Science.gov

Sample records for 83rd phoenix arizona

  1. Trace gas measurements in Phoenix, Arizona (1998)

    SciTech Connect

    Nunnermacker, L.J.

    2000-01-09

    The DOE Atmospheric Chemistry Program, and the Arizona Department of Environmentel Quality (DEQ) conducted a field program in the Phoenix Metropolitan area in the late spring of 1998. The experiment was composed of a linked set of aircraft and surface measurements designed to characterize the chemical and meteorological processes leading to ozone episodes. The existing network of Arizona DEQ sites in Phoenix was utilized to document ground level concentrations of ozone and its precursors. West of the downtown area, a site (Usery Pass) was set up for the detailed characterization of the mature Phoenix urban plume. Detailed measurements in the source region were made at several sites in downtown Phoenix. The DOE G-1 aircraft, equipped wih a comprehensive array of instruments to characterize atmospheric trace gas and aerosol composition, flew over the region at various times during the day. All times in the following discussion are local standard time (LST). Morning flights were typically made between 08:00 and 12:00 upwind, to measure background concentrations, and over the Phoenix source region, to characterize the sources of ozone precursors. Afternoon flights over the Phoenix source region and downwind between 15:00 and 18:00 were made to examine the chemical properties and physical distribution of the photochemically aged urban plume. The aircraft flights typically included an atmospheric sounding to circa 3 km upwind and over Phoenix in the morning, and downwind in the afternoon. A total of 22 flights were made on 14 different days during the one month program. The motivation for conducting the program was to examine ozone formation rates and efficiencies in an environment where the pollutant mix is dominated by vehicle emissions, where the contribution of biogenic hydocarbons to ozone formation is thought to be low, and where processing conditions are different than they are in the Eastern US. The latter includes significant differences in atmospheric humidity

  2. TRACE GAS MEASUREMENTS IN PHOENIX, ARIZONA (1998).

    SciTech Connect

    NUNNERMACKER,L.J.

    2000-01-09

    The DOE Atmospheric Chemistry Program, and the Arizona Department of Environmental Quality (DEQ) conducted a field program in the Phoenix Metropolitan area in the late spring of 1998. The experiment was composed of a linked set of aircraft and surface measurements designed to characterize the chemical and meteorological processes leading to ozone episodes. The existing network of Arizona DEQ sites in Phoenix was utilized to document ground level concentrations of ozone and its precursors. West of the downtown area, a site (Usery Pass) was set up for the detailed characterization of the mature Phoenix urban plume. Detailed measurements in the source region were made at several sites in downtown Phoenix. The DOE G-1 aircraft, equipped with a comprehensive array of instruments to characterize atmospheric trace gas and aerosol composition, flew over the region at various times during the day. All times in the following discussion are local standard time (LST). Morning flights were typically made between 08:00 and 12:00 upwind, to measure background concentrations, and over the Phoenix source region, to characterize the sources of ozone precursors. Afternoon flights over the Phoenix source region and downwind between 15:00 and 18:00 were made to examine the chemical properties and physical distribution of the photochemically aged urban plume. The aircraft flights typically included an atmospheric sounding to circa 3 km upwind and over Phoenix in the morning, and downwind in the afternoon. A total of 22 flights were made on 14 different days during the one month program. The motivation for conducting the program was to examine ozone formation rates and efficiencies in an environment where the pollutant mix is dominated by vehicle emissions, where the contribution of biogenic hydrocarbons to ozone formation is thought to be low, and where processing conditions are different than they are in the Eastern US. The latter includes significant differences in atmospheric

  3. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). History Division.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The History Division section of the proceedings contains the following 13 papers: "William G. Brownlow and The Knoxville 'Whig': A Career of Personal Journalism or Partisan Press?" (Alisa White Coleman); "Covering the Century: How Four New York Dailies Reported the End of the 19th Century" (Randall S. Sumpter); "Science, Journalism and the…

  4. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). Graduate Education Interest Group.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Graduate Education Interest Group section of the proceedings contains the following five papers: "The Press, President, and Presidential Popularity During Ronald Reagan's War on Drugs" (Hyo-Seong Lee); "Malaysia's Broadcasting Industry in Transition: Effect of New Competitions on Traditional Television Channels" (Tee-Tuan Foo); "The…

  5. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). Minorities and Communication Division.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Minorities and Communication Division section of the proceedings contains the following 10 papers: "Gender Stereotypes and Race in Music Videos: Cultivating Unreality" (Helena K. Sarkio); "Copycats, Conspirators and Bigots: Themes in Southern, Northern and Western Newspaper Editorial Portrayals of the Black Church-Burning Crisis" (Sharon…

  6. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). International Communication Division.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The International Communication Division section of the proceedings contains the following 21 papers: "The European Press and the Euro: Media Agenda-Setting in a Cross-National Environment" (Olaf Werder); "Factors Affecting the Internet Adoption by Thai Journalists: A Diffusion of Innovation Study" (Anucha Thirakanont and Thomas Johnson);…

  7. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). Miscellaneous, Part II.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Miscellaneous, Part II Section of the proceedings contains the following eight papers: "Academic Letters of Recommendation: Perceived Ethical Implications and Harmful Effects of Exaggeration" (David L. Martinson and Michael Ryan); "It's All about the Information Salience Effects on the Perceptions of News Exemplification" (Francesca Dillman…

  8. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). Newspaper Division.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Newspaper Division section of the proceedings contains the following 12 papers: "Diversity Efforts at the 'Los Angeles Times': Are Journalists and the Community on the Same Page?" (Richard Gross, Stephanie Craft, Glen T. Cameron and Michael Antecol); "Setting the News Story Agenda: Candidates and Commentators in News Coverage of a Governor's…

  9. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). Advertising Division.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Advertising Division section of the proceedings contains the following 14 papers: "The Effectiveness of Banner Advertisements: Involvement and Click-Through" (Chang-Hoan Cho and John D. Leckenby); "Messages of Hope: Developing Health Campaigns that Address Misperceptions of Breast Cancer Held by Women of Color" (Cynthia M. Frisby);…

  10. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). Magazine Division.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Magazine Division section of the proceedings contains the following seven papers: "Farm Magazine Advertisers Turn Up the Heat: An Analysis of Ethical Pressures Faced by Farm Magazine Writers" (Stephen A. Banning and James Evans); "Framing a War: Photographic Coverage of the Kosovo War in Newsweek, Time, and U.S. News & World Report" (Nikolina…

  11. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). Miscellaneous, Part III.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Miscellaneous, part III section of the proceedings contains the following 11 papers: "The Relationship between Health and Fitness Magazine Reading and Eating-Disordered Weight-Loss Methods among High School Girls" (Steven R. Thomsen, Michelle M. Weber, and Lora Beth Brown); "A Practical Exercise for Teaching Ethical Decision Making to…

  12. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). Science Communication Interest Group.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Science Communication Interest Group section of the proceedings contains the following five papers: "Accounting for the Complexity of Causal Explanations in the Wake of an Environmental Risk" (LeeAnn Kahlor, Sharon Dunwoody and Robert J. Griffin); "Construction of Technology Crisis and Safety: News Media's Framing the Y2K Issue" (Ju Yong Ha);…

  13. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). Law Division.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Law Division section of the proceedings contains the following seven papers: "Silencing Foreign Voices: Restrictions on Alien Ownership of Broadcast Stations" (James V. D'Aleo); "The First Amendment & Postmodern Tendencies in Cyberspace" (Justin Brown); "Contracting the News: A Study of Online News User Agreements" (Victoria Smith Ekstrand);…

  14. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). Miscellaneous.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Miscellaneous section of the proceedings contains the following four papers from the Media and Disability Interest Group, Public Relations Division, and the Visual Communication Division: "Technology and the Knowledge Gap: Two Barriers to Distance Education for the Person with a Disability" (Jeffrey Alan John); "Hoddle's Twaddle: Defining…

  15. 78 FR 56859 - Foreign-Trade Zone 75-Phoenix, Arizona, Authorization of Limited Production Activity, Honeywell...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Activity, Honeywell Aerospace, Inc. (Aircraft Engines, Systems and Components), Phoenix and Tempe, Arizona... comment (78 FR 27951-27952, 05-13-2013). Based on the FTZ Board's determination in this proceeding,...

  16. A case study in resort climatology of Phoenix, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Hartz, Donna A.; Brazel, Anthony J.; Heisler, Gordon M.

    2006-09-01

    Tourists often use weather data as a factor for determining vacation timing and location. Accuracy and perceptions of weather information may impact these decisions. This study: (a) examines air temperature and dew points from seven exclusive resorts in the Phoenix metropolitan area and compares them with official National Weather Service data for the same period, and (b) utilizes a comfort model called OUTCOMES—OUTdoor COMfort Expert System—in a seasonal appraisal of two resorts, one mesic and one xeric, compared with the urban Sky Harbor International Airport first-order weather station site in the central urban area of Phoenix, Arizona, USA (lat. 33.43°N; long. 112.02°W; elevation at 335 m). Temperature and humidity recording devices were placed within or immediately adjacent to common-use areas of the resorts, the prime recreational sites used by guests on most resort properties. Recorded data were compared with that of the official weather information from the airport station, a station most accessible to potential tourists through media and Web sites, to assess predicted weather for vacation planning. For the most part, Sky Harbor’s recorded air temperatures and often dew points were higher than those recorded at the resorts. We extrapolate our findings to a year-round estimate of human outdoor comfort for weather-station sites typical of resort landscapes and the Sky Harbor location using the OUTCOMES model to refine ideas on timing of comfortable conditions at resorts on a diurnal and seasonal basis.

  17. Community Background Reports: Three Boarding Schools (Phoenix Indian School, Phoenix, Arizona; Theodore Roosevelt School, Fort Apache, Arizona; Chemawa Indian School, Salem, Oregon). National Study of American Indian Education, Series I, No. 15, Final Report.

    ERIC Educational Resources Information Center

    Wesemann, Ralph E.; And Others

    Three Bureau of Indian Affairs off-reservation boarding schools (Phoenix Indian School in Phoenix, Arizona; Theodore Roosevelt School in Fort Apache, Arizona; and Chemawa Indian School in Salem, Oregon) are the subjects for this report, which is a part of the National Study of American Indian Education. Brief descriptions of the physical plant,…

  18. An Extraordinary Partnership between Arizona State University and the City of Phoenix

    ERIC Educational Resources Information Center

    Friedman, Debra

    2009-01-01

    The Arizona State University Downtown Phoenix campus is a grand-scale exemplar of a city-university partnership. Its demonstrated impacts are economic, social, and educational, transforming both the city and the university. The magnitude of the investment of $223 million by the citizens of a city in a state university is unparalleled in higher…

  19. Hearing Before the United States Commission on Civil Rights (Phoenix, Arizona, November 17-18, 1972).

    ERIC Educational Resources Information Center

    Commission on Civil Rights, Washington, DC.

    The U.S. Commission on Civil Rights held two days of hearings in Phoenix to investigate the civil rights status of Arizona Indian Tribes, to ascertain the nature and extent of their problems, and to try to arrive at a means to rectify those problems. The testimony offered at the public session came from representatives of local, state, Federal and…

  20. 78 FR 52759 - Expansion of Foreign-Trade Zone 75 Under Alternative Site Framework; Phoenix, Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-26

    ... Register (77 FR 74457-74458, 12-14-2012) and the application has been processed pursuant to the FTZ Act and... ASF to include an additional magnet site, proposed Site 9, within the Phoenix, Arizona U.S. Customs...,000-acre activation limit for the zone, and to a five-year ASF sunset provision for magnet sites...

  1. Arpaio Doesn't Control Anything: A Summer with El Hormiguero in Phoenix, Arizona

    ERIC Educational Resources Information Center

    Carrillo, Juan F.

    2013-01-01

    Drawing from observations and interview data, this essay examines the role of "hormiguero agency" in nurturing empowered identities amongst Latin@s in Phoenix, Arizona. Specific links are made to how dehumanizing state level policies are resisted in multiple spaces, including schools, activist organizations, and within underground business…

  2. 75 FR 16748 - Expansion of Foreign-Trade Zone 75, Phoenix, Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... (74 FR 19935-19936, 4/30/09) and the application has been processed pursuant to the FTZ Act and the... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Expansion of Foreign-Trade Zone 75, Phoenix, Arizona Pursuant to its...

  3. Earthshots: Satellite images of environmental change - Phoenix, Arizona, USA

    USGS Publications Warehouse

    Adamson, Thomas

    2013-01-01

    Phoenix doesn’t have many cloudy days, so it’s perfect for studying urban growth with satellite images. Scientists and city planners study population growth and urban expansion in fast-growing cities like Phoenix to determine the changes that have occurred over time and to see how those changes impact the surrounding environment, affect the availability of natural resources such as water, and alter the landscape and how it’s used. That information can help people plan for future changes as cities continue to grow.

  4. Vaccination Coverage among Kindergarten Children in Phoenix, Arizona

    ERIC Educational Resources Information Center

    Frimpong, Jemima A.; Rivers, Patrick A.; Bae, Sejong

    2008-01-01

    Objective: To evaluate school immunization records and document the immunization coverage and compliance level of children enrolled in kindergarten in Phoenix during the 2001-2002 school year. The purpose was to obtain information on: 1) immunization status by age two; 2) under-immunization in kindergarten; 3) administration error; and 4)…

  5. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). Media Management and Economics Division.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Media Management and Economics Division section of the proceedings contains the following nine papers: "Weekly Newspaper Industry: A Baseline Study" (David C. Coulson, Stephen Lacy and Jonathan Wilson); "News Hole Sizing Policies at Nondaily Newspapers" (Ken Smith); "The Influence of Timing of Market Entry on Competition in Local Cellular…

  6. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). Mass Communication and Society Division.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Mass Communication and Society Division section of the proceedings contains the following 12 papers: "Retreads: Recycling American Prime Time Television for Fun and Profit" (Chad Dell); "Partisan and Structural Balance of Election Stories on the 1998 Governor's Race in Michigan" (Frederick Fico and William Cote); "Newspaper Letters and…

  7. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). Radio-Television Journalism Division.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Radio-Television Journalism Division section of the proceedings contains the following six papers: "Local Television News and Viewer Empowerment: Why the Public's Main Source of News Falls Short" (Denise Barkis Richter); "For the Ear to Hear: Conversational Writing on the Network Television News Magazines" (C. A. Tuggle, Suzanne Huffman and…

  8. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). Cultural and Critical Studies Division.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Cultural and Critical Studies Division section of the proceedings contains the following 11 papers: "'Grimm' News Indeed--'Madstones,' Clever Toads, and Killer Tarantulas: Fairy-Tale Briefs in Wild West Newspapers" (Paulette Kilmer); "The First Amendment and the Doctrine of Corporate Personhood: Collapsing the Press-Corporation Distinction"…

  9. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). Communication Theory and Method Division.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Communication Theory and Method Division section of the proceedings contains the following 16 papers: "Profiling TV Ratings Users: Content-Based Advisories and Their Adoption" (Robert Abelman and David Atkin); "It's All About the Information: Salience Effects on the Perceptions of News Exemplification" (Francesca R. Dillman Carpentier,…

  10. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). Communication Technology and Policy Division.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Communication Technology and Policy Division section of the proceedings contains the following 13 papers: "Reconceptualizing the Public Sphere: The Differential Role of Media Systems In Enabling Political Elites to set the Public Agenda" (Johnette Hawkins McCrery and John E. Newhagen); "Realizing the Potential Marketplace of Ideas: Utilizing…

  11. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (83rd, Phoenix, Arizona, August 9-12, 2000). Religion and Media Interest Group.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The Religion and Media Interest Group section of the proceedings contains the following nine papers: "The Effect of Age and Background of Religious Broadcasting Executives on Digital Television Implementation" (Brad Schultz); "Environmental Reporting, Religion Reporting, and the Question of Advocacy" (Rick Clifton Moore); "The Rise of the Early…

  12. Design, Simulation, and Analysis of Domestic Solar Water Heating Systems in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    De Fresart, Edouard Thomas

    Research was conducted to quantify the energy and cost savings of two different domestic solar water heating systems compared to an all-electric water heater for a four-person household in Phoenix, Arizona. The knowledge gained from this research will enable utilities to better align incentives and consumers to make more informed decisions prior to purchasing a solar water heater. Daily energy and temperature data were collected in a controlled, closed environment lab. Three mathematical models were designed in TRNSYS 17, a transient system simulation tool. The data from the lab were used to validate the TRNSYS models, and the TRNSYS results were used to project annual cost and energy savings for the solar water heaters. The projected energy savings for a four-person household in Phoenix, Arizona are 80% when using the SunEarthRTM system with an insulated and glazed flat-plate collector, and 49% when using the FAFCO RTM system with unglazed, non-insulated flat-plate collectors. Utilizing all available federal, state, and utility incentives, a consumer could expect to recoup his or her investment after the fifth year if purchasing a SunEarth RTM system, and after the eighth year if purchasing a FAFCO RTM system. Over the 20-year analysis period, a consumer could expect to save 2,519 with the SunEarthRTM system, and 971 with the FAFCORTM system.

  13. Comparative studies of criteria pollutants in New Delhi and Agra (India), Ambos Nogales (Mexico-Arizona border) and Phoenix (Arizona)

    SciTech Connect

    Fernandez, C.; Goyal, P.; Parmar, S.

    1998-12-31

    In recent years, the levels of SO{sub 2}, NO{sub x} and SPM and other air contaminants over the metropolitan cities of India such as New Delhi and Agra have increased dramatically. The effect of environmental pollution on historical monuments in New Delhi and Agra is a topic of vital concern. Agra is a city of historical importance where the Taj Mahal and other traditional monuments are located. The major contributors of SO{sub 2}, NO{sub x} and SPM in Agra are vehicles, domestic fuel consumers, industries railway shunting yards and thermal power plants. The contribution from the Mathura Refinery Complex, located about 40 km upwind of Agra possibly adds to the emissions from local sources. Airborne pollution is blamed for the growing incidence of asthma, bronchitis, tuberculosis, and other ailments that have obvious implications for health care. It is therefore important to estimate SO{sub 2}, NO{sub x}, and SPM concentrations due to local sources in Agra to assist in developing appropriate protection measures. Preliminary monitoring studies have been conducted regarding the criteria pollutants -- SO{sub 2}, NO{sub x} and PM-10 -- in Ambos Nogales along the Arizona-Mexico border and these results will be compared with those obtained in New Delhi and Agra, India as well as with those found in Phoenix, Arizona.

  14. Phoenix

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    (the Phoenix; abbrev. Phe, gen. Phoenicis; area 469 sq. deg.) A southern constellation which lies between Sculptor and Tucana, and culminates at midnight in early October. It was probably first shown on Petrus Plancius' celestial globe of c. 1598, though it is usually attributed to the Dutch navigators Pieter Dirkszoon Keyser (also known as Petrus Theodorus) and Frederick de Houtman, who charted ...

  15. Automated thematic mapping and change detection of ERTS-1 images. [Phoenix, Arizona

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N.

    1974-01-01

    Results of an automated thematic mapping investigation using ERTS-1 MSS images are presented. A diffraction pattern analysis of MSS images led to the development of spatial signatures for farm land, urban areas, and mountains. Four spatial features are employed to describe the spatial characteristics of image cells in the digital data. Three spectral features are combined with the spatial features to form a seven dimensional vector describing each cell. Then, the classification of the feature vectors is accomplished by using the maximum likelihood criterion. Three ERTS-1 images from the Phoenix, Arizona area were processed, and recognition rates between 85% and 100% were obtained for the terrain classes of desert, farms, mountains and urban areas. To eliminate the need for training data, a new clustering algorithm has also been developed.

  16. Debris flows from small catchments of the Ma Ha Tuak Range, metropolitan Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Dorn, Ronald I.

    2010-08-01

    Debris flows debauch from tiny but steep mountain catchments throughout metropolitan Phoenix, Arizona, USA. Urban growth in the past half-decade has led to home construction directly underneath hundreds of debris-flow channels, but debris flows are not recognized as a potential hazard at present. One of the first steps in a hazard assessment is to determine occurrence rates. The north flank of the Ma Ha Tuak Range, just 10 km from downtown Phoenix, was selected to determine the feasibility of using the varnish microlaminations (VML) method to date every debris-flow levee from 127 catchment areas. Only 152 of the 780 debris-flow levees yielded VML ages in a first round of sampling; this high failure rate is due to erosion of VML by microcolonial fungi. The temporal pattern of preserved debris-flow levees indicates anomalously high production of debris flows at about 8.1 ka and about 2.8 ka, corresponding to Northern Hemisphere climatic anomalies. Because many prior debris flows are obliterated by newer events, the minimum overall occurrence rates of 1.3 debris flows per century for the last 60 ka, 2.2 flows/century for the latest Pleistocene, and 5 flows/century for the last 8.1 ka has little meaning in assessment of a contemporary hazard. This is because newer debris flows have obliterated an unknown number of past deposits. More meaningful to a hazards analysis is the estimate that 56 flows have occurred in the last 100 years on the north side of the range, an estimate that is consistent with direct observations of three small debris flows resulting events from a January 18-22, 2010 storm producing 70 mm of precipitation in the Ma Ha Tuak Range, and a 500 m long debris flow in a northern metropolitan Phoenix location that received over 150 mm of precipitation in this same storm. These findings support the need for a more extensive hazard assessment of debris flows in metropolitan Phoenix.

  17. Evaluation of the magnitude and frequency of floods in urban watersheds in Phoenix and Tucson, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Paretti, Nicholas V.

    2014-01-01

    Flooding in urban areas routinely causes severe damage to property and often results in loss of life. To investigate the effect of urbanization on the magnitude and frequency of flood peaks, a flood frequency analysis was carried out using data from urbanized streamgaging stations in Phoenix and Tucson, Arizona. Flood peaks at each station were predicted using the log-Pearson Type III distribution, fitted using the expected moments algorithm and the multiple Grubbs-Beck low outlier test. The station estimates were then compared to flood peaks estimated by rural-regression equations for Arizona, and to flood peaks adjusted for urbanization using a previously developed procedure for adjusting U.S. Geological Survey rural regression peak discharges in an urban setting. Only smaller, more common flood peaks at the 50-, 20-, 10-, and 4-percent annual exceedance probabilities (AEPs) demonstrate any increase in magnitude as a result of urbanization; the 1-, 0.5-, and 0.2-percent AEP flood estimates are predicted without bias by the rural-regression equations. Percent imperviousness was determined not to account for the difference in estimated flood peaks between stations, either when adjusting the rural-regression equations or when deriving urban-regression equations to predict flood peaks directly from basin characteristics. Comparison with urban adjustment equations indicates that flood peaks are systematically overestimated if the rural-regression-estimated flood peaks are adjusted upward to account for urbanization. At nearly every streamgaging station in the analysis, adjusted rural-regression estimates were greater than the estimates derived using station data. One likely reason for the lack of increase in flood peaks with urbanization is the presence of significant stormwater retention and detention structures within the watershed used in the study.

  18. Boundary-Layer Evolution over Phoenix, Arizona, and the Premature Mixing of Pollutants in the Early Morning

    SciTech Connect

    Shaw, William J.; Doran, J C.; Coulter, Richard L.

    2005-02-01

    The 2001 Phoenix Sunrise campaign was a field measurement program to investigate the early-morning chemical and meteorological processes associated with the development of ozone pollution in Phoenix, Arizona. As part of that study, atmospheric structure was measured using wind profiling radars, sodars, and radiosondes at several locations in the Phoenix metropolitan area. Chemical measurements made by other investigators showed that vertical mixing of pollutants began prior to sunrise on a number of occasions. This was surprising, since we expected sustained mixing to occur only after sunrise and the onset of solar heating. We have used the meteorological measurements to identify a density current that commonly arrives in downtown Phoenix in the hour or two before sunrise when conditions are undisturbed. Both winds and cold advection associated with this feature act to destabilize the lower atmosphere, and the resulting mixing continues through the morning transition to convective conditions. Because photochemical production of ozone is non-linearly dependent on the concentrations of precursor species, this early mixing will need to be properly represented in combined meteorological and chemical models if they are to be fully successful in simulating ozone concentrations.

  19. Superfund Record of Decision (EPA Region 9): Litchfield Airport/Phoenix, Arizona (first remedial action), September 1987. Final report

    SciTech Connect

    Not Available

    1987-09-29

    The Litchfield/Phoenix-Goodyear Airport (PGA) site is divided into a northern and a southern area by a ground-water divide running under the Yuma Road area. Section 16 (approximately 17 acres) lies in the southern area and includes the Loral Corporation facility (formerly owned by Goodyear Aerospace Corporation) and the Phoenix-Goodyear Airport (formerly owned by U.S. Navy), both being potential sources of VOC contamination. Ground-water contaminant concentrations in Section 16 are at least 100 times greater than down-gradient levels. The Arizona Department of Health Services discovered solvent and chromium contamination in the ground water within the PGA area. Additional sampling in 1982 and 1983 found 18 wells contaminated with TCE. The primary contaminants of concern include: trichloroethene, volatile organic compounds and chromium. Interim remedial action for the site is proposed.

  20. CRC (Coordinating Research Council) octane number requirement rating workshop held in Phoenix, Arizona on May 19-22, 1987

    SciTech Connect

    Not Available

    1988-09-01

    An octane number requirement rating workshop was sponsored by Coordinating Research Council, Inc. May 19-22, 1987, in Phoenix, Arizona. The objective of the workshop was to improve the application of the CRC E-15 Technique for Determination of Octane Number Requirements of Light-Duty Vehicles to provide consistent results with vehicles equipped with knock sensors, turbochargers, and various transmission configurations. Training was accomplished through seminars and demonstrations, and was verified with actual track testing using the E-15 rating technique and appropriate equipment.

  1. The U.S. Department of Energy Office of Indian Energy Policy and Programs Phoenix, Arizona, Roundtable Summary

    SciTech Connect

    none,

    2011-04-05

    The Phoenix, Arizona, Roundtable on Tribal Energy Policy convened at 8:30 a.m., Tuesday, April 5th, at the downtown Phoenix Hyatt. The meeting was hosted by the Department of Energy (DOE) Office of Indian Energy Policy and Programs (DOE Office of Indian Energy) and facilitated by the Udall Foundation’s U.S. Institute for Environmental Conflict Resolution (U.S. Institute). Approximately thirty-eight people attended the meeting, including representatives of ten different tribes, as well as representatives of the Colorado Indian Tribes, the All Indian Pueblo Council and the Inter-Tribal Council of Arizona. Interested state, federal, university, NGO and industry representatives also were present. A full list of attendees is at the end of this summary. DOE representatives were Tracey LeBeau, Directory of the DOE Office of Indian Energy, Pilar Thomas, Deputy Director-Policy of the DOE Office of Indian Energy, and David Conrad, Director of Tribal and Intergovernmental Affairs, DOE Office of Congressional and Intergovernmental Affairs.

  2. Analysis of the K-12 Component of the Central Arizona-Phoenix Long-Term Ecological Research (CAP LTER) Project 1998 to 2002

    ERIC Educational Resources Information Center

    Banks, Debra L.; Elser,Monica; Saltz, Charlene

    2005-01-01

    The Central Arizona-Phoenix Long-Term Ecological Research (CAP LTER) project includes training elementary and secondary teachers. This training component, Ecology Explorers (EE), prepares teachers in grades 4 through 12 to teach about ecological principles and processes. The EE pedagogy employs scientific inquiry and data collection protocols.…

  3. Change in land use in the Phoenix (1:250,000) Quadrangle, Arizona between 1970 and 1973: ERTS as an aid in a nationwide program for mapping general land use. [Phoenix Quadrangle, Arizona

    NASA Technical Reports Server (NTRS)

    Place, J. L.

    1974-01-01

    Changes in land use between 1970 and 1973 in the Phoenix (1:250,000 scale) Quadrangle in Arizona have been mapped using only the images from ERTS-1, tending to verify the utility of a standard land use classification system proposed for use with ERTS images. Types of changes detected have been: (1) new residential development of former cropland and rangeland; (2) new cropland from the desert; and (3) new reservoir fill-up. The seasonal changing of vegetation patterns in ERTS has complemented air photos in delimiting the boundaries of some land use types. ERTS images, in combination with other sources of information, can assist in mapping the generalized land use of the fifty states by the standard 1:250,000 quadrangles. Several states are already working cooperatively in this type of mapping.

  4. 78 FR 48413 - Foreign-Trade Zone 75-Phoenix, Arizona, Authorization of Production Activity, Orbital Sciences...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Gilbert, Arizona. The notification was processed in accordance with the regulations of the FTZ Board (15 CFR part 400), including notice in the Federal Register inviting public comment (79 FR 24158, February..., Orbital Sciences Corporation, (Satellites and Spacecraft Launch Vehicles); Gilbert, Arizona On April...

  5. 75 FR 17692 - Foreign-Trade Zone 75 -- Phoenix, Arizona, Application for Reorganization under Alternative Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... alternative site framework (ASF) adopted by the Board (74 FR 1170, 1/12/09; correction 74 FR 3987, 1/22/09...) - the jet fuel storage and distribution system at and adjacent to the Phoenix Sky Harbor International... Alternative Site Framework An application has been submitted to the Foreign-Trade Zones (FTZ) Board (the...

  6. Merged dust climatology in Phoenix, Arizona based on satellite and station data

    NASA Astrophysics Data System (ADS)

    Lei, Hang; Wang, Julian X. L.; Tong, Daniel Q.; Lee, Pius

    2016-02-01

    In order to construct climate quality long-term dust storm dataset, merged dust storm climatology in Phoenix is developed based on three data sources: regular meteorological records, in situ air quality measurements, and satellite remote sensing observations. The result presented in this paper takes into account the advantages of each dataset and integrates individual analyses demonstrated and presented in previous studies that laid foundation to reconstruct a consistent and continuous time series of dust frequency. A key for the merging procedure is to determine analysis criteria suitable for each individual data source. A practical application to historic records of dust storm activities over the Phoenix area is presented to illustrate detailed steps, advantages, and limitations of the newly developed process. Three datasets are meteorological records from the Sky Harbor station, satellite observed aerosol optical depth data from moderate resolution imaging spectroradiometer, and the U.S. Environmental Protection Agency Air Quality System particulate matter data of eight sites surrounding Phoenix. Our purpose is to construct dust climatology over the Phoenix region for the period 1948-2012. Data qualities of the reconstructed dust climatology are assessed based on the availability and quality of the input data. The period during 2000-2012 has the best quality since all datasets are well archived. The reconstructed climatology shows that dust storm activities over the Phoenix region have large interannual variability. However, seasonal variations show a skewed distribution with higher frequency of dust storm activities in July and August and relatively quiet during the rest of months. Combining advantages of all the available datasets, this study presents a merged product that provides a consistent and continuous time series of dust storm activities suitable for climate studies.

  7. The Conservation Nexus: Valuing Interdependent Water and Energy Savings in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Chester, M.; Bartos, M.

    2013-12-01

    Energy and water resources are intrinsically linked, yet they are managed separately--even in the water-scarce American southwest. This study develops a spatially-explicit model of water-energy interdependencies in Arizona, and assesses the potential for co-beneficial conservation programs. Arizona consumes 2.8% of its water demand for thermoelectric power and 8% of its electricity demand for water infrastructure--roughly twice the national average. The interdependent benefits of investments in 7 conservation strategies are assessed. Deployment of irrigation retrofits and new reclaimed water facilities dominate potential water savings, while residential and commercial HVAC improvements dominate energy savings. Water conservation policies have the potential to reduce statewide electricity demand by 1.0-2.9%, satisfying 5-14% of mandated energy-efficiency goals. Likewise, adoption of energy-efficiency measures and renewable generation portfolios can reduce non-agricultural water demand by 2.0-2.6%. These co-benefits of conservation investments are typically not included in conservation plans or benefit-cost analyses. Residential water conservation measures produce significant water and energy savings, but are generally not cost-effective at current water prices. An evaluation of the true cost of water in Arizona would allow future water and energy savings to be compared objectively, and would help policymakers allocate scarce resources to the highest-value conservation measures. Water Transfers between Water Cycle Components in Arizona in 2008 Cumulative embedded energy in water cycle components in Arizona in 2008

  8. Intercepted photosynthetically active radiation in wheat canopies estimated by spectral reflectance. [Phoenix, Arizona

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Asrar, G.; Kanemasu, E. T.

    1982-01-01

    The interception of photosynthetically active radiation (PAR) was evaluated relative to greenness and normalized difference (MSS 7-5/7+5) for five planting dates of wheat for 1978-79 and 1979-80 in Phoenix. Intercepted PAR was calculated from a model driven by leaf area index and stage of growth. Linear relationships were found between greenness and normalized difference with a separate model representing growth and senescence of the crop. Normalized difference was a significantly better model and would be easier to apply than the empirically derived greenness parameter. For the leaf area growth portion of the season the model between PAR interception and normalized difference was the same over years, however, for the leaf senescence the models showed more variability due to the lack of data on measured interception in sparse canopies. Normalized difference could be used to estimate PAR interception directly for crop growth models.

  9. Object-based land-cover classification for metropolitan Phoenix, Arizona, using aerial photography

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxiao; Myint, Soe W.; Zhang, Yujia; Galletti, Chritopher; Zhang, Xiaoxiang; Turner, Billie L.

    2014-12-01

    Detailed land-cover mapping is essential for a range of research issues addressed by the sustainability and land system sciences and planning. This study uses an object-based approach to create a 1 m land-cover classification map of the expansive Phoenix metropolitan area through the use of high spatial resolution aerial photography from National Agricultural Imagery Program. It employs an expert knowledge decision rule set and incorporates the cadastral GIS vector layer as auxiliary data. The classification rule was established on a hierarchical image object network, and the properties of parcels in the vector layer were used to establish land cover types. Image segmentations were initially utilized to separate the aerial photos into parcel sized objects, and were further used for detailed land type identification within the parcels. Characteristics of image objects from contextual and geometrical aspects were used in the decision rule set to reduce the spectral limitation of the four-band aerial photography. Classification results include 12 land-cover classes and subclasses that may be assessed from the sub-parcel to the landscape scales, facilitating examination of scale dynamics. The proposed object-based classification method provides robust results, uses minimal and readily available ancillary data, and reduces computational time.

  10. Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region: 1. Surface energy budget changes

    NASA Astrophysics Data System (ADS)

    Georgescu, M.; Miguez-Macho, G.; Steyaert, L. T.; Weaver, C. P.

    2009-03-01

    This paper is part 1 of a two-part study that evaluates the climatic effects of recent landscape change for one of the nation's most rapidly expanding metropolitan complexes, the Greater Phoenix, Arizona, region. The region's landscape evolution over an approximate 30-year period since the early 1970s is documented on the basis of analyses of Landsat images and land use/land cover (LULC) data sets derived from aerial photography (1973) and Landsat (1992 and 2001). High-resolution, Regional Atmospheric Modeling System (RAMS), simulations (2-km grid spacing) are used in conjunction with consistently defined land cover data sets and associated biophysical parameters for the circa 1973, circa 1992, and circa 2001 time periods to quantify the impacts of intensive land use changes on the July surface temperatures and the surface radiation and energy budgets for the Greater Phoenix region. The main findings are as follows: since the early 1970s the region's landscape has been altered by a significant increase in urban/suburban land area, primarily at the expense of decreasing plots of irrigated agriculture and secondarily by the conversion of seminatural shrubland. Mean regional temperatures for the circa 2001 landscape were 0.12°C warmer than the circa 1973 landscape, with maximum temperature differences, located over regions of greatest urbanization, in excess of 1°C. The significant reduction in irrigated agriculture, for the circa 2001 relative to the circa 1973 landscape, resulted in dew point temperature decreases in excess of 1°C. The effect of distinct land use conversion themes (e.g., conversion from irrigated agriculture to urban land) was also examined to evaluate how the most important conversion themes have each contributed to the region's changing climate. The two urbanization themes studied (from an initial landscape of irrigated agriculture and seminatural shrubland) have the greatest positive effect on near-surface temperature, increasing maximum daily

  11. Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region: 1. Surface energy budget changes

    USGS Publications Warehouse

    Georgescu, M.; Miguez-Macho, G.; Steyaert, L.T.; Weaver, C.P.

    2009-01-01

    This paper is part 1 of a two-part study that evaluates the climatic effects of recent landscape change for one of the nation's most rapidly expanding metropolitan complexes, the Greater Phoenix, Arizona, region. The region's landscape evolution over an approximate 30-year period since the early 1970s is documented on the basis of analyses of Landsat images and land use/land cover (LULC) data sets derived from aerial photography (1973) and Landsat (1992 and 2001). High-resolution, Regional Atmospheric Modeling System (RAMS), simulations (2-km grid spacing) are used in conjunction with consistently defined land cover data sets and associated biophysical parameters for the circa 1973, circa 1992, and circa 2001 time periods to quantify the impacts of intensive land use changes on the July surface temperatures and the surface radiation and energy budgets for the Greater Phoenix region. The main findings are as follows: since the early 1970s the region's landscape has been altered by a significant increase in urban/suburban land area, primarily at the expense of decreasing plots of irrigated agriculture and secondarily by the conversion of seminatural shrubland. Mean regional temperatures for the circa 2001 landscape were 0.12??C warmer than the circa 1973 landscape, with maximum temperature differences, located over regions of greatest urbanization, in excess of 1??C. The significant reduction in irrigated agriculture, for the circa 2001 relative to the circa 1973 landscape, resulted in dew point temperature decreases in excess of 1??C. The effect of distinct land use conversion themes (e.g., conversion from irrigated agriculture to urban land) was also examined to evaluate how the most important conversion themes have each contributed to the region's changing climate. The two urbanization themes studied (from an initial landscape of irrigated agriculture and seminatural shrubland) have the greatest positive effect on near-surface temperature, increasing maximum daily

  12. Small and Large-scale Drivers of Denitrification Patterns in "Accidental" Urban Wetlands in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Suchy, A. K.; Palta, M. M.; Childers, D. L.; Stromberg, J. C.

    2014-12-01

    Understanding spatial and temporal patterns of microbial conversion of nitrate (NO3-) to nitrogen (N) gas (denitrification) is important for predicting permanent losses of reactive N from systems. In many landscapes, wetlands serve as hotpots of denitrification by providing optimal condition for denitrifiers (sub-oxic, carbon-rich sediments). Much research on denitrification has occurred in non-urban or highly managed urban wetlands. However, in urban landscapes N-rich stormwater is often discharged into areas not designed or managed to reduce N loads. "Accidental" wetlands forming at these outfalls may have the capacity to remove NO3-; however, these "accidental" urban wetlands can contain novel soils and vegetation, and are subject to unique hydrologic conditions that could create spatial and temporal patterns of denitrification that differ from those predicted in non-urban counterparts. We performed denitrification enzyme assays (measuring denitrification potential, or DP) on soil samples taken from nine wetlands forming at storm drain outfalls in Phoenix, AZ. The wetlands ranged from perennially flooded, to intermittently flooded (~9 months/year), to ephemerally flooded (2-3 weeks/year). To assess spatial variation in carbon availability to denitrifiers, samples were taken from 3-4 dominant vegetation patch types within each wetland. To assess temporal variation in DP, samples were taken across three seasons differing in rainfall pattern. We found small- and large-scale spatiotemporal patterns in DP that have important implications for management of urban wetlands for stormwater quality. DP varied among plant patches and was typically highest in patches of Ludwigia peploides, indicating that plant species type may mediate within-wetland variations in carbon availability, and therefore NO3- removal capacity. We found a range of responses in DP among wetlands to season, which appeared to be driven in part by flood regime: DP in perennially-flooded wetlands was

  13. The effect of urban ground cover on microclimate, growth and leaf gas exchange of oleander in Phoenix, Arizona.

    PubMed

    Mueller, Erin C; Day, Thomas A

    2005-03-01

    We assessed how small patches of contrasting urban ground cover [mesiscape (turf), xeriscape (gravel), concrete, and asphalt] altered the microclimate and performance of adjacent oleander (Nerium oleander L.) plants in Phoenix, Arizona during fall/winter (September-February) and spring/summer (March-September). Ground-cover and oleander canopy surface temperatures, canopy air temperatures and pot soil temperatures tended to be lowest in the mesiscape and highest in the asphalt and concrete. Canopy air vapor pressure deficits were lowest in the mesiscape and highest in the asphalt plot. Rates of net photosynthesis of all oleander plants were highest in October and May, and declined through mid-summer (June-July), when rates tended to be highest in the cooler mesiscape, particularly when water was limiting. During fall/winter, oleanders in the mesiscape produced 20% less biomass, 13% less leaf area, and had 12% lower relative growth rates (R(G)) than those in the other ground covers. Lower nighttime temperatures in the mesiscape in December led to oleander frost damage. During spring/summer, oleanders in the mesiscape produced 11% more biomass, 16% more leaf area, and had 3% higher R(G) than those in the other cover types. The effects of urban ground cover on oleander performance were season-specific; while oleander growth was greatest in the mesiscape during spring/summer, it was lowest during fall/winter and these plants experienced frost damage. Because all oleander plants produced >10 times as much biomass during the spring/summer, on an annual basis oleanders in the mesiscape produced 5-11% more biomass than plants in the warmer ground covers.

  14. The effect of urban ground cover on microclimate, growth and leaf gas exchange of oleander in Phoenix, Arizona.

    PubMed

    Mueller, Erin C; Day, Thomas A

    2005-03-01

    We assessed how small patches of contrasting urban ground cover [mesiscape (turf), xeriscape (gravel), concrete, and asphalt] altered the microclimate and performance of adjacent oleander (Nerium oleander L.) plants in Phoenix, Arizona during fall/winter (September-February) and spring/summer (March-September). Ground-cover and oleander canopy surface temperatures, canopy air temperatures and pot soil temperatures tended to be lowest in the mesiscape and highest in the asphalt and concrete. Canopy air vapor pressure deficits were lowest in the mesiscape and highest in the asphalt plot. Rates of net photosynthesis of all oleander plants were highest in October and May, and declined through mid-summer (June-July), when rates tended to be highest in the cooler mesiscape, particularly when water was limiting. During fall/winter, oleanders in the mesiscape produced 20% less biomass, 13% less leaf area, and had 12% lower relative growth rates (R(G)) than those in the other ground covers. Lower nighttime temperatures in the mesiscape in December led to oleander frost damage. During spring/summer, oleanders in the mesiscape produced 11% more biomass, 16% more leaf area, and had 3% higher R(G) than those in the other cover types. The effects of urban ground cover on oleander performance were season-specific; while oleander growth was greatest in the mesiscape during spring/summer, it was lowest during fall/winter and these plants experienced frost damage. Because all oleander plants produced >10 times as much biomass during the spring/summer, on an annual basis oleanders in the mesiscape produced 5-11% more biomass than plants in the warmer ground covers. PMID:15726447

  15. The effect of urban ground cover on microclimate, growth and leaf gas exchange of oleander in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Mueller, Erin C.; Day, Thomas A.

    2005-03-01

    We assessed how small patches of contrasting urban ground cover [mesiscape (turf), xeriscape (gravel), concrete, and asphalt] altered the microclimate and performance of adjacent oleander (Nerium oleander L.) plants in Phoenix, Arizona during fall/winter (September February) and spring/summer (March September). Ground-cover and oleander canopy surface temperatures, canopy air temperatures and pot soil temperatures tended to be lowest in the mesiscape and highest in the asphalt and concrete. Canopy air vapor pressure deficits were lowest in the mesiscape and highest in the asphalt plot. Rates of net photosynthesis of all oleander plants were highest in October and May, and declined through mid-summer (June July), when rates tended to be highest in the cooler mesiscape, particularly when water was limiting. During fall/winter, oleanders in the mesiscape produced 20% less biomass, 13% less leaf area, and had 12% lower relative growth rates (RG) than those in the other ground covers. Lower nighttime temperatures in the mesiscape in December led to oleander frost damage. During spring/summer, oleanders in the mesiscape produced 11% more biomass, 16% more leaf area, and had 3% higher RG than those in the other cover types. The effects of urban ground cover on oleander performance were season-specific; while oleander growth was greatest in the mesiscape during spring/summer, it was lowest during fall/winter and these plants experienced frost damage. Because all oleander plants produced >10 times as much biomass during the spring/summer, on an annual basis oleanders in the mesiscape produced 5 11% more biomass than plants in the warmer ground covers.

  16. Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region: 2. Dynamical and thermodynamical response

    NASA Astrophysics Data System (ADS)

    Georgescu, M.; Miguez-Macho, G.; Steyaert, L. T.; Weaver, C. P.

