Science.gov

Sample records for 850-hpa zonal winds

  1. Titan's zonal winds in its lower stratosphere

    NASA Astrophysics Data System (ADS)

    Flasar, F. Michael; Schinder, Paul J.

    2016-10-01

    Titan's atmosphere near 80 km (20 mbar) marks the transition between lower altitudes, where radiative damping times are large and seasonal variations are muted, and higher higher altitudes, where the damping times are much smaller and temperatures and winds vary significantly over the year. Cassini radio occultation soundings at high northern latitudes in winter have indicated a sharp transition from a highly stable temperature profile in the lower stratosphere to a layer between 80 and 100 km where temperatures decrease with altitude. The cause of this destabilization may be associated with the enhanced infrared opacity of a cloud of organic ices. It is curious that 20 mbar is also the level where the Doppler Wind Experiment on the Huygens Probe at 10° S observed a deep minimum in the zonal wind profile. Application of the gradient wind relation to the altitude-pressure profiles obtained from the Cassini radio occultation soundings have shown that this minimum is global. More recent soundings, obtained as Titan's southern hemisphere moves toward winter, indicate that this structure persists. The cause of this peculiar behavior is not really understood, but the the deceleration of the zonal winds observed in the lower stratosphere may be caused by radiative damping of vertically propagating atmospheric waves in a region where the damping time decreases rapidly with altitude.

  2. A dynamo driven by zonal winds at the upper surface

    NASA Astrophysics Data System (ADS)

    Guervilly, C.; Cardin, P.

    2009-12-01

    In a first approximation, Jupiter is made of two fluid layers: a deep metallic hydrogen layer where the jovian dynamo is generated and a superficial “atmospheric” non metallic envelope of approximately 10,000 km depth (10-20% of the total radius of the planet). Recent numerical simulations of three-dimensional rotating convection in a relatively thin spherical shell modelling the atmospheric layer of Jupiter reproduce zonal winds similar to the bands visible on Jupiter’s surface [1]. The simulated flow displays a quasi two-dimensional structure aligned with axis of rotation. Thus [1] suggests that the zonal winds may be “deep rooted” within Jupiter’s interior. These zonal winds are believed to be damped within the deep metallic hydrogen layer [2]. The main question that leads to our work is simple: can the external forcing created by the zonal winds at the top of the metallic hydrogen region drive a dynamo? The external zonal winds generate geostrophic shear layers inside which may lead to non-axisymmetric hydrodynamic instabilities. Such instabilities are known to excite dynamo action [3], [4] and the jovian dynamo will be discussed following these ideas. [1] Heimpel, M.H., Aurnou, J.M., Wicht, J., 2005. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193-196. [2] Kirk, R.L., Stevenson, D.J., 1987. Hydromagnetic constraints on deep zonal flow in the giant planets. Astrophys. J. 316, 816-846 [3] Guervilly C. and Cardin P., 2009. Numerical simulations of dynamos generated in spherical Couette flows, submitted to Geophys. Astrophys. Fluid Dyn. [4] Schaeffer, N. and Cardin, P., 2006. Quasi-geostrophic kinematic dynamos at low magnetic Prandtl number. Earth Planet. Sci. Lett., 245, 595-604.

  3. Analysis of Venusian Zonal Winds Using Venus Express Data

    NASA Astrophysics Data System (ADS)

    McCabe, Ryan M.; Sayanagi, Kunio M.; Blalock, John J.; Peralta, Javier; Gray, Candace L.; McGouldrick, Kevin; Imamura, Takeshi

    2016-10-01

    We measure the zonal mean wind structure of Venus between 2006 and 2013 in the ultraviolet images captured by the Venus Monitoring Camera (VMC) onboard the ESA Venus Express spacecraft. Our wind measurements employ the digital two-dimensional Correlation Imaging Velocimetry method to track cloud motions. Our current focus is on understanding the short- and long-term dynamics of Venus's atmospheric superrotation, in which the equatorial atmosphere rotates with a period of approximately 4-5 days (~60 times faster than the solid planet). The Venusian atmospheric superrotation's forcing and maintenance mechanisms remain to be explained. A number of studies have been published on the cloud-tracking wind measurements on Venus, however, those different measurements have not reached a consensus on the temporal evolution of the zonal wind structure (e.g., Kouyama et al 2013, Khatuntsev et al 2013, Patsaeva et al. 2015). Temporal evolution of the zonal wind could reveal the transport of energy and momentum and eventually shed a light on mechanisms that maintain the superrotation. Our first goal is to characterize the temporal dynamics of Venus's zonal wind profile and two-dimensional wind field, in which we will search for equatorial waves (in particular the so-called "Y-feature") that may force the Venusian atmospheric superrotation.Kouyama, T. et al (2013), J. Geophys. Res. Planets, 118, 37–46, doi:10.1029/2011JE004013.Khatuntsev et al. (2013), Icarus, 226, 140-158, doi:10.1016/j.icarus.2013.05.018.Patsaeva,M.V.,et al. (2015), Planetary and Space Science, 113, 100-108, doi:10.1016/j.pss.2015.01.013.

  4. Zonal drifts of irregularities imparted by meridional winds.

    NASA Technical Reports Server (NTRS)

    Waldman, H.; Da Rosa, A. V.

    1973-01-01

    In a uniform ionosphere, meridional winds cause only meridional motions of irregularities. It is shown, however, that, if F-region irregularities are considered in a real ionosphere in which there is a highly conductive E-layer, zonal motions occur. During the day a substantial westward drift takes place, while at night the drift is eastward but smaller, owing to the much smaller E-layer conductivity. Thus, the effect of meridional winds is to impart a net westward drift to small irregularities in the ionization, provided such irregularities persist long enough.

  5. Nonstationary Gravity Wave Forcing of the Stratospheric Zonal Mean Wind

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Rosenlof, K. H.

    1996-01-01

    The role of gravity wave forcing in the zonal mean circulation of the stratosphere is discussed. Starting from some very simple assumptions about the momentum flux spectrum of nonstationary (non-zero phase speed) waves at forcing levels in the troposphere, a linear model is used to calculate wave propagation through climatological zonal mean winds at solstice seasons. As the wave amplitudes exceed their stable limits, a saturation criterion is imposed to account for nonlinear wave breakdown effects, and the resulting vertical gradient in the wave momentum flux is then used to estimate the mean flow forcing per unit mass. Evidence from global, assimilated data sets are used to constrain these forcing estimates. The results suggest the gravity-wave-driven force is accelerative (has the same sign as the mean wind) throughout most of the stratosphere above 20 km. The sense of the gravity wave forcing in the stratosphere is thus opposite to that in the mesosphere, where gravity wave drag is widely believed to play a principal role in decelerating the mesospheric jets. The forcing estimates are further compared to existing gravity wave parameterizations for the same climatological zonal mean conditions. Substantial disagreement is evident in the stratosphere, and we discuss the reasons for the disagreement. The results suggest limits on typical gravity wave amplitudes near source levels in the troposphere at solstice seasons. The gravity wave forcing in the stratosphere appears to have a substantial effect on lower stratospheric temperatures during southern hemisphere summer and thus may be relevant to climate.

  6. Effects of Zonal Wind on Stratospheric Ozone Variations over Nigeria

    NASA Astrophysics Data System (ADS)

    Chidinma Okoro, Eucharia,

    2016-07-01

    The effects of zonal wind on stratospheric ozone variation over Nigeria have been studied. The areas covered in this study include; Maiduguri, Ikeja, Port-Harcourt, Calabar, Makurdi, Ilorin, Akure, Yola, Minna, Jos, Kano and Enugu in Nigeria, from 1986 to 2008. Zonal wind was computed from the iso-velocity map employing MATLAB software. The mean monthly variations of AAM and LOD at pressure levels of 20, 30 and 50 mb in the atmosphere depict a trend of maximum amplitude between April and September, and minimum amplitude between December and March. The trend observed in seasonal variation of O3 column data in the low latitude had maximum amount from May through August and minimum values from December through February. The mean monthly maximum O3 concentrations was found to be 284.70 Du (Kano) occurring in May 1989 while, an average monthly minimum O3 concentration was found to be 235.60 Du (Port-Harcourt and Calabar) occurring in January 1998. It has been established in this study that, the variation in atmospheric angular momentum (AAM) caused by variation of the universal time or length of day (LOD) transfer ozone (O3) by means of zonal wind from the upper troposphere to the lower stratosphere in the stations understudy. The strong effect of the pressure levels of the atmosphere on O3 variation could be attributed to its effect on the AAM and LOD. Variation in the LOD is significant in the tropics, suggesting that, the effects of the extra-tropical suction pump (ETSP) action is not the only driver responsible for O3 transportation from the tropics to extra-tropical zones. Consequently, these findings lead to a deduction that weather pattern alteration observed due to these changes could lead to climate change. Keywords: ozone variations; dynamical processes; harmattan wind; ETSP; and climatic variability

  7. The Galileo probe Doppler wind experiment: Measurement of the deep zonal winds on Jupiter

    NASA Astrophysics Data System (ADS)

    Atkinson, David H.; Pollack, James B.; Seiff, Alvin

    1998-09-01

    During its descent into the upper atmosphere of Jupiter, the Galileo probe transmitted data to the orbiter for 57.5 min. Accurate measurements of the probe radio frequency, driven by an ultrastable oscillator, allowed an accurate time history of the probe motions to be reconstructed. Removal from the probe radio frequency profile of known Doppler contributions, including the orbiter trajectory, the probe descent velocity, and the rotation of Jupiter, left a measurable frequency residual due to Jupiter's zonal winds, and microdynamical motion of the probe from spin, swing under the parachute, atmospheric turbulence, and aerodynamic buffeting. From the assumption of the dominance of the zonal horizontal winds, the frequency residuals were inverted and resulted in the first in situ measurements of the vertical profile of Jupiter's deep zonal winds. A number of error sources with the capability of corrupting the frequency measurements or the interpretation of the frequency residuals were considered using reasonable assumptions and calibrations from prelaunch and in-flight testing. It is found that beneath the cloud tops (about 700 mbar) the winds are prograde and rise rapidly to 170 m/s at 4 bars. Beyond 4 bars to the depth at which the link with the probe was lost, nearly 21 bars, the winds remain constant and strong. Corrections for the high temperatures encountered by the probe have recently been completed and provide no evidence of diminishing or strengthening of the zonal wind profile in the deeper regions explored by the Galileo probe.

  8. Titan's Temperature and Zonal Wind Structure and Seasonal Behavior

    NASA Astrophysics Data System (ADS)

    Flasar, F.; Achterberg, Richard; Schinder, Paul

    2016-06-01

    Titan's atmosphere near 80 km (20 mbar) marks the transition between large radiative damping times at lower altitudes, where seasonal variations are muted, and small damping times higher up, where temperatures and winds vary significantly over the year. Cassini CIRS and Radio-Occultation measurements obtained in 2004-2016 have tracked the evolution of temperatures and winds in Titan's atmosphere from early northern winter to late spring. In winter, the northern hemisphere was characterized by cold temperatures at high latitudes in the lower stratosphere and a strong circumpolar vortex that extended to subtropical northern latitudes. At high altitudes over the north pole, there was an elevated stratopause with a temperature roughly 30 K above the seasonal average, associated with subsidence and adiabatic warming. As the northern hemisphere has moved toward summer the dissolution of the circumpolar vortex has been gradual, and there is no evidence of rapid distortion and disruption forced by planetary waves like that seen on Earth. During this time, the southern hemisphere has cooled fairly abruptly at high latitudes. A circumpolar vortex has formed in the stratosphere, but it is more compact than seen in the north, with maximum winds at 60°S. Potential vorticity maps now indicate steep meridional gradients at high southern latitudes, implying a barrier to efficient mixing between the polar region and lower latitudes. One of the curious features of Titan's temperatures has been the destabilization seen in the winter north polar region, where negative temperature gradients were observed between 80 and 100 km. As the southern hemisphere moves toward winter, temperatures retrieved from radio occultation soundings have shown the early development this phenomenon at high southernlatitudes. The cause of the destabilization in winter may be associated with a cloud of organic ices. However, the transition region near 80 km is also where the zonal winds exhibit a sharp

  9. Zonal winds near Venus' cloud top level - An analytic model of the equatorial wind speed

    NASA Technical Reports Server (NTRS)

    Leovy, Conway B.

    1987-01-01

    A consequence of the presently hypothesized maintenance of the equatorial wind speed near the cloud top level of Venus by a balance between the semidiurnal tide's pumping and the Hadley circulation's vertical advection (both integrated across the thermal driving region) is that the maximum equatorial zonal wind speed is proportional to the product of the buoyancy frequency and the magnitude of the driving region's thickness. The proportionality constant is characterized as a weakly increasing function of the heating rate, and a decreasing function of the product of an inverse length, expressing the mean zonal wind shear, and the driving region thickness. For the class of solutions thus treated, there is a threshold heating rate value below which no equilibrium satisfies the prescribed balance.

  10. Ion Layer Separation and Equilibrium Zonal Winds in Midlatitude Sporadic E

    NASA Technical Reports Server (NTRS)

    Earle, G. D.; Kane, T. J.; Pfaff, R. F.; Bounds, S. R.

    2000-01-01

    In-situ observations of a moderately strong mid-latitude sporadic-E layer show a separation in altitude between distinct sublayers composed of Fe(+), Mg(+), and NO(+). From these observations it is possible to estimate the zonal wind field consistent with diffusive equilibrium near the altitude of the layer. The amplitude of the zonal wind necessary to sustain the layer against diffusive effects is less than 10 meters per second, and the vertical wavelength is less than 10 km.

  11. Saturn’s Zonal Winds at Cloud Level between 2004-2013 from Cassini ISS Images

    NASA Astrophysics Data System (ADS)

    Blalock, John J.; Sayanagi, Kunio M.; Dyudina, Ulyana A.; Ewald, Shawn P.; Ingersoll , Andrew P.

