basins of the western South Pacific Ocean by gamma spectrometry using a low background Ge detector. The 137Cs activities ranged from 1.4 to 2.3 Bq m(-3) over the depth interval 0-250 m and decreased exponentially from the subsurface to 1000 m depth. The distribution profiles of 137Cs activity at these six western South Pacific Ocean stations did not differ from each other significantly. There was a remarkable difference for the vertical profiles of 137Cs activity between the East Caroline Basin station in this study and the GEOSECS (Geochemical Ocean Sections Study) station at the same latitude in the Equatorial Pacific Ocean; the 137Cs inventory over the depth interval 100-1000 m increased from 400+/-30 Bq m(-2) to 560+/-30 Bq m(-2) during the period from 1973 to 1992. The total 137Cs inventories in the western South Pacific Ocean ranged from 850+/-70 Bq m(-2) in the Coral Sea Basin to 1270+/-90 Bq m(-2) in the South Fiji Basin. Higher 137Cs inventories were observed at middle latitude stations in the subtropical gyre than at low latitude stations. The 137Cs inventories were 1.9-4.5 times (2.9+/-0.7 on average) and 1.7-4.3 times (3.1+/-0.7 on average) higher than that of the expected deposition density of atmospheric global fallout at the same latitude and that of the estimated 137Cs deposition density in 10 degrees latitude by 10 degrees longitude grid data obtained by Aoyama et al. [Aoyama M, Hirose K, Igarashi Y. Re-construction and updating our understanding on the global weapons tests 137Cs fallout. J Environ Monit 2006;8:431-438], respectively. The possible processes for higher 137Cs inventories in the western South Pacific Ocean than that of the expected deposition density of atmospheric global fallout may be attributable to the inter-hemisphere dispersion of the atmospheric nuclear weapons testing 137Cs from

  3. 137Cs in the western South Pacific Ocean.

    PubMed

    Yamada, Masatoshi; Wang, Zhong-Liang

    2007-09-01

    The 137Cs activities were determined for seawater samples from the East Caroline, Coral Sea, New Hebrides, South Fiji and Tasman Sea (two stations) Basins of the western South Pacific Ocean by gamma spectrometry using a low background Ge detector. The 137Cs activities ranged from 1.4 to 2.3 Bq m(-3) over the depth interval 0-250 m and decreased exponentially from the subsurface to 1000 m depth. The distribution profiles of 137Cs activity at these six western South Pacific Ocean stations did not differ from each other significantly. There was a remarkable difference for the vertical profiles of 137Cs activity between the East Caroline Basin station in this study and the GEOSECS (Geochemical Ocean Sections Study) station at the same latitude in the Equatorial Pacific Ocean; the 137Cs inventory over the depth interval 100-1000 m increased from 400+/-30 Bq m(-2) to 560+/-30 Bq m(-2) during the period from 1973 to 1992. The total 137Cs inventories in the western South Pacific Ocean ranged from 850+/-70 Bq m(-2) in the Coral Sea Basin to 1270+/-90 Bq m(-2) in the South Fiji Basin. Higher 137Cs inventories were observed at middle latitude stations in the subtropical gyre than at low latitude stations. The 137Cs inventories were 1.9-4.5 times (2.9+/-0.7 on average) and 1.7-4.3 times (3.1+/-0.7 on average) higher than that of the expected deposition density of atmospheric global fallout at the same latitude and that of the estimated 137Cs deposition density in 10 degrees latitude by 10 degrees longitude grid data obtained by Aoyama et al. [Aoyama M, Hirose K, Igarashi Y. Re-construction and updating our understanding on the global weapons tests 137Cs fallout. J Environ Monit 2006;8:431-438], respectively. The possible processes for higher 137Cs inventories in the western South Pacific Ocean than that of the expected deposition density of atmospheric global fallout may be attributable to the inter-hemisphere dispersion of the atmospheric nuclear weapons testing 137Cs from

  4. Monitoring atmospheric dust spring activity at high southern latitudes on Mars using OMEGA

    NASA Astrophysics Data System (ADS)

    Douté, S.

    2014-06-01

    This paper presents a monitoring of the atmospheric dust in the south polar region during spring of Martian year 27. Our goal is to contribute to identifying the regions where the dust concentration in the atmosphere shows specific temporal patterns, for instance high, variable, and on the rise due to lifting or transport mechanisms. This identification is performed in relation with the seasonal ice regression. Based on a phenomenological examination of the previous results, hypothesis regarding the origin of aerosol activity of the southern polar region is proposed. This is of paramount importance since local dust storms generated in this region sometimes grow to global proportions. The imaging spectrometer OMEGA on board Mars Express has acquired the most comprehensive set of observations to date in the near-infrared (0.93-5.1 μm) of the southern high latitudes of Mars from mid-winter solstice (Ls=110°, December 2004) to the end of the recession at Ls=320° (November 2005). We use two complementary methods in order to retrieve the optical depth of the atmospheric dust at a reference wavelength of 1 μm. The methods are independently operated for pixels showing mineral surfaces on the one hand and the seasonal cap on the other hand. They are applied on a time series of OMEGA images acquired between LS=220° and LS=280° . As a result the aerosol optical depth (AOD) is mapped and binned at a spatial resolution of 1.0° pixel-1 and with a mean period of AOD sampling ranging from less than two sols for latitudes higher than 80°S to approximately six sols at latitudes in the interval 65-75°S. We then generate and interpret time series of orthographic mosaics depicting the spatio-temporal distribution of the seasonal mean values, the variance and the local time dependence of the AOD. In particular we suspect that two mechanisms play a major role for lifting and transporting efficiently mineral particles and create dust events or storms: (i) nighttime katabatic

  5. A filament of energetic particles near the high-latitude dawn magnetopause

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Williams, D. J.; Mcentire, R. W.; Christon, S. P.; Jacquey, C.; Angelopoulos, V.; Yamamoto, T.; Kokubun, S.; Frank, L. A.; Ackerson, K. L.

    1994-01-01

    The Geotail satelite detected a filament of tailward-streaming energetic particles spatially separated from the boundary layer of energetic particles at the high-latitude dawn magnetopause at a downstream distance of approximately 80 R(sub E) on October 27, 1992. During this event, the composition and charge states of energetic ions at energies above approximately 10 keV show significant intermix of ions from solar wind and ionospheric sources. Detailed analysis leads to the deduction that the filament was moving southward towards the neutral sheet at an average speed of approximately 80 km/s, implying an average duskward electric field of approximately 1 mV/m. Its north-south dimension was approximately 1 R(sub E) and it was associated with an earthward directed field-aligned current of approximately 5 mA/m. The filament was separated from the energetic particle boundary layer straddling the magnetopause by approximately 0.8 R(sub E) and was inferred to be detached from the boundary layer at downstream distance beyond approximately 70 R(sub E) in the distant tail.

  6. A solar wind-based model of geomagnetic field fluctuations at a mid-latitude station

    NASA Astrophysics Data System (ADS)

    Lotz, S. I.; Cilliers, P. J.

    2015-01-01

    Anomalous quasi-DC currents known as geomagnetically induced currents (GIC), produced in electric power network infrastructure during geomagnetic storms, pose a risk to reliable power transmission and network integrity. The prediction of a geomagnetic field-derived proxy to GIC provides an attractive mitigation technique that does not require changes to network hardware. In this paper we present the development of two artificial neural network based models tasked with predicting variations in the X (northward) and Y (eastward) components of the geomagnetic field at Hermanus, South Africa, with only solar wind plasma and interplanetary magnetic field (IMF) parameters as input. The models are developed by iteratively selecting the best set of solar wind parameters to predict the fluctuations in X and Y. To predict the variation in X, IMF magnitude, solar wind speed, fluctuation in solar wind proton density and a IMF-BZ derived parameter are selected. To predict the variation in Y, IMF-BZ , solar wind speed, and fluctuation in IMF magnitude are selected. The difference between the sets of selected input parameters are explained by the dependence of eastward perturbations in geomagnetic field at middle latitudes on field aligned currents. Model performance is evaluated during three storms in 2012. The onset and main phases of storms are fairly accurately predicted, but in cases where prolonged southward IMF coincides with solar wind parameters that are slowly varying the model fails to predict the observed fluctuations.

  7. Late Jurassic low latitude of Central Iran: paleogeographic and tectonic implications

    NASA Astrophysics Data System (ADS)

    Mattei, Massimo; Muttoni, Giovanni; Cifelli, Francesca

    2014-05-01

    The individual blocks forming present-day Central Iran are now comprised between the Zagros Neo-Tethys suture to the south and the Alborz Palaeo-Tethys suture to the north. At the end of the Palaeozoic, the Iranian blocks rifted away from the northern margin of Gondwana as consequence of the opening of the Neo-Tethys, and collided with Eurasia during the Late Triassic, giving place to the Eo-Cimmerian orogeny. From then on, the Iranian block(s) should have maintained European affinity. Modern generations of apparent polar wander paths (APWPs) show the occurrence in North American and African coordinates of a major and rapid shift in pole position (=plate shift) during the Middle-Late Jurassic. This so-called monster polar shift is predicted also for Eurasia from the North Atlantic plate circuit, but Jurassic data from this continent are scanty and problematic. Here, we present paleomagnetic data from the Kimmeridgian-Tithonian (Upper Jurassic) Garedu Formation of Iran. Paleomagnetic component directions of primary (pre-folding) age indicate a paleolatitude of deposition of 10°N ± 5° that is in excellent agreement with the latitude drop predicted for Iran from APWPs incorporating the Jurassic monster polar shift. We show that paleolatitudes calculated from these APWPs, used in conjunction with simple zonal climate belts, better explain the overall stratigraphic evolution of Iran during the Mesozoic.

  8. Diagnostics of equatorial and low latitude ionosphere by TEC mapping over Brazil

    NASA Astrophysics Data System (ADS)

    Takahashi, H.; Costa, S.; Otsuka, Y.; Shiokawa, K.; Monico, J. F. G.; Paula, E.; Nogueira, P.; Denardini, C. M.; Becker-Guedes, F.; Wrasse, C. M.; Ivo, A. S.; Gomes, V. C. F.; Gargarela, W.; Sant'Anna, N.; Gatto, R.

    2014-08-01

    The total electron content (TEC) in the equatorial and low-latitude ionosphere over Brazil was monitored in two dimensions by using 2011 data from the ground-based global navigation satellite system (GNSS) receiver network operated by the Brazilian Institute for Geography and Statistics. It was possible to monitor the spatial and temporal variations in TEC over Brazil continuously during both day and night with a temporal interval of 10 min and a spatial resolution of about 400 km. The daytime equatorial ionization anomaly (EIA) and post-sunset plasma enhancement (PS-EIA) were monitored over an area corresponding to a longitudinal extension of 4000 km in South America. Considerable day-to-day variation was observed in EIA and PS-EIA. A large latitudinal and longitudinal gradient of TEC indicated a significant ionospheric range error in application of the GNSS positioning system. Large-scale plasma bubbles after sunset were also mapped over a wide range. Depletions with longitudinally separated by more than 800 km were observed. They were extended by more than 2000 km along the magnetic field lines and drifted eastward. It is expected that 2-dimensional TEC mapping can serve as a useful tool for diagnosing ionospheric weather, such as temporal and spatial variation in the equatorial plasma trough and crest, and particularly for monitoring the dynamics of plasma bubbles.

  9. Low-latitude Pi2 pulsations during intervals of quiet geomagnetic conditions (Kp≤1)

    NASA Astrophysics Data System (ADS)

    Kwon, H.-J.; Kim, K.-H.; Jun, C.-W.; Takahashi, K.; Lee, D.-H.; Lee, E.; Jin, H.; Seon, J.; Park, Y.-D.; Hwang, J.

    2013-10-01

    It has been reported that Pi2 pulsations can be excited under extremely quiet geomagnetic conditions (Kp=0). However, there have been few comprehensive reports of Pi2 pulsations in such a near ground state magnetosphere. To understand the characteristics of quiet-time Pi2 pulsations, we statistically examined Pi2 events observed on the nightside between 1800 and 0600 local time at the low-latitude Bohyun (BOH, L = 1.35) station in South Korea. We chose year 2008 for analysis because geomagnetic activity was unusually low in that year. A total of 982 Pi2 events were identified when Kp≤1. About 80% of the Pi2 pulsations had a period between 110 and 300 s, which significantly differs from the conventional Pi2 period from 40 to 150 s. Comparing Pi2 periods and solar wind conditions, we found that Pi2 periods decrease with increasing solar wind speed, consistent with the result of Troitskaya (1967). The observed wave properties are discussed in terms of plasmaspheric resonance, which has been proposed for Pi2 pulsations in the inner magnetosphere. We also found that Pi2 pulsations occur quasi-periodically with a repetition period of ˜23-38 min. We will discuss what determines such a recurrence time of Pi2 pulsations under quiet geomagnetic conditions.

  10. Effects of clouds on the surface shortwave radiation at a rural inland mid-latitude site

    NASA Astrophysics Data System (ADS)

    Salgueiro, Vanda; Costa, Maria João; Silva, Ana Maria; Bortoli, Daniele

    2016-09-01

    Seven years (2003-2010) of measured shortwave (SW) irradiances were used to obtain estimates of the 10 min averaged effective cloud optical thickness (ECOT) and of the shortwave cloud radiative effect (CRESW) at the surface in a mid-latitude site (Évora - south of Portugal), and its seasonal variability is presented. The ECOT, obtained using transmittance measurements at 415 nm, was compared with the correspondent MODIS cloud optical thickness (MODIS COT) for non-precipitating water clouds and cloud fractions higher than 0.25. This comparison showed that the ECOT represents well the cloud optical thickness over the study area. The CRESW, determined for two SW broadband ranges (300-1100 nm; 285-2800 nm), was normalized (NCRESW) and related with the obtained ECOT. A logarithmic relation between NCRESW and ECOT was found for both SW ranges, presenting lower dispersion for overcast-sky situations than for partially cloudy-sky situations. The NCRESW efficiency (NCRESW per unit of ECOT) was also related with the ECOT for overcast-sky conditions. The relation found is parameterized by a power law function showing that NCRESW efficiency decreases as the ECOT increases, approaching one for ECOT values higher than about 50.

  11. Perspective View of Venus (Center Latitude 45 Degrees N., Center Longitude 350 Degrees E.)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This perspective view of Venus, generated by computer from Magellan data and color-coded with emissivity, shows part of Sedna Planitia and illustrates a common phenomenon of the lowland plains of Venus: one of many overlapping lava flows that make up the plains has been deflected by low-relief hills. Differing radar brightness among the flows reflects mostly differences in roughness. In this area, the most recent lava flows characteristically have somewhat lower emissivities (indicated here by the green color) and higher SAR brightness than the ridges they embay. Fracture patterns typical of 'tessera terrain' (a major component of Venusian highlands) can be seen on the ridge at the right. A 15-km impact crater at the right is surrounded by a dark splotch thought to have been formed by the transmission of shock energy to the surface by the atmosphere during the impact. Magellan MIDR quadrangle* containing this image: C1-45N350. Resolution of SAR image (m): 225. Size of region shown (E-W x N-S, in km): 540 x 540. Range of emissivities from violet to red: 0.80 -- 0.88. Vertical exaggeration: 200. Azimuth of viewpoint (deg clockwise from East): 140. Elevation of viewpoint (km): 275. *Quadrangle name indicates approximate center latitude (N=north, S=south) and center longitude (East).

  12. Perspective View of Venus (Center Latitude 0 Degree N., Center Longitude 163 Degrees E.)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This perspective view of Venus, generated by computer from Magellan data and color-coded with emissivity, shows the impact crater Markham, named after the English aviator Beryl Markham (The crater was briefly known unofficially as Franklin; the earlier name was not approved by the Nomenclature Committee of the International Astronomical Union). Markham, with a diameter of 71 km, is one of more than 400 Venusian craters whose formation triggered the outflow of highly fluid materials. Such outflows are thought to consist of mixtures of melted and fractured rock, and studies of their lobate margins and surface roughnesses suggest that they behave like a cross between lava flows and debris flows on Earth. The flow from this crater's ejecta traversed a slope of extremely low gradient (less than 0.1 degree) for 450 km, leaving an extremely rough, radar-bright surface. The ground-hugging nature of the flow is indicated by its being diverted by the foreground hill, which is less than 200 m high. Magellan MIDR quadrangle* containing this image: C1- 00N163. Image resolution (m): 225. Size of region shown (E-W x N-S, in km): 473 x 360. Range of emissivities from violet to red: 0.80 -- 0.95. Vertical exaggeration: 200. Azimuth of viewpoint (deg clockwise from East): 300. Elevation of viewpoint (km): 500. *Quadrangle name indicates approximate center latitude (N=north, S=south) and center longitude (East).

  13. A Statistical Study of the Sudden Impulses of Geomagnetic Field at Mid and Low Latitudes

    NASA Astrophysics Data System (ADS)

    Shi, C.

    2015-12-01

    Sudden impulses (SI) of geomagnetic field are associated with the sudden increases of the solar wind dynamic pressure, which is typically caused by the interplanetary shocks. In the mid and low latitudes at the ground, the SIs are the sudden increases of the northward magnetic field. Using a set of 447 SI cases and the SMR index (local Dst index provided by SuperMAG), we find that the responses of the geomagnetic field to the jump of the square root of solar wind dynamic pressure show a strong local time dependence with the strongest responses located in the midnight and the weakest responses located in the dawn side. We also find that geomagnetic responses, especially the noon and midnight responses, have quite different amplitudes under north and south interplanetary magnetic field. By calculating the normalized sudden impulses, we find that there is a seasonal variation with the peak around summer and the valley around winter. We also find that the shock normal orientation affects the amplitude of the sudden impulses: the more parallel the shock normal orientation is to the sun-earth line, the stronger the sudden impulses will be.

  14. Statistical characteristics of low-latitude ionospheric scintillation over China

    NASA Astrophysics Data System (ADS)

    Liu, Kangkang; Li, Guozhu; Ning, Baiqi; Hu, Lianhuan; Li, Hongke

    2015-03-01

    The Global Positioning System (GPS) L-band ionospheric scintillation produced by electron density irregularities in the ionospheric E- and F-regions, is mainly a low- and high-latitude phenomenon. In this study, the statistical behavior of GPS ionospheric scintillation over a Chinese low-latitude station Sanya (18.3°N, 109.6°E; dip lat: 12.8°N) has been investigated. A detailed study on the seasonal and solar activity dependence of scintillation occurrence during July 2004-December 2012 show that the amplitude scintillation pattern, with a maximum occurrence during equinox of solar maximum, agrees with plasma bubble observations by in situ satellites in this longitude. A few daytime periodic scintillation events are found during June solstice months of solar minimum. Interestingly, a significant equinoctial asymmetry of scintillation onset time is found in 2011-2012. The initiation of scintillation during September-October is on average earlier than that of March-April about 25 min. Meanwhile, the zonal drifts of irregularities estimated using two spatially separated GPS receivers over Sanya show a similar behavior during the two equinoxes, slowly decreasing from 150 m/s at post-sunset to 50 m/s near midnight. The possible mechanisms responsible for the occurrence characteristics of GPS scintillation over Sanya, and relevant aspects of the zonal drifts of the irregularities are discussed.

  15. Magnetosphere-Ionosphere Coupling at Subauroral Latitudes (Invited)

    NASA Astrophysics Data System (ADS)

    Sazykin, S.; Spiro, R. W.; Wolf, R. A.; Song, Y.; Toffoletto, F.

    2010-12-01

    On the night side of the inner magnetosphere and the conjugate ionosphere, there is a region where boundaries of several plasma populations of different origins and energy regimes (the plasmapause, the equatorward edge of the auroral oval, and the inner edge of the ring current) approximately coincide or overlap. This region is highly complex and dynamic. The magnetospheric hot plasmas and ionospheric-plasmaspheric cold populations are coupled through convection electric fields and auroral particle precipitation. Both convection (electric field) patterns and plasma densities are observed to be structured during geomagnetic disturbances, with Subauroral Polarization Streams (SAPS) near the auroral oval and plasma plumes (particularly prominent in TEC maps) extending to lower latitudes and in MLT from the nightside toward the afternoon sector. In this paper, we present an initial attempt to explain the causes of the observed ionospheric storm-time plasma structuring at mid and sub-auroral latitudes through self-consistent simulations using the Rice Convection Model. Specifically, we model the structure and longitudinal/UT dependence of SAPS structures in the duskside ionosphere, and how they may be related to meridional electron density transport postulated to be responsible for large storm-time TEC structuring in the afternoon-to-dusk MLT sector.

  16. Ionospheric slab thickness in middle and low latitudes

    SciTech Connect

    Davies, K.; Liu, X.M. )

    1991-08-01

    The equivalent slab thickness of the ionosphere at 15 stations in middle and low latitudes was studied to determine its dependence on solar cycle and location. The data were grouped by season. The following are the major conclusions. There appears to be little or no geographical, or geomagnetic, dependence. The slab thickness varies approximately linearly with the 12-month smoothed values of the 10.7-cm solar radio flux. In middle latitudes the winter midnight thickness is essentially independent of the flux, whereas in summer and equinox the midnight thickness increases with increase of solar flux. The noon thickness increases with increase of solar flux in all seasons. The zero-order Fourier coeffficients for the diurnal curves at all 15 stations were expressed as linear functions of the 10.7-cm flux. The higher harmonic coefficients showed no appreciable dependence on solar flux. The pronounced predawn increase in slab thickness is caused by low values of the maximum electron density, not by increase of total electron content. 10 refs.

  17. Quarter wave field line resonances: variation with latitude

    NASA Astrophysics Data System (ADS)

    Menk, Frederick; Obana, Yuki; Waters, Colin; Sciffer, Murray; Yoshikawa, Akimasa; Yoshikawa, Ichiro; Moldwin, Mark; Mann, Ian; Boteler, David

    When for a particular field line there is a strong asymmetry in conductivity at conjugate ionospheres, quarter wavelength mode eigenoscillations may be sustained instead of the more usual half-wave oscillations. We have studied the latitudinal distribution of such quarter-wave mode standing Alfvén waves. The diurnal variation of the local field line eigenfrequency was examined for L=1.7-5.1 using cross-phase analysis of geomagnetic data from the MEASURE, CANMOS, and CARISMA arrays in North America. The detected eigenfrequencies for L=2-3.1 were remarkably low near the dawn and dusk terminator, when one end of a field line was sunlit and the other end was in darkness. However, the eigenfrequencies for L¡2 and L¿3.1 did not exhibit this extraordinary low frequency trend. These results suggest that quarter-wave modes were localized to the middle latitude region. We will discuss why this occurs and in particular why quarter wave modes were not generated at high latitudes even though the ionospheric conditions were strongly asymmetric there.

  18. Enhancement latitude of civil digital photography system by liquid crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Gaoxiang; Tang, Yuanhe; Liu, Kai; Liu, Hanchen; Gao, Haiyang; Zhang, Ruixia; Liang, Yuan; Li, Qing; Yang, Xusan; Ye, Na

    2008-12-01

    In order to enhance the civil digital photography system's latitude, a kind of new structure is put forward which is made the liquid crystal plate coupled to CCD/CMOS (Charge Coupled Device/Complementary Metal Oxide Semiconductor) sensitive chip in this paper. We call this structure chip is LCCCD (liquid crystal CCD). This new system's key is proximity coupled a high precision HTPS (Low Temperature Poly-Silicon) liquid crystal plate on the foundation of current CCD/CMOS chip; each pixel on the liquid crystal plate corresponds with the pixel on CCD/CMOS one by one. They compose the new sensitive photosensitive chip that can control the each pixel's ratio of photoelectric conversion by changing each liquid crystal unit's transmittance. This paper expounds this system's structure as well as various modules' cooperation mode and the process of achieving the aim. Through analysis original image by common camera and the same image by LCCCD camera, these results are obtained: the image is changed directly on the physical level by the new system is much better than produces by post treatment, moreover the system can rectify images by 10bit precision, and the imaging latitude has been enhanced more than 5EV (EV is exposure level).

  19. Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role

    PubMed Central

    Ruairuen, Watcharee

    2015-01-01

    As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/Rnet (67%), G/Rnet (6%), H/Rnet (27%) where LE is latent heat flux, Rnet is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems. PMID:26368123

  20. Seedling mortality from litterfall increases with decreasing latitude.

    PubMed

    Gillman, Len N

    2016-02-01

    Global patterns in ecology need to be identified and interpreted if macroecological processes are to be fully understood. Facilitating effects on seedlings such as that of nurse plants and competitive effects such as allelopathy have been well recognized but the importance of plants acting as killers through physical damage by the litterfall they produce has received relatively little attention. Here I examine latitudinal patterns of physical disturbance to seedlings (microdisturbance) due to litterfall and discuss the macroecological implications in light of current research. Analyses of results from published studies show that both the risk of litterfall disturbance, as measured using artificial model seedlings, and the proportion of seedling mortalities due to litterfall decrease significantly with increasing latitude. Patterns of microdisturbance appear to be driven by the dynamic interaction between macro-litterfall, safe sites with protective overhead vegetation, topography, and animal activity. However, we are informed on this subject by few studies. There is evidence, again from a limited number of studies, for considerable spatial heterogeneity in microdisturbance intensity and for seedling resilience to litterfall damage to differ substantially among species. Therefore, differential survival among microsites may produce regeneration niche diversity. However, more focused studies are required across a range of forest types and latitudes before these results can be generalized. Therefore, there is fertile ground for researchers to use comparable multifactorial methods to investigate the implications of microdisturbance at macro-ecological scales. PMID:27145626

  1. Using a Global Model to Predict the High Latitudes

    NASA Astrophysics Data System (ADS)

    McKinnell, Lee-Anne; Oyeyemi, Elijah; Estela Mosert, Marta

    A new neural network (NN) based global empirical model for the foF2 parameter, which rep-resents the peak electron density has been developed using extended temporal and spatial geo-physical relevant inputs. Previous papers have shown that this new model would be a suitable replacement for the URSI and CCIR maps currently used within the International Reference Ionosphere (IRI) model for the purpose of F2 peak electron density predictions. Measured ground based ionosonde data, from 135 global stations, spanning the period 1995 to 2005 and, for a few stations from 1976 to 1986, obtained from various resources of the World Data Cen-tre (WDC) archives (Space Physics Interactive Data Resource SPIDR, the Digital Ionogram Database, DIDBase, and IPS Radio and Space Services as well as from individual requests) have been used for training a NN to predict the peak electron density. This paper will demon-strate the capability of this global foF2 model to predict foF2 at high latitude locations using previously unseen foF2 data from the Argentinian Antarctic stations. The model has been tested at solar minimum at the Antarctic locations since this was dictated by the availability of data from these stations. Additional high latitude data is used to demonstrate the ability of the model to perform at other solar activity levels. A comparative analysis is presented with details on areas of concern and possibilities for future improvement.

  2. {sup 36}Cl bomb fallout at mid latitudes

    SciTech Connect

    Synal, H.A.; Beer, J.; Gaeggeler, H.

    1995-12-01

    Large amounts of {sup 36}Cl have been produced during the atmospheric test of nuclear weapons in the late fifties and early sixties. During this time the {sup 36}Cl fallout was about three orders of magnitudes larger than during previous times. The well defined {sup 36}Cl pulse has a great potential for hydrological investigations, especially as a tracer for groundwater studies. Detailed measurements of bomb produced {sup 36}Cl were carried out earlier on ice cores from Dye-3 (Greenland). To adopt the {sup 36}Cl pulse measured in Greenland as an input function to other locations its latitude dependence has to be known. So far, atmospheric transport models and the measured distribution of {sup 90}Sr and {sup 137}Cs fallout are used to estimate the latitude dependence of meteoric and bomb produced {sup 36}Cl fallout. In this contribution, {sup 36}Cl measurements on an ice core from an Alpine Glacier (Fiescher Horn, Switzerland) are presented. The results are compared with earlier measurements from a Greenland ice core and implications for the global {sup 36}Cl transport are discussed.

  3. The interchange instability in high-latitude plasma blobs

    SciTech Connect

    Chaturvedi, P.K.; Huba, J.D. )

    1987-04-01

    The stability of high-latitude plasma density enhancements (blobs) is analyzed with regard to the interchange mode (driven by neutral wind or equilibrium transverse electric field acting on the density gradient at the walls of the blobs). The effects arising from the finite parallel length of the blobs along the magnetic field lines are included in the analysis. Plasma regions of differing collisionalities, to which the blobs extend in altitude, are considered. The authors find that the finite parallel blob size results in a modest reduction in the growth rates of the small ({approx lt}1 km) and intermediate (1-10 km) scale sizes but severely reduces the growth rates for the large scale sizes (> 10 km) for the observed parallel blob lengths ({approximately}300-600 km). Further, it is found that the instability growth rates show a moderate reduction at higher altitudes (where ion-inertial effects may be dominant over the ion-neutral collisional effects). Thus the E{times} B instability is considered a plausible candidate for the scintillation-causing irregularities (1-10 km) associated with the high-latitude blobs.