    2009-03-01

    This paper is part 2 of a two-part study evaluating the climatic effect of one of the nation's most rapidly expanding metropolitan complexes, the Greater Phoenix, Arizona, region. Part 1, using a set of sensitivity experiments, estimated the potential impact of observed landscape evolution, since the dawn of the Landsat satellite era on the near surface climate, with a primary focus on the alteration of the surface radiation and energy budgets and through use of high-resolution, 2km grid spacing, Regional Atmospheric Modeling System (RAMS) simulations with circa 1973, circa 1992, and circa 2001 landscape data sets. In this paper, part 2, we address the role of the previously discussed surface budget changes and subsequent repartitioning of energy on the mesoscale dynamics and thermodynamics of the region, the effect on convective rainfall, and their association with the large-scale North American Monsoon System (NAMS). Our results show that contrasts in surface heating resulting from landscape change are responsible for the development of preferentially located mesoscale circulations, on most days, which were stronger for the 2001 compared to the 1973 landscape, due to increased planetary boundary layer (PBL) heating via enhanced turbulent heat flux. The effect of these stronger circulations was to warm and dry the lower part of the PBL and moisten the upper part of the PBL for the 2001 relative to the 1973 landscape. The precise physical pathway(s) whereby precipitation enhancement is initiated with evolving landscape, since the early 1970s, reveals a complicated interplay among scales (from the turbulent to the synoptic scale) that warrants future research. Precipitation recycling, however, was found to be an important driver in the overall sustenance of rainfall enhancement. Although this study was not designed to investigate other radiative forcing factors such as greenhouse gas emissions and aerosols, the results of our sensitivity experiments do suggest that

  17. Martian Surface Beneath Phoenix

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an image of the Martian surface beneath NASA's Phoenix Mars Lander. The image was taken by Phoenix's Robotic Arm Camera (RAC) on the eighth Martian day of the mission, or Sol 8 (June 2, 2008). The light feature in the middle of the image below the leg is informally called 'Holy Cow.' The dust, shown in the dark foreground, has been blown off of 'Holy Cow' by Phoenix's thruster engines.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Educating Homeless Children. Hearing before the Subcommittee on Early Childhood, Youth and Families of the Committee on Education and the Workforce. House of Representatives, One Hundred Sixth Congress, Second Session (Phoenix, Arizona, September 5, 2000).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Education and the Workforce.

    This hearing before the Subcommittee on Early Childhood, Youth and Families of the Committee on Education and the Workforce, House of Representatives, which was held in Phoenix, Arizona, focused on ensuring equal educational opportunities for homeless children. After an opening statement by the Honorable Matt Solomon, Subcommittee on Early…

  19. The 13th Stationary/83rd (Dublin) General Hospital, Boulogne, 1914-1919.

    PubMed

    Harbison, J

    2015-01-01

    Casualties from the Western Front during the First World War were often evacuated to base hospitals on the northern coast of France for more advanced and specialist care. These temporary base hospitals frequently had more than 1,000 beds and were typically staffed by older, more senior doctors than were present nearer the front line. The 13th Stationary Hospital opened in October 1914 on the Boulogne docks and became the main specialist unit for the treatment of eye, face and jaw injuries. In May 1917 it was renamed the 83rd (Dublin) Hospital when the staff was augmented by volunteer staff from Irish hospitals. The hospital subsequently housed an innovative 'physical medicine' or rehabilitation unit. The hospital remained open for the duration of the War, moving to Langenfeld in the Ruhr following the Armistice.

  20. 1. VIEW OF ARIZONA FALLS ON THE ARIZONA CANAL, PRIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF ARIZONA FALLS ON THE ARIZONA CANAL, PRIOR TO CONSTRUCTION OF POWER PLANT IN 1901, FACING EAST Photographer: unknown. No date. - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  1. Change in land use in the Phoenix (1:250,000) Quadrangle, Arizona between 1970 and 1972: Successful use of proposed land use classification system

    NASA Technical Reports Server (NTRS)

    Place, J. L.

    1973-01-01

    Changes in land use in the Phoenix (1:250,000 scale) Quadrangle in Arizona have been mapped using only the images from ERTS-1, tending to verify the utility of a land use classification system proposed for use with ERTS images. The period of change investigated was from November 1970 to late summer or early fall, 1972. Seasonal changes also were studied using successive ERTS images. Types of equipment used to aid interpretation included a color additive viewer, a twenty-power magnifier, a density slicer, and a diazo copy machine for making ERTS color composites in hard copy. Types of changes detected have been: (1) cropland or rangeland developed for new residential areas; (2) rangeland converted to new cropland; and (3) possibly new areas of industrial or commercial development. A map of land use previously compiled from air photos was updated in this manner.

  2. Twenty-five years later--an address prepared for delivery at the Solar Jubilee Dinner June 4, 1980, at Phoenix, Arizona

    SciTech Connect

    Yellott, J.I.

    1980-01-01

    The world-wide scientific organization which is known today as the International Solar Energy Society had its beginning in Phoenix 25 years ago, less than a mile from the hall in which the Solar Jubilee Banquet will be held. The Arizona civic leaders who founded the predecessor organization named it The Association for Applied Solar Energy and, as a Christmas present to the entire world, they incorporated it on December 24, 1954. Its aims were three-fold: to gather, compile, and disseminate information relating to solar energy; to foster research and education in fields related to solar energy; and to encourage the expansion and development of the applications of solar energy. An objective of this address is to show how the founders set out to accomplish these objectives and to let the hearers and readers of this address determine for themselves how effectively they have reached their goals.

  3. Diurnal patterns of wheat spectral reflectances and their importance in the assessment of canopy parameters from remotely sensed observations. [Phoenix, Arizona

    NASA Technical Reports Server (NTRS)

    Pinter, P. J.; Jackson, R. D.; Idso, S. B.; Reginato, R. J. (Principal Investigator)

    1982-01-01

    Spectral reflectances of Produra wheat were measured at 13 different times of the day at Phoenix, Arizona, during April 1979 using a nadir-oriented hand-held 4-band radiometer which had bandpass characteristics similar to those on LANDSAT satellites. Different Sun altitude and azimuth angles caused significant diurnal changes in radiant return in both visible and near-IR regions of the spectrum and in several vegetation indices derived from them. The magnitude of these changes were related to different canopy architecture, percent cover and green leaf area conditions. Spectral measurements taken at each time period were well correlated with green leaf area index but the nature of the relationship changed significantly with time of day. Thus, a significant bias in the estimation of the green leaf area index from remotely sensed spectral data could occur if sun angles are not properly accounted for.

  4. Vulnerability of water systems to the effects of climate change and urbanization: a comparison of Phoenix, Arizona and Portland, Oregon (USA).

    PubMed

    Larson, Kelli L; Polsky, Colin; Gober, Patricia; Chang, Heejun; Shandas, Vivek

    2013-07-01

    The coupled processes of climate change and urbanization pose challenges for water resource management in cities worldwide. Comparing the vulnerabilities of water systems in Phoenix, Arizona and Portland, Oregon, this paper examines (1) exposures to these stressors, (2) sensitivities to the associated impacts, and (3) adaptive capacities for responding to realized or anticipated impacts. Based on a case study and survey-based approach, common points of vulnerability include: rising exposures to drier, warmer summers, and suburban growth; increasing sensitivities based on demand hardening; and limited capacities due to institutional and pro-growth pressures. Yet each region also exhibits unique vulnerabilities. Comparatively, Portland shows: amplified exposures to seasonal climatic extremes, heightened sensitivity based on less diversified municipal water sources and policies that favor more trees and other irrigated vegetation, and diminished adaptive capacities because of limited attention to demand management and climate planning for water resources. Phoenix exhibits elevated exposure from rapid growth, heightened sensitivities due to high water demands and widespread increases in residential and commercial uses, and limited adaptive capacities due to weak land use planning and "smart growth" strategies. Unique points of vulnerability suggest pathways for adapting to urban-environmental change, whether through water management or land planning. Greater coordination between the land and water sectors would substantially reduce vulnerabilities in the study regions and beyond.

  5. Vulnerability of Water Systems to the Effects of Climate Change and Urbanization: A Comparison of Phoenix, Arizona and Portland, Oregon (USA)

    NASA Astrophysics Data System (ADS)

    Larson, Kelli L.; Polsky, Colin; Gober, Patricia; Chang, Heejun; Shandas, Vivek

    2013-07-01

    The coupled processes of climate change and urbanization pose challenges for water resource management in cities worldwide. Comparing the vulnerabilities of water systems in Phoenix, Arizona and Portland, Oregon, this paper examines (1) exposures to these stressors, (2) sensitivities to the associated impacts, and (3) adaptive capacities for responding to realized or anticipated impacts. Based on a case study and survey-based approach, common points of vulnerability include: rising exposures to drier, warmer summers, and suburban growth; increasing sensitivities based on demand hardening; and limited capacities due to institutional and pro-growth pressures. Yet each region also exhibits unique vulnerabilities. Comparatively, Portland shows: amplified exposures to seasonal climatic extremes, heightened sensitivity based on less diversified municipal water sources and policies that favor more trees and other irrigated vegetation, and diminished adaptive capacities because of limited attention to demand management and climate planning for water resources. Phoenix exhibits elevated exposure from rapid growth, heightened sensitivities due to high water demands and widespread increases in residential and commercial uses, and limited adaptive capacities due to weak land use planning and "smart growth" strategies. Unique points of vulnerability suggest pathways for adapting to urban-environmental change, whether through water management or land planning. Greater coordination between the land and water sectors would substantially reduce vulnerabilities in the study regions and beyond.

  6. National Indian Child Conference: Tomorrow Can Be Better for Indian Children (1st, Phoenix, Arizona, November 13-16, 1978).

    ERIC Educational Resources Information Center

    Save the Children, Albuquerque, NM.

    Selected conference proceedings (keynote addresses and workshop presentations) are compiled in this report of the first National Indian Child Conference, held in Phoenix, November 13-16, 1978, and attended by 1,800 people representing over 100 tribes in the United States and Canada. The text of eight addresses are included; they cover a wide range…

  7. 77 FR 74457 - Foreign-Trade Zone 75-Phoenix, Arizona Application for Expansion (New Magnet Site) Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... Campbell Avenue, Phoenix; and, Site 5 (32.5 acres)--the jet fuel storage and distribution system at and... Site) Under Alternative Site Framework An application has been submitted to the Foreign-Trade Zones... to expand its zone under the alternative site framework (ASF) adopted by the Board (15 CFR...

  8. Phoenix Trenches

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Annotated Version

    [figure removed for brevity, see original site] Left-eye view of a stereo pair [figure removed for brevity, see original site] Right-eye view of a stereo pair

    This image is a stereo, panoramic view of various trenches dug by NASA's Phoenix Mars Lander. The images that make up this panorama were taken by Phoenix's Surface Stereo Imager at about 4 p.m., local solar time at the landing site, on the 131st, Martian day, or sol, of the mission (Oct. 7, 2008).

    In figure 1, the trenches are labeled in orange and other features are labeled in blue. Figures 2 and 3 are the left- and right-eye members of a stereo pair.

    For scale, the 'Pet Donkey' trench just to the right of center is approximately 38 centimeters (15 inches) long and 31 to 34 centimeters (12 to 13 inches) wide. In addition, the rock in front of it, 'Headless,' is about 11.5 by 8.5 centimeters (4.5 by 3.3 inches), and about 5 centimeters (2 inches) tall.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Phoenix's Wet Chemistry Laboratory Units

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on board NASA's Phoenix Mars Lander. This image was taken before Phoenix's launch on August 4, 2007.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Phoenix Color Targets

    NASA Technical Reports Server (NTRS)

    2008-01-01

    These images of three Phoenix color targets were taken on sols 1 and 2 by the Surface Stereo Imager (SSI) on board the Phoenix lander. The bottom target was imaged in approximate color (SSI's red, green, and blue filters: 600, 530, and 480 nanometers), while the others were imaged with an infrared filter (750 nanometers). All of them will be imaged many times over the mission to monitor the color calibration of the camera. The two at the top show grains 2 to 3 millimeters in size that were likely lifted to the Phoenix deck during landing. Each of the large color chips on each target contains a strong magnet to protect the interior material from Mars' magnetic dust.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Comparing the capitalisation benefits of light-rail transit and overlay zoning for single-family houses and condos by neighbourhood type in metropolitan Phoenix, Arizona.

    PubMed

    Atkinson-Palombo, Carol

    2010-01-01

    Light rail transit (LRT) is increasingly accompanied by overlay zoning which specifies the density and type of future development to encourage landscapes conducive to transit use. Neighbourhood type (based on land use mix) is used to partition data and investigate how pre-existing land use, treatment with a park-and-ride (PAR) versus walk-and-ride (WAR) station and overlay zoning interrelate. Hedonic models estimate capitalisation effects of LRT-related accessibility and overlay zoning on single-family houses and condos in different neighbourhoods for the system in metropolitan Phoenix, Arizona. Impacts differ by housing and neighbourhood type. Amenity-dominated mixed-use neighbourhoods-predominantly WAR communities-experience premiums of 6 per cent for single-family houses and over 20 per cent for condos, the latter boosted an additional 37 per cent by overlay zoning. Residential neighbourhoods-predominantly PAR communities-experience no capitalisation benefits for single-family houses and a discount for condos. The results suggest that land use mix is an important variable to select comparable neighbourhoods.

  12. Remote Sensing of the Surface Urban Heat Island and Land Architecture in Phoenix, Arizona: Combined Effects of Land Composition and Configuration and Cadastral-Demographic-Economic Factors

    NASA Astrophysics Data System (ADS)

    Middel, A. C.; LI, X.

    2015-12-01

    This study seeks to determine the role of land architecture—the composition and configuration of land cover—as well as cadastral-demographic-economic factors on land surface temperature (LST) and the surface urban heat island (SUHI) effect of Phoenix, Arizona. It employs 1 m National Agricultural Imagery Program data of land-cover with 120 m Landsat-derived land surface temperature decomposed to 30m, a new measure of configuration, the normalized moment of inertia, and U.S. Census data to address the question for two randomly selected samples comprising 523 and 545 residential neighborhoods (census blocks) in the city. The results indicate that, contrary to most other studies, land configuration maintains as strong a role in LST as does land composition. In addition, land architecture combined with cadastral, demographic and economic data, captures a significant amount of explained variance in LST. The results indicate that attention to land architecture in the development of or reshaping of neighborhoods may ameliorate the summer extremes in LST.

  13. 4. VIEW SHOWING EXCAVATION IN ARIZONA CANAL, 8 MILES NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW SHOWING EXCAVATION IN ARIZONA CANAL, 8 MILES NORTHEAST OF PHOENIX. NOTE MEN DRILLING AND EXCAVATING IN OPERATION; CAMELBACK MOUNTAIN IN THE DISTANCE Photographer: Walter J. Lubken. No date - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  14. Temporal variations in atmospheric CO2 concentrations in Kuwait City, Kuwait with comparisons to Phoenix, Arizona, USA.

    PubMed

    Nasrallah, Hassan A; Balling, Robert C; Madi, Shaker Mohammed; Al-Ansari, Lamya

    2003-01-01

    Hourly atmospheric carbon dioxide (CO2) concentration measurements are available from 1996 to present for a suburban site within the growing metropolitan area of Kuwait City. Analyses of this record reveal (a) an annual cycle with highest values in February and lowest values in September reflecting the growth and decay of vegetation in the Northern Hemisphere as well as fluctuations in motor traffic, (b) a weekly cycle with highest values during the weekdays and lowest values during weekends, and (c) a diurnal cycle with highest values after sunset when the local atmosphere becomes more stable following vehicular emission of CO2 throughout the day and lowest values in late afternoon following several hours of relatively unstable conditions. During the daytime, CO2 concentrations are related to wind direction, with westerly winds (coming from the desert) promoting lowest CO2 concentrations. At night, lowest CO2 levels are associated with higher wind speeds and winds from the north. The findings from the Kuwait City area, particularly when contrasted with the situation in Phoenix, further our understanding of the dynamics of CO2 levels in urban environments.

  15. Soil on Phoenix's TEGA

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows soil on the doors of the Thermal and Evolved Gas Analyzer (TEGA) onboard NASA's Phoenix Mars Lander. The image was taken by the lander's Robotic Arm Camera on the 131st Martian day, or sol, of the mission (Oct. 7, 2008). This sample delivered to TEGA was named 'Rosy Red.'

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of soil analysis on NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL will attempt to determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of the analytical procedure of NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL can determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Phoenix Lander Work Area

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows NASA's Phoenix Mars Lander Robotic Arm work area with an overlay. The pink area is available for digging, the green area is reserved for placing the Thermal and Electrical Conductivity Probe (TECP) instrument. Soil can be dumped in the violet area.

    Images were displayed using NASA Ames 'Viz' visualization software.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Phoenix's Snow White Trench

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A soil sample taken from the informally named 'Snow White' trench at NASA's Phoenix Mars Lander work site produced minerals that indicate evidence of past interaction between the minerals and liquid water.

    This image was taken by the Surface Stereo Imager on Sol 103, the 103rd day since landing (Sept. 8, 2008).

    The trench is approximately 23 centimeters (9 inches) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  20. Spatiotemporal Characterization of Aquifers Using InSAR Time Series and Time-dependent Poroelastic Modeling in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Miller, M. M.; Shirzaei, M.

    2014-12-01

    Alluvial basins in Phoenix experience surface deformation due to large volumes of fluid withdrawn and added to aquifers. The spatiotemporal pattern of deformation is controlled by pumping and recharge rates, hydraulic boundaries, and properties such as diffusivity, transmissivity, and hydraulic conductivity. Land subsidence can cause damages to structures, earth fissures, and a permanent loss of aquifer storage; effects are often apparent after the onset of sustained events. Improving our understanding of the source and mechanisms of deformation is important for risk management and future planning. Monitoring subsidence and uplift using InSAR allows for detailed, dense spatial coverage with less than one cm measurement precision. Envisat data acquired from 2003-11 includes 38 ascending and 53 descending SAR images forming 239 and 423 coherent interferograms respectively. Displacement is separated into vertical and horizontal components by accounting for the satellite look angle and combining ascending and descending line of sight (LOS) data. Vertical velocity from Envisat reveals subsidence reaching -1.84 cm/yr and 0.60 cm/yr uplift. ERS 1&2 satellites delivered useful data from 1992-97, comprised of 6 ascending and 12 descending SAR images. Ascending images form 7 interferograms with LOS velocity from -1.23 to 1.65 cm/yr; descending images produce 25 interferograms with LOS velocity rates from -1.40 to 0.75 cm/yr. InSAR time series are compared with hydraulic head levels from 33 observation wells. Wavelet decomposition is used to separate the long-term, inelastic components from cyclic, elastic signals in InSAR and well level data. The specific storage coefficient, a parameter used in poroelastic models, is estimated as the ratio of cyclic vertical deformation to the equivalent component of the well level time series. Poroelastic theory assumes that pore pressure and fluid mass within the aquifer change during fluid withdrawal, while the relatively impermeable

  1. Animation of Phoenix's Wrist Unlatching

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This animation shows what happened underneath Phoenix's Robotic Arm wrist on Sol 3. The pin that goes through the loop is what holds the wrist in place. The rotation of the wrist pops the pin free.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Phoenix Without its Parachute

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for the animation

    NASA's Phoenix Mars Lander will be in free fall after it separates from its back shell and parachute, but not for long. Thrusters will begin firing half a second later and will increase their thrusts three seconds after Phoenix sets itself free from the parachute.

    The spacecraft will have slowed to about 56 meters per second (125 miles per hour) by the time it separates from the parachute, about a kilometer (six-tenths of a mile) above the ground.

    This illustration is part of the animation featured above.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Phoenix Animation Looking North

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animation is a series of images, taken by NASA's Phoenix Mars Lander's Surface Stereo Imager, combined into a panoramic view looking north from the lander. The area depicted is beyond the immediate workspace of the lander and shows a system of polygons and troughs that connect with the ones Phoenix will be investigating in depth.

    The images were taken on sol 14 (June 8, 2008) or the 14th Martian day after landing.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Phoenix Work Area Animation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animation from Sol 1 shows a mosaic of the Phoenix digging area in the Martian terrain. Phoenix scientists are very pleased with this view as the terrain features few rocks an optimal place for digging. The mast of the camera looks disjointed because the photos that comprise this mosaic were taken at different times of day. This video also show some of the lander's instrumentation.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Soil on Phoenix Deck

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, taken by the Surface Stereo Imager (SSI) of NASA's Phoenix Lander, shows Martian soil piled on top of the spacecraft's deck and some of its instruments. Visible in the upper-left portion of the image are several wet chemistry cells of the lander's Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The instrument on the lower right of the image is the Thermal and Evolved-Gas Analyzer. The excess sample delivered to the MECA's sample stage can be seen on the deck in the lower left portion of the image.

    This image was taken on Martian day, or sol, 142, on Saturday, Oct. 19, 2008. Phoenix landed on Mars' northern plains on May 25, 2008.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Phoenix on Target

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This topography map illustrates where NASA's Phoenix Mars Lander is targeted to land on May 25, 2008, based on expectations as of noon pacific time (3 p.m. eastern time), May 24, 2008.

    Phoenix is most likely to land at the cross-shaped target at the center of the red ellipse and least likely to land at the ellipse's edges. The ellipse is positioned over the northern arctic plains of Mars, and is approximately 70 kilometers (44 miles) long.

    The topography data was taken by NASA's Mars Global Surveyor. It shows exaggerated differences in the height of the terrain.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Soil Fills Phoenix Laboratory Cell

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows four of the eight cells in the Thermal and Evolved-Gas Analyzer, or TEGA, on NASA's Phoenix Mars Lander. TEGA's ovens, located underneath the cells, heat soil samples so the released gases can be analyzed.

    Left to right, the cells are numbered 7, 6, 5 and 4. Phoenix's Robotic Arm delivered soil most recently to cell 6 on the 137th Martian day, or sol, of the mission (Oct. 13, 2008).

    Phoenix's Robotic Arm Camera took this image at 3:03 p.m. local solar time on Sol 138 (Oct. 14, 2008).

    Phoenix landed on Mars' northern plains on May 25, 2008.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. City of Phoenix - Energize Phoenix Program

    SciTech Connect

    Laloudakis, Dimitrios J.

    2014-09-29

    Energize Phoenix (EPHX) was designed as an ambitious, large-scale, three-year pilot program to provide energy efficiency upgrades in buildings, along Phoenix’s new Light Rail Corridor – part of a federal effort to reduce energy consumption and stimulate job growth, while simultaneously reducing the country’s carbon footprint and promoting a shift towards a green economy. The program was created through a 2010 competitive grant awarded to the City of Phoenix who managed the program in partnership with Arizona State University (ASU), the state’s largest university, and Arizona Public Service (APS), the state’s largest electricity provider. The U.S. Department of Energy (DOE) Better Buildings Neighborhood Program (BBNP) and the American Recovery and Reinvestment Act (ARRA) of 2009 provided $25M in funding for the EPHX program. The Light Rail Corridor runs through the heart of downtown Phoenix, making most high-rise and smaller commercial buildings eligible to participate in the EPHX program, along with a diverse mix of single and multi-family residential buildings. To ensure maximum impact and deeper market penetration, Energize Phoenix was subdivided into three unique parts: i. commercial rebate program, ii. commercial financing program, and iii. residential program Each component was managed by the City of Phoenix in partnership with APS. Phoenix was fortunate to partner with APS, which already operated robust commercial and residential rebate programs within its service territory. Phoenix tapped into the existing utility contractor network, provided specific training to over 100 contracting firms, and leveraged the APS rebate program structure (energy efficiency funding) to launch the EPHX commercial and residential rebate programs. The commercial finance program was coordinated and managed through a contract with National Bank of Arizona, NBAZ, which also provided project capital leveraging EPHX finance funds. Working in unison, approved contractors

  9. Soil on Phoenix's MECA

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows soil delivery to NASA's Phoenix Mars Lander's Microscopy, Electrochemistry and Conductivity Analyzer (MECA). The image was taken by the lander's Surface Stereo Imager on the 131st Martian day, or sol, of the mission (Oct. 7, 2008).

    At the bottom of the image is the chute for delivering samples to MECA's microscopes. It is relatively clean due to the Phoenix team using methods such as sprinkling to minimize cross-contamination of samples. However, the cumulative effect of several sample deliveries can be seen in the soil piles on either side of the chute.

    On the right side are the four chemistry cells with soil residue piled up on exposed surfaces. The farthest cell has a large pile of material from an area of the Phoenix workspace called 'Stone Soup.' This area is deep in the trough at a polygon boundary, and its soil was so sticky it wouldn't even go through the funnel.

    One of Phoenix's solar panels is shown in the background of this image.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Phoenix Lander on Mars

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander monitors the atmosphere overhead and reaches out to the soil below in this artist's depiction of the spacecraft fully deployed on the surface of Mars.

    Phoenix has been assembled and tested for launch in August 2007 from Cape Canaveral Air Force Station, Fla., and for landing in May or June 2008 on an arctic plain of far-northern Mars. The mission responds to evidence returned from NASA's Mars Odyssey orbiter in 2002 indicating that most high-latitude areas on Mars have frozen water mixed with soil within arm's reach of the surface.

    Phoenix will use a robotic arm to dig down to the expected icy layer. It will analyze scooped-up samples of the soil and ice for factors that will help scientists evaluate whether the subsurface environment at the site ever was, or may still be, a favorable habitat for microbial life. The instruments on Phoenix will also gather information to advance understanding about the history of the water in the icy layer. A weather station on the lander will conduct the first study Martian arctic weather from ground level.

    The vertical green line in this illustration shows how the weather station on Phoenix will use a laser beam from a lidar instrument to monitor dust and clouds in the atmosphere. The dark 'wings' to either side of the lander's main body are solar panels for providing electric power.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems, Denver. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen (Denmark), the Max Planck Institute (Germany) and the Finnish Meteorological institute. JPL is a division of the California Institute of Technology in Pasadena.

  11. 33. VIEW SHOWING THE REMAINS OF THE ORIGINAL ARIZONA CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. VIEW SHOWING THE REMAINS OF THE ORIGINAL ARIZONA CANAL HEADING, ARIZONA DAM, LOOKING EAST Photographer: Mark Durben, December 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  12. 55. VIEW OF WEST ENTRANCE BRIDGE CROSSING THE ARIZONA CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. VIEW OF WEST ENTRANCE BRIDGE CROSSING THE ARIZONA CANAL AT THE ARIZONA BILTMORE, LOOKING EAST Photographer: Kevin Kriesel-Coons, May 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  13. 77 FR 36000 - Notice of Filing of Plats of Survey; Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... described lands were officially filed in the Arizona State Office, Bureau of Land Management, Phoenix... Central Avenue, Suite 800, Phoenix, Arizona, 85004-4427. Persons who use a telecommunications device...

  14. 78 FR 44591 - Notice of Filing of Plats of Survey; Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... described lands were officially filed in the Arizona State Office, Bureau of Land Management, Phoenix... Central Avenue, Suite 800, Phoenix, Arizona, 85004-4427. Persons who use a telecommunications device...

  15. Discovering Diversity Downtown: Questioning Phoenix

    ERIC Educational Resources Information Center

    Talmage, Craig A.; Dombrowski, Rosemarie; Pstross, Mikulas; Peterson, C. Bjørn; Knopf, Richard C.

    2015-01-01

    Applied community learning experiences for university students are promising endeavors in downtown urban environments. Past research is applied to help better comprehend a community engagement initiative conducted in downtown Phoenix, Arizona. The initiative aimed to illuminate the socio-cultural diversity of the downtown area utilizing…

  16. Images from Phoenix's MECA Instruments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The image on the upper left is from NASA's Phoenix Mars Lander's Optical Microscope after a sample informally called 'Sorceress' was delivered to its silicon substrate on the 38th Martian day, or sol, of the mission (July 2, 2008).

    A 3D representation of the same sample is on the right, as seen by Phoenix's Atomic Force Microscope. This is 100 times greater magnification than the view from the Optical Microscope, and the most highly magnified image ever seen from another world.

    The Optical Microscope and the Atomic Force Microscope are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument.

    The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. How Phoenix Looks Under Itself

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of NASA's Phoenix Mars Lander reaching with its Robotic Arm and taking a picture of the surface underneath the lander. The image at the conclusion of the animation was taken by Phoenix's Robotic Arm Camera (RAC) on the eighth Martian day of the mission, or Sol 8 (June 2, 2008). The light feature in the middle of the image below the leg is informally called 'Holy Cow.' The dust, shown in the dark foreground, has been blown off of 'Holy Cow' by Phoenix's thruster engines.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Phoenix's Workplace Map

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from NASA's Phoenix Mars Lander shows the spacecraft's recent activity site as of the 23rd Martian day of the mission, or Sol 22 (June 16, 2008), after the spacecraft touched down on the Red Planet's northern polar plains. The mosaic was taken by the lander's Surface Stereo Imager (SSI). Phoenix's solar panels are seen in the foreground.

    The trench informally called 'Snow White' was dug by Phoenix's Robotic Arm in a patch of Martian soil near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The 'dump pile' is located at the top of the trench, and has been dubbed 'Croquet Ground.' The digging site has been nicknamed 'Wonderland.'

    Snow White, seen here in an SSI image from Sol 22 (June 16, 2008) is about 2 centimeters (.8 inches) deep and 30 centimeters (12 inches) long. As of Sol 24 (June 18, 2008), the trench is 5 centimeters (2 inches deep) and the trench has been renamed 'Snow White 1,' as a second trench has been dug to its right and nicknamed 'Snow White 2.'

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Phoenix Robotic Arm

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A vital instrument on NASA's Phoenix Mars Lander is the robotic arm, which will dig into the icy soil and bring samples back to the science deck of the spacecraft for analysis. In September 2006 at a Lockheed Martin Space Systems clean room facility near Denver, spacecraft technician Billy Jones inspects the arm during the assembly phase of the mission.

    Using the robotic arm -- built by the Jet Propulsion Laboratory, Pasadena -- the Phoenix mission will study the history of water and search for complex organic molecules in the ice-rich soil.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  20. Literacy-Empowerment-Opportunity: Contributed Papers Presented at the ASLA-AEMA Annual Conference (Phoenix, Arizona, December 1-4, 1993).

    ERIC Educational Resources Information Center

    Hammond, Carol, Ed.

    This proceedings contains the following papers presented at the 1993 conference of the Arizona State Library Association and Arizona Educational Media Association College and University Libraries Division: (1) "Building a Collection Development Team in an Academic Library" (Bee Gallegos and John Spencer); (2) "Danger, Death and Desire in the…

  1. Underneath the Phoenix Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Robotic Arm Camera on NASA's Phoenix Mars Lander took this image on Oct. 18, 2008, during the 142nd Martian day, or sol, since landing. The flat patch in the center of the image has the informal name 'Holy Cow,' based on researchers' reaction when they saw the initial image of it only a few days after the May 25, 2008 landing. Researchers first saw this flat patch in an image taken by the Robotic Arm Camera on May 30, the fifth Martian day of the mission.

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Phoenix's La Mancha Trench

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This false color image, taken by NASA's Phoenix Mars Lander's Surface Stereo Imager, was taken on the 131st Martian day, or sol, of the mission (Oct. 7, 2008). The image shows color variations of the trench, informally named 'La Mancha,' and reveals the ice layer beneath the soil surface. The trench's depth is about 5 centimeters deep.

    The color outline of the shadow at the bottom of the image is a result of sun movement with the combined use of infrared, green, and blue filters.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Flyover Animation of Phoenix Workspace

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animated 'flyover' of the workspace of NASA's Phoenix Mars Lander's was created from images taken by the Surface Stereo Imager on Sol 14 (June 8, 2008), or the 14th Martian day after landing.

    The visualization uses both of the camera's 'eyes' to provide depth perception and ranging. The camera is looking north over the workspace.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Soil Delivery to Phoenix Oven

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows a view from NASA's Phoenix Mars Lander's Stereo Surface Imager's left eye after delivery of soil to the Thermal and Evolved-Gas Analyzer (TEGA), taken on the 12th Martian day after landing (Sol 12, June $6, 2008).

    Soil is visible on both sides of the open doors of TEGA's #4 oven. Sensors inside the device indicate no soil passed through the screen and into the oven.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Phoenix Stretches its Arm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    The Phoenix spacecraft is scheduled to begin raising its robotic arm up and out of its stowed configuration on the third Martian day, or Sol 3 (May 28, 2008) of the mission. This artist's animation, based on engineering models, shows how Phoenix will accomplish this task. First, its wrist actuator will rotate, releasing its launch-restraint pin. Next, the forearm moves up, releasing the elbow launch-restraint pin. The elbow will then move up and over in small steps, a process referred to as 'staircasing.' This ensures that the arm's protective biobarrier wrap, now unpeeled and lying to the side of the arm, will not get in the way of the arm's deployment.

    The arm is scheduled to straighten all the way out on Sol 4 (May 29, 2008), after engineers have reviewed images and telemetry data from the spacecraft showing that the biobarrier material has been cleared.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Phoenix Landing Site Indicated on Global View

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Mission landed at 68.2 degrees north latitude, 234.2 degrees east longitude. The far-northern location of the site is indicated on this global view from the Mars Orbiter Camera on NASA's Mars Global Surveyor.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  7. Flyover Video of Phoenix Work Area

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This video shows an overhead view of NASA's Phoenix Mars Lander and the work area of the Robotic Arm.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. 77 FR 58862 - Notice of Filing of Plats of Survey; Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ..., Arizona, on dates indicated. SUPPLEMENTARY INFORMATION: The Gila and Salt River Meridian, Arizona The plat..., Suite 800, Phoenix, Arizona, 85004-4427. Persons who use a telecommunications device for the deaf...

  9. 77 FR 66631 - Notice of Filing of Plats of Survey; Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ..., Arizona, on dates indicated. SUPPLEMENTARY INFORMATION: The Gila and Salt River Meridian, Arizona The plat..., Suite 800, Phoenix, Arizona 85004-4427. Persons who use a telecommunications device for the deaf...

  10. 78 FR 65356 - Notice of Filing of Plats of Survey; Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ..., Arizona, on dates indicated. SUPPLEMENTARY INFORMATION: The Gila and Salt River Meridian, Arizona The plat... Central Avenue, Suite 800, Phoenix, Arizona 85004-4427. Persons who use a telecommunications device...

  11. The Ground Beneath Phoenix's Feet

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view of a portion of the spacecraft deck and one of the footpads of NASA's three-legged Phoenix Mars Lander shows a solid surface at the spacecraft's landing site. As the legs touched down on the surface of Mars, they kicked up some loose material on top of the footpad, but overall, the surface is unperturbed.

    Each footpad is about the size of a large dinner plate, measuring 11.5 inches from rim to rim. The base of the footpad is shaped like the bottom of a shallow bowl to provide stability.

    This image was taken by the Phoenix spacecraft's Surface Stereo Imager shortly after landing on Mars.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. False Color Terrain Model of Phoenix Workspace

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is a terrain model of Phoenix's Robotic Arm workspace. It has been color coded by depth with a lander model for context. The model has been derived using images from the depth perception feature from Phoenix's Surface Stereo Imager (SSI). Red indicates low-lying areas that appear to be troughs. Blue indicates higher areas that appear to be polygons.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Phoenix's Probe Inserted in Martian Soil

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Phoenix Mars lander's robotic-arm camera took this image of the spacecraft's thermal and electrical-conductivity probe (TECP) inserted into Martian soil on day 149 of the mission. Phoenix landed on Mars' northern plains on May 25, 2008, landing.

    The robotic-arm camera acquired this image at 16:02:41 local solar time. The camera pointing was elevation -72.6986 degrees and azimuth 2.1093 degrees.

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Partially Opened Oven on Phoenix

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view from the Robotic Arm Camera on NASA's Phoenix Mars Lander shows partial opening of doors to one of the tiny ovens of the Thermal and Evolved-Gas Analyzer.

    Each oven has a pair of spring-loaded doors. Near the center of the image, the partial opening of a pair of doors reveals screen over the opening where a soil sample will be delivered. The door to the right is fully opened and the one to the left is partially deployed. The doors are 10 centimeters (4 inches) long. The opening is 4 centimeters (1.5 inches) wide.

    Tests on the Phoenix testbed at the University of Arizona, Tucson, indicate that a soil sample could be delivered into the oven through the partially opened doors. Engineers are also exploring possibilities for opening the doors more completely.This image was taken during Phoenix's eighth Martian day, or sol (June 2, 2008).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. 52. VIEW SHOWING SITE OF ARIZONA FALL POWER PLANT, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. VIEW SHOWING SITE OF ARIZONA FALL POWER PLANT, LOOKING EAST. CURRENT LOCATION OF THE REAL-TIME WATER QUALITY MONITORING STATION Photographer: James Eastwood, July 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  16. 28. Photocopy of construction drawing, Arizona Highway Department, 1936 (microfiche ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Photocopy of construction drawing, Arizona Highway Department, 1936 (microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). TOWER DETAILS. - Corduroy Creek Bridge, Spanning Corduroy Creek at Highway 60, Show Low, Navajo County, AZ

  17. 5. VIEW SHOWING DREDGING OF ARIZONA CANAL NEAR THE GRANITE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SHOWING DREDGING OF ARIZONA CANAL NEAR THE GRANITE REEF DAM. SOUTH INTAKE OF THE DAM IS IN THE BACKGROUND Photographer: Walter J. Lubken. March 1908 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  18. 24. Photocopy of construction drawing, Arizona Highway Department, 1936 (microfiche ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photocopy of construction drawing, Arizona Highway Department, 1936 (microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). DETAILS OF ABUTMENTS. - Corduroy Creek Bridge, Spanning Corduroy Creek at Highway 60, Show Low, Navajo County, AZ

  19. 25. Photocopy of construction drawing, Arizona Highway Department, 1936 (microfiche ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Photocopy of construction drawing, Arizona Highway Department, 1936 (microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). ABUTMENT NO. 4. - Corduroy Creek Bridge, Spanning Corduroy Creek at Highway 60, Show Low, Navajo County, AZ

  20. 38. VIEW SHOWING SITE OF THE OLD ARIZONA CANAL POWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. VIEW SHOWING SITE OF THE OLD ARIZONA CANAL POWER HOUSE, LOOKING SOUTH ON THE SALT RIVER INDIAN RESERVATION (NOW SPILLWAY A) Photographer: James Eastwood, June 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  1. 49. VIEW OF ARIZONA CANAL AT SCOTTSDALE ROAD, LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. VIEW OF ARIZONA CANAL AT SCOTTSDALE ROAD, LOOKING NORTHWEST. DECORATIVE FOOTBRIDGE AND GATES ARE VISIBLE Photographer: James Eastwood, July 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  2. 22. VIEW SHOWING UNLINED PORTION OF THE ARIZONA CANAL WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. VIEW SHOWING UNLINED PORTION OF THE ARIZONA CANAL WITH SQUAW PEAK IN THE BACKGROUND, LOOKING WEST Photographer: unknown. May 1953 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  3. 39. VIEW OF HORSE AND ESCAPE STEPS ON ARIZONA CANAL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. VIEW OF HORSE AND ESCAPE STEPS ON ARIZONA CANAL, LOOKING NORTH ON THE SALT RIVER INDIAN RESERVATION Photographer: James Eastwood, June 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  4. 26. Photocopy of construction drawing, Arizona Highway Department, 1936 (microfiche ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photocopy of construction drawing, Arizona Highway Department, 1936 (microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). PIN BEARING AND ABUTMENT. - Corduroy Creek Bridge, Spanning Corduroy Creek at Highway 60, Show Low, Navajo County, AZ

  5. 35. VIEW SHOWING THE HEAD OF THE ARIZONA CANAL AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. VIEW SHOWING THE HEAD OF THE ARIZONA CANAL AT GRANITE REEF DAM, LOOKING WEST. GATEKEEPER'S HOUSE IS IN THE BACKGROUND Photographer: James Eastwood, June 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  6. 23. Photocopy of construction drawing, Arizona Highway Department, 1936 (microfiche ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Photocopy of construction drawing, Arizona Highway Department, 1936 (microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). PLAN AND ELEVATION. - Corduroy Creek Bridge, Spanning Corduroy Creek at Highway 60, Show Low, Navajo County, AZ

  7. 54. Photocopy of construction drawing, Arizona Highway Department, May 1927, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. Photocopy of construction drawing, Arizona Highway Department, May 1927, microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). FLOOR SYSTEM. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  8. 47. Photocopy of construction drawing, Arizona Highway Department, May 1927, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. Photocopy of construction drawing, Arizona Highway Department, May 1927, microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). TITLE PAGE. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  9. 55. Photocopy of construction drawing, Arizona Highway Department, May 1927, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. Photocopy of construction drawing, Arizona Highway Department, May 1927, microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). APPROACH SPANS. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  10. 62. Photocopy of construction drawing, Arizona Highway Department, May 1927, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. Photocopy of construction drawing, Arizona Highway Department, May 1927, microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). ERECTION DIAGRAM. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  11. 61. Photocopy of construction drawing, Arizona Highway Department, May 1927, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. Photocopy of construction drawing, Arizona Highway Department, May 1927, microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). HANDRAIL DESIGN. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  12. 53. Photocopy of construction drawing, Arizona Highway Department, May 1927, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Photocopy of construction drawing, Arizona Highway Department, May 1927, microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). FOUNDATIONS. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  13. 56. Photocopy of construction drawing, Arizona Highway Department, May 1927, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. Photocopy of construction drawing, Arizona Highway Department, May 1927, microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). APPROACH SPANS. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  14. 49. Photocopy of construction drawing, Arizona Highway Department, May 1927, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Photocopy of construction drawing, Arizona Highway Department, May 1927, microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). GENERAL LAYOUT. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  15. 7. VIEW OF ARIZONA CANAL ABOVE EVERGREEN, SHOWING LACK OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF ARIZONA CANAL ABOVE EVERGREEN, SHOWING LACK OF SILT. OLD TOOTH MARKS OF DRAGLINE BUCKET MADE IN 1909 CALICHE BOTTOM WERE STILL VISIBLE Photographer: unknown. February 1938 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  16. 52. Photocopy of construction drawing, Arizona Highway Department, May 1927, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Photocopy of construction drawing, Arizona Highway Department, May 1927, microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). STRESS DIAGRAMS. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  17. 51. Photocopy of construction drawing, Arizona Highway Department, May 1927, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Photocopy of construction drawing, Arizona Highway Department, May 1927, microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). STRESS DIAGRAMS. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  18. 9. VIEW SHOWING ARIZONA CANAL WITH CITRUS ORCHARDS, FACING NORTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW SHOWING ARIZONA CANAL WITH CITRUS ORCHARDS, FACING NORTH. CAMELBACK MOUNTAIN IS IN THE BACKGROUND Photographer: unknown. No date - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  19. Phoenix Lander on Mars (Stereo)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander monitors the atmosphere overhead and reaches out to the soil below in this stereo illustration of the spacecraft fully deployed on the surface of Mars. The image appears three-dimensional when viewed through red-green stereo glasses.

    Phoenix has been assembled and tested for launch in August 2007 from Cape Canaveral Air Force Station, Fla., and for landing in May or June 2008 on an arctic plain of far-northern Mars. The mission responds to evidence returned from NASA's Mars Odyssey orbiter in 2002 indicating that most high-latitude areas on Mars have frozen water mixed with soil within arm's reach of the surface.

    Phoenix will use a robotic arm to dig down to the expected icy layer. It will analyze scooped-up samples of the soil and ice for factors that will help scientists evaluate whether the subsurface environment at the site ever was, or may still be, a favorable habitat for microbial life. The instruments on Phoenix will also gather information to advance understanding about the history of the water in the icy layer. A weather station on the lander will conduct the first study Martian arctic weather from ground level.

    The vertical green line in this illustration shows how the weather station on Phoenix will use a laser beam from a lidar instrument to monitor dust and clouds in the atmosphere. The dark 'wings' to either side of the lander's main body are solar panels for providing electric power.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems, Denver. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen (Denmark), the Max Planck Institute (Germany) and the Finnish Meteorological institute. JPL is a division of the California

  20. Phoenix Lidar Operation Animation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of the Canadian-built meteorological station's lidar, which was successfully activated on Sol 2. The animation shows how the lidar is activated by first opening its dust cover, then emitting rapid pulses of light (resembling a brilliant green laser) into the Martian atmosphere. Some of the light then bounces off particles in the atmosphere, and is reflected back down to the lidar's telescope. This allows the lidar to detect dust, clouds and fog.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Phoenix Telltale Movie with Clouds, Sol 103

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander's telltale catches a breeze as clouds move over the landing site on Sol 103 (Sept. 7, 2008), the 103rd Martian day since landing.

    Phoenix's Surface Stereo Imager took this series of images during daily telltale monitoring around 3 p.m. local solar time and captured the clouds moving over the landing site.

    Phoenix can measure wind speed and direction by imaging the telltale, which is about about 10 centimeters (4 inches) tall. The telltale was built by the University of Aarhus, Denmark.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Field guide to sedimentary structures in the Navajo and Entrada sandstones in southern Utah and northern Arizona: Chapter in Field-trip guidebook, 100th annual meeting, The Geological Society of America, Phoenix, Arizona, October 26-29, 1987

    USGS Publications Warehouse

    Rubin, David M.; Hunter, Ralph E.