    2014-11-01

    We examine images of Saturn returned by Cassini orbiter’s Imaging Science Subsystem (ISS) camera between 2004 to 2013 to analyze the temporal evolution of the zonal mean wind speed as a function of latitude. Our study primarily examines the images captured in the 752-nm continuum band using the CB2 filter. Images captured using the CB2 filter sense the upper troposphere of Saturn between 350 mbar and 500 mbar (Pérez-Hoyos and Sánchez-Lavega, 2006; Sánchez-Lavega et al, 2006; García-Melendo et al, 2009). We measure the wind speed using a two-dimensional Correlation Imaging Velocimetry (CIV) technique. The wind vectors are computed using pairs of images separated in time by up to two planetary rotations, and binned in latitude to determine the zonal mean wind profile, which typically covers a limited range of latitude. To achieve pole-to-pole coverage, we systematically merge all the wind measurements during each of the calendar years in order to compile a yearly, near-global record of Saturn's zonal wind structure. Using our wind measurements, we analyze the temporal evolution of the zonal wind. We specifically focus on changes in the wind profile after the 2009 equinox; we predict that changes in the insolation pattern caused by the shifting ring shadows affect the horizontal temperature gradient, and change the zonal mean wind through the thermal wind relationship. Furthermore, we also extend the zonal wind analysis by Sayanagi et al (2013), who detected changes in the zonal wind related to the Great Storm of 2010-2011, to study the subsequent evolution of the region affected by the storm. We compare our results with previously published zonal wind profiles obtained from Voyager 1 and 2 (Sánchez-Lavega et al, 2000) and Cassini (García-Melendo et al, 2011). Out study is supported by the Cassini Project, and our investigation is funded by NASA Outer Planets Research Program grant NNX12AR38G and NSF Astronomy and Astrophysics grant 1212216 to KMS.

  12. Rossby-Khantadze electromagnetic planetary waves driven by sheared zonal winds in the E-layer ionosphere

    SciTech Connect

    Futatani, S.; Horton, W.; Kahlon, L. Z.; Kaladze, T. D.

    2015-01-15

    Nonlinear simulations of electromagnetic Rossby and Khantadze planetary waves in the presence of a shearless and sheared zonal flows in the weakly ionized ionospheric E-layer are carried out. The simulations show that the nonlinear action of the vortex structures keeps the solitary character in the presence of shearless zonal winds as well as the ideal solutions of solitary vortex in the absence of zonal winds. In the presence of sheared zonal winds, the zonal flows result in breaking into separate multiple smaller pieces. A passively convected scalar field is shown to clarify the transport associated with the vortices. The work shows that the zonal shear flows provide an energy source into the vortex structure according to the shear rate of the zonal winds.

  13. Rossby-Khantadze electromagnetic planetary waves driven by sheared zonal winds in the E-layer ionosphere

    NASA Astrophysics Data System (ADS)

    Futatani, S.; Horton, W.; Kahlon, L. Z.; Kaladze, T. D.

    2015-01-01

    Nonlinear simulations of electromagnetic Rossby and Khantadze planetary waves in the presence of a shearless and sheared zonal flows in the weakly ionized ionospheric E-layer are carried out. The simulations show that the nonlinear action of the vortex structures keeps the solitary character in the presence of shearless zonal winds as well as the ideal solutions of solitary vortex in the absence of zonal winds. In the presence of sheared zonal winds, the zonal flows result in breaking into separate multiple smaller pieces. A passively convected scalar field is shown to clarify the transport associated with the vortices. The work shows that the zonal shear flows provide an energy source into the vortex structure according to the shear rate of the zonal winds.

  14. Calculation of Zonal Winds using Accelerometer and Rate Data from Mars Global Surveyor

    NASA Technical Reports Server (NTRS)

    Baird, Darren T.; Tolson, Robert; Bougher, Stephen; Steers, Brian

    2006-01-01

    The Mars Global Surveyor spacecraft was initially placed into a high eccentricity, nearly polar orbit about Mars with a 45-hour period. To accomplish the science objectives of the mission, a 2-hour, circular orbit was required. Using a method known as aerobraking, numerous passes through the upper atmosphere slowed the spacecraft, thereby reducing the orbital period and eccentricity. To successfully perform aerobraking, the spacecraft was designed to be longitudinally, aerodynamically stable in pitch and yaw. Since the orbit is nearly polar, the yaw orientation of the spacecraft was sensitive to disturbances caused by the zonal components of wind (east-to-west or west-to-east) acting on the spacecraft at aerobraking altitudes. Zonal wind velocities were computed by equating the aerodynamic and inertia-related torques acting on the spacecraft. Comparisons of calculated zonal winds with those computed from the Mars Thermospheric Global Circulation Model are discussed.

  15. Measurements of Seasonal Changes in Saturn's Zonal Wind and Vertical Wind Shear between 2004 and 2016 from Cassini ISS Images

    NASA Astrophysics Data System (ADS)

    Blalock, John J.; Sayanagi, Kunio M.; Ingersoll, Andrew P.; Dyudina, Ulyana A.; Ewald, Shawn P.

    2016-10-01

    We present updated zonal wind measurements of Saturn using Cassini ISS images between 2004 and 2016. In addition, we present measurements of the vertical wind shear between the cloud levels sensed in the near-infrared continuum band at 750 nm (CB2 filter) and the methane bands at 727 and 889 nm (MT2 and MT3 filters). We previously reported that there may be small seasonal changes in Saturn's zonal wind profile but it was inconclusive due to measurement uncertainties. In our previous reports, we used the zonal standard deviation of the wind vectors as a proxy for the measurement uncertainty. However, zonal standard deviation contains contributions from both real spatial variations in the wind speed as well as uncertainties in the measurements. This raised a difficulty in distinguishing small, real changes in the wind field from the uncertainties in the measurement. We have developed a technique which isolates real spatial variations from measurement uncertainties by analyzing the correlation fields produced in the two-dimensional Correlation Imaging Velocimetry (CIV) cloud-tracking wind measurement method. In our new method, for each single wind vector measurement, we fit an ellipse to the correlation threshold contour, and define it as the uncertainty ellipse of each wind vector. The advantage of our method is that it allows quantification of the anisotropic uncertainty components of each single wind vector, i.e., using the uncertainty ellipse, we deduce the northward, southward, eastward and westward uncertainties for each wind vector from the correlation peak. Comparing the uncertainty values of each wind vector to the zonal standard deviation of all wind vectors at each latitude allows us to decouple the real spatial variations in the wind from the measurement uncertainties. Using this technique, our measurements show small seasonal variations in Saturn's zonal wind profile as well as the vertical wind shear. As a next step, we plan to apply our uncertainty

  16. The response of equatorial electrojet, vertical plasma drift, and thermospheric zonal wind to enhanced solar wind input

    NASA Astrophysics Data System (ADS)

    Xiong, Chao; Lühr, Hermann; Fejer, Bela G.

    2016-06-01

    In this study we used observations from the CHAMP and ROCSAT-1 satellites to investigate the solar wind effects on the equatorial electrojet (EEJ), vertical plasma drift, and thermospheric zonal wind. We show that an abrupt increase in solar wind input has a significant effect on the low-latitude ionosphere-thermosphere system, which can last for more than 24 h. The disturbance EEJ and zonal wind are mainly westward for all local times and show most prominent responses during 07-12 and 00-06 magnetic local time (MLT), respectively. The equatorial disturbance electric field is mainly eastward at night (most prominent for 00-05 MLT) and westward at daytime with small amplitudes. In this study we show for the first time that the penetration electric field is little dependent on longitude at both the day and night sides, while the disturbance zonal wind is quite different at different longitude sectors, implying a significant longitudinal dependence of the ionospheric disturbance dynamo. Our result also indicates that the F region equatorial zonal electric field reacts faster than E region dynamo, to the enhanced solar wind input.

  17. Monthly Climatology of Thermospheric Zonal and Meridional Winds Obtained from a Kalman Filter Model

    NASA Astrophysics Data System (ADS)

    Scherliess, L.; Lomidze, L.

    2015-12-01

    Knowledge of the thermospheric neutral wind and its meridional and zonal components is critical for an improved understanding of the low- and mid-latitude F-region dynamics and morphology. To date, the reliable estimation of the wind and its components remains a challenge because of difficulties in both measurement and modeling. Previous methods that use ionospheric measurements to deduce winds provide their values only in the direction of the magnetic meridian. We will present the monthly climatology of the zonal and meridional components of thermospheric neutral wind at low and mid-latitudes obtained by a Kalman Filter technique. First, the climatology of the magnetic meridional wind is obtained by assimilating monthly maps of F-region ionosphere peak parameters (NmF2 and hmF2), obtained from COSMIC radio occultation data, into the Global Assimilation of Ionospheric Measurements Full Physics (GAIM-FP) model. The model provides the 3-D electron density throughout the ionosphere, together with the magnetic meridional wind. Next, the estimation of the global zonal and meridional wind components is performed using the newly developed Thermospheric Wind Assimilation Model (TWAM). TWAM combines magnetic meridional wind data obtained from GAIM-FP with a physics-based 3-D thermospheric neutral wind model using an implicit Kalman Filter technique. The ionospheric drag and ion diffusion velocities, needed for the wind calculation, are also taken from the GAIM-FP model. We present the monthly climatology of our wind estimation and compare individual horizontal wind components to their corresponding empirical model values and to measurements made by interferometers.

  18. Interannual fluctuations of intraseasonal variance of near-equatorial zonal winds

    NASA Astrophysics Data System (ADS)

    Gutzler, David S.

    Interannual fluctuations of intraseasonal variance are investigated in zonal wind time series from six stations in the near-equatorial eastern Indian and western Pacific Oceans, in order to document the interannual variability of the Madden-Julian oscillation. Each time series is subjected to band-pass filtering that retains fluctuations with periods between about 30 and 60 days. The variance of the filtered data is calculated for each season in the data record and is compared with the variance of unfiltered wind anomalies and with the interannual variance of seasonal means. The principal systematic interannual modulation of 30- to 60-day wind variance occurs in time series of lower tropospheric winds (surface and 850 mbar) at the stations between 14°E and the international date line, where intraseasonal variance is enhanced during the well-developed stages of El Niño-Southern Oscillation warm events. No systematic interannual modulation of intraseasonal zonal wind variance is found in the records from stations west of 140°E or in 200-mbar zonal winds.

  19. Proposed geomagnetic control of semiannual waves in the mesospheric zonal wind

    NASA Technical Reports Server (NTRS)

    Belmont, A. D.; Nastrom, G. D.; Mayr, H. G.

    1975-01-01

    The polar semiannual oscillation in zonal wind explains midwinter weakening of the polar vortex and the relatively short stratospheric and mesospheric summer easterlies. The phase of the wind oscillation is equinoctial, as is the phase of the semiannual component in magnetic storm activity. For a given altitude, the contours of amplitude of the semiannual wind oscillation have less variability in geomagnetic than in geographic coordinates. It is suggested that the polar wind oscillations are caused by the semiannual maxima in magnetic storm activity, which lead to electron dissociation of O2 into O, in turn increasing ozone more rapidly than the dissociation of N2 destroys ozone, and inducing a semiannual variation in the thermal and wind fields. This implies that geomagnetic processes may cause or affect the development of sudden warmings. As the tropical semiannual wind oscillation is symmetric about the geomagnetic equator, the same processes may also influence the location of the tropical wind wave.

  20. Measurement of a zonal wind profile on Titan by Doppler tracking of the Cassini entry probe

    NASA Technical Reports Server (NTRS)

    Atkinson, D. H.; Pollack, J. B.; Seiff, A.

    1990-01-01

    A program, called the Cassini mission, intended to study the Saturn system by utilizing a Saturn orbiter and a probe descending to the surface of Titan, is discussed. Winds are expected to cause perturbations to the probe local horizontal velocity, resulting in an anomalous drift in the probe location and a shift in the frequency of the probe telemetry, due to the Doppler effect. By using an iterative algorithm, in which the time variation of the probe telemetry frequency is monitored throughout the descent, and the probe trajectory is updated to reflect the effect of wind on the probe location, a highly accurate relative wind profile can be recovered. By adding a single wind velocity, measured by independent means, an absolute wind profile can be obtained. However, the accuracy of the zonal winds recovery is limited by errors in trajectory, and frequency.

  1. Venus winds are zonal and retrograde below the clouds.

    PubMed

    Counselman, C C; Gourevitch, S A; King, R W; Loriot, G B; Prinn, R G

    1979-07-01

    Winds in the lower atmosphere of Venus, inferred from three-dimensional radio interferometric tracking of the descents of the Pioneer day and north probes, are predominantly easterly with speeds of about 1 meter per second near the surface, 50 meters per second at the bottom of the clouds, and more than 200 meters per second within the densest, middle cloud layer. Between about 25 and 55 kilometers altitude the average flow was slanted equatorward, with superimposed wavelike motions and alternating layers of high and low shear.

  2. Intraseasonal oscillations of the zonal wind near the mesopause observed with medium-frequency and meteor radars in the tropics

    NASA Astrophysics Data System (ADS)

    Isoda, Fusako; Tsuda, Toshitaka; Nakamura, Takuji; Vincent, R. A.; Reid, I. M.; Achmad, Effendy; Sadewo, Adi; Nuryanto, Agus

    2004-11-01

    We studied the behavior of intraseasonal oscillations (ISO) of the zonal wind velocity in the equatorial mesosphere and lower thermosphere (MLT) using simultaneous observations during 500 days from 1 January 1996 with a meteor radar at Jakarta (6°S, 107°E) and two medium-frequency radars at Pontianak (0°N, 109°E) and Christmas Island (2°N, 157°W). Cross-correlation analysis of the ISO at 88 km indicated that the phase difference of the ISO between Pontianak and Christmas Island is, on average, small in spite of the longitudinal difference of ˜90°. Therefore the ISO in the equatorial MLT region seems to be a variation of zonal mean flow. At Jakarta the amplitude of the ISO of the zonal wind at 88 km was somewhat smaller than that observed at the other two equatorial sites. The peak of the ISO amplitude appears at ˜88 km at both Pontianak and Christmas Island, but the peak seemed to be slightly lower at Jakarta. We also investigated long-term variation of the ISO of the zonal wind at 84 km using Jakarta meteor radar data observed from January 1993 to October 1999. Biennial variations are dominant in the ISO amplitude of the mesospheric zonal winds and the zonal amplitude variations of the diurnal tide. A relation between the ISO of the zonal wind and tidal amplitude is suggested. However, gravity wave activity in the MLT region did not correlate with the ISO in the zonal wind. We employed the outgoing longwave radiation (OLR) in the tropical troposphere as an index for excitation intensity of the atmospheric waves. The long-term variations of the ISO components in the OLR over the western Pacific were characterized by the tropospheric biennial oscillations, which seems to correlate with the ISO of the mean zonal winds and diurnal tides in the mesosphere.