  4. Interchange instability in high-latitude plasma blobs. Memorandum report

    SciTech Connect

    Chaturvedi, P.K.; Huba, J.D.

    1986-12-30

    The stability of high-latitude plasma-density enhancements (blobs) is analyzed with regard to the interchange model (driven by a neutral wind or transverse electric field acting on the density gradient at the walls of the blobs). The effects arising from the finite parallel length of the blobs along the magnetic field lines are included in the analysis. Plasma regions of differing collisionalities, to which the blobs extend in altitude, are considered. It was found that the finite-parallel blob size results in a modest reduction in the growth rates of the small somewhat < 1 km) and intermediate (1-10 km) scale sizes, but severely reduces the growth rates, for the large scale sizes (> 10 kms) for the observed parallel blob lengths (approx. 300-600 kms). Further, it is found that the instability growth rates show a moderate reduction at higher altitudes (where ion-inertial effects may be dominant over the ion-neutral collisional effects). Thus, the E x B instability is considered a plausible candidate for the scintillation causing irregularities (1-10 kms) associated with the high-latitude blobs.

  5. Seedling mortality from litterfall increases with decreasing latitude.

    PubMed

    Gillman, Len N

    2016-02-01

    Global patterns in ecology need to be identified and interpreted if macroecological processes are to be fully understood. Facilitating effects on seedlings such as that of nurse plants and competitive effects such as allelopathy have been well recognized but the importance of plants acting as killers through physical damage by the litterfall they produce has received relatively little attention. Here I examine latitudinal patterns of physical disturbance to seedlings (microdisturbance) due to litterfall and discuss the macroecological implications in light of current research. Analyses of results from published studies show that both the risk of litterfall disturbance, as measured using artificial model seedlings, and the proportion of seedling mortalities due to litterfall decrease significantly with increasing latitude. Patterns of microdisturbance appear to be driven by the dynamic interaction between macro-litterfall, safe sites with protective overhead vegetation, topography, and animal activity. However, we are informed on this subject by few studies. There is evidence, again from a limited number of studies, for considerable spatial heterogeneity in microdisturbance intensity and for seedling resilience to litterfall damage to differ substantially among species. Therefore, differential survival among microsites may produce regeneration niche diversity. However, more focused studies are required across a range of forest types and latitudes before these results can be generalized. Therefore, there is fertile ground for researchers to use comparable multifactorial methods to investigate the implications of microdisturbance at macro-ecological scales.

  6. INTERMEDIATE-VELOCITY MOLECULAR GAS AT HIGH NORTHERN GALACTIC LATITUDES

    SciTech Connect

    Magnani, Loris; Smith, Allison J.

    2010-10-20

    We surveyed the CO(1-0) transition in 16 regions at Galactic latitudes >45{sup 0} which contain compact dust cores less than half a degree in size with E(B - V) values {approx} 0.1 mag. We discovered three new intermediate-velocity molecular clouds and two high-latitude molecular clouds with more typical local standard of rest velocity ({approx}0 km s{sup -1}). The three intermediate-velocity molecular clouds (detected in CO emission in 11 lines of sight) nearly double the number of previously known, CO-emitting clouds. In order to detect the CO(1-0) line, N(H{sub 2}) values of at least 10{sup 19} cm{sup -2} are necessary, implying that the molecular/atomic fraction of these objects is significant and is in contrast to the primarily atomic lines of sight with log N(H{sub 2}) < 17.3 detected in absorption by FUSE. The three molecular clouds are projected on and likely associated with a previously known intermediate-velocity H I feature known as the Intermediate Velocity Spur that may extend to the Galactic halo.

  7. Response of thermosphere density to high-latitude forcing

    NASA Astrophysics Data System (ADS)

    Yamazaki, Y.; Kosch, M. J.; Vickers, H.; Sutton, E. K.; Ogawa, Y.

    2014-12-01

    Solar wind-magnetospheric disturbances cause enhancements in the energy input to the high-latitude upper atmosphere through particle precipitation and Joule heating. As the upper atmosphere is heated and expanded during geomagnetically disturbed periods, the neutral density in the thermosphere increases at a fixed altitude. Conversely, the thermosphere contracts during the recovery phase of the disturbance, resulting in a decrease of the density. The main objectives of this study are (1) to determine the morphology of the global thermospheric density response to high-latitude forcing, and (2) to determine the recovery speed of the thermosphere density after geomagnetic disturbances. For (1), we use thermospheric density data measured by the Challenging Minisatellite Payload (CHAMP) satellite during 2000-2010. It is demonstrated that the density enhancement during disturbed periods occurs first in the dayside cusp region, and the density at other regions slowly follows it. The reverse process is observed when geomagnetic activity ceases; the density enhancement in the cusp region fades away first, then the global density slowly goes back to the quiet level. For (2), we analyze EISCAT Svalbard radar and Tromso UHF radar data to estimate thermospheric densities during the recovery phase of geomagnetic disturbances. We attempt to determine the time constant for the density recovery both inside and outside the cusp region.

  8. Structure of High Latitude Currents in Magnetosphere-Ionosphere Models

    NASA Astrophysics Data System (ADS)

    Wiltberger, M.; Rigler, E. J.; Merkin, V.; Lyon, J. G.

    2016-07-01

    Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model we examine the structure of the high latitude field-aligned current patterns. Each resolution was run for the entire Whole Heliosphere Interval which contained two high speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results obtained from the Weimer 2005 computing using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and narrow. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths also results in the cross polar cap potential (CPCP) pattern being concentrated in higher latitudes. Current-voltage relationships between the R1 and CPCP are quite similar at the higher resolution indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.

  9. Geomagnetic response to IMF and solar wind over different latitudes

    NASA Astrophysics Data System (ADS)

    Aslam, A. M.; Tripathi, Sharad Chandra; Mansoori, Azad Ahmad; Waheed, Malik Abdul

    2016-07-01

    In this paper a study on the response of geomagnetic field characteristics to the solar wind variation during three solar cycles (SC 21, SC 22, SC 23) have been conducted in a long term scale. The difference in the response of two different latitudinal characteristic indices has been investigated. For the purpose we have considered the high latitude index AE and the mid-latitude aa index and both gives the knowledge about the perturbations in the geomagnetic field conditions. Eventually we can infer the idea about the ionospheric current system changes in response to the solar wind conditions. The variation found in the AE and aa indices have been found to follow a 11 year cycle as similar to the sunspot variation. Also the correlation between the annual means of the solar wind parameters velocity V, magnetic filed B and the composite parameters BV and BV ^{2 } have been calculated . A difference was found between the correlations obtained for the AE and aa indices. We could also see that the difference in correlation follows a cyclic pattern i.e. the large difference is found during the solar maxima while a small difference is observed during the minima.

  10. Biomarkers of a Low-Latitude Neoproterozoic Glaciation

    NASA Astrophysics Data System (ADS)

    Olcott, A. N.; Sessions, A. L.; Corsetti, F. A.; Kaufman, A. J.

    2005-12-01

    Neoproterozoic low-latitude glaciations are often considered times of great biologic limitation because of the hypothesized presence of thick, global sea ice. Alternatively, climate models have suggested that tropical oceans could have remained ice-free, or covered by only thin sea ice, allowing life to continue unimpeded throughout the glaciations. The analysis of organic remains from synglacial sediments provides an approach to address the debate. Here we describe molecular, isotopic, and petrographic analyses of organic rich strata (up to 3.0 percent TOC) deposited in southeastern Brazil during Neoproterozoic low-latitude glaciation ca. 700 Ma. These strata contain extractable biomarkers, including 2-α-methyl hopanes, 2,3,6-trimethylarylisoprenoids, C29-C31 hopanes, and C27-C29 steranes. The preserved biomarkers reflect the presence of a complex and productive ecosystem comprised of both aerobic and anaerobic phototrophs, heterotrophs, and eukaryotes. The biomarker data indicate euxinia extending into the photic zone, providing evidence that the oceans were strongly stratified. Significantly, the occurrence of photosynthetic cyanobacteria and green sulfur bacteria at this time indicates that sea-ice cover at this location was thin to nonexistent, and is incompatible with models for snowball Earth that envision kilometers of ice thickness.

  11. Hemispheric Symmetry of Mid-Latitude Sea Surface Conditions during Plio-Pleistocene Glaciation: Insights from the Southwest Pacific

    NASA Astrophysics Data System (ADS)

    Peterson, L.; Lawrence, K. T.; Kelly, C.; Schaupp, C. M.; Seidenstein, J.

    2012-12-01

    The hallmark of the global transition from the warm climate conditions of the Pliocene to the cooler conditions of the Pleistocene is the intensification of glaciation in the northern hemisphere, yet little is known about the (a)symmetry between the hemispheres in the evolution of the climate system during this key climate transition. In order to better assess hemispheric (a)symmetry across the Plio-Pleistocene, we present new records of sea surface temperature (SST), ocean productivity, and global ice volume for the late Pliocene and Pleistocene, which are based on stable isotope and alkenone analyses performed on marine sediments at Ocean Drilling Program (ODP) Site 1125 in the southwest Pacific (42°S, 178°W). Our data indicate that SSTs cooled ~4°C between the late Pliocene and late Pleistocene, a magnitude of cooling comparable to that observed at mid-latitude sites in both the South (Site 1090; 43°S) and North Atlantic (Site 607; 41°N). The magnitude, as well as the timing, of this cooling suggest a hemispherically symmetric contraction of the low latitude warm pool at the end of the early Pliocene warm period. In contrast, we observe a marked increase in orbital-scale temperature variability at Site 1125 during the late Pleistocene, a pattern that is not observed in other mid-latitude temperature records. On orbital timescales, we also observe significant precessional power in the Pliocene portion of southern hemisphere SST records, which is in contrast to the lack of precessional power in North Atlantic and tropical SST records. These hemispheric asymmetries suggest important differences in the climate system responses of the northern and southern hemispheres, and may provide clues regarding critical global climate system feedbacks.

  12. Co-variation between seed dormancy, growth rate and flowering time changes with latitude in Arabidopsis thaliana.

    PubMed

    Debieu, Marilyne; Tang, Chunlao; Stich, Benjamin; Sikosek, Tobias; Effgen, Sigi; Josephs, Emily; Schmitt, Johanna; Nordborg, Magnus; Koornneef, Maarten; de Meaux, Juliette

    2013-01-01

    Life-history traits controlling the duration and timing of developmental phases in the life cycle jointly determine fitness. Therefore, life-history traits studied in isolation provide an incomplete view on the relevance of life-cycle variation for adaptation. In this study, we examine genetic variation in traits covering the major life history events of the annual species Arabidopsis thaliana: seed dormancy, vegetative growth rate and flowering time. In a sample of 112 genotypes collected throughout the European range of the species, both seed dormancy and flowering time follow a latitudinal gradient independent of the major population structure gradient. This finding confirms previous studies reporting the adaptive evolution of these two traits. Here, however, we further analyze patterns of co-variation among traits. We observe that co-variation between primary dormancy, vegetative growth rate and flowering time also follows a latitudinal cline. At higher latitudes, vegetative growth rate is positively correlated with primary dormancy and negatively with flowering time. In the South, this trend disappears. Patterns of trait co-variation change, presumably because major environmental gradients shift with latitude. This pattern appears unrelated to population structure, suggesting that changes in the coordinated evolution of major life history traits is adaptive. Our data suggest that A. thaliana provides a good model for the evolution of trade-offs and their genetic basis. PMID:23717385

  13. Antarctic-type blue whale calls recorded at low latitudes in the Indian and eastern Pacific Oceans

    NASA Astrophysics Data System (ADS)

    Stafford, Kathleen M.; Bohnenstiehl, DelWayne R.; Tolstoy, Maya; Chapp, Emily; Mellinger, David K.; Moore, Sue E.

    2004-10-01

    Blue whales, Balaenoptera musculus, were once abundant around the Antarctic during the austral summer, but intensive whaling during the first half of the 20th century reduced their numbers by over 99%. Although interannual variability of blue whale occurrence on the Antarctic feeding grounds was documented by whalers, little was known about where the whales spent the winter months. Antarctic blue whales produce calls that are distinct from those produced by blue whales elsewhere in the world. To investigate potential winter migratory destinations of Antarctic blue whales, we examined acoustic data for these signals from two low-latitude locales: the eastern tropical Pacific Ocean and the Indian Ocean. Antarctic-type blue whale calls were detected on hydrophones in both regions during the austral autumn and winter (May-September), with peak detections in July. Calls occurred over relatively brief periods in both oceans, suggesting that there may be only a few animals migrating so far north and/or producing calls. Antarctic blue whales appear to use both the Indian and eastern Pacific Oceans concurrently, indicating that there is not a single migratory destination. Acoustic data from the South Atlantic and from mid-latitudes in the Indian or Pacific Oceans are needed for a more global understanding of migratory patterns and destinations of Antarctic blue whales.

  14. Pelagic larval duration is similar across 23° of latitude for two species of butterflyfish (Chaetodontidae) in eastern Australia

    NASA Astrophysics Data System (ADS)

    Booth, D. J.; Parkinson, K.

    2011-12-01

    Duration of the pelagic phase of benthic marine fishes has been related to dispersal distance, with longer pelagic larval duration (PLD) expected to result in greater dispersal potential. Here, we examine PLDs of 2 species of coral-reef butterflyfish ( Chaetodon auriga and C. flavirostris) across latitudes (14°S-37°S) along the Great Barrier Reef into south-eastern Australia; we predict that PLD will be higher for fish collected below the breeding latitudes of 24°S. For C. auriga, apart from significantly longer PLDs at Lord Howe Island and Jervis Bay (means of 54 and 52 days, respectively), all locations had similar PLDs (mean 41 days). For C. flavirostris, there was no significant location effect on PLD (mean 41.5 days); however, PLD at Lord Howe Island was 58 days with high variance precluding significance. Also, there was no significant variation in PLD among years for either species despite considerable variation in East Australian Current strength.

  15. Recent low-latitude freeze thaw on Mars

    NASA Astrophysics Data System (ADS)

    Page, David P.

    2007-07-01

    Outside polar latitudes, features corresponding to surface thaw have yet to be identified on Mars. The youthful gully landforms observed at mid-high latitude [Malin, M., Edgett, K., 2000. Science 288, 2330-2335] are the nearest candidate, but the source (and nature) of the gully carving agent remains controversial [e.g., Musselwhite, D.S., Swindle, T.D., Lunine, J.I., 2001. Geophys. Res. Lett. 28, 1283-1285; Mellon, M.T., Phillips, R.J., 2001. J. Geophys. Res. 106, 1-15; Knauth, L.P., Burt, D.M., 2002. Icarus 158, 267-271; Costard, F., Forget, F., Mangold, N., Peulvast, J.P., 2002. Science 295, 110-113; Christensen, P.R., 2003. Nature 422, 45-48; Treiman, A.H., 2003. J. Geophys. Res. 108]. At higher obliquity than the present epoch, near-surface ground ice should be present globally [Mellon, M.T., Jakosky, B.M., 1995. J. Geophys. Res. 100 (E6), 11781-11799], populated by condensation of atmospheric water vapour in the top few metres of the regolith, or emplaced as dusty ice sheets reaching down towards the equator. The latitudinal restriction of these gullies to regions poleward of ±30° appears to argue against a thaw component to their formation—since ground ice is present and stable at all latitudes at high obliquity, the current (low) obliquity regime should result in ground ice thaw at low latitudes, where insolation and daytime temperatures are currently greatest, and this is not observed. A previously undescribed meltwater sequence in the Cerberus plains, at 20° N/187° E, shows that comparable, but much more continuous, and mappable melting and surface runoff have occurred in the geologically recent past at near-equatorial latitudes on Mars. Polygonal ground in the Cerberus plains is seen by the Mars Global Surveyor Mars Orbiter Camera (MOC) to suffer sequential, regional-scale volatile-loss consistent with thaw of near-surface ground ice under periglacial conditions. This degradation is continuously sampled by a single MOC strip, showing an icy

  16. Influence of South America orography on summertime precipitation in Southeastern South America

    NASA Astrophysics Data System (ADS)

    Junquas, C.; Li, L.; Vera, C. S.; Le Treut, H.; Takahashi, K.

    2016-06-01

    Impacts of the main South American orographic structures (the Andes, the Brazilian Plateau and the Guiana shield) on the regional climate and associated global teleconnection are investigated through numerical experiments in which some of these features are suppressed. Simulations are performed with a ``two-way nesting'' system coupling interactively the regional and global versions of the LMDZ4 atmospheric general circulation model. At regional scale, the simulations confirm previous studies, showing that both the Andes and the Brazilian Plateau exert a control on the position and strength of the South Atlantic convergence zone (SACZ), mainly through their impact on the low-level jet and the coastal branch of the subtropical anticyclones. The northern topography of South America appears to be crucial to determine the leading mode of rainfall variability in eastern South America, which manifests itself as a dipole-like pattern between Southeastern South America and the SACZ region. The suppression of South America orography also shows global-scale effects, corresponding to an adjustment of the global circulation system. Changes in atmospheric circulation and precipitation are found in remote areas on the globe, being the consequences of various teleconnection mechanisms. When the Brazilian Plateau and the Andes are suppressed, there is a decrease of precipitation in the SACZ region, associated with a weakening of the large-scale ascendance. Changes are described in terms of anomalies in the Walker circulation, meridional displacements of the mid-latitude jet stream, Southern annular mode anomalies and modifications of Rossby wave train teleconnection processes.

  17. Cusp latitude and the optimal solar wind coupling function

    NASA Astrophysics Data System (ADS)

    Newell, P. T.; Sotirelis, T.; Liou, K.; Meng, C.-I.; Rich, F. J.

    2006-09-01

    Previous work has established that the linear correlation of the low-altitude particle cusp latitude with the southward component of the IMF is about 0.70. Several possibly better candidate functions for determining the coupling between the magnetosphere and the solar wind have been advanced, but none have been evaluated in terms of the cusp, which is a site of direct solar wind-magnetosphere interaction. On the basis of 11 years of DMSP satellite particle data from 1984-1994 (with verification from the subsequent 11 years, 1995-2005), we find that the best solar wind-magnetosphere coupling function involves electric field dimensions, such as the half wave rectifier (vBs) and the Kan-Lee electric field (EKL = vBTsin2(θc/2), where θc is the IMF clock angle). Both the half wave rectifier (r = 0.77) and the Kan-Lee (r = 0.78) functions have a linear correlation with cusp latitude which is noticeably better than the Bz function used in previous work, and also better than the ɛ parameter (ɛ = vB2sin4(θc/2)). However, the best correlation is with a function whose clock angle dependence is intermediate between the pure half wave rectifier (which implies no merging for Bz > 0) and the Kan-Lee function. Namely, EWAV = vBTsin4(θc/2) correlates with cusp latitude at the r = 0.81 level. This latter clock angle dependence has been previously suggested at various times by J. R. Wygant, by S.-I. Akasofu, and by V. M. Vasyliunas. The improved result holds for both the equatorward and poleward edge of the cusp, and regardless of how the IMF is propagated. Earlier work on cross polar cap potentials and on nightside auroral luminosity also favored the EWAV function, which in combination with our findings suggests a widely applicable result. Dayside merging is thus clearly not purely component driven, as the half wave rectifier formula implies. These results also suggest, albeit less convincingly, that merging shuts down for increasingly northward IMF more rapidly than the Kan

  18. Ionospheric vertical drift response at a mid-latitude station

    NASA Astrophysics Data System (ADS)

    Kouba, Daniel; Koucká Knížová, Petra

    2016-07-01

    Vertical plasma drift data measured at a mid-latitude ionospheric station Pruhonice (50.0 ° N, 14.6 ° E) were collected and analysed for the year 2006, a year of low solar and geomagnetic activity. Hence these data provide insight into the drift behaviour during quiet conditions. The following typical diurnal trend is evident: a significant decay to negative values (downward peak) at dawn; generally less pronounced downward peak at dusk hours. Magnitude of the downward drift varies during the year. Typically it reaches values about 20 ms-1 at dawn hours and 10 ms-1 at dusk hours. Maximum dawn magnitude of about 40 ms-1 has been detected in August. During daytime the vertical drifts increases from the initial small downward drifts to zero drift around noon and to small upward drifts in the afternoon. Night-time drift values display large variability around a near zero vertical drift average. There is a significant trend to larger downward drift values near dawn and a less pronounced decrease of the afternoon upward vertical drifts near sunset. Two regular downward peaks of the drift associated with the dawn and dusk are general characteristics of the analysed data throughout the year 2006. Their seasonal course corresponds to the seasonal course of the sunrise and sunset. The duration of prevailing negative drift velocities forming these peaks and thus the influence of the dawn/dusk on the drift velocity is mostly 1.5-3 h. The dawn effect on vertical drift tends to be larger than the effect of the dusk. The observed magnitude of the sunrise and sunset peaks show significant annual course. The highest variability of the magnitude is seen during winter. High variability is detected till March equinox and again after September equinox. Around solstice, both peaks reaches lowest values. After that, the magnitudes of the drift velocity increase smoothly till maxima in summer (August). The vertical drift velocity course is smooth between June solstice and September

  19. A Mid-Latitude Geomorphologic Map of Titan

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M. C.; Malaska, Michael; Schoenfeld, Ashley; Solomonidou, Anezina; Birch, Samuel; Hayes, Alexander; Williams, David A.; Janssen, Michael A.; Le Gall, Alice; Turtle, Elizabeth P.; Radebaugh, Jani; Cassini RADAR Team

    2016-10-01

    We investigated the geologic history of Titan through mapping and analyzing the distribution of observed geomorphic features using a combination of Cassini data collected by RADAR, VIMS, and ISS. Determining the spatial and superposition relationships between geomorphologic units on Titan leads to an understanding of the likely time evolution of the landscape and gives insight into the process interactions that drive its evolution. We have used all available datasets to extend the mapping initially done by Lopes et al. [1]. We now have the mid-latitudes (60N to 60S) of Titan mapped at 1:800,000 scale in all areas covered by Synthetic Aperture Radar (SAR). A map of the polar regions has been done by Birch et al. [2]. For the mid-latitudes, we have defined five broad classes of terrains following Malaska et al. [3], largely based on prior mapping [1]. These broad classes are: craters, hummocky/mountainous, labyrinth, plains, and dunes. We have found that the hummocky/mountainous terrains are the oldest units on the surface and appear radiometrically cold, indicating icy materials [5]. Dunes are the youngest units and appear radiometrically warm, indicating organic sediments. VIMS analysis shows that compositional variations can also exist within the same class of unit [6, 7]. Future work aims to combine the polar maps of Birch et al. [2] with the mid-latitude maps presented here and harmonize the units at the 60 degrees boundaries. We also plan to extend the map in regions not covered by SAR to produce a 1:1,500,000 scale map compatible with USGS standards.References: [1] Lopes, R.M.C., et al.: Icarus, 205, 540-588, 2010; [2] Birch et al., submitted to Icarus. [3] Malaska, M., et al.: Icarus, 270, 130-161, 2016; [4] Barnes, J., et al.: Pl. Scie., 2:1, 2013; [5] Janssen et al., 2016 Icarus 270, 443-459, 2016. [6] Solomonidou, A., et al. : DPS abstract, 2016. [7] Lopes, R.M.C., et al, Icarus, 270, 162-182, 2016.

  20. Newcastle folio, Wyoming-South Dakota

    USGS Publications Warehouse

    Darton, N. H.

    1904-01-01

    The Newcastle quadrangle embraces the quarter of a square degree which lies between parallels 43° 30' and 44° north latitude and meridians 104° and 104° 30' west longitude.  It measures approximately 34 1/2 miles from north to south and 25 1/8 from east to west, and its area is 863 4/5 square miles.  It lies mainly in the eastern portion of Weston County, Wyo., but includes also a narrow area of western Custer and Pennington counties, S. Dak.  The northeastern portion of the quadrangle lies on the slopes of the Black Hills, but the larger part of it belongs to the Great Plains, although these plains are lower here than in the greater part of adjoining portions of Nebraska and Wyoming.  The district is drained by branches of the South Branch of Cheyenne River.

  1. Determining the extent and characterizing coral reef habitats of the northern latitudes of the Florida Reef Tract (Martin County).

    PubMed

    Walker, Brian K; Gilliam, David S

    2013-01-01

    Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25-27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km(2) seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and

  2. Determining the Extent and Characterizing Coral Reef Habitats of the Northern Latitudes of the Florida Reef Tract (Martin County)

    PubMed Central

    Walker, Brian K.; Gilliam, David S.

    2013-01-01

    Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25–27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km2 seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and

  3. High plant diversity in Eocene South America: Evidence from Patagonia

    USGS Publications Warehouse

    Wilf, P.; Cuneo, N.R.; Johnson, K.R.; Hicks, J.F.; Wing, S.L.; Obradovich, J.D.

    2003-01-01

    Tropical South America has the highest plant diversity of any region today, but this richness is usually characterized as a geologically recent development (Neogene or Pleistocene). From caldera-lake beds exposed at Laguna del Hunco in Patagonia, Argentina, paleolatitude ???47??S, we report 102 leaf species. Radioisotopic and paleomagnetic analyses indicate that the flora was deposited 52 million years ago, the time of the early Eocene climatic optimum, when tropical plant taxa and warm, equable climates reached middle latitudes of both hemispheres. Adjusted for sample size, observed richness exceeds that of any other Eocene leaf flora, supporting an ancient history of high plant diversity in warm areas of South America.

  4. Anisotropy of high-latitude nighttime F region irregularities

    SciTech Connect

    Livingston, R.C.; Rino, C.L.; Owen, J.; Tsunoda, R.T.

    1982-12-01

    The anisotropy of intermediate-scale, F region irregularities in the nighttime auroral zone is described. The study is based upon spaced-receiver phase scintillation measurements made with the Wideband satellite at Poker Flat, Alaska. A systematic dependence of irregularity anisotropy with local time and magnetic latitude is observed, suggesting convective control. Sheetlike irregularities are confined to the zone of east-west drift near the equatorward boundary of the auroral zone, and at the flow reversal, or Harang discontinuity, the cross-field extension of the sheets is reduced. The extension of rodlike irregularities, which are observed poleward of the zonal convection boundary, also shows apparent convection dominance. Mechanisms for convection control of the anisotropy are discussed.

  5. High-latitude irregularity spectra deduced from scintillation measurements

    SciTech Connect

    Wernik, A.W.; Gola, M.; Liu, C.H.; Franke, S.J. Illinois Univ., Urbana )

    1990-10-01

    High-latitude scintillation data show that the strength and spectral index of intensity scintillation are dependent on the propagation geometry. It is shown here that anisotropic irregularity spectra, with different indices along and across the magnetic field, lead to geometrical effects similar to those observed. In general, the spectrum along the magnetic field is steeper than that across the field, and the difference is more pronounced for nighttime conditions. Spectral anisotropy can be interpreted as a size-dependent irregularity anisotropy. It is found that large-scale irregularities in the daytime and nighttime ionosphere are almost isotropic, while small-scale irregularities are anisotropic and considerably more so at night than during the day. It is shown that anisotropic irregularity spectra could account for the observed scintillation and in situ temporal spectra with frequency-dependent slope. 26 refs.

  6. Wintertime density perturbations near 50 km in relation to latitude

    NASA Technical Reports Server (NTRS)

    Quiroz, R. S.

    1977-01-01

    Standard and reference atmospheres which depict the horizontal distribution of air density in the stratosphere and mesosphere are not realistic in that they do not provide information on the large departures from standard that may occur during a given month, nor on the time- and space-scales of atmospheric perturbations responsible for these departures. In the present paper, it is shown how this information can be obtained from a special analysis of satellite radiance measurements. Plots of the mean zonal radiance, obtained with the VTPR instrument, and the corresponding 50-km density show not only the expected strong poleward gradient of density, but also a strong density surge from late December to early January, affecting all latitudes.

  7. Cosmic Rays and Total Ozone at Higher Middle Latitudes

    NASA Astrophysics Data System (ADS)

    Lastovicka, J.; Krizan, P.

    Various external factors of solar origin like solar activity (solar cycle, 27-day variation etc.), geomagnetic storms and other solar wind-related phenomena, and changes of fluxes of high-energy particles can potentially affect the ozone layer. Here we examine the effects of Forbush decreases and other decreases of the galactic cosmic rays (GCR) on the columnar ozone content (= total ozone) at higher middle latitudes near 50o N. The Forbush decreases usually occur together with geomagnetic storms and relatively often together with solar proton events (SPEs). Then it is difficult, if not impossible, to distinguish between the effects of geomagnetic storms, SPEs and Forbush decreases and other decreases of the GCR flux. Therefore we present here the results of investigations of the effects of Forbush decreases and other substantial decreases of GCRs on total ozone for events when there was no geomagnetic storm. Some effects our found, which depend principally on other conditions (season, solar activity level, QBO phase etc.).