    1987-01-01

    This field-trip guide describes the common sedimentary structures that occur in eolian sands. The outcrops that are described occur in the Navajo and Entiaia Sandstones between the areas of Page, Arizona and St. George, Utah (figure I), but the sedimentary structures of these two sandstones are typical of most eolian deposits. The main part of the guide discusses the geologic setting and the origin of the various structures, and the road log discusses which structures are best displayed at selected outcrops.

  3. Phoenix Mars Lander in Testing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's next Mars-bound spacecraft, the Phoenix Mars Lander, was partway through assembly and testing at Lockheed Martin Space Systems, Denver, in September 2006, progressing toward an August 2007 launch from Florida. In this photograph, spacecraft specialists work on the lander after its fan-like circular solar arrays have been spread open for testing. The arrays will be in this configuration when the spacecraft is active on the surface of Mars.

    Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. It will dig into the surface, test scooped-up samples for carbon-bearing compounds and serve as NASA's first exploration of a potential modern habitat on Mars.

    Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  4. Phoenix Risen

    ERIC Educational Resources Information Center

    Bartlett, Thomas

    2009-01-01

    In 1974, John G. Sperling left a tenured position at San Jose State University with $26,000 in savings to start an academic program for working adults. In the beginning, he ran the operation out of his house. The program soon outgrew the house, Sperling relocated to Arizona, and the program adopted the name of that state's capital. Now the…

  5. Comparing Baltimore and Phoenix

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 'zoom lens' aboard NASA's Terra spacecraft acquired these views of two U.S. cities: Baltimore, Maryland (left), and Phoenix, Arizona (right). Acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), red in these false-colored images indicates vegetation. The turquoise pixels show paved areas while darker greens and browns show bare earth and rock surfaces. The 'true' constructed nature of these cities is not easy to see. Ecologists now accept human beings and our activities as a significant factor in studying the Earth's ecology. ASTER data are being used to better understand urban ecology, in particular how humans build their cities and affect the surrounding environment. At the recent American Geophysical Union (AGU) meeting in Boston, Will Stefanov of Arizona State University presented the first set of ASTER images of the urban 'skeletons' of the amount of built structures in twelve cities around the world. He also discussed the Urban Environmental Monitoring project, in which scientists are examining 100 urban centers to look for common features (or lack of them) in global city structure as well as to monitor their changes over time.

  6. Phoenix Deepens Trenches on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander took this false color image on Oct. 21, 2008, during the 145th Martian day, or sol, since landing. The bluish-white areas seen in these trenches are part of an ice layer beneath the soil.

    The trench on the upper left, called 'Dodo-Goldilocks,' is about 38 centimeters (15 inches) long and 4 centimeters (1.5 inches) deep. The trench on the right, called 'Upper Cupboard,' is about 60 centimeters (24 inches) long and 3 centimeters (1 inch) deep. The trench in the lower middle is called 'Stone Soup.'

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Phoenix Deepens Trenches on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander took this false color image on Oct. 21, 2008, during the 145th Martian day, or sol, since landing. The white areas seen in these trenches are part of an ice layer beneath the soil.

    The trench on the upper left, called 'Upper Cupboard,' is about 60 centimeters (24 inches) long and 3 centimeters (1 inch) deep. The trench in the middle, called 'Ice Man,' is about 30 centimeters (12 inches) long and 3 centimeters (1 inch) deep. The trench on the right, called 'La Mancha,' is about 31 centimeters (12 inches) and 5 centimeters (2 inches) deep.

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. 76 FR 51461 - Notice of Release From Quitclaim Deed and Federal Grant Assurance Obligations for Phoenix-Mesa...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... Obligations for Phoenix-Mesa Gateway Airport, Mesa, AZ AGENCY: Federal Aviation Administration, DOT. ACTION... airport property at Phoenix-Mesa Gateway, Mesa, Arizona, from all conditions contained in the Quitclaim... FAA must be mailed or delivered to Mr. Walter Fix, Phoenix-Gateway Airport Authority, 5835 S....

  9. Phoenix's La Mancha Trench in 3D

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This anaglyph, taken by NASA's Phoenix Mars Lander's Surface Stereo Imager, was taken on the 131st Martian day, or sol, of the mission (Oct. 7, 2008). The anaglyph highlights the depth of the trench, informally named 'La Mancha,' and reveals the ice layer beneath the soil surface. The trench's depth is about 5 centimeters deep.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Color view to Northwest of Phoenix

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This approximate color (SSI's red, green, and blue filters: 600, 530, and 480 nanometers) view was obtained on sol 2 by the Surface Stereo Imager (SSI) on board the Phoenix lander. The view is toward the northwest, showing polygonal terrain near the lander and out to the horizon.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Phoenix Makes an Impression on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the first impression dubbed Yeti and looking like a wide footprint -- made on the Martian soil by the Robotic Arm scoop on Sol 6, the sixth Martian day of the mission, (May 31, 2008).

    Touching the ground is the first step toward scooping up soil and ice and delivering the samples to the lander's experiments.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Phoenix's Lay of the Land

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from NASA's Phoenix Mars Lander shows the spacecraft's recent activity site as of the 23rd Martian day of the mission, or Sol 22 (June 16, 2008), after the spacecraft touched down on the Red Planet's northern polar plains. The mosaic was taken by the lander's Surface Stereo Imager (SSI). Parts of Phoenix can be seen in the foreground.

    The first two trenches dug by the lander's Robotic Arm, called 'Dodo' and 'Goldilocks,' were enlarged on the 19th Martian day of the mission, or Sol 18 (June 12, 2008), to form one trench, dubbed 'Dodo-Goldilocks.' Scoops of material taken from those trenches are informally called 'Baby Bear' and 'Mama Bear.' Baby Bear was carried to Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA, instrument for analysis, while Mama Bear was delivered to Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument suite, or MECA, for a closer look.

    The color inset picture of the Dodo-Goldilocks trench, also taken with Phoenix's SSI, reveals white material thought to be ice.

    More recently, on Sol 22 (June 16, 2008), Phoenix's Robotic Arm began digging a trench, dubbed 'Snow White,' in a patch of Martian soil near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The 'dump pile' is located at the top of the trench, and has been dubbed 'Croquet Ground.' The digging site has been nicknamed 'Wonderland.'

    The Snow White trench, seen here in an SSI image from Sol 22 (June 16, 2008) is about 2 centimeters (.8 inches) deep and 30 centimeters (12 inches) long. As of Sol 25 (June 19, 2008), the trench is 5 centimeters (2 inches deep) and the trench has been renamed 'Snow White 1,' as a second trench has been dug to its right and nicknamed 'Snow White 2.'

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems

  13. 53. VIEW OF ARIZONA CANAL AT 48TH STREET, LOOKING SOUTH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. VIEW OF ARIZONA CANAL AT 48TH STREET, LOOKING SOUTH, SHOWING CHECK STATION TO OLD CROSSCUT CANAL Photographer: James Eastwood, July 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  14. Phoenix Society for Burn Survivors

    MedlinePlus

    ... 5 Things I Learned at Phoenix UBelong This Week! 22 Oct 2016 Phoenix UBelong participants share the top 5 things they learned this week at Phoenix UBelong: Continue Reading The Phoenix Society, ...

  15. Vocational Training for LEP Adults in Arizona.

    ERIC Educational Resources Information Center

    Development Associates, Inc., Arlington, VA.

    This report provides an overview of vocational training programs and activities for Limited English Proficient (LEP) adults in Arizona, with particular emphasis on Maricopa County (Phoenix) and Yuma, Arizona. State policy regarding LEP adults is discussed, as are the roles of state agencies in providing services to these individuals. Statistical…

  16. Work on Phoenix Science Deck

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Lockheed Martin Space Systems technicians Jim Young (left) and Jack Farmerie (right) work on the science deck of NASA's Phoenix Mars Lander.

    The spacecraft was built in a 100,000-class clean room near Denver under NASA's planetary protection practices to keep organics from being taken to Mars. The lander's robotic arm, built by the Jet Propulsion Laboratory, Pasadena, is seen at the top of the picture. The color and grey dots will be used to calibrate the spacecraft's Surface Stereoscopic Imager camera once the spacecraft has landed on the red planet.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  17. 78 FR 16865 - State of Arizona Resource Advisory Council Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... Bureau of Land Management State of Arizona Resource Advisory Council Meetings AGENCY: Bureau of Land... Interior, Bureau of Land Management (BLM), Arizona Resource Advisory Council (RAC) will meet in Phoenix, Arizona, as indicated below. DATES: The RAC will meet on April 30 for the Recreation and...

  18. 76 FR 18777 - State of Arizona Resource Advisory Council Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... Bureau of Land Management State of Arizona Resource Advisory Council Meetings AGENCY: Bureau of Land... Interior, Bureau of Land Management (BLM), Arizona Resource Advisory Council (RAC) will meet in Phoenix, Arizona, as indicated below. DATES: Meetings will be held on May 4-5, 2011, from 8 a.m. until 4:30...

  19. 77 FR 27795 - State of Arizona Resource Advisory Council Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... Bureau of Land Management State of Arizona Resource Advisory Council Meetings AGENCY: Bureau of Land... Interior, Bureau of Land Management (BLM), Arizona Resource Advisory Council (RAC) will meet in Phoenix, Arizona, as indicated below. DATES: The RAC Recreation and Communities Working Group will meet on July...

  20. 77 FR 64350 - State of Arizona Resource Advisory Council Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... Bureau of Land Management State of Arizona Resource Advisory Council Meetings AGENCY: Bureau of Land... Interior, Bureau of Land Management (BLM), Arizona Resource Advisory Council (RAC) will meet in Phoenix, Arizona, as indicated below. DATES: The RAC will meet on November 28 for Standards for Rangeland...

  1. 60. VIEW OF LOW LEVEL CHECK STATION ON THE ARIZONA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. VIEW OF LOW LEVEL CHECK STATION ON THE ARIZONA CANAL, NEAR THE DEER VALLEY TREATMENT PLANT, LOOKING WEST. THE ARIZONA CANAL DIVERSION CHANNEL IS VISIBLE ON THE RIGHT SIDE OF THE PHOTOGRAPH Photographer: James Eastwood, July 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  2. Color Image of Phoenix Heat Shield and Bounce Mark

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This shows a color image from Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment camera. It shows the Phoenix heat shield and bounce mark on the Mars surface.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Phoenix Deepens Trenches on Mars (3D)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander took this anaglyph on Oct. 21, 2008, during the 145th Martian day, or sol. Phoenix landed on Mars' northern plains on May 25, 2008.

    The trench on the upper left, called 'Dodo-Goldilocks,' is about 38 centimeters (15 inches) long and 4 centimeters (1.5 inches) deep. The trench on the right, called 'Upper Cupboard,' is about 60 centimeters (24 inches) long and 3 centimeters (1 inch) deep. The trench in the lower middle is called 'Stone Soup.'

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Phoenix Deepens Trenches on Mars (3D)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander took this anaglyph on Oct. 21, 2008, during the 145th Martian day, or sol. Phoenix landed on Mars' northern plains on May 25, 2008.

    The trench on the upper left, called 'Upper Cupboard,' is about 60 centimeters (24 inches) long and 3 centimeters (1 inch) deep. The trench in the middle,called 'Ice Man,' is about 30 centimeters (12 inches) long and 3 centimeters (1 inch) deep. The trench on the right, called 'La Mancha,' is about 31 centimeters (12 inches) and 5 centimeters (2 inches) deep.

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Martian Dust Collected by Phoenix's Arm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from NASA's Phoenix Lander's Optical Microscope shows particles of Martian dust lying on the microscope's silicon substrate. The Robotic Arm sprinkled a sample of the soil from the Snow White trench onto the microscope on July 2, 2008, the 38th Martian day, or sol, of the mission after landing.

    Subsequently, the Atomic Force Microscope, or AFM, zoomed in one of the fine particles, creating the first-ever image of a particle of Mars' ubiquitous fine dust, the most highly magnified image ever seen from another world.

    The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London. The AFM is part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. 'Rosy Red' Soil in Phoenix's Scoop

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows fine-grained material inside the Robotic Arm scoop as seen by the Robotic Arm Camera (RAC) aboard NASA's Phoenix Mars Lander on June 25, 2008, the 30th Martian day, or sol, of the mission.

    The image shows fine, fluffy, red soil particles collected in a sample called 'Rosy Red.' The sample was dug from the trench named 'Snow White' in the area called 'Wonderland.' Some of the Rosy Red sample was delivered to Phoenix's Optical Microscope and Wet Chemistry Laboratory for analysis.

    The RAC provides its own illumination, so the color seen in RAC images is color as seen on Earth, not color as it would appear on Mars.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Dust Storm Moving Near Phoenix Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This series of images show the movement of several dust storms near NASA's Phoenix Mars Lander. These images were taken by the lander's Surface Stereo Imager (SSI) on the 137th Martian day, or sol, of the mission (Oct. 13, 2008).

    These images were taken about 50 seconds apart, showing the formation and movement of dust storms for nearly an hour. Phoenix scientists are still figuring out the exact distances these dust storms occurred from the lander, but they estimate them to be about 1 to 2 kilometers (.6 or 1.2 miles) away.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Phoenix Lowered into Thermal Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander was lowered into a thermal vacuum chamber at Lockheed Martin Space Systems, Denver, in December 2006.

    The spacecraft was folded in its aeroshell and underwent environmental testing that simulated the extreme conditions the spacecraft will see during its nine-and-a-half-month cruse to Mars.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  9. Animation of Panorama of Phoenix Landing Area Looking Southeast

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of panoramic images taken by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 15 (June 9, 2008), the 15th Martian day after landing. The panorama looks to the southeast and shows rocks casting shadows, polygons on the surface and as the image looks to the horizon, Phoenix's backshell gleams in the distance.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Images from Phoenix's MECA Instruments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The image on the upper left is from NASA's Phoenix Mars Lander's Optical Microscope after a sample informally called 'Sorceress' was delivered to its silicon substrate on the 38th Martian day, or sol, of the mission (July 2, 2008).

    A 3D representation of the same sample is on the right, as seen by Phoenix's Atomic Force Microscope. This is 200 times greater magnification than the view from the Optical Microscope, and the most highly magnified image ever seen from another world.

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The Optical Microscope and the Atomic Force Microscope are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Ground truth report 1975 Phoenix microwave experiment. [Joint Soil Moisture Experiment

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.

    1975-01-01

    Direct measurements of soil moisture obtained in conjunction with aircraft data flights near Phoenix, Arizona in March, 1975 are summarized. The data were collected for the Joint Soil Moisture Experiment.

  12. Deep 'Stone Soup' Trenching by Phoenix (Stereo)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Digging by NASA's Phoenix Mars Lander on Aug. 23, 2008, during the 88th sol (Martian day) since landing, reached a depth about three times greater than in any trench Phoenix has excavated. The deep trench, informally called 'Stone Soup' is at the borderline between two of the polygon-shaped hummocks that characterize the arctic plain where Phoenix landed.

    Stone Soup is in the center foreground of this stereo view, which appears three dimensional when seen through red-blue glasses. The view combines left-eye and right-eye images taken by the lander's Surface Stereo Imager on Sol 88 after the day's digging. The trench is about 25 centimeters (10 inches) wide and about 18 centimeters (7 inches) deep.

    When digging trenches near polygon centers, Phoenix has hit a layer of icy soil, as hard as concrete, about 5 centimeters or 2 inches beneath the ground surface. In the Stone Soup trench at a polygon margin, the digging has not yet hit an icy layer like that.

    Stone Soup is toward the left, or west, end of the robotic arm's work area on the north side of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Deep 'Stone Soup' Trenching by Phoenix

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Digging by NASA's Phoenix Mars Lander on Aug. 23, 2008, during the 88th sol (Martian day) since landing, reached a depth about three times greater than in any trench Phoenix has excavated. The deep trench, informally called 'Stone Soup' is at the borderline between two of the polygon-shaped hummocks that characterize the arctic plain where Phoenix landed.

    The lander's Surface Stereo Imager took this picture of Stone Soup trench on Sol 88 after the day's digging. The trench is about 25 centimeters (10 inches) wide and about 18 centimeters (7 inches) deep.

    When digging trenches near polygon centers, Phoenix has hit a layer of icy soil, as hard as concrete, about 5 centimeters or 2 inches beneath the ground surface. In the Stone Soup trench at a polygon margin, the digging has not yet hit an icy layer like that.

    Stone Soup is toward the left, or west, end of the robotic arm's work area on the north side of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Arizona network improves providers' competitiveness.

    PubMed

    Lipson, E H; McHaney, J E

    1987-01-01

    In the September/October issue of Physician Executive, the Remote Practice Network (RPN) health care delivery system concept was introduced and explained. In this article, the concept is illustrated by a description of Arizona HealthSource (AHS), an RPN developed in Phoenix, Arizona. AHS's design, evolution, and operation demonstrate both the competitive pressures that force hospitals into taking new initiatives and the exciting alternative offered by an RPN. Arizona HealthSource serves the Phoenix, Ariz., region, a highly competitive health care marketplace. The organization was started by St. Joseph's Hospital and Medical Center in cooperation with Magliaro & McHaney, a consulting firm with offices in Atlanta, Ga., and La Jolla, Calif. AHS is currently managed under contract by Magliaro & McHaney, which develop the RPN concept and which designs, implements, markets, and manages health care delivery system. PMID:10312349

  15. 3. Photocopy of handcolored postcard original postcard located at Arizona ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photocopy of hand-colored postcard original postcard located at Arizona Historical Foundation, Tempe, Arizona. Photographer unknown, circa 1905 VIEW, LOOKING NORTHEAST FROM TEMPE BUTTE, SHOWING MARICOPA AND PHOENIX RAILROAD BRIDGE IN THE BACKGROUND; PHOENIX AND EASTERN RAILROAD BRIDGE IN FOREGROUND. THE ASH AVENUE BRIDGE WOULD BE BUILT MIDWAY BETWEEN THE RAILROAD BRIDGES IN 1911-1913 - Ash Avenue Bridge, Spanning Salt River at Foot of Ash Avenue, Tempe, Maricopa County, AZ

  16. Detail of roof trusses showing phoenix columns. Note structural phoenix ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of roof trusses showing phoenix columns. Note structural phoenix column in foreground. - Phoenix Iron Company, Rolling Mill, North of French Creek, west of Fairview Avenue, Phoenixville, Chester County, PA

  17. Unemployed Native Americans in a Work Orientation Program in Phoenix.

    ERIC Educational Resources Information Center

    McIntosh, Billie Jane

    The unemployment rate for Native Americans is 49% nationwide and 54% in Arizona. The Job Training Partnership Act (JPTA) program at the Phoenix Indian Center trains Native American adults to enter the urban work force. The Center offers work orientation programs, individual counseling, and work experience programs. The majority of the participants…

  18. YOUNG PEOPLE'S CONCERTS BY THE PHOENIX SYMPHONY ORCHESTRA. TEACHING MANUAL.

    ERIC Educational Resources Information Center

    TAYLOR, GUY

    THE PHOENIX SYMPHONY ORCHESTRA PRESENTED CONCERTS TO 64,000 ARIZONA ELEMENTARY PUPILS ON 12 DIFFERENT DAYS LAST YEAR. THE CONCERTS INCLUDED 2 DIFFERENT PROGRAMS, 1 FOR GRADES 1-4 AND 1 FOR GRADES 5-8, WHICH ARE OUTLINED IN THIS DOCUMENT. THE 4 SECTIONS OF A SYMPHONY ORCHESTRA AND THE VARIOUS INSTRUMENTS INCLUDED IN EACH SECTION ARE DISCUSSED. A…

  19. Public School Choice and Student Mobility in Metropolitan Phoenix

    ERIC Educational Resources Information Center

    Powers, Jeanne M.; Topper, Amelia M.; Silver, Michael

    2012-01-01

    Arizona's interdistrict open enrollment and charter schools laws allow families to send their children to the public schools of their choice. We assessed how public school choice affected elementary school enrollments in 27 metropolitan Phoenix school districts. Student mobility rates varied widely between districts and by location. The higher…

  20. Zeroing In on Phoenix's Final Destination

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the latest estimate, marked by a green crosshair, of the location of NASA's Phoenix Mars Lander. Radio communications between Phoenix and spacecraft flying overhead have allowed engineers to narrow the lander's location to an area about 300 meters (984) long by 100 meters (328 feet) across, or about three football fields long and one football field wide.

    During landing, Phoenix traveled across the field of view shown here from the upper left to the lower right. The area outlined in blue represents the area where Phoenix was predicted to land before arriving on Mars. During Phoenix's descent through the Martian atmosphere to the surface of the Red Planet, continuous measurements of the distance the spacecraft traveled enabled engineers to narrow its location further to the circular area outlined in red.

    Using radio signals to home in on Phoenix's final location is sort of like trying to find a kitten by listening to the sound of its meows. As NASA's Odyssey spacecraft passes overhead, it receives radio transmissions from the lander. When Odyssey passes overhead again along a slightly different path, it receives new radio signals. With each successive pass, it is able to 'fix' the location of Phoenix a little more precisely.

    Meanwhile, NASA's Mars Reconnaissance Orbiter has taken actual images of the spacecraft on the surface, enabling scientists to match the lander's location to geologic features seen from orbit.

    The large crater to the right is 'Heimdall crater,' the slopes of which are visible in images of the parachute that lowered Phoenix to the surface, taken by the High Resolution Imaging Science Experiment instrument on the Mars Reconnaissance Orbiter. The map shown here is made up of topography data taken by NASA's Mars Global Surveyor. It shows exaggerated differences in the height of the terrain.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the

  1. Ozone production in the Phoenix urban plume

    SciTech Connect

    Kleinman, L.I.

    2000-09-01

    In May and June of 1998, the Department of Energy's Atmospheric Chemistry Program conducted an aircraft and surface based field campaign in Phoenix, Arizona, with the overall goal of obtaining a mechanistic understanding of O{sub 3} formation in the metropolitan area. Participants in the study included scientists from the Arizona Department of Environmental Quality, Argonne National Laboratory, Brookhaven National Laboratory, and Pacific Northwest National Laboratory. On most days, afternoon O{sub 3} levels in Phoenix air basin were within 20 ppb of morning levels, indicating a relatively inactive photochemistry, despite ample sunshine and high NO{sub x} levels. Maximum O{sub 3} levels were about 100 ppb, in contrast to the situation later in the summer when there are usually violations of the Federal 1 hour 120 ppb standard. In this article the authors present a preliminary analysis of the DOE G-1 aircraft observations pertinent to understanding the slow rate of O{sub 3} production in the Phoenix air basin. Comparisons will be made to other locations where higher levels of O{sub 3} and more rapid O{sub 3} production have been observed.

  2. OZONE PRODUCTION IN THE PHOENIX URBAN PLUME.

    SciTech Connect

    KLEINMAN,L.I.

    2000-09-01

    In May and June of 1998, the Department of Energy's Atmospheric Chemistry Program conducted an aircraft and surface based field campaign in Phoenix, Arizona, with the overall goal of obtaining a mechanistic understanding of O{sub 3} formation in the metropolitan area. Participants in the study included scientists from the Arizona Department of Environmental Quality, Argonne National Laboratory, Brookhaven National Laboratory, and Pacific Northwest National Laboratory. On most days, afternoon O{sub 3} levels in the Phoenix air basin were within 20 ppb of morning levels, indicating a relatively inactive photochemistry, despite ample sunshine and high NO{sub x} levels. Maximum O{sub 3} levels were about 100 ppb, in contrast to the situation later in the summer when there are usually violations of the Federal 1 hour 120 ppb standard. In this article we present a preliminary analysis of the DOE G-1 aircraft observations pertinent to understanding the slow rate of O{sub 3} production in the Phoenix air basin. Comparisons will be made to other locations where higher levels of O{sub 3} and more rapid O{sub 3} production have been observed.

  3. Phoenix Conductivity Probe Inserted into Martian Soil

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008).

    The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 while the probe's needles were in the ground. The science team informally named this soil target 'Gandalf.'

    The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water.

    The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Phoenix Conductivity Probe with Shadow and Toothmark

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008).

    The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 after the probe was lifted away from the soil. The imprint left by the insertion is visible below the probe, and a shadow showing the probe's four needles is cast on a rock to the left.

    The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water.

    The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Phoenix Mars Lander with Solar Arrays Open

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's next Mars-bound spacecraft, the Phoenix Mars Lander, was partway through assembly and testing at Lockheed Martin Space Systems, Denver, in September 2006, progressing toward an August 2007 launch from Florida. In this photograph, spacecraft specialists work on the lander after its fan-like circular solar arrays have been spread open for testing. The arrays will be in this configuration when the spacecraft is active on the surface of Mars.

    Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. It will dig into the surface, test scooped-up samples for carbon-bearing compounds and serve as NASA's first exploration of a potential modern habitat on Mars.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  6. Influence of Noise Barriers on Near-Road and On-Road Air Quality: Results from Phoenix

    EPA Science Inventory

    The presentation describes field study results quantifying the impact of roadside barriers under real-world conditions in Phoenix, Arizona. Public health concerns regarding adverse health effects for populations spending significant amounts of time near high traffic roadways has ...

  7. Phoenix Test Sample Site in Color

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image, acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 7, the seventh day of the mission (June 1, 2008), shows the so-called 'Knave of Hearts' first-dig test area to the north of the lander. The Robotic Arm's scraping blade left a small horizontal depression above where the sample was taken.

    Scientists speculate that white material in the depression left by the dig could represent ice or salts that precipitated into the soil. This material is likely the same white material observed in the sample in the Robotic Arm's scoop.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Overnight Changes Recorded by Phoenix Conductivity Probe

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This graph presents simplified data from overnight measurements by the Thermal and Electrical Conductivity Probe on NASA's Phoenix Mars Lander from noon of the mission's 70th Martian day, or sol, to noon the following sol (Aug. 5 to Aug. 6, 2008).

    The graph shows that water disappeared from the atmosphere overnight, at the same time that electrical measurements detected changes consistent with addition of water to the soil.

    Water in soil appears to increase overnight, when water in the atmosphere disappears.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Phoenix's Laser Beam in Action on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image to view the animation

    The Surface Stereo Imager camera aboard NASA's Phoenix Mars Lander acquired a series of images of the laser beam in the Martian night sky. Bright spots in the beam are reflections from ice crystals in the low level ice-fog. The brighter area at the top of the beam is due to enhanced scattering of the laser light in a cloud. The Canadian-built lidar instrument emits pulses of laser light and records what is scattered back.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Stereo View of Phoenix Test Sample Site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This anaglyph image, acquired by NASA's Phoenix Lander's Surface Stereo Imager on Sol 7, the seventh day of the mission (June 1, 2008), shows a stereoscopic 3D view of the so-called 'Knave of Hearts' first-dig test area to the north of the lander. The Robotic Arm's scraping blade left a small horizontal depression above where the sample was taken.

    Scientists speculate that white material in the depression left by the dig could represent ice or salts that precipitated into the soil. This material is likely the same white material observed in the sample in the Robotic Arm's scoop.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. How Phoenix Creates Color Images (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This simple animation shows how a color image is made from images taken by Phoenix.

    The Surface Stereo Imager captures the same scene with three different filters. The images are sent to Earth in black and white and the color is added by mission scientists.

    By contrast, consumer digital cameras and cell phones have filters built in and do all of the color processing within the camera itself.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASAaE(TM)s Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. 29. Photocopy of construction drawing, Arizona Highway Department, 1936 (microfiche ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photocopy of construction drawing, Arizona Highway Department, 1936 (microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). STEEL DETAILS OF END SPAN AND BENT. - Corduroy Creek Bridge, Spanning Corduroy Creek at Highway 60, Show Low, Navajo County, AZ

  13. 27. Photocopy of construction drawing, Arizona Highway Department, 1936 (microfiche ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Photocopy of construction drawing, Arizona Highway Department, 1936 (microfiche of original drawing located at Arizona Department of Transportation, Phoenix Az). DETAILS OF ARCH RING AND DECK. - Corduroy Creek Bridge, Spanning Corduroy Creek at Highway 60, Show Low, Navajo County, AZ

  14. 57. Photocopy of construction drawing, Arizona Highway Department, May 1927, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. Photocopy of construction drawing, Arizona Highway Department, May 1927, microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). ARCH DETAIL, U0 - U2. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  15. 59. Photocopy of construction drawing, Arizona Highway Department, May 1927, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. Photocopy of construction drawing, Arizona Highway Department, May 1927, microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). U6 - U8. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  16. 58. Photocopy of construction drawing, Arizona Highway Department, May 1927, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. Photocopy of construction drawing, Arizona Highway Department, May 1927, microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). ARCH DETAIL, U3 - U5. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  17. 48. Photocopy of construction drawing, Arizona Highway Department, May 1927, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Photocopy of construction drawing, Arizona Highway Department, May 1927, microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). PLAN AND PROFILE. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  18. 60. Photocopy of construction drawing, Arizona Highway Department, May 1927, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. Photocopy of construction drawing, Arizona Highway Department, May 1927, microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). U9 - U11. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  19. Arizona Commission of Indian Affairs 1990-1991 Annual Report.

    ERIC Educational Resources Information Center

    Arizona Commission of Indian Affairs, Phoenix.

    This annual report describes the goals and activities of the Arizona Commission of Indian Affairs for fiscal year 1990-91. The commission is made up of seven tribal representatives, two non-Indians, and six ex-officio members from state government. In October 1990, the commission held a 2-day Indian Town Hall in Phoenix (Arizona) on the future of…

  20. 62. VIEW SHOWING END OF THE ARIZONA CANAL AT SKUNK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. VIEW SHOWING END OF THE ARIZONA CANAL AT SKUNK CREEK, LOOKING WEST. DEMOSSING STATION IS LEFT OF CENTER AND DRAIN GATES ARE RIGHT OF CENTER Photographer: James Eastwood, July 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  1. 50. Photocopy of construction drawing, Arizona Highway Department, May 1927, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Photocopy of construction drawing, Arizona Highway Department, May 1927, microfiche of original drawing located at Arizona Department of Transportation, Phoenix AZ). STRESSES AND SECTIONS. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  2. 6. Photocopy of photograph original print located at Arizona Photographic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of photograph original print located at Arizona Photographic Associates, Inc., Phoenix, Arizona. Photographer: Herb McLaughlin, circa. 1965 AERIAL VIEW, LOOKING SOUTHEAST TOWARD TEMPE BUTTE, SHOWING, FROM TOP, MILL AVENUE BRIDGE, ASH AVENUE BRIDGE, AND SOUTHERN PACIFIC RAILROAD BRIDGE - Ash Avenue Bridge, Spanning Salt River at Foot of Ash Avenue, Tempe, Maricopa County, AZ

  3. Testing Phoenix Mars Lander Parachute in Idaho

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Lander, Spirit, and Opportunity, ensuring that lessons learned from past programs were incorporated into the Phoenix system.

    During the first 25 seconds of the three-minute period when Phoenix descends on its parachute, the spacecraft will cast away its heat shield and extend its three legs. About 43 seconds before reaching the surface of Mars, the lander will shed the parachute by separating from the backshell. The lander will begin firing its descent thrusters half a second after the separation from the backshell and continue using them until touchdown.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. 76 FR 53940 - Notice of Filing of Plats of Survey; Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... Bureau of Land Management Notice of Filing of Plats of Survey; Arizona AGENCY: Bureau of Land Management, Interior. ACTION: Notice of Filing of Plats of Survey; Arizona. SUMMARY: The plat of survey as described below is officially filed in the Arizona State Office, Bureau of Land Management, Phoenix,...

  5. Martian Arctic Dust Devil, Phoenix Sol 104

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west-southwest of the lander at 11:16 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008.

    Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104.

    Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado.

    The dust devil visible in the center of this image just below the horizon is estimated to be about 400 meters (about 1,300 feet) from Phoenix, and 4 meters (13 feet) in diameter. It is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those.

    The image has been enhanced to make the dust devil easier to see.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. More Soil Delivered to Phoenix Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, taken by NASA's Phoenix Mars Lander's Surface Stereo Imager, documents the delivery of a soil sample from the 'Snow White' trench to the Wet Chemistry Laboratory. A small pile of soil is visible on the lower edge of the second cell from the top.This deck-mounted lab is part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer (MECA).

    The delivery was made on Sept. 12, 2008, which was Sol 107 (the 107th Martian day) of the mission, which landed on May 25, 2008.

    The Wet Chemistry Laboratory mixes Martian soil with an aqueous solution from Earth as part of a process to identify soluble nutrients and other chemicals in the soil. Preliminary analysis of this soil confirms that it is alkaline, and composed of salts and other chemicals such as perchlorate, sodium, magnesium, chloride and potassium. This data validates prior results from that same location, said JPL's Michael Hecht, the lead scientist for MECA.

    In the coming days, the Phoenix team will also fill the final four of eight single-use ovens on another soil-analysis instrument, the Thermal and Evolved Gas Analyzer, or TEGA. The team's strategy is to deliver as many samples as possible before the power produced by Phoenix's solar panels declines due to the end of the Martian summer.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Geomorphic Map of Region Around Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This map shows shows a color-coded interpretation of geomorphic units categories based on surface textures and contours in the region where NASA's Phoenix Mars Lander has studied an arctic Martian plain. It covers an area about 65 kilometers by 65 kilometers (40 miles by 40 miles).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Zenith Movie showing Phoenix's Lidar Beam (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    A laser beam from the Canadian-built lidar instrument on NASA's Phoenix Mars Lander can be seen in this contrast-enhanced sequence of 10 images taken by Phoenix's Surface Stereo Imager on July 26, 2008, during early Martian morning hours of the mission's 61st Martian day after landing.

    The view is almost straight up and includes about 1.5 kilometer (about 1 mile) of the length of the beam. The camera, from its position close to the lidar on the lander deck, took the images through a green filter centered on light with wavelength 532 nanometers, the same wavelength of the laser beam. The movie has been artificially colored to to approximately match the color that would be seen looking through this filter on Mars. Contrast is enhanced to make the beam more visible.

    The lidar beam can be seen extending from the lower right to the upper right, near the zenith, as it reflects off particles suspended in the atmosphere. Particles that scatter the beam directly into the camera can be seen to produce brief sparkles of light. In the background, dust can be seen drifting across the sky pushed by winds aloft.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Digging Movie from Phoenix's Sol 18

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander recorded the images combined into this movie of the lander's Robotic Arm enlarging and combining the two trenches informally named 'Dodo' (left) and 'Goldilocks.'

    The 21 images in this sequence were taken over a period of about 2 hours during Phoenix's Sol 18 (June 13, 2008), or the 18th Martian day since landing.

    The main purpose of the Sol 18 dig was to dig deeper for learning the depth of a hard underlying layer. A bright layer, possibly ice, was increasingly exposed as the digging progressed. Further digging and scraping in the combined Dodo-Goldilocks trench was planned for subsequent sols.

    The combined trench is about 20 centimeters (about 8 inches) wide. The depth at the end of the Sol 18 digging is 5 to 6 centimeters (about 2 inches).

    The Goldilocks trench was the source of soil samples 'Baby Bear' and 'Mama Bear,' which were collected on earlier sols and delivered to instruments on the lander deck. The Dodo trench was originally dug for practice in collecting and depositing soil samples.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Phoenix Checks out its Work Area

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animation shows a mosaic of images of the workspace reachable by the scoop on the robotic arm of NASA's Phoenix Mars Lander, along with some measurements of rock sizes.

    Phoenix was able to determine the size of the rocks based on three-dimensional views from stereoscopic images taken by the lander's 7-foot mast camera, called the Surface Stereo Imager. The stereo pair of images enable depth perception, much the way a pair of human eyes enable people to gauge the distance to nearby objects.

    The rock measurements were made by a visualization tool known as Viz, developed at NASA's Ames Research Laboratory. The shadow cast by the camera on the Martian surface appears somewhat disjointed because the camera took the images in the mosaic at different times of day.

    Scientists do not yet know the origin or composition of the flat, light-colored rocks on the surface in front of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Animation of Panorama of Phoenix's Solar Panel and Robotic Arm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of panorama images of NASA's Phoenix Mars Lander's solar panel and the lander's Robotic Arm with a sample in the scoop. The image was taken just before the sample was delivered to the Optical Microscope.

    The images making up this animation were taken by the lander's Surface Stereo Imager looking west during Phoenix's Sol 16 (June 10, 2008), or the 16th Martian day after landing. This view is a part of the 'mission success' panorama that will show the whole landing site in color.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Team Huddle Before Lifting Phoenix into Test Chamber

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Spacecraft specialists huddle to discuss the critical lift of NASA's Phoenix Mars Lander into a thermal vacuum chamber.

    In December 2006, the spacecraft was in a cruise configuration prior to going into environmental testing at a Lockheed Martin Space Systems facility near Denver. At all stages of assembly and testing, the spacecraft is handled with extreme care and refinement.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  13. Sprinkle Test by Phoenix's Robotic Arm (Movie)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander used its Robotic Arm during the mission's 15th Martian day since landing (June 9, 2008) to test a 'sprinkle' method for delivering small samples of soil to instruments on the lander deck. This sequence of four images from the spacecraft's Surface Stereo Imager covers a period of 20 minutes from beginning to end of the activity.

    In the single delivery of a soil sample to a Phoenix instrument prior to this test, the arm brought the scooped up soil over the instrument's opened door and turned over the scoop to release the soil. The sprinkle technique, by contrast, holds the scoop at a steady angle and vibrates the scoop by running the motorized rasp located beneath the scoop. This gently jostles some material out of the scoop to the target below.

    For this test, the target was near the upper end the cover of the Microscopy, Electrochemistry and Conductivity Analyzer instrument suite, or MECA. The cover is 20 centimeters (7.9 inches) across. The scoop is about 8.5 centimeters (3.3 inches) across.

    Based on the test's success in delivering a small quantity and fine-size particles, the Phoenix team plans to use the sprinkle method for delivering samples to MECA and to the Thermal and Evolved-Gas Analyzer, or TEGA. The next planned delivery is to MECA's Optical Microscope, via the port in the MECA cover visible at the bottom of these images.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Arizona Wildfire

    Atmospheric Science Data Center

    2013-04-23

    article title:  Wildfire in Arizona     View larger image ... plume on June 3, 2011 from the wildfires currently raging in Arizona. It is overlaid on an image captured by the Moderate Resolution Imaging ...

  15. Wind-Related Topography in Phoenix's Region of Mars (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This movie shifts from a global zoom indicating the Phoenix landing area on Mars to a topographical map indicating relative elevations in the landing region. The elevations could affect wind patterns at the site.

    In particular, Phoenix is in a broad, shallow valley. The edge of the valley, about 150 meters (500 feet) above the floor, may provide enough of a slope to the east of Phoenix to explain winds coming from the east during nights at the site. Cooler, denser air could be sinking down the slope and toward the lander.

    Atmospheric scientists on the Phoenix team are analyzing wind patterns to distiguish effects of nearby topography from larger-scale movement of the atmosphere in the polar region.

    The elevation information for this topographical mapping comes from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter. The blue-coded area is the valley floor. Orange and yellow indicate relatively higher elevations.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver. JPL managed the Mars Global Surveyor mission for the NASA Science Mission Directorate.

  16. PHOENIX. Higher Wage Careers.

    ERIC Educational Resources Information Center

    Bismarck State Coll., ND.

    This document outlines the curriculum plan for the one-semester vocational-technical training component of PHOENIX: A Model Program for Higher-Wage Potential Careers offered by Bismarck State College (North Dakota) which prepares and/or retrains individuals for higher-wage technical careers. The comprehensive model for the program is organized…

  17. The Phoenix Mars Mission

    NASA Technical Reports Server (NTRS)

    Tamppari, Leslie K.; Smith, Peter H.

    2008-01-01

    This slide presentation details the Phoenix Mission which was designed to enhance our understanding of water and the potential for habitability on the north polar regions of Mars. The slides show the instruments and the robotics designed to scrape Martian surface material, and analyze it in hopes of identifying water in the form of ice, and other chemicals.

  18. Martian Dust Devil Movie, Phoenix Sol 104

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west of the lander in four frames shot about 50 seconds apart from each other between 11:53 a.m. and 11:56 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008.

    Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104.

    Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado.

    The dust devil visible in this sequence was about 1,000 meters (about 3,300 feet) from the lander when the first frame was taken, and had moved to about 1,700 meters (about 5,600 feet) away by the time the last frame was taken about two and a half minutes later. The dust devil was moving westward at an estimated speed of 5 meters per second (11 miles per hour), which is similar to typical late-morning wind speed and direction indicated by the telltale wind gauge on Phoenix.

    This dust devil is about 5 meters (16 feet) in diameter. This is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those..

    The image has been enhanced to make the dust devil easier to see. Some of the frame-to-frame differences in the appearance of foreground rocks is because each frame was taken through a different color filter.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Ethnographic Evaluation of the MESA Program at a South-Central Phoenix High School.

    ERIC Educational Resources Information Center

    Jaramillo, James A.

    MESA (Mathematics, Engineering, and Science Achievement) is a program designed to increase the number of underrepresented ethnic groups in professions related to mathematics, engineering, and the physical sciences. This paper describes and evaluates the MESA program at Jarama High School, Phoenix (Arizona), using informal interviews and…

  20. A Curriculum for Prevention: Qualitative Assessment of WHEEL Club Phoenix Project

    ERIC Educational Resources Information Center

    Szecsy, Elsie; Jensen, Bryant

    2007-01-01

    This study describes perspectives of participants in a substance abuse and HIV prevention (HIVP) program targeted to middle school students and families in an urban Phoenix, Arizona, school district. Data collection and analyses complement past quasi-experimental, pre/post designs which found the program to be successful in terms of increasing…

  1. 19. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, 1937 (original print located at Arizona Department of Transportation, Phoenix Az). BRIDGE UNDER CONSTRUCTION. - Cedar Canyon Bridge, Spanning Cedar Canyon at Highway 60, Show Low, Navajo County, AZ

  2. 20. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, 1937 (original print located at Arizona Department of Transportation, Phoenix AZ). BRIDGE UNDER CONSTRUCTION. - Cedar Canyon Bridge, Spanning Cedar Canyon at Highway 60, Show Low, Navajo County, AZ

  3. 21. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, 3 June 1937 (original print located at Arizona Department of Transportation, Phoenix AZ). BRIDGE UNDER CONSTRUCTION. - Cedar Canyon Bridge, Spanning Cedar Canyon at Highway 60, Show Low, Navajo County, AZ

  4. 22. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, 1937 (original print located at Arizona Department of Transportation, Phoenix AZ). BRIDGE SOON AFTER COMPLETION. - Cedar Canyon Bridge, Spanning Cedar Canyon at Highway 60, Show Low, Navajo County, AZ

  5. 21. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, 1937 (original print located at Arizona Department of Transportation, Phoenix AZ). BRIDGE UNDER CONSTRUCTION. - Corduroy Creek Bridge, Spanning Corduroy Creek at Highway 60, Show Low, Navajo County, AZ

  6. 22. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, 1937 (original print located at Arizona Department of Transportation, Phoenix AZ). BRIDGE SOON AFTER COMPLETION. - Corduroy Creek Bridge, Spanning Corduroy Creek at Highway 60, Show Low, Navajo County, AZ

  7. 18. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, 28 May 1937 (original print located at Arizona Department of Transportation, Phoenix AZ). BRIDGE UNDER CONSTRUCTION. - Cedar Canyon Bridge, Spanning Cedar Canyon at Highway 60, Show Low, Navajo County, AZ

  8. 17. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, 1937 (original print located at Arizona Department of Transportation, Phoenix AZ). BRIDGE UNDER CONSTRUCTION. - Cedar Canyon Bridge, Spanning Cedar Canyon at Highway 60, Show Low, Navajo County, AZ

  9. 39. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, ca. July 1928 (original print located at Arizona Department of Transportation, Phoenix AZ). ASSEMBLY OF TRAVELER ON NORTH ARM, SHOWING TEMPORARY TIEBACKS AND ANCHORAGE ARMS. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  10. 34. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, ca. May 1928 (original print located at Arizona Department of Transportation, Phoenix AZ). CONSTRUCTION ON EIGHT PANEL OF SOUTH ARM. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  11. 41. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, 12 September 1928 (original print located at Arizona Department of Transportation, Phoenix AZ). INSERTION OF CENTER PIN. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  12. 38. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, ca. July 1928 (original print located at Arizona Department of Transportation, Phoenix AZ). VIEW FROM CANYON OF THIRD PANEL OF NORTH ARM UNDER CONSTRUCTION. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  13. 32. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, April 1928 (original print located at Arizona Department of Transportation, Phoenix AZ). CONSTRUCTION OF SOUTH ARM. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  14. 33. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, ca. May 1928 (original print located at Arizona Department of Transportation, Phoenix AZ). CONSTRUCTION OF SOUTH ARM, SHOWING ERECTION TRAVELER. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  15. 31. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, April 1928 (original print located at Arizona Department of Transportation, Phoenix AZ). INITIAL CONSTRUCTION ON SOUTH ARM. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  16. 36. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, June 1928 (original print located at Arizona Department of Transportation, Phoenix AZ) COMPLETION OF SOUTH ARM. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  17. 40. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, ca. July 1928 (original print located at Arizona Department of Transportation, Phoenix AZ). CONSTRUCTION OF NORTH ARM, FROM SOUTH ARM. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  18. 37. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, ca. July 1928 (original print located at Arizona Department of Transportation, Phoenix AZ). CONSTRUCTION ON THIRD PANEL OF NORTH ARM. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  19. 35. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Photocopy of photograph, R.A. Hoffman, Bridge Engineer, Arizona Highway Department, photographer, June 1928 (original print located at Arizona Department of Transportation, Phoenix AZ). ELEVENTH (LAST) PANEL OF SOUTH ARM UNDER CONSTRUCTION, SHOWING ERECTION TRAVELER. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  20. Early Childhood Teacher Preparation and Technology Integration: The Arizona State University West Experience

    ERIC Educational Resources Information Center

    Kelley, Michael; Wetzel, Keith; Padgett, Helen; Williams, Mia Kim; Odom, Mary

    2004-01-01

    Over the past 6 years, Arizona State University West (ASU West), located in Phoenix, Arizona, has developed an Early Childhood program that features curricula based on the National Education Technology Standards for Teachers (NETS-T; International Society for Technology in Education [ISTE], 2000), National Technology Standards for Students…

  1. Schematic Animation of Phoenix's Microscope Station

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animation shows the workings of the microscope station of the Microscopy, Electrochemistry and Conductivity Analyzer (MECA) instrument suite of NASA's Phoenix Mars Lander.