  3. Interaction of zonal winds with the equatorial midnight pressure bulge in the earth's thermosphere - Empirical check of momentum balance

    NASA Technical Reports Server (NTRS)

    Herrero, F. A.; Mayr, H. G.; Spencer, N. W.; Hedin, A. E.; Fejer, B. G.

    1985-01-01

    The paper is concerned with the effect of the equatorial midnight pressure on the nighttime zonal winds in the altitude range 300-400 km. The analysis is based on zonal momentum balance of measured quantities at the specified altitude combined with the nighttime average-pressure variations given by the Atmosphere Explorer-E (AE-E) satellite and the ion density given by the model of Chiu (1975). It is found that the nighttime pressure variation obtained from temperatures and densities measured on AE-E is consistent with the observed variations in the zonal wind and that the zonal wind decay time due to ion drag and viscosity reasonably accounts for the observed decay in velocity leading to the midnight minimum.

  4. Characterization of the zonal wind flow in the stratosphere of Titan with UVES

    NASA Astrophysics Data System (ADS)

    Luz, D.; Courtin, R.; Gautier, D.; Lebreton, J.-P.; Approuchaux, T.; Ferri, F.; Lara, L.; Kaufer, A.; Hourdin, F.

    2003-05-01

    We will report on recent efforts to characterize the zonal wind flow in Titan's stratosphere. We have used the UVES echelle spectrometer mounted at ESO's VLT-UT2 to obtain high-resolution solar spectra reflected off Titan. The purpose of the observations has been to detect the differential Doppler shift induced by the zonal wind flow in the back-scattered solar radiation from the East and West limbs of Titan. Since the wind speed should not exceed 200 m/s, an absolute detection of the shift on single solar lines is not feasible due to the limited spectral resolution of UVES. This is why we apply a retrieval scheme developed for stellar accelerometry (Connes 1985, ApSS 110, 211; Martyc et al. 1999, A&A 351, 993) which makes use of the full spectral range ( ˜4200 to 6200 Angstroms for the red arm of the instrument) and takes into account all the lines present in the spectrum. Our results strongly suggest that the wind is prograde, which will allow to reduce the error ellipse of the Huygens probe by one half. DL acknowledges financial support from the Portuguese Foundation for Science and Technology (grant SFRH/BPD/3630/2000) and from Observatoire de Paris.

  5. Zonal Wind Speeds, Vortex Characteristics, and Wave Dynamics in Saturn's Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Blalock, John J.; Draham, R. L.; Holmes, J. A.; Sayanagi, K. M.

    2013-10-01

    We examine images returned from Cassini spacecraft's ISS camera between 2007 and 2012 to analyze zonal wind speeds, vortex characteristics, and wave dynamics in Saturn's northern hemisphere. Our analysis focused on datasets that provided near-simultaneous coverage in the near-infrared continuum band at 752 nm (CB2 filter) and the methane bands at 727 and 890 nm (MT2 and MT3 filters). We measure the zonal wind speeds by analyzing cloud motions using one-dimensional correlation method similar to Limaye (1986). Our goal is to determine the vertical wind shear on Saturn in a manner similar to that done for Jupiter by Li et al (2006). Because the images captured in the methane bands are sensitive to higher altitudes than those in the continuum band, we are able to measure wind speeds at different altitudes. Next, we study the characteristics of multiple northern hemisphere vortices using methods similar to the analysis of a long-lived cyclonic spot in the southern hemisphere of Saturn (del Rio-Gatztelurrutia et al, 2010). We analyze the interactions and evolutions of the vortices, and compare them with the Voyager-era northern hemisphere study (Sromovsky et al, 1983). Finally, we analyze the dynamics of the wave propagating at 45 degree N planetocentric latitude in the northern flank of an eastward zonal jet that peaks at 42 degree N. This new wave is located to the north of the Ribbon wave at 42 degree N originally found during Voyager (Sromovsky et al, 1983; Godfrey and Moore, 1986); the Ribbon wave was not present in our 2007-2012 images. We calculate the Fourier components of the new wave, and compare our findings with previous analyses and prediction of the Ribbon wave (Sromovsky et al, 1983; Godfrey and Moore, 1986; Sanchez-Lavega, 2002; Sayanagi et al, 2010).

  6. Characterization of the Zonal Wind Flow in the Stratosphere of Titan with UVES

    NASA Astrophysics Data System (ADS)

    Luz, D.; Courtin, R.; Gautier, D.; Ferri, F.; Appourchaux, T.; Lebreton, J.-P.; Cabane, M.; Rannou, P.; Hourdin, F.; Lara, L.; Kaufer, A.

    2002-09-01

    We will report on recent efforts to characterize the zonal wind flow in Titan's stratosphere. We used the UVES echelle spectrometer at the focus of the UT2 of the Very Large Telescope at Paranal, Chile, to measure the reflection spectrum of Titan between 4200 and 6200 angstrom with a resolution of 80,000. The purpose of these observations, which were carried out in February 2002, is to detect the differential Doppler shift induced by the zonal wind flow between the East and West limbs of Titan. However, because the wind speed is not expected to exceed 200 m/s, an absolute detection of the Doppler shift on isolated solar lines is not feasible, even at the spectral resolution of UVES. Therefore, we have made use of a retrieval scheme developed for absolute stellar accelerometry (Connes 1985, ApSS 110, 211; Martic et al. 1999, A&A 351, 993) to extract the velocity signal by simultaneously taking into account all the lines present in the spectrum. We will describe the method and discuss preliminary results. Research supported by the "Programme National de Planetologie" of the Institut National des Sciences de l'Univers (France). D. Luz acknowledges financial support by the Portuguese Foundation for Science and Technology, ref.SFRH-BPD-3630-2000.

  7. Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses

    NASA Astrophysics Data System (ADS)

    Kawatani, Yoshio; Hamilton, Kevin; Miyazaki, Kazuyuki; Fujiwara, Masatomo; Anstey, James A.

    2016-06-01

    This paper reports on a project to compare the representation of the monthly-mean zonal wind in the equatorial stratosphere among major global atmospheric reanalysis data sets. The degree of disagreement among the reanalyses is characterized by the standard deviation (SD) of the monthly-mean zonal wind and this depends on latitude, longitude, height, and the phase of the quasi-biennial oscillation (QBO). At each height the SD displays a prominent equatorial maximum, indicating the particularly challenging nature of the reanalysis problem in the low-latitude stratosphere. At 50-70 hPa the geographical distributions of SD are closely related to the density of radiosonde observations. The largest SD values are over the central Pacific, where few in situ observations are available. At 10-20 hPa the spread among the reanalyses and differences with in situ observations both depend significantly on the QBO phase. Notably the easterly-to-westerly phase transitions in all the reanalyses except MERRA are delayed relative to those directly observed in Singapore. In addition, the timing of the easterly-to-westerly phase transitions displays considerable variability among the different reanalyses and this spread is much larger than for the timing of the westerly-to-easterly phase changes. The eddy component in the monthly-mean zonal wind near the Equator is dominated by zonal wavenumber 1 and 2 quasi-stationary planetary waves propagating from midlatitudes in the westerly phase of the QBO. There generally is considerable disagreement among the reanalyses in the details of the quasi-stationary waves near the Equator. At each level, there is a tendency for the agreement to be best near the longitude of Singapore, suggesting that the Singapore observations act as a strong constraint on all the reanalyses. Our measures of the quality of the reanalysis clearly show systematic improvement over the period considered (1979-2012). The SD among the reanalysis declines significantly over

  8. On the long-term variability of Jupiter and Saturn zonal winds

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, A.; Garcia-Melendo, E.; Hueso, R.; Barrado-Izagirre, N.; Legarreta, J.; Rojas, J. F.

    2012-12-01

    We present an analysis of the long-term variability of Jupiter and Saturn zonal wind profiles at their upper cloud level as retrieved from cloud motion tracking on images obtained at ground-based observatories and with different spacecraft missions since 1979, encompassing about three Jovian and one Saturn years. We study the sensitivity and variability of the zonal wind profile in both planets to major planetary-scale disturbances and to seasonal forcing. We finally discuss the implications that these results have for current model efforts to explain the global tropospheric circulation in these planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] Sánchez-Lavega A., et al., Icarus, 147, 405-420 (2000). [2] García-Melendo E., Sánchez LavegaA., Icarus, 152, 316-330 (2001) [3] Sánchez-Lavega A., et al., Nature, 423, 623-625 (2003). [4] García-Melendo E., et al., Geophysical Research Letters, 37, L22204 (2010).

  9. Interaction of alternating oceanic zonal jets and wind-driven gyres

    NASA Astrophysics Data System (ADS)

    Nadiga, Balu; Straub, David

    2008-11-01

    Recent evidence has unmasked the presence of alternating zonal jets superimposed on the larger scale midlatitude ocean circulation. Analogous jets are well-known from β-plane turbulence and are associated w ith a halting of the 2d inverse energy cascade by Rossby wave dispersion. Both the β-plane turbulence and the gyre scale dynamics are nonlinear and it seems reasonable to anticipate that the two will inter act. Some evidence for these interactions comes from observations: e.g., jets in the N. Atlantic are aligned at an angle to latitude circles, following a direction nearly parallel to the seaward extension of the Gulf Stream. In the North Pacific, both the jets and the Kuroshio extension are more nearly zonal. How jets interact with the wind-driven cirulation is considered in the quasi-geostrophic equations in a box ge ometry forced by i) a large scale wind, ii) a small scale stochastic forcing and iii) both. The first cas e is the classic midlatitude double gyre problem, the second has previously been used to model the jets an d the third allows us to consider interactions between the two. We focus primarily on the energetics.

  10. A New Look at Titan's Zonal Winds from Cassini Radio Occultations

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Schinder, P. J.

    2012-01-01

    We use the existing thirteen Cassini radio'occultation soundings to construct a meridional cross section of geopotential height vs. pressure and latitude. The assumption of balanced flow permits the construction of a similar cross section of zonal winds, from near the surface to the 0.1'mbar level. In the lower troposphere, the winds are approx.10 m/s, except within 20deg of the equator, where they are much smaller. The winds increase higher up in the troposphere to nearly 40 m/s in the tropopause region, but then decay rapidly in the lower stratosphere to near'zero values at 20 mbar (approx.80 km), reminiscent of the Huygens Doppler Wind Experiment result. This null zone extends over most latitudes, except for limited bands at mid'latitudes. Higher up in the stratosphere, the winds become larger. They are highest in the northern (winter) hemisphere. We compare the occultation results with the DWE and CIRS retrievals and discuss the similarities and differences among the data sets.

  11. A statistical analysis of longitudinal dependences of upper thermospheric zonal winds at dip equator latitudes derived from CHAMP

    NASA Astrophysics Data System (ADS)

    Häusler, K.; Lühr, H.; Rentz, S.; Köhler, W.

    2007-08-01

    New observations, obtained by the accelerometer onboard the CHAMP satellite, reveal a detailed picture of the thermospheric zonal wind. Based on three years of data (2002 2004) we have studied the longitudinal dependence of the zonal delta wind (deviations from the zonal average) at the dip equator. The large number of passes (˜33 750) allows to consider several aspects of the wind characteristics at the same time. For this analysis we derived the longitudinal variation of the zonal delta wind at about 400 km altitude and investigated its dependence on solar flux, magnetic activity, and season. Major longitudinal dependences are confined to the morning hours, 03-09 local time (LT). The amplitude of the delta wind is approximately proportional to the latitudinal displacement of the magnetic dip equator from the geographic equator. The direction of the delta wind reverses sign between the June and December Solstices. During Equinox seasons these large scale features are almost absent. The flux level of solar EUV has no significant influence on the longitudinal variations. A dependence on magnetic activity could only be found during the post-sunset hours, 18-21 LT. Performing a Fourier transform of our delta wind velocities revealed a dominance of the wavenumber 4 in the Equinox data at some LT sectors. The wave-4 structure is a prevailing feature in the slowly precessing satellite frame, which has been recently reported, e.g. in nonmigrating tidal temperature measurements of the SABER instrument on the TIMED satellite in the Mesosphere Lower Thermosphere (MLT) region. Therefore, this statistical study of zonal wind longitudinal dependences provides new observational evidence for the coupling of the various atmospheric layers by nonmigrating tides.

  12. Predictions of zonal wind and angular momentum by the NMC medium-range forecast model during 1985-89

    NASA Technical Reports Server (NTRS)

    Rosen, Richard D.; Salstein, David A.; Nehrkorn, Thomas

    1991-01-01

    This paper investigates the quality of weather predictions of the atmosphere's relative angular momentum (M) made by the most recent version of the NMC medium-range forecast model (MRF88) during December 1985-1989. It was found that, compared with older versions of MRF, bias errors in the MRF88 forecasts of M became more prominent, while random errors were not affected. Both types of errors in the M forecasts could be traced to problems with forecasts in the zonal mean zonal wind in the tropics.

  13. Shape, zonal winds and gravitational field of Jupiter: a fully self-consistent, multi-layered model

    NASA Astrophysics Data System (ADS)

    Schubert, Gerald; Kong, Dali; Zhang, Keke

    2016-10-01

    We construct a three-dimensional, finite-element, fully self-consistent, multi-layered,non-spheroidal model of Jupiter consisting of an inner core, a metallic electrically conducting dynamo region and an outer molecular electrically insulating envelope. We assume that the Jovian zonal winds are on cylinders parallel to the rotation axis but, due to the effect of magnetic braking, are confined within the outer molecular envelope. Two related calculations are carried out. The first provides an accurate description of the shape and internal density profile of Jupiter; the effect of rotational distortion is not treated as a small perturbation on a spherically symmetric state. This calculation determines the density, size and shape of the inner core, the irregular shape of the 1-bar pressure level, and the internal structure of Jupiter; the full effect of rotational distortion, without the influence of the zonal winds, is accounted for. Our multi-layered model is able to produce the known mass, the known equatorial and polar radii, and the known zonal gravitational coefficient J2 of Jupiter within their error bars; it also yields the coefficients J4 and J6 within about 5% accuracy, and the core equatorial radius 0.09RJ containing 3.73 Earth masses.The second calculation determines the variation of the gravitational field caused solely by the effect of the zonal winds on the rotationally distorted non-spheroidal Jupiter. Four different cases, ranging from a deep wind profile to a very shallow profile, are considered and implications for accurate interpretation of the zonal gravitational coefficients expected from the Juno mission are discussed.