  8. Mid-latitude VLF emissions observed in the topside ionosphere

    NASA Technical Reports Server (NTRS)

    Ondoh, T.; Murakami, T.

    1975-01-01

    Narrow-band VLF emissions observed on different days by Alouette-2 are described. It is found that narrow-band VLF hiss (3.5-7.0 kHz) occurs at midlatitudes (at 54 to 64 deg) in the topside ionosphere during both the geomagnetically disturbed and quiet periods, although the hiss region moves towards the auroral zone during the disturbed period. It is likely that the midlatitude hiss at around 5 kHz is the origin of the narrow-band hiss (5 plus or minus 1 kHz) often observed at ground stations at low latitudes, since no VLF emissions above 2 kHz appear in the auroral zone. The midlatitude VLF hiss observed in the topside ionosphere may be generated by the transverse (electron cyclotron) resonance instability in the magnetosphere.

  9. Rotational effects on convection simulated at different latitudes

    NASA Technical Reports Server (NTRS)

    Pulkkinen, Pentti; Tuominen, Ilkka; Brandenburg, Axel; Nordlund, Ake; Stein, Robert F.

    1993-01-01

    We simulate numerically convection inside the solar convection zone under the influence of rotation at different latitudes. The computational domain is a small rectangular box with stress-free upper and lower boundaries, and with periodicity assumed in the lateral directions. We study the transport of angular momentum, which is important for the generation of differential rotation. The sign and the latitudinal dependence of the horizontal Reynolds stress component turn out to be in good agreement with correlation measurements of sunspot proper motions and with predictions from the theory of the Lambda effect. We also investigate the other components of the Reynolds stress as well as the eddy heat flux tensor, both of which are needed in mean field models of differential rotation.

  10. Electron density distributions in the high-latitude magnetosphere

    NASA Technical Reports Server (NTRS)

    Persoon, Ann M.

    1988-01-01

    Electron density profiles were constructed to study the plasma density depletions in the nightside auroral zone and the density variations with increasing altitude in the polar cap, using electric field spectrum measurements from the plasma wave instrument on DE-1. Sharply defined regions of depleted plasma densities were commonly observed on nightside auroral field lines, in which electron densities were strongly depleted in relation to the adjacent plasmaspheric and polar densities, forming a low-density cavity at about 70 deg invariant latitude. A correlation was found between low auroral plasma densities, upflowing ion distributions, and an energetic precipitating electron population, indicating that electron density depletions in the nightside auroral zone are directly associated with auroral acceleration processes.

  11. First order latitude effects in the solar wind

    NASA Technical Reports Server (NTRS)

    Winge, C. R., Jr.; Coleman, P. J., Jr.

    1974-01-01

    The Weber-Davis model of the solar wind is generalized to include the effects of latitude. The principal assumptions of perfect electrical conductivity, rotational symmetry, a polytropic relation between pressure and density, and a flow aligned magnetic field in a system rotating with the Sun, are retained. The original three dimensional magnetohydrodynamic flow problem is reduced to a two dimensional hydrodynamic flow problem. The solution at 1 Au is most sensitive to a latitudinal dependence in the coronal boundary temperature and least sensitive to a latitudinal dependence in the magnetic field magnitude. A solution obtained for an approximate dipolar variation in the coronal magnetic field magnitude predicts that the latitudinal flow is initially toward the equator due to magnetic channeling; however, this effect is rapidly overcome and the latitudinal flow at 1 Au is toward the pole and not significantly different from the solution for constant boundary conditions.

  12. Effect of latitude on flavonoid biosynthesis in plants.

    PubMed

    Jaakola, Laura; Hohtola, Anja

    2010-08-01

    The growth conditions in different latitudes vary markedly with season, day length, light quality and temperature. Many plant species have adapted well to the distinct environments through different strategies, one of which is the production of additional secondary metabolites. Flavonoids are a widely spread group of plant secondary metabolites that are involved in many crucial functions of plants. Our understanding of the biosynthesis, occurrence and function of flavonoids has increased rapidly in recent decades. Numerous studies have been published on the influence of environmental factors on the biosynthesis of flavonoids. However, extensive long-term studies that examine the effect of the characteristics of northern climates on flavonoid biosynthesis are still scarce. This review focuses on the current knowledge about the effect of light intensity, photoperiod and temperature on the gene-environment interaction related to flavonoid biosynthesis in plants.

  13. CONDITIONED ANALYSIS OF HIGH-LATITUDE SOLAR WIND INTERMITTENCY

    SciTech Connect

    D'Amicis, R.; Consolini, G.; Bavassano, B.; Bruno, R.

    2012-08-10

    The solar wind is a turbulent medium displaying intermittency. Its intermittent features have been widely documented and studied, showing how the intermittent character is different in fast and slow wind. In this paper, a statistical conditioned analysis of the solar wind intermittency for a period of high-latitude fast solar wind is presented. In particular, the intermittent features are investigated as a function of the Alfvenic degree of fluctuations at a given scale. The results show that the main contribution to solar wind intermittency is due to non-Alfvenic structures, while Alfvenic increments are found to be characterized by a smaller level of intermittency than the previous ones. Furthermore, the lifetime statistics of Alfvenic periods are discussed in terms of a multiscale texture of randomly oriented flux tubes.

  14. Cell cycle kinetics in pterygium at three latitudes.

    PubMed

    Karukonda, S R; Thompson, H W; Beuerman, R W; Lam, D S; Wilson, R; Chew, S J; Steinemann, T L

    1995-04-01

    The cell cycle kinetics of 93 specimens of pterygial tissue, as well as 19 specimens of normal conjunctiva, from patients at three sites representing three different latitudes (Singapore, 1 degree; Hong Kong, 22 degrees; and Little Rock, Arkansas, 34 degrees) were evaluated by flow cytometry. The results showed no difference in cellular proliferation patterns between pterygial and conjunctival tissue at any of the sites, suggesting that pterygium is not a disorder of excess cellular proliferation. Transmission electron microscopy showed extracellular matrix to be a prominent component of pterygium. Cellular proliferation patterns of primary and recurrent pterygium were not significantly different from each other. Factors associated with increased incidence of pterygium included male sex, outdoor occupation, and advanced age.

  15. Center is at Latitude 30 Degrees North, Longitude 270 Degrees

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Center of the orthographic projection is at latitude 30 degrees N., longitude 270 degrees. The north polar residual ice cap of the Planum Boreum region, which is cut by spiral-patterned troughs, is located at top. The upper part is marked by a large depression, Isidis basin, which contains light-colored plains. The upper part also includes the light-colored smooth plains of Elysium Planitia and dark plains of Vastitas Borealis. Together, these form a vast expanse of contiguous plains. Toward the bottom, on the other hand, the southern hemisphere is almost entirely made up of heavily cratered highlands. At bottom left, a conspicuous, relatively bright circular depression marks the ancient large Hellas impact basin.

  16. Computing rare transitions between zonal mid-latitude jets

    NASA Astrophysics Data System (ADS)

    Simonnet, Eric; Bouchet, Freddy

    2016-04-01

    Zonal jets are known to naturally emerge from beta-plane turbulence due to the arrest of inverse energy cascade by Rossby waves.Transitions between jets of different wavenumber are indeed observed in particular regimes showing a striking example of bimodality in the context of 2-D turbulence. As the Rayleigh dissipation and stochastic forcing are decreased these transitions become more and more rare. The aim of this talk is to show that it is possible to compute large ensembles of reactive trajectories connecting the different metastable states even at very low probability regimes when direct numerical simulations are not possible. We use an adaptive version of multilevel splitting algorithms on a barotropic quasi geostrophic model of mid-latitude atmosphere. We are able to obtain a detailed statistical description of the high-dimensional phase space as well as the typical transitions. A large-deviation result is also obtained.

  17. Implementing high-latitude biogeochemical processes into Earth System Models

    NASA Astrophysics Data System (ADS)

    Brovkin, Victor; Kleinen, Thomas; Cresto-Aleina, Fabio; Kloster, Silvia; Ilyina, Tatiana

    2016-04-01

    Projections of future climate changes suggest that air temperatures in the Arctic could rise to the levels unprecedented in the last million years. Sensitivity of carbon storages on land and shelves to climate change of that scale is highly uncertain. Earth System models (ESMs), consisting of atmosphere, ocean, land, and cryosphere components are the main tools to understand interactions between carbon cycle and climate. However, ESM representation of ecological and biogeochemical processes in the Arctic is extremely simplistic. For example, all ESMs agree that tree cover in the future warming scenarios will move northwards to the Arctic coast, but they ignore interactions between vegetation, permafrost, and disturbances such as fires, which are critical for vegetation dynamics in this region. Improving modeling of interactions between model components and their evaluation against growing observational evidence is a promising research area. The first attempts to account for the permafrost carbon dynamics in the ESM framework suggest that CO2 and CH4 emissions from high-latitude regions in the 21st century are relatively small, but they become much more significant afterwards due to committed climate changes. Therefore, extension of ESM simulations beyond 2100 is essential to estimate a proper scale of frozen carbon pool response to human-induced climate change. Additionally, inclusion of sub-sea permafrost component into ESMs is an active research area that brings together terrestrial and marine biogeochemical communities, as well as geologists analyzing climate proxies on glacial timescales. Another challenging aspect of biogeochemical interactions in Arctic is an extreme land surface heterogeneity. A mixture of wetlands, lakes, and vegetation-covered surfaces on fine local scale is not properly reflected in the model structure. A promising approach of dealing with scaling gaps in modeling high-latitude biogeochemical processes in ESMs will be presented.

  18. Theory of Electrostatic Fields in the Ionosphere at Equatorial Latitudes

    NASA Technical Reports Server (NTRS)

    Briggs, Benjamin R.; Spreiter, John R.

    1961-01-01

    The properties of the elongated electrostatic fields that are required to provide the coupling mechanism in the dynamo-motor concept of the E and F regions of the ionosphere are examined theoretically for the conditions that prevail in equatorial latitudes. The analysis is developed for an electrostatic field of arbitrary horizontal scale in a horizontally stratified partly ionized gas subject to an imposed magnetic field having the form of a parabolic arch over the equator. The anisotropic character and continuous variation with height of the conductivity are retained throughout , and numerical solutions are determined for the attenuation of the electric field with distance along the field line. The results are similar qualitatively to those found previously upon analysis of the corresponding problem for middle latitudes, but the attenuation of the electrostatic field with height is considerably greater. It develops, in particular, that the coupling between E and F regions is very small for fields having horizontal wavelengths of a few kilometers. It follows that the dynamo-motor concept could not be used to account for the presence of irregularities of this scale. On the other hand, it is found that almost all the attenuation occurs at heights near that of the E region. If an electrostatic field having a horizontal wavelength of a few kilometers could be produced at heights of, say 200 km or greater, it follows that it would be very elongated and extend with little change in amplitude from hemisphere to hemisphere. The results also indicate that effective coupling could be achieved for fields having horizontal wavelengths of the order of tens of kilometers, but the assumptions introduced to simplify the analysis may impair the quantitative reliability of the results for fields of this scale.

  19. Comparing High-latitude Ionospheric and Thermospheric Lagrangian Coherent Structures

    NASA Astrophysics Data System (ADS)

    Wang, N.; Ramirez, U.; Flores, F.; Okic, D.; Datta-Barua, S.

    2015-12-01

    Lagrangian Coherent Structures (LCSs) are invisible boundaries in time varying flow fields that may be subject to mixing and turbulence. The LCS is defined by the local maxima of the finite time Lyapunov exponent (FTLE), a scalar field quantifying the degree of stretching of fluid elements over the flow domain. Although the thermosphere is dominated by neutral wind processes and the ionosphere is governed by plasma electrodynamics, we can compare the LCS in the two modeled flow fields to yield insight into transport and interaction processes in the high-latitude IT system. For obtaining thermospheric LCS, we use the Horizontal Wind Model 2014 (HWM14) [1] at a single altitude to generate the two-dimensional velocity field. The FTLE computation is applied to study the flow field of the neutral wind, and to visualize the forward-time Lagrangian Coherent Structures in the flow domain. The time-varying structures indicate a possible thermospheric LCS ridge in the auroral oval area. The results of a two-day run during a geomagnetically quiet period show that the structures are diurnally quasi-periodic, thus that solar radiation influences the neutral wind flow field. To find the LCS in the high-latitude ionospheric drifts, the Weimer 2001 [2] polar electric potential model and the International Geomagnetic Reference Field 11 [3] are used to compute the ExB drift flow field in ionosphere. As with the neutral winds, the Lagrangian Coherent Structures are obtained by applying the FTLE computation. The relationship between the thermospheric and ionospheric LCS is analyzed by comparing overlapping FTLE maps. Both a publicly available FTLE solver [4] and a custom-built FTLE computation are used and compared for validation [5]. Comparing the modeled IT LCSs on a quiet day with the modeled IT LCSs on a storm day indicates important factors on the structure and time evolution of the LCS.

  20. Speciation, Ecological Opportunity, and Latitude (American Society of Naturalists Address).

    PubMed

    Schluter, Dolph

    2016-01-01

    Evolutionary hypotheses to explain the greater numbers of species in the tropics than the temperate zone include greater age and area, higher temperature and metabolic rates, and greater ecological opportunity. These ideas make contrasting predictions about the relationship between speciation processes and latitude, which I elaborate and evaluate. Available data suggest that per capita speciation rates are currently highest in the temperate zone and that diversification rates (speciation minus extinction) are similar between latitudes. In contrast, clades whose oldest analyzed dates precede the Eocene thermal maximum, when the extent of the tropics was much greater than today, tend to show highest speciation and diversification rates in the tropics. These findings are consistent with age and area, which is alone among hypotheses in predicting a time trend. Higher recent speciation rates in the temperate zone than the tropics suggest an additional response to high ecological opportunity associated with low species diversity. These broad patterns are compelling but provide limited insights into underlying mechanisms, arguing that studies of speciation processes along the latitudinal gradient will be vital. Using threespine stickleback in depauperate northern lakes as an example, I show how high ecological opportunity can lead to rapid speciation. The results support a role for ecological opportunity in speciation, but its importance in the evolution of the latitudinal gradient remains uncertain. I conclude that per capita evolutionary rates are no longer higher in the tropics than the temperate zone. Nevertheless, the vast numbers of species that have already accumulated in the tropics ensure that total rate of species production remains highest there. Thus, tropical evolutionary momentum helps to perpetuate the steep latitudinal biodiversity gradient.

  1. Small Scale Waves on Venus at High Latitudes

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay; Markiewicz, W. J.; Moissl, R.; Titov, D.

    2008-09-01

    On many occasions, the Venus Monitoring Camera (VMC) on Venus Express has observed several small scale waves or wave trains in high northern latitudes ( 70 to 75°) of Venus for the first time. Such waves were not detected earlier due to a combination of spatial resolution, observed region and duration. Wave trains with different characteristics have been seen at all four wavelengths used by the VMC (centered at 365, 513. 935 and 1010nm with 40, 50, 70 and 20 nm) in and are consistently in the same area on multiple consecutive orbits. Many are similar in appearance to ripples with wavelengths 5 to10 km with extents of some tens of km while others appear as thin straight lines, similar to the Circum Equatorial Belts (CEB) seen previously from Mariner 10 and Pioneer Venus missions at low latitudes. These are distinct from the fine scale transverse waves on the spiral bands on Venus which have been observed by both the VMC and the Visible Infrared Thermal Imaging Spectrometer (VIRTIS). In appearance and perhaps origins, these wave trains appear to be similar to gravity waves observed on Earth, particularly in the airglow images. Their detection on Venus confirms the existence of an atmospheric layer with a very stable lapse rate seen in the thermal structure data at an altitude of 65 to 67 km. The triggering mechanism for these waves could be horizontal or vertical wind shear. The contribution of these waves to momentum transport is not known, but likely is insignificant. However, this could be an observational limitation due to the combination of the eccentric orbit of Venus Express and the camera capabilities. This work has been made possible from a NASA Participating Scientist Grant NNG06GC68G and with the support provided by the VMC Team.

  2. Singular Plasma Disturbance in the Low-Latitude F Region

    NASA Technical Reports Server (NTRS)

    Singh, Sardul; Johnson, F. S.; Heelis, R. A.

    1999-01-01

    We describe here a new phenomenon characterized by unusual patterns of ion drifts inside ion density depletion regions observed by the AE-E satellite in the low-latitude F region. In about 30 depletions, vertical ion drift relative to the background was upward on the western sides, downward on the eastern sides, and zero near the middle where the density depletion was greatest. These drift characteristics are distinct from those observed in plasma bubble depletions. The structures reported here were observed on circular orbits below 300 km altitude and had density depletions of up to 2 orders of magnitude or more below the ambient ion density. The upward and downward drift excursions were up to 200 m/s relative to the background. Almost all these structures were observed over oceans or near coasts and largely between +/- 10 deg and +/- 30 deg clip latitude. The structures were observed mostly as isolated, single depletion regions with the majority of them about 250 km wide in the east-west direction. They occurred during quiet magnetic conditions with near-equal occurrence frequencies in the premidnight and postmidnight periods. The characteristic density and drift signatures indicate westward propagating disturbances in which the bottomside F layer is first lifted and then returned back to its original position, leaving the ionosphere undisturbed after the disturbance passes by. The estimated speed of these disturbances is of the order of 200 m/s. These unique solitary plasma disturbances, which we designate as singular plasma disturbances, are associated with a propagating source of E x B drift, not driven by neutral perturbations at the altitude of observation.

  3. On the surface composition of Triton's southern latitudes

    NASA Astrophysics Data System (ADS)

    Holler, B. J.; Young, L. A.; Grundy, W. M.; Olkin, C. B.

    2016-03-01

    We present the results of an investigation to determine the longitudinal (zonal) distributions and temporal evolution of ices on the surface of Triton. Between 2002 and 2014, we obtained 63 nights of near-infrared (0.67-2.55 μ m) spectra using the SpeX instrument at NASA's Infrared Telescope Facility (IRTF). Triton has spectral features in this wavelength region from N2, CO, CH4, CO2, and H2O. Absorption features of ethane (C2H6) and 13CO are coincident at 2.405 μ m, a feature that we detect in our spectra. We calculated the integrated band area (or fractional band depth in the case of H2O) in each nightly average spectrum, constructed longitudinal distributions, and quantified temporal evolution for each of the chosen absorption bands. The volatile ices (N2, CO, CH4) show significant variability over one Triton rotation and have well-constrained longitudes of peak absorption. The non-volatile ices (CO2, H2O) show poorly-constrained peak longitudes and little variability. The longitudinal distribution of the 2.405 μ m band shows little variability over one Triton rotation and is 97 ± 44 ° and 92 ± 44 ° out of phase with the 1.58 μ m and 2.35 μ m CO bands, respectively. This evidence indicates that the 2.405 μ m band is due to absorption from non-volatile ethane. CH4 absorption increased over the period of the observations while absorption from all other ices showed no statistically significant change. We conclude from these results that the southern latitudes of Triton are currently dominated by non-volatile ices and as the sub-solar latitude migrates northwards, a larger quantity of volatile ice is coming into view.

  4. Two Strong Radio Bursts at High and Medium Galactic Latitude

    NASA Astrophysics Data System (ADS)

    Kida, Sumiko; Daishido, Tsuneaki

    2008-04-01

    We constructed eight 20m elements in Nasu, and are observing radio transients over a wide-field at 1400 MHz. We report on two radio transients detected on consecutive drift scanning observations at declination 32 degrees over about two months. One of the two transients "WJN J1039+3200" appeared at α=10h39m40s ±10s, δ = 32° ±0.4° on March 4, 2005 and the other one "WJN J0645+3200" appeared at α=06h45m25s ± 10s, δ = 32° ±0.4° on March 24, 2005DBoth exhibited flux densities in excess of 1 Jy. The burst duration was within two days. There are few examples of radio transients outside the Galactic plane. Therefore, these are very important observations. We have already reported on four radio transients with features that looks like the two transients detected this time. The duration of five transients is within two days, and one transient is within three days. Four transients of six transients were detected at a high galactic latitude of b>30°. Counterparts of six WJN Transients were included X-ray sources in four events, and had a consistency of 66%. The consistency of γ-ray, PGC Galaxy, NVSS and FIRST source was concentrated at about 50%. We were not able to find a special feature in the counterpart The distribution was verified by making a logN-logS plot using those data and the newly detected data. As a result, the distribution of the radio transients that we observed might have an isotropic distribution not dependent on Galactic longitude and Galactic latitude. We cannot yet clarify these two radio transients, because their features are different from any radio burst observed in the past.

  5. Diversity and Distribution Patterns in High Southern Latitude Sponges

    PubMed Central

    Downey, Rachel V.; Griffiths, Huw J.; Linse, Katrin; Janussen, Dorte

    2012-01-01

    Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ∼43%, with a higher level for the class Hexactinellida (68%). Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent connectivity. PMID

  6. Trends, spectral characteristics, and rainfall relationships of low-latitude sea surface temperatures at different longitudes

    NASA Astrophysics Data System (ADS)

    Kane, R. P.

    2000-01-01

    The sea surface temperature (SST) data for low latitudes in the Pacific, Atlantic, and Indian Oceans for 1950-1996 (47 years) showed different seasonal variation patterns at different longitudes. When the seasonal patterns were subtracted from the monthly values, the deseasoned residuals showed considerable anomalies (interannual variability). In the Pacific the main features were the El Niño events. In the Atlantic, North and South Atlantic SST showed dissimilar anomalies, and these did not have any fixed lag or lead relationships with the Pacific events. The same was true for the low-latitude Indian Ocean SST. The correlation of Pacific SST with Atlantic or Indian Oceans' SST was less than ˜0.65, yielding a common variance (square of the correlation) of less than ˜40%. Thus, whereas SST anomalies might have some common origin, the manifestation of SST anomalies at different longitudes was erratic, with no preference for any longitude to start with, nor any definite sequence of occurrence in the Pacific relative to the Atlantic or Indian Oceans. A spectral analysis showed that all regions had quasi-biennial, quasi-triennial, and higher periodicities, but the exact values of these periodicities differed significantly at different longitudes. All parameters had long-term trends. These were mostly nonuniform, almost negligible in the first half (1950-1973) and mostly upward in the second half (1973-1996), indicating warming in recent decades, which is also reflected in decreases in snow cover area in the Northern Hemisphere. Rainfalls in various regions are considerably influenced by local SST regimes. For northeast Brazil, Atlantic SST influence is overpowering and often operates independently of the Pacific SST (El Niños). Hence the emphasis given in mass media (press, radio, and television) to the role of El Niño events only in influencing the rainfalls may turn out to be misleading, as seems to have happened for the 1997 El Niño. This El Niño started in

  7. Low- and mid-latitude ionospheric electric fields during the January 1984 GISMOS campaign

    NASA Technical Reports Server (NTRS)

    Fejer, B. G.; Kelley, M. C.; Senior, C.; De La Beaujardiere, O.; Lepping, R.

    1990-01-01

    The electrical coupling between the high-, middle-, and low-latitude ionospheres during January 17-19, 1984 is examined, using interplanetary and high-latitude magnetic field data together with F region plasma drift measurements from the EISCAT, Sondre Stromfjord, Millstone Hill, Saint-Santin, Arecibo, and Jicamarca incoherent scatter radars. The penetration both the zonal and meridional electric field components of high-latitude origin into the low-latitude and the equatorial ionospheres are studied. The observations in the postmidnight sector are used to compare the longitudinal variations of the zonal perturbation electric field with predictions made from global convection models. The results show that the meridional electric field perturbations are considerably more attenuated with decreasing latitude than the zonal fluctuations. It is concluded that variations in the meridional electric field at low latitudes are largely due to dynamo effects.

  8. Multi-spacecraft observations of heliographic latitude-longitude structure in the solar wind

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.; Smith, E. J.

    1981-01-01

    The heliographic latitude-longitude structure of high speed solar winds observed prior to the maximum of sunspot cycle 20 is investigated by multi-spacecraft comparisons. It is shown that differences in solar wind structures are due to two different kinds of spatial structures. One structure is found to be consistent with the simultaneous existence of a single, broad stream at latitudes above 7 deg N and a series of narrow streams at lower latitudes, while the other is consistent with the existence of a latitudinally sloping stream boundary near the solar equator. For latitude separations less than 3.5 deg, cross-correlations of Explorer-Mariner velocities show only previously reported systematic increases in velocity with latitude, and for latitude separations from 3.5 to 6.2 deg, differences in high speed streams shift in longitude and/or amplitude are also identified on a timescale of one solar rotation.

  9. Ulysses observations of energetic ions over the south pole of the sun

    SciTech Connect

    Sanderson, T. R.; Bothmer, V.; Marsden, R. G.; Trattner, K. J.; Wenzel, K.-P.; Balogh, A.; Forsyth, R. J.; Goldstein, B. E.

    1996-07-20

    We present here observations of energetic ions during the following phases of the Ulysses prime mission: the first south polar pass, the low-latitude pass and part of the first north polar pass. Peaks are observed in the energetic ion intensity which recur either once per solar rotation during the ascent to high southern latitudes, or twice per rotation during the low latitude pass. The intensity of the peaks also rises with each major solar event, decaying slowly thereafter over a period of several rotations. The peaks are observed up to {approx}70 deg. during the ascent to high southern latitudes, but not seen again until around 45 deg. during the descent, this asymmetry most likely being caused by a decrease in the number of solar events.

  10. Ulysses at 50{degrees} south: Constant immersion in the high-speed solar wind

    SciTech Connect

    Phillips, J.L.; Bame, S.J.; Gosling, J.T.; McComas, D.J.; Balogh, A.; Goldstein, B.E.; Neugebauer, M.; Hoeksema, J.T.; Sheeley, N.R. Jr.; Wang, Y.M.

    1994-06-15

    The authors present speed observations from the Ulysses solar wind plasma experiment through 50{degrees} south latitude. The pronounced speed modulation arising from solar rotation and the tilt of the heliomagnetic current sheet has nearly disappeared. Ulysses is now observing wind speeds in the 700 to 800 km s{sup {minus}1} range, with a magnetic polarity indicating an origin in the large south polar coronal hole. The strong compressions, rarefactions, and shock waves previously seen have weakened or disappeared. Occasional coronal mass ejections characterized by low plasma density caused by radial expansion have been observed. The coronal configuration was simple and stable in 1993, indicating that the observed solar wind changes were caused by increasing latitude support previous findings. A decrease in peak speed southward of 40{degrees} latitude may indicate that the fastest solar wind comes from the equatorial extensions of the polar coronal holes. 16 refs., 4 figs.

  11. South Polarscape

    NASA Technical Reports Server (NTRS)

    2006-01-01

    25 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a spectacular summertime view of a portion of the south polar residual cap. Large, semi-continuous mesas are separated by circular and other oddly-shaped depressions. These features are all formed in frozen carbon dioxide; the scarps which bound the mesas and pit walls retreat at a rate of about 3 meters (a little more than 3 yards) each martian southern summer.

    Location near: 87.7oS, 357.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  12. ROTATION RATE DIFFERENCES OF POSITIVE AND NEGATIVE SOLAR MAGNETIC FIELDS BETWEEN ±60° LATITUDES

    SciTech Connect

    Shi, X. J.; Xie, J. L.

    2015-04-15

    Based on a cross-correlation analysis of the Carrington synoptic maps of solar photospheric magnetic fields from Carrington Rotations Nos. 1625 to 2135 (from 1975 February to 2013 March), the sidereal rotation rates of the positive and negative magnetic fields in the latitude range of ±60° are obtained, and the rotation rate differences between them are investigated. The time–latitude distribution of the rate differences is shown, which looks like a butterfly diagram at the low and middle latitudes. For comparison, the time–latitude distribution of the longitudinally averaged photospheric magnetic fields is shown. We conclude that the magnetic fields having the same polarity as the leading sunspots at a given hemisphere rotate faster than those exhibiting the opposite polarity at low and middle latitudes. However, at higher latitudes, the magnetic fields having the same polarity as the leading sunspots at a given hemisphere do not always rotate faster than those with the opposite polarity. Furthermore, the relationship between the rotation rate differences and solar magnetic fields is studied through a correlation analysis. Our result shows that the correlation coefficients between them reach maximum values at 13° (14°) latitude in the northern (southern) hemisphere, and change sign at 28° latitude in both hemispheres, then reach their minimum values at 58° (53°) latitude in the northern (southern) hemisphere.