    Samples are delivered to the horizontal portion of the sample wheel (yellow) that pokes outside an opening in the box enclosure. The wheel rotates to present the sample to the microscopes. The Optical Microscope (red) can see particles a little smaller than one-tenth the diameter of a human hair. The Atomic Force Microscope (pink) can see particles forty time smaller. The samples are on a variety of substrate surfaces, the small circles on the beveled edge of the sample wheel. For scale, the diameter of the wheel is about 14 centimeters (5.5 inches). Each substrate is a circle 3 millimeters (0.1 inch) in diameter.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Martian Arctic Dust Devil and Phoenix Meteorology Mast

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west-southwest of the lander at 11:16 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008.

    Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104.

    Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado.

    The vertical post near the left edge of this image is the mast of the Meteorological Station on Phoenix. The dust devil visible at the horizon just to the right of the mast is estimated to be 600 to 700 meters (about 2,000 to 2,300 feet) from Phoenix, and 4 to 5 meters (10 to 13 feet) in diameter. It is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those.

    The image has been enhanced to make the dust devil easier to see.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. 75 FR 51840 - State of Arizona Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... Council (RAC), will meet on September 23, 2010, at the BLM National Training Center located at 9828 North 31st Avenue in Phoenix from 8 a.m. until 4:30 p.m. Agenda items include: BLM State Director's update on...; State Director Update on the BLM Arizona National Landscape Conservation System (NLCS), Update on...

  4. 76 FR 584 - State of Arizona Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... Council (RAC), will meet on February 3, 2011, at the BLM National Training Center located at 9828 North 31st Avenue in Phoenix from 8 a.m. until 4:30 p.m. Agenda items include: BLM State Director's update on.... Dated: December 28, 2010. James G. Kenna, Arizona State Director. BILLING CODE 4310-32-P...

  5. 1. Drop Structure on the Arizona Crosscut Canal. Photographer unknown, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Drop Structure on the Arizona Crosscut Canal. Photographer unknown, no date. Note that caption is incorrect: in relation to Camelback Mountain (rear), this can only be the Old Crosscut. Source: reprinted from the 13th Annual Report of the U.S. Geological Survey, 1893. - Old Crosscut Canal, North Side of Salt River, Phoenix, Maricopa County, AZ

  6. Dark Skies and Clouds Move in at Phoenix site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Clouds of dust and ice swirl past the Surface Stereo Imager (SSI) camera on NASA's Phoenix Mars Lander in a series of images taken on the 132nd Martian day of the mission (Oct. 7, 2008). The images show the increase in storm activity and potential for snowfall.

    The solar powered spacecraft was disabled by decreased light from heavy dust storms in the area a few weeks later. The last communication heard from the lander occurred on Nov. 2, 2008.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Solar Panel Buffeted by Wind at Phoenix Site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Winds were strong enough to cause about a half a centimeter (.19 inch) of motion of a solar panel on NASA's Phoenix Mars lander when the lander's Surface Stereo Imager took this picture on Aug. 31, 2008, during the 96th Martian day since landing.

    The lander's telltale wind gauge has been indicating wind speeds of about 4 meters per second (9 miles per hour) during late mornings at the site.

    These conditions were anticipated and the wind is not expected to do any harm to the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Avian hosts of West Nile virus in Arizona.

    PubMed

    Komar, Nicholas; Panella, Nicholas A; Young, Ginger R; Brault, Aaron C; Levy, Craig E

    2013-09-01

    West Nile virus (WNV) causes sporadic outbreaks of human encephalitis in Phoenix, Arizona. To identify amplifying hosts of WNV in the Phoenix area, we blood-sampled resident birds and measured antibody prevalence following an outbreak in the East Valley of metropolitan Phoenix during summer, 2010. House sparrow (Passer domesticus), house finch (Haemorhous mexicanus), great-tailed grackle (Quiscalus mexicanus), and mourning dove (Zenaida macroura) accounted for most WNV infections among locally resident birds. These species roost communally after early summer breeding. In September 2010, Culex vector-avian host contact was 3-fold greater at communal bird roosts compared with control sites, as determined by densities of resting mosquitoes with previous vertebrate contact (i.e., blood-engorged or gravid mosquitoes). Because of the low competence of mourning doves, these were considered weak amplifiers but potentially effective free-ranging sentinels. Highly competent sparrows, finches, and grackles were predicted to be key amplifying hosts for WNV in suburban Phoenix. PMID:23857022

  9. Avian Hosts of West Nile Virus in Arizona

    PubMed Central

    Komar, Nicholas; Panella, Nicholas A.; Young, Ginger R.; Brault, Aaron C.; Levy, Craig E.

    2013-01-01

    West Nile virus (WNV) causes sporadic outbreaks of human encephalitis in Phoenix, Arizona. To identify amplifying hosts of WNV in the Phoenix area, we blood-sampled resident birds and measured antibody prevalence following an outbreak in the East Valley of metropolitan Phoenix during summer, 2010. House sparrow (Passer domesticus), house finch (Haemorhous mexicanus), great-tailed grackle (Quiscalus mexicanus), and mourning dove (Zenaida macroura) accounted for most WNV infections among locally resident birds. These species roost communally after early summer breeding. In September 2010, Culex vector-avian host contact was 3-fold greater at communal bird roosts compared with control sites, as determined by densities of resting mosquitoes with previous vertebrate contact (i.e., blood-engorged or gravid mosquitoes). Because of the low competence of mourning doves, these were considered weak amplifiers but potentially effective free-ranging sentinels. Highly competent sparrows, finches, and grackles were predicted to be key amplifying hosts for WNV in suburban Phoenix. PMID:23857022

  10. The Phoenix Scout Mission

    NASA Astrophysics Data System (ADS)

    Smith, P. H.

    2003-12-01

    Phoenix will restore the 2001 lander to flight condition and select a scientic payload from instruments flown on Mars Polar Lander and delivered for the 2001 lander. Landing in May 2008 at the beginning of northern Summer, Phoenix will explore the subsurface ice layers discovered by Odyssey scientists at about 70 N latitude. Descent and panoramic imaging will reveal the small scale geology of this ice-rich region and a robotic arm will dig layer by layer beneath the surface. A German-supplied camera on the arm will examine the trench walls for stratigraphic clues to the origin of the region. Two instruments on the deck will receive samples taken from various depths from the surface to an impermeable ice layer. A thermal evolved gas analyzer (TEGA) will accept samples in one of eight ovens, heating the samples to 1000C will performing differential scanning calorimetry on them. The gases are piped to a mass spectrometer and all species between 1 and 140 Da are identified. Altered minerals (clays, carbonates,etc.) and organics materials can be clearly identified by the multi-dimensional nature (mass, temperature, and depth) of this experiment. Isotopic ratios for hydrogen, neon, argon, carbon, and nitrogen will give clues to the history of the soils and ices. The MECA instrument performs microscopy, electro-chemistry, and conductivity measurments on samples. Bringing water from Earth and mixing it in a sealed cell with samples creates the same conditions as when the ice melts beneath the surface and allows us to determine the acqueous chemistry of the soils. Acidity, redox potential, and salt content are all acquired giving us the first idea of what the biological potential of this habitat might be. Microscopes examine the grain structures and the thermal and electrical conductivity of the soil is examined with a special probe on the scoop. A Canadian MET station uses a lidar to measure the depth of the boundary layer and also pressure and temperature throughout

  11. Animation of the Phoenix Cluster

    NASA Video Gallery

    This animation shows how large numbers of stars form in the Phoenix Cluster. It begins by showing several galaxies in the cluster and hot gas (in red). This hot gas contains more normal matter than...

  12. Arts Administration: Script from a Presentation Delivered [at] Phoenix, Arizona.

    ERIC Educational Resources Information Center

    Trujillo, Lorenzo A.

    Techniques and characteristics of effective management in the arts are briefly outlined. The successful arts manager is identified as an integrator, or one who takes initiative and leadership, seeks status, has social poise, and prefers more flexible ways of acting. The role of the arts administrator includes planning; selecting and coordinating…

  13. Phoenix Telemetry Processor

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice

    2013-01-01

    Phxtelemproc is a C/C++ based telemetry processing program that processes SFDU telemetry packets from the Telemetry Data System (TDS). It generates Experiment Data Records (EDRs) for several instruments including surface stereo imager (SSI); robotic arm camera (RAC); robotic arm (RA); microscopy, electrochemistry, and conductivity analyzer (MECA); and the optical microscope (OM). It processes both uncompressed and compressed telemetry, and incorporates unique subroutines for the following compression algorithms: JPEG Arithmetic, JPEG Huffman, Rice, LUT3, RA, and SX4. This program was in the critical path for the daily command cycle of the Phoenix mission. The products generated by this program were part of the RA commanding process, as well as the SSI, RAC, OM, and MECA image and science analysis process. Its output products were used to advance science of the near polar regions of Mars, and were used to prove that water is found in abundance there. Phxtelemproc is part of the MIPL (Multi-mission Image Processing Laboratory) system. This software produced Level 1 products used to analyze images returned by in situ spacecraft. It ultimately assisted in operations, planning, commanding, science, and outreach.

  14. Dividing Arizona

    ERIC Educational Resources Information Center

    Finkel, Ed

    2010-01-01

    Amid all the national attention on Arizona these past few months, largely due to Senate Bill 1070 empowering police to take "reasonable" steps to verify the immigration status of criminal suspects, the state's K12 district administrators have been wrestling with a unique segregation issue, as well. Over the past two years, all districts have…

  15. Animated Optical Microscope Zoom in from Phoenix Launch to Martian Surface

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animated camera view zooms in from NASA's Phoenix Mars Lander launch site all the way to Phoenix's Microscopy and Electrochemistry and C Eonductivity Analyzer (MECA) aboard the spacecraft on the Martian surface. The final frame shows the soil sample delivered to MECA as viewed through the Optical Microscope (OM) on Sol 17 (June 11, 2008), or the 17th Martian day.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Full-Circle Color Panorama of Phoenix Landing Site on Northern Mars, Vertical Projection

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view combines more than 400 images taken during the first several weeks after NASA's Phoenix Mars Lander arrived on an arctic plain at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars.

    The full-circle panorama in approximately true color shows the polygonal patterning of ground in the landing area, similar to patterns in permafrost areas on Earth. North is toward the top. Trenches where Phoenix's robotic arm has been exposing subsurface material are visible just north of the lander.

    This view comprises more than 100 different camera pointings, with images taken through three different filters at each pointing. It is presented here as a vertical projection.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Storage opportunities in Arizona bedded evaporites

    SciTech Connect

    Neal, J.T.; Rauzi, S.L.

    1996-10-01

    Arizona is endowed with incredibly diverse natural beauty, and has also been blessed with at least seven discrete deposits of bedded salt. These deposits are dispersed around the state and cover some 2, 500 square miles; they currently contain 14 LPG storage caverns, with preliminary plans for more in the future. The areal extent and thickness of the deposits creates the opportunity for greatly expanded storage of LPG, natural gas, and compressed air energy storage (CAES). The location of salt deposits near Tucson and Phoenix may make CAES an attractive prospect in the future. The diversity of both locations and evaporate characteristics allows for much tailoring of individual operations to meet specific requirements.

  18. Mexican Americans on the Home Front: Community Organizations in Arizona during World War II.

    ERIC Educational Resources Information Center

    Marin, Christine

    During World War II Arizona's Mexican-American communities organized their own patriotic activities and worked, in spite of racism, to support the war effort. In Phoenix the Lenadores del Mundo, an active fraternal society, began this effort by sponsoring a festival in January 1942. Such "mutualistas" provided an essential support system in the…

  19. Education Through Inquiry - An Experimental Aspect of Teacher Preparation at Arizona State University.

    ERIC Educational Resources Information Center

    Pike, Kenneth V.

    This paper contains a report on two science education methods courses for the teaching of biology developed at Arizona State University at Tempa. One course is for preservice teachers only and is taught each fall semester, as it has been since 1964, by a team consisting of a high school biology teacher, a science consultant for the Phoenix school…

  20. Declining Sunshine for Phoenix Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The yellow line on this graphic indicates the number of hours of sunlight each sol, or Martian day, at the Phoenix landing site's far-northern latitude, beginning with the entire Martian day (about 24 hours and 40 minutes) for the first 90 sols, then declining to no sunlight by about sol 300. The blue tick mark indicates that on Sol 124 (Sept. 29, 2008), the sun is above the horizon for about 20 hours.

    The brown vertical bar represents the period from Nov. 18 to Dec. 24, 2008, around the 'solar conjunction,' when the sun is close to the line between Mars and Earth, affecting communications.

    The green vertical rectangle represents the period from February to November 2009 when the Phoenix lander is expected to be encased in carbon-dioxide ice.

  1. Stakeholder Views on the Roles, Challenges, and Future Prospects of Korean and Chinese Heritage Language-Community Language Schools in Phoenix: A Comparative Study

    ERIC Educational Resources Information Center

    You, Byeong-keun; Liu, Na

    2011-01-01

    This study examines stakeholders' perspectives on Korean and Chinese heritage language and community language (HL-CL) schools and education in the Phoenix Metropolitan Area, Arizona. It investigates and compares the roles, major challenges, and future prospects of Korean and Chinese HL-CL schools as viewed by principals, teachers, and parents. To…

  2. Phoenix Lander Self Portrait on Mars, Vertical Projection

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view is a vertical projection that combines hundreds of exposures taken by the Surface Stereo Imager camera on NASA's Mars Phoenix Lander and projects them as if looking down from above.

    The black circle is where the camera itself is mounted on the lander, out of view in images taken by the camera. North is toward the top of the image.

    This view comprises more than 100 different Stereo Surface Imager pointings, with images taken through three different filters at each pointing. The images were taken throughout the period from the 13th Martian day, or sol, after landing to the 47th sol (June 5 through July 12, 2008). The lander's Robotic Arm appears cut off in this mosaic view because component images were taken when the arm was out of the frame.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Martian Sunrise at Phoenix Landing Site, Sol 101

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This sequence of nine images taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the sun rising on the morning of the lander's 101st Martian day after landing.

    The images were taken on Sept. 5, 2008. The local solar times at the landing site for the nine images were between 1:23 a.m. and 1:41 a.m.

    The landing site is on far-northern Mars, and the mission started in late northern spring. For nearly the entire first 90 Martian days of the mission, the sun never set below the horizon. As the amount of sunshine each day declined steadily after that, so has the amount of electricity available for the solar-powered spacecraft.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  4. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The land use of the Phoenix Quadrangle in Arizona had been mapped previously from aerial photographs and recorded in a computer data bank. During the ERTS-1 experiment, changes in land use were detected using only the ERTS-1 images. The I2S color additive viewer was used as the principal image enhancement tool, operated in a multispectral mode. Hard copy color composite images of the best multiband combinations from ERTS-1 were made by photographic and diazo processes. The I2S viewer was also used to enhance changes between successive images by quick flip techniques or by registering with different color filters. More recently, a Bausch and Lomb zoom transferscope has been used for the same purpose. Improved interpretation of land use change resulted, and a map of changes within the Phoenix Quadrangle was compiled. The first level of a proposed standard land use classification system was sucessfully used. ERTS-1 underflight photography was used to check the accuracy of the ERTS-1 image interpretation. It was found that the total areas of change detected in the photos were comparable with the total areas of change detected in the ERTS-1 images.

  5. Martian Soil Delivery to Analytical Instrument on Phoenix

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Robotic Arm of NASA's Phoenix Mars Lander released a sample of Martian soil onto a screened opening of the lander's Thermal and Evolved-Gas Analyzer (TEGA) during the 12th Martian day, or sol, since landing (June 6, 2008). TEGA did not confirm that any of the sample had passed through the screen.

    The Robotic Arm Camera took this image on Sol 12. Soil from the sample delivery is visible on the sloped surface of TEGA, which has a series of parallel doors. The two doors for the targeted cell of TEGA are the one positioned vertically, at far right, and the one partially open just to the left of that one. The soil between those two doors is resting on a screen designed to let fine particles through while keeping bigger ones Efrom clogging the interior of the instrument. Each door is about 10 centimeters (4 inches) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The land use of the Phoenix Quadrangle in Arizona had been mapped previously from aerial photographs and recorded in a computer data bank. During the ERTS experiment, changes in land use were detected, first with the ERTS-simulation photographs, then with the ERTS-1 images when they became available. In each case, the I2S color additive viewer was used as the primary image enhancement tool, operated in a multispectral mode. A search was made for a method of creating hard copy color composite images of the best combinations of multiband composites from ERTS-1, mostly by photographic and diazo processes. The I2S viewer was also used to enhance changes between successive images by quick flip techniques or by registering with different color filters. Improved interpretation of land use change resulted, and a map of changes in the Phoenix Quadrangle was compiled using magnified ERTS-1 images alone. The first level of a standard land use classification system was successfully used. Between the ERTS-1 images for August and November, some differences were detected that could be caused by seasonal characteristics of vegetation or by change in use.

  7. Phoenix Lander on Mars with Surrounding Terrain, Polar Projection

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view is a polar projection that combines more than 500 exposures taken by the Surface Stereo Imager camera on NASA's Mars Phoenix Lander and projects them as if looking down from above.

    The black circle on the spacecraft is where the camera itself is mounted on the lander, out of view in images taken by the camera. North is toward the top of the image. The lander's meteorology mast extends above the southwest horzon and is topped by the telltale wind gauge.

    The ground surface around the lander has polygonal patterning similar to patterns in permafrost areas on Earth. The landing site is at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars.

    This view in approximately true color comprises more than 100 different Stereo Surface Imager pointings, with images taken through three different filters at each pointing. The images were taken throughout the period from the 13th Martian day, or sol, after landing to the 47th sol (June 5 through July 12, 2008). The lander's Robotic Arm is cut off in this mosaic view because component images were taken when the arm was out of the frame.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Morning Frost in Trench Dug by Phoenix, Sol 113

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows morning frost inside the 'Snow White' trench dug by the lander, in addition to subsurface ice exposed by use of a rasp on the floor of the trench.

    The camera took this image at about 9 a.m. local solar time during the 113th Martian day of the mission (Sept. 18, 2008). Bright material near and below the four-by-four set of rasp holes in the upper half of the image is water-ice exposed by rasping and scraping in the trench earlier the same morning. Other bright material especially around the edges of the trench, is frost. Earlier in the mission, when the sun stayed above the horizon all night, morning frost was not evident in the trench.

    This image is presented in approximately true color.

    The trench is 4 to 5 centimeters (about 2 inches) deep, about 23 centimeters (9 inches) wide.

    Phoenix landed on a Martian arctic plain on May 25, 2008. The mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  9. After Rasping by Phoenix in 'Snow White' Trench, Sol 60

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander used the motorized rasp on the back of its robotic arm scoop during the mission's 60th Martian day, or sol, (July 26, 2008) to penetrate a hard layer at the bottom of a trench informally called 'Snow White.' This view, taken by the lander's Surface Stereo Imager and presented in approximately true color, shows the trench later the same sol.

    Most of the 16 holes left by a four-by-four array of rasp placements are visible in the central area of the image.

    A total 3 cubic centimeters, or about half a teaspoon, of material was collected in the scoop. Material in the scoop was collected both by the turning rasp, which threw material into the scoop through an opening at the back of the scoop, and by the scoop's front blade, which was run over the rasped area to pick up more shavings.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Phoenix Conductivity Probe after Extraction from Martian Soil on Sol 99

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008).

    The Surface Stereo Imager on Phoenix took this image on the morning of Sol 99 after the probe was lifted away from the soil. This imaging served as a check of whether soil had stuck to the needles.

    The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water.

    The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Roughness coefficients for stream channels in Arizona

    USGS Publications Warehouse

    Aldridge, B.N.; Garrett, J.M.

    1973-01-01

           n in which V = mean cross-sectional velocity of flow, in feet per second; R = hydraulic radius at a cross section, which is the cross-sectional area divided by the wetter perimeter, in feet; Se = energy slope; and n = coefficient of roughness. Many research studies have been made to determine "n" values for open-channel flow (Carter and others, 1963). Guidelines for selecting coefficient of roughness for stream channels are given in most of the literature of stream-channel hydraulics, but few of the data relate directly to streams of Arizona, The U.S> Geological Survey, at the request of the Arizona Highway Department, assembled the color photographs and tables of the Manning "n" values in this report to aid highway engineers in the selection of roughness coefficients for Arizona streams. Most of the photographs show channel reaches for which values of "n" have been assigned by experienced Survey personnel; a few photographs are included for reaches where "n" values have been verified. Verified "n" values are computed from a known discharge and measured channel geometry. Selected photographs of stream channels for which "n" values have been verified are included in U.S. Geological Survey Water-Supply Paper 1849 (Barnes, 1967); stereoscopic slides of Barnes' (1967) photographs and additional photographs can be inspected at U.S> Geological Survey offices in: 2555 E. First Street, Tucson; and 5017 Federal Building, 230 N. First Avenue, Phoenix.

  12. 20. This adobe building, housing the Phoenix Herald in 1879, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. This adobe building, housing the Phoenix Herald in 1879, stood on the site later occupied by the Stroud Building. The Salt River Herald, Phoenix's first newspaper, was founded in 1878; in 1879, it became the Phoenix Herald. Prior to 1879, the adobe building served as the office for a stagecoach line operating between Maricopa and Prescott via Phoenix. Credit PPL. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ

  13. Phoenix - The First Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Goldstein, Barry; Shotwell, Robert

    2008-01-01

    As the first of the new Mars Scouts missions, the Phoenix project was selected by NASA in August of 2003. Four years later, almost to the day, Phoenix was launched from Cape Canaveral Air Station and successfully injected into an interplanetary trajectory on its way to Mars. On May 25, 2008 Phoenix conducted the first successful powered decent on Mars in over 30 years. This paper will highlight some of the key changes since the 2008 IEEE paper of the same name, as well as performance through cruise, landing at the north pole of Mars and some of the preliminary results of the surface mission.

  14. Closing the Classroom Door and the Achievement Gap: Teach for America Alumni Teachers' Appropriation of Arizona Language Policy

    ERIC Educational Resources Information Center

    Heineke, Amy J.; Cameron, Quanna

    2013-01-01

    This qualitative study explored Teach for America (TFA) alumni teachers' discourse on Arizona language policy, conducted with eight teachers in the Phoenix metropolitan area who received their professional teacher preparation from TFA, a national organization that uses alternative paths to certification to place teachers in low-income schools.…

  15. Innovative science experiments using Phoenix

    NASA Astrophysics Data System (ADS)

    Kumar, B. P. Ajith; Satyanarayana, V. V. V.; Singh, Kundan; Singh, Parmanand

    2009-09-01

    A simple, flexible and very low cost hardware plus software framework for developing computer-interfaced science experiments is presented. It can be used for developing computer-interfaced science experiments without getting into the details of electronics or computer programming. For developing experiments this is a middle path between push-button systems and the develop-from-scratch approach. Emphasis is on leveraging the power of personal computers for experiment control, data acquisition and the mathematical analysis of data. The language 'Python' is chosen for data acquisition and analysis. This article explains the architecture of Phoenix (Physics with Home-made Equipment and Innovative Experiments) along with some sample experiments. The hardware design is open and the project is totally based on free software.

  16. Phoenix rises, with Tucson's help: establishing the first four-year allopathic program in the nation's fifth largest city.

    PubMed

    Joiner, Keith A; Schloss, Ernest P; Philip Malan, T; Flynn, Stuart D; Chadwick, Jacqueline A

    2007-12-01

    The authors describe the expansion of The University of Arizona College of Medicine from Tucson, Arizona, into Phoenix. They explain how the new Phoenix program, in partnership with Arizona State University, is one college of medicine for the state of Arizona, governed by a single accreditation by the Liaison Committee for Medical Education (LCME). The authors present 21 lessons to be considered early in a medical school expansion process: clearly establish responsibility, authority, and accountability; define activities under university purview and those that require broader engagement; delineate college-wide versus campus-specific functions; clearly define the intent of the new initiative; get frequent input from the LCME; use LCME input to ensure a student focus; be cautious in using consultants; use respected local "brokers"; create a single locus for input and concerns; educate constituencies about medical school requirements; engage leadership to create linkages across sites; encourage communication between leaders in both sites; discriminate between shared and distinctive local curriculum elements; consider the effort and experience required to develop a full curriculum versus those required to develop specific local curricular areas; create simple, transparent admission processes; define faculty profiles for the new program; ensure sufficient resources for core faculty; budget based on national metrics; create core mission-based principles to frame discussions and decisions; segregate clinical affiliation discussions from curriculum and recruitment of basic science faculty; and ensure sufficient land. Although these observations are most relevant to institutions planning expansions of already accredited programs, they derive from principles and practical considerations with wider applicability.

  17. Astronaut Alvin Drew Speaks With Phoenix Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA astronaut Alvin Drew participates in a Digital Learning Network (DLN) event with students at Monterey Park in Phoenix. The DLN c...

  18. Vertical Water Vapor Distribution at Phoenix

    NASA Astrophysics Data System (ADS)

    Tamppari, L. K.; Lemmon, M. T.

    2016-09-01

    The Phoenix SSI camera data along with radiative transfer modeling are used to retrieve the vertical water vapor profile. Preliminary results indicate that water vapor is often confined near the surface.

  19. Chlorine Salts at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Hanley, J.; Horgan, B.

    2016-09-01

    Although chlorine salts (perchlorates, chlorides) are known to exist at the Phoenix landing site, their distribution and type have not been positively identified yet. We look for these salts through a novel NIR remote sensing technique.

  20. Phoenix Lander on Mars with Surrounding Terrain, Vertical Projection

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view is a vertical projection that combines more than 500 exposures taken by the Surface Stereo Imager camera on NASA's Mars Phoenix Lander and projects them as if looking down from above.

    The black circle on the spacecraft is where the camera itself is mounted on the lander, out of view in images taken by the camera. North is toward the top of the image. The height of the lander's meteorology mast, extending toward the southwest, appears exaggerated because that mast is taller than the camera mast.

    This view in approximately true color covers an area about 30 meters by 30 meters (about 100 feet by 100 feet). The landing site is at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars.

    The ground surface around the lander has polygonal patterning similar to patterns in permafrost areas on Earth.

    This view comprises more than 100 different Stereo Surface Imager pointings, with images taken through three different filters at each pointing. The images were taken throughout the period from the 13th Martian day, or sol, after landing to the 47th sol (June 5 through July 12, 2008). The lander's Robotic Arm is cut off in this mosaic view because component images were taken when the arm was out of the frame.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Evaluation of geothermal cooling systems for Arizona

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    Arizona consumes nearly 50 percent more electricity during the peak summer season of May through part of October, due to the high cooling load met by electrical-driven air conditioning units. This study evaluates two geothermal-driven cooling systems that consume less electricity, namely, absorption cooling and heat pumps. Adsorption cooling requires a geothermal resource above 105{sup 0}C (220{sup 0}F) in order to operate at a reasonable efficiency and capacity. Geothermal resources at these temperatures or above are believed existing in the Phoenix and Tucson areas, but at such depths that geothermal-driven absorption systems have high capital investments. Such capital investments are uneconomical when paid out over only five months of operation each year, but become economical when cascaded with other geothermal uses. There may be other regions of the state, where geothermal resources exist at 105{sup 0}C (220{sup 0}F) or higher at much less depth, such as the Casa Grande/Coolidge or Hyder areas, which might be attractive locations for future plants of the high-technology industries. Geothermal assisted heat pumps have been shown in this study to be economical for nearly all areas of Arizona. They are more economical and reliable than air-to-air heat pumps. Such systems in Arizona depend upon a low-temperature geothermal resource in the narrow range of 15.5 to 26.6{sup 0}C (60 to 80{sup 0}F), and are widely available in Arizona. The state has over 3000 known (existing) thermal wells, out of a total of about 30,000 irrigation wells.

  2. Full-Circle Color Panorama of Phoenix Landing Site on Northern Mars, Polar Projection

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view combines more than 400 images taken during the first several weeks after NASA's Phoenix Mars Lander arrived on an arctic plain at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars.

    The full-circle panorama in approximately true color shows the polygonal patterning of ground at the landing area, similar to patterns in permafrost areas on Earth. South is toward the top. Trenches where Phoenix's robotic arm has been exposing subsurface material are visible in the lower half of the image. The spacecraft's meteorology mast, topped by the telltale wind gauge, extends into the sky portion of the panorama.

    This view comprises more than 100 different camera pointings, with images taken through three different filters at each pointing. It is presented here as a polar projection.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Full-Circle Color Panorama of Phoenix Lander Deck and Landing Site on Northern Mars, Animation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image to view the animation

    This view combines more than 500 images taken after NASA's Phoenix Mars Lander arrived on an arctic plain at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars.

    This movie makes a slow tour around highlights of the image including the landscape and the spacecraft's science deck.

    The full-circle panorama in approximately true color shows the polygonal patterning of ground at the landing area, similar to patterns in permafrost areas on Earth. The center of the image is the westward part of the scene. Trenches where Phoenix's robotic arm has been exposing subsurface material are visible in the right half of the image. The spacecraft's meteorology mast, topped by the telltale wind gauge, extends into the sky portion of the panorama.

    This view comprises more than 100 different Stereo Surface Imager camera pointings, with images taken through three different filters at each pointing. It is presented here as a cylindrical projection.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Full-Circle Color Panorama of Phoenix Landing Site on Northern Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Mission Success Pan Click on image to view the movie

    This view combines more than 400 images taken during the first several weeks after NASA's Phoenix Mars Lander arrived on an arctic plain at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars.

    The movie makes a slow tour around highlights of the image.

    The full-circle panorama in approximately true color shows the polygonal patterning of ground at the landing area, similar to patterns in permafrost areas on Earth. The center of the image is the westward part of the scene. Trenches where Phoenix's robotic arm has been exposing subsurface material are visible in the right half of the image. The spacecraft's meteorology mast, topped by the telltale wind gauge, extends into the sky portion of the panorama.

    This view comprises more than 100 different camera pointings, with images taken through three different filters at each pointing. It is presented here as a cylindrical projection.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Full-Circle Color Panorama of Phoenix Landing Site on Northern Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This view combines more than 400 images taken during the first several weeks after NASA's Phoenix Mars Lander arrived on an arctic plain at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars.

    The full-circle panorama in approximately true color shows the polygonal patterning of ground at the landing area, similar to patterns in permafrost areas on Earth. The center of the image is the westward part of the scene. Trenches where Phoenix's robotic arm has been exposing subsurface material are visible in the right half of the image. The spacecraft's meteorology mast, topped by the telltale wind gauge, extends into the sky portion of the panorama.

    This view comprises more than 100 different camera pointings, with images taken through three different filters at each pointing. It is presented here as a cylindrical projection.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Revisiting haboobs in the southwestern United States: An observational case study of the 5 July 2011 Phoenix dust storm

    NASA Astrophysics Data System (ADS)

    Raman, Aishwarya; Arellano, Avelino F.; Brost, John J.

    2014-06-01

    Convectively-driven dust storms (or haboobs) are common phenomena in the southwestern United States. However, studies about haboobs in this region are limited. Here, we investigate the state and fate of a massive haboob that hit Phoenix, Arizona on 5 July 2011 using satellite, radar, and ground-based observations. This haboob was a result of strong outflow boundaries (with peak wind gusts of 29 m s-1) from storms that were initiated in the southeast of Tucson. In particular, we find three major outflow systems (based on radar data) that were generated by forward propagating storms, ultimately merging near Phoenix. This resulted in peak hourly PM10 and PM2.5 concentrations of 1974 μg m-3 and 907 μg m-3 at US EPA stations near Phoenix. The high PM concentration is consistent in space and time with the dust wall movement based on our analysis of radar data on hydrometeor classification. Enhanced aerosol loadings over metropolitan Phoenix were also observed on 6 July from NASA Terra/Aqua MODIS aerosol optical depth (AOD) retrievals (AOD > 0.8). We infer from CALIOP vertical feature masks and HYSPLIT back trajectories that remnants of the haboob were transported to northwest of Phoenix on 6 July at 2-4 km above ground level. Ratios of PM2.5 to PM10 from IMPROVE stations also imply low-level transport to the east of Phoenix on 8 July. Finally, we find that this haboob, which had local and regional impacts, is atypical of other dust events in this region. We note from this analysis that extreme events such as this haboob require an integrated air quality observing system to provide a more comprehensive assessment of these events.

  7. Regional-scale transport of air pollutants: impacts of Southern California emissions on Phoenix ground-level ozone concentrations

    NASA Astrophysics Data System (ADS)

    Li, J.; Georgescu, M.; Hyde, P.; Mahalov, A.; Moustaoui, M.

    2015-08-01

    In this study, WRF-Chem is utilized at high resolution (1.333 km grid spacing for the innermost domain) to investigate impacts of southern California anthropogenic emissions (SoCal) on Phoenix ground-level ozone concentrations ([O3]) for a pair of recent exceedance episodes. First, WRF-Chem control simulations, based on the US Environmental Protection Agency (EPA) 2005 National Emissions Inventories (NEI05), are conducted to evaluate model performance. Compared with surface observations of hourly ozone, CO, NOX, and wind fields, the control simulations reproduce observed variability well. Simulated [O3] are comparable with the previous studies in this region. Next, the relative contribution of SoCal and Arizona local anthropogenic emissions (AZ) to ozone exceedances within the Phoenix metropolitan area is investigated via a trio of sensitivity simulations: (1) SoCal emissions are excluded, with all other emissions as in Control; (2) AZ emissions are excluded with all other emissions as in Control; and (3) SoCal and AZ emissions are excluded (i.e., all anthropogenic emissions are eliminated) to account only for Biogenic emissions and lateral boundary inflow (BILB). Based on the USEPA NEI05, results for the selected events indicate the impacts of AZ emissions are dominant on daily maximum 8 h average (DMA8) [O3] in Phoenix. SoCal contributions to DMA8 [O3] for the Phoenix metropolitan area range from a few ppbv to over 30 ppbv (10-30 % relative to Control experiments). [O3] from SoCal and AZ emissions exhibit the expected diurnal characteristics that are determined by physical and photochemical processes, while BILB contributions to DMA8 [O3] in Phoenix also play a key role. Finally, ozone transport processes and pathways within the lower troposphere are investigated. During daytime, pollutants (mainly ozone) near the Southern California coasts are pumped into the planetary boundary-layer over the Southern California desert through the mountain chimney and pass

  8. Regional-scale transport of air pollutants: impacts of southern California emissions on Phoenix ground-level ozone concentrations

    NASA Astrophysics Data System (ADS)

    Li, J.; Georgescu, M.; Hyde, P.; Mahalov, A.; Moustaoui, M.

    2015-03-01

    In this study, WRF-Chem is utilized at high-resolution (1.333 km grid spacing for the innermost domain) to investigate impacts of southern California anthropogenic emissions (SoCal) on Phoenix ground-level ozone concentrations ([O3]) for a pair of recent exceedance episodes. First, WRF-Chem Control simulations are conducted to evaluate model performance. Compared with surface observations of hourly ozone, CO, NOx, and wind fields, the Control simulations reproduce observed variability well. Simulated [O3] are within acceptance ranges recommended by the Environmental Protection Agency (EPA) that characterize skillful experiments. Next, the relative contribution of SoCal and Arizona local anthropogenic emissions (AZ) to ozone exceedance within the Phoenix metropolitan area is investigated via a trio of sensitivity simulations: (1) SoCal emissions are excluded, with all other emissions as in Control; (2) AZ emissions are excluded with all other emissions as in Control; and (3) SoCal and AZ emissions are excluded (i.e., all anthropogenic emissions are eliminated) to account only for biogenic emissions [BEO]. Results for the selected events indicate the impacts of AZ emissions are dominant on daily maximum 8 h average (DMA8) [O3] in Phoenix. SoCal contributions to DMA8 [O3] for the Phoenix metropolitan area range from a few ppbv to over 30 ppbv (10-30% relative to Control experiments). [O3] from SoCal and AZ emissions exhibit the expected diurnal characteristics that are determined by physical and photochemical processes, while BEO contributions to DMA8 [O3] in Phoenix also play a key role. Finally, ozone transport processes and pathways within the lower troposphere are investigated. During daytime, pollutants (mainly ozone) near the southern California coasts are pumped into the planetary boundary-layer over the southern California desert through the mountain chimney and pass channel effects, aiding eastward transport along the desert air basins in southern California

  9. Phoenix lands on Mars: the latest results

    NASA Astrophysics Data System (ADS)

    Smith, Peter

    On May 25, 2008, the Phoenix mission will touch down on the northern polar region of Mars and begin a series of experiments designed to investigate the properties of the soil and subsurface water ice. Odyssey scientists discovered subsurface ice northwards of about 60° surrounding the permanent ice cap in 2002. As the first Scout mission, the Phoenix team proposed to verify this discovery by digging through the overlying soils and sampling the ice. Phoenix will be able to determine whether the ice ever melted by measuring the mineral and salt content of the soil looking for altered or secondary minerals. The polar weather is also of interest as the leading theory for the placement of the ice is through vapor diffusion through the soil. Phoenix expects to characterize the transport of water vapor near the surface and test the diffusion theory. Finally, the presence of water-modified soils, complex organics, and energy sources will lead us to conclude that the northern plains are a habitable zone on Mars. A progress report on Phoenix results will be presented at the meeting.

  10. Phoenix Student Interns Program: Active Research on Mars

    NASA Astrophysics Data System (ADS)

    Bowman, C. D. D.; Camacho, J.; Dorsch, W.; Hurd, D.; Meyer, J.; Overton, J.; Stocco, K.; Young, N.

    2008-03-01

    In the Phoenix Student Interns Program, high school students and teachers from around the U.S. work with Phoenix Mars Mission scientists and engineers to do the work associated with exploration and discovery on Mars in summer 2008.

  11. Application of remote sensing techniques for identification of irrigated crop lands in Arizona

    NASA Technical Reports Server (NTRS)

    Billings, H. A.

    1981-01-01

    Satellite imagery was used in a project developed to demonstrate remote sensing methods of determining irrigated acreage in Arizona. The Maricopa water district, west of Phoenix, was chosen as the test area. Band rationing and unsupervised categorization were used to perform the inventory. For both techniques the irrigation district boundaries and section lines were digitized and calculated and displayed by section. Both estimation techniques were quite accurate in estimating irrigated acreage in the 1979 growing season.

  12. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Changes in the land use in the Phoenix (1:250,000 scale) Quadrangle in Arizona have been mapped using only the images from ERTS-1, tending to verify the utility of a land use classification system proposed for use with ERTS images. Seasonal changes were studied on successive ERTS-1 images, particularly large scale color composite transparencies for August, October, February, and May, and this seasonal variation aided delineation of land use boundaries. Types of equipment used to aid interpretation included color additive viewer, a twenty-power magnifier, a density slicer, and a diazo copy machine. A Zoom Transfer Scope was used for scale and photogrammetric adjustments. Types of changes detected have been: (1) cropland or rangeland developed as new residential areas; (2) rangeland converted to new cropland or to new reservoirs; and (3) possibly new activity by the mining industries. A map of land use previously compiled from air photos was updated in this manner. ERTS-1 images complemented air photos: the photos gave detail on a one-shot basis; the ERTS-1 images provided currency and revealed seasonal variation in vegetation which aided interpretation of land use.

  13. Assessment of Mars Phoenix EDL Performance

    NASA Technical Reports Server (NTRS)

    Oberhettinger, David; Skulsky, Eli D.; Bailey, Erik S.

    2011-01-01

    Entry, Descent, and Landing (EDL) is an especially risky phase of a planetary mission, and detailed information on the performance of a lander's EDL design is critical to mitigating the risks of future missions. 12However, the study of actual EDL performance and comparison with the pre-entry predictions has not typically been given a high priority following spacecraft landings, mainly for budgetary reasons. Because Mars Phoenix inherited hardware and design elements from a similar mission that appears to have failed during Mars EDL, NASA was particularly interested in identifying the reasons for the Phoenix mission success. Therefore, NASA sponsored a reconstruction and analysis of the downlinked Phoenix telemetry that would tell the story of this critical event sequence--focusing on the 14 minutes from cruise stage separation to landing--and identify lessons learned.

  14. Urban effects on regional climate: a case study in the Phoenix and Tucson ‘sun’ corridor

    USGS Publications Warehouse

    Zhao Yang,; Francina Dominguez,; Hoshin Gupta,; Xubin Zeng,; Norman, Laura M.

    2016-01-01

    Land use and land cover change (LULCC) due to urban expansion alter the surface albedo, heat capacity, and thermal conductivity of the surface. Consequently, the energy balance in urban regions is different from that of natural surfaces. To evaluate the changes in regional climate that could arise due to projected urbanization in the Phoenix-Tucson corridor, Arizona, we applied the coupled WRF-NOAH-UCM (which includes a detailed urban radiation scheme) to this region. Land cover changes were represented using land cover data for 2005 and projections to 2050, and historical North American Regional Reanalysis (NARR) data were used to specify the lateral boundary conditions. Results suggest that temperature changes will be well defined, reflecting the urban heat island (UHI) effect within areas experiencing LULCC. Changes in precipitation are less robust, but seem to indicate reductions in precipitation over the mountainous regions northeast of Phoenix and decreased evening precipitation over the newly-urbanized area.

  15. Sulfur Mineralogy at the Mars Phoenix Landing Site

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Morris, R.V.; Golden, D.C.; Sutter, B.; Clark, B.C.; Boynton, W.V.; Hecht, M.H.; Kounaves, S.P.

    2009-01-01

    The Mars Phoenix Scout mission landed at the northernmost location (approx.68deg N) of any lander or rover on the martian surface. This paper compares the S mineralogy at the Phoenix landing site with S mineralogy of soils studied by previous Mars landers. S-bearing phases were not directly detected by the payload onboard the Phoenix spacecraft. Our objective is to derive the possible mineralogy of S-bearing phases at the Phoenix landing site based upon Phoenix measurements in combination with orbital measurements, terrestrial analog and Martian meteorite studies, and telescopic observations.

  16. Temperature Measurements Taken by Phoenix Spacecraft

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This chart plots the minimum daily atmospheric temperature measured by NASA's Phoenix Mars Lander spacecraft since landing on Mars. As the temperature increased through the summer season, the atmospheric humidity also increased. Clouds, ground fog, and frost were observed each night after the temperature started dropping.

  17. Faculty Web Grade Entry: University of Phoenix

    ERIC Educational Resources Information Center

    Elisala, Tandy R.

    2005-01-01

    The University of Phoenix is a large, private, four-year university with a commitment to providing timely and efficient student services. With continued growth and process improvement opportunities utilizing technology, the institution had an opportunity to automate and streamline grade processing. This article focuses on the Faculty Web Grade…

  18. Phoenix Award Winners: Books Worth Remembering.

    ERIC Educational Resources Information Center

    Piehl, Kathy

    1998-01-01

    Describes the Phoenix Award, which honors children's books which did not receive an award at publication (20 years in the past), but have withstood the test of time. Presents an annotated bibliography of winning titles under the categories of: Fantasy/Science Fiction; Historical Fiction (British, Depression Era, World War II, Other Wars, Other…

  19. Atmospheric reconstruction from Phoenix entry data

    NASA Astrophysics Data System (ADS)

    Van Hove, B.; Karatekin, O.