  14. A Pluto Central-Flash Occultation: Constraints on Haze Abundances, Temperature Profiles and Zonal Winds

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Young, Leslie; Olkin, Cathy; Barth, Erika

    2014-05-01

    Central flashes occur in occultation light curves when the observing station is located close to the center of the shadow path. We observed a double-peaked central flash event on 31-JUL-2007 from the Mt John Observatory in New Zealand, in two filters simultaneously. A stellar occultation by Pluto in 2002 was observed from various telescopes on Mauna Kea over wavelengths spanning B- through K-bands and showed compelling evidence of a wavelength-dependent opacity source. Unlike the 2002 results, the 2007 central flash light curve shows no difference between the 0.5 and 0.7 micron light curves, suggesting that the haze observed in 2002 is a variable phenomenon. In the absence of haze, the height of the central flash peaks must be due to differential refraction; the peaks therefore provide strong constraints on the location and magnitude of a thermal inversion in Pluto's atmosphere at the time of the event. Finally, the relative height and spacing of the two central flash peaks are extremely sensitive constraints on Pluto's oblateness, which in turn can constrain the magnitude of zonal winds.

  15. A bow-shaped thermal structure traveling upstream of the zonal wind flow of Venus atmosphere

    NASA Astrophysics Data System (ADS)

    Taguchi, Makoto; Fukuhara, Tetsuya; Imamura, Takeshi; Kouyama, Toru; Nakamura, Masato; Sato, Takao M.; Ueno, Munetaka; Suzuki, Makoto; Iwagami, Naomoto; Sato, Mitsuteru; Hashimoto, George L.; Takagi, Seiko; Akatsuki Science Team

    2016-10-01

    The Longwave Infrared Camera (LIR) onboard the Japanese Venus orbiter Akatsuki acquires a snap shot of Venus in the middle infrared region, and provides a brightness temperature distribution at the cloud-top altitudes of about 65 km. Hundreds of images taken by LIR have been transferred to the ground since the successful Venus orbit insertion of Akatsuki on Dec. 7, 2015. Here we report that a bow shaped thermal structure extending from the northern high latitudes to the southern high latitudes was found in the brightness temperature map on Dec. 7, 2015, and that it lasted for four days at least surprisingly at almost same geographical position. The bow shape structure looks symmetrical with the equator, and consists of a high temperature region in east or upstream of the background strong westward wind or the super rotation of the Venus atmosphere followed by a low temperature region in west with an amplitude of 5 K. It appeared close to the evening terminator in the dayside, and seems not to have stayed in the same local time rather to have co-rotated with the slowly rotating ground where the western part of Aphrodite Continent was below the center of the bow shape. Meridionally aligned dark filaments similar to the bow shape structure in shape but in much smaller scale were also identified in the brightness temperature map on Dec. 7, and they propagated upstream of the zonal wind as well. The bow shape structure disappeared when LIR observed the same local time and longitude in the earliest opportunity on Jan. 16, 2016. Similar events, though their amplitudes were less than 1 K, were found on Apr. 15 and 26, 2016, but they appeared in different local times and longitudes. A simulation of a gravity wave generated in the lower atmosphere and propagating upward reproduces the observed bow shape structure. The bow shape structure could be a signature of transferring momentum from the ground to the upper atmosphere.

  16. Jupiter's Great Red Spot and zonal winds as a self-consistent, one-layer, quasigeostrophic flow.

    PubMed

    Marcus, Philip S.; Lee, Changhoon

    1994-06-01

    We present the point of view that both the vortices and the east-west zonal winds of Jupiter are confined to the planet's shallow weather layer and that their dynamics is completely described by the weakly dissipated, weakly forced quasigeostrophic (QG) equation. The weather layer is the region just below the tropopause and contains the visible clouds. The forcing mimics the overshoot of fluid from an underlying convection zone. The late-time solutions of the weakly forced and dissipated QG equations appear to be a small subset of the unforced and undissipated equations and are robust attractors. We illustrate QG vortex dynamics and attempt to explain the important features of Jupiter's Great Red Spot and other vortices: their shapes, locations with respect to the extrema of the east-west winds, stagnation points, numbers as a function of latitude, mergers, break-ups, cloud morphologies, internal distributions of vorticity, and signs of rotation with respect to both the planet's rotation and the shear of their surrounding east-west winds. Initial-value calculations in which the weather layer starts at rest produce oscillatory east-west winds. Like the Jovian winds, the winds are east-west asymmetric and have Karman vortex streets located only at the west-going jets. From numerical calculations we present an empirically derived energy criterion that determines whether QG vortices survive in oscillatory zonal flows with nonzero potential vorticity gradients. We show that a recent proof that claims that all QG vortices decay when embedded in oscillatory zonal flows is too restrictive in its assumptions. We show that the asymmetries in the cloud morphologies and numbers of cyclones and anticyclones can be accounted for by a QG model of the Jovian atmosphere, and we compare the QG model with competing models.

  17. Mesospheric Zonal Mean Winds Derived from Consecutive Orbits of AIM Cips Images

    NASA Astrophysics Data System (ADS)

    Rong, P. P.; Yue, J.; Russell, J. M., III; Lumpe, J. D., Jr.; Gong, J.; Wu, D. L.; Randall, C. E.

    2014-12-01

    In order to infer mesospheric wind velocities, polar mesospheric cloud (PMC) pattern variations are investigated using images from consecutive orbits taken by the Cloud Imaging and Particle Size instrument (CIPS) aboard the AIM satellite. CIPS measurements are analyzed to detect patterns that repeat from one orbit to the next, but are displaced in location; the displacement provides a measure of the wind velocity. Pattern matching is achieved by re-sampling the CIPS data to a standard geographic grid with a horizontal resolution of 0.2° longitude × 0.05° latitude (~25 km2), and correlating patterns within geographic frames of size 24° longitude × 3.6° latitude. Such a frame size is arbitrarily chosen, but it covers a hierarchy of cloud structures including scales as large as several hundred kilometers. A relatively larger frame is required because after ~90 minutes, the time of one orbit, the smaller scale features are no longer conserved. Several thousand pairs, taken from 10-14 July 2007, are matched to derive the statistics. These pairs are mostly evenly distributed at longitudes and latitudes north of 70⁰N for each given day. The results suggest that the zonal velocity probability distribution during this 5-day period was peaked at around -40m/s with a 1-σ scatter of ~35m/s. The meridional velocity distribution peaked at 0 m/s with a 1-σ scatter of ~25m/s. These prevailing velocities can be determined with high precision because the corresponding patterns are shifted by at least half of the frame size from one orbit to the next. The CIPS cloud albedo on consecutive orbits is also examined for variations at fixed locations. The statistical results suggest that the mean cloud albedo within a given frame will most likely be weakened or strengthened by < 30% on consecutive orbits, although larger variations can occur with lower probability. Such a conclusion applies to both bright and dim clouds. This indicates that within 90 minutes the cloud brightness

  18. Investigating the zonal wind response to SST warming using transient ensemble AGCM experiments

    NASA Astrophysics Data System (ADS)

    Palipane, Erool; Lu, Jian; Staten, Paul; Chen, Gang; Schneider, Edwin K.

    2016-04-01

    The response of the atmospheric circulation to greenhouse gas-induced SST warming is investigated using large ensemble experiments with two AGCMs, with a focus on the robust feature of the poleward shift of the eddy driven jet. In these experiments, large ensembles of simulations are conducted by abruptly switching the SST forcing on from January 1st to focus on the wintertime circulation adjustment. A hybrid, finite amplitude wave activity budget analysis is performed to elucidate the nonlinear and irreversible aspects of the eddy-mean flow interaction during the adjustment of the zonal wind towards a poleward shifted state. The results confirm the results from earlier more idealized studies, particularly the importance of reduced dissipation of wave activity, in which the midlatitude decrease of effective diffusivity appears to be dominant. This reduction in dissipation increases the survival of midlatitude waves. These surviving waves, when reaching the upper propagation level in the upper troposphere, are subject to the influence of the increase of reflection phase speed at the poleward side of the mean jet, and thus more waves are reflected equatorward across the jet, giving rise to a poleward transport of momentum and thus an eddy momentum flux convergence for the poleward shift. The relative importance of wave breaking-induced PV mixing versus diabatic PV source in the evolution of the Lagrangian PV gradient is also investigated. The former plays the dominant role in the PV gradient formation during the initial phase of the jet shift, while the latter actually opposes the evolution of the Lagrangian PV gradient at times.

  19. Intra-seasonal Oscillations (ISO) of Zonal-Mean Meridional Winds and Temperatures as Measured by UARS

    NASA Technical Reports Server (NTRS)

    Huang, Frank T.; Mayr, Hans G.; Reber, Carl A.

    2004-01-01

    Based on an empirical analysis of measurements with the High Resolution Doppler Imager (HRDI) on the UARS spacecraft in the upper mesosphere (95 km), persistent and regular intra-seasonal oscillations (ISO) with periods of about 2 to 4 months have recently been reported in the zonal-mean meridional winds. Similar oscillations have also been discussed independently in a modeling study, and they were attributed to wave-mean-flow interactions. The observed and modeled meridional wind ISOs were largely confined to low latitudes. We report here an analysis of concurrent temperature measurements on UARS, which produces oscillations similar to those seen in the meridional winds. Although the temperature oscillations are observed at lower altitudes (55 km), their phase variations with latitude are qualitatively consistent with the inferred properties seen in the meridional winds and thus provide independent evidence for the existence of ISOs in the mesosphere.

  20. A New Generalized Thermal Wind Equation and its Application to Zonal Flows on the Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Marcus, Philip; Tollefson, Joshua; de Pater, Imke

    2015-11-01

    For baroclinic, rapidly-rotating flows, the Thermal Wind Equation (TWE) describes how the flow varies along the rotation axis as a function of temperature gradients. The TWE works well for many laboratory and atmospheric flows on Earth. We show that the TWE also works well for the zonal (west-to-east) flows u on Jupiter. However, our recent observations of Neptune's zonal flows not only do not fit the TWE, but also have the incorrect ``sign.'' When an atmosphere's longitudinally-averaged temperature is warmer at the equator than at the mid-latitudes, the TWE indicates that u increases with height in the atmosphere. The change in u as a function of height on Neptune has the opposite sign. Here, we show that the high-velocities of u on Neptune make the cyclostrophic terms (i.e., some of the nonlinear terms proportional to u2) large, and these terms are dropped in the standard derivation of the TWE. When the cyclostrophic terms are retained, a more generalized TWE is obtained that both qualitatively and quantitatively agrees with the observations of the change in u as a function of height in Neptune's atmosphere. We show that both the standard and generalized TWE for zonal flows can be extended to the equator despite the fact that the Coriolis force vanishes there.

  1. Odd gravitational harmonics of Jupiter: Effects of spherical versus nonspherical geometry and mathematical smoothing of the equatorially antisymmetric zonal winds across the equatorial plane

    NASA Astrophysics Data System (ADS)

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2016-10-01

    Unlike the even gravitational coefficients of Jupiter that are caused by both the rotational distortion and the equatorially symmetric zonal winds, the odd jovian gravitational coefficients are directly linked to the depth of the equatorially antisymmetric zonal winds. Accurate estimation of the wind-induced odd coefficients and comparison with measurements of those coefficients would be key to understanding the structure of the zonal winds in the deep interior of Jupiter. We consider two problems in connection with the jovian odd gravitational coefficients. In the first problem, we show, by solving the governing equations for the northern hemisphere of Jupiter subject to an appropriate condition at the equatorial plane, that the effect of non-spherical geometry makes an insignificant contribution to the lowermost-order odd gravitational coefficients. In the second problem, we investigate the effect of the equatorial smoothing used to avoid the discontinuity in the winds across the equatorial plane when the thermal wind equation is adopted to compute the odd gravitational coefficients. We reveal that, because of the dominant effect of the equatorial smoothing, the odd gravitational coefficients so obtained for deep zonal winds do not reflect physically realistic dynamics taking place in the deep interior of Jupiter.

  2. The vertical structure of Jupiter and Saturn zonal winds from nonlinear simulations of major vortices and planetary-scale disturbances

    NASA Astrophysics Data System (ADS)

    Garcia-Melendo, E.; Legarreta, J.; Sanchez-Lavega, A.

    2012-12-01

    Direct measurements of the structure of the zonal winds of Jupiter and Saturn below the upper cloud layer are very difficult to retrieve. Except from the vertical profile at a Jupiter hot spot obtained from the Galileo probe in 1995 and measurements from cloud tracking by Cassini instruments just below the upper cloud, no other data are available. We present here our inferences of the vertical structure of Jupiter and Saturn zonal wind across the upper troposphere (deep down to about 10 bar level) obtained from nonlinear simulations using the EPIC code of the stability and interactions of large-scale vortices and planetary-scale disturbances in both planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] García-Melendo E., Sánchez-Lavega A., Dowling T.., Icarus, 176, 272-282 (2005). [2] García-Melendo E., Sánchez-Lavega A., Hueso R., Icarus, 191, 665-677 (2007). [3] Sánchez-Lavega A., et al., Nature, 451, 437- 440 (2008). [4] Sánchez-Lavega A., et al., Nature, 475, 71-74 (2011).

  3. Zonal Winds Between 25 and 120 Km Retrieved from Solar Occultation Spectra. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Vancleef, Garrett Warren; Shaw, John H.

    1989-01-01

    Atmospheric winds at heights between 25 and 120 km have been retrieved with precisions of 5/ms from the Doppler shifts of atmospheric absorption lines measured from a satellite-borne instrument. Lines of the upsilon 3 CO2 and upsilon 2 H2O rotation-vibration bands caused by gases in the instrument allowed the instrumental frequency scale to be absolutely calibrated so that accurate relative speeds could be obtained. By comparing the positions of both sets of instrumental lines the calibration of the frequency scale was determined to be stable to a precision of less than 2 x 10(-5) cm during the course of each occultation. It was found that the instrumental resolution of 0.015 cm after apodization, the signal to noise ratio of about 100 and stable calibration allowed relative speeds to be determined to a precision of 5 ms or better by using small numbers of absorption lines between 1600 and 3200 cm. Absolute absorption line positions were simultaneously recovered to precisions of 5 x 10(-5) cm or better. The wind speed profiles determined from four sunset occultations and one sunrise occultation show remarkable similarities in the magnitudes and directions of the zonal wind velocities as functions of height. These wind profiles appear to be manifestations of atmospheric tides.