  13. Effects of the intense geomagnetic storm of September-October 2012 on the equatorial, low- and mid-latitude F region in the American and African sector during the unusual 24th solar cycle

    NASA Astrophysics Data System (ADS)

    de Jesus, R.; Fagundes, P. R.; Coster, A.; Bolaji, O. S.; Sobral, J. H. A.; Batista, I. S.; de Abreu, A. J.; Venkatesh, K.; Gende, M.; Abalde, J. R.; Sumod, S. G.

    2016-02-01

    The main purpose of this paper is to investigate the response of the ionospheric F layer in the American and African sectors during the intense geomagnetic storm which occurred on 30 September-01 October 2012. In this work, we used observations from a chain of 20 GPS stations in the equatorial, low- and mid-latitude regions in the American and African sectors. Also, in this study ionospheric sounding data obtained during 29th September to 2nd October, 2012 at Jicamarca (JIC), Peru, São Luis (SL), Fortaleza (FZ), Brazil, and Port Stanley (PST), are presented. On the night of 30 September-01 October, in the main and recovery phase, the h´F variations showed an unusual uplifting of the F region at equatorial (JIC, SL and FZ) and mid- (PST) latitude stations related with the propagations of traveling ionospheric disturbances (TIDs) generated by Joule heating at auroral regions. On 30 September, the VTEC variations and foF2 observations at mid-latitude stations (American sector) showed a long-duration positive ionospheric storm (over 6 h of enhancement) associated with large-scale wind circulations and equatorward neutral winds. Also, on 01 October, a long-duration positive ionospheric storm was observed at equatorial, low- and mid- latitude stations in the African sector, related with the large-scale wind circulations and equatorward neutral winds. On 01 and 02 October, positive ionospheric storms were observed at equatorial, low- and mid-latitude stations in the American sector, possibly associated with the TIDs and an equatorward neutral wind. Also, on 01 October negative ionospheric storms were observed at equatorial, low- and mid-latitude regions in the American sector, probably associated with the changes in the O/N2 ratio. On the night of 30 September-01 October, ionospheric plasma bubbles were observed at equatorial, low- and mid- latitude stations in the South American sector, possibly associated with the occurrence of geomagnetic storm.

  14. Variability of Sea Surface Temperature Response to Tropical Cyclones along the NEC Bifurcation Latitude

    NASA Astrophysics Data System (ADS)

    Fernandez, I.; Villanoy, C. L.

    2013-12-01

    The east of the Philippines serves as an entry point to an annual average of 20 tropical cyclones. The ocean is dynamic where the North Equatorial Current (NEC) bifurcates into the Kurushio Current to the north and Mindanao Current to the south. The displacement and intensity of NEC bifurcation in the region varies seasonally and interannually driven by local monsoons and ENSO. The variability of the NEC bifurcation latitude may alter the origins of the Kuroshio and modify the sea surface temperature field, which can alter the strength of the typhoons and upper ocean response. This paper aims to characterize the variability of Sea Surface Temperature (SST) Response to Tropical Cyclones along with the NEC Bifurcation latitude using daily merged product of the TRMM Microwave Imager (TMI) and Advanced Microwave Scanning Radiometer (AMSR-E), Sea Surface Height (SSH) and SSH Anomaly (SSHA) from AVISO and background climatological D26 (depth of 26 °C) and T100 (depth integrated temperature up to 100 meters) from ARGO profiles and CTD data from WOA09 from 2003 to 2012. SSH measurements from this period were used as a proxy for determining the bifurcation latitude (YB). Characteristics of the meridional distribution from 0° to 30°N of D26 is homogenous along 10-15°N. Monthly mean D26 along 10-15°N, 125-145°E shows high correlation with YB . Variations of the D26 and T100 showed deepening and warming along with YB. Two regions were derived from meridional distribution of T100 namely BSouth (<15°N) where background climatological condition is warm all throughout the year with deep D26 and BNorth (>15°N), where background climatological condition is shallow (D26) and varies seasonally. These regions where used to compare variability with respect to SST recovery time and the SST maximum change (ΔSSTmax) along with other factors such as TCs translation speed (TS) and intensity based on the Saffir-Simpson Hurricane Scale. Results showed that in both regions SST Recovery

  15. Evidence for slow periglacial mass wasting in the southern mid-latitudes, Mars.

    NASA Astrophysics Data System (ADS)

    Johnsson, Andreas; Reiss, Dennis; Conway, Susan; Hauber, Ernst; Hiesinger, Harald

    2015-04-01

    Solifluction is a common mass-wasting process in permafrost regions on Earth. The main solifluction processes include frost creep, and/or gelifluction [Matsuoka, 2001]. On Earth solifluction lobes are strong indicators of past or present freeze-thaw activity and represent a potentially useful source of paleoclimatic information [Åkerman, 2005]. Previously, well-preserved small-scale lobes lobes have been reported in the northern mid-and-high latitudes on Mars by several authors [Balme et al., 2013 and references therein]. Based on morphology and integrated landform analysis [Gallagher et al., 2011; Gallagher and Balme, 2011], morphometry and Earth-analogues [Johnsson et al., 2012] the proposed mechanism is by solifluction. By implication, this suggests active-layer formation and consequently transient liquid water close to the surface at repeated times in the recent climate history on Mars, which is contrary to modeling [Kreslavsky et al., 2008]. In this study we extend our search to the latitude band 40°S and 80°S on Mars. Like the northern counterparts, the observed small-scale lobes show striking similarities to solifluction lobes on Earth and they are typically located in a context associated with thermal contraction polygons and gullies. The small-scale lobes are tens to hundreds of meters wide with well-defined lobe fronts (risers). The risers are in the order of decimeters to a few meters (<5m) high. Individual lobes overlap or occur as sheet-like landforms. They are restricted to crater walls and hillslopes and are not confined to valley topography. They lack attributes typically associated with creep/deformation of ice or ice-rich debris such as crevasses, compression ridges and furrows. Hence they are morphologically different from glacial landforms such as Viscous Flow Features [Milliken et al., 2003] and Lobate Debris Aprons [e.g. Mangold 2003]. Previously, small-scale lobes have only been observed at a few sites in the south using Mars Orbiter

  16. Possible influence of western North Pacific monsoon on TC activity in mid-latitudes of East Asia

    NASA Astrophysics Data System (ADS)

    Choi, Ki-Seon; Cha, Yumi; Kim, Hae-Dong; Kang, Sung-Dae

    2016-01-01

    This study analyzed the correlation between tropical cyclone (TC) frequency and the Western North Pacific monsoon index (WNPMI), which have both been influential in East Asia's mid-latitude regions during the summer season over the past 37 years (1977-2013). A high positive correlation existed between these two variables, which was not reduced even if El Niño-Southern Oscillation (ENSO) years were excluded. To determine the cause of this positive correlation, the highest (positive WNPMI phase) and lowest WNPMIs (negative WNPMI phase) during a nine-year period were selected to analyze the mean difference between them, excluding ENSO years. In the positive WNPMI phase, TCs were mainly generated in the eastern seas of the tropical and subtropical western North Pacific, passing through the East China Sea and moving northward toward Korea and Japan. In the negative phase, TCs were mainly generated in the western seas of the tropical and subtropical western North Pacific, passing through the South China Sea and moving westward toward China's southern regions. Therefore, TC intensity in the positive phase was stronger due to the acquisition of sufficient energy from the sea while moving a long distance up to East Asia's mid-latitude. Additionally, TCs occurred more in the positive phase. Regarding the difference of the two phases between the 850 and 500-hPa streamlines, anomalous cyclones were strengthened in the tropical and subtropical western North Pacific, whereas anomalous anticyclones were strengthened in East Asia's mid-latitude regions. Due to these two anomalous pressure systems, anomalous southeasterlies developed in East Asia's mid-latitude regions, which played a role in the anomalous steering flows that moved TCs into these regions. Furthermore, due to the anomalous cyclones that developed in the tropical and subtropical western North Pacific, more TCs could be generated in the positive phase. Both the lower and upper tropospheric layers had warm anomalies

  17. High latitude hydrological changes during the Eocene Thermal Maximum 2

    NASA Astrophysics Data System (ADS)

    Krishnan, Srinath; Pagani, Mark; Huber, Matthew; Sluijs, Appy

    2014-10-01

    -enriched signals at the base of the event, including (1) intense local drying and cooling leading to evaporative 2H-enrichment; (2) changes in frequency/intensity of storm events and its impact on high latitude amount effects; and (3) changes in low-latitude temperatures. Evidence for hydrological shifts at the base of both hyperthermals suggests that hydrological change or the factors promoting hydrological change played a role in triggering the release of greenhouse gases. Generation of similar high-resolution isotopic- and temperature records at other latitudes is crucial for understanding the causal links between temperature and hydrological changes and may help constrain the source and mechanism of carbon release that triggered the early Eocene hyperthermals.

  18. Trends in column ozone based on TOMS data - Dependence on month, latitude, and longitude

    NASA Technical Reports Server (NTRS)

    Niu, Xufeng; Frederick, John E.; Stein, Michael L.; Tiao, George C.

    1992-01-01

    On the basis of the TOMS satellite column ozone data in latitudes 70 deg S-70 deg N from November 1978 to May 1990, a statistical model is used to estimate the trends in ozone as a function of latitude, longitude, and month. The trends in the TOMS ozone data are highly seasonal and dependent on location. Near the equator, the estimated monthly trends are not significantly different from zero. For high latitudes, most of the estimated monthly trends are negative. In January, February, and March, there are some positive trend estimates in the western hemisphere around latitude 60 deg N. The most negative trends for these three months also appear in the high latitudes of the northern hemisphere. Starting in June, more negative trends appear in the latitudes 50 deg S-70 deg S than the trends in the rest of the world considered. A large depletion develops during the spring time (September to November) in the southern high-latitude region, and the area of peak ozone decline is moving eastward during the period. The largest negative trends (about -29 percent per decade) for the area considered in this study appear in October around the latitude 70 deg S and longitudes 20 deg W-100 deg W region. For the northern hemisphere, the year-round trend estimates for latitudes 30 deg N-70 deg N range from -0.96 percent to -7.43 percent per decade. In the latitudes 30 deg N-50 deg N, the winter trend estimates are more negative than those for the summer and the fall. However, this pattern did not hold for latitudes 50 deg N-70 deg N.

  19. Exposed Ice in the Northern Mid-Latitudes of Mars

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2007-01-01

    Ice-Rich Layer: Polygonal features with dimensions of approximately 100 meters, bounded by cracks, are commonly observed on the martian northern plains. These features are generally attributed to thermal cracking of ice-rich sediments, in direct analogy to polygons in terrestrial polar regions. We mapped polygons in the northern mid-latitudes (30 to 65 N) using MOC and HiRISE images. Polygons are scattered across the northern plains, with a particular concentration in western Utopia Planitia. This region largely overlaps the Late Amazonian Astapus Colles unit, characterized by polygonal terrain and nested pits consistent with periglacial and thermokarst origins. Bright and Dark Polygonal Cracks: An examination of all MOC images (1997 through 2003) covering the study area demonstrated that, at latitudes of 55 to 65 N, most of the imaged polygons show bright bounding cracks. We interpret these bright cracks as exposed ice. Between 40 and 55 N, most of the imaged polygons show dark bounding cracks. These are interpreted as polygons from which the exposed ice has been removed by sublimation. The long-term stability limit for exposed ice, even in deep cracks, apparently lies near 55 N. Bright and Dark Spots: Many HiRISE and MOC frames showing polygons in the northern plains also show small numbers of bright and dark spots, particularly in western Utopia Planitia. Many of the spots are closely associated with collapse features suggestive of thermokarst. The spots range from tens to approximately 100 meters in diameter. The bright spots are interpreted as exposed ice, due to their prevalence on terrain mapped as ice rich. The dark spots are interpreted as former bright spots, which have darkened as the exposed ice is lost by sublimation. The bright spots may be the martian equivalents of pingos, ice-cored mounds found in periglacial regions on Earth. Terrestrial pingos from which the ice core has melted often collapse to form depressions similar to the martian dark spots

  20. Atmosphere-Ionosphere coupling -manifestations in the low latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Pant, Tarun; Sumod, S. G.; Vineeth, C.; Thampi, Smitha; Jose, Lijo; Kishore Kumar, K.; Sreeja, V.; Manju, G.; Ravindran, Sudha; Sridharan, R.; Niranjan, K.; Dabas, R. S.; Das, Rupesh; Alex, S.; Tiwari, Diwakar

    As is known, the extent of the impact of the geomagnetic storms on the vertical coupling of the MLTI regions, especially over low latitudes, is not very well understood. To investigate this aspect of the MLTI coupling, a multi-instrument campaign was conducted during March-April 2006, a period when a few moderate geomagnetic storms occurred, in India. During the campaign period, a Multiwavelength dayglow Photometer (MWDPM) was operated along with ionosonde, magnetometer and a meteor radar from Trivandrum (8.5oN, 76.5oE, 0.5oN diplat.), the dip equatorial station in India. The MWDPM provided the optically estimated daytime mesopause temperature while the meteor radar measured the wind and temperature in the lower thermosphere-upper mesosphere region. The MWDPM also provided the near simultaneous measurements on the thermospheric dayglow (O1D 630 nm). GPS satellite based measurements of total electron content (TEC) over a number of locations in India provided the latitudinal distribution of ionization. The new and important observations made during this campaign are the following: (a) The optically measured daytime mesopause temperature shows a prominent decrease in the afternoon hours during the initial and main phases of the geomagnetic storms. This observation, perhaps, is new and unique. (b) Quasi 2 and 5 day oscillations appear to be modulating the mesopause temperature indicating the presence of planetary waves therein. The wind and temperature variability in the lower thermosphere, obtained using the collocated radar further corroborate with these optical measurements and establish the origin of these waves to be in the lower atmosphere. (c) The Equatorial Electrojet (EEJ) induced magnetic field on the ground also exhibit similar variability indicating the presence of these planetary scale oscillations, also in the ionospheric dynamo region. (d) The simultaneously measured thermospheric dayglow (O1D 630 nm) also shows an intensification of a quasi 2-and 5-day

  1. Paleoclimate records at high latitude in Arctic during the Paleogene

    NASA Astrophysics Data System (ADS)

    Salpin, Marie; Schnyder, Johann; Baudin, François; Suan, Guillaume; Labrousse, Loïc; Popescu, Speranta; Suc, Jean-Pierre

    2015-04-01

    Paleoclimate records at high latitude in Arctic during the Paleogene SALPIN Marie1,2, SCHNYDER Johann1,2, BAUDIN François1,2, SUAN Guillaume3, LABROUSSE Loïc1,2, POPESCU Speranta4, SUC Jean-Pierre1,4 1: Sorbonne Universités, UPMC Univ Paris 06, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), F 75005, Paris, France 2: CNRS, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), F 75005 Paris, France 3: UCB Lyon 1, UMR 5276, LGLTPE, 69622 Villeurbanne Cedex, France 4: GEOBIOSTRATDATA.CONSULTING, 385 Route du Mas Rillier 69140 Rillieux la Pape, France The Paleogene is a period of important variations of the Earth climate system either in warming or cooling. The climatic optima of the Paleogene have been recognized both in continental and marine environment. This study focus on high latitudes of the northern hemisphere, in the Arctic Basin. The basin has had an influence on the Cenozoic global climate change according to its polar position. Is there a specific behaviour of the Arctic Basin with respect to global climatic stimuli? Are there possible mechanisms of coupling/decoupling of its dynamics with respect to the global ocean? To answer these questions a unique collection of sedimentary series of Paleogene age interval has been assembled from the Laurentian margin in Northern Yukon (Canada) and from the Siberian margin (New Siberian Islands). Selected continental successions of Paleocene-Eocene age were used to study the response of the Arctic system to known global events, e.g. the climatic optima of the Paleogene (the so-called PETM, ETM2 or the Azolla events). Two sections of Paleocene-Eocene age were sampled near the Mackenzie delta, the so-called Coal Mine (CoMi) and Caribou Hills (CaH) sections. The aim of the study is to precise the climatic fluctuations and to characterise the source rock potential of the basin, eventually linked to the warming events. This study is based on data of multi-proxy analyses: mineralogy on bulk and clay

  2. Two strong radio bursts at high and medium Galactic latitude

    NASA Astrophysics Data System (ADS)

    Kida, S.; Niinuma, K.; Suzuki, S.; Tanaka, T.; Nakanura, R.; Takefuji, K.; Matsumura, N.; Kuniyoshi, M.; Daishido, T.

    2008-10-01

    The Nasu Observatory, which is composed of eight 20 m elements, was constructed for observing radio transients over a wide field at 1400 MHz. We report on two radio transients detected in consecutive drift scanning observations at declination 32° over a period of about two months. One of the two transients, WJN J1039+3200, appeared at α=103940±10, δ=32°±0.4° on March 4, 2005, and the other one, WJN J0645+3200, appeared at α=064525±10, δ=32°±0.4° on March 24, 2005. Both exhibited flux densities in excess of 1 Jy, and the burst durations were up to two days. Since there are few examples of radio transients outside the Galactic plane, these are very important observations. We have previously reported on four radio transients with features that look like the two transients detected this time. Of these six WJN transients in total, five had a duration of up to two days, and one up to three days. Four of the transients were detected at high Galactic latitude of b > 30°. Counterparts of the six WJN transients included X-ray sources in four events and had a consistency of 66%. The consistency of γ-ray, PGC Galaxy, NVSS, and FIRST sources was concentrated at about 50%. We were not able to find any special features in the counterparts. The distribution was verified by making a log N-log S plot using data for the four previously detected transients and the new ones. As a result, the distribution of the radio transients that we observed might have an isotropic distribution not dependent on Galactic longitude and Galactic latitude. The detection probability was calculated based on the assumption of an isotropic distribution. The 2 σ upper probability limit for detection of transients of 1000 mJy or more is 0.0049 [deg -2 yr -1]. We cannot yet identify these two radio transients, because their features are different from any radio bursts observed in the past.

  3. Vitamin D in pregnancy at high latitude in Scotland.

    PubMed

    Haggarty, Paul; Campbell, Doris M; Knox, Susan; Horgan, Graham W; Hoad, Gwen; Boulton, Emma; McNeill, Geraldine; Wallace, Alan M

    2013-03-14

    The aims of the present study were to determine compliance with current advice on vitamin D and to assess the influence of season, dietary intake, supplement use and deprivation on vitamin D status in pregnant mothers and newborns in the north of Scotland where sunlight exposure is low. Pregnant women (n 1205) and their singleton newborns were studied in the Aberdeen Maternity Hospital (latitude 57°N) between 2000 and 2006. Plasma 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 were measured at 19 weeks of gestation in mothers and at delivery in newborns. During pregnancy, 21·0 (95 % CI 18·5, 23·5) % of women took vitamin D supplements. The median intake was 5 μg/d and only 0·6 (95 % CI 0·1, 1·0) % took the recommended 10 μg/d. Supplement use, adjusted for season, dietary intake and deprivation, significantly increased maternal 25-hydroxyvitamin D (25(OH)D) by 10·5 (95 % CI 5·7, 15·2) nmol/l (P< 0·001); however, there was no significant effect on cord 25(OH)D (1·4 (95 % CI - 1·8, 4·5) nmol/l). The biggest influence on both maternal and cord 25(OH)D was season of birth (P< 0·001). Compared with the least deprived women (top three deciles), the most deprived pregnancies (bottom three deciles) were characterised by a significantly lower seasonally adjusted 25(OH)D ( - 11·6 (95 % CI - 7·5, - 15·7) nmol/l in the mother and - 5·8 (95 % CI - 2·3, - 9·4) nmol/l in the cord), and a lower level of supplement use (10 (95 % CI 4, 17) v. 23 (95 % CI 20, 26) %). More should be done to promote vitamin D supplement use in pregnancy but the critical importance of endogenous vitamin D synthesis, and known adaptations of fat metabolism specific to pregnancy, suggest that safe sun advice may be a useful additional strategy, even at high latitude.

  4. Spatial and temporal variation in type 1 diabetes incidence in Western Australia from 1991 to 2010: increased risk at higher latitudes and over time.

    PubMed

    Ball, Stephen J; Haynes, Aveni; Jacoby, Peter; Pereira, Gavin; Miller, Laura J; Bower, Carol; Davis, Elizabeth A

    2014-07-01

    This study analysed spatial and temporal variation in childhood incidence of type 1 diabetes mellitus (T1DM) among Western Australia׳s 36 Health Districts from 1991 to 2010. There was a strong latitudinal gradient of 3.5% (95% CI, 0.2-7.2) increased risk of T1DM per degree south of the Equator, as averaged across the range 15-35° south. This pattern is consistent with the hypothesis of vitamin D deficiency at higher latitudes. In addition there was a 2.4% (95% CI, 1.3-3.6) average increase in T1DM incidence per year. These effects could not be explained by population density, socioeconomic status, remoteness or ethnicity.

  5. How the effects of winds and electric fields in F2-layer storms vary with latitude and longitude - A theoretical study

    NASA Technical Reports Server (NTRS)

    Mendillo, M.; He, X.-Q.; Rishbeth, H.

    1992-01-01

    The effects of thermospheric winds and electric fields on the ionospheric F2-layer are controlled by the geometry of the magnetic field, and so vary with latitude and longitude. A simple model of the daytime F2-layer is adopted and the effects at midlatitudes (25-65 deg geographic) of three processes that accompany geomagnetic storms: (1) thermospheric changes due to auroral heating; (2) equatorward winds that tend to cancel the quiet-day poleward winds; and (3) the penetration of magnetospheric electric fields are studied. At +/- 65 deg, the effects of heating and electric fields are strongest in the longitudes toward which the geomagnetic dipole is tilted, i.e., the North American and the South Indian Ocean sectors. Because of the proximity of the geomagnetic equator to the East Asian and South American sectors, the reverse is true at +/- 25 deg.

  6. [South] Yemen.

    PubMed

    1989-12-01

    Yemen has an area of 112,000 square miles, the terrain is mountainous in the interior, and has a flat and sandy coast. The climate is extremely hot with little rainfall. 2.2 million is the population level with an annual growth rate of 2.6%. The ethnic background is Arab, the religion is Islam and the language is Arabic. 50 years is the average life expectancy and the infant mortality rate is 142/1000. The labor force is 42% agriculture, fisheries, industry and commerce 31%, and services 27%. A republic formed in 1967, the government has a constitution approved in 1978. They have 1 party, the Yemeni Socialist Party with a executive presidium, a supreme people's council and a federal high court. Natural resources include oil and fish, and agricultural products are cotton, hides, skins, and coffee. In 1962 the Federation of South Arabia was formed and a treaty was signed in 1959 for independence by 1968. There was much turmoil from 1967 until 1986 when Haydar Bakr Al-Attus gained power, and there are still strong internal rivalries. The economy has been concentrated in the city of Aden, and with the loss of tourist trade in 1967, and closing of the British base, it has declined by more than 20% by 1968. Attempts are being made to build roads, fisheries, villages, a power plant, and agriculture and irrigation projects.

  7. Perspective View of Venus (Center Latitude 15 Degrees N., Center Longitude 77 Degrees E.)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This perspective view of Venus, generated by computer from Magellan data and color-coded with emissivity, shows part of the lowlands to the north of Ovda Regio. The prominent topographic feature is a shield volcano, one of many distinct types of volcanic features on Venus. The volcano, with its partially breached summit caldera and central dome, bears a superficial resemblance to Mount St. Helens in this strongly vertically exaggerated view. In reality, it is roughly 700 km across, comparable to Olympus Mons on Mars, although it is only 2 km high. The extremely low, broad shape of the volcano probably results from the eruption of highly fluid lava such as basalt, combined with Venus' high surface temperature. Individual lava flows can be seen on the righthand side of the volcano, which has a slope of less than half a degree. The rugged area at the extreme right is part of a fracture zone that appears to extend under the volcano and may have provided a path by which lava was erupted. The cone-shaped hill in the foreground is an artifact caused by a single erroneous altimeter measurement; its size gives an indication of the horizontal resolution of the altimetry map. Magellan MIDR quadrangle* containing this image: C1-15N077. Image resolution (m): 225. Size of region shown (E-W x N-S, in km): 851 x 878. Range of emissivities from violet to red: 0.74 -- 0.84. Vertical exaggeration: 100. Azimuth of viewpoint (deg clockwise from East): 135. Elevation of viewpoint (km): 300. *Quadrangle name indicates approximate center latitude (N=north, S=south) and center longitude (East).

  8. Perspective View of Venus (Center Latitude 45 Degrees N., Center Longitude 11 Degrees E.)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This perspective view of Venus, generated by computer from Magellan data and color-coded with emissivity, shows part of the lowland plains in Sedna Planitia. Circular depressions with associated fracture patterns called 'coronae' are apparently unique to the lowlands of Venus, and tend to occur in linear clusters along the planet's major tectonic belts. Coronae differ greatly in size and detailed morphology: the central depression may or may not lie below the surrounding plains, and may or may not be surrounded by a raised rim or a moat outside the rim. The corona shown here is relatively small (100 km in diameter and 1 km deep) and is of the subtype known as an 'arachnoid' because of the spider-like configuration of concentric (body) and radial (legs) fractures. Coronae are thought to be caused by localized 'hot spot' magmatic activity in Venus' subsurface. Intrusion of magma into the crust first pushes up the surface, after which cooling and contraction create the central depression and generate a pattern of concentric fractures. In some cases, lava may be extruded onto the surface. The fractured ridge at the left is classified as a 'nova' or 'stellate fracture center' and is believed to represent an early phase of corona formation, in which subsidence due to cooling has not yet created the central depression, and the fracture pattern is still entirely radial. Magellan MIDR quadrangle* containing this image: C1-45N011. Image resolution (m): 225. Size of region shown (E-W x N-S, in km): 439 x 474. Range of emissivities from violet to red: 0.82 -- 0.88. Vertical exaggeration: 100. Azimuth of viewpoint (deg clockwise from East): 150. Elevation of viewpoint (km): 600. *Quadrangle name indicates approximate center latitude (N=north, S=south) and center longitude (East).

  9. Perspective View of Venus (Center Latitude 15 Degrees S., Center Longitude 129 Degrees E.)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This perspective view of Venus, generated by computer from Magellan data and color-coded with emissivity, shows the boundary between the lowland plains and characteristic Venusian highland terrain in Ovda Regio, the western part of the great equatorial highland called Aphrodite Terra. For a view of the simpler lowland-highland boundary to the north, see PIA00310. The view is oblique to the southern boundary of Ovda. Whereas the lowlands to the right are made up of overlapping, relatively dark and smooth lava flows decorated with a system of parallel fractures, the highlands consist mainly of 'tessera terrain' with a complex pattern of intersecting sets of subparallel fractures and ridges. Notable here is the deep rift valley that transects the highlands in the center of the image. Such canyons are common where Venus' global network of tectonic belts traverses the highlands. A small 'island' of tessera terrain in the background shares the low emissivity (indicated by the blue color) of the larger surrounding tesserae. The larger, lower 'island' in the foreground has a much higher emissivity (shown in red), either because it lies at a slightly lower elevation or because of its age and origin. It appears to be a corona PIA00307. To the east of the region shown, the rift system forms a chain of moats linking numerous large and prominent coronae. Magellan MIDR quadrangle* containing this image: C1-15S129. Image resolution (m): 225. Size of region shown (E-W x N-S, in km): 1125 x 1125. Range of emissivities from violet to red: 0.50 - - 0.89. Vertical exaggeration: 20. Azimuth of viewpoint (deg clockwise from East): 150. Elevation of viewpoint (km): 1200. *Quadrangle name indicates approximate center latitude (N=north, S=south) and center longitude (East).

  10. Comparison of auroral latitude convection to central polar cap convection. (Invited)

    NASA Astrophysics Data System (ADS)

    Bristow, W. A.; Amata, E.

    2013-12-01

    The SuperDARN radar at McMurdo station has been providing convection observations in the central polar cap since January 2010. The Antarctic magnetic pole lies in the center of the radar field of view at about 1000 km range, which is optimum for convection observations. A new pair of SuperDARN radars was constructed in the Antarctic summer of 2012/2013, which add highly complimentary fields of view. The radars, one located at the Italian station at Dome-C, and one located at the US South Pole Station, are directed into a region directly equatorward of the McMurdo field of view. The radars came on line in late January 2013 and are producing excellent convection observations. This paper presents initial results combining the three radar's convection observations. Intervals when the IMF clock angle was between 135 and 225 for periods of more than an hour were selected for study. Just under 50 hours of observations met this criteria since the radars began operation. Convection vectors were formed using the standard SuperDARN algorithm [Ruohoniemi and Baker, 1998] and the auroral-zone flows were compared to those in the central polar cap. Central polar cap flows are typically spatially uniform though highly variable in time, even though the lower latitude observations were spatially structured. The central polar cap average flow velocity is less than 500 m/s, though it often exceeds 1000 m/s. Conditions that lead to the high-speed flow are presented. In addition, correlation with the IMF and solar wind are presented. At times the correlation exceeds 80% while at others it is near zero.