    2012-04-01

    The Phoenix capsule successfully landed on the Northern plains of Mars in May 2008. During entry, descent and landing (EDL) in the atmosphere of Mars, Phoenix recorded accelerations and angular velocities using accelerometers and gyroscopes housed in an inertial measurement unit (IMU). In addition, radio communications were established between Phoenix and the Mars Odyssey, Mars Reconnaissance and Mars Express orbiters during EDL. The presentation will be a discussion on trajectory and atmospheric reconstruction, as well as their accuracy and scientific value. Technical highlights include the detailed analysis of the full IMU dataset. Previous studies have reported discrepancies between angles of attack derived from either the accelerometer or gyroscope data. We will revisit the impact of various assumptions and noise reduction methods. Positions and velocities reconstructed from Doppler shifts in the radio signal will be evaluated for comparison. Scientific highlights include the impact of any discrepancies on the atmospheric profiles, the estimated accuracy of those profiles and a comparison between Phoenix profiles and other observations such as entry profiles from other Mars missions and atmospheric measurements from Mars Climate Sounder instrument on the Mars Reconnaissance Orbiter.

  20. Phoenix College Institutional Effectiveness, 1999-2000.

    ERIC Educational Resources Information Center

    Phoenix Coll., AZ.

    This report presents Phoenix College's (PC's) 1999-2000 institutional effectiveness annual report. The 1998-99 academic year was most notable for an important upswing in enrollment, the opening of the Fannin Library, and a continued increase in the diversity of students. Enrollment increases were noted in both fall and spring semesters, with a…

  1. Clayheads in Arizona.

    ERIC Educational Resources Information Center

    Schubert, Thorne Erwin

    1990-01-01

    Describes how junior high school students in Arizona combine what they have learned in ceramic history class with ceramic production skills to create their own personal ceramic heads in their images. (KM)

  2. Floods of November 1978 to March 1979 in Arizona and west-central New Mexico

    USGS Publications Warehouse

    Aldridge, B.N.; Hales, T.A.

    1983-01-01

    Widespread rainfall of 3 to 9 inches in the mountains area of Arizona and West-Central New Mexico during December 17-20, 1978, caused maximum known discharges on the Gila River in New Mexico and on several streams in Arizona. At Phoenix, the Salt River was the highest since 1920 but was only slightly higher than the flood in March 1978. The Agua Fria River was the highest since 1919. The floods caused 12 deaths and more than $150 million in damage. Damage of $51.8 million occurred in Maricopa County, Arizona. Ten counties in Arizona and three counties in New Mexico wer declared disaster areas. Unusually high volumes of runoff occurred on the Salt, Verde, and Agua Fria Rivers upstream from reservoirs. Overflow from the reservoir systems caused flooding downstream. Storage in the reservoirs on the Salt and Verde River reduced the peak discharge of the Salt River at Phoenix from a potential of about 234,000 cubic feet per second to 126,00 cubic feet per second and greatly reduced the duration of the flood. (USGS)

  3. Phoenix - the First Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Goldstein, Barry; Shotwell, Robert

    2008-01-01

    As the first of the new Mars Scouts missions, the Phoenix project was selected by NASA in August of 2003. Four years later, almost to the day, Phoenix was launched from Cape Canaveral Air Station and successfully injected into an interplanetary trajectory on its way to Mars. This paper will highlight some of the key changes since the 2006 IEEE paper of the same name, as well as activities, challenges and problems encountered on the way to the launch pad. Phoenix Follows the water responding directly to the recently published data from Dr. William Boynton, PI (and Phoenix co-I) of the Mars Odyssey Gamma Ray Spectrometer (GRS). GRS data indicate extremely large quantities of water ice (up to 50% by mass) within the upper 50 cm of the northern polar regolith. Phoenix will land within the north polar region at 68.2 N, 233.4 W identified by GRS to harbor near surface water ice and provide in-situ confirmation of this extraordinary find. Our mission will investigate water in all its phases, and will investigate the history of water as evidenced in the soil characteristics that will be carefully examined by the powerful suite of onboard instrumentation. Access to the critical subsurface region expected to contain this information is made possible by a third generation robotic arm capable of excavating the expected Martian regolith to a depth of 1m. Phoenix has four primary science objectives: 1) Determine the polar climate and weather, interaction with the surface, and composition of the lower atmosphere around 70 N for at least 90 sols focusing on water, ice, dust, noble gases, and CO2. Determine the atmospheric characteristics during descent through the atmosphere. 2) Characterize the geomorphology and active processes shaping the northern plains and the physical properties of the near surface regolith focusing on the role of water. 3) Determine the aqueous mineralogy and chemistry as well as the adsorbed gases and organic content of the regolith. Verify the Odyssey

  4. Assessing Habitability: Lessons from the Phoenix Mission

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R.

    2013-01-01

    The Phoenix mission's key objective was to search for a habitable zone. The Phoenix lander carried a robotic arm with digging scoop to collect soil and icy material for analysis with an instrument payload that included volatile mineral and organic analysis(3) and soil ionic chemistry analysis (4). Results from Phoenix along with theoretical modeling and other previous mission results were used to evaluate the habitability of the landing site by considering four factors that characterize the environments ability to support life as we know it: the presence of liquid water, the presence of an energy source to support metabolism, the presence of nutrients containing the fundamental building blocks of life, and the absence of environmental conditions that are toxic to or preclude life. Phoenix observational evidence for the presence of liquid water (past or present) includes clean segregated ice, chemical etching of soil grains, calcite minerals in the soil and variable concentrations of soluble salts5. The maximum surface temperature measured was 260K so unfrozen water can form only in adsorbed films or saline brines but warmer climates occur cyclically on geologically short time scales due to variations in orbital parameters. During high obliquity periods, temperatures allowing metabolism extend nearly a meter into the subsurface. Phoenix discovered 1%w/w perchlorate salt in the soil, a chemical energy source utilized by a wide range of microbes. Nutrient sources including C, H, N, O, P and S compounds are supplied by known atmospheric sources or global dust. Environmental conditions are within growth tolerance for terrestrial microbes. Summer daytime temperatures are sufficient for metabolic activity, the pH is 7.8 and is well buffered and the projected water activity of a wet soil will allow growth. In summary, martian permafrost in the north polar region is a viable location for modern life. Stoker et al. presented a formalism for comparing the habitability of

  5. Phoenix--the first Mars Scout mission.

    PubMed

    Shotwell, Robert

    2005-01-01

    NASA has initiated the first of a new series of missions to augment the current Mars Program. In addition to the systematic series of planned, directed missions currently comprising the Mars Program plan, NASA has started a series of Mars Scout missions that are low cost, price fixed, Principal [correction of Principle] Investigator-led projects. These missions are intended to provide an avenue for rapid response to discoveries made as a result of the primary Mars missions, as well as allow more risky technologies and approaches to be applied in the investigation of Mars. The first in this new series is the Phoenix mission which was selected as part of a highly competitive process. Phoenix will use the Mars 2001 Lander that was discontinued in 2000 and apply a new set of science objectives and mission objectives and will validate this soft lander architecture for future applications. This paper will provide an overview of both the Program and the Project.

  6. Astronomical research at the Hopkins PHOENIX Observatory

    NASA Astrophysics Data System (ADS)

    Hopkins, J. L.

    1985-09-01

    After trying astrophotography and radio astronomy it was decided that the best way to do meaningful astronomical research at a small private observatory was by doing photoelectric photometry. Having the observatory located in the back yard of a private residence affors the luxury of observing any time the sky conditions permit. Also modest equipment is all that is needed to do accurate UBV photometry of stars 8th magnitude and brighter. Since beginning in 1980 the Hopkins Phoenix Observatory has published papers on several RS CVn star systems, 31 Cygni, 22 Vul, 18 Tau Per, and has followed the 1982-1984 eclipse of Epsilon Aurigae from its start to the present with over 1000 UBV measurements. In addition the Hopkins Phoenix Observatory has developed several pieces of photometry equipment including the HPO PEPH-101 photometer head and photon counting electronics.

  7. Astronomical research at the Hopkins Phoenix Observatory

    NASA Technical Reports Server (NTRS)

    Hopkins, J. L.

    1985-01-01

    After trying astrophotography and radio astronomy it was decided that the best way to do meaningful astronomical research at a small private observatory was by doing photoelectric photometry. Having the observatory located in the back yard of a private residence affors the luxury of observing any time the sky conditions permit. Also modest equipment is all that is needed to do accurate UBV photometry of stars 8th magnitude and brighter. Since beginning in 1980 the Hopkins Phoenix Observatory has published papers on several RS CVn star systems, 31 Cygni, 22 Vul, 18 Tau Per, and has followed the 1982-1984 eclipse of Epsilon Aurigae from its start to the present with over 1000 UBV measurements. In addition the Hopkins Phoenix Observatory has developed several pieces of photometry equipment including the HPO PEPH-101 photometer head and photon counting electronics.

  8. Phoenix--the first Mars Scout mission.

    PubMed

    Shotwell, Robert

    2005-01-01

    NASA has initiated the first of a new series of missions to augment the current Mars Program. In addition to the systematic series of planned, directed missions currently comprising the Mars Program plan, NASA has started a series of Mars Scout missions that are low cost, price fixed, Principal [correction of Principle] Investigator-led projects. These missions are intended to provide an avenue for rapid response to discoveries made as a result of the primary Mars missions, as well as allow more risky technologies and approaches to be applied in the investigation of Mars. The first in this new series is the Phoenix mission which was selected as part of a highly competitive process. Phoenix will use the Mars 2001 Lander that was discontinued in 2000 and apply a new set of science objectives and mission objectives and will validate this soft lander architecture for future applications. This paper will provide an overview of both the Program and the Project. PMID:16010756

  9. Phoenix `07 MET Pressure sensor: Instrument

    NASA Astrophysics Data System (ADS)

    Polkko, J.; Kahanpää, H.; Harri, A.-M.; Schmidt, W.; Genzer, M.; Mäkelä, M.; Savijarvi, H.; Kauhanen, J.

    2008-09-01

    Abstract The Phoenix '07 Lander landed successfully on the Martian northern polar region 25.5.2008. The mission is part of the National Aeronautics and Space Administration's (NASA's) Scout program. The seminal questions for the Phoenix mission are: (1) can the Martian arctic support life, (2) what is the history of water at the landing site, and (3) how is the Martian climate affected by polar dynamics. These translate into practical science goals and tasks of characterizing the surface, analyzing samples of the soil and ice, and to observing and monitoring the atmospheric conditions and phenomena. Meteorology experiment (MET) onboard the Phoenix '07 lander will provide the first surface based observations of atmospheric pressure, temperature and wind in the Martian polar region above the polar circle. The MET instrument also includes a lidar for detecting dust and ice particles in the air column above the lander. Pressure observations are crucial for the success of the MET experiment. The Martian atmosphere goes through a large scale atmospheric pressure cycle due to the annual condensation and sublimation of the atmospheric carbon dioxide. Pressure also exhibits short period variations associated with dust storms, tides and other atmospheric events. A series of pressure measurements can hence tell us about the large scale state and dynamics of the atmosphere. The shorter time scale phenomena are also important in contributing to our understanding of mixing and transport of heat, dust and water vapour. The pressure observations are performed by a FMI (Finnish Meteorological Institute) instrument, based on micro machined Barocap capacitic pressure sensor heads manufactured by Vaisala Inc. Similar instruments have been used in several earlier missions (Mars-96, Mars Polar Lander, Beagle-2 and Huygens), Phoenix being the first successful landing on Mars. A similar instrument is included also in the Mars Science Laboratory '09 rover. Pressure sensor technology

  10. Trace-Gas Mixing in Isolated Urban Boundary Layers: Results from the 2001 Phoenix Sunrise Experiment

    SciTech Connect

    Berkowitz, Carl M.; Doran, J C.; Shaw, William J.; Springston, Stephen R.; Spicer, Chet W.

    2006-01-01

    Measurements made from surface sites, from the 50-m and 140-m levels (the 16th and 39th floors) of a skyscraper and from an instrumented aircraft are used to characterize early morning profiles of CO, NOy and O3 within the mid-morning summertime convective atmospheric boundary layer (CABL) over Phoenix, Arizona. Although mixing was anticipated to produce uniform values of these species throughout the CABL, this was found not to be the case. Background air advected into the upper levels of the boundary layer and entrained air from above appears to be the most likely cause for the lack of well-mixed trace gases. The results show that surface measurements may provide only limited information on concentrations of trace gas species higher in the boundary layer.

  11. Polybrominated diphenyl ether metabolism in field collected fish from the Gila River, Arizona, USA-Levels, possible sources, and patterns

    USGS Publications Warehouse

    Echols, Kathy R.; Peterman, Paul H.; Hinck, Jo Ellen; Orazio, Carl E.

    2013-01-01

    Polybrominated diphenyl ethers (PBDEs) were determined in fish collected from the Gila River, Arizona, a tributary of the Colorado River in the lower part of the Colorado River Basin. Fish samples were collected at sites on the Gila River downstream from Hayden, Phoenix, and Arlington, Arizona in late summer 2003. The Gila River is ephemeral upstream of the Phoenix urban area due to dams and irrigation projects and has limited perennial flow downstream of Phoenix due to wastewater and irrigation return flows. Fifty PBDE congeners were analyzed by high resolution gas chromatography/high resolution mass spectrometry using labeled surrogate standards in composite samples of male and female common carp (Cyrpinus carpio), largemouth bass (Micropterus salmoides) and channel catfish (Ictalurus punctatus). The predominant PBDE congeners detected and quantified were 47, 100, 153, 49, 28, and 17. Concentrations of total PBDEs in these fish ranged from 1.4 to 12700 ng g-1 wet weight, which are some of the highest concentrations reported in fish from the United States. Differences in metabolism of several PBDE congeners by carp is clear at the Phoenix site; congeners with at least one ring of 2,4,5-substitution are preferentially metabolized as are congeners with 2,3,4-substitution.

  12. Polybrominated diphenyl ether metabolism in field collected fish from the Gila River, Arizona, USA--levels, possible sources, and patterns.

    PubMed

    Echols, Kathy R; Peterman, Paul H; Hinck, Jo Ellen; Orazio, Carl E

    2013-01-01

    Polybrominated diphenyl ethers (PBDEs) were determined in fish collected from the Gila River, Arizona, a tributary of the Colorado River in the lower part of the Colorado River Basin. Fish samples were collected at sites on the Gila River downstream from Hayden, Phoenix, and Arlington, Arizona in late summer 2003. The Gila River is ephemeral upstream of the Phoenix urban area due to dams and irrigation projects and has limited perennial flow downstream of Phoenix due to wastewater and irrigation return flows. Fifty PBDE congeners were analyzed by high resolution gas chromatography/high resolution mass spectrometry using labeled surrogate standards in composite samples of male and female common carp (Cyrpinus carpio), largemouth bass (Micropterus salmoides) and channel catfish (Ictalurus punctatus). The predominant PBDE congeners detected and quantified were 47, 100, 153, 49, 28, and 17. Concentrations of total PBDEs in these fish ranged from 1.4 to 12700 ng g(-1) wet weight, which are some of the highest concentrations reported in fish from the United States. Differences in metabolism of several PBDE congeners by carp is clear at the Phoenix site; congeners with at least one ring of 2,4,5-substitution are preferentially metabolized as are congeners with 2,3,4-substitution. PMID:22939514

  13. Heavy winter precipitation in southwest Arizona

    NASA Astrophysics Data System (ADS)

    Guttman, Nathaniel B.; Lee, Jung Jin; Wallis, James R.

    During December 1992, according to the Weekly Climate Bulletin of the Climate Analysis Center in Washington, D.C., heavy precipitation inundated parts of Arizona causing more than 400% of normal precipitation to fall in the southwestern part of the state. Heavy precipitation continued to fall during the next 2 months, causing extensive flooding along the Gila River.Phoenix Weather Service Forecast Office monthly storm data reports indicated flooding along the Santa Cruz and San Pedro Rivers on December 29. From January 7 to 20, roads, bridges, homes, businesses, and farmland suffered considerable flood damage from Graham County westward to Yuma County as rivers and streams swelled. Several thousand people were isolated in their homes as flood waters cut off roads. The January storm data report shows that the combination of a northward-displaced subtropical jet stream, with its abundant moisture supply and associated low pressure disturbances and a southward-displaced polar jet stream, with its storm track, led to the abnormally wet period from late December to mid-January. In February, severe flooding was reported in several areas as water rose in the Painted Rock Reservoir; water accumulating behind the dam produced the largest lake in the state. After exceeding the 2.5 million acre-feet capacity of the reservoir, water began spilling over the dam and damaging homes, crops, farmland, roads, and bridges. About 3,500 residents were evacuated, and the National Guard responded to the flooding with various relief efforts including helicopter support operations. The U.S. and Arizona Departments of Agriculture reported flood damage in excess of $50 million.

  14. A biometeorology study of climate and heat-related morbidity in Phoenix from 2001 to 2006.

    PubMed

    Golden, Jay S; Hartz, Donna; Brazel, Anthony; Luber, George; Phelan, Patrick

    2008-07-01

    Heat waves kill more people in the United States than hurricanes, tornadoes, earthquakes, and floods combined. Recently, international attention focused on the linkages and impacts of human health vulnerability to urban climate when Western Europe experienced over 30,000 excess deaths during the heat waves of the summer of 2003-surpassing the 1995 heat wave in Chicago, Illinois, that killed 739. While Europe dealt with heat waves, in the United States, Phoenix, Arizona, established a new all-time high minimum temperature for the region on July 15, 2003. The low temperature of 35.5 degrees C (96 degrees F) was recorded, breaking the previous all-time high minimum temperature record of 33.8 degrees C (93 degrees F). While an extensive literature on heat-related mortality exists, greater understanding of influences of heat-related morbidity is required due to climate change and rapid urbanization influences. We undertook an analysis of 6 years (2001-2006) of heat-related dispatches through the Phoenix Fire Department regional dispatch center to examine temporal, climatic and other non-spatial influences contributing to high-heat-related medical dispatch events. The findings identified that there were no significant variations in day-of-week dispatch events. The greatest incidence of heat-related medical dispatches occurred between the times of peak solar irradiance and maximum diurnal temperature, and during times of elevated human comfort indices (combined temperature and relative humidity). PMID:18219501

  15. A biometeorology study of climate and heat-related morbidity in Phoenix from 2001 to 2006

    NASA Astrophysics Data System (ADS)

    Golden, Jay S.; Hartz, Donna; Brazel, Anthony; Luber, George; Phelan, Patrick

    2008-07-01

    Heat waves kill more people in the United States than hurricanes, tornadoes, earthquakes, and floods combined. Recently, international attention focused on the linkages and impacts of human health vulnerability to urban climate when Western Europe experienced over 30,000 excess deaths during the heat waves of the summer of 2003—surpassing the 1995 heat wave in Chicago, Illinois, that killed 739. While Europe dealt with heat waves, in the United States, Phoenix, Arizona, established a new all-time high minimum temperature for the region on July 15, 2003. The low temperature of 35.5°C (96°F) was recorded, breaking the previous all-time high minimum temperature record of 33.8°C (93°F). While an extensive literature on heat-related mortality exists, greater understanding of influences of heat-related morbidity is required due to climate change and rapid urbanization influences. We undertook an analysis of 6 years (2001 2006) of heat-related dispatches through the Phoenix Fire Department regional dispatch center to examine temporal, climatic and other non-spatial influences contributing to high-heat-related medical dispatch events. The findings identified that there were no significant variations in day-of-week dispatch events. The greatest incidence of heat-related medical dispatches occurred between the times of peak solar irradiance and maximum diurnal temperature, and during times of elevated human comfort indices (combined temperature and relative humidity).

  16. A biometeorology study of climate and heat-related morbidity in Phoenix from 2001 to 2006.

    PubMed

    Golden, Jay S; Hartz, Donna; Brazel, Anthony; Luber, George; Phelan, Patrick

    2008-07-01

    Heat waves kill more people in the United States than hurricanes, tornadoes, earthquakes, and floods combined. Recently, international attention focused on the linkages and impacts of human health vulnerability to urban climate when Western Europe experienced over 30,000 excess deaths during the heat waves of the summer of 2003-surpassing the 1995 heat wave in Chicago, Illinois, that killed 739. While Europe dealt with heat waves, in the United States, Phoenix, Arizona, established a new all-time high minimum temperature for the region on July 15, 2003. The low temperature of 35.5 degrees C (96 degrees F) was recorded, breaking the previous all-time high minimum temperature record of 33.8 degrees C (93 degrees F). While an extensive literature on heat-related mortality exists, greater understanding of influences of heat-related morbidity is required due to climate change and rapid urbanization influences. We undertook an analysis of 6 years (2001-2006) of heat-related dispatches through the Phoenix Fire Department regional dispatch center to examine temporal, climatic and other non-spatial influences contributing to high-heat-related medical dispatch events. The findings identified that there were no significant variations in day-of-week dispatch events. The greatest incidence of heat-related medical dispatches occurred between the times of peak solar irradiance and maximum diurnal temperature, and during times of elevated human comfort indices (combined temperature and relative humidity).

  17. Morning Frost in Trench Dug by Phoenix, Sol 113 (False Color)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows morning frost inside the 'Snow White' trench dug by the lander, in addition to subsurface ice exposed by use of a rasp on the floor of the trench.

    The camera took this image at about 9 a.m. local solar time during the 113th Martian day of the mission (Sept. 18, 2008). Bright material near and below the four-by-four set of rasp holes in the upper half of the image is water-ice exposed by rasping and scraping in the trench earlier the same morning. Other bright material especially around the edges of the trench, is frost. Earlier in the mission, when the sun stayed above the horizon all night, morning frost was not evident in the trench.

    This image is presented in false color that enhances the visibility of the frost.

    The trench is 4 to 5 centimeters (about 2 inches) deep, about 23 centimeters (9 inches) wide.

    Phoenix landed on a Martian arctic plain on May 25, 2008. The mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  18. Lessons Learned from the Arizona Galileoscope Star Party Program

    NASA Astrophysics Data System (ADS)

    Pompea, Stephen M.; Sparks, R. T.; Dugan, C.; Walker, C. E.

    2013-01-01

    The National Optical Astronomy Observatory has joined together multiple audiences in various communities to conduct outreach using Galileoscopes. The audience consists of 5th grade students and teachers, their families and friends, and anyone else who wants to attend a special star party led by students using Galileoscopes. However, across one community there are many subcultures that one should be responsive to in the program design. The program model, which has been independently evaluated, combines professional development and classroom visits by NOAO education practitioners with the goal of a community star party. We have conducted the program in several mid-sized Arizona cities after an initial prototype star party held near the state capitol building in Phoenix. In this program, with Galileoscopes purchased with funding from Science Foundation Arizona, we have now held Galileoscope star parties in Flagstaff, Safford, and Globe, with two programs in Yuma, Arizona. We will discuss planning efforts, professional development plans and lessons learned, and specific logistical issues that have arisen in the program. Although the professional development component for teachers is rather traditional, the overall lessons learned are applicable to many astronomy programs for non-traditional audiences.

  19. Maps Showing Ground-Water Conditions in the San Francisco Peaks Area, Coconino County, Arizona - 1979

    USGS Publications Warehouse

    Appel, Cynthia L.; Bills, Donald J.

    1981-01-01

    INTRODUCTION The San Francisco Peaks area includes about 2,300 mi2, of which about 500 mi2 is in the Navajo Indian Reservation, in north-central Arizona. Ground-water development has been slight except for the public-supply wells for Flagstaff and domestic wells in Fort Valley, Pitman Valley, and the area west of Elden Mountain. The public water supply for Flagstaff is primarily from Upper Lake Mary but is supplemented by ground water from wells near Woody Mountain and Lower Lake Mary and from wells and springs in the Inner Basin. In 1978 about 2,000 acre-ft of ground water was withdrawn for public, industrial, domestic, and stock supplies in the San Francisco Peaks area. The hydrologic data on which these maps are based are available, for the most part, in computer-printout form and may be consulted at the Arizona Department of Water Resources, 99 East Virginia, Phoenix, and at U.S. Geological Survey offices in: Federal Building, 301 West Congress Street, Tucson; Valley Center, Suite 1880, Phoenix; and 2255 North Gemini Drive, Building 3, Flagstaff. Material from which copies can be made at private expense is available at the Tucson, Phoenix, and Flagstaff offices of the U.S. Geological Survey. Only the springs for which discharge data are available are shown on the maps, and only selected wells are shown in areas of high well density.

  20. Overview of the Arizona Quiet Pavement Program

    NASA Astrophysics Data System (ADS)

    Donavan, Paul; Scofield, Larry

    2005-09-01

    The Arizona Quiet Pavement Pilot Program (QP3) was initially implemented to reduce highway related traffic noise by overlaying most of the Phoenix metropolitan area Portland cement concrete pavement with a one inch thick asphalt rubber friction coarse. With FHWA support, this program represents the first time that pavement surface type has been allowed as a noise mitigation strategy on federally funded projects. As a condition of using pavement type as a noise mitigation strategy, ADOT developed a ten-year, $3.8 million research program to evaluate the noise reduction performance over time. Historically, pavement surface type was not considered a permanent solution. As a result, the research program was designed to specifically address this issue. Noise performance is being evaluated through three means: (1) conventional roadside testing within the roadway corridor (e.g., far field measurements within the right-of-way) (2) the use of near field measurements, both close proximity (CPX) and sound intensity (SI); and (3) far field measurements obtained beyond the noise barriers within the surrounding neighborhoods. This paper provides an overview of the program development, presents the research conducted to support the decision to overlay the urban freeway, and the status of current research.

  1. Indians of Arizona.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Washington, DC.

    Brief descriptions of the historical and cultural background of the Navajo, Apache, Hopi, Pima, Papago, Yuma, Maricopa, Mohave, Cocopah, Havasupai, Hualapai, Yavapai, and Paiute Indian tribes of Arizona are presented. Further information is given concerning the educational, housing, employment, and economic development taking place on the…

  2. Arizona's Application Service Provider.

    ERIC Educational Resources Information Center

    Jordan, Darla

    2002-01-01

    Describes the U.S.'s first statewide K-12 application service provider (ASP). The ASP, implemented by the Arizona School Facilities Board, provides access to productivity, communications, and education software programs from any Internet-enabled device, whether in the classroom or home. (EV)

  3. Arizona's Florence Project.

    ERIC Educational Resources Information Center

    Dallam, Elizabeth

    2001-01-01

    Describes the Florence Immigrant and Refugee Rights Project (Florence, Arizona) in which lawyers help individuals who are being detained in Florence. Explains that the project offers service to individuals at the detention center, helps children without guardians, and provides information to immigrant communities on their rights when arrested.…

  4. Workforce Brief: Arizona

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2006

    2006-01-01

    In Arizona, one of the country's fastest growing states, the demand for well-educated employees will only increase over the next several years. In the decade leading up to 2013, healthcare occupations will see growth of 50 percent. Almost 1,800 dentists will need to be hired to fill new posts and to cover retirement, for example. Teachers will be…

  5. Arizona's School Asbestos Program.

    ERIC Educational Resources Information Center

    Charette, Mike L.

    1982-01-01

    The state of Arizona Department of Education operates a successful program to remove asbestos-containing building materials from schools, drawing from the expertise of the Department of Health Services, Bureau of Environmental Hygiene and Sanitation, Bureau of Waste Control, and eliciting cooperation of school officials. Includes an asbestos…

  6. Indians of Arizona.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Washington, DC.

    Briefly describing each tribe within Arizona's four major American Indian groups, this handbook presents information relative to the cultural background and socioeconomic development of the following tribes: (1) Athapascan Tribes (Navajos and Apaches); (2) Pueblo Indians (Hopis); (3) Desert Rancheria Tribes (Pimas, Yumas, Papagos, Maricopas,…

  7. Arizona Academic Standards: Kindergarten

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This publication contains Arizona public schools' academic standards for kindergarten. The contents of this document include the following: (1) The Arts Standard 2006--Kindergarten; (2) Comprehensive Health Education/Physical Activity Standards 1997--Readiness (Kindergarten); (3) Foreign and Native Language Standards 1997--Readiness…

  8. Phosphorus in Phoenix: a budget and spatial representation of phosphorus in an urban ecosystem.

    PubMed

    Metson, Geneviève S; Hale, Rebecca L; Iwaniec, David M; Cook, Elizabeth M; Corman, Jessica R; Galletti, Christopher S; Childers, Daniel L

    2012-03-01

    As urban environments dominate the landscape, we need to examine how limiting nutrients such as phosphorus (P) cycle in these novel ecosystems. Sustainable management of P resources is necessary to ensure global food security and to minimize freshwater pollution. We used a spatially explicit budget to quantify the pools and fluxes of P in the Greater Phoenix Area in Arizona, USA, using the boundaries of the Central Arizona-Phoenix Long-Term Ecological Research site. Inputs were dominated by direct imports of food and fertilizer for local agriculture, while most outputs were small, including water, crops, and material destined for recycling. Internally, fluxes were dominated by transfers of food and feed from local agriculture and the recycling of human and animal excretion. Spatial correction of P dynamics across the city showed that human density and associated infrastructure, especially asphalt, dominated the distribution of P pools across the landscape. Phosphorus fluxes were dominated by agricultural production, with agricultural soils accumulating P. Human features (infrastructure, technology, and waste management decisions) and biophysical characteristics (soil properties, water fluxes, and storage) mediated P dynamics in Phoenix. P cycling was most notably affected by water management practices that conserve and recycle water, preventing the loss of waterborne P from the ecosystem. P is not intentionally managed, and as a result, changes in land use and demographics, particularly increased urbanization and declining agriculture, may lead to increased losses of P from this system. We suggest that city managers should minimize cross-boundary fluxes of P to the city. Reduced P fluxes may be accomplished through more efficient recycling of waste, therefore decreasing dependence on external nonrenewable P resources and minimizing aquatic pollution. Our spatial approach and consideration of both pools and fluxes across a heterogeneous urban ecosystem increases the

  9. University of Phoenix Lets Students Find Answers Virtually

    ERIC Educational Resources Information Center

    Wasley, Paula

    2008-01-01

    This article talks about a software designed by the University of Phoenix for its business, information-technology, education, and health-care courses. Through the university's "virtual organizations"--online teaching tools designed to simulate the experience of working at a typical corporation, school, or government agency, Phoenix students can…

  10. Program Description for the Phoenix Reception and Assessment Center.

    ERIC Educational Resources Information Center

    Datema, Thea; And Others

    Phoenix Reception and Assessment Center (PRAC) is a non-secure detention and assessment center for up to 15 Wayne County delinquent, adolescent males who have been committed to the Michigan Department of Social Services for care, treatment and supervision. Adolescents, ages 12 through 18, are eligible for placement at Phoenix according to the…

  11. Modeling of Phoenix Meteorological Observations Using MLAM

    NASA Astrophysics Data System (ADS)

    Schmidt, W.; Harri, A.-M.; Kahanpää, H.; Kauhanen, J.; Merikallio, S.; Polkko, J.; Savijärvi, H.; Siili, T.

    2008-09-01

    Abstract The Mars Limited Area Model (MLAM) has been jointly developed by the Helsinki University and the Finnish Meteorological Institute to study mesoscale phenomena in the Martian Atmosphere [1]. It is based on the hydro-static dynamical core of the HIgh Resolution Limited Area Model (HIRLAM), an operational weather prediction model-analysis sys-tem used by several European countries. To support the Phoenix mission to high Martian latitudes, the model was optimized in its grid definition and the way carbon dioxide and water ice development is treated. The MLAM based simulations support the analysis of the data from the Phoenix Meteorological station [2] which contains besides a LIDAR for ice/dust particle observations three atmospheric temperature sensors along a 1.2m high boom, a telltale to provide information about wind direction and speed, and 3 capacitive pressure sensors from FMI. The pressure sensors are similar to those success-fully flown on Cassini/Huygens. showed a surprisingly good agreement with the first pressure, temperature and wind data received from the instruments. The results of more detailed studies will be presented, covering several months of data and conclusions drawn from the model comparisons. Figures 2 and 3 show MLAM simulations of the polar region at the time of the Phoenix landing, both at midnight and noon. The landing site is in the upper left quadrant, marked by a small white circle. References [1] Järvenoja, S., Kauhanen, J. and Savijärvi, H. (2003) HIRLAM Newsletter (43), 179-184 [2] Michelangeli, D.V., et al. (2006) Proc. of the 4th intern.conference on Mars polar science and exploration, pp 8014.

  12. Chemistry Lab for Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The science payload of NASA's Phoenix Mars Lander includes a multi-tool instrument named the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The instrument's wet chemistry laboratory, prominent in this photograph, will measure a range of chemical properties of Martian soil samples, such as the presence of dissolved salts and the level of acidity or alkalinity. Other tools that are parts of the instrument are microscopes that will examine samples' mineral grains and a probe that will check the soil's thermal and electrical properties.

  13. Microscopes for NASA's Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2007-01-01

    One part of the Microscopy, Electrochemistry, and Conductivity Analyzer instrument for NASA's Phoenix Mars Lander is a pair of telescopes with a special wheel (on the right in this photograph) for presenting samples to be inspected with the microscopes. A horizontally mounted optical microscope (on the left in this photograph) and an atomic force microscope will examine soil particles and possibly ice particles.

    The shapes and the size distributions of soil particles may tell scientists about environmental conditions the material has experienced. Tumbling rounds the edges. Repeated wetting and freezing causes cracking. Clay minerals formed during long exposure to water have distinctive, platy particles shapes.

  14. The Virtual Arizona Experience

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Davis, R.; Conway, F. M.; Bellasai, R.

    2012-12-01

    To commemorate the once-in-a-lifetime event of Arizona's hundredth birthday, the Centennial Commission and the Governor of Arizona envisioned a museum and companion website that would capture the state's history, celebrate its people, and embrace its future. Working with world-renowned museum designers, the state began to seek ideas from across Arizona to create plans for a journey of discovery through science and the humanities. The museum would introduce visitors to some of the people who nurtured the state through its early years and others who are innovating its tomorrows. Showcases would include the resources and experiences that shaped the state's history and are transforming its present day, highlighting the ingenuity that tamed the wild frontier and is envisioning Arizona's next frontiers through science and technology. The Arizona Experience (www.arizonaexperience.org) was initially intended to serve as the web presence for the physical museum, but as delays occurred with the physical museum, the site has quickly developed an identify of its own as an interactive, multimedia experience, reaching a wider audience with functions that would be difficult or expensive to produce in a museum. As leaders in scientific and technological innovation in the state, the Arizona Geological Survey was tasked with designing and creating the Arizona Experience site. The general themes remain the same; however, the site has added content and applications that are better suited to the online environment in order to create a rich, dynamic supplement to a physical museum experience. The website offers the features and displays of the future museum with the interactive nature and learning environment of the web. This provides an encyclopedic overview of the State of Arizona by subject matter experts in a manner that is free and open to the public and erases socio-economic, political, and physical boundaries. Over the Centennial Year of 2012 the site will release a new theme and

  15. Intense Convective Storms with Little or No Lightning over Central Arizona: A Case of Inadvertent Weather Modification?.

    NASA Astrophysics Data System (ADS)

    Maddox, Robert A.; Howard, Kenneth W.; Dempsey, Charles L.

    1997-04-01

    On 20/21 August 1993, deep convective storms occurred across much of Arizona, except for the southwestern quarter of the state. Several storms were quite severe, producing downbursts and extensive wind damage in the greater Phoenix area during the late afternoon and evening. The most severe convective storms occurred from 0000 to 0230 UTC 21 August and were noteworthy in that, except for the first reported severe thunderstorm, there was almost no cloud-to-ground (CG) lightning observed during their life cycles. Other intense storms on this day, particularly early storms to the south of Phoenix and those occurring over mountainous terrain to the north and east of Phoenix, were prolific producers of CG lightning. Radar data for an 8-h period (2000 UTC 20 August-0400 UTC 21 August) indicated that 88 convective cells having maximum reflectivities greater than 55 dBZ and persisting longer than 25 min occurred within a 200-km range of Phoenix. Of these cells, 30 were identified as `low-lightning' storms, that is, cells having three or fewer detected CG strikes during their entire radar-detected life cycle. The region within which the low-lightning storms were occurring spread to the north and east during the analysis period.Examination of the reflectivity structure of the storms using operational Doppler radar data from Phoenix, and of the supportive environment using upper-air sounding data taken at Luke Air Force Base just northwest of Phoenix, revealed no apparent physical reasons for the distinct difference in observed cloud-to-ground lightning character between the storms in and to the west of the immediate Phoenix area versus those to the north, east, and south. However, the radar data do reveal that several extensive clouds of chaff initiated over flight-restricted military ranges to the southwest of Phoenix. The prevailing flow advected the chaff clouds to the north and east. Convective storms that occurred in the area likely affected by the dispersing chaff

  16. Vertical Distribution of Water at Phoenix

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Lemmon, M. T.

    2011-01-01

    Phoenix results, combined with coordinated observations from the Mars Reconnaissance Orbiter of the Phoenix lander site, indicate that the water vapor is nonuniform (i.e., not well mixed) up to a calculated cloud condensation level. It is important to understand the mixing profile of water vapor because (a) the assumption of a well-mixed atmosphere up to a cloud condensation level is common in retrievals of column water abundances which are in turn used to understand the seasonal and interannual behavior of water, (b) there is a long history of observations and modeling that conclude both that water vapor is and is not well-mixed, and some studies indicate that the water vapor vertical mixing profile may, in fact, change with season and location, (c) the water vapor in the lowest part of the atmosphere is the reservoir that can exchange with the regolith and higher amounts may have an impact on the surface chemistry, and (d) greater water vapor abundances close to the surface may enhance surface exchange thereby reducing regional transport, which in turn has implications to the net transport of water vapor over seasonal and annual timescales.

  17. The Phoenix Mars Lander Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bonitz, Robert; Shiraishi, Lori; Robinson, Matthew; Carsten, Joseph; Volpe, Richard; Trebi-Ollennu, Ashitey; Arvidson, Raymond E.; Chu, P. C.; Wilson, J. J.; Davis, K. R.

    2009-01-01

    The Phoenix Mars Lander Robotic Arm (RA) has operated for over 150 sols since the Lander touched down on the north polar region of Mars on May 25, 2008. During its mission it has dug numerous trenches in the Martian regolith, acquired samples of Martian dry and icy soil, and delivered them to the Thermal Evolved Gas Analyzer (TEGA) and the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The RA inserted the Thermal and Electrical Conductivity Probe (TECP) into the Martian regolith and positioned it at various heights above the surface for relative humidity measurements. The RA was used to point the Robotic Arm Camera to take images of the surface, trenches, samples within the scoop, and other objects of scientific interest within its workspace. Data from the RA sensors during trenching, scraping, and trench cave-in experiments have been used to infer mechanical properties of the Martian soil. This paper describes the design and operations of the RA as a critical component of the Phoenix Mars Lander necessary to achieve the scientific goals of the mission.

  18. Argon z-pinch implosions on Phoenix

    SciTech Connect

    Fisher, A.; Peterson, G.; Nolting, E.

    1995-12-31

    Upgrades to the Phoenix front end have resulted in a three-fold increase in Argon K-shell x-ray yields. Lack of a transit time isolator between the center conductor and ground necessitated powering the gas-puff hardware with batteries and supplying control via fiber optic cables. A simple gas flow model was developed to optimize the valve/nozzle design. The gas-puff valve and nozzle were modified to produce a 250-{micro}s density rise time. This short rise-time allowed firing on the gas plateau which improved reproducibility. Front end power flow was improved by opening the MITL from 8 to 10-mm and by increasing the dog-leg at the nozzle to obstruct UV light. The highest yield shots were achieved with a 4-cm long load using a 3.5-cm mean diameter nozzle with a mean inward tilt of 13.75 degrees. X-ray pulse widths ranged between 7--15 ns and x-ray pinhole photos suggest uniform assembly on axis. Results and documentation of the Phoenix upgrades are presented.

  19. RATTLESNAKE ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Karlstrom, Thor N.V.; McColly, Robert

    1984-01-01

    There is little promise for the occurrence of mineral or energy resources in the Rattlesnake Roadless Area, Arizona, as judged from field studies. Significant concentrations of minerals within the roadless area are not indicated by geologic mapping, geochemical sampling, or aeromagnetic studies. Basalt, volcanic cinders, sand and gravel, and sandstone that may be suitable for construction materials occur in the area, but are more readily accessible outside the roadless area boundary.

  20. 78 FR 24158 - Foreign-Trade Zone (FTZ) 75-Phoenix, Arizona; Notification of Proposed Production Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... Production Activity; Orbital Sciences Corporation (Satellites and Spacecraft Launch Vehicles); Gilbert... satellites and spacecraft launch vehicles. Pursuant to 15 CFR 400.14(b), FTZ activity would be limited to the... procedures that applies to satellites and spacecraft launch vehicles (free) for the foreign status...

  1. In situ spectroradiometric quantification of ERTS data. [Prescott and Phoenix, Arizona

    NASA Technical Reports Server (NTRS)

    Yost, E. F. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Analyses of ERTS-1 photographic data were made to quantitatively relate ground reflectance measurements to photometric characteristics of the images. Digital image processing of photographic data resulted in a nomograph to correct for atmospheric effects over arid terrain. Optimum processing techniques to derive maximum geologic information from desert areas were established. Additive color techniques to provide quantitative measurements of surface water between different orbits were developed which were accepted as the standard flood mapping techniques using ERTS.

  2. Proceedings of the DOE/Industry Advanced Research and Development Sensor Working Group meeting, Phoenix, Arizona

    SciTech Connect

    Emerson, D.B.

    1987-11-13

    This document includes the minutes and presentation aids of this meeting and covers: In-Situ Combustion Control; Consistency Meter; Lignin Mass Spectrometer; NBS Consistency Meter and JPL Lignin Mass Spectrometer Testing; On-Machine Sensors to Measure Paper Mechanical Properties; Modelling, Optimization and Control of Complex Physical Systems; Real Time, Non-Contract Optical Surface Motion Monitor; and DOE/Industry Sensor Working Group Caucus Report.

  3. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, Arizona

    SciTech Connect

    none,

    2013-09-01

    This builder built fourteen homes in the Gordon Estates subdivision that achieved Challenge Home certification with HERS 38–58 on an affordable budget for homeowners. Every Mandalay home in the development also met the National Green Building Standard gold level. The Gordon Estates subdivision is also serving as a showcase of energy efficiency, and Mandalay is hosting education workshops for realtors, state and local officials, other builders, students, potential homeowners, and the public. The builder won a 2013 Housing Innovation Award in the affordable builder category.

  4. 78 FR 27951 - Foreign-Trade Zone (FTZ) 75-Phoenix, Arizona; Notification of Proposed Production Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ...(b), FTZ activity would be limited to the specific foreign-status materials and components and...; hydraulic actuators; air- turbine starters; wheel turbines; air-turbine pump systems; duct temperature...-data transducers; axles with wheel and brake assemblies; aeronautical instruments; duct...

  5. A School-Based Clinic for Elementary Schools in Phoenix, Arizona.

    ERIC Educational Resources Information Center

    Wenzel, Mark

    1996-01-01

    A hospital, school district, and pediatrician collaboration ensured all elementary students access to health care. School nurses referred students without health insurance needing health care to hospital-provided nurse practitioners for primary care. The hospital provided pharmacy, radiology, laboratory, and emergency services. The pediatrician…

  6. Phoenix: automatic science processing of ESO-VLT data

    NASA Astrophysics Data System (ADS)

    Hanuschik, Reinhard

    2014-08-01

    ESO has implemented a process to automatically create science-grade data products and offer them to the scientific community, ready for scientific analysis. This process, called 'phoenix', is built on two main concepts: 1. a certification procedure for pipelines which includes a code review and, if necessary, upgrade; and 2. a certification procedure for calibrations which are processed into master calibrations, scored and trended. These master calibrations contain all information about the intrinsic instrumental variations and instabilities inevitable for ground-based telescopes. The phoenix process then automatically processes all science data using the certified pipeline and the certified master calibrations. Phoenix currently focuses on spectroscopic data. The first phoenix project has been the processing of all science data from UVES, ESO's high-resolution Echelle spectrograph at the VLT. More than 100,000 Echelle spectra of point sources, from begin of operations (March 2000) until now, have been reduced and are available to the public from the ESO archive, http://archive.eso.org/cms/eso-data/eso-data-products.html. The phoenix process will also feed future UVES data into the archive. The second project has been X-SHOOTER slit spectroscopy which currently has more than 30,000 Echelle spectra from the UV to the infrared (up to 2.5μm). The phoenix process will be extended to other, mostly spectroscopic, instruments with certified pipelines, like FLAMES. Also, all future VLT instruments will be supported by phoenix.