  4. Jupiter's zonal winds: are they bands of homogenized potential vorticity organized as a monotonic staircase?

    PubMed

    Marcus, Philip S; Shetty, Sushil

    2011-02-28

    The east-west striped pattern of clouds in Jupiter's weather layer is accompanied by a zonal flow containing 12 eastward-going jet streams alternating in latitude with westward-going jet streams. Based on theory, simulation and observations of the Earth's oceans and atmosphere, it is conjectured that Jupiter's weather layer is made of bands of constant potential vorticity (PV), where the interfaces between bands are at the latitudes of the maxima of the eastward-going jet streams. It is speculated that the mixing of PV on Jupiter is analogous to the mixing of salt in the ocean by the Phillips effect, which causes the salt density to form a monotonic 'staircase'. It is hypothesized that the PV in Jupiter's weather layer is also a staircase, decreasing from north to south. PV is a function of vorticity, as well as parameters with unknown values, e.g. the vertical stratification and the zonal flow beneath the observable weather layer. Therefore, these hypotheses cannot be tested directly. Using an atmospheric model that contains these unknown parameters, we solved the inverse problem and found values of the unknown parameters (and their uncertainties) that best fit Jovian observations. The unknown parameters influence how the zonal flow interacts with large vortices, e.g. the Great Red Spot (GRS; the largest and longest-lived Jovian vortex, centred at 23° S) and the Oval BA (the second largest vortex, centred at 33° S). Although we found that the PV distribution is approximately piecewise-constant and that the peaks of the eastward-going jet streams are at the latitudes of PV interfaces, there is also a PV interface at 20° S, where there is a westward-going jet stream. We find that the zonal PV is not a monotonic staircase due to the 'backwards' interface at 20° S. We show that this backwards interface is necessary to make the GRS nearly round, and that without that interface, the Red Spot would be highly elongated in the east-west direction and probably unstable.

  5. Jupiter's zonal winds: are they bands of homogenized potential vorticity organized as a monotonic staircase?

    PubMed

    Marcus, Philip S; Shetty, Sushil

    2011-02-28

    The east-west striped pattern of clouds in Jupiter's weather layer is accompanied by a zonal flow containing 12 eastward-going jet streams alternating in latitude with westward-going jet streams. Based on theory, simulation and observations of the Earth's oceans and atmosphere, it is conjectured that Jupiter's weather layer is made of bands of constant potential vorticity (PV), where the interfaces between bands are at the latitudes of the maxima of the eastward-going jet streams. It is speculated that the mixing of PV on Jupiter is analogous to the mixing of salt in the ocean by the Phillips effect, which causes the salt density to form a monotonic 'staircase'. It is hypothesized that the PV in Jupiter's weather layer is also a staircase, decreasing from north to south. PV is a function of vorticity, as well as parameters with unknown values, e.g. the vertical stratification and the zonal flow beneath the observable weather layer. Therefore, these hypotheses cannot be tested directly. Using an atmospheric model that contains these unknown parameters, we solved the inverse problem and found values of the unknown parameters (and their uncertainties) that best fit Jovian observations. The unknown parameters influence how the zonal flow interacts with large vortices, e.g. the Great Red Spot (GRS; the largest and longest-lived Jovian vortex, centred at 23° S) and the Oval BA (the second largest vortex, centred at 33° S). Although we found that the PV distribution is approximately piecewise-constant and that the peaks of the eastward-going jet streams are at the latitudes of PV interfaces, there is also a PV interface at 20° S, where there is a westward-going jet stream. We find that the zonal PV is not a monotonic staircase due to the 'backwards' interface at 20° S. We show that this backwards interface is necessary to make the GRS nearly round, and that without that interface, the Red Spot would be highly elongated in the east-west direction and probably unstable

  6. Two key parameters for the El Niño continuum: zonal wind anomalies and Western Pacific subsurface potential temperature

    NASA Astrophysics Data System (ADS)

    Lai, Andy Wang-Chun; Herzog, Michael; Graf, Hans-F.

    2015-12-01

    Different types of El Niño (EN) events have recently been discussed. Based on NCEP-NOAA reanalysis data this analysis explores a number of key parameters that cause a range of EN types over the period 1980-2013. EN events are divided into three types depending on the spatial and temporal evolution of the sea surface temperature anomalies (SSTA): Central Pacific (CPEN), Eastern Pacific (EPEN), and Hybrid (HBEN). We find that EN is a continuous spectrum of events with CPEN and EPEN as the end members. This spectrum mainly depends on two key parameters: the 130°E-160°E Western Pacific 5-250 m subsurface oceanic potential temperature anomaly about 1 year before the EN peak (typically January and February), and the 140°E-160°W cumulative zonal wind anomaly (ZWA) between onset and peak of the EN event. Using these two parameters, about 70 % of the total variance of the maximum SSTA realised in different Niño regions can already be explained up to 6 months before the maximum SSTA occurs. This offers a rather simple potential for ENSO prediction. A necessary condition for the evolution of an EPEN, the Western Pacific is in the recharged state. Strong and sustained westerly wind anomalies in Western Pacific can then trigger a Kelvin wave propagating to the eastern Pacific. Both parameters, potential temperature and zonal wind anomaly, constructively interfere. For a CPEN, these parameters are much less important. Kelvin wave propagation is not involved in the evolution of the event. Instead, the Central Pacific warming is caused locally by a zonal advection feedback and local air-sea interaction as already demonstrated in previous studies. The HBEN occurs when both parameters interfere in different ways: (1) Western Pacific is weakly charged, but strong westerly ZWA are observed that reduce the equatorial upwelling in the Central Pacific while the triggered Kelvin wave is too weak to have a significant effect; (2) Western Pacific is strongly charged but only weak

  7. Sensitivity of ocean oxygenation to variations in tropical zonal wind stress magnitude

    NASA Astrophysics Data System (ADS)

    Ridder, Nina N.; England, Matthew H.

    2014-09-01

    Ocean oxygenation has been observed to have changed over the past few decades and is projected to change further under global climate change due to an interplay of several mechanisms. In this study we isolate the effect of modified tropical surface wind stress conditions on the evolution of ocean oxygenation in a numerical climate model. We find that ocean oxygenation varies inversely with low-latitude surface wind stress. Approximately one third of this response is driven by sea surface temperature anomalies; the remaining two thirds result from changes in ocean circulation and marine biology. Global mean O2 concentration changes reach maximum values of +4 μM and -3.6 μM in the two most extreme perturbation cases of -30% and +30% wind change, respectively. Localized changes lie between +92 μM under 30% reduced winds and -56 μM for 30% increased winds. Overall, we find that the extent of the global low-oxygen volume varies with the same sign as the wind perturbation; namely, weaker winds reduce the low-oxygen volume on the global scale and vice versa for increased trade winds. We identify two regions, one in the Pacific Ocean off Chile and the other in the Indian Ocean off Somalia, that are of particular importance for the evolution of oxygen minimum zones in the global ocean.

  8. Linear coupling of planetary scale waves in ionospheric zonal shear winds: Generation of fast magnetic waves

    NASA Astrophysics Data System (ADS)

    Chanishvili, R.; Chagelishvili, G.; Uchava, E.; Kharshiladze, O.

    2016-04-01

    Our goal is to gain new insight into the physics of wave dynamics in ionospheric zonal shear flows. We study the shear flow non-normality induced linear coupling of planetary scale (slow) modified Rossby waves and westward propagating fast magnetized (Khantadze) waves using an approach different from the existing one to the linear wave dynamics. The performed analysis allows us to separate from each other different physical processes, grasp their interplay, and, by this way, construct the basic physics of the linear coupling of the slow and fast waves in an ionospheric zonal flow with linear shear of mean velocity, U0=(S y ,0 ) . It should be noted from the beginning that we consider incompressible flow and the classified "slow" and "fast" waves are not connected with the similarly labeled magnetosonic waves in compressible heliosphere. We show that: the modified Rossby waves generate fast magnetized waves due to the coupling for a quite wide range of ionospheric and shear flow parameters; the linear transient processes are highly anisotropic in wavenumber plane; the generation of the magnetized waves/oscillations is most efficient/optimal for S ≃0.1 (S is the shear rate normalized to the combination of the angular velocity and latitude, Ω0 cos θ0 ); the streamwise wave number of the optimally generated magnetized wave harmonics decreases (the length scale increases) with increasing the Hall parameter, α. At the end, we discuss nonlinear consequences of the described anisotropic linear dynamics—they should lead to an anisotropy of nonlinear cascade processes (in wavenumber plane). In turn, an interplay of the analyzed quite strong transient growth of the fast magnetic waves with anisotropic nonlinear processes should ensure self-sustenance of (stochastic or regular) magnetic perturbations.

  9. The 2009-2010 fade of Jupiter's South Equatorial Belt: Vertical cloud structure models and zonal winds from visible imaging

    NASA Astrophysics Data System (ADS)

    Pérez-Hoyos, S.; Sanz-Requena, J. F.; Barrado-Izagirre, N.; Rojas, J. F.; Sánchez-Lavega, A.; IOPW Team

    2012-01-01

    The South Equatorial Belt (SEB) of Jupiter is known to alternate its appearance at visible wavelengths from a classical belt-like band most of the time to a short-lived zone-like aspect which is called a "fade" of the belt, hereafter SEBF. The albedo change of the SEB is due to a change in the structure and properties of the clouds and upper hazes. Recent works based on infrared observations of the last SEBF have shown that the aerosol density below 1 bar increased in parallel with the reflectivity change. However, the nature of the change in the upper clouds and hazes that produces the visible reflectivity change and whether or not this reflectivity change is accompanied by a change in the winds at the upper cloud level remained unknown. In this paper we focus in the near ultraviolet to near infrared reflected sunlight (255-953 nm) to address these two issues. We characterize the vertical cloud structure above the ammonia condensation level from Hubble Space Telescope images, and the zonal wind velocities from long-term high-quality images coming from the International Outer Planet Watch database, both during the SEB and SEBF phases. We show that reflectivity changes do not happen simultaneously in this wavelength range, but they start earlier in the most deep-sensing filters and end in 2010 with just minor changes in those sensing the highest particle layers. Our models require a substantial increase of the optical thickness of the cloud deck at 1.0 ± 0.4 bar from τ cloud = 6 ± 2 in July 2009 (SEB phase) to semiinfinite at visual wavelengths in 2010 (SEBF). Upper tropospheric particles (˜240-1400 mbar) are also required to become substantially reflectant and their single scattering albedo in the blue changes from ϖ0 = 0.905 ± 0.005 in November 2009 to ϖ0 = 0.95 ± 0.01 in June 2010. No significant changes were found in the cloud top heights or in the particle density of the tropospheric haze. The disturbance travels from the levels below ˜3 bar to a level

  10. Reduced-dimension reconstruction of the equatorial Pacific SST and zonal wind fields over the past 10,000 years using Mg/Ca and alkenone records

    NASA Astrophysics Data System (ADS)

    Gill, Emily C.; Rajagopalan, Balaji; Molnar, Peter; Marchitto, Thomas M.

    2016-07-01

    We develop a multiproxy, reduced-dimension methodology to blend magnesium-calcium (Mg/Ca) and alkenone (U37k) paleo sea surface temperature (SST) records from the eastern and western equatorial Pacific, to recreate snapshots of full field SSTs and zonal winds from 10 to 2 ka B.P. in 2000 year increments. Single-proxy reconstructions (Mg/Ca only versus U37K' only) reveal differences in the timing and duration of maximum cooling across the east-central equatorial Pacific. The largest zonal temperature differences (average west Pacific SST minus average east Pacific SST) occur at 6 ka B.P. for the Mg/Ca-only reconstruction (0.61°C) and at 10 and 4 ka for the U37K'-only reconstruction (0.55°C and 0.47°C, respectively). Disagreements between SST trends suggested by each proxy call for methods that can resolve the common patterns between each and have motivated the work presented in this study. In combining inferences from these proxies, we treat both Mg/Ca and U37K' reconstructions of SST as annual average values, but we recognize that they may be sensitive to different seasons. In the multiproxy reconstruction, the zonal SST difference is largest at 10 ka (0.26°C), with coldest SST anomalies of ˜ -0.9°C in the eastern equatorial Pacific and concurrent easterly maximum zonal wind anomalies of 7 m s-1 throughout the central Pacific. From 10 to 2 ka, the entire equatorial Pacific warms, but at a faster rate in the east than the west, and the average central Pacific easterly winds weaken gradually to approximately 2 m s-1. These patterns are broadly consistent with previous inferences of reduced El Niño-Southern Oscillation variability associated with a "La Niña-like" state during the early to middle Holocene.

  11. Rossby-Khantadze Electromagnetic Planetary Waves Driven by Sheared Zonal Winds in the E-Layer Ionosphere

    NASA Astrophysics Data System (ADS)

    Futatani, S.; Horton, W.; Kahlon, L. Z.; Kaladze, T.

    2014-10-01

    Nonlinear simulations are carried out for planetary scale [ >1000 km] electromagnetic Rossby and Khantadze planetary waves in the presence of a sheared zonal flow in the weakly ionized ionospheric E-layer. A variety of sheared flow profiles are studied. We shown that the nonlinear dynamics with the sheared zonal flows provides an energy source into the vortex structures. The energy transfer through the Reynolds stress tensor produces growth of the stable vortices under a variety of conditions. The energy accumulation breaks the vortex structure into multiple species according to the non-uniformity of profile of the external zonal shear flows. S. Futatani, W. Horton, T. D. Kaladze, Phys. Plasmas 20, 102903 (2013). T. D. Kaladze, L. Z. Kahlon, W. Horton. O Pokhotelov, and O. Onishenchenko, EPL 106, A05302 (2014).

  12. A simple approach to quantifying the noise-ENSO interaction. Part II: the role of coupling between the warm pool and equatorial zonal wind anomalies

    NASA Astrophysics Data System (ADS)

    Levine, Aaron F. Z.; Jin, Fei Fei; Stuecker, Malte F.