  11. Ionospheric response of equatorial and low latitude F-region during the intense geomagnetic storm on 24-25 August 2005

    NASA Astrophysics Data System (ADS)

    de Jesus, R.; Sahai, Y.; Guarnieri, F. L.; Fagundes, P. R.; de Abreu, A. J.; Bittencourt, J. A.; Nagatsuma, T.; Huang, C.-S.; Lan, H. T.; Pillat, V. G.

    2012-02-01

    In this investigation, we present and discuss the response of the ionospheric F-region in the South American and East Asian sectors during an intense geomagnetic storm in August 2005. The geomagnetic storm studied reached a minimum Dst of -216 nT at 12:00 UT on 24 August. In this work ionospheric sounding data obtained of 24, 25, and 26 August 2005 at Palmas (PAL; 10.2° S, 48.2° W; dip latitude 6.6° S), São José dos Campos (SJC, 23.2° S, 45.9° W; dip latitude 17.6° S), Brazil, Ho Chi Minh City, (HCM; 10.5° N, 106.3° E; dip latitude 2.9° N), Vietnam, Okinawa (OKI; 26.3° N, 127.8° E; dip latitude 21.2° N), Japan, are presented. Also, the GPS observations obtained at different stations in the equatorial and low-latitude regions in the Brazilian sector are presented. On the night of 24-25 August 2005, the h‧F variations show traveling ionospheric disturbances associated with Joule heating in the auroral zone from SJC to PAL. The foF2 variations show a positive storm phase on the night of 24-25 August at PAL and SJC during the recovery phase. Also, the GPS-VTEC observations at several stations in the Brazilian sector show a fairly similar positive storm phase on 24 August. During the fast decrease of Dst (between 10:00 and 11:00 UT) on 24 August, there is a prompt penetration of electric field of magnetospheric origin that result in abrupt increase (˜12:00 UT) in foF2 at PAL, SJC (Brazil) and OKI (Japan) and in VTEC at IMPZ, BOMJ, PARA and SMAR (Brazil). OKI showed strong oscillations of the F-region on the night 24 August resulted to the propagation of traveling atmospheric disturbances (TADs) by Joule heating in the auroral region. These effects result a strong positive observed at OKI station. During the daytime on 25 August, in the recovery phase, the foF2 observations showed positive ionospheric storm at HCM station. Some differences in the latitudinal response of the F-region is also observed in the South American and East Asian sectors.

  12. Biosphere-atmosphere interactions in high-latitude regions

    NASA Astrophysics Data System (ADS)

    Teufel, B. S.; Sushama, L.

    2015-12-01

    The impact of interactive vegetation phenology on land-atmosphere interactions in high-latitude regions is assessed by comparing two pan-arctic simulations of the fifth generation Canadian Regional Climate Model (CRCM5) - one with interactive phenology and the other with prescribed phenology, both driven by ECMWF reanalysis data. Both simulations include soil organic matter and use a deep soil configuration for better representation of permafrost. Interactive phenology is represented in CRCM5 by means of the Canadian Terrestrial Ecosystem Model (CTEM), which is coupled to the Canadian Land Surface Scheme (CLASS). Previous offline simulations of CTEM coupled to CLASS, driven by reanalysis data, show that these models have significant skill in simulating carbon pools and fluxes, as well as permafrost extent and active layer thickness. The performance of the CRCM5 simulations is first assessed by comparing simulated fields, e.g. 2m temperature, precipitation, snow water equivalent, leaf area index, primary productivity, soil carbon and permafrost, to observation-based datasets. The impact of interactive phenology on the simulated land surface and climate is then assessed by focusing on the biophysical feedbacks. The differences in the representation of interannual variability are also analyzed in order to quantify the added value of interactive phenology.

  13. DISCOVERY OF AN APPARENT HIGH LATITUDE GALACTIC SUPERNOVA REMNANT

    SciTech Connect

    Fesen, Robert A.; Neustadt, Jack M. M.; Black, Christine S.; Koeppel, Ari H. D.

    2015-10-10

    Deep Hα images of a faint emission complex 4.°0 × 5.°5 in angular extent and located far off the Galactic plane at l = 70.°0, b = −21.°5 reveal numerous thin filaments suggestive of a supernova remnant’s (SNR’s) shock emission. Low dispersion optical spectra covering the wavelength range 4500–7500 Å show only Balmer line emissions for one filament while three others show a Balmer dominated spectrum along with weak [N i] 5198, 5200 Å, [O i] 6300, 6364 Å, [N ii] 6583 Å, [S ii] 6716, 6731 Å, and in one case [O iii] 5007 Å line emission. Many of the brighter Hα filaments are visible in near-UV GALEX images presumably due to C iii] 1909 Å line emission. ROSAT All Sky Survey images of this region show a faint crescent-shaped X-ray emission nebula coincident with the portion of the Hα nebulosity closest to the Galactic plane. The presence of long, thin Balmer dominated emission filaments with associated UV emission and coincident X-ray emission suggests this nebula is a high latitude Galactic SNR despite a lack of known associated nonthermal radio emission. Relative line intensities of the optical lines in some filaments differ from commonly observed [S ii]/Hα ≥ 0.4 radiative shocked filaments and typical Balmer filaments in SNRs. We discuss possible causes for the unusual optical SNR spectra.

  14. High-latitude circulation in giant planet magnetospheres

    NASA Astrophysics Data System (ADS)

    Southwood, D. J.; Chané, E.

    2016-06-01

    We follow-up the proposal by Cowley et al. (2004) that the plasma circulation in the magnetospheres of the giant planets is a combination of two cycles or circulation systems. The Vasyliunas cycle transports heavy material ionized deep within the magnetosphere eventually to loss in the magnetotail. The second cycle is driven by magnetic reconnection between the planetary and the solar wind magnetic fields (the Dungey cycle) and is found on flux tubes poleward of those of the Vasyliunas cycle. We examine features of the Dungey system, particularly what occurs out of the equatorial plane. The Dungey cycle requires reconnection on the dayside, and we suggest that at the giant planets the dayside reconnection occurs preferentially in the morning sector. Second, we suggest that most of the solar wind material that enters through reconnection on to open flux tubes on the dayside never gets trapped on closed field lines but makes less than one circuit of the planet and exits down tail. In its passage to the nightside, the streaming ex-solar wind material is accelerated centrifugally by the planetary rotation primarily along the field; thus, in the tail it will appear very like a planetary wind. The escaping wind will be found on the edges of the tail plasma sheet, and reports of light ion streams in the tail are likely due to this source. The paper concludes with a discussion of high-latitude circulation in the absence of reconnection between the solar wind and planetary field.

  15. Surface changes in mid-latitude regions on Titan

    NASA Astrophysics Data System (ADS)

    Solomonidou, A.; Coustenis, A.; Lopes, R. M. C.; Hirtzig, M.; Rodriguez, S.; Stephan, K.; Sotin, C.; Drossart, P.; Lawrence, K.; Le Mouélic, S.; Bratsolis, E.; Jaumann, R.; Brown, R. H.; Malaska, M.

    2014-04-01

    We present a study focused on the mid-latitude and close to the equator surface regions on Titan that present an interest on their spectral behavior and/or morphology. These are regions where spectroscopic anomalies have been reported in the evolution of the brightness and several interpretations have been proposed (cryovolcanic candidates, evaporates, lacustrine, etc [1;2;5]). Also in our work here we have included analysis of some undifferentiated plains (also referred to as 'blandlands'), which are vast expanses of terrains that appear bland in the radar data [3]. By applying a Radiative transfer code [4;2] we have analyzed these regions to look for evolution with time through their spectral behavior. We use as reference point and calibration tool the surface albedo retrieval of the Huygens Landing site (Titan's ground truth) and we also check the variability of the surface albedo of these regions against areas that are not expected to change with time (e.g. dune fields), by retrieving their albedo differences at all wavelengths [2]. We report here surface albedo changes with time for some of these regions of interest that imply connection to exogenic and/or endogenic processes.

  16. Meteorological observations of synoptic disturbances: Sensitivity to latitude

    NASA Technical Reports Server (NTRS)

    Barnes, Jeff R.

    1994-01-01

    The Mars pathfinder MET experiment will make pressure, temperature, and wind measurements on the surface of Mars. The Viking Lander Meteorology Experiment measurements were marked by the presence of variations associated with synoptic weather disturbances throughout the fall and winter season. Numerical simulations of the Mars atmospheric circulation show that the winter midlatitudes are the center of activity for traveling disturbances of planetary scale, disturbances that have their fundamental origin in the baroclinic instability of the wintertime Mars atmospheric circulation. The studies are consistent with Viking observations in that the disturbances decay in amplitude toward lower latitudes. The further north the Mars Pathfinder is located, the more clearly it will be able to detect the signatures of the midlatitude weather system. A landing site close to 15 deg N should allow measurement of the weather disturbances, along with observations of the thermal tides, slope winds, and the relatively steady winds associated with the general circulation - the 'trade winds' of Mars. A landing site near 15 deg N would be significantly further equatorward than the Viking Lander 1 site, and thus would provide more of a view of tropical circulation processes.

  17. A Study of Steady Magnetospheric Convection Using High Latitude Magnetometers

    NASA Astrophysics Data System (ADS)

    de Silva, J. T.; Erickson, K. N.; Engebretson, M. J.; Murr, D. L.; Hughes, W. J.

    2001-05-01

    Magnetometer data from the MACCS and CANOPUS arrays in northern North America have been analyzed during two of the intervals of steady magnetospheric convection identified by the GEM community, January 29-30 and February 3-4, 1998. These intervals were characterized by extended periods of southward interplanetary magnetic field (negative IMF Bz), and by the absence of substorms. The patterns of ionospheric current flow on the dayside were found to be in general agreement with the disturbance current system, SD, originally described by Silsbee and Vestine [1942]. This indicates that during extended periods of southward IMF the convection on the dayside is the same whether or not there are substorms. When plasma flow patterns measured by the SuperDARN auroral radar network were available for comparison, these patterns agreed with the patterns inferred from magnetometers. Further study will investigate convection patterns on the nightside, and a similar study of convection for the southern high latitude region will be conducted using data from Antarctic stations.

  18. Arctic East Siberia had a lower latitude in the Pleistocene.

    PubMed

    Woelfli, Willy; Baltensperger, Walter

    2007-06-01

    Remains of mammoths in Arctic East Siberia, where there is not sufficient sunlight over the year for the growth of the plants on which these animals feed, indicate that the latitude of this region was lower before the end of the Pleistocene than now. Reconstructing this geographic pole shift, we introduce a massive object, which moved in an extremely eccentric orbit and was hot from tidal work and solar radiation. Evaporation produced a disk-shaped cloud of ions around the Sun. This cloud partially shielded the solar radiation, producing the cold and warm periods characterizing the Pleistocene. The shielding depends on the inclination of Earth's orbit, which has a period of 100,000 years. The cloud builds up to a point where inelastic particle collisions induce its collapse The resulting near-periodic time dependence resembles that of Dansgaard-Oeschger events. The Pleistocene ended when the massive object had a close encounter with the Earth, which suffered a one per mil extensional deformation. While the deformation relaxed to an equilibrium shape in one to several years, the globe turned relative to the rotation axis: The North Pole moved from Greenland to the Arctic Sea. The massive object split into fragments, which evaporated. PMID:17625673

  19. IRAS galaxies at low galactic and high supergalactic latitudes

    SciTech Connect

    Dow, M.W.; Lu, N.Y.; Houck, J.R.; Salpeter, E.E.; Lewis, B.M.

    1988-01-01

    Based on IR colors, 371 IRAS point sources with absolute value of b = 2-16 deg (b = galactic latitude) were selected for study at H I 21 cm as potential galaxies: 25 percent (93) of these sources are galaxies with redshifts less than 8000 km/s based on H I spectra. Most of the detected galaxies are at redshifts between 2000 and 7500 km/s. Fifty-five of these lie in an area about 40 deg away from the junction of the Pisces-Perseus and Lynx-Ursa Major superclusters, and show a distribution of systemic velocities very similar to these superclusters. There is an enhanced density of galaxies near 6000 km/s with galactic longitude l about 40 deg and b about 0 deg. The two regions surveyed, centered at l about 192 deg and l about 54 deg, lie outside the plane of the Local Supercluster and do not show any preference for galaxies with low velocity widths. 16 references.

  20. Cosmic rays and total ozone at higher middle latitudes

    NASA Astrophysics Data System (ADS)

    Las̆tovic̆ka, J.; Kriz̆an, P.; Kudela, K.

    2003-05-01

    Various external factors of solar origin like solar activity (solar cycle, 27-day variation etc.), geomagnetic storms and other solar wind-related phenomena, and changes of fluxes of high-energy particles can potentially affect the ozone layer. Here we examine the effects of Forbush decreases and other decreases of the galactic cosmic ray (GCR) flux on the columnar ozone content (= total ozone) at higher middle latitudes near 50°N. The Forbush decreases usually occur together with geomagnetic storms and relatively often together with solar proton events (SPEs). Then it is difficult, if not impossible, to distinguish between the effects of geomagnetic storms, SPEs and Forbush decreases and other decreases of the GCR flux. Therefore we present here the results of investigations of the effects of Forbush decreases and other substantial decreases of the GCR flux on the total ozone for events when there was no geomagnetic storm. Due to the dominance of summertime events in the selected data set, very weak if any effect is found. There is evidently no effect in zonal mean values of total ozone.

  1. The single event upset environment for avionics at high latitude

    SciTech Connect

    Sims, A.J.; Dyer, C.S.; Peerless, C.L. . Space and Communications Dept.); Johansson, K.; Pettersson, H. ); Farren, J. . Harwell Lab.)

    1994-12-01

    Modern avionic systems for civil and military applications are becoming increasingly reliant upon embedded microprocessors and associated memory devices. The phenomenon of single event upset (SEU) is well known in space systems and designers have generally been careful to use SEU tolerant devices or to implement error detection and correction (EDAC) techniques where appropriate. In the past, avionics designers have had no reason to consider SEU effects but is clear that the more prevalent use of memory devices combined with increasing levels of IC integration will make SEU mitigation an important design consideration for future avionic systems. To this end, it is necessary to work towards producing models of the avionics SEU environment which will permit system designers to choose components and EDAC techniques which are based on predictions of SEU rates correct to much better than an order of magnitude. Measurements of the high latitude SEU environment at avionics altitude have been made on board a commercial airliner. Results are compared with models of primary and secondary cosmic rays and atmospheric neutrons. Ground based SEU tests of static RAMs are used to predict rates in flight.

  2. A Search for Radio Pulsars at High Galactic Latitude

    NASA Astrophysics Data System (ADS)

    Jacoby, B. A.

    We have completed a search for radio pulsars using the Parkes 64-m telescope, covering about 4500 square degrees between 15 deg and 30 deg from the Galactic plane. Each pointing was observed for 265 s with the 13-beam multibeam system at a frequency of 1374 MHz. The signal from each beam was processed by a 96-channel filterbank and sampled every 125 us, with a bandwidth of 288 MHz. This strategy affords rapid sky coverage and good sensitivity to pulsars with periods as short as 1 ms, whose existence would constrain the neutron star equation of state. Data were analyzed using the workstation cluster at the Swinburne Centre for Astrophysics and Supercomputing. This effort has yielded 26 new pulsars, including seven recycled pulsars. Taken together with the previous Swinburne Intermediate Latitude Pulsar Survey, a total of 95 new pulsars were found over nearly 7500 square degrees of sky between 5 deg and 30 deg from the plane of the Galaxy. This large sample of newly discovered objects contains no young pulsars.

  3. A search for millisecond pulsars at high galactic latitude

    NASA Astrophysics Data System (ADS)

    Jacoby, B.; Bailes, M.; Ord, S.; Kulkarni, S.; Anderson, S.

    2002-05-01

    We are conducting a search for radio pulsars using the Parkes 64 m telescope, covering the galactic latitude range 15o < | b | < 25o from l=260o to l=50o. Each pointing is observed for 265 s with the 13-beam multibeam system at a frequency of 1374 MHz. The signal from each beam is processed by a 2 x 96 channel filterbank sampled every 125 μ s, with a bandwidth of 288 MHz. These observing parameters afford rapid sky coverage and good sensitivity to pulsars with periods as short as ~1 ms, whose existence would constrain the neutron star equation of state. Data are analyzed offline using the workstation cluster at the Swinburne Centre for Astrophysics and Supercomputing. Analysis of ~2200 square degrees of the survey has been completed, yielding twenty new pulsars including four binary recycled pulsars. Three of these objects have great potential for ultra high precision timing experiments, and one has an unusual massive white dwarf companion. We present the current status of survey observations and analysis as well as follow-up observations of the newly discovered pulsars.

  4. Sun position calculator (SPC) for Landsat imagery with geodetic latitudes

    NASA Astrophysics Data System (ADS)

    Seong, Jeong C.

    2015-12-01

    Landsat imagery comes with sun position information such as azimuth and sun elevation, but they are available only at the center of a scene. To aid in the use of Landsat imagery for various solar radiation applications such as topographic correction, solar power, urban heat island, agriculture, climate and vegetation, it is necessary to calculate the sun position information at every pixel. This research developed a PC application that creates sun position data layers in ArcGIS at every pixel in a Landsat scene. The SPC program is composed of two major routines - converting universal transverse Mercator (UTM) projection coordinates to geographic longitudes and latitudes, and calculating sun position information based on the Meeus' routine. For the latter, an innovative method was also implemented to account for the Earth's flattening on an ellipsoid. The Meeus routine implemented in this research showed about 0.2‧ of mean absolute difference from the National Renewable Energy Laboratory (NREL) Solar Position Algorithm (SPA) routine when solar zenith and azimuth angles were tested with every 30 min data at four city locations (Fairbanks, Atlanta, Sydney and Rio Grande) on June 30, 2014. The Meeus routine was about ten times faster than the SPA routine. Professionals who need the Sun's position information for Landsat imagery will benefit from the SPC application.

  5. Inner Plasma Structure of the Low-Latitude Reconnection Layer

    NASA Technical Reports Server (NTRS)

    Zhang, Q.-H.; Dunlop, M. W.; Lockwood, M.; Lavraud, B.; Bogdanova, Y. V.; Hasegawa, H.; Yang, H. -G.; Liu, R. -Y.; Hu, H. -Q.; Zhang, B. -C.; Pu, Z. -Y.; Yang, Z. -W.; Wang, J.; Taylor, M. G. G. T.; Berchem, J.; Constantinescu, D.; Volwerk, M.; Frey, H.; Fazakerley, A. N.; Shen, C.; Shi, J. -K.; Sibeck, D.; Escoubet, P.; Wild, J. A.

    2012-01-01

    We report a clear transition through a reconnection layer at the low-latitude magnetopause which shows a complete traversal across all reconnected field lines during northwestward interplanetary magnetic field (IMF) conditions. The associated plasma populations confirm details of the electron and ion mixing and the time history and acceleration through the current layer. This case has low magnetic shear with a strong guide field and the reconnection layer contains a single density depletion layer on the magnetosheath side which we suggest results from nearly field-aligned magnetosheath flows. Within the reconnection boundary layer, there are two plasma boundaries, close to the inferred separatrices on the magnetosphere and magnetosheath sides (Ssp and Ssh) and two boundaries associated with the Alfvén waves (or Rotational Discontinuities, RDsp and RDsh). The data are consistent with these being launched from the reconnection site and the plasma distributions are well ordered and suggestive of the time elapsed since reconnection of the field lines observed. In each sub-layer between the boundaries the plasma distribution is different and is centered around the current sheet, responsible for magnetosheath acceleration. We show evidence for a velocity dispersion effect in the electron anisotropy that is consistent with the time elapsed since reconnection. In addition, new evidence is presented for the occurrence of partial reflection of magnetosheath electrons at the magnetopause current layer.

  6. IRAS galaxies at low galactic and high supergalactic latitudes

    NASA Technical Reports Server (NTRS)

    Dow, M. W.; Lu, N. Y.; Houck, J. R.; Salpeter, E. E.; Lewis, B. M.

    1988-01-01

    Based on IR colors, 371 IRAS point sources with absolute value of b = 2-16 deg (b = galactic latitude) were selected for study at H I 21 cm as potential galaxies: 25 percent (93) of these sources are galaxies with redshifts less than 8000 km/s based on H I spectra. Most of the detected galaxies are at redshifts between 2000 and 7500 km/s. Fifty-five of these lie in an area about 40 deg away from the junction of the Pisces-Perseus and Lynx-Ursa Major superclusters, and show a distribution of systemic velocities very similar to these superclusters. There is an enhanced density of galaxies near 6000 km/s with galactic longitude l about 40 deg and b about 0 deg. The two regions surveyed, centered at l about 192 deg and l about 54 deg, lie outside the plane of the Local Supercluster and do not show any preference for galaxies with low velocity widths.

  7. Does fish larval dispersal differ between high and low latitudes?

    PubMed

    Leis, Jeffrey M; Caselle, Jennifer E; Bradbury, Ian R; Kristiansen, Trond; Llopiz, Joel K; Miller, Michael J; O'Connor, Mary I; Paris, Claire B; Shanks, Alan L; Sogard, Susan M; Swearer, Stephen E; Treml, Eric A; Vetter, Russell D; Warner, Robert R

    2013-05-22

    Several factors lead to expectations that the scale of larval dispersal and population connectivity of marine animals differs with latitude. We examine this expectation for demersal shorefishes, including relevant mechanisms, assumptions and evidence. We explore latitudinal differences in (i) biological (e.g. species composition, spawning mode, pelagic larval duration, PLD), (ii) physical (e.g. water movement, habitat fragmentation), and (iii) biophysical factors (primarily temperature, which could strongly affect development, swimming ability or feeding). Latitudinal differences exist in taxonomic composition, habitat fragmentation, temperature and larval swimming, and each difference could influence larval dispersal. Nevertheless, clear evidence for latitudinal differences in larval dispersal at the level of broad faunas is lacking. For example, PLD is strongly influenced by taxon, habitat and geographical region, but no independent latitudinal trend is present in published PLD values. Any trends in larval dispersal may be obscured by a lack of appropriate information, or use of 'off the shelf' information that is biased with regard to the species assemblages in areas of concern. Biases may also be introduced from latitudinal differences in taxa or spawning modes as well as limited latitudinal sampling. We suggest research to make progress on the question of latitudinal trends in larval dispersal.

  8. Coordinated observations of high-latitude ionospheric turbulence

    SciTech Connect

    Basu, S.; Basu, S.; Valladares, C.E.; Weber, E.J.; Buchau, J.

    1988-01-01

    A coordinated data set comprised of scintillation, ionosonde, incoherent scatter radar and optical measurements obtained on two nights during the CEDAR/WITS campaign of February, 1988 was selected for the study of two distinct classes of high latitude plasma turbulence. Under IMP Bz northward conditions, the polar cap arc detected by the all-sky imaging photometer (ASIP) in this phase of low solar activity (SSN=40) was found to be associated with a total electron content enhancement of only 2x10 to the 16th power/sq. m and weak amplitude scintillations (S sub 4 about = 0.35) at 250 MHz. The photometer and scintillation measurements indicated that in addition to the dawn to dusk motion of 200/ms in the inertial frame, there existed enhanced plasma motion of about 400/ms along the arc. The second data set conforming to IMF Bz southward condition showed the existence of ionization patches in the polar cap and their anti-sunward motion towards the auroral oval. The polar cap patches detected deep within the polar cap with electron contents as large as 10x10 to the 16th power/sq. m caused 15 dB scintillations at 250 MHz. These patches detected close to the auroral oval also caused strong scintillations which indicated that the patches get continually structured during their convection through the winter polar cap.

  9. Low-latitude Ionospheric Heating during Solar Flares

    NASA Astrophysics Data System (ADS)

    Klenzing, J.; Chamberlin, P. C.; Qian, L.; Haaser, R. A.; Burrell, A. G.; Earle, G. D.; Heelis, R. A.; Simoes, F. A.

    2013-12-01

    The advent of the Solar Dynamics Observatory (SDO) represents a leap forward in our capability to measure rapidly changing transient events on the sun. SDO measurements are paired with the comprehensive low latitude measurements of the ionosphere and thermosphere provided by the Communication/Navigation Outage Forecast System (C/NOFS) satellite and state-of-the-art general circulation models to discuss the coupling between the terrestrial upper atmosphere and solar radiation. Here we discuss ionospheric heating as detected by the Coupled Ion-Neutral Dynamics Investigation (CINDI) instrument suite on the C/NOFS satellite during solar flares. Also discusses is the necessity of decoupling the heating due to increased EUV irradiance and that due to geomagnetic storms, which sometimes occur with flares. Increases in both the ion temperature and ion density in the subsolar topside ionosphere are detected within 77 minutes of the 23 Jan 2012 M-class flare, and the observed results are compared with the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) using the Flare Irradiance Spectral Model (FISM) as an input.

  10. The role of superthermal electrons in high latitude ionospheric outflows

    NASA Astrophysics Data System (ADS)

    Glocer, A.; Khazanov, G. V.; Liemohn, M. W.; Toth, G.; Gombosi, T. I.

    2014-12-01

    It is well accepted that the ionosphere is a critical source of plasma for the magnetosphere, providing O+, H+, and He+ which can have wide ranging consequences for the space environment system. Changing ion composition affects magnetic reconnection in the magnetosphere, the ring current, and the wave environment which is important for high energy radiation belt electrons. Of the myriad of mechanisms that are important in determining the ionospheric outflow solution at high latitudes, we focus on the role of superthermal electron populations. It has been demonstrated in multiple studies that even small concentrations of superthermal electrons can have a dramatic effect on the outflow solution. In this presentation, we present simulation results using our Polar Wind Outflow Model (PWOM) and our SuperThermal Electron Transport (STET) code. We describe recent results on superthermal electrons role in defining the quiet time solar wind solution with comparisons to observations. We also discuss preliminary results that combine the PWOM and STET codes for a more comprehensive treatment of the impact of superthermal electrons.

  11. Impact of Solar Proton Events on High Latitude Ionospheric Conditions

    NASA Astrophysics Data System (ADS)

    Aslam, A. M.; Gwal, Ashok Kumar; Mansoori, Azad Ahmad

    2016-07-01

    We investigate the ionospheric response to the solar protons which are accelerated to different energies (MeV-GeV) and thought to be originated at the solar atmosphere during the various energetic phenomena knows as solar transients viz. Solar Flares, Coronal Mass Ejections (CMEs). These transients are believed to be a manifestation of same energy release processes from a highly complex condition in the magnetic field configuration on the solar surface. We have taken six solar proton events (SPE) of solar cycle 23rd for analysis in the various energy bands of the protons. In order to find the ionospheric responses to these incoming solar protons ionospheric total electron content (TEC) is taken as the characteristic parameter. We have taken the data observed by GOES satellites which provides the data for different energy channels (0.8-4 MeV, 4-9 MeV, 9-15 MeV, 15-40 MeV, 40-80 MeV, 80-165 MeV, and 165-500 MeV). The enhancement in peak TEC (∆TEC) was then obtained for the high latitude station Davis (Lat-68.35, Lon 77.58). To find the association of this enhancement with proton flux characteristics we derived the correspondence between spectral indices and ∆TEC. We obtained a strong correlation (0.84) to exist between the spectral indices and ∆TEC.

  12. Paleoclimatic significance of high-latitude loess deposits

    SciTech Connect

    Beget, J.E.

    1992-03-01

    Loess deposits reflect changing environmental conditions in terrestrial regions, and contain long paleoclimatic records analogous to those found in marine sediments, lacustrine sediments, and ice sheets. Alaskan loess was deposited at rates of ca. 0.05-0.5 mm yr-l during the last 2-3 x 106 years; loess deposits contain some of the longest and most complete proxy climate records yet found. New analytical methods are used to reconstruct changes in climate and atmospheric regime including wind intensity, storminess, temperature, and precipitation. Loess also contains a history of permafrost and paleosol formation, volcanic eruptions, and paleoecologic changes in high latitude regions, as well as Quaternary fossils and early man sites and artifacts. Time-series analysis of proxy climate data from loess supports the astronomic model of climate change, although some transient climate events recorded in loess records are too short to be explained by orbital insolation forcing, and may instead correlate with rapid, short-term changes in atmospheric C02 and CH4 content.