  7. The 2001 Phoenix Sunrise Experiment: Vertical Mixing and Chemistry During the Morning Transition in Phoenix

    SciTech Connect

    Doran, J C.; Berkowitz, Carl M.; Coulter, Richard L.; Shaw, William J.; Spicer, Chet W.

    2003-05-01

    A field experiment was carried out in Phoenix during June 2001 to examine the role of vertical mixing on the ozone chemistry of the boundary layer during the morning transition from stable to unstable atmospheric conditions. A combination of surface instruments, instruments located on two floors of a 39-story building in downtown Phoenix, and an instrumented airplane was used to characterize the evolving chemistry in the lowest 650 m of the atmosphere. Remote sensing and in situ platforms were used to obtained detailed profiles of winds and temperatures during the early morning hours and for several hours after sunrise. The analysis presented in this paper focuses on vertical profiles of CO, ozone, and NO/NOy measured on the building and their relationship to the morning boundary layer evolution over Phoenix. Some features were found that are consistent with a simple conceptual picture of nighttime trapping of pollutants in a stable surface layer and a subsequent release the following morning. In some instances, however, evidence of significant vertical mixing was found during the early morning well before the times expected for the development of convective mixing after sunrise. A satisfactory explanation for these observations has not yet been found.

  8. Floods of October 1977 in southern Arizona and March 1978 in central Arizona

    USGS Publications Warehouse

    Aldridge, B.N.; Eychaner, J.H.

    1982-01-01

    As much as 14 inches of rain fell in southern Arizona and northern Mexico during October 6-9, 1977, and caused the highest discharge since 1892 in the Santa Cruz River at Tucson. The flood caused $15.2 million in damage along the Santa Cruz, San Pedro, and Gila Rivers. Widespread rainfall of 3 to 6 inches and 9 to 14 inches in places, during February 28 to March 3, 1978, caused the highest discharge since 1920 on the Salt River in Phoenix and resulted in three deaths. Statewide damage was $65.9 million, of which $37 million occurred in Maricopa County. Nine counties were declared disaster areas. Unusually high volumes of runoff and moderate peaks occurred on tributaries to the Salt and Verde Rivers upstream from reservoirs. Overflow from the Verde River reservoir system was the main cause of the flooding. Storage in the reservoirs reduced the peak discharge of the Salt River from a potential of about 260,000 ft super 3/s to 125,000 ft super 3/s and greatly reduced the duration of the flood. (USGS)

  9. Working End of Robotic Arm on Phoenix

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Annotated Version

    This illustration shows some of the components on and near the end of the robotic arm on NASA's Phoenix Mars Lander. Primary and secondary blades on the scoop will aid in the collection of soil samples. A powered rasp will allow the arm to sample an icy layer expected to be about as hard as concrete. The thermal and electrical conductivity probe, which is one part of the Microscopy, Electrochemistry and Conductivity Analyzer, will assess how heat and electrons move through the soil from one spike to another of a four-spike electronic fork that will be pushed into the soil at different stages of digging by the arm.

  10. Water at the Phoenix landing site

    NASA Astrophysics Data System (ADS)

    Smith, Peter Hollingsworth

    The Phoenix mission investigated patterned ground and climate in the northern arctic region of Mars for 5 months starting May 25, 2008. A shallow ice table was uncovered by the robotic arm in a nearby polygon's edge and center at depths of 5-15 cm. In late summer snowfall and frost blanket the surface at night; water ice and vapor constantly interact with the soil. Analysis reveals an alkaline Ph with CaCO 3 , aqueous minerals, and salts making up several wt% of the soil; liquid water is implicated as having been important in creating these components. In combination with the oxidant perchlorate (~1 wt%), an energy source for terrestrial microbes, and a prior epoch of higher temperatures and humidity, this region may have been a habitable zone.

  11. Thalenite from Arizona.

    USGS Publications Warehouse

    Fitzpatrick, J.; Pabst, A.

    1986-01-01

    Thalenite occurs as a minor constituent of a single small pegmatite within an extensive area of granite a few miles S of Kingman, Arizona. Partly crystalline and partly metamict, this thalenite has composition Y3(Si3O10)(OH), with extensive substitution of Y by REE, especially Dy, Er and Yb. Upon heating, even at moderate T, both the crystalline and the metamict thalenite are converted to a phase with a structure corresponding with that of thortveitite, Sc2Si2O7.-J.A.Z.

  12. Arizona Conserve Water Educators Guide

    ERIC Educational Resources Information Center

    Project WET Foundation, 2007

    2007-01-01

    This award-winning, 350-page, full-color book provides a thorough study of Arizona water resources from a water conservation perspective. Its background section contains maps, graphs, diagrams and photos that facilitate the teaching of 15 interactive, multi-disciplinary lessons to K-12 students. In addition, 10 Arizona case studies are highlighted…

  13. Arizona Learning Systems Business Plan.

    ERIC Educational Resources Information Center

    Arizona State Board of Directors for Community Colleges, Phoenix.

    This paper describes Arizona Learning Systems (ALS), an alliance of Arizona community colleges developed in response to a state legislative appropriation for technology assisted learning. The appointed task force was to address the needed telecommunications connectivity between community college districts, and among community college districts,…

  14. Arch construction at south end, looking east with Phoenix Iron ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Arch construction at south end, looking east with Phoenix Iron Company foundry in background. - Gay Street Bridge, Spanning French Creek at Gay Street (State Route 113), Phoenixville, Chester County, PA

  15. Telecommunications Relay Support of the Mars Phoenix Lander Mission

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Erickson, James K.; Gladden, Roy E.; Guinn, Joseph R.; Ilott, Peter A.; Jai, Benhan; Johnston, Martin D.; Kornfeld, Richard P.; Martin-Mur, Tomas J.; McSmith, Gaylon W.; Thomas, Reid C.; Varghese, Phil; Signori, Gina; Schmitz, Peter

    2010-01-01

    The Phoenix Lander, first of NASA's Mars Scout missions, arrived at the Red Planet on May 25, 2008. From the moment the lander separated from its interplanetary cruise stage shortly before entry, the spacecraft could no longer communicate directly with Earth, and was instead entirely dependent on UHF relay communications via an international network of orbiting Mars spacecraft, including NASA's 2001 Mars Odyssey (ODY) and Mars Reconnaissance Orbiter (MRO) spacecraft, as well as ESA's Mars Express (MEX) spacecraft. All three orbiters captured critical event telemetry and/or tracking data during Phoenix Entry, Descent and Landing. During the Phoenix surface mission, ODY and MRO provided command and telemetry services, far surpassing the original data return requirements. The availability of MEX as a backup relay asset enhanced the robustness of the surface relay plan. In addition to telecommunications services, Doppler tracking observables acquired on the UHF link yielded an accurate position for the Phoenix landing site.

  16. Phoenix Missile Hypersonic Testbed (PMHT): System Concept Overview

    NASA Technical Reports Server (NTRS)

    Jones, Thomas P.

    2007-01-01

    A viewgraph presentation of the Phoenix Missile Hypersonic Testbed (PMHT) is shown. The contents include: 1) Need and Goals; 2) Phoenix Missile Hypersonic Testbed; 3) PMHT Concept; 4) Development Objectives; 5) Possible Research Payloads; 6) Possible Research Program Participants; 7) PMHT Configuration; 8) AIM-54 Internal Hardware Schematic; 9) PMHT Configuration; 10) New Guidance and Armament Section Profiles; 11) Nomenclature; 12) PMHT Stack; 13) Systems Concept; 14) PMHT Preflight Activities; 15) Notional Ground Path; and 16) Sample Theoretical Trajectories.

  17. Arizona land use experiment

    NASA Technical Reports Server (NTRS)

    Winikka, C. C.; Schumann, H. H.

    1975-01-01

    Utilization of new sources of statewide remote sensing data, taken from high-altitude aircraft and from spacecraft is discussed along with incorporation of information extracted from these sources into on-going land and resources management programs in Arizona. Statewide cartographic applications of remote sensor data taken by NASA high-altitude aircraft include the development of a statewide semi-analytic control network, the production of nearly 1900 orthophotoquads (image maps) that are coincident in scale and area with the U.S. Geological Survey (USGS) 7. 5 minute topographic quadrangle map series, and satellite image maps of Arizona produced from LANDSAt multispectral scanner imagery. These cartographic products are utilized for a wide variety of experimental and operational earth resources applications. Applications of the imagery, image maps, and derived information discussed include: soils and geologic mapping projects, water resources investigations, land use inventories, environmental impact studies, highway route locations and mapping, vegetation cover mapping, wildlife habitat studies, power plant siting studies, statewide delineation of irrigation cropland, position determination of drilling sites, pictorial geographic bases for thematic mapping, and court exhibits.

  18. Ecoregions of Arizona (poster)

    USGS Publications Warehouse

    Griffith, Glenn E.; Omernik, James M.; Johnson, Colleen Burch; Turner, Dale S.

    2014-01-01

    Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources; they are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. By recognizing the spatial differences in the capacities and potentials of ecosystems, ecoregions stratify the environment by its probable response to disturbance. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The Arizona ecoregion map was compiled at a scale of 1:250,000. It revises and subdivides an earlier national ecoregion map that was originally compiled at a smaller scale. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of the spatial patterns and the composition of biotic and abiotic phenomena that affect or reflect differences in ecosystem quality and integrity. These phenomena include geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another regardless of the hierarchical level. A Roman numeral hierarchical scheme has been adopted for different levels of ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions. At level III, the continental United States contains 105 ecoregions and the conterminous United States has 85 ecoregions. Level IV is a further subdivision of level III ecoregions. Arizona contains arid deserts and canyonlands, semiarid shrub- and grass-covered plains, woodland- and shrubland-covered hills, lava fields and volcanic plateaus, forested mountains, glaciated

  19. Arizona's Youth--Arizona's Jobs. An Introduction to School-to-Work Transitions in Arizona.

    ERIC Educational Resources Information Center

    Vandegrift, Judith A.; And Others

    This report provides a formative analysis of youth demographics and employment and training issues in the state of Arizona. The report clarifies issues of workforce supply and demand--as they pertain specifically to Arizona's youth--and explores the match between work force demand and training programs. It is based on information gathered and…

  20. Atmospheric results from the Phoenix Mars Mission

    NASA Astrophysics Data System (ADS)

    Smith, Peter

    The Phoenix Mission operated in the northern plains of Mars for 5 months starting May 25, 2008 spanning solar longitudes from 78 to 143 (summer). Throughout this period a diverse set of atmospheric measurements were taken and analyzed. The data sets provide information on the diurnal temperatures at 2 m above the surface, diurnal pressure, wind vectors, cloud properties, dust devils, the boundary layer, and humidity. In addition, coordinated observations were obtained with orbital instruments from Mars Reconnaissance Orbiter, Odyssey, and Mars Express. The measurements have been compared with predictions from Global Climate Models and found to agree in most regards. Taken as a whole this represents a unique description of the summer weather in a heretofore unexplored region of Mars. The Canadian LIDAR experiment gives us the first direct measurement of the boundary layer height. The first 90 sols of the mission were conducted under dusty conditions and the height of the dust layer was determined as 4-5 km above the surface. After 90 sols, the dust dispersed and water ice clouds were seen at ever lower altitudes and the boundary layer dropped to as low as 3 km. Snowfall was observed and frost imaged on the surface. Winds swirled around the lander completing a full circle each sol; typical wind speeds were 5-10 m/s. From near surface humidity measurements, a diurnal cycle sublimates ice and adsorbed water from the surface soil as the Sun heats it forming water ice clouds at the boundary layer. As temperatures cool in the night the water is returned as snow and frost to the soil. Temperatures ranged from -30 C to -90 C, but never exceed the melting point; even though atmospheric pressures are always above the triple point, liquid water is not allowed at this time. The lack of dune forms and the presence of dust devils suggest that wind erosion is a strong force despite the constant dust fall observed on the spacecraft deck. Local dust storms are often seen by the

  1. Monitoring surface-water quality in Arizona: the fixed-station network

    USGS Publications Warehouse

    Tadayon, Saeid

    2000-01-01

    Arizona is an arid State in which economic development is influenced largely by the quantity and quality of water and the location of adequate water supplies. In 1995, surface water supplied about 58 percent of total withdrawals in Arizona. Of the total amount of surface water used in 1995, about 89 percent was for agriculture, 10 percent for public supply, and 1 percent for industrial supply (including mining and thermoelectric; Solley and others, 1998). As a result of rapid population growth in Arizona, historic agricultural lands in the Phoenix (Maricopa County) and Tucson (Pima County) areas are now being developed for residential and commercial use; thus, the amount of water used for public supply is increasing. The Clean Water Act was established by U.S. Congress (1972) in response to public concern about water-pollution control. The act defines a process by which the United States Congress and the citizens are informed of the Nation’s progress in restoring and maintaining the quality of our waters. The Arizona Department of Environmental Quality (ADEQ) is the State-designated agency for this process and, as a result, has developed a monitoring program to assess water quality in Arizona. The ADEQ is required to submit a water-quality assessment report to the United States Environmental Protection Agency (USEPA) every 2 years. The USEPA summarizes the reports from each State and submits a report to the Congress characterizing water quality in the United States. These reports serve to inform Congress and the public of the Nation’s progress toward the restoration and maintenance of water quality in the United States (Arizona Department of Environmental Quality, 1998).

  2. WHETSTONE ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Wrucke, Chester T.; McColly, Robert A.

    1984-01-01

    A mineral survey conducted has shown that areas in and adjacent to the Whetstone Roadless Area, Arizona have a substantiated resource potential for copper, lead, gold, silver, and quartz, and a probable mineral-resource potential for copper silver, lead, gold, molybdenum, tungsten, uranium, and gypsum. Copper and silver occur in a small vein deposit in the southwestern part of the roadless area. Copper, lead, silver, gold, and molybdenum are known in veins associated with a porphyry copper deposit in a reentrant near the southern border of the roadless area. Vein deposits of tungsten and uranium are possible in the northeast part of the roadless area near areas of known production of these commodities. Demonstrated resources of quartz for smelter flux extend into the roadless area from the Ricketts mine. Areas of probable potential for gypsum resources also occur within the roadless area. No potential for fossil fuel resources was identified in the study.

  3. SUPERSTITION WILDERNESS, ARIZONA.

    USGS Publications Warehouse

    Peterson, Donald W.; Jinks, Jimmie E.

    1984-01-01

    On the basis of geologic studies and mineral evaluations most of the Superstition Wilderness and adjoining areas are judged to have little promise for occurrence of mineral resources. However, two areas in an east-trending zone near the southern margin of the area, marked by spotty occurrences of mineralized rock, prospect pits, and a band of geochemical anomalies that coincides with aligned magnetic anomalies, are considered to have probable mineral-resource potential. This zone lies within about 6 mi of two productive mines in Arizona's great copper belt, and the trend of the zone is parallel to many of the significant mineralized structures of this belt. A small isolated uranium anomaly was found in the northeastern part of the wilderness, but no evidence of other energy resources, such as petroleum, coal, or geothermal, was found.

  4. Aerodynamics for the Mars Phoenix Entry Capsule

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Desai, Prasun N.; Schoenenberger, Mark

    2008-01-01

    Pre-flight aerodynamics data for the Mars Phoenix entry capsule are presented. The aerodynamic coefficients were generated as a function of total angle-of-attack and either Knudsen number, velocity, or Mach number, depending on the flight regime. The database was constructed using continuum flowfield computations and data from the Mars Exploration Rover and Viking programs. Hypersonic and supersonic static coefficients were derived from Navier-Stokes solutions on a pre-flight design trajectory. High-altitude data (free-molecular and transitional regimes) and dynamic pitch damping characteristics were taken from Mars Exploration Rover analysis and testing. Transonic static coefficients from Viking wind tunnel tests were used for capsule aerodynamics under the parachute. Static instabilities were predicted at two points along the reference trajectory and were verified by reconstructed flight data. During the hypersonic instability, the capsule was predicted to trim at angles as high as 2.5 deg with an on-axis center-of-gravity. Trim angles were predicted for off-nominal pitching moment (4.2 deg peak) and a 5 mm off-axis center-ofgravity (4.8 deg peak). Finally, hypersonic static coefficient sensitivities to atmospheric density were predicted to be within uncertainty bounds.

  5. The Phoenix search results at Parkes

    NASA Astrophysics Data System (ADS)

    Backus, Peter R.

    For 16 weeks (February to June of 1995), Project Phoenix had the exclusive use of the 64 m Parkes radio telescope in New South Wales, Australia, as well as another element of the Australian Telescope National Facility (ATNF), the 22 m Mopra telescope, 200 km to the north at Coonabarabran. With these two telescopes, we conducted a targeted search of nearly two hundred solar-type stars covering the frequency range from 1.2-3 GHz. The signal detection system described in the paper by Dreher [1]was optimized to detect narrowband signals (presumed to be transmitted by another technological civilization) originating in the vicinity of these targets. The system was sensitive to signals that were continuously present, or pulsed regularly, even if their frequencies drifted, or changed slowly in time. Many signals of precisely this nature were detected—coming from our own technology! All manner of transmitters, from microwave ovens to satellite downlinks, are rapidly making this naturally quiet portion of the electromagnetic spectrum extremely noisy. The use of the two widely separated telescopes as a pseudo-interferometer was essential to discriminate against signals of terrestrial origin. The performance of the system and the results of the observing campaign are presented in this paper, while the cooperative science observations that were undertaken with Australian PIs are described in a companion paper.

  6. Project PHOENIX SETI Observations at Parkes

    NASA Astrophysics Data System (ADS)

    Backus, P. R.

    1995-12-01

    For sixteen weeks (February to June of 1995), Project Phoenix had the exclusive use of the 64 m Parkes radio telescope in New South Wales, Australia, as well as another element of the Australian Telescope National Facility (ATNF), the 22 m Mopra telescope, 200 km to the north at Coonabarabran. With these two telescopes, we conducted a targeted search of nearly two hundred solar-type stars covering the frequency range from 1.2 to 3 GHz. The signal detection system was optimized to detect narrowband signals (presumed to be transmitted by another technological civilization) originating in the vicinity of these targets. The system was sensitive to signals that were continuously present, or pulsed regularly, even if their frequencies drifted, or changed slowly in time. Many signals of precisely this nature were detected, but all were coming from our own technology! All manner of transmitters, from microwave ovens to satellite downlinks, are rapidly making this naturally quiet portion of the electromagnetic spectrum extremely noisy. The use of the two widely separated telescopes as a pseudo-interferometer was essential to discriminate against signals of terrestrial origin. The architecture and performance of the system and the results of the observing campaign are presented in this paper.

  7. Entry, Descent, and Landing Performance of the Mars Phoenix Lander

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Prince, Jill L.; Wueen, Eric M.; Cruz, Juan R.; Grover, Myron R.

    2008-01-01

    On May 25, 2008, the Mars Phoenix Lander successfully landed on the northern arctic plains of Mars. An overview of a preliminary reconstruction analysis performed on each entry, descent, and landing phase to assess the performance of Phoenix as it descended is presented and a comparison to pre-entry predictions is provided. The landing occurred 21 km further downrange than the predicted landing location. Analysis of the flight data revealed that the primary cause of Phoenix s downrange landing was a higher trim total angle of attack during the hypersonic phase of the entry, which resulted in Phoenix flying a slightly lifting trajectory. The cause of this higher trim attitude is not known at this time. Parachute deployment was 6.4 s later than prediction. This later deployment time was within the variations expected and is consistent with a lifting trajectory. The parachute deployment and inflation process occurred as expected with no anomalies identified. The subsequent parachute descent and powered terminal landing also behaved as expected. A preliminary reconstruction of the landing day atmospheric density profile was found to be lower than the best apriori prediction, ranging from a few percent less to a maximum of 8%. A comparison of the flight reconstructed trajectory parameters shows that the actual Phoenix entry, descent, and landing was close to pre-entry predictions. This reconstruction investigation is currently ongoing and the results to date are in the process of being refined.

  8. Relationship between particulate matter and childhood asthma - basis of a future warning system for central Phoenix

    NASA Astrophysics Data System (ADS)

    Dimitrova, R.; Lurponglukana, N.; Fernando, H. J. S.; Runger, G. C.; Hyde, P.; Hedquist, B. C.; Anderson, J.; Bannister, W.; Johnson, W.

    2012-03-01

    Statistically significant correlations between increase of asthma attacks in children and elevated concentrations of particulate matter of diameter 10 microns and less (PM10) were determined for metropolitan Phoenix, Arizona. Interpolated concentrations from a five-site network provided spatial distribution of PM10 that was mapped onto census tracts with population health records. The case-crossover statistical method was applied to determine the relationship between PM10 concentration and asthma attacks. For children ages 5-17, a significant relationship was discovered between the two, while children ages 0-4 exhibited virtually no relationship. The risk of adverse health effects was expressed as a function of the change from the 25th to 75th percentiles of mean level PM10 (36 μg m-3). This increase in concentration was associated with a 12.6% (95% CI: 5.8%, 19.4%) increase in the log odds of asthma attacks among children ages 5-17. Neither gender nor other demographic variables were significant. The results are being used to develop an asthma early warning system for the study area.

  9. Relationship between particulate matter and childhood asthma - basis of a future warning system for Central Phoenix

    NASA Astrophysics Data System (ADS)

    Dimitrova, R.; Lurponglukana, N.; Fernando, H. J. S.; Runger, G. C.; Hyde, P.; Hedquist, B. C.; Anderson, J.; Bannister, W.; Johnson, W.

    2011-10-01

    Statistically significant correlations between increase of asthma attacks in children and elevated concentrations of particulate matter of diameter 10 microns and less (PM10) were determined for metropolitan Phoenix, Arizona. Interpolated concentrations from a five-site network provided spatial distribution of PM10 that was mapped onto census tracts with population health records. The case-crossover statistical method was applied to determine the relationship between PM10 concentration and asthma attacks. For children ages 5-17, a significant relationship was discovered between the two, while children ages 0-4 exhibited virtually no relationship. The risk of adverse health effects was expressed as a function of the change from the 25th to 75th percentiles of mean level PM10 (36 μg m-3). This increase in concentration was associated with a 12.6% (95% CI: 5.8%, 19.4%) increase in the log odds of asthma attacks among children ages 5-17. Neither gender nor other demographic variables were significant. The results are being used to develop an asthma early warning system for the study area.

  10. Observations of the urban land surface energy balance in a Phoenix, AZ, residential suburb

    NASA Astrophysics Data System (ADS)

    Chow, W. T.; Volo, T. J.; Vivoni, E. R.; Jenerette, D.; Ruddell, B. L.

    2012-12-01

    Direct measurements of the surface energy balance (SEB) in urban areas through micro-meteorological observation platforms are relatively uncommon, but these observations are critical for a scientific understanding the connections between urban anthropogenic activity and the Earth's local and global climate. Observations of the SEB may be applied to assess the accuracy of urban canopy models and to understand urban climate phenomena, such as the heat island and its human health, energy, and water impacts. We present initial results of local-scale (~1 km2) eddy covariance observations taken from a 23 meter tall micro-meteorological eddy-covariance flux tower sited within a typical residential suburb located in the hot semiarid city of Phoenix, Arizona. Diurnal ensemble patterns of SEB for summer (MJJ) and winter (DJF) are presented, with consideration for synoptic and regional weather conditions (e.g. cloud/non-cloud conditions, as well as the onset of the North American Monsoon), as well as several descriptive statistics (e.g. mean and variability of each flux, as well as the relative partitioning of each flux over time). Comparisons with SEB fluxes measured in other cities of similar climates will also be discussed, along with the implications of these new observations for urban climate science.

  11. Urban effects on regional climate: A case study in the Phoenix-Tucson Corridor

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Dominguez, F.; Gupta, H. V.

    2014-12-01

    Human activity in urban environments impacts climate from the local to the global scale by changing the atmospheric composition and impacting components of the water and energy cycles. Specifically land use and land cover change due to urban expansion changes the surface albedo, heat capacity, and thermal conductivity of the surface. Consequently, the energy balance in urban region is different from that of natural surfaces. In this research, we apply the coupled WRF-NOAH-UCM, which includes a detailed urban radiation scheme, to evaluate the changes in regional climate that would arise due to projected urbanization in the Phoenix-Tucson corridor, in Arizona. We use the land cover data for 2005 and projections to 2050 (for areas north to Tucson from Maricopa Association of Governments (MAG) using the Red Dot Algorithm (RDA), and for areas around Tucson and South is from SLEUTH model) with historical North American Regional Reanalysis (NARR) data as the lateral boundary condition. Result shows that temperature changes are well defined and reflect the urban heat island (UHI) effect within the areas experiencing LULCC. The heat index is also examined, the magnitude of change is similar to that of temperature change. The timing of the maximum and minimum temperature is delayed by approximately one hour. Precipitation was analyzed according to both the occurrence of rainfall and according to flow regime, however no clear evidence of changes in precipitation amount or occurrence was found due to urbanization.

  12. Floods of October 1977 in southern Arizona and March 1978 in central Arizona

    USGS Publications Warehouse

    Aldridge, Byron Neil; Eychaner, James H.

    1984-01-01

    Major floods occurred in October 1977 and March 1978 in Arizona. As much as 14 inches of rain fell during October 6-9, 1977, over the mountains of southern Arizona and northern Mexico resulting in the highest discharge since at least 1892 on the Santa Cruz River upstream from Tucson. The flood inundated areas as much as 4 miles wide, covered at least 16,000 acres of farmland, and caused $15.2 million in damage. Residential losses occurred at Nogales, Amado, Green Valley, and Sahuarita. Severe erosional damage occurred along the Santa Cruz River, Agua Fria Canyon, Potrero Creek, and many small drainages in the Sonoita Creek basin. The peak discharge in Agua Fria Canyon was the highest since before 1900. Less severe flooding occurred along the San Pedro River and the Gila River downstream from the San Pedro. Widespread rainfall of 3 to 6 inches and 9 to 14 inches in some areas in the central mountains during February 27 to March 3, 1978, caused the highest discharge since 1920 on the Salt River in Phoenix and resulted in three deaths. Flooding along the Salt and Gila Rivers and several lesser streams caused statewide damage totaling $65.9 million, of which about $37 million occurred in Maricopa County. Nine counties were declared disaster areas. During the flood of March 1978, moderate peak discharges and unusually high volumes of runoff occurred on tributaries to the Salt and Verde Rivers upstream from a system of reservoirs. Flood magnitudes were greater at the main-stem gaging stations than on the tributaries. The peak discharge into Theodore Roosevelt Lake, which was 21 percent full at the start of the flood, was about 155,000 cubic feet per second, the largest known from 1890 to 1978. The reservoirs stored large quantities of water and greatly reduced the magnitude of the flood. The peak discharge of the Salt River was 125,000 cubic feet per second below Granite Reef Dam and 122,000 cubic feet per second at Phoenix. Discharges in excess of 100,000 cubic feet per

  13. Barringer Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Barringer Crater, also known as 'Meteor Crater,' is a 1,300-meter (0.8 mile) diameter, 174-meter (570-feet) deep hole in the flat-lying desert sandstones 30 kilometers (18.6 miles) west of Winslow, Arizona. Since the 1890s geologic studies here played a leading role in developing an understanding of impact processes on the Earth, the moon and elsewhere in the solar system.

    This view was acquired by the Landsat 4 satellite on December 14, 1982. It shows the crater much as a lunar crater might appear through a telescope. Morning sun illumination is from the southeast (lower right). The prominent gully meandering across the scene is known as Canyon Diablo. It drains northward toward the Little Colorado River and eventually to the Grand Canyon. The Interstate 40 highway crosses and nearly parallels the northern edge of the scene.

    The ejecta blanket around the crater appears somewhat lighter than the surrounding terrain, perhaps in part due to its altered mineralogic content. However, foot traffic at this interesting site may have scarred and lightened the terrain too. Also, the roughened surface here catches the sunlight on the southerly slopes and protects a highly reflective patchy snow cover in shaded northerly slopes, further lightening the terrain as viewed from space on this date.

  14. 76 FR 23787 - Voluntary Termination of Foreign-Trade Subzone 75D, STMicroelectronics, Inc., Phoenix, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ..., 61 FR 1322, 01/19/ 1996); Whereas, the City of Phoenix has advised that zone procedures are no longer...., Phoenix, AZ Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as amended (19 U... issued a grant of authority to the City of Phoenix (grantee of FTZ 75) authorizing the establishment...

  15. Introduction to special section on the Phoenix Mission: Landing Site Characterization Experiments, Mission Overviews, and Expected Science

    NASA Astrophysics Data System (ADS)

    Smith, P. H.; Tamppari, L.; Arvidson, R. E.; Bass, D.; Blaney, D.; Boynton, W.; Carswell, A.; Catling, D.; Clark, B.; Duck, T.; DeJong, E.; Fisher, D.; Goetz, W.; Gunnlaugsson, P.; Hecht, M.; Hipkin, V.; Hoffman, J.; Hviid, S.; Keller, H.; Kounaves, S.; Lange, C. F.; Lemmon, M.; Madsen, M.; Malin, M.; Markiewicz, W.; Marshall, J.; McKay, C.; Mellon, M.; Michelangeli, D.; Ming, D.; Morris, R.; Renno, N.; Pike, W. T.; Staufer, U.; Stoker, C.; Taylor, P.; Whiteway, J.; Young, S.; Zent, A.

    2008-10-01

    Phoenix, the first Mars Scout mission, capitalizes on the large NASA investments in the Mars Polar Lander and the Mars Surveyor 2001 missions. On 4 August 2007, Phoenix was launched to Mars from Cape Canaveral, Florida, on a Delta 2 launch vehicle. The heritage derived from the canceled 2001 lander with a science payload inherited from MPL and 2001 instruments gives significant advantages. To manage, build, and test the spacecraft and its instruments, a partnership has been forged between the Jet Propulsion Laboratory, the University of Arizona (home institution of principal investigator P. H. Smith), and Lockheed Martin in Denver; instrument and scientific contributions from Canada and Europe have augmented the mission. The science mission focuses on providing the ground truth for the 2002 Odyssey discovery of massive ice deposits hidden under surface soils in the circumpolar regions. The science objectives, the instrument suite, and the measurements needed to meet the objectives are briefly described here with reference made to more complete instrument papers included in this special section. The choice of a landing site in the vicinity of 68°N and 233°E balances scientific value and landing safety. Phoenix will land on 25 May 2008 during a complex entry, descent, and landing sequence using pulsed thrusters as the final braking strategy. After a safe landing, twin fan-like solar panels are unfurled and provide the energy needed for the mission. Throughout the 90-sol primary mission, activities are planned on a tactical basis by the science team; their requests are passed to an uplink team of sequencing engineers for translation to spacecraft commands. Commands are transmitted each Martian morning through the Deep Space Network by way of a Mars orbiter to the spacecraft. Data are returned at the end of the Martian day by the same path. Satisfying the mission's goals requires digging and providing samples of interesting layers to three on-deck instruments. By

  16. A provider-based water planning and management model--WaterSim 4.0--for the Phoenix Metropolitan Area.

    PubMed

    Sampson, D A; Escobar, V; Tschudi, M K; Lant, T; Gober, P

    2011-10-01

    Uncertainty in future water supplies for the Phoenix Metropolitan Area (Phoenix) are exacerbated by the near certainty of increased, future water demands; water demand may increase eightfold or more by 2030 for some communities. We developed a provider-based water management and planning model for Phoenix termed WaterSim 4.0. The model combines a FORTRAN library with Microsoft C# to simulate the spatial and temporal dynamics of current and projected future water supply and demand as influenced by population demographics, climatic uncertainty, and groundwater availability. This paper describes model development and rationale. Water providers receive surface water, groundwater, or both depending on their portfolio. Runoff from two riverine systems supplies surface water to Phoenix while three alluvial layers that underlie the area provide groundwater. Water demand was estimated using two approaches. One approach used residential density, population projections, water duties, and acreage. A second approach used per capita water consumption and separate population growth estimates. Simulated estimates of initial groundwater for each provider were obtained as outputs from the Arizona Department of Water Resources (ADWR) Salt River Valley groundwater flow model (GFM). We compared simulated estimates of water storage with empirical estimates for modeled reservoirs as a test of model performance. In simulations we modified runoff by 80%-110% of the historical estimates, in 5% intervals, to examine provider-specific responses to altered surface water availability for 33 large water providers over a 25-year period (2010-2035). Two metrics were used to differentiate their response: (1) we examined groundwater reliance (GWR; that proportion of a providers' portfolio dependent upon groundwater) from the runoff sensitivity analysis, and (2) we used 100% of the historical runoff simulations to examine the cumulative groundwater withdrawals for each provider. Four groups of water

  17. The RR Lyrae variable population in the Phoenix dwarf galaxy

    SciTech Connect

    Ordoñez, Antonio J.; Sarajedini, Ata; Yang, Soung-Chul E-mail: ata@astro.ufl.edu

    2014-05-10

    We present the first detailed study of the RR Lyrae variable population in the Local Group dSph/dIrr transition galaxy, Phoenix, using previously obtained HST/WFPC2 observations of the galaxy. We utilize template light curve fitting routines to obtain best fit light curves for RR Lyrae variables in Phoenix. Our technique has identified 78 highly probable RR Lyrae stars (54 ab-type; 24 c-type) with about 40 additional candidates. We find mean periods for the two populations of (P {sub ab}) = 0.60 ± 0.03 days and (P{sub c} ) = 0.353 ± 0.002 days. We use the properties of these light curves to extract, among other things, a metallicity distribution function for ab-type RR Lyrae. Our analysis yields a mean metallicity of ([Fe/H]) = –1.68 ± 0.06 dex for the RRab stars. From the mean period and metallicity calculated from the ab-type RR Lyrae, we conclude that Phoenix is more likely of intermediate Oosterhoff type; however the morphology of the Bailey diagram for Phoenix RR Lyraes appears similar to that of an Oosterhoff type I system. Using the RRab stars, we also study the chemical enrichment law for Phoenix. We find that our metallicity distribution is reasonably well fitted by a closed-box model. The parameters of this model are compatible with the findings of Hidalgo et al., further supporting the idea that Phoenix appears to have been chemically enriched as a closed-box-like system during the early stage of its formation and evolution.

  18. Land subsidence and earth fissures in south-central and southern Arizona, USA

    NASA Astrophysics Data System (ADS)

    Conway, Brian D.

    2016-05-01

    Land subsidence due to groundwater overdraft has been an ongoing problem in south-central and southern Arizona (USA) since the 1940s. The first earth fissure attributed to excessive groundwater withdrawal was discovered in the early 1950s near Picacho. In some areas of the state, groundwater-level declines of more than 150 m have resulted in extensive land subsidence and earth fissuring. Land subsidence in excess of 5.7 m has been documented in both western metropolitan Phoenix and Eloy. The Arizona Department of Water Resources (ADWR) has been monitoring land subsidence since 2002 using interferometric synthetic aperture radar (InSAR) and since 1998 using a global navigation satellite system (GNSS). The ADWR InSAR program has identified more than 25 individual land subsidence features that cover an area of more than 7,300 km2. Using InSAR data in conjunction with groundwater-level datasets, ADWR is able to monitor land subsidence areas as well as identify areas that may require additional monitoring. One area of particular concern is the Willcox groundwater basin in southeastern Arizona, which is the focus of this paper. The area is experiencing rapid groundwater declines, as much as 32.1 m during 2005-2014 (the largest land subsidence rate in Arizona State—up to 12 cm/year), and a large number of earth fissures. The declining groundwater levels in Arizona are a challenge for both future groundwater availability and mitigating land subsidence associated with these declines. ADWR's InSAR program will continue to be a critical tool for monitoring land subsidence due to excessive groundwater withdrawal.

  19. 75 FR 67454 - First Arizona Savings, FSB, Scottsdale, Arizona; Notice of Appointment of Receiver

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Office of Thrift Supervision First Arizona Savings, FSB, Scottsdale, Arizona; Notice of Appointment of... Corporation as sole Receiver for First Arizona Savings, FSB, Scottsdale, Arizona, (OTS No. 08489) on...

  20. Libraries in Arizona: MedlinePlus

    MedlinePlus

    ... this page: https://medlineplus.gov/libraries/arizona.html Libraries in Arizona To use the sharing features on ... enable JavaScript. Cottonwood Verde Valley Medical Center Medical Library 269 South Candy Lane Cottonwood, AZ 86326 928- ...

  1. Articulation: Arizona Guidebook Can Lick Transfer "Sting."

    ERIC Educational Resources Information Center

    Lance, Robert E.

    1979-01-01

    Describes the Arizona "Course Equivalency Guide," a combined listing of courses at Arizona community colleges and universities, which enables students to evaluate whether and in what way each course is accepted for transfer at the universities.

  2. Rickettsia parkeri Rickettsiosis, Arizona, USA

    PubMed Central

    Herrick, Kristen L.; Pena, Sandra A.; Yaglom, Hayley D.; Layton, Brent J.; Moors, Amanda; Loftis, Amanda D.; Condit, Marah E.; Singleton, Joseph; Kato, Cecilia Y.; Denison, Amy M.; Ng, Dianna; Mertins, James W.

    2016-01-01

    In the United States, all previously reported cases of Rickettsia parkeri rickettsiosis have been linked to transmission by the Gulf Coast tick (Amblyomma maculatum). Here we describe 1 confirmed and 1 probable case of R. parkeri rickettsiosis acquired in a mountainous region of southern Arizona, well beyond the recognized geographic range of A. maculatum ticks. The likely vector for these 2 infections was identified as the Amblyomma triste tick, a Neotropical species only recently recognized in the United States. Identification of R. parkeri rickettsiosis in southern Arizona demonstrates a need for local ecologic and epidemiologic assessments to better understand geographic distribution and define public health risk. Education and outreach aimed at persons recreating or working in this region of southern Arizona would improve awareness and promote prevention of tickborne rickettsioses. PMID:27089251

  3. The occurrence of Naegleria fowleri in recreational waters in Arizona.

    PubMed

    Sifuentes, Laura Y; Choate, Brittany L; Gerba, Charles P; Bright, Kelly R

    2014-09-19

    Naegleria fowleri is a free-living amoeba found in waters in warmer regions that causes primary amoebic meningoencephalitis, a rare but almost universally fatal disease. The goal of this project was to assess the occurrence of N. fowleri and other thermophilic amoebae in 33 recreational surface waters across Arizona to determine if their presence could be correlated with seasonal or other environmental factors. First, 1-L grab samples were collected over two years and analyzed using polymerase chain reaction and amoebae viability. Seasonality was observed, with N. fowleri and thermophilic amoebae (20% and 30%, respectively) being detected more often in the winter and spring combined than in the summer and fall combined (7.9% and 9.5%, respectively). The spring and fall both had an average temperature of 18°C, yet had different occurrence data (18.2% versus 5.9% for N. fowleri, respectively; 27.3% versus 0% for viable amoebae, respectively). These results are in stark contrast to previous studies in which N. fowleri has been found almost exclusively during warmer months. Over the two-year study, N. fowleri was detected in six and thermophilic amoebae in eight of the 33 recreational water bodies. Five of these were lakes near Phoenix that tested positive for N. fowleri and thermophilic amoebae over multiple seasons. These lakes differed significantly (P ≤ 0.05) from the other 28 surface waters, with a lower average temperature in the spring, a higher temperature in the fall, a higher pH and turbidity in the summer, and a lower electro-conductivity in the spring. They also had lower Escherichia coli and heterotrophic bacteria levels during colder months. Future N. fowleri monitoring in Arizona should focus on these five lakes to further elucidate the factors that contribute to the low occurrence of this amoeba in the summer or which might explain why these lakes appear to be reservoirs for the organism. PMID:24967566

  4. The occurrence of Naegleria fowleri in recreational waters in Arizona.

    PubMed

    Sifuentes, Laura Y; Choate, Brittany L; Gerba, Charles P; Bright, Kelly R

    2014-09-19

    Naegleria fowleri is a free-living amoeba found in waters in warmer regions that causes primary amoebic meningoencephalitis, a rare but almost universally fatal disease. The goal of this project was to assess the occurrence of N. fowleri and other thermophilic amoebae in 33 recreational surface waters across Arizona to determine if their presence could be correlated with seasonal or other environmental factors. First, 1-L grab samples were collected over two years and analyzed using polymerase chain reaction and amoebae viability. Seasonality was observed, with N. fowleri and thermophilic amoebae (20% and 30%, respectively) being detected more often in the winter and spring combined than in the summer and fall combined (7.9% and 9.5%, respectively). The spring and fall both had an average temperature of 18°C, yet had different occurrence data (18.2% versus 5.9% for N. fowleri, respectively; 27.3% versus 0% for viable amoebae, respectively). These results are in stark contrast to previous studies in which N. fowleri has been found almost exclusively during warmer months. Over the two-year study, N. fowleri was detected in six and thermophilic amoebae in eight of the 33 recreational water bodies. Five of these were lakes near Phoenix that tested positive for N. fowleri and thermophilic amoebae over multiple seasons. These lakes differed significantly (P ≤ 0.05) from the other 28 surface waters, with a lower average temperature in the spring, a higher temperature in the fall, a higher pH and turbidity in the summer, and a lower electro-conductivity in the spring. They also had lower Escherichia coli and heterotrophic bacteria levels during colder months. Future N. fowleri monitoring in Arizona should focus on these five lakes to further elucidate the factors that contribute to the low occurrence of this amoeba in the summer or which might explain why these lakes appear to be reservoirs for the organism.

  5. University of Phoenix Says Test Scores Vindicate Its Academic Model

    ERIC Educational Resources Information Center

    Blumenstyk, Goldie

    2008-01-01

    The University of Phoenix is often derided by traditional academics for caring more about its bottom line than about academic quality, and every year, the annual report issued by its parent company focuses more on profits than student performance. This article reports that the institution that has become the largest private university in North…

  6. Genetic erosion of Phoenix dactylifera L.: Perceptible, probable or possible?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity of date palm (Phoenix dactylefera L.) encompasses genetic differences among and within species, subspecies, populations, cultivars, and individual clones in traditional oases and plantations. Components of this diversity can be estimated, throughout the tree’s ontogeny, at the phen...

  7. Giving Teens a Chance: Karl Kendall--Phoenix Public Library

    ERIC Educational Resources Information Center

    Library Journal, 2004

    2004-01-01

    Karl Kendall knows that while comic books, computers, and daily movies will grab teens' interest, what they long for most is respect. As head of Teen Central, a 4,000 square foot space on the fourth floor of Phoenix's Burton Barr Central Library, Kendall provides teens with a place where their ideas and opinions are listened to, their talents…

  8. The Flight of the Phoenix: Interpersonal Aspects of Project Management

    ERIC Educational Resources Information Center

    Huffman, Brian J.; Kilian, Claire McCarty

    2012-01-01

    Although many classroom exercises use movies to focus on management and organizational behavior issues, none of those do so in the context of project management. This article presents such an exercise using "The Flight of the Phoenix", an incredibly rich story for any management class, which provides clear examples of organizational behavior…

  9. Toni Garvey: Phoenix Public Library Librarian of the Year 2004

    ERIC Educational Resources Information Center

    Berry, John N., III

    2004-01-01

    Toni Garvey, director of the Phoenix Public Library (PPL) and LJ 2004 Librarian of the Year, has practiced her profession in a Western county jail, for the politicized board of a Southern public library, in the children's room of a university community, and through the up and down economics of a major American city. She has managed branches and…

  10. Preliminary assessment report for Florence Military Reservation, Installation 04080, Florence, Arizona. Installation Restoration Program

    SciTech Connect

    Not Available

    1993-08-01

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Arizona Army National Guard property near Florence, Arizona. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. Florence Military Reservation is a 5,655-acre site located in the southern portion of Arizona, about 65 mi southeast of Phoenix, in the county of Pinal. Florence Military Reservation includes Unit Training Equipment Site (UTES) 1, an artillery firing range, and ammunition storage. The subject of this PA is the UTES. The environmentally significant operations associated with the UTES property are (1) vehicle maintenance and refueling, (2) supply/storage of materials, and (3) the vehicle washrack.

  11. 76 FR 42156 - Arizona Disaster #AZ-00016

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... ADMINISTRATION Arizona Disaster AZ-00016 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Arizona dated 07/11... adversely affected by the disaster: Primary Counties: Cochise. Contiguous Counties: Arizona:...

  12. The Uneven Performance of Arizona's Charter Schools

    ERIC Educational Resources Information Center

    Chingos, Matthew M.; West, Martin R.

    2015-01-01

    Arizona enrolls a larger share of its students in charter schools than any other state in the country, but no comprehensive examination exists of the impact of those schools on student achievement. Using student-level data covering all Arizona students from 2006 to 2012, we find that the performance of charter schools in Arizona in improving…

  13. 76 FR 45644 - Arizona Disaster #AZ-00016

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... ADMINISTRATION Arizona Disaster AZ-00016 AGENCY: U.S. Small Business Administration. ACTION: Amendment 1. SUMMARY: This is an amendment of the Administrative declaration of disaster for the State of Arizona dated 07/11... INFORMATION: The notice of the Administrator's disaster declaration for the State of Arizona, dated...