    2016-07-01

    Stochastic forcing has been used conceptually to explain ENSO irregularity. More recently, the concept of state-dependent (multiplicative) stochastic forcing has been explored as an explanation of a number of ENSO properties. By calculating the state-dependence factor of ENSO zonal wind stress noise forcing on SST, we are able to separate the additive and multiplicative components of the wind stress noise forcing of ENSO. Spatially, the months with large additive or multiplicative components all resemble previous studies on westerly wind bursts. They differ from each other in that the wind stresses are significantly stronger during months with a large multiplicative noise component. It is further shown that when the multiplicative noise component is large, there have been large values of the wind stress noise in the preceding months. This is not true of the months when the additive component is large. The multi-month growth of the wind stress from the multiplicative noise process is shown to be related to an eastward migration of the western Pacific Warm Pool, which is coupled to the wind stress through convection. This process is shown to be significantly weakened in a climate model when the ocean and atmosphere are uncoupled.

  13. The possibility of a steady, inviscid flow in which zonal wind stress is balanced by form stress: Simple examples and their energetics.

    NASA Astrophysics Data System (ADS)

    Hughes, Christopher W.

    2014-05-01

    Zonal wind stress is known to be balanced in the ocean by form stress at each latitude, a balance which is particularly pertinent to Southern Ocean dynamics, but also holds elsewhere. However, all analytical or numerical simulations of the ACC so far require either time dependent eddies or friction to permit that balance to hold. This has led to a tacit assumption that wind stress cannot be balanced by form stress in a steady, inviscid flow. I will give two counterexamples which demonstrate that, in certain circumstances, such a balance is possible. The first is a barotropic flow which requires a special relationship between the wind stress and the topography, and results in no net work done by wind stress. The second is a two-layer flow in which the wind stress can be quite generic, but a special condition on the mass exchange between layers must hold. In the latter case, the wind can do work, but this is balanced by an extraction of thermodynamic energy as water is exchanged between layers. Neither solution is a realistic model of the Antarctic Circumpolar Current, but the simple dynamics serves to improve our understanding of the relationship between wind stress, form stress, overturning circulation and energetics.

  14. EQUATORIAL ZONAL JETS AND JUPITER's GRAVITY

    SciTech Connect

    Kong, D.; Liao, X.; Zhang, K.; Schubert, G.

    2014-08-20

    The depth of penetration of Jupiter's zonal winds into the planet's interior is unknown. A possible way to determine the depth is to measure the effects of the winds on the planet's high-order zonal gravitational coefficients, a task to be undertaken by the Juno spacecraft. It is shown here that the equatorial winds alone largely determine these coefficients which are nearly independent of the depth of the non-equatorial winds.

  15. Response of the annual and zonal mean winds and temperatures to variations in the heat and momentum sources

    NASA Technical Reports Server (NTRS)

    Schneider, E. K.

    1984-01-01

    Comparisons are made among solutions to zonal-mean equations obtained with parameterized friction and radiative cooling and those forced from specified heat and momentum sources. Budget equations are defined for zonally averaged steady state responses in a thin spherically rotating atmosphere. The heat sources and sinks and mean meridional circulation that maintain observed annual and zonal mean temperatures are identified with a diagnostic calculation. Estimates are made of the surface sensible heating, atmospheric latent heating and vertical flux eddy divergences. The heat and moisture sources and sinks are varied to obtain the steady state responses. The Hadley circulation is fairly insensitive to changes in the strength of the eddy momentum flux when sufficient internal friction is present. Varying the width of the total precipitation of the intertropical convergence zone with fixed eddy fluxes and extratropical heat sources yields conditions similar to El Nino. Finally, a minimum speed is found for the jet stream after varying the horizontal eddy momentum fixing latent and eddy heat sources.

  16. Observed correlation of Venus topography with the zonal wind and albedo at cloud top level: the role of stationary gravity waves.

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Khatunstsev, Igor; Hauchecorne, Alain; Markiewicz, Wojtek; Emmanuel, Marcq; Sébastien, Lebonnois; Marina, Patsaeva; Alex, Turin; Anna, Fedorova

    2016-04-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67±2 km) collected with VMC (Venus Monitoring Camera) on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°s) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to cloud top level, break there and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth by Lindzen [1981], but is not reproduced in a current GCM of Venus atmosphere. Consistent with present findings, the two VEGA mission balloons experienced a small, but significant, difference of westward velocity, at their 53 km floating altitude. The albedo at 365 nm varies also with longitude and latitude in a pattern strikingly similar in the low latitude regions to a recent map of cloud top H2O [Fedorova et al., 2015], in which a lower UV albedo is correlated with increased H2O. We argue that H2O enhancement is the sign of upwelling, suggesting that the UV absorber is also brought to cloud top by upwelling.

  17. Observed longitude variations of zonal wind, UV albedo and H2O at Venus cloud top level: the role of stationary gravity waves generated by Venus topography

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Hauchecorne, Alain; khatuntsev, Igor; Markiewicz, Wojciech; Marcq, emmanuel; Lebonnois, Sebastien; Patsaeva, Marina; Turin, Alexander; Fedorova, Anna

    2016-10-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67±2 km) collected with VMC (Venus Monitoring Camera) on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth but is not reproduced in the current GCM of Venus atmosphere from LMD.In the equatorial regions, the UV albedo of clouds at 365 nm and the H2O mixing ratio at cloud top varies also with longitude, with an anti-correlation: the more H2O, the darker are the clouds. We argue that these variations may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings both the UV absorber and H2O at cloud top level and decreases the albedo, and vice-versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. We argue that H2O enhancement is the sign of upwelling because the H2O mixing ratio decreases with altitude, comforting the view that the UV absorber is also brought to cloud top by upwelling.

  18. Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Khatuntsev, I. V.; Hauchecorne, A.; Markiewicz, W. J.; Marcq, E.; Lebonnois, S.; Patsaeva, M.; Turin, A.; Fedorova, A.

    2016-06-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67 ± 2 km) collected with Venus Monitoring Camera on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the uplift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there, and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth by Lindzen (1981) but is not reproduced in the current GCM of Venus atmosphere from LMD. (Laboratoire de Météorologie Dynamique) In the equatorial regions, the UV albedo at 365 nm varies also with longitude. We argue that this variation may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings the UV absorber at cloud top level and decreases the albedo and vice versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. This interpretation is comforted by a recent map of cloud top H2O, showing that near the equator the lower UV albedo longitude region is correlated with increased H2O. We argue that H2O enhancement is the sign of upwelling, suggesting that the UV absorber is also brought to cloud top by upwelling.

  19. Equatorial zonal circulations: Historical perspectives

    NASA Astrophysics Data System (ADS)

    Hastenrath, Stefan

    2007-04-01

    The changing perceptions on zonal circulations in the equatorial belt are traced for (a) stratospheric wind regimes, and (b) vertical-zonal circulation cells in the troposphere. (a) Observations from the Krakatoa eruption 1883 and Berson's 1908 expedition to East Africa, along with later soundings over Batavia (Jakarta) led to the notion of "Krakatoa easterlies" around 30 km (10 mb) and "Berson westerlies" around 20 km (50 mb). Prompted by contrary observations since the late 1950s, this dogma was replaced by the notion of easterlies alternating with westerlies in the equatorial stratosphere at a rhythm of about 26 months. (b) Stimulated by Bjerknes' postulate of a "Walker circulation" along the Pacific Equator, a multitude of such cells have been hypothesized at other longitudes, in part from zonal contrasts of temperature and cloudiness. Essential for the diagnosis of equatorial zonal circulation cells is the continuity following the flow between the centers of ascending and subsiding motion. Evaluation of the recent NCEP-NCAR and ECMWF Reanalysis upper-air datasets reveals equatorial zonal circulation cells over the Pacific all year round, over the Atlantic only in boreal winter, and over the Indian Ocean only in autumn, all being seasons and oceanic longitudes with strong zonal flow in the lower troposphere.

  20. Stability of Shallow Jovian Atmospheric Zonal Jets

    NASA Astrophysics Data System (ADS)

    Sayanagi, Kunio M.; Dowling, T. E.; Showman, A. P.

    2007-10-01

    Jupiter's cloud-level zonal jets are remarkably steady in time despite their sharp curvature (i.e., second latitudinal derivative of the zonal wind profile). The stable jets must be supported by a proper sub-cloud wind and thermal structure; however, the large-scale deep structure of the zonal jets and temperature remain a major unknown in the gas-giant planet atmospheres. Past studies suggest two end-point scenarios of deep wind structures that allow stable cloud-level jets. The first shows that the jets are stable if they penetrate through the molecular hydrogen layer (Ingersoll and Pollard, 1982), although they do not address how the deep flow may be coupled to the cloud-level wind. Many other studies, though they may not directly address the shear instabilities, support this "deep jet” scenario (e.g. Heimpel and Aurnou, 2007); however, they do not rule out the possibility that the jets are shallow. Gierasch (2004) introduced a notable alternative to this "deep” picture. Through linear stability analysis, he showed that an isolated eastward jet that reaches a point of zero motion at 100-bar level, with Jupiter-like speeds and widths at the top, can be stable under certain conditions. However, his analysis contained several untested assumptions, and whether such flows are actually stable in a more realistic setting remains an open question. The possibility of stable shallow zonal jets on Jupiter remains largely unexplored, and this possibility deserves a thorough consideration. We present full-3D nonlinear simulations that test the stability of shallow zonal jets. We use Richardson number as a measure of vertical flow scale, and aim to show whether shallow jets are consistent with the observed jets and place theoretical constraints on the sub-cloud wind structure. Our study uses the EPIC model (Dowling et al., 1998, 2006). The research has been supported by NASA Planetary Atmosphere grants to APS and TED.

  1. Physics of Zonal Flows

    NASA Astrophysics Data System (ADS)

    Itoh, Kimitaka

    2005-10-01

    This talk describes an overview of zonal flow physics, covering the theory, simulation and experiment. The zonal flows are excited nonlinearly by drift wave fluctuations, and suppress the turbulence and transport, so as to realize a self-regulating state for turbulence and mesoscale structure. This recognition is the central of recent paradigm shift in plasma physics, i.e., the preceding linear, local and deterministic pictures of instability and transport have been taken over by the new nonlinear, nonlocal (in real and wavenumber spaces) and statistical pictures of them. The zonal flow phenomenon, i.e., the global axial vector fields are generated by the release of global free energy in scalar fields through exciting turbulence, is a typical example of the fundamental issues in modern physics. In this review, the progresses made by theory and simulations, such as the linear damping rate, nonlinear mechanisms for growth and saturation, law of energy partition between turbulence and flow, life time of zonal flow, and so on, are explained. The transport by drift wave fluctuations, which are dressed by zonal flows, is discussed. Then experimental observations and verifications, which have been piled up rapidly in basic plasma experiments and confinement research, are explained, highlighting the integration with theory and simulation. Generalization to include magnetic field (zonal field) is addressed, in the light of the study of dynamo. Zonal flows in both laboratory and planetary-solar circumstances are discussed as well. This presentation illustrates the fast evolution of the physics of turbulence and structure formation of plasmas in the nature and laboratory. In collaboration with S.-I. Itoh, P. H. Diamond, T. S. Hahm, A. Fujisawa, G. R. Tynan and M. Yagi.

  2. Penetrative Convection and Zonal Flow on Jupiter

    PubMed

    Zhang; Schubert

    1996-08-16

    Measurements by the Galileo probe support the possibility that the zonal winds in Jupiter's atmosphere originate from convection that takes place in the deep hydrogen-helium interior. However, according to models based on recent opacity data and the probe's temperature measurements, there may be radiative and nonconvective layers in the outer part of the jovian interior, raising the question of how deep convection could extend to the surface. A theoretical model is presented to demonstrate that, because of predominant rotational effects and spherical geometry, thermal convection in the deep jovian interior can penetrate into any outer nonconvective layer. These penetrative convection rolls interact nonlinearly and efficiently in the model to generate and sustain a mean zonal wind with a larger amplitude than that of the nonaxisymmetric penetrative convective motions, a characteristic of the wind field observed at the cloud level on Jupiter. PMID:8688074

  3. A `low-level' explanation for the recent large warming trend over the western Antarctic Peninsula involving blocked winds and changes in zonal circulation

    NASA Astrophysics Data System (ADS)

    Orr, A.; Cresswell, D.; Marshall, G. J.; Hunt, J. C. R.; Sommeria, J.; Wang, C. G.; Light, M.

    2004-03-01

    We demonstrate a mechanism whereby the impact of stronger circumpolar westerly winds on the mountains of the Antarctic Peninsula contributes significantly to the enhanced warming trend observed over its western side in the last 50 years. Numerical and laboratory meteorological modelling demonstrate how, when westerly winds impinge on this side, warm air below the height (1.5-2.0 km) of the Peninsula is advected in a southerly direction. The strength of the annual mean westerly winds has increased by about 15-20% since the 1960s, while the modelling results indicate that contemporaneously the air advected to its western side originates from an increasingly northerly (and warmer) location. This gives rise to increased northerlies and a greater transport of warm air into this region. Consequently there is a reduction in the sea-ice extent, further amplifying the local warming. This `low-level', orographic mechanism for the local climate trend is supported by observational evidence.

  4. Processed Movie of Zonal Jets

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This movie is a manipulated sequence showing motions in Jupiter's atmosphere over the course of five days beginning Oct. 1, 2000, as seen by a camera on NASA's Cassini spacecraft, using a blue filter.

    Beginning with seven images taken at uneven time intervals, this sequence was made by using information on wind speeds derived from actual Jupiter images to create evenly spaced time steps throughout. The final result is a smooth movie sequence consisting of both real and false frames.

    The view is of the opposite side of the planet from Jupiter's Great Red Spot. The region shown reaches from 50 degrees north to 50 degrees south of Jupiter's equator, and extends 100 degrees east-to-west, about one-quarter of Jupiter's circumference. The smallest features are about 500 kilometers (about 300 miles) across.

    Towards the end of the sequence, a shadow appears from one of Jupiter's moons, Europa.

    The movie shows the remains of a historic merger that began several years ago, when three white oval storms that had existed for 60 years merged into two, then one. The resulting oval is visible in the lower left portion of the movie.

    The movie also shows zonal jets that circle the planet on constant latitudes. Winds seen moving toward the left (westward) correspond to features that are rotating a little slower than Jupiter's magnetic field, and winds moving the opposite direction correspond to features that are rotating a little faster than the magnetic field. Since Jupiter has no solid surface, the rotation of the magnetic field is the point of reference for the rotation of the planet.

    Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  5. Magnetic Field Generation and Zonal Flows in the Gas Giants

    NASA Astrophysics Data System (ADS)

    Duarte, L.; Wicht, J.; Gastine, T.