  13. Habitable periglacial landscapes in martian mid-latitudes

    NASA Astrophysics Data System (ADS)

    Ulrich, M.; Wagner, D.; Hauber, E.; de Vera, J.-P.; Schirrmeister, L.

    2012-05-01

    Subsurface permafrost environments on Mars are considered to be zones where extant life could have survived. For the identification of possible habitats it is important to understand periglacial landscape evolution and related subsurface and environmental conditions. Many landforms that are interpreted to be related to ground ice are located in the martian mid-latitudinal belts. This paper summarizes the insights gained from studies of terrestrial analogs to permafrost landforms on Mars. The potential habitability of martian mid-latitude periglacial landscapes is exemplarily deduced for one such landscape, that of Utopia Planitia, by a review and discussion of environmental conditions influencing periglacial landscape evolution. Based on recent calculations of the astronomical forcing of climate changes, specific climate periods are identified within the last 10 Ma when thaw processes and liquid water were probably important for the development of permafrost geomorphology. No periods could be identified within the last 4 Ma which met the suggested threshold criteria for liquid water and habitable conditions. Implications of past and present environmental conditions such as temperature variations, ground-ice conditions, and liquid water activity are discussed with respect to the potential survival of highly-specialized microorganisms known from terrestrial permafrost. We conclude that possible habitable subsurface niches might have been developed in close relation to specific permafrost landform morphology on Mars. These would have probably been dominated by lithoautotrophic microorganisms (i.e. methanogenic archaea).

  14. Global marine bacterial diversity peaks at high latitudes in winter

    PubMed Central

    Ladau, Joshua; Sharpton, Thomas J; Finucane, Mariel M; Jospin, Guillaume; Kembel, Steven W; O'Dwyer, James; Koeppel, Alexander F; Green, Jessica L; Pollard, Katherine S

    2013-01-01

    Genomic approaches to characterizing bacterial communities are revealing significant differences in diversity and composition between environments. But bacterial distributions have not been mapped at a global scale. Although current community surveys are way too sparse to map global diversity patterns directly, there is now sufficient data to fit accurate models of how bacterial distributions vary across different environments and to make global scale maps from these models. We apply this approach to map the global distributions of bacteria in marine surface waters. Our spatially and temporally explicit predictions suggest that bacterial diversity peaks in temperate latitudes across the world's oceans. These global peaks are seasonal, occurring 6 months apart in the two hemispheres, in the boreal and austral winters. This pattern is quite different from the tropical, seasonally consistent diversity patterns observed for most macroorganisms. However, like other marine organisms, surface water bacteria are particularly diverse in regions of high human environmental impacts on the oceans. Our maps provide the first picture of bacterial distributions at a global scale and suggest important differences between the diversity patterns of bacteria compared with other organisms. PMID:23514781

  15. Modelled glacier equilibrium line altitudes during the mid-Holocene in the southern mid-latitudes

    NASA Astrophysics Data System (ADS)

    Bravo, C.; Rojas, M.; Anderson, B. M.; Mackintosh, A. N.; Sagredo, E.; Moreno, P. I.

    2015-11-01

    Glacier behaviour during the mid-Holocene (MH, 6000 years BP) in the Southern Hemisphere provides observational data to constrain our understanding of the origin and propagation of palaeoclimate signals. In this study we examine the climatic forcing of glacier response in the MH by evaluating modelled glacier equilibrium line altitudes (ELAs) and climatic conditions during the MH compared with pre-industrial time (PI, year 1750). We focus on the middle latitudes of the Southern Hemisphere, specifically Patagonia and the South Island of New Zealand. Climate conditions for the MH were obtained from PMIP2 model simulations, which in turn were used to force a simple glacier mass balance model to simulate changes in ELA. In Patagonia, the models simulate colder conditions during the MH in austral summer (-0.2 °C), autumn (-0.5 °C), and winter (-0.4), and warmer temperatures (0.2 °C) during spring. In the Southern Alps the models show colder MH conditions in autumn (-0.7 °C) and winter (-0.4 °C), warmer conditions in spring (0.3 °C), and no significant change in summer temperature. Precipitation does not show significant changes but exhibits a seasonal shift, with less precipitation from April to September and more precipitation from October to April during the MH in both regions. The mass balance model simulates a climatic ELA that is 15-33 m lower during the MH compared with PI conditions. We suggest that the main causes of this difference are driven mainly by colder temperatures associated with the MH simulation. Differences in temperature have a dual effect on glacier mass balance: (i) less energy is available for ablation during summer and early autumn and (ii) lower temperatures cause more precipitation to fall as snow rather than rain in late autumn and winter, resulting in more accumulation and higher surface albedo. For these reasons, we postulate that the modelled ELA changes, although small, may help to explain larger glacier extents observed by 6000

  16. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes

    USGS Publications Warehouse

    McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.

    2002-01-01

    The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

  17. "Michael Jackson World Tour:" Maps and Globes--Latitude and Longitude.

    ERIC Educational Resources Information Center

    Benscoter, Gloria Dee

    1988-01-01

    Presents a mapping activity which helps students understand the purpose of latitude and longitude lines. Gives students an opportunity to use longitude and latitude in a meaningful way by asking them to plan a world concert tour for a rock star. Includes a reproducible activity page. (LS)

  18. Energetic particles and coronal mass ejections in the high latitude heliosphere: Ulysses-LET observations

    SciTech Connect

    Bothmer, V.; Marsden, R. G.; Sanderson, T. R.; Trattner, K. J.; Wenzel, K.-P.; Balogh, A.; Forsyth, R. J.; Goldstein, B. E.; Uchida, Y.; Hudson, H. S.

    1996-07-20

    We have investigated energetic ions of non-corotating nature in the high latitude heliosphere. Major particle events were observed by Ulysses up to latitudes of 60 deg. S. All were associated with passage of coronal mass ejections (CMEs) over the spacecraft. The relationship of these events with solar activity was investigated using Yohkoh soft X-ray images.

  19. Coronal mass ejections in the solar wind at high solar latitudes: An overview

    NASA Technical Reports Server (NTRS)

    Gosling, Jack T.

    1994-01-01

    Ulysses provided the first direct measurements of coronal mass ejections (CME's) in the solar wind at high heliographic latitudes. An overview of new results from the plasma experiment on Ulysses and magnetic field measurements, during the spacecraft's first excursion to high solar latitudes are summarized. A striking aspect of the high-latitude CME's observed is that they all had high speeds, with the overall average speed being 730 km/sec. A new class of forward-reverse shock pairs, associated with expansion of CME's was discovered at high latitudes. Of six certain CME's observed at high latitudes, three have associated shock pairs of this nature. Combined Ulysses and Yohkoh observations suggest that the flux rope topology characteristic of some CME's results from reconnection within the legs of neighboring magnetic loops embedded within the escaping CME's.

  20. Coronal mass ejections in the solar wind at high solar latitudes: An overview

    SciTech Connect

    Gosling, J.T.

    1994-10-01

    Ulysses has provided the first direct measurements of coronal mass ejections, CMES, in the solar wind at high heliographic latitudes. This paper provides an overview of new and unexpected results from the plasma experiment on Ulysses, supplemented with magnetic field measurements, during the spacecraft`s first excursion to high solar latitudes. A striking aspect of the high-latitude CMEs observed is that they all had high speeds, with the overall average speed being 730 km s{sup {minus}1}. A new class of forward-reverse shock pairs, associated with expansion of CMES, has been discovered at high latitudes. Of six certain CMEs observed at high latitudes, three have associated shock pairs of this nature. Combined Ulysses and Yohkoh observations suggest that the flux rope topology characteristic of some CMEs results from reconnection within the legs of neighboring magnetic loops embedded within the escaping CMES.

  1. Mid-latitude mesospheric clouds and their environment from SOFIE observations

    NASA Astrophysics Data System (ADS)

    Hervig, Mark E.; Gerding, Michael; Stevens, Michael H.; Stockwell, Robert; Bailey, Scott M.; Russell, James M.; Stober, Gunter

    2016-11-01

    Observations from the Solar Occultation For Ice Experiment (SOFIE) on the Aeronomy of Ice in the Mesosphere (AIM) satellite are used to examine noctilucent clouds (NLC) and their environment at middle latitudes (~56°N and ~52°S). Because SOFIE is uniquely capable of measuring NLC, water vapor, and temperature simultaneously, the local cloud environment can be specified to examine what controls their formation at mid-latitudes. Compared to higher latitudes, mid-latitude NLCs are less frequent and have lower ice mass density, by roughly a factor of five. Compared to higher latitudes at NLC heights, mid-latitude water vapor is only ~12% lower while temperatures are more than 10 K higher. As a result the reduced NLC mass and frequency at mid-latitudes can be attributed primarily to temperature. Middle and high latitude NLCs contain a similar amount of meteoric smoke, which was not anticipated because smoke abundance increases towards the equator in summer. SOFIE indicates that mid-latitude NLCs may or may not be associated with supersaturation with respect to ice. It is speculated that this situation is due in part to SOFIE uncertainties related to the limb measurement geometry combined with the non-uniform nature of NLCs. SOFIE is compared with concurrent NLC, temperature, and wind observations from Kühlungsborn, Germany (54°N) during the 2015 summer. The results indicate good agreement in temperature and NLC occurrence frequency, backscatter, and height. SOFIE indicates that NLCs were less frequent over Europe during 2015 compared to other longitudes, in contrast to previous years at higher latitudes that showed no clear longitude dependence. Comparisons of SOFIE and the Solar Backscatter Ultraviolet (SBUV) indicate good agreement in average ice water column (IWC), although differences in occurrence frequency were often large.

  2. Polarization analysis of Pc 1 geomagnetic pulsations at multi-point ground observations at middle latitudes

    NASA Astrophysics Data System (ADS)

    Nomura, R.; Shiokawa, K.; Shevtsov, B. M.

    2008-12-01

    Pc 1 geomagnetic pulsations propagate from the high-latitude source region to middle latitudes in the ionosphere. The high-latitude source region links to the magnetosphere where ion cyclotron instability occurs around the plasmapause. Since Pc 1 pulsation observed by ground magnetometers at middle latitudes can be a mixture of waves from several high-latitude source regions, the polarization analysis of Pc 1 pulsations enables us to understand the spatial structure and time variations of the high-latitude source region. In order to investigate spectral and propagation characteristics of the Pc 1 at mid-latitudes, we have installed three induction magnetometers at Paratunka (PTK, 53.0N, 158.2E, magnetic latitude (MLAT): 45.8N), Moshiri (MSR, 44.4N, 142.3E, MLAT: 35.7N) and Sata (STA, 31.0N, 130.7E, MLAT: 22.0N). The observations with a 64-Hz sample recording have been started on July 5, 2007, at MSR, on August 21, 2007, at PTK, and on September 5, 2007, at STA and will be started at Magadan (MGD, 59.7N, 151.0E, MLAT: 50.6N) on November 2008. Polarization analysis with these multi-point data indicates that the Pc 1 polarization directions on November 11, 2007 depend on frequency with a difference of ~30 degree. For December 17, 2007 event, the polarization angle varies in time for ~30 deg/hour. These facts may indicate either the structure and motion of the high-latitude Pc 1 source region or the effects of the duct propagations in the inhomogeneous ionosphere. In this presentation, we also show the statistical results of these polarization analyses using 1-year data of middle latitude Pc 1 observations.

  3. On the latitude dependence of drift velocity of the geomagnetic main field and its secular variation

    NASA Astrophysics Data System (ADS)

    Yukutake, Takesi; Shimizu, Hisayoshi

    2016-08-01

    There is an apparent difference in the westward drift between the geomagnetic main field and its time derivative, secular variation. The drift velocity of the main field is about 0.2°/year, definitely lower than that of the secular variation, 0.3°/year. The drift velocity of the main field appears to change with latitude, being low at high latitudes and higher at low latitudes, whereas the velocity of the secular variation is nearly constant irrespective of latitude. This paper examines what causes this difference by adopting the drifting and standing field model that assumes the geomagnetic field consists of the field steadily drifting westwards and the field remaining at nearly the same location. In this study, we confirm that the existence of the non-drifting standing field significantly affects the estimate of the drift velocity of the total field (i.e., the main field), and makes it slower than that of the secular variation. The drifting field is intense in low latitudes with its maximum at the equator, while the standing field dominates in higher latitudes. As a consequence, reduction of the apparent drifting velocity of the total field by the standing field is conspicuous in higher latitudes and less so in low latitudes. This creates the observed latitudinal structure of the drift velocity of the main field. On the other hand, the drift velocity of the secular variation is less affected by existence of the standing field, and mostly reflects the velocity of the drifting field that is almost constant with latitude. The velocity of the secular variation thus becomes almost uniform independent of latitude. The observed difference between the main field and the secular variation is naturally derived from the drifting and standing field model. This implies that physical mechanisms to generate the drifting and standing fields can be considered independently.

  4. Ecologic analysis of some immune-related disorders, including type 1 diabetes, in Australia: latitude, regional ultraviolet radiation, and disease prevalence.

    PubMed

    Staples, Judith A; Ponsonby, Anne-Louise; Lim, Lynette L-Y; McMichael, Anthony J

    2003-04-01

    The apparent immune-suppressive effect of ultraviolet radiation (UVR) has suggested that this environmental exposure may influence the development of immune-related disorders. Self-reported prevalence rates of type 1 diabetes mellitus, rheumatoid arthritis (RA), eczema/dermatitis, and asthma, from the 1995 Australian National Health Survey, were therefore examined by latitude and ambient level of UVR. A positive association of type 1 diabetes mellitus prevalence was found with both increasing southern latitude of residence (r = 0.77; p = 0.026) and decreasing regional annual ambient UVR (r= -0.80; p = 0.018); a 3-fold increase in prevalence from the northernmost region to the southernmost region was evident. In contrast, asthma correlated negatively with latitude (r = -0.72; p = 0.046), although the change in asthma prevalence from the north to the south of Australia was only 0.7-fold. For both RA and eczema/dermatitis, there were no statistically significant associations between latitude/UVR and disease prevalence. These ecologic data provide some support for a previously proposed beneficial effect of UVR on T-helper 1-mediated autoimmune disorders such as type 1 diabetes. The inverse association of type 1 diabetes prevalence with UVR is consistent with that previously reported for another autoimmune disease, multiple sclerosis, in Australia, and also with type 1 diabetes latitudinal gradients in the Northern Hemisphere. The finding also accords with photoimmunologic evidence of UVR-induced immunosuppression and may suggest a beneficial effect of UVR in reducing the incidence of such autoimmune conditions. In light of this study, analytic epidemiologic studies investigating risk of immune disorders in relation to personal UVR exposure in humans are required. PMID:12676609

  5. IMF Dependence of High-Latitude Thermospheric Wind Pattern Derived from CHAMP Cross-Track Accelerometer Data and the Corresponding Magnetospheric Convection from Cluster EDI Measurements

    NASA Astrophysics Data System (ADS)

    Foerster, Matthias; Haaland, Stein E.; Rentz, Stefanie; Liu, Huixin

    Neutral thermospheric wind pattern at high latitudes obtained from cross-track acceleration measurements of the CHAMP satellite above both North and South polar regions are statistically analyzed in their dependence on the Interplanetary Magnetic Field (IMF) direction in the GSM y-z plane (clock angle). We compare this dependency with magnetospheric convection pattern using 1-min-averages of Cluster/EDI electric drift observations and the same IMF and solar wind sorting conditions. The spatially distributed Cluster/EDI measurements are mapped to a the common reference level at ionospheric F-region heights in a magnetic latitude/MLT grid. We obtained both regular thermospheric wind and plasma drift pattern according to the various IMF conditions. The IMF-dependency shows some similarity with the corresponding high-latitude plasma convection insofar that the larger-scale convection cells, in particular the round-shaped dusk cell for IMF By+ (By-) conditions at the Northern (Southern) Hemisphere, leave their marks on the dominant general transpolar wind circulation from the dayside to the nightside. The direction of the transpolar circulation is generally deflected toward a duskward flow, in particular in the evening to nighttime sector. The degree of deflection correlates with the IMF clock angle. It is larger for IMF By+ than for Byand is systematically larger (about 5 deg) and appear less structured at the Southern Hemisphere compared with the Northern. Thermospheric cross-polar wind amplitudes are largest for IMF Bz-/Byconditions (corresponding to sector 5) at the Northern Hemisphere, but for IMF Bz-/By+ conditions (sector 3) at the Southern because the magnetospheric convection is in favour of largest wind accelerations over the polar cap under these conditions. The overall variance of the thermospheric wind magnitude at Southern high latitudes is larger than for the Northern. This is probably due to a larger "stirring effect" at the Southern Hemisphere because

  6. Ecologic analysis of some immune-related disorders, including type 1 diabetes, in Australia: latitude, regional ultraviolet radiation, and disease prevalence.

    PubMed

    Staples, Judith A; Ponsonby, Anne-Louise; Lim, Lynette L-Y; McMichael, Anthony J

    2003-04-01

    The apparent immune-suppressive effect of ultraviolet radiation (UVR) has suggested that this environmental exposure may influence the development of immune-related disorders. Self-reported prevalence rates of type 1 diabetes mellitus, rheumatoid arthritis (RA), eczema/dermatitis, and asthma, from the 1995 Australian National Health Survey, were therefore examined by latitude and ambient level of UVR. A positive association of type 1 diabetes mellitus prevalence was found with both increasing southern latitude of residence (r = 0.77; p = 0.026) and decreasing regional annual ambient UVR (r= -0.80; p = 0.018); a 3-fold increase in prevalence from the northernmost region to the southernmost region was evident. In contrast, asthma correlated negatively with latitude (r = -0.72; p = 0.046), although the change in asthma prevalence from the north to the south of Australia was only 0.7-fold. For both RA and eczema/dermatitis, there were no statistically significant associations between latitude/UVR and disease prevalence. These ecologic data provide some support for a previously proposed beneficial effect of UVR on T-helper 1-mediated autoimmune disorders such as type 1 diabetes. The inverse association of type 1 diabetes prevalence with UVR is consistent with that previously reported for another autoimmune disease, multiple sclerosis, in Australia, and also with type 1 diabetes latitudinal gradients in the Northern Hemisphere. The finding also accords with photoimmunologic evidence of UVR-induced immunosuppression and may suggest a beneficial effect of UVR in reducing the incidence of such autoimmune conditions. In light of this study, analytic epidemiologic studies investigating risk of immune disorders in relation to personal UVR exposure in humans are required.

  7. South Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 8 March 2004

    The Odyssey spacecraft has completed a full Mars year of observations of the red planet. For the next several weeks the Image of the Day will look back over this first mars year. It will focus on four themes: 1) the poles - with the seasonal changes seen in the retreat and expansion of the caps; 2) craters - with a variety of morphologies relating to impact materials and later alteration, both infilling and exhumation; 3) channels - the clues to liquid surface flow; and 4) volcanic flow features. While some images have helped answer questions about the history of Mars, many have raised new questions that are still being investigated as Odyssey continues collecting data as it orbits Mars.

    This image was collected March 5, 2002 during the southern summer season. Layering in the South polar cap interior is readily visible and may indicate yearly ice/dust deposition.

    Image information: VIS instrument. Latitude -86.6, Longitude 156.8 East (203.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the

  8. Dipole tilt angle effects on the latitude of the cusp and cleft/low-latitude boundary layer

    SciTech Connect

    Newell, P.T.; Meng, C.I. )

    1989-06-01

    A large data set of approximately 12,000 Defense Meteorological Satellite Program satellite F7 crossings of the cusp or the cleft (i.e., the dayside magnetospheric boundary layer) over a 3-year period is studied for seasonal dependence in latitudinal position. A carefully tested algorithm is used to distinguish the various dayside particle precipitation regions and boundaries. It is found that in the 1,100-1,300 MLT sector, the cusp proper exhibits about {minus}0.06{degree} magnetic latitude (MLAT) shift for each degree increase in dipole tilt angle. Thus the difference between the average summer and winter cusp positions is close to 4{degree} MLAT, approximately symmetric about equinox. For the cleft (magnetospheric boundary layer) the variation is smaller. For example, in the 0700-0900 MLT sector the cleft equatorward boundary shift is {minus} 0.027{degree} MLAT/1{degree} dipole tilt. These results are in general agreement with the predictions of empirical magnetospheric magnetic field models. Various ground-based and low-altitude observations can be systematically affected by the seasonal latitudinal shift herein documented.

  9. Frequency variations of quasi-periodic ELF-VLF emissions: A possible new ground-based diagnostic of the outer high-latitude magnetosphere

    SciTech Connect

    Alford, J.; Engebretson, M.; Arnoldy, R.; Inan, U.

    1996-01-01

    Magnetic pulsations and quasi-periodic (QP) amplitude modulations of ELF-VLF waves at Pc 3-4 frequencies (15-50 mHz) are commonly observed simultaneously in cusp-latitude data. The naturally occurring ELF-VLF emissions are believed to be modulated within the magnetosphere by the compressional component of geomagnetic pulsations formed external to the magnetosphere. The authors have examined data from South Pole Station (L {approximately} 14) to determine the occurrence and characteristics of QP emissions. On the basis of 14 months of data during 1987 and 1988 they found that QP emissions typically appeared in both the 0.5-1 kHz and 1-2 kHz receiver channels at South Pole Station and ocassionally in the 2-4 kHz channel. The QP emission frequency appeared to depend on solar wind parameters and interplanetary magnetic field (IMF) direction, and the months near fall equinox in both 1987 and 1988 showed a significant increase in the percentage of QP emissions only in the lowest-frequency channel. The authors present a model consistent with these variations in which high-latitude (nonequatorial) magnetic field minima near the magnetopause play a major role, because the field magnitude governs both the frequency of ELF-VLF emissions and the whistler mode propagation cutoffs. Because the field in these regions will be strongly influenced by solar wind and IMF parameters, variations in the frequency of such emissions may be useful in providing ground-based diagnostics of the outer high-latitude magnetosphere. 32 refs., 13 figs.

  10. Exposed Ice in the Northern Mid-Latitudes of Mars

    NASA Astrophysics Data System (ADS)

    Allen, C. C.

    2007-12-01

    Ice-Rich Layer: Polygonal features with dimensions of approximately 100 meters, bounded by cracks, are commonly observed on the martian northern plains. These features are generally attributed to thermal cracking of ice-rich sediments, in direct analogy to polygons in terrestrial polar regions [1,2]. We mapped polygons in the northern mid-latitudes (30 to 65 N) using MOC and HiRISE images [3]. Polygons are scattered across the northern plains, with a particular concentration in western Utopia Planitia. This region largely overlaps the Late Amazonian Astapus Colles unit, characterized by polygonal terrain and nested pits consistent with periglacial and thermokarst origins [4]. Bright and Dark Polygonal Cracks: An examination of all MOC images (1997 through 2003) covering the study area demonstrated that, at latitudes of 55 to 65 N, most of the imaged polygons show bright bounding cracks. We interpret these bright cracks as exposed ice. Between 40 and 55 N, most of the imaged polygons show dark bounding cracks [5]. These are interpreted as polygons from which the exposed ice has been removed by sublimation. The long-term stability limit for exposed ice, even in deep cracks, apparently lies near 55 N. Bright and Dark Spots: Many HiRISE and MOC frames showing polygons in the northern plains also show small numbers of bright and dark spots, particularly in western Utopia Planitia. Many of the spots are closely associated with collapse features suggestive of thermokarst. The spots range from tens to approximately 100 meters in diameter. The bright spots are interpreted as exposed ice, due to their prevalence on terrain mapped as ice rich. The dark spots are interpreted as former bright spots, which have darkened as the exposed ice is lost by sublimation. The bright spots may be the martian equivalents of pingos, ice-cored mounds found in periglacial regions on Earth [6,7,8,9, 10]. Terrestrial pingos from which the ice core has melted often collapse to form depressions

  11. On the Frozen Soil Scheme for High Latitude Regions

    NASA Astrophysics Data System (ADS)

    Ganji, A.; Sushama, L.

    2014-12-01

    Regional and global climate model simulated streamflows for high-latitude regions show systematic biases, particularly in the timing and magnitude of spring peak flows. Though these biases could be related to the snow water equivalent and spring temperature biases in models, a good part of these biases is due to the unaccounted effects of non-uniform infiltration capacity of the frozen ground and other related processes. In this paper, the frozen scheme in the Canadian Land Surface Scheme (CLASS), which is used in the Canadian regional and global climate models, is modified to include fractional permeable area, supercooled liquid water and a new formulation for hydraulic conductivity. Interflow is also included in these experiments presented in this study to better explain the steamflows after snow melt season. The impact of these modifications on the regional hydrology, particularly streamflow, is assessed by comparing three simulations, performed with the original and two modified versions of CLASS, driven by atmospheric forcing data from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data (ERA-Interim), for the 1990-2001 period, over a northeast Canadian domain. The two modified versions of CLASS differ in the soil hydraulic conductivity and matric potential formulations, with one version being based on formulations from a previous study and the other one is newly proposed. Results suggest statistically significant decreases in infiltration for the simulation with the new hydraulic conductivity and matric potential formulations and fractional permeable area concept, compared to the original version of CLASS, which is also reflected in the increased spring surface runoff and streamflows in this simulation with modified CLASS, over most of the study domain. The simulated spring peaks and their timing in this simulation is also in better agreement to those observed.

  12. Crossing latitudes--long-distance tracking of an apex predator.

    PubMed

    Ferreira, Luciana C; Thums, Michele; Meeuwig, Jessica J; Vianna, Gabriel M S; Stevens, John; McAuley, Rory; Meekan, Mark G

    2015-01-01

    Tiger sharks (Galeocerdo cuvier) are apex predators occurring in most tropical and warm temperate marine ecosystems, but we know relatively little of their patterns of residency and movement over large spatial and temporal scales. We deployed satellite tags on eleven tiger sharks off the north-western coast of Western Australia and used the Brownian Bridge kernel method to calculate home ranges and analyse movement behaviour. One individual recorded one of the largest geographical ranges of movement ever reported for the species, travelling over 4000 km during 517 days of monitoring. Tags on the remainder of the sharks reported for shorter periods (7-191 days). Most of these sharks had restricted movements and long-term (30-188 days) residency in coastal waters in the vicinity of the area where they were tagged. Core home range areas of sharks varied greatly from 1166.9 to 634,944 km2. Tiger sharks spent most of their time in water temperatures between 23°-26°C but experienced temperatures ranging from 6°C to 33°C. One shark displayed seasonal movements among three distinct home range cores spread along most of the coast of Western Australia and generalized linear models showed that this individual had different patterns of temperature and depth occupancy in each region of the coast, with the highest probability of residency occurring in the shallowest areas of the coast with water temperatures above 23°C. These results suggest that tiger sharks can migrate over very large distances and across latitudes ranging from tropical to the cool temperate waters. Such extensive long-term movements may be a key element influencing the connectivity of populations within and among ocean basins.

  13. HIGH ECLIPTIC LATITUDE SURVEY FOR SMALL MAIN-BELT ASTEROIDS

    SciTech Connect

    Terai, Tsuyoshi; Takahashi, Jun; Itoh, Yoichi

    2013-11-01

    Main-belt asteroids have been continuously colliding with one another since they were formed. Their size distribution is primarily determined by the size dependence of asteroid strength against catastrophic impacts. The strength scaling law as a function of body size could depend on collision velocity, but the relationship remains unknown, especially under hypervelocity collisions comparable to 10 km s{sup –1}. We present a wide-field imaging survey at an ecliptic latitude of about 25° for investigating the size distribution of small main-belt asteroids that have highly inclined orbits. The analysis technique allowing for efficient asteroid detections and high-accuracy photometric measurements provides sufficient sample data to estimate the size distribution of sub-kilometer asteroids with inclinations larger than 14°. The best-fit power-law slopes of the cumulative size distribution are 1.25 ± 0.03 in the diameter range of 0.6-1.0 km and 1.84 ± 0.27 in 1.0-3.0 km. We provide a simple size distribution model that takes into consideration the oscillations of the power-law slope due to the transition from the gravity-scaled regime to the strength-scaled regime. We find that the high-inclination population has a shallow slope of the primary components of the size distribution compared to the low-inclination populations. The asteroid population exposed to hypervelocity impacts undergoes collisional processes where large bodies have a higher disruptive strength and longer lifespan relative to tiny bodies than the ecliptic asteroids.

  14. Ionosphere-Thermosphere Coupling in Jupiter's Low Latitudes

    NASA Astrophysics Data System (ADS)

    Stallard, T.; Melin, H.; Johnson, R.; O'Donoghue, J.; Moore, L.; Miller, S.; Tao, C.; Achilleos, N. A.; Smith, C.; Ray, L. C.; Yates, J. N.