  14. 75 FR 45680 - Arizona Disaster #AZ-00010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... ADMINISTRATION Arizona Disaster AZ-00010 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Arizona dated 07/27... adversely affected by the disaster: Primary Counties: Gila; Yavapai. Contiguous Counties: Arizona:...

  15. 75 FR 75720 - Arizona Disaster #AZ-00012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... ADMINISTRATION Arizona Disaster AZ-00012 AGENCY: U.S. Small Business Administration. ACTION: Amendment 1. SUMMARY... the State of Arizona (FEMA-1940-DR), dated 10/04/2010. Incident: Severe Storms and Flooding. Incident... Private Non-Profit organizations in the State or Arizona, dated 10/04/2010, is hereby amended to...

  16. 78 FR 57923 - Arizona Disaster #AZ-00029

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ... ADMINISTRATION Arizona Disaster AZ-00029 AGENCY: Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Arizona dated 09/13/2013... adversely affected by the disaster: Primary Counties: Yavapai. Contiguous Counties: Arizona: Coconino,...

  17. 21 CFR 808.53 - Arizona.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Arizona. 808.53 Section 808.53 Food and Drugs FOOD... EXEMPTIONS FROM FEDERAL PREEMPTION OF STATE AND LOCAL MEDICAL DEVICE REQUIREMENTS Listing of Specific State and Local Exemptions § 808.53 Arizona. The following Arizona medical device requirements are...

  18. 21 CFR 808.53 - Arizona.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Arizona. 808.53 Section 808.53 Food and Drugs FOOD... EXEMPTIONS FROM FEDERAL PREEMPTION OF STATE AND LOCAL MEDICAL DEVICE REQUIREMENTS Listing of Specific State and Local Exemptions § 808.53 Arizona. The following Arizona medical device requirements are...

  19. 21 CFR 808.53 - Arizona.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Arizona. 808.53 Section 808.53 Food and Drugs FOOD... EXEMPTIONS FROM FEDERAL PREEMPTION OF STATE AND LOCAL MEDICAL DEVICE REQUIREMENTS Listing of Specific State and Local Exemptions § 808.53 Arizona. The following Arizona medical device requirements are...

  20. 21 CFR 808.53 - Arizona.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Arizona. 808.53 Section 808.53 Food and Drugs FOOD... EXEMPTIONS FROM FEDERAL PREEMPTION OF STATE AND LOCAL MEDICAL DEVICE REQUIREMENTS Listing of Specific State and Local Exemptions § 808.53 Arizona. The following Arizona medical device requirements are...

  1. 21 CFR 808.53 - Arizona.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Arizona. 808.53 Section 808.53 Food and Drugs FOOD... EXEMPTIONS FROM FEDERAL PREEMPTION OF STATE AND LOCAL MEDICAL DEVICE REQUIREMENTS Listing of Specific State and Local Exemptions § 808.53 Arizona. The following Arizona medical device requirements are...

  2. Phoenix Water Vapor Measurements using the SSI Camera

    NASA Astrophysics Data System (ADS)

    Tamppari, Leslie; Lemmon, Mark T.

    2016-10-01

    The Phoenix and Mars Reconnaissance Orbiter (MRO) spacecraft participated together in an observation campaign that was a coordinated effort to study the Martian atmosphere. These coordinated observations were designed to provide near-simultaneous observations of the same column of atmosphere over the Phoenix lander. Seasonal coverage was obtained at Ls=5-10° resolution and diurnal coverage was obtained as often as possible and with as many times of day as possible. One key aspect of this observation set was the means to compare the amount of water measured in the whole column (via the MRO Compact Reconnaissance Imaging Spectrometer for Mars (CRISM; Murchie et al., 2007) and the Phoenix Surface Stereo Imager (SSI) with that measured at the surface (via the Phoenix Thermal and Electrical Conductivity probe (TECP; Zent et al., 2008) which contained a humidity sensor). This comparison, along with the Phoenix LIDAR observations of the depth to which aerosols are mixed (Whiteway et al., 2008, 2009), provides clues to the water vapor mixing ratio profile. Tamppari et al. (2009) showed that examination of a subset of these coordinated observations indicate that the water vapor is not well mixed in the atmosphere up to a cloud condensation height at the Phoenix location during northern summer, and results indicated that a large amount of water must be confined to the lowest 0.5-1 km. This is contrary to the typical assumption that water vapor is "well-mixed."Following a similar approach to Titov et al. (2000), we use the Phoenix SSI camera [Lemmon et al., 2008] filters to detect water vapor: LA = 930.7 nm (broad), R4 = 935.5 nm (narrow), and R5 = 935.7 nm (narrow). We developed a hybrid DISORT-spherical model (DISORT model, Stamnes et al. 1988) to model the expected absorption due to a prescribed water vapor content and profile, to search for matches to the observations. Improvements to the model have been made and recent analysis using this model and comparisons to

  3. RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Kos, Larry; Bruno, Cy

    2012-01-01

    The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the decommissioned United States Air Force Peacekeeper ICBM program; specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC is working closely with the USAF to obtain all the remaining RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single

  4. RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Kos, Larry; Burnside, Christopher G.; Bruno, Cy

    2013-01-01

    The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper ICBM program, specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. MSFC is working closely with the USAF to obtain RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. As originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single boost. For both the small

  5. AZ State Profile. Arizona: Arizona's Instrument to Measure Standards (AIMS)

    ERIC Educational Resources Information Center

    Center on Education Policy, 2010

    2010-01-01

    This paper provides information about the Arizona's Instrument to Measure Standards (AIMS). The purpose of the test is to determine prospective high school graduates' mastery of the state curriculum and to meet a state mandate. [For the main report, "State High School Tests: Exit Exams and Other Assessments", see ED514155.

  6. The Effect of Arizona Language Policies on Arizona Indigenous Students

    ERIC Educational Resources Information Center

    Combs, Mary Carol; Nicholas, Sheilah E.

    2012-01-01

    This article discusses the effect of Arizona's language policies on school districts serving Native American students. Although these policies were designed to restrict the access of Spanish-speaking immigrant and citizen students to bilingual education programs, their reach has extended into schools and school districts serving Native Americans.…

  7. Northern Arizona Volcanoes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Northern Arizona is best known for the Grand Canyon. Less widely known are the hundreds of geologically young volcanoes, at least one of which buried the homes of local residents. San Francisco Mtn., a truncated stratovolcano at 3887 meters, was once a much taller structure (about 4900 meters) before it exploded some 400,000 years ago a la Mt. St. Helens. The young cinder cone field to its east includes Sunset Crater, that erupted in 1064 and buried Native American homes. This ASTER perspective was created by draping ASTER image data over topographic data from the U.S. Geological Survey National Elevation Data.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 20.4 by 24.6 kilometers (12.6 by 15.2 miles) Location: 35.3 degrees North latitude, 111

  8. Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA.

    PubMed

    Jenerette, G Darrel; Harlan, Sharon L; Stefanov, William L; Martin, Chris A

    2011-10-01

    Urban ecosystems are subjected to high temperatures--extreme heat events, chronically hot weather, or both-through interactions between local and global climate processes. Urban vegetation may provide a cooling ecosystem service, although many knowledge gaps exist in the biophysical and social dynamics of using this service to reduce climate extremes. To better understand patterns of urban vegetated cooling, the potential water requirements to supply these services, and differential access to these services between residential neighborhoods, we evaluated three decades (1970-2000) of land surface characteristics and residential segregation by income in the Phoenix, Arizona, USA metropolitan region. We developed an ecosystem service trade-offs approach to assess the urban heat riskscape, defined as the spatial variation in risk exposure and potential human vulnerability to extreme heat. In this region, vegetation provided nearly a 25 degrees C surface cooling compared to bare soil on low-humidity summer days; the magnitude of this service was strongly coupled to air temperature and vapor pressure deficits. To estimate the water loss associated with land-surface cooling, we applied a surface energy balance model. Our initial estimates suggest 2.7 mm/d of water may be used in supplying cooling ecosystem services in the Phoenix region on a summer day. The availability and corresponding resource use requirements of these ecosystem services had a strongly positive relationship with neighborhood income in the year 2000. However, economic stratification in access to services is a recent development: no vegetation-income relationship was observed in 1970, and a clear trend of increasing correlation was evident through 2000. To alleviate neighborhood inequality in risks from extreme heat through increased vegetation and evaporative cooling, large increases in regional water use would be required. Together, these results suggest the need for a systems evaluation of the

  9. Arizona Charter School Progress Evaluation.

    ERIC Educational Resources Information Center

    Mulholland, Lori A.

    This report describes an evaluation of charter schools in Arizona. Eighty-two charter schools representing the 137 charter-school holders in the state participated in the study. The schools were selected to be representative of all state charter schools with regard to location, population density, grade level, and sponsoring agency. A total of 303…

  10. Arizona Academic Standards, Grade 8

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This publication contains the updated academic standards of Arizona for Grade 8. The contents of this document include the following: (1) The Arts Standard 2006--Grade 8; (2) Comprehensive Health Education/Physical Activity Standards 1997--Essentials (Grades 4-8); (3) Foreign and Native Language Standards 1997--Essentials (Grades 4-8); (4) Reading…

  11. Arizona Academic Standards: Grade 4

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This publication contains Arizona public schools' academic standards for grade 4. The contents of this document include the following: (1) The Arts Standard 2006--Grade 4; (2) Comprehensive Health Education/Physical Activity Standards 1997--Essentials (Grades 4-8); (3) Foreign and Native Language Standards 1997--Essentials (Grades 4-8); (4)…

  12. Arizona Academic Standards: Grade 7

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This document contains the Arizona academic standards for Grade 7. The following 11 standards are reviewed: (1) The Arts Standard 2006 --Grade 7; (2) Comprehensive Health Education/Physical Activity Standards 1997--Essentials (Grades 4-8); (3) Foreign and Native Language Standards 1997--Essentials (Grades 4-8); (4) Reading Standard Articulated by…

  13. Arizona Academic Standards, High School

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This publication contains Arizona public schools' updated academic standards for high school. The contents of this document contain: (1) The Arts Standard 2006--High School; (2) Comprehensive Health Education/Physical Activity Standards 1997--Proficiency and Distinction (Grades 9-12); (3) Foreign and Native Language Standards 1997--Proficiency and…

  14. Arizona Academic Standards, Grade 5

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This publication contains an updated academic standards of Arizona public schools for grade 5. The contents of this document include the following: (1) The Arts Standard 2006--Grade 5; (2) Comprehensive Health Education/Physical Activity Standards 1997--Essentials (Grades 4-8); (3) Foreign and Native Language Standards 1997--Foundations (Grades…

  15. Arizona Academic Standards, Grade 2

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This publication contains Arizona public schools' academic standards for grade 2. The contents of this document include the following: (1) The Arts Standard 2006--Grade 2; (2) Comprehensive Health Education/Physical Activity Standards 1997--Foundations (Grades 1-3); (3) Foreign and Native Language Standards 1997--Foundations (Grades 1-3); (4)…

  16. Arizona Academic Standards, Grade 6

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This publication contains an updated academic standards of Arizona public schools for grade 6. The contents of this document include the following: (1) The Arts Standard 2006--Grade 6; (2) Comprehensive Health Education/Physical Activity Standards 1997--Essentials (Grades 4-8); (3) Foreign and Native Language Standards 1997--Essentials (Grades…

  17. Arizona Academic Standards, Grade 1

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This publication contains Arizona public schools' academic standards for Grade 1. The contents of this document include the following: (1) The Arts Standard 2006--Grade 1; (2) Comprehensive Health Education/Physical Activity Standards 1997--Foundations (Grades 1-3); (3) Foreign and Native Language Standards 1997--Foundations (Grades 1-3); (4)…

  18. Arizona Academic Standards, Grade 3

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This publication contains Arizona public schools' academic standards for grade 3. The contents of this document include the following: (1) The Arts Standard 2006--Grade 3; (2) Comprehensive Health Education/Physical Activity Standards 1997--Foundations (Grades 1-3); (3) Foreign and Native Language Standards 1997--Foundations (Grades 1-3); (4)…

  19. Assessment of selected inorganic constituents in streams in the Central Arizona Basins Study Area, Arizona and northern Mexico, through 1998

    USGS Publications Warehouse

    Anning, David W.

    2003-01-01

    streamflow, season, water management, stream permanence, and land and water use. Dissolved-oxygen percent saturation, pH, and nutrient concentrations were dependent on stream regulation, stream permanence, and upstream disposal of wastewater. Seasonality and correlation with streamflow were dependant on stream regulation, stream permanence, and upstream disposal of wastewater. Temporal trends in streamflow, stream properties, and water-chemistry constituent concentrations were common in streams in the Central Arizona Basins study area. Temporal trends in the streamflow of unregulated perennial reaches in the Central Highlands tended to be higher from 1900 through the 1930s, lower from the 1940s through the 1970s, and high again after the 1970s. This is similar to the pattern observed for the mean annual precipitation for the Southwestern United States and indicates long-term trends in flow of streams draining the Central Highlands were driven by long-term trends in climate. Streamflow increased over the period of record at stations on effluent-dependent reaches as a result of the increase in the urban population and associated wastewater returns to the Salt and Gila Rivers in the Phoenix metropolitan area and the Santa Cruz River in the Tucson metropolitan area. Concentrations of dissolved solids decreased in the Salt River below Stewart Mountain Dam and in the Verde River below Bartlett Dam. This decrease represents an improvement in the water quality and resulted from a concurrent increase in the amount of runoff entering the reservoirs. Stream loads of water-chemistry constituents were compared at different locations along the streams with one another, and stream loads were compared to upstream inputs of the constituent from natural and anthropogenic sources to determine the relative importance of different sources and to determine the fate of the water-chemistry constituent. Of the dissolved solids transported into the Basin and Range Lowlands each year

  20. Remote Sensing of Arizona Monsoons: Application of GOES Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Carter, S.; Christensen, P. R.; Cerveny, R. S.

    2013-12-01

    Large, violent thunder and dust storms occur in the Phoenix area during monsoon season. Currently, the best ways to predict these dangerous and potentially damaging storms are not very accurate. The primary goal of this investigation is to attempt to develop a new technique to identify and predict these storms before they reach Phoenix. In order to address this question, two data sets (remote sensing satellite imagery and ground-based weather information) will be analyzed and compared against one another using time as a corresponding variable. The goal is to discern any correlations between data sets which be used as an indicator of imminent large monsoons. The moisture needed for the storms is carried to Arizona by events known as gulf surges (from the California Gulf); these will be the target of investigation. These chutes of moisture surge through Arizona, primarily up through Yuma in a northeasterly direction towards central/south central Arizona. The main goal is to identify if satellite imagery can be used as an accurate identifier of moisture movements preceding a storm in areas where ground measurements are not available. Presently, ground measurements of dew points are the primary technique by which these moisture surges are identified. However, while these measurements do have a fairly high temporal resolution (once an hour) they cover an awfully poor spacial range. Furthermore, it is suspected that because of interference to the instruments, the ground point data may not be as accurate as is preferred. On the other hand, satellite imagery such as GOES - the instrument used in this investigation - has both a remarkably high temporal resolution and spacial coverage. If a correlation can be demonstrated, then the high temporal resolution of the remote sensing data could be used as an identifier of oncoming monsoon storms. In order to proceed in this research, a software package known as Java Mission-planning and Analysis for Remote Sensing (JMARS) for

  1. Ground-water conditions in McMullen valley, Maricopa, Yuma and Yavapai Counties, Arizona

    USGS Publications Warehouse

    Briggs, P.C.

    1969-01-01

    McMullen Valley is in western Arizona about 80 miles northwest of Phoenix (fig. 1). The valley, which is about 48 miles long and 15 miles wide, is bordered on the south by the Harquahala and Little Harquahala Mountains, on the north by the Harcuvar Mountains, and on the west by the Granite Wash Mountains. The major stream in the area is Centennial Wash, an ephemeral tributary of the Gila River; the wash leaves McMullen Valley through Harrisburg Valley at the southwest edge of the area. The groundwater reservoir is the only dependable source of water in McMullen Valley (fig. 1). and it is important that this supply be managed properly in order to obtain the maximum benefit. Therefore, a comprehensive knowledge of all the factors that affect the ground-water reservoir is necessary.

  2. Hydrologic applications of ERTS-1 data collection system in central Arizona

    NASA Technical Reports Server (NTRS)

    Schumann, H. H.

    1974-01-01

    The Earth Resources Technology Satellite (ERTS-1) Data Collection System (DCS) was used to relay hydrologic data (streamflow rates, precipitation amounts, soil and air temperature, and snow-moisture content) from remote sites in central Arizona to those responsible for reservoir management. The ERTS-DCS was utilized to furnish near-real time information on snow-moisture content and streamflow rates to the Salt River Project for use in the management and operation of reservoirs on the Salt and Verde Rivers. The Salt River Project, aided by near-real time hydrologic data furnished by both microwave and ERTS-telemetry, was successful in predicting the volume of runoff into the reservoirs. Serious flooding in the downstream Phoenix metropolitan area was prevented by prudent water management.

  3. Arizona Study of Aging and Neurodegenerative Disorders and Brain and Body Donation Program

    PubMed Central

    Beach, Thomas G.; Adler, Charles H.; Sue, Lucia I.; Serrano, Geidy; Shill, Holly A.; Walker, Douglas G.; Lue, LihFen; Roher, Alex E.; Dugger, Brittany N.; Maarouf, Chera; Birdsill, Alex C.; Intorcia, Anthony; Saxon-Labelle, Megan; Pullen, Joel; Scroggins, Alexander; Filon, Jessica; Scott, Sarah; Hoffman, Brittany; Garcia, Angelica; Caviness, John N.; Hentz, Joseph G.; Driver-Dunckley, Erika; Jacobson, Sandra A.; Davis, Kathryn J.; Belden, Christine M.; Long, Kathy E.; Malek-Ahmadi, Michael; Powell, Jessica J.; Gale, Lisa D.; Nicholson, Lisa R.; Caselli, Richard J.; Woodruff, Bryan K.; Rapscak, Steven Z.; Ahern, Geoffrey L.; Shi, Jiong; Burke, Anna D.; Reiman, Eric M.; Sabbagh, Marwan N.

    2015-01-01

    The Brain and Body Donation Program (BBDP) at Banner Sun Health Research Institute (http://www.brainandbodydonationprogram.org) started in 1987 with brain-only donations and currently has banked more than 1600 brains. More than 430 whole-body donations have been received since this service was commenced in 2005. The collective academic output of the BBDP is now described as the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND). Most BBDP subjects are enrolled as cognitively normal volunteers residing in the retirement communities of metropolitan Phoenix, Arizona. Specific recruitment efforts are also directed at subjects with Alzheimer’s disease, Parkinson’s disease and cancer. The median age at death is 82. Subjects receive standardized general medical, neurological, neuropsychological and movement disorders assessments during life and more than 90% receive full pathological examinations by medically licensed pathologists after death. The Program has been funded through a combination of internal, federal and state of Arizona grants as well as user fees and pharmaceutical industry collaborations. Subsets of the Program are utilized by the US National Institute on Aging Arizona Alzheimer’s Disease Core Center and the US National Institute of Neurological Disorders and Stroke National Brain and Tissue Resource for Parkinson’s Disease and Related Disorders. Substantial funding has also been received from the Michael J. Fox Foundation for Parkinson’s Research. The Program has made rapid autopsy a priority, with a 3.0-hour median postmortem interval for the entire collection. The median RNA Integrity Number (RIN) for frozen brain and body tissue is 8.9 and 7.4, respectively. More than 2500 tissue requests have been served and currently about 200 are served annually. These requests have been made by more than 400 investigators located in 32 US states and 15 countries. Tissue from the BBDP has contributed to more than 350 publications and more than

  4. Arizona Study of Aging and Neurodegenerative Disorders and Brain and Body Donation Program.

    PubMed

    Beach, Thomas G; Adler, Charles H; Sue, Lucia I; Serrano, Geidy; Shill, Holly A; Walker, Douglas G; Lue, LihFen; Roher, Alex E; Dugger, Brittany N; Maarouf, Chera; Birdsill, Alex C; Intorcia, Anthony; Saxon-Labelle, Megan; Pullen, Joel; Scroggins, Alexander; Filon, Jessica; Scott, Sarah; Hoffman, Brittany; Garcia, Angelica; Caviness, John N; Hentz, Joseph G; Driver-Dunckley, Erika; Jacobson, Sandra A; Davis, Kathryn J; Belden, Christine M; Long, Kathy E; Malek-Ahmadi, Michael; Powell, Jessica J; Gale, Lisa D; Nicholson, Lisa R; Caselli, Richard J; Woodruff, Bryan K; Rapscak, Steven Z; Ahern, Geoffrey L; Shi, Jiong; Burke, Anna D; Reiman, Eric M; Sabbagh, Marwan N

    2015-08-01

    The Brain and Body Donation Program (BBDP) at Banner Sun Health Research Institute (http://www.brainandbodydonationprogram.org) started in 1987 with brain-only donations and currently has banked more than 1600 brains. More than 430 whole-body donations have been received since this service was commenced in 2005. The collective academic output of the BBDP is now described as the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND). Most BBDP subjects are enrolled as cognitively normal volunteers residing in the retirement communities of metropolitan Phoenix, Arizona. Specific recruitment efforts are also directed at subjects with Alzheimer's disease, Parkinson's disease and cancer. The median age at death is 82. Subjects receive standardized general medical, neurological, neuropsychological and movement disorders assessments during life and more than 90% receive full pathological examinations by medically licensed pathologists after death. The Program has been funded through a combination of internal, federal and state of Arizona grants as well as user fees and pharmaceutical industry collaborations. Subsets of the Program are utilized by the US National Institute on Aging Arizona Alzheimer's Disease Core Center and the US National Institute of Neurological Disorders and Stroke National Brain and Tissue Resource for Parkinson's Disease and Related Disorders. Substantial funding has also been received from the Michael J. Fox Foundation for Parkinson's Research. The Program has made rapid autopsy a priority, with a 3.0-hour median post-mortem interval for the entire collection. The median RNA Integrity Number (RIN) for frozen brain and body tissue is 8.9 and 7.4, respectively. More than 2500 tissue requests have been served and currently about 200 are served annually. These requests have been made by more than 400 investigators located in 32 US states and 15 countries. Tissue from the BBDP has contributed to more than 350 publications and more than 200

  5. Phoenix: Preliminary design of a high speed civil transport

    NASA Technical Reports Server (NTRS)

    Aguilar, Joseph; Davis, Steven; Jett, Brian; Ringo, Leslie; Stob, John; Wood, Bill

    1992-01-01

    The goal of the Phoenix Design Project was to develop a second generation high speed civil transport (HSCT) that will meet the needs of the traveler and airline industry beginning in the 21st century. The primary emphasis of the HSCT is to take advantage of the growing needs of the Pacific Basin and the passengers who are involved in that growth. A passenger load of 150 persons, a mission range of 5150 nautical miles, and a cruise speed of Mach 2.5 constitutes the primary design points of this HSCT. The design concept is made possible with the use of a well designed double delta wing and four mixed flow engines. Passenger comfort, compatibility with existing airport infrastructure, and cost competitive with current subsonic aircraft make the Phoenix a viable aircraft for the future.

  6. Sediment transport in the nearshore area of Phoenix Island

    NASA Astrophysics Data System (ADS)

    Hu, Rijun; Ma, Fang; Wu, Jianzheng; Zhang, Wei; Jiang, Shenghui; Xu, Yongchen; Zhu, Longhai; Wang, Nan; Liu, Aijiang

    2016-10-01

    Based on the measured data, suspended sediment concentration, surface sediment grain size, current and waves, the sediment transport mechanisms and pathways in the Phoenix Island area were analyzed using methods of flux decomposition and Grain Size Trend Analysis (GSTA). The results show that net suspended sediment is mainly transported by average current, Stokes drift, and gravitational circulation. The transport direction of suspended sediment is varying and basically following the direction of residual tidal currents. Surface sediment transport pathways are primarily parallel to the coastline along with two convergent centers. Waves and longshore currents have a significant influence on sediment transport, but the influence is limited due to a steep and deep underwater bank. Tidal current is the main controlling factor for sediment transport, especially in the deep water area. Neither suspended nor surface sediment is transported towards the southwest. The South Shandong Coastal Current (SSCC) has little effect on sediment transport processes in the nearshore area of Phoenix Island.

  7. Environmental Assurance Program for the Phoenix Mars Mission

    NASA Technical Reports Server (NTRS)

    Man, Kin F.; Natour, Maher C.; Hoffman, Alan R.

    2008-01-01

    The Phoenix Mars mission involves delivering a stationary science lander on to the surface of Mars in the polar region within the latitude band 65 deg N to 72 deg N. Its primary objective is to perform in-situ and remote sensing investigations that will characterize the chemistry of the materials at the local surface, subsurface, and atmosphere. The Phoenix spacecraft was launched on August 4, 2007 and will arrive at Mars in May 2008. The lander includes a suite of seven (7) science instruments. This mission is baselined for up to 90 sols (Martian days) of digging, sampling, and analysis. Operating at the Mars polar region creates a challenging environment for the Phoenix landed subsystems and instruments with Mars surface temperature extremes between -120 deg C to 25 deg C and diurnal thermal cycling in excess of 145 deg C. Some engineering and science hardware inside the lander were qualification tested up to 80 deg C to account for self heating. Furthermore, many of the hardware for this mission were inherited from earlier missions: the lander from the Mars Surveyor Program 2001 (MSP'01) and instruments from the MSP'01 and the Mars Polar Lander. Ensuring all the hardware was properly qualified and flight acceptance tested to meet the environments for this mission required defining and implementing an environmental assurance program that included a detailed heritage review coupled with tailored flight acceptance testing. A heritage review process with defined acceptance success criteria was developed and is presented in this paper together with the lessons learned in its implementation. This paper also provides a detailed description of the environmental assurance program of the Phoenix Mars mission. This program includes assembly/subsystem and system level testing in the areas of dynamics, thermal, and electromagnetic compatibility, as well as venting/pressure, dust, radiation, and meteoroid analyses to meet the challenging environment of this mission.

  8. Bringing the Universe to the Valley of the Sun: Astronomy Outreach at Arizona State University

    NASA Astrophysics Data System (ADS)

    Ashcraft, Teresa; Knierman, K. A.; Taylor, W. L.; Rutkowski, M. J.

    2012-01-01

    The focal point of astronomy outreach at ASU is Astronomy Open House, which has run for more than 3 decades. It is a free event for the local community and provides an opportunity for night sky viewings with telescopes, interactions with scientist, and discussion of contemporary topics. Typically each Open House will also offer a planetarium show, activities for kids, and displays on meteorites, the Moon, and geology. During the 2010-2011 academic year approximately 900 people attended the 6 Open Houses. This was a record attendance and was in part due to targeted advertisement to K-12 student groups. To accommodate this growth we recruited additional undergraduate student volunteers, including those from both science and non-science academic backgrounds. We present here a summary of traditional Open House activities and new partnerships developed as a result of the increased volunteer pool. Through Open House we were able to partner with other programs at ASU and in the Phoenix area and the expanded community presence developed into new events at local schools and museums (e.g., Arizona Science Center, Phoenix Zoo). Additionally, in conjunction with the International Year of Astronomy, we hosted two events for local, traditionally under-served students in which the students learned about Galileo and built their own Galileoscopes for free. In June 2011, we visited the Tsaile Public School on the Navajo Reservation to present a series of hands-on astronomy activities including a guided program inside a portable STARLAB planetarium to over 60 Navajo students. T. Ashcraft is supported by an Arizona NASA Space Grant Fellowship. Open House is partially supported by ASU USG. Funding for Galileoscopes provided by ASU GPSA. NASA Summer of Innovation program supports events in Tsaile, AZ.

  9. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Comparison of 9 x 9 MSS band images and color composites made from bands 4, 5, and 6 showing vegetated areas near Phoenix during the summer, fall, and winter seasons aided in definitely establishing that certain land areas were being used as agricultural land and not as rangeland. Agricultural land, which appeared to be fallow, idle, or not irrigated, often became more readily identifiable as agricultural land when comparing different images of identical land areas which have been affected by seasonal vegetation changes. Experimentation with the Bausch and Lomb Zoom Transferscope using MSS images of identical areas in the same spectral band from different time periods, with a quick flip method of alternately viewing the frame areas, enabled rapid detection of a major land use change from agricultural to urban use on the northwest fringe of the metropolitan Phoenix area. The best results in this case were obtained when comparing MSS band 5 images. Examination of MSS transparencies and color composites allowed further updating of a map of land use change in the Phoenix Quadrangle.

  10. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Comparison of 9 x 9 MSS band images and color composites made from bands 4, 5, and 6 showing vegetated areas near Phoenix during the summer and fall seasons aided in definitely establishing that certain land areas were being used as agricultural land and not as rangeland. Agricultural land, which appeared to be fallow, idle, or not irrigated, often became more readily identifiable as agricultural land when comparing different images of identical land areas which have been affected by seasonal vegetation changes. Experimentation with color density slicing portions of 9 x 9 MSS band 7 transparency showing the central urban core of phoenix enabled dense commercial and industrial areas to be separated from less dense urbanized land uses; however, loss of resolution produced results of limited usefulness. The best results in agricultural areas near Sun City were obtained using MSS band 5 imagery. Discrimination of different land uses in both urban and agricultural areas which were color density sliced was not possible to the degree of accuracy necessary to make mapping feasible. Examination of MSS transparencies and color composites allowed updating of a map of land use change in the Phoenix Quadrangle.

  11. Initial CRISM Observations of the Candidate 2007 Phoenix Landing Sites

    NASA Astrophysics Data System (ADS)

    Seelos, K. D.; Murchie, S.; Arvidson, R. E.; Seelos, F. P.

    2006-12-01

    The Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) will acquire multispectral and targeted hyperspectral visible and near infrared data of the candidate Phoenix landing sites during the first few months of primary mission operations (beginning early November). Three 150 x 75 km candidate Phoenix landing sites are located in the high northern plains of Mars within a region from 65-72° N and 120-140° E. Geomorphologic characterization of this region indicates a relatively homogeneous terrain primarily composed of multiple kilometer-scale polygonal plains with superposed degraded craters. At decameter spatial scales, the area is ubiquitously covered by patterned ground in the form of basketball terrain, stripes, and small polygons. Spectral variation of these different types of landforms and materials that are detected by CRISM at 100- or 200-meter scales (multispectral) or ~20-meter scales (targeted hyperspectral) will be analyzed and initial results presented. Implications for Phoenix landing site selection and in situ measurements will also be discussed. CRISM observations along with other MRO data will be critical to the selection of the final landing site prior to launch in August of 2007.

  12. UHF Relay Antenna Measurements on Phoenix Mars Lander Mockup

    NASA Technical Reports Server (NTRS)

    Ilott, Peter; Harrel, Jefferson; Arnold, Bradford; Bliznyuk, Natalia; Nielsen, Rick; Dawson, David; McGee, Jodi

    2006-01-01

    The Phoenix Lander, a NASA Discovery mission which lands on Mars in the spring of 2008, will rely entirely on UHF relay links between it and Mars orbiting assets, (Odyssey and Mars Reconnaissance Orbiter (MRO)), to communicate with the Earth. As with the Mars Exploration Rover (MER) relay system, non directional antennas will be used to provide roughly emispherical coverage of the Martian sky. Phoenix lander deck object pattern interference and obscuration are significant, and needed to be quantified to answer system level design and operations questions. This paper describes the measurement campaign carried out at the SPAWAR (Space and Naval Warfare Research) Systems Center San Diego (SSC-SD) hemispherical antenna range, using a Phoenix deck mockup and engineering model antennas. One goal of the measurements was to evaluate two analysis tools, the time domain CST, and the moment method WIPL-D software packages. These would subsequently be used to provide pattern analysis for configurations that would be difficult and expensive to model and test on Earth.

  13. Geothermal resource data base: Arizona

    SciTech Connect

    Witcher, J.C.

    1995-09-01

    This report provides a compilation of geothermal well and spring information in Arizona up to 1993. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low-Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction. In recent years, the primary growth in geothermal use in Arizona has occurred in aquaculture. Other uses include minor space heating and supply of warm mineral waters for health spas.

  14. SYCAMORE CANYON PRIMITIVE AREA, ARIZONA.

    USGS Publications Warehouse

    Huff, Lyman C.; Raabe, R.C.

    1984-01-01

    The Sycamore Canyon Primitive Area, which occupies about 74 sq mi, lies about 24 mi southwest of Flagstaff, Arizona. To help evaluate the area for mineral resources, sediment samples were collected along Sycamore Creek and its tributaries. These were analyzed for traces of the ore metals without finding any local concentrations. In addition, a scintillometer was used to test rocks in the area without finding any abnormal radioactivity.

  15. WET BEAVER ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Ulrich, George E.; Bielski, Alan M.

    1984-01-01

    On the basis of field studies there is little promise for the occurrence of mineral or energy resources in the Wet Beaver Roadless Area, Arizona. No significant concentrations of metals were indicated by geochemical sampling or aeromagnetic data within the area. Basaltic cinders and sandstone have been quarried for construction materials near the area but are readily available and more accessible outside the precipitous canyons of Wet Beaver Creek and its tributaries.

  16. ON THE EXTENDED STRUCTURE OF THE PHOENIX DWARF GALAXY

    SciTech Connect

    Hidalgo, Sebastian L.; Aparicio, Antonio; MartInez-Delgado, David; Gallart, Carme E-mail: antapaj@iac.e E-mail: carme@iac.e

    2009-11-01

    We present the star formation history (SFH) and its variations with galactocentric distance for the Local Group dwarf galaxy of Phoenix. They have been derived from a (F555W, F814W) color-magnitude diagram obtained from WFPC2-HST data, which reaches the oldest main-sequence turnoffs. The IAC-star and IAC-pop codes and the MinnIAC suite have been used to obtain the star formation rate as a function of time and metallicity, psi(t, z). We find that Phoenix has had ongoing but gradually decreasing star formation over nearly a Hubble time. The highest level of star formation occurred from the formation of the galaxy till 10.5 Gyr ago, when 50% of the total star formation had already taken place. From that moment, star formation continues at a significant level until 6 Gyr ago (an additional 35% of the stars are formed in this time interval), and at a very low level till the present time. The chemical enrichment law shows a trend of slowly increasing metallicity as a function of time until 6-8 Gyr ago, when metallicity starts to increase steeply to the current value. We have paid particular attention to the study of the variations of the SFH as a function of radius. Young stars are found in the inner region of the galaxy only, but intermediate-age and old stars can be found at all galactocentric distances. The distribution of mass density in alive stars and its evolution with time has been studied. This study shows that star formation started at all galactocentric distances in Phoenix at an early epoch. If stars form in situ in Phoenix, the star formation onset took place all over the galaxy (up to a distance of about 400 pc from the center), but preferentially out of center regions. After that, our results are compatible with a scenario in which the star formation region envelope slowly shrinks as time goes on, possibly as a natural result of pressure support reduction as gas supply diminishes. As a consequence, the star formation stopped first (about 7-8 Gyr ago) in

  17. Water-quality assessment of the Central Arizona Basins, Arizona and northern Mexico; environmental setting and overview of water quality

    USGS Publications Warehouse

    Cordy, Gail E.; Rees, Julie A.; Edmonds, Robert J.; Gebler, Joseph B.; Wirt, Laurie; Gellenbeck, Dorinda J.; Anning, David W.

    1998-01-01

    The Central Arizona Basins study area in central and southern Arizona and northern Mexico is one of 60 study units that are part of the U.S. Geological Survey's National Water-Quality Assessment program. The purpose of this report is to describe the physical, chemical, and environmental characteristics that may affect water quality in the Central Arizona Basins study area and present an overview of water quality. Covering 34,700 square miles, the study area is characterized by generally north to northwestward-trending mountain ranges separated by broad, gently sloping alluvial valleys. Most of the perennial rivers and streams are in the northern part of the study area. Rivers and streams in the south are predominantly intermittent or ephemeral and flow in response to precipitation such as summer thunderstorms. Effluent-dependent streams do provide perennial flow in some reaches. The major aquifers in the study area are in the basin-fill deposits that may be as much as 12,000 feet thick. The 1990 population in the study area was about 3.45 million, and about 61 percent of the total was in Maricopa County (Phoenix and surrounding cities). Extensive population growth over the past decade has resulted in a twofold increase in urban land areas and increased municipal water use; however, agriculture remains the major water use. Seventy-three percent of all water with drawn in the study area during 1990 was used for agricultural purposes. The largest rivers in the study area-the Gila, Salt, and Verde-are perennial near their headwaters but become intermittent downstream because of impoundments and artificial diversions. As a result, the Central Arizona Basins study area is unique compared to less arid basins because the mean surface-water outflow is only 528 cubic feet per second from a total drainage area of 49,650 square miles. Peak flows in the northern part of the study area are the result of snowmelt runoff; whereas, summer thunderstorms account for the peak flows in

  18. Geothermal development plan: northern Arizona

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1981-01-01

    Much of the northern counties (Apache, Coconino, Gila, Mohave, Navajo and Yavapai) is located in the Colorado Plateau province, a region of low geothermal potential. Two areas that do show some potential are the Flagstaff - San Francisco Peaks area and the Springerville area. Flagstaff is rapidly becoming the manufacturing center of Arizona and will have many opportunities to use geothermal energy to satisfy part of its increasing need for energy. Using a computer simulation model, projections of geothermal energy on line as a function of time are made for both private and city-owned utility development of a resource.

  19. ARNOLD MESA ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Wolfe, Edward W.; McColly, Robert A.

    1984-01-01

    Geologic geochemical, and aeromagnetic investigations and a survey of mines and prospects in the Arnold Mesa Roadless Area, Arizona, provide little evidence for the occurrence of mineral or energy resources. Buried Proterozoic basement rocks are possible hosts of porphyry-type copper and massive sulfide deposits but the thick cover of Paleozoic sedimentary rocks and upper Cenozoic volcanic rocks precluded assessment of this possibility. Chemistry and temperature of spring and well waters suggest that a geothermal resource may exist near the eastern margin of the roadless area, but the anomaly has not been tested by drilling and this resource remains unverified. No other energy resources were identified.

  20. KANAB CREEK ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Billingsley, George H.; Ellis, Clarence E.

    1984-01-01

    On the basis of a mineral survey, the Kanab Creek Roadless Area in north-central Arizona has a probable mineral-resource potential for uranium and copper in four small areas around five collapse structures. Gypsum is abundant in layers along the canyon rim of Snake Gulch, but it is a fairly common mineral in the region outside the roadless area. There is little promise for the occurence of fossil fuels in the area. Studies of collapse structures in surrounding adjacent areas might reveal significant mineralization at depth, such as the recent discovery of the uranium ore body at depth in the Pigeon Pipe.

  1. New Waddell-Westwing 230-kV transmission project, Maricopa County, Arizona: Environmental assessment

    SciTech Connect

    Not Available

    1988-10-01

    The Western Area Power Administration (Western) proposes to construct a new 230 kilovolt (kV) transmission line in Maricopa County, Arizona, that would extend from the New Waddell Dam on the Agua Fria River, to the Westwing Substation, about 10.5 miles southwest of the dam. The project area is roughly 45 miles northwest of the Phoenix metropolitan area. Western will complete the National Environmental Policy Act of 1969 (NEPA) process for the line. A final environmental impact statement (EIS) was prepared by BuRec to describe the environmental impacts associated with alternatives for the construction and operation of the Regulatory Storage Division of the Central Arizona Project (CAP). The EIS was supported by 23 technical reports that covered planning, design, public involvement, social and environmental impact assessment, economics, and hydrological analysis. Since the proposed transmission system differs only slightly from that described in the EIS, Western incorporates by reference the EIS and its 23 supporting technical reports into this environmental assessment (EA). In August 1985, BuRec completed an EA on modifications to the New Waddell Dam Project design plans and issued a FONSI on these modifications; the EA did not cover the transmission line. The purpose of this EA is to document the potential environmental effects of the proposed construction of the transmission line and switchyards in order to determine if an EIS is needed or if a finding of no significant impact (FONSI) is indicated. 28 refs., 5 figs., 1 tab.

  2. Water farms and transfer conflicts in Arizona, USA: A proposed resolution process

    NASA Astrophysics Data System (ADS)

    McEntire, Joanne

    1989-05-01

    Water is a relatively scarce resource in Arizona, especially since the recent urban growth booms of Phoenix and Tucson. Arizona's 1980 Groundwater Management Act was the precursor to current water-transfer conflicts between urban buyers, rural farmers, and third parties. Water farms are bought with the intention to transfer their appurtenant groundwater to the two major metropolitan areas. As water markets have emerged, differing values and public interest issues have become apparent, while the state legislature attempts to resolve inequities. Site-specific transfer disputes, as well as policy-making conflicts, offer suitable situations for a mediation process. Equity- and efficiency-based criteria are suggested as the basis for resolving water-transfer conflicts, and a mediation process is proposed. However, third parties must develop an agenda, and a balance of power should be attained before mediation can effectively forge an agreement on water-transfer policies. The attainment of statewide policies generated through a mediated process has the potential to expand long-range regional water planning and management.

  3. The Impact of Forest Thinning on the Reliability of Water Supply in Central Arizona

    PubMed Central

    Simonit, Silvio; Connors, John P.; Yoo, James; Kinzig, Ann; Perrings, Charles

    2015-01-01

    Economic growth in Central Arizona, as in other semiarid systems characterized by low and variable rainfall, has historically depended on the effectiveness of strategies to manage water supply risks. Traditionally, the management of supply risks includes three elements: hard infrastructures, landscape management within the watershed, and a supporting set of institutions of which water markets are frequently the most important. In this paper we model the interactions between these elements. A forest restoration initiative in Central Arizona (the Four Forest Restoration Initiative, or 4FRI) will result in thinning of ponderosa pine forests in the upper watershed, with potential implications for both sedimentation rates and water delivery to reservoirs. Specifically, we model the net effect of ponderosa pine forest thinning across the Salt and Verde River watersheds on the reliability and cost of water supply to the Phoenix metropolitan area. We conclude that the sediment impacts of forest thinning (up to 50% of canopy cover) are unlikely to compromise the reliability of the reservoir system while thinning has the potential to increase annual water supply by 8%. This represents an estimated net present value of surface water storage of $104 million, considering both water consumption and hydropower generation. PMID:25835003

  4. The impact of forest thinning on the reliability of water supply in central Arizona.

    PubMed

    Simonit, Silvio; Connors, John P; Yoo, James; Kinzig, Ann; Perrings, Charles

    2015-01-01

    Economic growth in Central Arizona, as in other semiarid systems characterized by low and variable rainfall, has historically depended on the effectiveness of strategies to manage water supply risks. Traditionally, the management of supply risks includes three elements: hard infrastructures, landscape management within the watershed, and a supporting set of institutions of which water markets are frequently the most important. In this paper we model the interactions between these elements. A forest restoration initiative in Central Arizona (the Four Forest Restoration Initiative, or 4FRI) will result in thinning of ponderosa pine forests in the upper watershed, with potential implications for both sedimentation rates and water delivery to reservoirs. Specifically, we model the net effect of ponderosa pine forest thinning across the Salt and Verde River watersheds on the reliability and cost of water supply to the Phoenix metropolitan area. We conclude that the sediment impacts of forest thinning (up to 50% of canopy cover) are unlikely to compromise the reliability of the reservoir system while thinning has the potential to increase annual water supply by 8%. This represents an estimated net present value of surface water storage of $104 million, considering both water consumption and hydropower generation.

  5. Vocational Rehabilitation of American Indians with Alcohol Disorders. Research Dissemination Workshop Proceedings (Phoenix, Arizona, November 19, 1997).

    ERIC Educational Resources Information Center

    Sanderson, Priscilla Lansing, Ed.; Gahungu, Athanase, Ed.

    A workshop aimed to increase participant knowledge about how to improve vocational rehabilitation (VR) services for American Indians with alcohol disorders. Objectives included dissemination of results of a national research project; an overview of issues related to rehabilitation, alcohol abuse, and American Indian people; and specific…

  6. Instructional (I). Papers Presented at the Association for Educational Data Systems Annual Convention (Phoenix, Arizona, May 3-7, 1976).

    ERIC Educational Resources Information Center

    Association for Educational Data Systems, Washington, DC.

    Sixteen articles and two abstracts on the use of computers and electronic equipment in instruction presented at the Association for Educational Data Systems (AEDS) 1976 convention are included here. Uses of the computer to generate and solve mathematical models, to generate examinations, and to facilitate concept learning are examined. Six…

  7. CHARACTERIZATION OF PARTICULATE MATTER FROM PHOENIX, ARIZONA, USING RAY FLUORESCENCE AND COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY

    EPA Science Inventory

    Numerous epidemiological studies have found associations between airborne particulate matter measured at community monitors and increased mortality and morbidity. Chemical and physical characteristics of particulate matter (e.g., elemental composition, size) and source identifi...