    2013-12-01

    The surface dynamics of Jupiter and Saturn is dominated by a banded system of fierce zonal winds. The depth of these winds remains unclear but they are thought to be confined to the very outer envelopes where hydrogen remains molecular and the electrical conductivity is negligible. The dynamo responsible for the dipole dominated magnetic fields of both Gas Giants, on the other hand, likely operates in the deeper interior where hydrogen assumes a metallic state. We present numerical simulations that attempt to model both the zonal winds and the interior dynamo action in an integrated approach. Using the anelastic version of the MHD code MagIC, we explore the effects of density stratification and radial electrical conductivity variations. The electrical conductivity is assumed to remain constant in the thicker inner metallic region and decays exponentially towards the outer boundary throughout the molecular envelope. Our results show that the combination of stronger density stratification (Δρ≈55) and a weaker conducting outer layer is essential for reconciling dipole dominated dynamo action and a fierce equatorial zonal jet. Previous simulations with homogeneous electrical conductivity show that both are mutually exclusive, with solutions either having strong zonal winds and multipolar magnetic fields or weak zonal winds and dipole dominated magnetic fields. The particular setup explored here allows the equatorial jet to remain confined to the weaker conducting region where is does not interfere with the deeper seated dynamo action. The equatorial jet can afford to remain geostrophic and reaches throughout the whole shell. This is not an option for the additional mid to higher latitude jets, however. In dipole dominated dynamo solutions, appropriate for the Gas Giants, zonal flows remain very faint in the deeper dynamo region but increase in amplitude in the weakly conducting outer layer in some of our simulations. This suggests that the mid to high latitude jets

  6. Zonal flow as pattern formation

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey B.; Krommes, John A.

    2013-10-01

    Zonal flows are well known to arise spontaneously out of turbulence. We show that for statistically averaged equations of the stochastically forced generalized Hasegawa-Mima model, steady-state zonal flows, and inhomogeneous turbulence fit into the framework of pattern formation. There are many implications. First, the wavelength of the zonal flows is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets.

  7. Zonal flow as pattern formation

    SciTech Connect

    Parker, Jeffrey B.; Krommes, John A.

    2013-10-15

    Zonal flows are well known to arise spontaneously out of turbulence. We show that for statistically averaged equations of the stochastically forced generalized Hasegawa-Mima model, steady-state zonal flows, and inhomogeneous turbulence fit into the framework of pattern formation. There are many implications. First, the wavelength of the zonal flows is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets.

  8. Self-limiting feedback between baroclinic waves and a NAO-like sheared zonal flow

    NASA Astrophysics Data System (ADS)

    Watanabe, Masahiro

    2009-04-01

    The eddy-mean flow interaction associated with the North Atlantic Oscillation (NAO) is examined by using the baroclinic wave life cycle experiments. When a sheared zonal flow perturbation akin to the NAO-related dipole wind anomaly is added to the basic state, momentum fluxes due to baroclinic waves tend to reinforce the initial zonal flow dipole in the upper troposphere both for the anticyclonic and cyclonic shears. The eddy feedback is stronger for the anticyclonic shear because the node of the dipole flow is asymmetric about the basic jet, suggesting that the positive NAO is more favored by the eddy feedback. For the zonal wind anomaly with extremely large amplitude, the baroclinic wave breaking cannot efficiently intensify the zonal flow dipole, indicating a self-limitation in the positive eddy feedback to the NAO-like zonal flow anomaly.

  9. Impact of Stratospheric Ozone Zonal Asymmetries on the Tropospheric Circulation

    NASA Technical Reports Server (NTRS)

    Tweedy, Olga; Waugh, Darryn; Li, Feng; Oman, Luke

    2015-01-01

    The depletion and recovery of Antarctic ozone plays a major role in changes of Southern Hemisphere (SH) tropospheric climate. Recent studies indicate that the lack of polar ozone asymmetries in chemistry climate models (CCM) leads to a weaker and warmer Antarctic vortex, and smaller trends in the tropospheric mid-latitude jet and the surface pressure. However, the tropospheric response to ozone asymmetries is not well understood. In this study we report on a series of integrations of the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to further examine the effect of zonal asymmetries on the state of the stratosphere and troposphere. Integrations with the full, interactive stratospheric chemistry are compared against identical simulations using the same CCM except that (1) the monthly mean zonal mean stratospheric ozone from first simulation is prescribed and (2) ozone is relaxed to the monthly mean zonal mean ozone on a three day time scale. To analyze the tropospheric response to ozone asymmetries, we examine trends and quantify the differences in temperatures, zonal wind and surface pressure among the integrations.

  10. Zonal flow formation in the Earth's core.

    PubMed

    Miyagoshi, Takehiro; Kageyama, Akira; Sato, Tetsuya

    2010-02-11

    Zonal jets are very common in nature. Well-known examples are those in the atmospheres of giant planets and the alternating jet streams found in the Earth's world ocean. Zonal flow formation in nuclear fusion devices is also well studied. A common feature of these zonal flows is that they are spontaneously generated in turbulent systems. Because the Earth's outer core is believed to be in a turbulent state, it is possible that there is zonal flow in the liquid iron of the outer core. Here we report an investigation at the current low-viscosity limit of numerical simulations of the geodynamo. We find a previously unknown convection regime of the outer core that has a dual structure comprising inner, sheet-like radial plumes and an outer, westward cylindrical zonal flow. We numerically confirm that the dual-convection structure with such a zonal flow is stable under a strong, self-generated dipole magnetic field.

  11. Indian Ocean zonal mode activity in 20th century observations and simulations

    NASA Astrophysics Data System (ADS)

    Sendelbeck, Anja; Mölg, Thomas

    2016-04-01

    The Indian Ocean zonal mode (IOZM) is a coupled ocean-atmosphere system with anomalous cooling in the east, warming in the west and easterly wind anomalies, resulting in a complete reversal of the climatological zonal sea surface temperature (SST) gradient. The IOZM has a strong influence on East African climate by causing anomalously strong October - December (OND) precipitation. Using observational data and historical CMIP5 (Coupled Model Intercomparison Project phase 5) model output, the September - November (SON) dipole mode index (DMI), OND East African precipitation and SON zonal wind index (ZWI) are calculated. We pay particular attention to detrending SSTs for calculating the DMI, which seems to have been neglected in some published research. The ZWI is defined as the area-averaged zonal wind component at 850 hPa over the central Indian Ocean. Regression analysis is used to evaluate the models' capability to represent the IOZM and its impact on east African climate between 1948 and 2005. Simple correlations are calculated between SST, zonal wind and precipitation to show their interdependence. High correlation in models implies a good representation of the influence of IOZM on East African climate variability and our goal is to detect the models with the highest correlation coefficients. In future research, these model data might be used to investigate the impact of IOZM on the East African climate variability in the late 20's century with regard to anthropogenic causes and internal variability.

  12. The effects of zonal atmospheric currents on the spectra of rotating early-type stars

    NASA Technical Reports Server (NTRS)

    Cranmer, Steven R.; Collins, George W., II

    1993-01-01

    We suggest the existence of zonal currents in the atmospheres of rapidly rotating stars analogous to those found in planetary atmospheres. The zonal flow is assumed to be characterized by 'thin' atmospheric, nearly geostrophic flow which does not change the gravity darkening and stellar shape determined by the underlying uniformly rotating model. The contribution that such flows make to the continuum spectra of such stars is investigated. The additional rotationally induced Doppler displacement resulting from such zonal wind belts can distort the rotationally broadened stellar lines leading to significant departures from the line profiles predicted by the classical model of rotating stars. Our estimates of the zonal flow velocity stem from the assumption of a relation between it and the latitudinal wavenumber of the zonal velocity field. It is thus possible to create barotropic atmosphere models which, in turn, enable the modeling of the stellar spectrum including important spectral lines. In addition, the radiative transfer equations for the Stokes parameters I and Q are solved for the locally plane-parallel atmospheres so that the polarization structure of the radiation field is determined. We find that the presence of zonal wind belts leads to significant changes in the photospheric polarization from those characteristic of a uniformly rotating model.

  13. Zonal flow regimes in rotating anelastic spherical shells (Invited)

    NASA Astrophysics Data System (ADS)

    Gastine, T.; Wicht, J.; Aurnou, J. M.; Heimpel, M. H.

    2013-12-01

    The surface zonal winds observed in the giant planets form a complex jet pattern with alternating prograde and retrograde direction. While the main equatorial band is prograde on the gas giants, both ice giants have a pronounced retrograde equatorial jet. The depth of these jets is however poorly known and highly debated. Theoretical scenarios range from "shallow models", that assume that these zonal flows are restricted to the outer stably stratified layer; to "deep models" that hypothesise that the surface winds are the signature of deep-seated convection. Most of the numerical models supporting the latter idea employed the Boussinesq approximation where compressibility effects are ignored. While this approximation is suitable for modelling the liquid iron core of terrestrial planets, this becomes questionable in the gas giants interiors, where density increases by several orders of magnitude. To tackle this problem, several numerical models using the "anelastic approximation" have been recently developed to study the compressibility effects while filtering out the fast acoustic waves. Here, we consider such anelastic models of rapidly-rotating spherical shells to explore the properties of the zonal winds in different regimes where either rotation or buoyancy dominates the force balance. We conduct several parameter studies to quantify the dependence of zonal flows on the background density stratification and the driving of convection. We find that the direction of the equatorial wind is controlled by the ratio of buoyancy and Coriolis force. The prograde equatorial band maintained by Reynolds stresses is found in the rotation-dominated regime. At low Ekman numbers, several alternating jets form at high latitude in a similar way to some previous Boussinesq calculations. In cases where buoyancy dominates Coriolis force, the angular momentum per unit mass is homogenised and the equatorial band is retrograde, reminiscent to those observed in the ice giants

  14. The role of forced planetary waves in the annual cycle of the zonal mean circulation of the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Holton, J. R.; Wehrbein, W. M.

    1980-01-01

    A severely truncated semispectral numerical model is used to simulate the annual cycle of the zonally averaged circulation in the middle atmosphere (16-96 km). The model includes only a single zonal harmonic wave component which interacts with the mean flow; the circulation is driven by diabatic heating and by a specified perturbation in the topography of the lower boundary, which is taken to be the 100 mb surface. A comparison of the annual cycle simulated by this model with the results of an analogous two-dimensional model indicates that planetary waves have relatively little influence on the zonal mean temperature profiles and on the solstice mean zonal winds at high latitudes. The primary effects of the forced waves are in decelerating the mean winds at low latitudes in the winter hemisphere to produce a region of weak westerlies, and in generating final warmings at the spring equinoxes.

  15. A Model Study of Zonal Forcing in the Equatorial Stratosphere by Convectively Induced Gravity Waves

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Holton, James R.

    1997-01-01

    A two-dimensional cloud-resolving model is used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation (QBO) of the zonal winds in the equatorial stratosphere. A simulation with constant background stratospheric winds is compared to simulations with background winds characteristic of the westerly and easterly QBO phases, respectively. In all three cases a broad spectrum of both eastward and westward propagating gravity waves is excited. In the constant background wind case the vertical momentum flux is nearly constant with height in the stratosphere, after correction for waves leaving the model domain. In the easterly and westerly shear cases, however, westward and eastward propagating waves, respectively, are strongly damped as they approach their critical levels, owing to the strongly scale-dependent vertical diffusion in the model. The profiles of zonal forcing induced by this wave damping are similar to profiles given by critical level absorption, but displaced slightly downward. The magnitude of the zonal forcing is of order 5 m/s/day. It is estimated that if 2% of the area of the Tropics were occupied by storms of similar magnitude, mesoscale gravity waves could provide nearly 1/4 of the zonal forcing required for the QBO.

  16. The Congo basin zonal overturning circulation

    NASA Astrophysics Data System (ADS)

    Neupane, Naresh

    2016-06-01

    The Gulf of Guinea in the equatorial Atlantic is characterized by the presence of strong subsidence at certain times of the year. This subsidence appears in June and becomes well established from July to September. Since much of theWest African monsoon flow originates over the Gulf, Guinean subsidence is important for determining moisture sources for the monsoon. Using reanalysis products, I contribute to a physical understanding of what causes this seasonal subsidence, and how it relates to precipitation distributions across West Africa. There is a seasonal zonal overturning circulation above the Congo basin and the Gulf of Guinea in the ERA-Interim, ERA-40, NCEP2, and MERRA reanalyses. The up-branch is located in the Congo basin around 20°E. Mid-tropospheric easterly flows constitute the returning-branch and sinking over the Gulf of Guinea forms the down-branch, which diverges at 2°W near the surface, with winds to the east flowing eastward to complete the circulation. This circulation is driven by surface temperature differences between the eastern Gulf and Congo basin. Land temperatures remain almost uniform, around 298 K, throughout a year, but the Guinean temperatures cool rapidly from 294 K in May to about 290 K in August. These temperature changes increase the ocean/land temperature contrast, up to 8 K, and drive the circulation. I hypothesize that when the overturning circulation is anomalously strong, the northward moisture transport and Sahelian precipitation are also strong. This hypothesis is supported by ERA-Interim and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record) data.

  17. The importance of the eastward zonal current for generating extreme El Niño

    NASA Astrophysics Data System (ADS)

    Kim, WonMoo; Cai, Wenju

    2014-06-01

    Extreme El Niño (e.g., 1983/1983 and 1997/1998) causes severe weather and climate impacts globally, but the associated dynamics is not fully understood. The present study shows that advection of mean temperature by anomalous eastward zonal current plays an important role in producing such extreme events especially during the early part of the developing period. While the climatological direction of the upper oceanic current in the equatorial Pacific is westward, at times the direction reverses. These eastward current events are well distinguished from the normal, westward conditions. The upper-layer zonal current in the equatorial Pacific is basically in geostrophic balance and forced by wind stress. However, in the case of the eastward zonal current events, persistent westerly winds are observed in the Western Pacific, and the current becomes synchronized with the westerly wind stress above. The advection of the mean temperature by the anomalous zonal current in the early developing period always precedes strong El Niño, though it does not significantly contribute to the growth of La Niña, neutral, and moderate El Niño; and is the major contributor of asymmetry in the early developing phase.

  18. Zonally averaged model of dynamics, chemistry and radiation for the atmosphere

    NASA Technical Reports Server (NTRS)

    Tung, K. K.