    2015-12-01

    One of the leading problems in our understanding of Jupiter's atmosphere, known colloquially as the 'energy crisis', is that the upper atmosphere has global temperatures far in excess of that predicted by solar heating. Unlike the Earth, solar heating has only a small effect on the thermosphere, varying little in temperature with local time, and with equatorial neutrals co-rotating with the planet due to meridional advection. Within the auroral region, ionosphere-thermosphere coupling produces strong flows and results in huge Joule Heating from auroral currents. In this region, the temperature excess can be explained, but Jupiter's fast rotation means that Coriolis forces prevent energy in the poles from transferring equatorward, so there remains no explanation of why low latitudes are overheated by a factor of 3-5 over that predicted by solar heating alone.Despite this anomaly, although the past twenty years has seen a wealth of new data and results in Jupiter's auroral region, studies of the equatorial region have been somewhat limited. This lack of investigation comes partly from the apparent uniform nature of the equatorial region, and partly from the difficulty in observing this region. It is only in the past three years that observers begun to re-examine this region, revealing evidence of complex interactions between the thermosphere and ionosphere, including what appears to be thermospheric weather patterns at a fixed planetary longitudes, stable over two decades; perhaps caused by continuous flows from the auroral region. Here, we introduce our recent research, in order to compare and contrast what has been observed at Jupiter with the more well understood interactions between Earth's ionosphere and thermosphere. We hope that this will open a discussion between the communities that will improve our understanding of the underlying physical processes, as they occur at both planets.

  15. Assessing mid-latitude dynamics in extreme event attribution systems

    NASA Astrophysics Data System (ADS)

    Mitchell, Daniel; Davini, Paolo; Harvey, Ben; Massey, Neil; Haustein, Karsten; Woollings, Tim; Jones, Richard; Otto, Fredi; Guillod, Benoit; Sparrow, Sarah; Wallom, David; Allen, Myles

    2016-08-01

    Atmospheric modes of variability relevant for extreme temperature and precipitation events are evaluated in models currently being used for extreme event attribution. A 100 member initial condition ensemble of the global circulation model HadAM3P is compared with both the multi-model ensemble from the Coupled Model Inter-comparison Project, Phase 5 (CMIP5) and the CMIP5 atmosphere-only counterparts (AMIP5). The use of HadAM3P allows for huge ensembles to be computed relatively fast, thereby providing unique insights into the dynamics of extremes. The analysis focuses on mid Northern Latitudes (primarily Europe) during winter, and is compared with ERA-Interim reanalysis. The tri-modal Atlantic eddy-driven jet distribution is remarkably well captured in HadAM3P, but not so in the CMIP5 or AMIP5 multi-model mean, although individual models fare better. The well known underestimation of blocking in the Atlantic region is apparent in CMIP5 and AMIP5, and also, to a lesser extent, in HadAM3P. Pacific blocking features are well produced in all modeling initiatives. Blocking duration is biased towards models reproducing too many short-lived events in all three modelling systems. Associated storm tracks are too zonal over the Atlantic in the CMIP5 and AMIP5 ensembles, but better simulated in HadAM3P with the exception of being too weak over Western Europe. In all cases, the CMIP5 and AMIP5 performances were almost identical, suggesting that the biases in atmospheric modes considered here are not strongly coupled to SSTs, and perhaps other model characteristics such as resolution are more important. For event attribution studies, it is recommended that rather than taking statistics over the entire CMIP5 or AMIP5 available models, only models capable of producing the relevant dynamical phenomena be employed.

  16. Under-Ice Operations with AUVS in High Latitudes

    NASA Astrophysics Data System (ADS)

    Ferguson, J.; Kaminski, C. D.

    2012-12-01

    In 2010 and 2011, ISE Explorer Autonomous Underwater Vehicles (AUV), built for Natural Resources Canada (NRCan), were deployed to Canada's high Arctic. The mission was to undertake under-ice bathymetric surveys supporting Canada's submission under the United Nations Convention on the Law of the Sea (UNCLOS). During these deployments several under-ice records were broken and several new technologies were demonstrated. The NRCan AUV is a 5000 meter depth rated vehicle, with several innovative additions to make it suitable for arctic survey work. Most notable are a depth rated variable ballast system, a 1300 Hz long-range homing system, and under-ice charging and data transfer capabilities. The Explorer's range was extended to approximately 450 km by adding a hull section to accommodate extra batteries. The scientific payload onboard included a Seabird SBE49 Conductivity-Temperature-Depth (CTD) sensor, Knudsen singlebeam echosounder, and a Kongsberg Simrad EM2000 multibeam echosounder. In 2010, operations were conducted from an ice camp near Borden Island (78°14'N, 112°39'W) operating through an ice hole. Following several test missions, the AUV spent 10 days surveying under ice before being successfully recovered. In total, close to 1100 km of under-ice survey was undertaken at depths to 3160 meters. A further set of operations was carried out in August and September 2011 from the Canadian Icebreaker CCGS Louis St. Laurent operating with the American Icebreaker USCGS Healy. Here the operations were much further north to latitudes of 88°30' N and to depths of 3500 meters. In this paper, the 2010 ice camp and the 2011 icebreaker missions are described, with an outline of technology developments that were undertaken, the preparations that were necessary for the success of the missions and finally, the outcome of the missions themselves.

  17. Study of the low latitude ionospheric turbulence observed by DEMETER

    NASA Astrophysics Data System (ADS)

    Li, F.; Lefeuvre, F.; Parrot, M.

    Following previous works from Molchanov et al 2002a 2002b 2004a 2004b and Hobara et al 2005 data bases dedicated to the systematic analysis of the power and spectral indices of the electric field have been elaborated Two data bases are considered one for the survey mode and the other for the burst mode For the survey mode estimations of the turbulence parameters are performed from the 8 first Fourier components of the averaged power spectra 0-150 Hz frequency band A single slope power law model f - alpha is assumed A quality factor allows to test that hypothesis For the burst mode the power spectra are derived from the waveforms One and two slope models are systematically tested Results are presented and the possibility to use these data bases for correlation with seismic activity is discussed Y Hobara F Lefeuvre M Parrot and O A Molchanov Low-latitude ionospheric turbulence observed by Aureol-3 satellite Annales Geophysicae 23 1259--1270 2005 Molchanov O A Hayakawa M Afonin V V Akentieva O A and Mareev E A Possible influence of seismicity by gravity waves on ionospheric equatorial anomaly from data of IK-24 satellite 1 Search for idea of seismo-ionosphere coupling Seismo Electromagnetics Lithosphere-Atmosphere-Ionosphere Coupling edited by Hayakawa M and Molchanov O A TERRAPUB Tokyo 275--285 2002a Molchanov O A Hayakawa M Afonin V V Akentieva O A Mareev E A and Trakhtengerts V Yu Possible influence of seismicity by gravity waves on ionospheric

  18. Crossing latitudes--long-distance tracking of an apex predator.

    PubMed

    Ferreira, Luciana C; Thums, Michele; Meeuwig, Jessica J; Vianna, Gabriel M S; Stevens, John; McAuley, Rory; Meekan, Mark G

    2015-01-01

    Tiger sharks (Galeocerdo cuvier) are apex predators occurring in most tropical and warm temperate marine ecosystems, but we know relatively little of their patterns of residency and movement over large spatial and temporal scales. We deployed satellite tags on eleven tiger sharks off the north-western coast of Western Australia and used the Brownian Bridge kernel method to calculate home ranges and analyse movement behaviour. One individual recorded one of the largest geographical ranges of movement ever reported for the species, travelling over 4000 km during 517 days of monitoring. Tags on the remainder of the sharks reported for shorter periods (7-191 days). Most of these sharks had restricted movements and long-term (30-188 days) residency in coastal waters in the vicinity of the area where they were tagged. Core home range areas of sharks varied greatly from 1166.9 to 634,944 km2. Tiger sharks spent most of their time in water temperatures between 23°-26°C but experienced temperatures ranging from 6°C to 33°C. One shark displayed seasonal movements among three distinct home range cores spread along most of the coast of Western Australia and generalized linear models showed that this individual had different patterns of temperature and depth occupancy in each region of the coast, with the highest probability of residency occurring in the shallowest areas of the coast with water temperatures above 23°C. These results suggest that tiger sharks can migrate over very large distances and across latitudes ranging from tropical to the cool temperate waters. Such extensive long-term movements may be a key element influencing the connectivity of populations within and among ocean basins. PMID:25671609

  19. Sponge bioerosion accelerated by ocean acidification across species and latitudes?

    NASA Astrophysics Data System (ADS)

    Wisshak, M.; Schönberg, C. H. L.; Form, A.; Freiwald, A.

    2014-06-01

    In many marine biogeographic realms, bioeroding sponges dominate the internal bioerosion of calcareous substrates such as mollusc beds and coral reef framework. They biochemically dissolve part of the carbonate and liberate so-called sponge chips, a process that is expected to be facilitated and accelerated in a more acidic environment inherent to the present global change. The bioerosion capacity of the demosponge Cliona celata Grant, 1826 in subfossil oyster shells was assessed via alkalinity anomaly technique based on 4 days of experimental exposure to three different levels of carbon dioxide partial pressure ( pCO2) at ambient temperature in the cold-temperate waters of Helgoland Island, North Sea. The rate of chemical bioerosion at present-day pCO2 was quantified with 0.08-0.1 kg m-2 year-1. Chemical bioerosion was positively correlated with increasing pCO2, with rates more than doubling at carbon dioxide levels predicted for the end of the twenty-first century, clearly confirming that C. celata bioerosion can be expected to be enhanced with progressing ocean acidification (OA). Together with previously published experimental evidence, the present results suggest that OA accelerates sponge bioerosion (1) across latitudes and biogeographic areas, (2) independent of sponge growth form, and (3) for species with or without photosymbionts alike. A general increase in sponge bioerosion with advancing OA can be expected to have a significant impact on global carbonate (re)cycling and may result in widespread negative effects, e.g. on the stability of wild and farmed shellfish populations, as well as calcareous framework builders in tropical and cold-water coral reef ecosystems.

  20. Two dimensional hydrodynamic modeling of a high latitude braided river

    NASA Astrophysics Data System (ADS)

    Humphries, E.; Pavelsky, T.; Bates, P. D.

    2014-12-01

    Rivers are a fundamental resource to physical, ecologic and human systems, yet quantification of river flow in high-latitude environments remains limited due to the prevalence of complex morphologies, remote locations and sparse in situ monitoring equipment. Advances in hydrodynamic modeling and remote sensing technology allow us to address questions such as: How well can two-dimensional models simulate a flood wave in a highly 3-dimensional braided river environment, and how does the structure of such a flood wave differ from flow down a similar-sized single-channel river? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate flood waves, discharge, water surface height, and velocity measurements over a ~70 km reach of the Tanana River in Alaska. In order to use LISFLOOD-FP a digital elevation model (DEM) fused with detailed bathymetric data is required. During summer 2013, we surveyed 220,000 bathymetric points along the study reach using an echo sounder system connected to a high-precision GPS unit. The measurements are interpolated to a smooth bathymetric surface, using Topo to Raster interpolation, and combined with an existing five meter DEM (Alaska IfSAR) to create a seamless river terrain model. Flood waves are simulated using varying complexities in model solvers, then compared to gauge records and water logger data to assess major sources of model uncertainty. Velocity and flow direction maps are also assessed and quantified for detailed analysis of braided channel flow. The most accurate model output occurs with using the full two-dimensional model structure, and major inaccuracies appear to be related to DEM quality and roughness values. Future work will intercompare model outputs with extensive ground measurements and new data from AirSWOT, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.

  1. High northern latitude temperature extremes, 1400-1999

    NASA Astrophysics Data System (ADS)

    Tingley, M. P.; Huybers, P.; Hughen, K. A.

    2009-12-01

    There is often an interest in determining which interval features the most extreme value of a reconstructed climate field, such as the warmest year or decade in a temperature reconstruction. Previous approaches to this type of question have not fully accounted for the spatial and temporal covariance in the climate field when assessing the significance of extreme values. Here we present results from applying BARSAT, a new, Bayesian approach to reconstructing climate fields, to a 600 year multiproxy temperature data set that covers land areas between 45N and 85N. The end result of the analysis is an ensemble of spatially and temporally complete realizations of the temperature field, each of which is consistent with the observations and the estimated values of the parameters that define the assumed spatial and temporal covariance functions. In terms of the spatial average temperature, 1990-1999 was the warmest decade in the 1400-1999 interval in each of 2000 ensemble members, while 1995 was the warmest year in 98% of the ensemble members. A similar analysis at each node of a regular 5 degree grid gives insight into the spatial distribution of warm temperatures, and reveals that 1995 was anomalously warm in Eurasia, whereas 1998 featured extreme warmth in North America. In 70% of the ensemble members, 1601 featured the coldest spatial average, indicating that the eruption of Huaynaputina in Peru in 1600 (with a volcanic explosivity index of 6) had a major cooling impact on the high northern latitudes. Repeating this analysis at each node reveals the varying impacts of major volcanic eruptions on the distribution of extreme cooling. Finally, we use the ensemble to investigate extremes in the time evolution of centennial temperature trends, and find that in more than half the ensemble members, the greatest rate of change in the spatial mean time series was a cooling centered at 1600. The largest rate of centennial scale warming, however, occurred in the 20th Century in

  2. Ionospheric F2 layer responses to total solar eclipses at low and mid-latitude

    NASA Astrophysics Data System (ADS)

    Adekoya, B. J.; Chukwuma, V. U.

    2016-02-01

    In this article, we presented ionospheric F2 responses to total solar eclipses on the basis of the data obtained from five (5) equatorial/low-latitude and twenty-seven (27) mid-latitude ionosonde stations, which are within the obscuration percentage of 50-100% of the path of the total solar eclipses progression. Statistically, the diurnal changes in the F2 layer peak height hmF2 and electron density NmF2, as well as the latitudinal and hemispheric dependence and the contribution of both magnetic and solar activities during the eclipse window were investigated. The estimation of the solar ionizing radiation that remains unmasked during the eclipse window was as well carried out. Plasma diffusion processes dominate the F2 region plasma, and determine the height at which the F2 peak formed at mid-latitude. The electron density decreased during the eclipse window, closely following the variation in the local solar radiation at the mid-latitude. However, at equatorial/low-latitude, the plasma distribution during total solar eclipse depends on combine effect of solar radiation and the background nighttime ionospheric irregularities mechanism. The uncertainty level of the estimated solar ionizing radiation was <±0.3 at mid-latitude and greater±0.3 at equatorial/low-latitude. Their correlation ranges from (0.42-0.99). The ionospheric F2 layer eclipse effect is latitudinal and hemispheric dependent. The effect is largest at mid-latitude and relatively small at equatorial/low-latitudes. It is more pronounced at the equator, and decreases toward the equatorial ionospheric anomaly (EIA) region. The better correlation of 0.5840 and 0.6435 between geographic latitude and E(t) and electron density justifies the latitudinal relationship. The increase in percentage deviation of electron density increases with latitude and delay time (∆T) in the northern hemisphere of the mid-latitude. Conversely, in the southern hemisphere the percentage deviation decreases with an increase in

  3. On the relationship between extreme and mean values in total ozone and atmospheric dynamics and volcanic eruptions at mid-latitudes

    NASA Astrophysics Data System (ADS)

    Holawe, F.; Rieder, H. E.; Frossard, L.; Ribatet, M.; Maeder, J. A.; Staehelin, J.; Peter, T.; Davison, A. C.; Weihs, P.

    2011-12-01

    " together with the state of the AAO leads to a suppression of the Mt. Pinatubo signal at Southern mid-latitudes. The Southern polar vortex was shifted towards the Antarctic Peninsula and the Southern parts of South America in 1991, the first year of the Pinatubo eruption, which might explain the negative coefficient estimates found in this region. In the following years (1992-93) the Southern ozone "collar" was displaced and richer than normal, which can be related to the negative mode of the AAO and its relation to the wave activity in tropical regions leading to a strengthening of the Lagrangian mean circulation and thereby to enhanced transport of ozone from the tropics to extra-tropics and to a strong blocking/separation between the vortex and "collar" area.

  4. 12. VIEW LOOKING SOUTH FROM PAVILION, SHOWING SOUTH ENTRANCE HOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW LOOKING SOUTH FROM PAVILION, SHOWING SOUTH ENTRANCE HOUSE, SOUTH WING, AND ENGINE HOUSE - Fairmount Waterworks, East bank of Schuylkill River, Aquarium Drive, Philadelphia, Philadelphia County, PA

  5. Comparative sequence stratigraphy of low-latitude versus high-latitude lacustrine rift basins: Seismic data examples from the East African and Baikal rifts

    USGS Publications Warehouse

    Scholz, C.A.; Moore, T.C.; Hutchinson, D.R.; Golmshtok, A. Ja; Klitgord, Kim D.; Kurotchkin, A.G.

    1998-01-01

    Lakes Baikal, Malawi and Tanganyika are the world's three largest rift valley lakes and are the classic modem examples of lacustrine rift basins. All the rift lakes are segmented into half-graben basins, and seismic reflection datasets reveal how this segmentation controls the filling of the rift basins through time. In the early stages of rifting, basins are fed primarily by flexural margin and axial margin drainage systems. At the climax of syn-rift sedimentation, however, when the basins are deeply subsided, almost all the margins are walled off by rift shoulder uplifts, and sediment flux into the basins is concentrated at accommodation zone and axial margin river deltas. Flexural margin unconformities are commonplace in the tropical lakes but less so in high-latitude Lake Baikal. Lake levels are extremely dynamic in the tropical lakes and in low-latitude systems in general because of the predominance of evaporation in the hydrologic cycle in those systems. Evaporation is minimized in relation to inflow in the high-latitude Lake Baikal and in most high-latitude systems, and consequently, major sequence boundaries tend to be tectonically controlled in that type of system. The acoustic stratigraphies of the tropical lakes are dominated by high-frequency and high-amplitude lake level shifts, whereas in high-latitude Lake Baikal, stratigraphic cycles are dominated by tectonism and sediment-supply variations.

  6. North-south asymmetry of eolian features in Martian polar regions - Analysis based on crater-related wind markers

    NASA Technical Reports Server (NTRS)

    Thomas, P.

    1981-01-01

    Crater-related wind markers in the north and south polar regions of Mars are analyzed in a study of possible north-south asymmetries in wind activity. Features including crater splotches and associated streaks, and depositional, erosional, frost and frost-sediment streaks were identified and analyzed as wind direction indicators on Viking Orbiter and Mariner 9 images of areas poleward of + or - 40 deg latitude. The wind streaks reveal eolian activity at present to be strongest in the north in winter and in the south in spring, due to the hemispherical asymmetry in climate. The alignment of the more massive intercrater dune fields with the presently strongest wind may reflect a longer-term asymmetry in spring flows, as the reorientation times of the dunes exceeded the period of climate asymmetry cycles. Finally, a wider distribution of dune latitudes in the southern polar region is noted to be suggestive of the greater effectiveness of windflow from the south pole.

  7. Seasonal Evolution of Titan's South Pole 220 cm-1 Cloud

    NASA Astrophysics Data System (ADS)

    Jennings, Donald

    2016-06-01

    A cloud of ices that had been seen only in Titan's north during winter began to emerge at the south pole in 2012. Discovered by Voyager IRIS as an emission feature at 220 cm-1, the cloud has been studied extensively in both the north and south by Cassini CIRS. The spectral feature acts as a tracer of the seasonal changes at Titan's poles, relating to evolving composition, temperature structure and dynamics. Although candidates have been proposed, the chemical makeup of the cloud has never been identified. The cloud is composed of condensates derived from gases created at high altitude and transported to the cold, shadowed pole. In the north the cloud has diminished gradually over the Cassini mission as Titan has transitioned from winter to spring. The southern cloud, on the other hand, grew rapidly after 2012. By late 2014 it had developed a complex ring structure that was confined to latitudes poleward of 70°S within the deep temperature well that had formed at the south pole [1]. The location of the cloud coincides in latitude with the HCN cloud reported by ISS and VIMS [2,3]. CIRS also saw enhanced gas emissions at those latitudes [4]. When it first formed, the cloud was abundant at altitudes as high as 250 km, while later it was found mostly at 100-150 km, suggesting that the material that had been deposited from above had gathered at the lower altitudes. Radiance from the southern cloud increased until mid-2015 and since then has decreased. The cloud may be transitioning to the more uniform hood morphology familiar in the north. Taking the north and south together, by the end of the Cassini mission in 2017 we will have observed almost an entire seasonal cycle of the ice cloud.

  8. Vitamin D Status in South Africa and Tuberculosis.

    PubMed

    Abhimanyu; Meyer, Vanessa; Jeffery, Tamsyn Jacki; Bornman, Liza

    2015-12-01

    According to the World Health Organisation South Africa has the third highest tuberculosis (TB) incidence in the world, with an estimated 60 % incident cases having both TB and HIV. The South African National Tuberculosis Association (SANTA) recognized the importance of nutrition in the prevention and management of TB by including feeding schemes in community outreach programs. Vitamin D enhances innate immunity against mycobacterial infection through the antimicrobial peptide, cathelicidin. We reviewed studies on vitamin D status, its link with TB, and potential use in therapy in multiethnic South Africa with sunlight as primary source of vitamin D. Ethnicity, season, disease state, latitude, and urbanization are critical factors to be considered in vitamin D supplementation for prevention and treatment of TB.

  9. Ionospheric and magnetic signatures of a high speed solar wind in low latitudes on 13 October 2012

    NASA Astrophysics Data System (ADS)

    Migoya-Orue, Y. O.; Azzouzi, I.; Coisson, P.; Amory Mazaudier, C.; Fleury, R.; Radicella, S. M.

    2016-03-01

    This paper presents the impact of a fast solar wind on the ionosphere, in low latitudes, on 13 October 2012. On that day, the high speed solar wind reached the Earth around 16:00UT, during the recovery phase of a geomagnetic storm which started around 00:00UT. The solar wind speed was determined to be 580km/s, on the same day, around 17:00UT. Its impact was observed in low and equatorial latitudes, in Africa and in Eastern South America, on the F layer and on the geomagnetic field variations. Through the analysis of magnetic indices, ionosonde characteristics and the horizontal component of the geomagnetic field, we found that the 13 October 2012 event exhibited a local impact, affecting the observatories situated in a longitude sector between 315°E and 45°E. Particularly, the F layer in Africa (observed by the ionosonde at Ascension Island) did not present any lift, and there was a delay for approximately two hours of the ascent of the F layer in America (the ionosonde at Fortaleza). In this case, there was an evident inhibition on the development of spread F at the time of the Pre Reversal Enhancement (PRE) in Africa and Eastern America, while the ionograms of the days before and after presented clear spread F traces. The disturbances of the ionospheric equivalent electric current (Diono) deduced from the variations of the geomagnetic field at M'Bour near Dakar (Africa) and at Kourou (Eastern America) exhibited on the dayside, an anti Sq current which is signature of the influence of the Disturbance Dynamo Electric Field (DDEF).

  10. SEX RATIO VARIATION IN THE LESSONIA NIGRESCENS COMPLEX (LAMINARIALES, PHAEOPHYCEAE): EFFECT OF LATITUDE, TEMPERATURE, AND MARGINALITY(1).

    PubMed

    Valeria Oppliger, Luz; Correa, Juan A; Faugeron, Sylvain; Beltrán, Jessica; Tellier, Florence; Valero, Myriam; Destombe, Christophe

    2011-02-01

    Little is known about variation of sex ratio, the proportion of males to females, in natural populations of seaweed, though it is a major determinant of the mating system. The observation of sexual chromosomes in kelps suggested that sex is partly genetically determined. However, it is probably not purely genetic since the sex ratio can be modified by environmental factors such as salinity or temperature. In this paper, sex ratio variation was studied in the kelp Lessonia nigrescens Bory complex, recently identified as two cryptic species occurring along the Chilean coast: one located north and the other south of the biogeographic boundary at latitude 29°-30° S. The life cycle of L. nigrescens is characterized by an alternation of microscopic haploid gametophytic individuals and large macroscopic fronds of diploid sporophytes. The sex ratio was recorded in progenies from 241 sporophytic individuals collected from 13 populations distributed along the Chilean coast in order (i) to examine the effect of an environmental gradient coupled with latitude, and (ii) to compare marginal populations to central populations of the two species. In addition, we tested the hypothesis that the sex ratios of the two cryptic species would be affected differently by temperature. First, our results demonstrate that sex ratio seems to be mainly genetically determined and temperature can significantly modify it. Populations of the northern species showed a lower frequency of males at 14°C than at 10°C, whereas populations of the southern species showed the opposite pattern. Second, both species displayed an increased variation in sex ratio at the range limits. This greater variation at the margins could be due either to differential mortality between sexes or to geographic parthenogenesis (asexual reproduction).

  11. Does greater thermal plasticity facilitate range expansion of an invasive terrestrial anuran into higher latitudes?

    PubMed Central

    Winwood-Smith, Hugh S.; Alton, Lesley A.; Franklin, Craig E.; White, Craig R.

    2015-01-01

    Temperature has pervasive effects on physiological processes and is critical in setting species distribution limits. Since invading Australia, cane toads have spread rapidly across low latitudes, but slowly into higher latitudes. Low temperature is the likely factor limiting high-latitude advancement. Several previous attempts have been made to predict future cane toad distributions in Australia, but understanding the potential contribution of phenotypic plasticity and adaptation to future range expansion remains challenging. Previous research demonstrates the considerable thermal metabolic plasticity of the cane toad, but suggests limited thermal plasticity of locomotor performance. Additionally, the oxygen-limited thermal tolerance hypothesis predicts that reduced aerobic scope sets thermal limits for ectotherm performance. Metabolic plasticity, locomotor performance and aerobic scope are therefore predicted targets of natural selection as cane toads invade colder regions. We measured these traits at temperatures of 10, 15, 22.5 and 30°C in low- and high-latitude toads acclimated to 15 and 30°C, to test the hypothesis that cane toads have adapted to cooler temperatures. High-latitude toads show increased metabolic plasticity and higher resting metabolic rates at lower temperatures. Burst locomotor performance was worse for high-latitude toads. Other traits showed no regional differences. We conclude that increased metabolic plasticity may facilitate invasion into higher latitudes by maintaining critical physiological functions at lower temperatures. PMID:27293695

  12. Does greater thermal plasticity facilitate range expansion of an invasive terrestrial anuran into higher latitudes?

    PubMed

    Winwood-Smith, Hugh S; Alton, Lesley A; Franklin, Craig E; White, Craig R

    2015-01-01

    Temperature has pervasive effects on physiological processes and is critical in setting species distribution limits. Since invading Australia, cane toads have spread rapidly across low latitudes, but slowly into higher latitudes. Low temperature is the likely factor limiting high-latitude advancement. Several previous attempts have been made to predict future cane toad distributions in Australia, but understanding the potential contribution of phenotypic plasticity and adaptation to future range expansion remains challenging. Previous research demonstrates the considerable thermal metabolic plasticity of the cane toad, but suggests limited thermal plasticity of locomotor performance. Additionally, the oxygen-limited thermal tolerance hypothesis predicts that reduced aerobic scope sets thermal limits for ectotherm performance. Metabolic plasticity, locomotor performance and aerobic scope are therefore predicted targets of natural selection as cane toads invade colder regions. We measured these traits at temperatures of 10, 15, 22.5 and 30°C in low- and high-latitude toads acclimated to 15 and 30°C, to test the hypothesis that cane toads have adapted to cooler temperatures. High-latitude toads show increased metabolic plasticity and higher resting metabolic rates at lower temperatures. Burst locomotor performance was worse for high-latitude toads. Other traits showed no regional differences. We conclude that increased metabolic plasticity may facilitate invasion into higher latitudes by maintaining critical physiological functions at lower temperatures.

  13. A computer program for converting rectangular coordinates to latitude-longitude coordinates

    USGS Publications Warehouse

    Rutledge, A.T.

    1989-01-01

    A computer program was developed for converting the coordinates of any rectangular grid on a map to coordinates on a grid that is parallel to lines of equal latitude and longitude. Using this program in conjunction with groundwater flow models, the user can extract data and results from models with varying grid orientations and place these data into grid structure that is oriented parallel to lines of equal latitude and longitude. All cells in the rectangular grid must have equal dimensions, and all cells in the latitude-longitude grid measure one minute by one minute. This program is applicable if the map used shows lines of equal latitude as arcs and lines of equal longitude as straight lines and assumes that the Earth 's surface can be approximated as a sphere. The program user enters the row number , column number, and latitude and longitude of the midpoint of the cell for three test cells on the rectangular grid. The latitude and longitude of boundaries of the rectangular grid also are entered. By solving sets of simultaneous linear equations, the program calculates coefficients that are used for making the conversion. As an option in the program, the user may build a groundwater model file based on a grid that is parallel to lines of equal latitude and longitude. The program reads a data file based on the rectangular coordinates and automatically forms the new data file. (USGS)

  14. Modeling the above and below ground carbon and nitrogen stocks in northern high latitude terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    ElMasri, B.; Jain, A. K.