  8. US Geological Survey Toxic Substances Hydrology Program: proceedings of the technical meeting, Phoenix, Arizona, September 26-30, 1988

    USGS Publications Warehouse

    Mallard, G. E.

    1989-01-01

    Crude oil floating at the surface of a shallow aquifer of glacial outwash, near Bemidji, Minnesota, is altered by geochemical processes. Hydrocarbons from the oil are attenuated by several reactions that include aerobic and anaerobic microbial degradation. These degradation reactions result in the development of geochemical facies in the shallow groundwater system. Groundwater most affected by the presence of organic compounds is anoxic, and concentrations of methane, dissolved organic carbon, and total inorganic are high--0.76 millimole/L, 2.9 millimole/L, and 12.3 millimole/L, respectively. The concentrations of chemical species and delta-(13)C isotope values indicate that the plume near the oil lens has become progressively more reducing. Over a 4-year period (1984 through 1987), the concentrations of methane and iron have increased by a factor of > 25. The data suggest that sequential degradation occurs, as predicted by thermo-dynamics: manganese is reduced before iron is reduced, which occurs before methanogenesis. These data provide field evidence that reduction of iron and manganese is an important mechanism of decomposition of organic matter in aquifers. The delta-(13)C values of inorganic carbon of the native groundwater range from -12 ppt to -15 ppt as a result of mixing of soil CO2 with CO2 from the dissolution of carbonates. Non methanogenic biodegradation of oil constituents adds isotopically light CO2 to the groundwater because the oil has a delta-(13)C value of 28 ppt. The delta-(13)C value of inorganic carbon in the reducing zone have become progressively heavier from 1985 through 1987. The maximum change occurs 15 m downgradient from the oil lens, where the delta-(13)C values increased from -21.6 ppt to -5.35 ppt. This change indicates that the plume has become more reducing and methanogenic over time. (See also W90-05059) (Author 's abstract)

  9. Arizona Women in Poverty Hearings. Final Report.

    ERIC Educational Resources Information Center

    Coudroglou, Aliki

    Prepared at the request of Arizona Governor Bruce Babbit, this report documents the state of poverty among women in Arizona and recommends an action plan that will alleviate their poor economic status. Discussion focuses on three factors identified as influencing conditions of poverty experienced by women: changing family structure, the labor…

  10. 76 FR 619 - Arizona Disaster #AZ-00014

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Arizona Disaster AZ-00014 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of Arizona (FEMA- 1950-DR), dated 12/21/2010. Incident: Severe Storms and Flooding....

  11. 40 CFR 81.403 - Arizona.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Arizona. 81.403 Section 81.403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF... Visibility Is an Important Value § 81.403 Arizona. Area name Acreage Public Law establishing Federal...

  12. Future Changes: Implications for Arizona's Universities.

    ERIC Educational Resources Information Center

    Caldwell, Roger L.

    One of the working papers in the final report of the Arizona Board of Regents' Task Force on Excellence, Efficiency and Competitiveness, this document focuses (in Part I) on the summary, conclusions, and recommendations of future changes and their relationship to the Arizona Universities; and, (in Part II) provides background materials for…

  13. 40 CFR 131.31 - Arizona.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.31 Arizona. (a) (b) The following waters have, in...-101 (which is available from the Arizona Department of Environmental Quality, Water Quality...

  14. 40 CFR 131.31 - Arizona.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.31 Arizona. (a) (b) The following waters have, in...-101 (which is available from the Arizona Department of Environmental Quality, Water Quality...

  15. 40 CFR 131.31 - Arizona.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.31 Arizona. (a) (b) The following waters have, in...-101 (which is available from the Arizona Department of Environmental Quality, Water Quality...

  16. 40 CFR 131.31 - Arizona.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.31 Arizona. (a) (b) The following waters have, in...-101 (which is available from the Arizona Department of Environmental Quality, Water Quality...

  17. 40 CFR 131.31 - Arizona.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.31 Arizona. (a) (b) The following waters have, in...-101 (which is available from the Arizona Department of Environmental Quality, Water Quality...

  18. Meeting Northern Arizona's Supported Employment Training Needs.

    ERIC Educational Resources Information Center

    Martin, William E., Jr.; And Others

    In 1989 Northern Arizona University established a Supported Employment Training Center (SETC) to increase the number of trained job coaches in northern Arizona and provide knowledge and skills in supported employment to personnel from cooperating schools and agencies. First-year SETC activities focused on assessment of the training needs of…

  19. The Arizona Report, 1999-2002.

    ERIC Educational Resources Information Center

    Arizona Report, 2002

    2002-01-01

    This document contains the seven issues of "The Arizona Report" published in 1999-2002. A newsletter of the Mexican American Studies & Research Center (MASRC) at the University of Arizona, this publication reports on social, educational, health, and economic research on Mexican Americans and opportunities in higher education and professional…

  20. Foresight: Definition and Need for Arizona Universities.

    ERIC Educational Resources Information Center

    Caldwell, Roger L.

    One of the working papers in the final report of the Arizona Board of Regents' Task Force on Excellence, Efficiency and Competitiveness, this document discusses the importance of foresight (a broad based, future-oriented evaluation) for Arizona's universities. Institutions of all types must recognize varying degrees of a need to base their…

  1. Carpological analysis of Phoenix (Arecaceae): contributions to the taxonomy and evolutionary history of the genus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The main purpose of this study was, first, to analyze the morphology of seeds of Phoenix spp. and relevant cultivars and to assess the taxonomic value of the information generated as a means of studying the systematics and evolutionary history of the genus Phoenix. We then analyzed seed morphologica...

  2. The Impact of the Parcel-Level Land Architecture on Land Surface Temperature in the Phoenix Metropolitan Area

    NASA Astrophysics Data System (ADS)

    LI, X.; Ouyang, Y.; Turner, B. L., II; Harlan, S.; Brazel, A.

    2014-12-01

    The relationship between land surface temperature (LST) and characteristics of the urban land system has received increasing attention in urban heat island research, especially for desert cities. The relationship between the land composition and LST has been widely studied. Such researches generally employ medium or coarser spatial resolution remotely sensed data and primarily focuses on the effects of one land cover type on the LST. In this study, we explore the effects of land system architecture - composition and configuration of different land-cover classes - on LST in the central Arizona-Phoenix metropolitan area at a fine-scale resolution, focused on the composition and configuration of single family residential parcels. A 1 m resolution land-cover map is used to calculate landscape metrics at the parcel level, and 6.8 m resolution data from the MODIS/ASTER are employed to retrieve LST. We introduce the socio-economic factors at neighborhood level as explanatory variables to help control for potential neighborhood effects. Multiple linear regression models examine the effects of landscape configuration on LST at the parcel scale, controlling for the effects of landscape composition and neighborhood characteristics. Results show that the configuration of parcels affects LST, revealing significant variable relationships between that architecture and LST at nighttime and daytime, and the role of the neighborhood effects on the outcomes.

  3. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The mapping of generalized land use (level 1) from ERTS 1 images was shown to be feasible with better than 95% accuracy in the Phoenix quadrangle. The accuracy of level 2 mapping in urban areas is still a problem. Updating existing maps also proved to be feasible, especially in water categories and agricultural uses; however, expanding urban growth has presented with accuracy. ERTS 1 film images indicated where areas of change were occurring, thus aiding focusing-in for more detailed investigation. ERTS color composite transparencies provided a cost effective source of information for land use mapping of very large regions at small map scales.

  4. Atmospheric Condensation in the Mars Phoenix TECP and MET Data

    NASA Technical Reports Server (NTRS)

    Zent, A. P.

    2015-01-01

    A new calibration function for the humidity sensor in the Thermal and Electrical Conductivity Probe (TECP), a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) on the Phoenix Mars mission has been developed. The data is now cast in terms of Frost Point (T(sub f)) and some flight data, taken when the atmosphere is independently known to be saturated, is included in the calibration data set. Combined with data from the Meteorology Mast air temperature sensors, a very sensitive detection of atmospheric saturation becomes possible (Figure 1).

  5. Evidence for calcium carbonate at the Mars Phoenix landing site.

    PubMed

    Boynton, W V; Ming, D W; Kounaves, S P; Young, S M M; Arvidson, R E; Hecht, M H; Hoffman, J; Niles, P B; Hamara, D K; Quinn, R C; Smith, P H; Sutter, B; Catling, D C; Morris, R V

    2009-07-01

    Carbonates are generally products of aqueous processes and may hold important clues about the history of liquid water on the surface of Mars. Calcium carbonate (approximately 3 to 5 weight percent) has been identified in the soils around the Phoenix landing site by scanning calorimetry showing an endothermic transition beginning around 725 degrees C accompanied by evolution of carbon dioxide and by the ability of the soil to buffer pH against acid addition. Based on empirical kinetics, the amount of calcium carbonate is most consistent with formation in the past by the interaction of atmospheric carbon dioxide with liquid water films on particle surfaces. PMID:19574384

  6. 77 FR 26039 - Notice of Availability of the Final Environmental Impact Statement for the Phoenix Copper Leach...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ...: 14X5017] Notice of Availability of the Final Environmental Impact Statement for the Phoenix Copper Leach... prepared a Final Environmental Impact Statement (FEIS) for the Phoenix Copper Leach Project and by this... notice in the Federal Register. ADDRESSES: Copies of the FEIS for the Phoenix Copper Leach Project...

  7. Maps Showing Ground-Water Conditions in the San Simon Wash Area, Papago Indian Reservation, Arizona - 1979

    USGS Publications Warehouse

    Hollet, Kenneth J.

    1981-01-01

    INTRODUCTION The San Simon Wash area includes about 2,300 mi2 in the Papago Indian Reservation in south-central Arizona and is characterized by low mountains separated by broad alluvial basins. Most of the basins and mountains trend north and slightly northwest. The basins are underlain by a thick sequence of basin-fill deposits. The mountains are composed of crystalline and consolidated sedimentary rocks, and thin alluvial deposits are present in the narrow mountain valleys and on pediments. The climate is semiarid, and the precipitation pattern is characterized by two distinct types of storms--local summer thunderstorms and regional winter storms. In most of the area the average annual precipitation ranges from 5 to 10 in.; in the Baboquivari Mountains, however, the average annual precipitation is 20 in. (Sellers and Hill, 1974, p. 7). Owing to the small amount of precipitation and the abundant sunshine, the evaporation rate is about 8 to 10 times the average rainfall (Heindl and others, 1962). Storm runoff occurs mainly as sheetflow and floods of short duration. Although some runoff is diverted to catchment tanks for use by livestock, runoff is not known to be diverted for irrigation or public-supply uses. Ground-water development has been slight compared with that in many areas in Arizona. In 1979 about 2,700 acre-ft of ground water was withdrawn, of which 2,200 acre-ft was used for irrigation at Papago Farms, and 500 acre-ft was used for public and livestock supplies. The hydrologic data on which these maps are based are available, for the most part, in computer-printout form and may be consulted at the Arizona Department of Water Resources, 99 East Virginia, Phoenix, and at U.S. Geological Survey offices in: Federal Building, 301 West Congress Street, Tucson, and Valley Center, Suite 1880, Phoenix. Material from which copies can be made at private expense is available at the Tucson and Phoenix offices of the U.S. Geological Survey.

  8. 40 CFR 81.303 - Arizona.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... citations affecting § 81.303 see the List of CFR Sections Affected which appears in the Finding Aids section... Apache County Cochise County Coconino County Gila County Graham County Greenlee County La Paz County... La Paz County Maricopa County (part) area outside of Phoenix Mohave County Navajo County Pima...

  9. Education Priorities for the 83rd Texas Legislature: Policy Recommendations for Public Education and Higher Education

    ERIC Educational Resources Information Center

    Texas Business Leadership Council, 2013

    2013-01-01

    Texas' ability to create an education system that delivers on workforce and post-secondary readiness for all students is crucial to our long-term prosperity. We must fully transform our state's education system to meet the challenges and opportunities so clearly evident today. Yet, according to a report commissioned by the Houston Endowment from…

  10. The Question(s) of Distance Learning. 83rd Annual UCEA Conference.

    ERIC Educational Resources Information Center

    Wherry, Peg

    1998-01-01

    Issues addressed at the University Continuing Education Association conference included the following: student services for distant learners, intellectual property and distance learning materials, the ethical challenges of technology, competition among higher education institutions, and corporate expectations. (SK)

  11. Analysis of Effectiveness of Phoenix Entry Reaction Control System

    NASA Technical Reports Server (NTRS)

    Dyakonov, Artem A.; Glass, Christopher E.; Desai, Prasun, N.; VanNorman, John W.

    2008-01-01

    Interaction between the external flowfield and the reaction control system (RCS) thruster plumes of the Phoenix capsule during entry has been investigated. The analysis covered rarefied, transitional, hypersonic and supersonic flight regimes. Performance of pitch, yaw and roll control authority channels was evaluated, with specific emphasis on the yaw channel due to its low nominal yaw control authority. Because Phoenix had already been constructed and its RCS could not be modified before flight, an assessment of RCS efficacy along the trajectory was needed to determine possible issues and to make necessary software changes. Effectiveness of the system at various regimes was evaluated using a hybrid DSMC-CFD technique, based on DSMC Analysis Code (DAC) code and General Aerodynamic Simulation Program (GASP), the LAURA (Langley Aerothermal Upwind Relaxation Algorithm) code, and the FUN3D (Fully Unstructured 3D) code. Results of the analysis at hypersonic and supersonic conditions suggest a significant aero-RCS interference which reduced the efficacy of the thrusters and could likely produce control reversal. Very little aero-RCS interference was predicted in rarefied and transitional regimes. A recommendation was made to the project to widen controller system deadbands to minimize (if not eliminate) the use of RCS thrusters through hypersonic and supersonic flight regimes, where their performance would be uncertain.

  12. The Thermal Electrical Conductivity Probe (TECP) for Phoenix

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Hecht, Michael H.; Cobos, Doug R.; Campbell, Gaylon S.; Campbell, Colin S.; Cardell, Greg; Foote, Marc C.; Wood, Stephen E.; Mehta, Manish

    2009-01-01

    The Thermal and Electrical Conductivity Probe (TECP) is a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) payload on the Phoenix Lander. TECP will measure the temperature, thermal conductivity and volumetric heat capacity of the regolith. It will also detect and quantify the population of mobile H2O molecules in the regolith, if any, throughout the polar summer, by measuring the electrical conductivity of the regolith, as well as the dielectric permittivity. In the vapor phase, TECP is capable of measuring the atmospheric H2O vapor abundance, as well as augment the wind velocity measurements from the meteorology instrumentation. TECP is mounted near the end of the 2.3 m Robotic Arm, and can be placed either in the regolith material or held aloft in the atmosphere. This paper describes the development and calibration of the TECP. In addition, substantial characterization of the instrument has been conducted to identify behavioral characteristics that might affect landed surface operations. The greatest potential issue identified in characterization tests is the extraordinary sensitivity of the TECP to placement. Small gaps alter the contact between the TECP and regolith, complicating data interpretation. Testing with the Phoenix Robotic Arm identified mitigation techniques that will be implemented during flight. A flight model of the instrument was also field tested in the Antarctic Dry Valleys during the 2007-2008 International Polar year. 2

  13. Vulnerability assessment of climate-induced water shortage in Phoenix

    PubMed Central

    Gober, Patricia; Kirkwood, Craig W.

    2010-01-01

    Global warming has profound consequences for the climate of the American Southwest and its overallocated water supplies. This paper uses simulation modeling and the principles of decision making under uncertainty to translate climate information into tools for vulnerability assessment and urban climate adaptation. A dynamic simulation model, WaterSim, is used to explore future water-shortage conditions in Phoenix. Results indicate that policy action will be needed to attain water sustainability in 2030, even without reductions in river flows caused by climate change. Challenging but feasible changes in lifestyle and slower rates of population growth would allow the region to avoid shortage conditions and achieve groundwater sustainability under all but the most dire climate scenarios. Changes in lifestyle involve more native desert landscaping and fewer pools in addition to slower growth and higher urban densities. There is not a single most likely or optimal future for Phoenix. Urban climate adaptation involves using science-based models to anticipate water shortage and manage climate risk. PMID:21149729

  14. Vulnerability assessment of climate-induced water shortage in Phoenix.

    PubMed

    Gober, Patricia; Kirkwood, Craig W

    2010-12-14

    Global warming has profound consequences for the climate of the American Southwest and its overallocated water supplies. This paper uses simulation modeling and the principles of decision making under uncertainty to translate climate information into tools for vulnerability assessment and urban climate adaptation. A dynamic simulation model, WaterSim, is used to explore future water-shortage conditions in Phoenix. Results indicate that policy action will be needed to attain water sustainability in 2030, even without reductions in river flows caused by climate change. Challenging but feasible changes in lifestyle and slower rates of population growth would allow the region to avoid shortage conditions and achieve groundwater sustainability under all but the most dire climate scenarios. Changes in lifestyle involve more native desert landscaping and fewer pools in addition to slower growth and higher urban densities. There is not a single most likely or optimal future for Phoenix. Urban climate adaptation involves using science-based models to anticipate water shortage and manage climate risk.

  15. 75 FR 52715 - Southern Arizona Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... of meeting. SUMMARY: The Southern Arizona Resource Advisory Committee will meet in Tucson, Arizona... and Resource Institute (NAFRI) at 3265 E. Universal Way, Tucson, Arizona 85756. Send written comments... National Forest, 300 W. Congress, Tucson, Arizona 85701 or electronically to jruyle@fs.fed.us . FOR...

  16. Geothermal resources in Arizona: a bibliography. Circular 23

    SciTech Connect

    Calvo, S.S.

    1982-01-01

    This bibliography references all reports and maps generated by the Arizona Bureau of Geology and Mineral Technology and the Arizona Geothermal Commercialization Team of the Department of Chemical Engineering, University of Arizona. To provide a more comprehensive listing of geothermal energy in Arizona, all available geothermal papers from other sources have been included. A total of 224 references are presented. (MHR)

  17. Arizona black rattlesnake (Crotalus viridis cerberus)

    USGS Publications Warehouse

    Nowak, Erika M.

    2006-01-01

    The Arizona black rattlesnake makes its home at higher elevations in Arizona and far western New Mexico. The snake's use of high-altitude habitat and its black coloration as an adult distinguishes it from other subspecies of the western rattlesnake (Crotalus viridis), which prefer lower elevations and range from tan to reddish in color as adults. These physical and habitat differences are also reflected in genetic differences that suggest that the Arizona black rattlesnake may be a new species of rattlesnake. Despite the species's limited range, basic biological information needed to make management decisions is lacking for most Arizona black rattlesnake populations. To address this need, U.S. Geological Survey (USGS) scientists conducted research on the species in Arizona national park units from 2003 to 2005. The research examined relative population abundance, movement patterns, range requirements, dietary habits, and winter and summer habitat. Research in Arizona national parks was made possible through the support of the Western National Parks Association, Tonto National Monument, and the USGS Science Internships for Workforce Diversity Program. Importantly, the park-based research was used to augment a long-term mark-recapture study of the species that has been conducted by USGS biologists at sites near Flagstaff, Arizona, since 1999. USGS researchers were the first to conduct extensive studies of this species in the wild.

  18. Proterozoic geology and ore deposits of Arizona

    USGS Publications Warehouse

    Karlstrom, Karl E.

    1991-01-01

    Proterozoic rocks in Arizona have been the focus of interest for geologists since the late 1800's. Early investigations, led by the U.S. Geological Survey, focused on the extensive ore deposits hosted by Proterozoic rocks. By the 1960's, these studies, combined with theses from academic institutions and the efforts of the Arizona Geological Survey, had produced a rich data base of geologic maps, primarily of the central part of the Transition Zone. The chronological significance of these maps became much better known with the application of U-Pb geochronology by L.Y. Silver and his students starting in the 1960's. The 1970's and early 1980's were marked by numerous contributions from Masters and Ph.D students at a variety of academic institutions, and continued work by the U.S. Geological Survey. Interest in ore deposits persisted and there was an increasing interest in interpretation of the tectonic history of Proterozoic rocks in terms of plate tectonic models, as summarized in papers by Phillip Anderson, Ed DeWitt, Clay Conway, Paul Lindberg, and J.L Anderson in the 1989 Arizona Geological Society Digest 17: "Geologic Evolution of Arizona". The present volume: "Proterozoic Geology and Ore deposits of Arizona" builds upon A.G.S. Digest 17, and presents the results of geologic investigations from the latter part of the 1980's. A number of the papers are condensed versions of MS theses done by students at Northern Arizona University. These papers are based upon 1:10,000 mapping and structural analysis of several areas in Arizona. The geologic maps from each of these studies are available separately as part of the Arizona Geological Survey Contributed Map Series. These detailed maps, plus the continuing mapping efforts of the U.S.G.S. and students at other academic institutions, form an ever improving data base for continuing attempts to understand the Proterozoic geology and ore deposits of Arizona

  19. Evolving Graduate Programs in Arizona

    NASA Astrophysics Data System (ADS)

    Impey, C. D.

    2002-12-01

    At the University of Arizona, as in many other top-ranked research institutions, there is a tension between the desire to give student broad enough skills for the workplace with the demands of the specific academic discipline. 2/3 of the Astronomy graduate students at Steward Observatory go on to permanent jobs at universities or observatories, but some of our most successful graduates take more diverse career paths. We do not wish to sacrifice academic rigor in astrophysics or the primary goal of training students in research. However, we are creating opportunities for (a) students to take M.Sc. and eventually Ph.D. degrees with a specialization in education, and (b) students with technical skills to have Ph.D. minors in optics, applied physics, or ECE. This second initiative is the subject of a pending NSF/IGERT proposal, with the science theme "Search for other Worlds."

  20. Strawberry Crater Roadless Areas, Arizona

    SciTech Connect

    Wolfe, E.W.; Light, T.D.

    1984-01-01

    The results of a mineral survey conducted in 1980 in the Strawberry Crater Roadless Areas, Arizona, indicate little promise for the occurrence of metallic mineral or fossil fuel resources in the area. The area contains deposits of cinder, useful for the production of aggregate block, and for deposits of decorative stone; however, similar deposits occur in great abundance throughout the San Francisco volcanic field outside the roadless areas. There is a possibility that the Strawberry Crater Roadless Areas may overlie part of a crustal magma chamber or still warm pluton related to the San Francisco Mountain stratovolcano or to basaltic vents of late Pleistocene or Holocene age. Such a magma chamber or pluton beneath the Strawberry Crater Roadless Areas might be an energy source from which a hot-, dry-rock geothermal energy system could be developed, and a probable geothermal resource potential is therefore assigned to these areas.

  1. FOSSIL SPRINGS ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Beard, L.S.; Ellis, C.E.

    1984-01-01

    Based on field studies, the Fossil Springs Roadless Area in central Arizona is concluded to have little promise for the occurrence of mineral or energy resources. Rocks in the Supai Formation (Pennsylvanian-Permian) near the central part of the roadless area contain widespread but spotty copper mineralization and trace amounts of uranium. Analyses obtained during the study define geochemical anomalies in two portions of the area that remain unexplained. The suites of anomalous metals suggest the possibility of hydrothermal veins and the presence of ultramafic rocks; neither were found in the field. Although there is little promise for the occurrence of mineral resources in the Fossil Springs Roadless Area, studies to identify the source of the geochemical anomalies could have valuable implications for regional studies and mineral exploration in the surrounding area.

  2. STRAWBERRY CRATER ROADLESS AREAS, ARIZONA.

    USGS Publications Warehouse

    Wolfe, Edward W.; Light, Thomas D.

    1984-01-01

    The results of a mineral survey conducted in the Strawberry Crater Roadless Areas, Arizona, indicate little promise for the occurrence of metallic mineral or fossil fuel resources in the area. The area contains deposits of cinder, useful for the production of aggregate block, and for deposits of decorative stone; however, similar deposits occur in great abundance throughout the San Francisco volcanic field outside the roadless areas. There is a possibility that the Strawberry Crater Roadless Areas may overlie part of a crustal magma chamber or still warm pluton related to the San Francisco Mountain stratovolcano or to basaltic vents of late Pleistocene or Holocene age. Such a magma chamber or pluton beneath the Strawberry Crater Roadless Areas might be an energy source from which a hot-, dry-rock geothermal energy system could be developed, and a probable geothermal resource potential is therefore assigned to these areas. 9 refs.

  3. Historical patterns of metal atmospheric deposition to the epilithic lichen Xanthoparmelia in Maricopa County, Arizona, U.S.A.

    NASA Astrophysics Data System (ADS)

    Nash, T. H., III; Gries, C.; Zschau, T.; Getty, S.; Ameron1, Y.; Zambrano, A.

    2003-05-01

    Temporal patterns (1974 to 1998) of atmospheric deposition of 6 metals to an epilithic lichen were assessed using a spatial grid of 6 (of 28) field sites throughout Maricopa County, Arizona, U.S.A. The lichen material was cleaned, wet digested and analyzed by ICP-MS for a suite of éléments: (cadmium [Cd], copper [Cu], lead [Pb], platinum [Pt], tin [Sn], and zinc [Zn]). Copper, lead and tin have ail exhibited declines at some sites; whereas zinc and platinum have increased at most sites. Causes of the temporal patterns arc inferred to be related to closure of a copper smelter, change in gasoline type (now unleaded), dramatic increases in traffic volume, rapid development of the urban area and expansion of the Phoenix industrial base.

  4. NASA's MISR Instrument Sees Arizona Wildfires Burn

    NASA Video Gallery

    This animation from NASA’s Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra spacecraft show the Wallow and Horseshoe 2 Fires burning in Arizona mid-morning (local time) on Jun...

  5. Spatiotemporal Patterns, Monitoring Network Design, and Environmental Justice of Air Pollution in the Phoenix Metropolitan Region: A Landscape Approach

    NASA Astrophysics Data System (ADS)

    Pope, Ronald L.

    Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early step in this process is ensuring that the air pollution monitoring network is properly designed to capture the patterns of pollution and that all social demographics in the urban population are represented. An important aspect in characterizing air pollution patterns is scale in space and time which, along with pattern and process relationships, is a key subject in the field of landscape ecology. Thus, using multiple landscape ecological methods, this dissertation research begins by characterizing and quantifying the multi-scalar patterns of ozone (O3) and particulate matter (PM10) in the Phoenix, Arizona, metropolitan region. Results showed that pollution patterns are scale-dependent, O3 is a regionally-scaled pollutant at longer temporal scales, and PM10 is a locally-scaled pollutant with patterns sensitive to season. Next, this dissertation examines the monitoring network within Maricopa County. Using a novel multiscale indicator-based approach, the adequacy of the network was quantified by integrating inputs from various academic and government stakeholders. Furthermore, deficiencies were spatially defined and recommendations were made on how to strengthen the design of the network. A sustainability ranking system also provided new insight into the strengths and weaknesses of the network. Lastly, the study addresses the question of whether distinct social groups were experiencing inequitable exposure to pollutants - a key issue of distributive environmental injustice. A novel interdisciplinary method using multi-scalar ambient pollution data and hierarchical multiple regression models revealed environmental inequities between air pollutants and race, ethnicity

  6. Vegetative community control of freshwater availability: Phoenix Islands case study

    NASA Astrophysics Data System (ADS)

    Engels, M.; Heinse, R.

    2014-12-01

    On small low islands with limited freshwater resources, terrestrial plant communities play a large role in moderating freshwater availability. Freshwater demands of vegetative communities are variable depending on the composition of the community. Hence, changes to community structure from production crop introductions, non-native species invasions, and climate change, may have significant implications for freshwater availability. Understanding how vegetative community changes impact freshwater availability will allow for better management and forecasting of limited freshwater supplies. To better understand these dynamics, we investigated three small tropical atolls in the Phoenix Island Protected Area, Kiribati. Despite their close proximity, these islands receive varying amounts of rainfall, are host to different plant communities and two of the islands have abandoned coconut plantations. Using electromagnetic induction, ground penetrating radar, soil samples, climate and satellite data, we present preliminary estimates of vegetative water demand for different tropical plant communities.

  7. Phoenix Mars Scout Parachute Flight Behavior and Observations

    NASA Technical Reports Server (NTRS)

    Adams, Douglas S.; Witkowski, Allen; Kandis, Mike

    2011-01-01

    The data returned from the successful Phoenix Mars Scout mission are analyzed in order to determine characteristics and behaviors of the supersonic parachute that was used to slow the entry body during its descent to the surface. At least one significant drag reduction event was observed when the vehicle was traveling at Mach 1.6; this is consistent with previously reported terrestrial high altitude testing and is likely associated with an area oscillation of the parachute. The parachute is shown to possess some lateral instability relative to the anti-velocity vector that is also at a level that is consistent with the same historic data. Ramifications of the lateral instability and, in particular, the unsteadiness in the parachute drag are discussed as energizing elements of the entry body wrist mode. The apparent coefficient of drag for the parachute is calculated and shown to have relatively small variations on an average basis over the supersonic portion of flight.

  8. Phoenix Mars Lander's Chemistry Lab in a Box

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The wet chemistry laboratory on NASA's Phoenix Mars Lander has four teacup-size beakers. This photograph shows one of them. The laboratory is part of the spacecraft's Microscopy, Electrochemistry and Conductivity Analyzer.

    Each beaker will be used only once, for assessing soluble chemicals in a sample of Martian soil by mixing water with the sample to a soupy consistency and keeping it warm enough to remain liquid during the analysis.

    On the inner surface of the beaker are 26 sensors, mostly electrodes behind selectively permeable membranes or gels. Some sensors will give information about the acidity or alkalinity of the soil sample. Others will gauge concentrations of such ions as chlorides, bromides, magnesium, calcium and potassium. Comparisons of the concentrations of water-soluble ions in soil samples from different depths below the surface of the landing site may provide clues to the history of the water in the soil.

  9. Land use mapping and modelling for the Phoenix quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Experimentation with 70mm squares cut from ERTS-1 9.5 inch MSS positive transparencies in an I2S color additive viewer, a Richardson film production viewer at 10X magnification, and in a microfiche viewer at 12X and 18X magnification has indicated that band 5 photography provides the most useful interpretable data. In the I2S viewer high intensities of blue and red light in bands 4 and 6 respectively enhance faint vegetation patterns not easily detectable. Slides produced from 35mm color transparencies made by photographing the I2S viewing screen are suitable visual aids for use during presentation. Interpretation of MSS transparencies allowed compilation of a map of land use change in the Phoenix quadrangle.

  10. Behavioral management at the Phoenix Zoo: new strategies and perspectives.

    PubMed

    Tresz, Hilda

    2006-01-01

    It all started with a seemingly simple decision to re-evaluate and document the Phoenix Zoo's behavioral management protocol. The purpose of this project was to present proactive standards for the care and psychological well-being of our living collection, while meeting or exceeding the guidelines of the Animal Welfare Act (U. S. Department of Agriculture Animal and Plant Health and Inspection Service, Animal Care, 1999). Preparing the protocol was a catalyst to re-evaluate the zoo's philosophy and application of behavioral management. It suggested a restructuring of collection management and the rethinking of future goals and practices. Gradually, the process became more focused and organized. Behavioral enrichment, training, animal behavior issues, and exhibit architecture were embraced as essential components for providing quality of life. Staff from all levels worked side-by-side on assignments. Our way of thinking and working was changing.

  11. Regional Land Use Mapping: the Phoenix Pilot Project

    NASA Technical Reports Server (NTRS)

    Anderson, J. R.; Place, J. L.

    1971-01-01

    The Phoenix Pilot Program has been designed to make effective use of past experience in making land use maps and collecting land use information. Conclusions reached from the project are: (1) Land use maps and accompanying statistical information of reasonable accuracy and quality can be compiled at a scale of 1:250,000 from orbital imagery. (2) Orbital imagery used in conjunction with other sources of information when available can significantly enhance the collection and analysis of land use information. (3) Orbital imagery combined with modern computer technology will help resolve the problem of obtaining land use data quickly and on a regular basis, which will greatly enhance the usefulness of such data in regional planning, land management, and other applied programs. (4) Agreement on a framework or scheme of land use classification for use with orbital imagery will be necessary for effective use of land use data.

  12. Mission Design Overview for the Phoenix Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Garcia, Mark D.; Fujii, Kenneth K.

    2007-01-01

    The Phoenix mission "follows the water" by landing in a region where NASA's Mars Odyssey orbiter has discovered evidence of ice-rich soil very near the Martian surface. For three months after landing, the fixed Lander will perform in-situ and remote sensing investigations that will characterize the chemistry of the materials at the local surface, sub-surface, and atmosphere, and will identify potential provenance of key indicator elements of significance to the biological potential of Mars, including potential organics and any accessible water ice. The Lander will employ a robotic arm to dig to the ice layer, and will analyze the acquired samples using a suite of deck-mounted, science instruments. The development of the baseline strategy to achieve the objectives of this mission involves the integration of a variety of elements into a coherent mission plan.

  13. H2O at the Phoenix landing site.

    PubMed

    Smith, P H; Tamppari, L K; Arvidson, R E; Bass, D; Blaney, D; Boynton, W V; Carswell, A; Catling, D C; Clark, B C; Duck, T; Dejong, E; Fisher, D; Goetz, W; Gunnlaugsson, H P; Hecht, M H; Hipkin, V; Hoffman, J; Hviid, S F; Keller, H U; Kounaves, S P; Lange, C F; Lemmon, M T; Madsen, M B; Markiewicz, W J; Marshall, J; McKay, C P; Mellon, M T; Ming, D W; Morris, R V; Pike, W T; Renno, N; Staufer, U; Stoker, C; Taylor, P; Whiteway, J A; Zent, A P

    2009-07-01

    The Phoenix mission investigated patterned ground and weather in the northern arctic region of Mars for 5 months starting 25 May 2008 (solar longitude between 76.5 degrees and 148 degrees ). A shallow ice table was uncovered by the robotic arm in the center and edge of a nearby polygon at depths of 5 to 18 centimeters. In late summer, snowfall and frost blanketed the surface at night; H(2)O ice and vapor constantly interacted with the soil. The soil was alkaline (pH = 7.7) and contained CaCO(3), aqueous minerals, and salts up to several weight percent in the indurated surface soil. Their formation likely required the presence of water. PMID:19574383

  14. Dust events in Arizona: Long-term satellite and surface observations, and the National Air Quality Forecasting Capability CMAQ simulations

    NASA Astrophysics Data System (ADS)

    Huang, M.; Tong, D.; Lee, P.; Pan, L.; Tang, Y.; Stajner, I.; Pierce, R. B.; McQueen, J.

    2015-12-01

    Dust events in Arizona: An analysis integrating satellite and surface weather and aerosol measurements, and National Air Quality Forecasting Capability CMAQ simulations Dust records in Arizona during 2005-2013 are developed using multiple observation datasets, including level 2 deep blue aerosol product by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the in-situ measurements at the surface Air Quality System (AQS) and Interagency Monitoring of Protected Visual Environments (IMPROVE) sites in Phoenix. The satellite and surface aerosol observations were anti-correlated with three drought indicators (i.e., MODIS vegetation index, a European satellite soil moisture dataset, and Palmer Drought Severity Index). During the dusty year of 2007, we show that the dust events were stronger and more frequent in the afternoon hours than in the morning due to faster winds and drier soil, and the Sonoran and Chihuahuan deserts were important dust source regions during identified dust events in Phoenix as indicated by NOAA's Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model calculations. Based on these findings, we suggested a potential for use of satellite soil moisture and vegetation index products to interpret and predict dust activity. We also emphasized the importance of using hourly observations for better capturing dust events, and expect the hourly geostationary satellite observations in the future to well complement the current surface PM and meteorological observations considering their broader spatial coverage. Additionally, the performance of the National Air Quality Forecasting Capability (NAQFC) 12 km CMAQ model simulation is evaluated during a recent strong dust event in the western US accompanied by stratospheric ozone intrusion. The current modeling system well captured the temporal variability and the magnitude of aerosol concentrations during this event. Directions of integrating satellite weather and vegetation observations

  15. Chemical characteristics of urban stormwater sediments and implications for environmental management, Maricopa County, Arizona

    USGS Publications Warehouse

    Parker, J.T.C.; Fossum, K.D.; Ingersoll, T.L.

    2000-01-01

    Investigations of the chemical characteristics of urban stormwater sediments in the rapidly growing Phoenix metropolitan area of Maricopa County, Arizona, showed that the inorganic component of these sediments generally reflects geologic background values. Some concentrations of metals were above background values, especially cadmium, copper, lead, and zinc, indicating an anthropogenic contribution of these elements to the sediment chemistry. Concentrations, however, were not at levels that would require soil remediation according to guidelines of the U.S. Environmental Protection Agency. Arsenic concentrations generally were above recommended values for remediation at a few sites, but these concentrations seem to reflect geologic rather than anthropogenic factors. Several organochlorine compounds no longer in use were ubiquitous in the Phoenix area, although concentrations generally were low. Chlordane, DDT and its decay products DDE and DDD, dieldrin, toxaphene, and PCBs were found at almost all sites sampled, although some of the pesticides in which these compounds are found have been banned for almost 30 years. A few sites showed exceptionally high concentrations of organochlorine compounds. On the basis of published guidelines, urban stormwater sediments do not appear to constitute a major regional environmental problem with respect to the chemical characteristics investigated here. At individual sites, high concentrations of organic compounds - chlordane, dieldrin, PCBs, and toxaphene - may require some attention. The possible environmental hazard presented by low-level organochlorine contamination is not addressed in this paper; however, high levels of toxicity in urban sediments are difficult to explain. Sediment toxicity varied significantly with time, which indicates that these tests should be evaluated carefully before they are used for management decisions.Investigations of the chemical characteristics of urban stormwater sediments in the rapidly

  16. Evidence for Calcium Carbonate at the Phoenix Landing Site

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; Ming, D. W.; Sutter, B.; Arvidson, R. E.; Hoffman, J.; Niles, P. B.; Smith, P.

    2009-01-01

    The Phoenix mission has recently finished its study of the north polar environment of Mars with the aim to help understand both the current climate and to put constraints on past climate. An important part of understanding the past climate is the study of secondary minerals, those formed by reaction with volatile compounds such as H2O and CO2. This work describes observations made by the Thermal and Evolved-Gas Analyzer (TEGA) on the Phoenix Lander related to carbonate minerals. Carbonates are generally considered to be products of aqueous processes. A wet and warmer climate during the early history of Mars coupled with a much denser CO2 atmosphere are ideal conditions for the aqueous alteration of basaltic materials and the subsequent formation of carbonates. Carbonates (Mg- and Ca-rich) are predicted to be thermodynamically stable minerals in the present martian environment, however, there have been only a few indications of carbonates on the surface by a host of orbiting and landed missions to Mars. Carbonates (Mg-rich) have been suggested to be a component (2-5 wt %) of the martian global dust based upon orbital thermal emission spectroscopy. The identifications, based on the presence of a 1480 cm-1 absorption feature, are consistent with Mgcarbonates. A similar feature is observed in brighter, undisturbed soils by Mini-TES on the Gusev plains. Recently, Mg-rich carbonates have been identified in the Nili Fossae region by the CRISM instrument onboard the Mars Reconnaissance Orbiter. Carbonates have also been confirmed as aqueous alteration phases in martian meteorites so it is puzzling why there have not been more discoveries of carbonates by landers, rovers, and orbiters. Carbonates may hold important clues about the history of liquid water and aqueous processes on the surface of Mars.

  17. Ground Ice at the Phoenix Landing Site: A Preflight Assessment

    NASA Technical Reports Server (NTRS)

    Mellon, M. T.; Arvidson, R. E.; Seelos, F.; Tamppari, L. K.; Boynton, W. V.; Smith, P.

    2004-01-01

    One of the objectives of the Mars Scout mission, Phoenix, is to characterize the present state of water in the martian environment, in a location where water may play a significant role in the present and past habitability of Mars. Given the generally dry and cold climate of Mars today any substantial amount of water is expected to occur in the form of ground ice (subsurface ice) within the regolith. The Mars Odyssey Gamma Ray Spectrometer has indicated abundant subsurface hydrogen and inferred ground ice at high latitudes. Therefore, the Phoenix mission will be targeted to land in the northern high latitudes (approximately 65 degrees N - 75 degrees N) where ground ice is expected to be abundantly available for analysis. The lander will be capable of excavating, sampling, and analyzing, dry and water-rich/icy soils. The location and depth of excavation necessary to achieve the goals of sampling and analysis of icy material become important parameters to assess. In the present work we ask two key questions: 1) At what depth within the regolith do we expect to find ice? 2) How might this depth vary over the region of potential landing sites? Numerous lines of evidence can be employed to provide an indication of the presence or absence of shallow ground ice at the potential landing sites. For example geomorphology, neutrons, gamma rays, and theory each contribute clues to an overall understanding of the distribution of ice. Orbital observations provide information on a variety of spatial scales, typically 10 s of meters (patterned ground) to 100 s of kilometers (gamma rays). While information on all of these scales are important, of particular interest is how the presence and depth of ground ice might vary on spatial scales comparable to the lander and its work area. While ground ice may be stable (and present) on a regional scale, local-scale slopes and changes in the physical characteristics of soils can result in significant variations in the distribution of ice.

  18. Developing Carbon Budgets for Cities: Phoenix as a Case Study

    NASA Astrophysics Data System (ADS)

    McHale, M. R.; Baker, L. A.; Koerner, B. A.; Grimm, N. B.

    2008-12-01

    Studies have shown that cities can alter regional carbon dynamics through changing ecosystem productivity, overall carbon cycling rate, and total carbon storage in vegetation and soils. Furthermore, people in urban regions import a large amount of carbon in food and fuel, as well as release an exceptional amount of CO2 into the atmosphere. Numerous studies have attempted to quantify some sources and sinks of carbon in urban areas, although a complete carbon budget for a city that accounts for total inputs, outputs, and storage within the ecosystem has yet to be fully accomplished. One challenge is associated with attaining the data necessary to accurately account for all carbon dynamics in these heterogeneous and complex ecosystems. Our goal was to estimate a budget for the Phoenix metropolitan area while developing methodology to calculate carbon dynamics in urban systems that can be applied to cities across the US. Only with comparable carbon budgets for multiple cities will we finally begin to understand the influence of urbanization on carbon dynamics. Our analysis shows when calculating certain variables like transportation emissions, results can vary radically (up to 250%) depending on the data source and methodology implemented (i.e. bottom-up vs. top-down). A common assumption is that productivity and carbon storage will increase with urbanization in arid systems due to water and nutrient inputs, as well as changes in vegetation structure; however, our results indicated that this may not actually be the case in Phoenix where a large number of residents design landscapes to conserve water. Even if all urban expansion was dedicated to landscapes designed for carbon sequestration and storage, vegetation and soils will unlikely have a large effect on the C budget without significant changes in transportation and lifestyle choices.

  19. Chemical characteristics of urban stormwater sediments and implications for environmental management, Maricopa County, Arizona

    SciTech Connect

    Parker, J.T.C.; Fossum, K.D.; Ingersoll, T.L.

    2000-07-01

    Investigations of the chemical characteristics of urban stormwater sediments in the rapidly growing Phoenix metropolitan area of Maricopa County, Arizona, showed that the inorganic component of these sediments generally reflects geologic background values. Some concentrations of metals were above background values, especially cadmium, copper, lead, and zinc, indicating an anthropogenic contribution of these elements to the sediment chemistry. Concentrations, however, were not at levels that would require soil remediation according to guidelines of the US Environmental Protection Agency. Arsenic concentrations generally were above recommended values for remediation at a few sites, but these concentrations seem to reflect geologic rather than anthropogenic factors. Several organochlorine compounds no longer in use were ubiquitous in the Phoenix area, although concentrations generally were low. Chlordane, DDT and its decay products DDE and DDD, dieldrin, toxaphene, and PCBs were found at almost all sites sampled, although some of the pesticides in which these compounds are found have been banned for almost 30 years. A few sites showed exceptionally high concentrations of organochlorine compounds. On the basis of published guidelines, urban stormwater sediments do not appear to constitute a major regional environmental problem with respect to the chemical characteristics investigated here. At individual sites, high concentrations of organic compounds--chlordane, dieldrin, PCBs, and toxaphene--may require some attention. The possible environmental hazard presented by low-level organochlorine contamination is not addresses in this paper; however, high levels of toxicity in urban sediments are difficult to explain. Sediment toxicity varied significantly with time, which indicates that these tests should be evaluated carefully before they are used for management decisions.

  20. Phoenix Landing Site Geomorphology: Surface Stability and Implications for the Martian Latitude-dependent Mantle

    NASA Astrophysics Data System (ADS)

    Levy, J. S.; Head, J. W.; Marchant, D. R.

    2009-03-01

    Geomorphological observations of the Phoenix landing site suggest a history for local permafrost recently dominated by excess ice removal through sublimation, ongoing thermal contraction cracking, and limited cryoturbation by wet or dry processes.