    2012-12-01

    Climate change is expected to cause warming in the northern high latitudes, but it is still uncertain what the respond of the northern high latitudes ecosystem will be to such warming. One of the biggest scientific questions is to determine whether northern high latitude ecosystem are or will act as a terrestrial carbon sink or source. Therefore, it is essential to understand and quantify the biogeochemical cycle of the northern high latitude ecosystems in order to predict their respond to climate change. Using a land surface model, the Integrated Science Assessment Model (ISAM) with its coupled carbon-nitrogen cycle, we provide a detail quantification of the carbon and nitrogen in the vegetation pools and the soil carbon for the northern high latitude ecosystems. We focus on soil carbon and vegetation carbon and nitrogen, though we provide results for gross primary production (GPP), autotrophic respiration (Ra), net primary production (NPP), net ecosystem exchange (NEE), and heterotrophic respiration (Rh). In addition, we examine the effect of nitrogen limitation on the carbon fluxes and soil carbon. We present the results for several flux tower sites representative of the tundra and the boreal ecosystems as well as for the northern high latitude region. Our results provide a comprehensive assessment of below and above ground carbon and nitrogen pools in the northern high latitude and the model calibrated parameters can be used to improve the results of other land surface models.

  15. Extrapair paternity rates vary with latitude and elevation in emberizid sparrows.

    PubMed

    Bonier, Frances; Eikenaar, Cas; Martin, Paul R; Moore, Ignacio T

    2014-01-01

    Mating systems can vary among species and populations and thus influence evolutionary trajectories, ecological traits, and population demography. The siring of offspring by an extrapair male, or extrapair paternity (EPP), is a widespread and varied phenomenon in all vertebrate classes. However, we do not understand all of the factors associated with variation in EPP rates. The breeding synchrony hypothesis suggests that EPP rates should increase with latitude and elevation, whereas the paternal care hypothesis predicts that EPP rates should decrease with elevation. To address these hypotheses, we investigated how population EPP rates vary over elevation and latitude in emberizid sparrows. In comparative analyses including the effects of phylogeny, the relationship between EPP rates and elevation depended on latitude. EPP rates were greater in higher-latitude populations. But within higher-latitude populations, EPP rates decreased with increasing elevation. These findings provide support for both the breeding synchrony and paternal care hypotheses, suggesting that in lower-latitude, higher-elevation populations, the need for male parental care does not outweigh the benefits of seeking extrapair fertilizations in populations with relatively synchronous breeding. In contrast, at higher-latitude, higher-elevation sites, the need for male parental care is greater and might drive lower rates of extrapair mating despite highly synchronous breeding.

  16. On an energy-latitude dispersion pattern of ion precipitation potentially associated with magnetospheric EMIC waves

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Donovan, E.; Ni, B.; Yue, C.; Jiang, F.; Angelopoulos, V.

    2014-10-01

    Ion precipitation mechanisms are usually energy dependent and contingent upon magnetospheric/ionospheric locations. Therefore, the pattern of energy-latitude dependence of ion precipitation boundaries seen by low Earth orbit satellites can be implicative of the mechanism(s) underlying the precipitation. The pitch angle scattering of ions led by the field line curvature, a well-recognized mechanism of ion precipitation in the central plasma sheet (CPS), leads to one common pattern of energy-latitude dispersion, in that the ion precipitation flux diminishes at higher (lower) latitudes for protons with lower (higher) energies. In this study, we introduce one other systematically existing pattern of energy-latitude dispersion of ion precipitation, in that the lower energy ion precipitation extends to lower latitude than the higher-energy ion precipitation. Via investigating such a "reversed" energy-latitude dispersion pattern, we explore possible mechanisms of ion precipitation other than the field line curvature scattering. We demonstrate via theories and simulations that the H-band electromagnetic ion cyclotron (EMIC) wave is capable of preferentially scattering keV protons in the CPS and potentially leads to the reversed energy-latitude dispersion of proton precipitation. We then present detailed event analyses and provide support to a linkage between the EMIC waves in the equatorial CPS and ion precipitation events with reversed energy-latitude dispersion. We also discuss the role of ion acceleration in the topside ionosphere which, together with the CPS ion population, may result in a variety of energy-latitude distributions of the overall ion precipitation.

  17. Middle Miocene Paleoceanography in the Southern High-Latitudes Off Tasmania: Stable Isotope Records from ODP Sites 1170 and 1172

    NASA Astrophysics Data System (ADS)

    Ennyu, A.; Arthur, M. A.

    2002-12-01

    The middle Miocene encompasses one of the major steps in a global cooling trend towards the permanent establishment of east Antarctica ice sheet (EAIS), as inferred from the worldwide ca. 1\\permil increase in benthic foraminiferal δ18O. It has been suggested that an intensified Antarctic Circumpolar Current (ACC) prompted the mid-Miocene cooling, thereby increasing the meridional thermal gradient in the southern high-latitudes, and, ultimately, accumulation of the EAIS. At the same time, the southwest Pacific sector is thought to have ameliorated regionally through the incursion of a warm western boundary current, i.e., the proto-East Australian Current (EAC). In order to test the potentially contrasting effects of the EAC and ACC on evolution of the meridional thermal gradient in the southern high-latitudes across the middle Miocene climate transition, we have reconstructed near-surface paleohydrography by measuring δ18O and δ13C of planktic foraminifer Globigerina bulloides and Orbulina universa and bulk fine-fraction carbonates from ODP Sites 1170 (South Tasman Rise; Indian Ocean sector) and 1172 (East Tasman Plateau; Pacific sector) off Tasmania for the interval 8-20 Ma. Our results show no significant differences in the δ18O values between Sites 1170 and 1172. This suggests that the both sites were influenced by the same water mass in the middle Miocene. Long-term trends in the fine-fraction δ18O from the both sites indicate a signal of the early middle Miocene "climatic optimum" (MMCO) and the subsequent EAIS positive δ18O shift, and are similar to those reported from other lower latitude sites. In contrast, the planktic foraminiferal δ18O records from Sites 1170 and 1172 do not exhibit significant long-term trends, with values ranging from ca. 0.6 to 1.6\\permil. This implies that near-surface seawater temperatures at Sites 1170 and 1172 increased across the middle Miocene EAIS event (after ca. 14.5 Ma), as assuming that the mid-Miocene increase in

  18. The mesoscale precipitation distribution in mid-latitude continental regions: observational uncertainty and evaluation of 25-km global model simulations.

    NASA Astrophysics Data System (ADS)

    Vidale, P. L.; Schiemann, R.; Demory, M. E.; Roberts, C. J.

    2014-12-01

    Mid-latitude precipitation over land exhibits a high degree of variability due to the complex interaction of governing atmospheric processes with coastlines, the heterogeneous land surface, and orography. General circulation models (GCMs) have traditionally shown limited ability in capturing variability in the mesoscale range (here ~50-500 km), due to their low resolution. Recent advances in resolution have provided ensembles of multidecadal climate simulations with GCMs using ~25 km grid spacing. Here, we assess this class of GCM simulations, from the UPSCALE (UK on PrACE - weather-resolving Simulations of Climate for globAL Environmental risk) campaign. Increased model resolution also poses new challenges to the observational datasets used to evaluate models. Global gridded data products (e.g. from the Global Precipitation Climatology Project, GPCP) are invaluable for assessing large-scale precipitation features, but may not sufficiently resolve mesoscale structures. In the absence of alternative estimates, the intercomparison of specialised, regional observational datasets may be the only way to gain insight into the uncertainties associated with these observations. We focus on three mid-latitude continental regions where gridded precipitation observations based on higher-density gauge networks are available, complementing the global data sets: Europe (with a particular emphasis on the Alps), South and East Asia, and the continental US. Additional motivation, and opportunity, arises from continuing efforts to quantify the components of the global radiation budget and water cycle. Recent estimates based on radiation measurements suggest that the global mean precipitation/evaporation may be up to 10 Wm-2 (about 0.35 mm day-1) larger than the estimate obtained from GPCP. While the main part of this discrepancy is thought to be due to the underestimation of remotely-sensed ocean precipitation, there is also considerable uncertainty about 'unobserved' precipitation

  19. In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion

    NASA Technical Reports Server (NTRS)

    Fahey, D. W.; Kawa, S. R.; Woodbridge, E. L.; Tin, P.; Wilson, J. C.; Jonsson, H. H.; Dye, J. E.; Baumgardner, D.; Borrmann, S.; Toohey, D. W.

    1993-01-01

    In situ measurements of stratospheric sulphate aerosol, reactive nitrogen and chlorine concentrations at middle latitudes confirm the importance of aerosol surface reactions that convert active nitrogen to a less active, reservoir form. This makes mid-latitude stratospheric ozone less vulnerable to active nitrogen and more vulnerable to chlorine species. The effect of aerosol reactions on active nitrogen depends on gas phase reaction rates, so that increases in aerosol concentration following volcanic eruptions will have only a limited effect on ozone depletion at these latitudes.

  20. Mid-latitude Ozone and CIO Trends Based on Two Years of UARS MLS Data

    NASA Technical Reports Server (NTRS)

    Froidevaux, L.; Waters, J. W.; Manney, G. L.; Read, W. G.

    1993-01-01

    Variations in ozone and chlorine monoxide observed by the Microwave Limb Sounder (MLS) abroad the Upper Atmosphere Research Satellite (UARS) during the first two years of operation are presented. We focus on mid-latitudes, where significant ozone decreases are observed in the lower stratosphere, and we offer some comparisons with other data sets. We will attempt to place the mid-latitude changes in context with changes observed at other latitudes. Possible correlations between the MLS ozone and CIO observations will be discussed.

  1. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  2. [Peculiarities of circadian rhythms in plants from different geographical latitudes].

    PubMed

    Mayer, W

    1966-09-01

    1 Two species of plants (Taraxacum arcticum and Arnica angustifolia), collected in Spitsbergen (geogr. latitude 76-80 degrees) exhibit endogenous circadian leaf movements but also movements with shorter periods. Astragalus frigidus, A. alpinus and Hedysarum hedysaroides, collected in arctic regions of continental Europe, also show endogenous diurnal leaf movements. 2. In most of the species tested, there was no difference in the length of the free running periods of plants from arctic and Central-European regions. This is also the case when individuals of the same species collected in different regions are compared. However, in Taraxacum arcticum the period is shorter than in T. officinale In general, under constant conditions the circadian oscillations of arctic plants persist for a shorter period than those of other plants. 3. The free running periods of several of the investigated species from tropical regions are much longer than 24 hours, i.e., much longer than those of species from Central-European and arctic regions. 4. The free running periods of several tropical species are temperature-independent (Erythrina senegalensis, Albizzia lophanta, Rhynchosia memmonia, Vigna catjang, Phaseolus multiflorus). In other tropical species, however, the periods decrease rather strongly with increasing temperature (Phaseolus mungo, Canavalia obtusifolia, Clitoria ternatea, Dolichos lablab, Vigna sesquipedalis, Dolichos zebra). The temperature does not influence the amplitudes in Phaseolus mungo and Vigna sesquipedalis, but it strongly influences the amplitudes in Erythrina senegalensis, in LD-cycles as well as in continuous light. 5. The arctic plant Astragalus frigidus still shows free running oscillations at 12°C, whereas several tropical species oscillate only at temperatures above 17°C. 6. The differences in the periods of tropical and non-tropical species (see under [3]) disappear if the plants are compared not at the same temperature but at temperatures which are

  3. [Peculiarities of circadian rhythms in plants from different geographical latitudes].

    PubMed

    Mayer, W

    1966-09-01

    1 Two species of plants (Taraxacum arcticum and Arnica angustifolia), collected in Spitsbergen (geogr. latitude 76-80 degrees) exhibit endogenous circadian leaf movements but also movements with shorter periods. Astragalus frigidus, A. alpinus and Hedysarum hedysaroides, collected in arctic regions of continental Europe, also show endogenous diurnal leaf movements. 2. In most of the species tested, there was no difference in the length of the free running periods of plants from arctic and Central-European regions. This is also the case when individuals of the same species collected in different regions are compared. However, in Taraxacum arcticum the period is shorter than in T. officinale In general, under constant conditions the circadian oscillations of arctic plants persist for a shorter period than those of other plants. 3. The free running periods of several of the investigated species from tropical regions are much longer than 24 hours, i.e., much longer than those of species from Central-European and arctic regions. 4. The free running periods of several tropical species are temperature-independent (Erythrina senegalensis, Albizzia lophanta, Rhynchosia memmonia, Vigna catjang, Phaseolus multiflorus). In other tropical species, however, the periods decrease rather strongly with increasing temperature (Phaseolus mungo, Canavalia obtusifolia, Clitoria ternatea, Dolichos lablab, Vigna sesquipedalis, Dolichos zebra). The temperature does not influence the amplitudes in Phaseolus mungo and Vigna sesquipedalis, but it strongly influences the amplitudes in Erythrina senegalensis, in LD-cycles as well as in continuous light. 5. The arctic plant Astragalus frigidus still shows free running oscillations at 12°C, whereas several tropical species oscillate only at temperatures above 17°C. 6. The differences in the periods of tropical and non-tropical species (see under [3]) disappear if the plants are compared not at the same temperature but at temperatures which are

  4. Exchange across the shelf break at high southern latitudes

    NASA Astrophysics Data System (ADS)

    Klinck, J. M.; Dinniman, M. S.

    2010-05-01

    Exchange of water across the Antarctic shelf break has considerable scientific and societal importance due to its effects on circulation and biology of the region, conversion of water masses as part of the global overturning circulation and basal melt of glacial ice and the consequent effect on sea level rise. The focus in this paper is the onshore transport of warm, oceanic Circumpolar Deep Water (CDW); export of dense water from these shelves is equally important, but has been the focus of other recent papers and will not be considered here. A variety of physical mechanisms are described which could play a role in this onshore flux. The relative importance of some processes are evaluated by simple calculations. A numerical model for the Ross Sea continental shelf is used as an example of a more comprehensive evaluation of the details of cross-shelf break exchange. In order for an ocean circulation model to simulate these processes at high southern latitudes, it needs to have high spatial resolution, realistic geometry and bathymetry. Grid spacing smaller than the first baroclinic radius of deformation (a few km) is required to adequately represent the circulation. Because of flow-topography interactions, bathymetry needs to be represented at these same small scales. Atmospheric conditions used to force these circulation models also need to be known at a similar small spatial resolution (a few km) in order to represent orographically controlled winds (coastal jets) and katabatic winds. Significantly, time variability of surface winds strongly influences the structure of the mixed layer. Daily, if not more frequent, surface fluxes must be imposed for a realistic surface mixed layer. Sea ice and ice shelves are important components of the coastal circulation. Ice isolates the ocean from exchange with the atmosphere, especially in the winter. Melting and freezing of both sea ice and glacial ice influence salinity and thereby the character of shelf water. These water

  5. Exchange across the shelf break at high southern latitudes

    NASA Astrophysics Data System (ADS)

    Klinck, J. M.; Dinniman, M. S.

    2010-01-01

    Exchange of water across the Antarctic shelf break has considerable scientific and societal importance due to its effects on circulation and biology of the region, conversion of water masses as part of the global overturning circulation and basal melt of glacial ice and the consequent effect on sea level rise. The focus in this paper is the onshore transport of warm, oceanic Circumpolar Deep Water (CDW); export of dense water from these shelves is equally important, but has been the focus of other recent papers and will not be considered here. A variety of physical mechanisms are described which could play a role in this onshore flux. The relative importance of some processes are evaluated by simple calculations. A numerical model for the Ross Sea continental shelf is used as an example of a more comprehensive evaluation of the details of cross-shelf break exchange. In order for an ocean circulation model simulate these processes at high southern latitudes, it needs to have high spatial resolution, realistic geometry and bathymetry. Grid spacing smaller than the first baroclinic radius deformation (a few km) is required to adequately represent the circulation. Because of flow-topography interactions, bathymetry needs to be represented at these same small scales. Atmospheric conditions used to force these circulation models also need to be known at a similar small spatial resolution (a few km) in order to represent orographically controlled winds (coastal jets) and katabatic winds. Significantly, time variability of surface winds strongly influences the structure of the mixed layer. Daily, if not more frequent, surface fluxes must be imposed for a realistic surface mixed layer. Sea ice and ice shelves are important components of the coastal circulation. Ice isolates the ocean from exchange with the atmosphere, especially in the winter. Melting and freezing of both sea ice and glacial ice influence salinity and thereby the character of shelf water. These water mass

  6. Northern high latitude climate variability of the last millennium

    NASA Astrophysics Data System (ADS)

    Andres, Heather J.

    This work explores the causes of northern high-latitude climate variations over the last millennium, and industrial and future periods. Attribution studies are performed on a suite of global climate simulations, and four historical reconstructions of Greenland surface temperatures and precipitation (two of which are new to this work). The simulations followed the protocols of the Palaeoclimate Modelling Intercomparison Project 3 and Coupled Model Intercomparison Project 5. At least half of the multi-decadal variability in simulated Greenland climate variations over the last millennium is reproduced by a linear, empirically-generated model including terms for volcanic emissions, solar insolation changes (including total solar irradiance and orbital components) and an index associated with latitudinal shifts in the North Atlantic jet. Empirical model parameters are obtained by regressing simulated Greenland temperatures and precipitation against time series for each of the response variables. Greenhouse gas radiative forcing changes are unimportant to simulated Greenland conditions over the last millennium, although they dominate after the mid-20th century. Most of the historical Greenland climate reconstructions are restricted to the industrial period, due to a lack of spatially-comprehensive climate records. They exhibit substantial differences in the timing, phasing and amplitudes of past climate variations, due to regional sensitivities in the source data and the reconstruction methodologies. Reconstructions indicate that Greenland temperatures did not begin to follow hemispheric greenhouse gas warming patterns until the mid-1990s. This discrepancy indicates either that the warming hiatus was associated with internal climate variability, or that the simulations are missing processes important to Greenland climate. For example, indirect effects of anthropogenic aerosols are not captured in the climate model employed here. All of the external climate forcings

  7. Intercomparison of mid latitude storm diagnostics (IMILAST) - project update

    NASA Astrophysics Data System (ADS)

    Neu, U.

    2012-04-01

    The detection of the occurrence of mid-latitude storms, which are of high societal interest due to their impacts, is less straightforward than it might seem. Since cyclones are complex systems with very diverse characteristics, the definition of what a cyclone is and what should be considered as describing the strength of a cyclone contains subjective choices. Thus, existing analysis methods, especially automatic algorithms, are based on different definitions and use diverse identification and tracking (i.e. detecting the path of an individual cyclone over time) methodologies. The different choices made in different cyclone identification and tracking algorithms can lead to critical differences in temporal trends of the frequency, strength or life cycle of cyclones. These differences render the interpretation and comparison of cyclone trend studies difficult. The project IMILAST performs a systematic intercomparison of different existing cyclone detection and tracking methods, with the aim of a comprehensive assessment of methodological uncertainties in mid-latitudinal storm tracking and an overview of advantages and restrictions of different schemes. The intensive discussions of first results have already pointed out a number of important issues that have to be carefully considered, and where some harmonization might make sense, like e.g. the arbitrary choice of thresholds like minimum life time or the elimination of cyclone tracks over high terrain. Currently, cyclone tracks for a 20 year test period for both the northern and southern hemispheres have been calculated with 15 different methodologies. As input data all calculations used the same ERA-interim reanalysis data set. The methods generally differ in the following aspects: data transformation (e.g. grid transformation, smoothing), metrics used for cyclone identification (e.g. sea level pressure or vorticity), cyclone identification procedures, different tracking methods (how to combine the cyclone centers

  8. Intercomparison of mid latitude storm diagnostics (IMILAST) - project update

    NASA Astrophysics Data System (ADS)

    Neu, Urs

    2015-04-01

    The analysis of the occurrence of mid-latitude storms is of great socio-economical interest due to their vast and destructive impacts. However, a unique definition of cyclones is missing, and therefore the definition of what a cyclone is as well as quantifying its strength contains subjective choices. Existing automatic cyclone identification and tracking algorithms are based on different definitions and use diverse characteristics. These methods generally differ in the following aspects: data transformation (e.g., grid transformation, smoothing, etc.), metrics used for cyclone identification (e.g. sea level pressure or vorticity), cyclone identification procedures, different tracking methods (e.g. near neighborhood search), and elimination criteria (e.g., requiring a certain pressure minimum or minimum life time). The different choices made in these algorithms can lead to substantial differences in cyclone climatologies, temporal trends of the frequency, strength, or other characteristics of cyclones. The project IMILAST systematically compares different cyclone detection and tracking methods (currently 15 different algorithms), with the aim to comprehensively assess systematic uncertainties in mid-latitudinal storm identification and tracking. IMILAST uses the ERA-interim reanalysis data set as a common data basis in all studies. The first two intercomparison experiments focused on differences between the methods with respect to number, track density, life cycle characteristics, and trend patterns on the one hand and potential differences of the long-term climate change signal of cyclonic activity between the methods on the other hand. For current analysis activities, the intercomparison period is extended to a 30 year period from 1979 to 2009 and focuses on more specific aspects, such as parameter sensitivities, the comparison of automated to manual tracking sets, regional analysis (regional trends, Arctic and Antarctic cyclones, cyclones in the Mediterranean

  9. Intercomparison of mid latitude storm diagnostics (IMILAST) - project update

    NASA Astrophysics Data System (ADS)

    Neu, Urs

    2014-05-01

    The analysis of the occurrence of mid-latitude storms is of great socio-economical interest due to their vast and destructive impacts. However, a unique definition of cyclones is missing as they are complex systems which may have very diverse characteristics. Thus, the definition of what a cyclone is as well as quantifying its strength contains subjective choices. Existing automatic cyclone identification and tracking algorithms are based on different definitions and use diverse characteristics. These methods generally differ in the following aspects: data transformation (e.g., grid transformation, smoothing, etc.), metrics used for cyclone identification (e.g. sea level pressure or vorticity), cyclone identification procedures, different tracking methods (e.g. near neighborhood search), and elimination criteria (e.g., requiring a certain pressure minimum or minimum life time). The different choices made in these algorithms can lead to substantial differences in cyclone climatologies, temporal trends of the frequency, strength, or other characteristics of cyclones. These differences render the interpretation and comparison of cyclone studies rather difficult. The project IMILAST systematically compares different cyclone detection and tracking methods (currently 15 different algorithms), with the aim to comprehensively assess systematic uncertainties in mid-latitudinal storm identification and tracking. As a common data basis the ERA-interim reanalysis data set is used in all IMILAST studies. A first study presented a general overview of differences between the methods with respect to number, track density, life cycle characteristics, and trend patterns for a 20 year period of ERA-Interim. In a second study, potential differences of the long-term climate change signal of cyclonic activity between the methods were assessed. Currently, the intercomparison is extended to a 30 year period from 1979 to 2009 and focuses on more specific aspects, such as parameter

  10. Intercomparison of mid latitude storm diagnostics (IMILAST) - project update

    NASA Astrophysics Data System (ADS)

    Neu, Urs

    2013-04-01

    The detection of the occurrence of mid-latitude storms, which are of high societal interest due to their impacts, is less straightforward than it might seem. Since cyclones are complex systems with very diverse characteristics, the definition of what a cyclone is and what should be considered as describing the strength of a cyclone contains subjective choices. Thus, existing analysis methods, especially automatic algorithms, are based on different definitions and use diverse identification and tracking (i.e. detecting the path of an individual cyclone over time) methodologies. The different choices made in different cyclone identification and tracking algorithms can lead to critical differences in temporal trends of the frequency, strength or life cycle of cyclones. These differences render the interpretation and comparison of cyclone trend studies difficult. The project IMILAST performs a systematic intercomparison of different existing cyclone detection and tracking methods (currently 15 different algorithms), with the aim of a comprehensive assessment of methodological uncertainties in mid-latitudinal storm tracking and an overview of advantages and restrictions of different schemes. As input data all calculations used the same ERA-interim reanalysis data set. The methods generally differ in the following aspects: data transformation (e.g. grid transformation, smoothing), metrics used for cyclone identification (e.g. sea level pressure or vorticity), cyclone identification procedures, different tracking methods (how to combine the cyclone centers at different times to a track), and elimination criteria (e.g. requiring a certain pressure minimum or minimum life time). After a first experiment comparing cyclone tracks for a 20 year test period for both the northern and southern hemispheres, now the detection of a set of 22 individual extreme storms by the different methods has been analysed. In addition, more specific analysis, as for example the influence of

  11. Modeling the effects of snowpack on heterotrophic respiration across northern temperate and high latitude regions: Comparison with measurements of atmospheric carbon dioxide in high latitudes

    USGS Publications Warehouse

    McGuire, A.D.; Melillo, J.M.; Randerson, J.T.; Parton, W.J.; Heimann, Martin; Meier, R.A.; Clein, J.S.; Kicklighter, D.W.; Sauf, W.

    2000-01-01

    Simulations by global terrestrial biogeochemical models (TBMs) consistently underestimate the concentration of atmospheric carbon dioxide (CO2) at high latitude monitoring stations during the nongrowing season. We hypothesized that heterotrophic respiration is underestimated during the nongrowing season primarily because TBMs do not generally consider the insulative effects of snowpack on soil temperature. To evaluate this hypothesis, we compared the performance of baseline and modified versions of three TBMs in simulating the seasonal cycle of atmospheric CO2 at high latitude CO2 monitoring stations; the modified version maintained soil temperature at 0 ??C when modeled snowpack was present. The three TBMs include the Carnegie-Ames-Stanford Approach (CASA), Century, and the Terrestrial Ecosystem Model (TEM). In comparison with the baseline simulation of each model, the snowpack simulations caused higher releases of CO2 between November and March and greater uptake of CO2 between June and August for latitudes north of 30??N. We coupled the monthly estimates of CO2 exchange, the seasonal carbon dioxide flux fields generated by the HAMOCC3 seasonal ocean carbon cycle model, and fossil fuel source fields derived from standard sources to the three-dimensional atmospheric transport model TM2 forced by observed winds to simulate the seasonal cycle of atmospheric CO2 at each of seven high latitude monitoring stations, in comparison to the CO2 concentrations simulated with the baseline fluxes of each TBM, concentrations simulated using the snowpack fluxes are generally in better agreement with observed concentrations between August and March at each of the monitoring stations. Thus, representation of the insulative effects of snowpack in TBMs generally improves simulation of atmospheric CO2 concentrations in high latitudes during both the late growing season and nongrowing season. These simulations highlight the global importance of biogeochemical processes during the

  12. Preference and performance in plant-herbivore interactions across latitude--a study in U.S. Atlantic salt marshes.

    PubMed

    Ho, Chuan-Kai; Pennings, Steven C

    2013-01-01

    High-latitude plants are often more palatable to herbivores than low-latitude conspecifics. Does increased plant palatability lead to better herbivore performance? Our field and laboratory work investigated (A) whether high-latitude plants have traits indicating that they should be higher-quality foods for herbivores; (B) whether geographic differences in plant quality are more important than local adaptation of herbivores. We studied 3 plant species and 6 invertebrate herbivores in U.S. Atlantic Coast. Past studies had shown high-latitude individuals of these plants are more palatable than low-latitude conspecifics. We documented plant traits and herbivore performance (body size) in the field across latitude. We collected individuals from different latitudes for factorial (plant region x herbivore region) laboratory experiments, examining how herbivore performance was affected by plant region, herbivore region, and their interaction (i.e., local adaptation). Field surveys suggested high-latitude plants were likely of higher quality to herbivores. Leaf nitrogen content in all plant species increased toward high latitudes, consistent with lower leaf C/N and higher leaf chlorophyll content at high latitudes. Furthermore, leaf toughness decreased toward higher latitudes in 1 species. The body size of 4 herbivore species increased with latitude, consistent with high-latitude leaves being of higher quality, while 2 grasshopper species showed the opposite pattern, likely due to life-history constraints. In the laboratory, high-latitude plants supported better performance in 4 herbivore species (marginal in the 5th). The geographic region where herbivores were collected affected herbivore performance in all 6 species; however, the pattern was mixed, indicating a lack of local adaptation by herbivores to plants from their own geographic region. Our results suggest that more-palatable plants at high latitudes support better herbivore growth. Given that geographic origin of

  13. South Fork Latrine, oblique view showing south and east sides; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Latrine, oblique view showing south and east sides; view northwest - Fort McKinley, South Fork Latrine, West side of East Side Drive, approximately 225 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME

  14. GRAND MINIMA AND NORTH-SOUTH ASYMMETRY OF SOLAR ACTIVITY