    1985-01-01

    A nongeostrophic theory of zonally averaged circulation is formulated using the nonlinear primitive equations on a sphere, taking advantage of the more direct relationship between the mean meridional circulation and diabatic heating rate which is available in isentropic coordinates. Possible differences between results of nongeostrophic theory and the commonly used geostrophic formulation are discussed concerning: (1) the role of eddy forcing of the diabatic circulation, and (2) the nonlinear nearly inviscid limit vs the geostrophic limit. Problems associated with the traditional Rossby number scaling in quasi-geostrophic formulations are pointed out and an alternate, more general scaling based on the smallness of mean meridional to zonal velocities for a rotating planet is suggested. Such a scaling recovers the geostrophic balanced wind relationship for the mean zonal flow but reveals that the mean meridional velocity is in general ageostrophic.

  19. Daytime zonal drifts in the ionospheric E and 150 km regions estimated using EAR observations

    NASA Astrophysics Data System (ADS)

    Peddapati, PavanChaitanya; Otsuka, Yuichi; Yamamoto, Mamoru; Yokoyama, Tatsuhiro; Patra, Amit

    2016-07-01

    The Equatorial Atmosphere Radar (EAR), located at Kototabang (0.2o S, 100.32o E, mag. lat. 10.36o S), Indonesia, is capable of detecting both E region and 150 km echoes during daytime. We have conducted multi-beam observations using the EAR during daytime covering all seasons to study seasonal variations of these echoes and their dynamics. Given the facts that drifts at the 150 km region are governed primarily by electric field, drifts at the E region are governed by both electric field and neutral wind, simultaneous observations of drifts in both E and 150 km regions would help understand their variations. In this paper we present local time and seasonal variations of zonal drifts in the E and 150 km regions estimated using multi-beam observations. Zonal drifts (positive eastward) in the E and 150 km regions are found to be in the range of -10 to -60 m/s and -40 to 80 m/s, respectively. In the E region, zonal drifts show height reversal and temporal variations having tidal signature and noticeable seasonal variations. Zonal drifts in the 150 km region also show noticeable height and seasonal variations. These results are compared with model drifts and evaluated in terms of electric field and neutral wind.

  20. Effects of the magnetic activity on F region zonal and vertical plasma drifts over Jicamarca during solar minimum

    NASA Astrophysics Data System (ADS)

    Santos, Angela; Sobral, J. H. A.; Batista, Inez S.; Abdu, Mangalathayil; Souza, Jonas

    2016-07-01

    In this work, we investigate the equatorial F region zonal plasma drifts over Jicamarca, Peru, under magnetically disturbed conditions during two solar minimum epochs, one of them being the recent prolonged solar activity minimum. The study utilizes the plasma drifts measured by the Jicamarca (11.95° S; 76.87° W) incoherent scatter radar during two events that occurred on 10 April 1997 and 24 June 2008 and model calculation of the zonal drift in a realistic ionosphere simulated by the SUPIM-INPE. Two main points are focused: (1) the connection between prompt penetration electric fields and zonal and vertical plasma drifts and (2) anomalous behavior of daytime zonal drift in the absence of any magnetic storm. A perfect anticorrelation between vertical and zonal drifts was observed during the night and in the initial and growth phases of the magnetic storm. Based on a detailed quantitative analysis we will show that this anticorrelation is driven mainly by a vertical Hall electric field induced by the primary zonal penetration electric field in the presence of enhanced nighttime E region conductivity. An increase in the field line integrated Hall-to-Pedersen conductivity ratio, arising from energetic particle precipitation in the South American Magnetic Anomaly (SAMA) region is found to be capable of explaining the observed anti correlation between the vertical and zonal plasma drifts. Evidence for the particle ionization is provided from the occurrence of anomalous sporadic E layers over the SAMA region. It will also be shown that the zonal plasma drift reversal to eastward in the afternoon can occur earlier due to the weakening of the zonal wind system during the prolonged solar minimum period.

  1. Zonal Variations of Eddy Diffusivities in an ACC-like Channel: Discrete Transport Corridors.

    NASA Astrophysics Data System (ADS)

    Lazar, A.; Thompson, A. F.

    2014-12-01

    The meridional overturning circulation in a wind-driven re-entrant channel arises from a balance between an Eulerian mean overturning and an eddy overturning. These cancel to leading order in the Southern Ocean's Antarctic Circumpolar Current (ACC). An ACC-like flow, with realistic stratification, zonal transport and distributions of eddy kinetic energy, develops even when these two overturning components cancel completely. Many studies have noted that an enhancement of the Eulerian overturning circulation, which tends to steepen isopycnals, is balanced in part by an enhancement of the eddy circulation that relaxes isopycnal tilt. Thus the domain-averaged isopycnal slope and zonal transport are relatively insensitive to changes in wind forcing. However, the response of the system's mesoscale variability and eddy fluxes is not uniform throughout the domain. We present a process study of an idealized eddy-resolving ACC-like channel with negligible residual overturning to explore how the along-stream distribution of eddy characteristics establishes a balance between wind and eddy overturning circulations. For each simulation, we decompose the overturning circulation into mean, standing and transient components. As the surface wind stress increases, the standing component balances a larger portion of the mean overturning. This in turn leads to an increasing departure from zonally-symmetric eddy characteristics. A zonal-mean, or net, eddy diffusivity Κnet is defined as the eddy diffusivity required to exactly balance the mean overturning based on the zonal-mean isopycnal slope, s. This gives Κnet=τ/ρ0fs, where τ is the wind stress, ρ0 is a reference density and f is the Coriolis parameter. Κnet is compared to local eddy diffusivities, Κlocal, diagnosed directly from the divergent component of the eddy buoyancy flux divided by the local isopycnal slope. We find that with a simple topographic ridge and moderate wind forcing, along-stream averages of

  2. Relationship between eastern tropical Pacific cooling and recent trends in the Southern Hemisphere zonal-mean circulation

    NASA Astrophysics Data System (ADS)

    Clem, Kyle R.; Renwick, James A.; McGregor, James

    2016-08-01

    During 1979-2014, eastern tropical Pacific sea surface temperatures significantly cooled, which has generally been attributed to the transition of the Pacific Decadal Oscillation to its negative phase after 1999. We find the eastern tropical Pacific cooling to be associated with: (1) an intensified Walker Circulation during austral summer (December-February, DJF) and autumn (March-May, MAM); (2) a weakened South Pacific Hadley cell and subtropical jet during MAM; and (3) a strengthening of the circumpolar westerlies between 50 and 60°S during DJF and MAM. Observed cooling in the eastern tropical Pacific is linearly congruent with 60-80 % of the observed Southern Hemisphere positive zonal-mean zonal wind trend between 50 and 60°S during DJF (~35 % of the interannual variability), and around half of the observed positive zonal-mean zonal wind trend during MAM (~15 % of the interannual variability). Although previous studies have linked the strengthened DJF and MAM circumpolar westerlies to stratospheric ozone depletion and increasing greenhouse gases, we note that the continuation of the positive SAM trends into the twenty-first century is partially associated with eastern tropical Pacific cooling, especially during MAM when zonal wind anomalies associated with eastern tropical Pacific cooling project strongly onto the observed trends. Outside of DJF and MAM, eastern tropical Pacific cooling is associated with opposing zonal wind anomalies over the Pacific and Indian sectors, which we infer is the reason for the absence of significant positive SAM trends outside of DJF and MAM despite significant eastern tropical Pacific cooling seen during all seasons.

  3. Zonal jets in the Madagascar plankton bloom

    NASA Astrophysics Data System (ADS)

    Huhn, F.; von Kameke, A.; Pérez-Muñuzuri, V.; Olascoaga, M. J.; Beronavera, F. B.

    2012-04-01

    We study the relation between advection by mesoscale eddies and jets and the remarkable eastward propagation of the Madagascar plankton bloom. Analyzing geostrophic velocity fields from altimetry with state-of-the-art Lagrangian techniques, we find fast coherent zonal jets in the recently discovered South Indian Ocean Countercurrent (SICC) at the exact position of the bloom. The coherent jets have a length of up to 1500km and provide a fast transport to the east. We use a new simple Lagrangian metric, the Finite-Time Zonal Drift (FTZD) to quantify the zonal transport and find that the jets can partly explain the explosive eastward propagation seen in the evolution of the Madagascar plankton bloom. Numerical experiments with a passive tracer concentration released at a known upwelling region south of Madagascar also supports the hypothesis that an important nutrient source of the plankton bloom could be located in that area. Until now, the reasons for the eastward propagation of the bloom's front remained totally unclear and even a propagation against the mean flow had been suggested. Moreover, we extract zonal jet-like Lagrangian Coherent Structures (LCS) from fields of the well-established Finite-Time Lyapunov Exponents (FTLE) that can be identified with barriers to meridional transport. Comparing these LCS with fields of chlorophyll concentration of the Madagascar plankton bloom measured by the Sea-viewing Wide Field-of view Sensor (SeaWiFS), we show that the location of jet-like LCS coincide with the boundaries of the plankton bloom, e.g. an LCS prevents cross-transport and confines the bloom to one side of the LCS. Phytoplankton is one of the few natural tracers that can be used to verify if the ubiquitous zonal mesoscale jets act as transport barriers. In the case of the Madagascar plankton bloom, we find clear evidence that the zonal jets in the SICC indeed represent transport barriers to the ambient flow and shape the northern boundary of the chlorophyll

  4. Zonal spherical aberration correction utilizing axial electrodes

    NASA Astrophysics Data System (ADS)

    Chao, Liang C.

    2005-01-01

    Spherical aberration is important in focused ion beam applications where large aperture angles are needed to obtain high beam currents because it results in large tails on the current density distribution. Merwe has shown that for coaxial lenses, negative spherical aberration can be found for rays pass through zonal regions. Merwe"s calculation is valid only for periodic or quasi-periodic lenses and requires a constant axial potential distribution. We have calculated zonal focusing properties of lenses with axial electrodes using nine-point finite difference method and direct ray tracing. Our calculation results indicate that an axial electrode protruding partially into the lens can correct the spherical aberration. When a three-element electrostatic lens is operated at deceleration mode, the introduction of an axial electrode creates zonal regions where the spherical aberration is negative. At deceleration mode, the induced surface charges on the axial electrode have an opposite sign relative to the primary beam. This is in agreement with our previous findings on the study of the correction of spherical aberration utilizing space charges. Same phenomenon was found when an axial electrode is used in conjunction with a cathode lens.

  5. The Dynamics of Baroclinic Zonal Jets

    NASA Astrophysics Data System (ADS)

    Williams, P. D.

    2015-12-01

    Multiple alternating zonal jets are a ubiquitous feature of planetary atmospheres and oceans. However, most studies to date have focused on the special case of barotropic jets. Here, the dynamics of freely evolving baroclinic jets are investigated using a two-layer quasigeostrophic annulus model with sloping topography. In a suite of 15 numerical simulations, the baroclinic Rossby radius and baroclinic Rhines scale are sampled by varying the stratification and root-mean-square eddy velocity, respectively. Small-scale eddies in the initial state evolve through geostrophic turbulence and accelerate zonally as they grow in horizontal scale, first isotropically and then anisotropically. This process leads ultimately to the formation of jets, which take about 2500 rotation periods to equilibrate. The kinetic energy spectrum of the equilibrated baroclinic zonal flow steepens from a -3 power law at small scales to a -5 power law near the jet scale. The conditions most favorable for producing multiple alternating baroclinic jets are large baroclinic Rossby radius (i.e., strong stratification) and small baroclinic Rhines scale (i.e., weak root-mean-square eddy velocity). The baroclinic jet width is diagnosed objectively and found to be 2.2-2.8 times larger than the baroclinic Rhines scale, with a best estimate of 2.5 times larger. This finding suggests that Rossby wave motions must be moving at speeds of approximately 6 times the turbulent eddy velocity in order to be capable of arresting the isotropic inverse energy cascade.

  6. Generalized Quasilinear Approximation: Application to Zonal Jets.

    PubMed

    Marston, J B; Chini, G P; Tobias, S M

    2016-05-27

    Quasilinear theory is often utilized to approximate the dynamics of fluids exhibiting significant interactions between mean flows and eddies. We present a generalization of quasilinear theory to include dynamic mode interactions on the large scales. This generalized quasilinear (GQL) approximation is achieved by separating the state variables into large and small zonal scales via a spectral filter rather than by a decomposition into a formal mean and fluctuations. Nonlinear interactions involving only small zonal scales are then removed. The approximation is conservative and allows for scattering of energy between small-scale modes via the large scale (through nonlocal spectral interactions). We evaluate GQL for the paradigmatic problems of the driving of large-scale jets on a spherical surface and on the beta plane and show that it is accurate even for a small number of large-scale modes. As GQL is formally linear in the small zonal scales, it allows for the closure of the system and can be utilized in direct statistical simulation schemes that have proved an attractive alternative to direct numerical simulation for many geophysical and astrophysical problems. PMID:27284660

  7. Building an Anisotropic Meniscus with Zonal Variations

    PubMed Central

    Higashioka, Michael M.; Chen, Justin A.; Hu, Jerry C.

    2014-01-01

    Toward addressing the difficult problems of knee meniscus regeneration, a self-assembling process has been used to re-create the native morphology and matrix properties. A significant problem in such attempts is the recapitulation of the distinct zones of the meniscus, the inner, more cartilaginous and the outer, more fibrocartilaginous zones. In this study, an anisotropic and zonally variant meniscus was produced by self-assembly of the inner meniscus (100% chondrocytes) followed by cell seeding the outer meniscus (coculture of chondrocytes and meniscus cells). After 4 weeks in culture, the engineered, inner meniscus exhibited a 42% increase in both instantaneous and relaxation moduli and a 62% increase in GAG/DW, as compared to the outer meniscus. In contrast, the circumferential tensile modulus and collagen/DW of the outer zone was 101% and 129% higher, respectively, than the values measured for the inner zone. Furthermore, there was no difference in the radial tensile modulus between the control and zonal engineered menisci, suggesting that the inner and outer zones of the engineered zonal menisci successfully integrated. These data demonstrate that not only can biomechanical and biochemical properties be engineered to differ by the zone, but they can also recapitulate the anisotropic behavior of the knee meniscus. PMID:23931258

  8. The sensitivity of stationary waves to variations in the basic state zonal flow

    NASA Technical Reports Server (NTRS)

    Nigam, Sumant; Lindzen, Richard S.

    1989-01-01

    A linear, primitive equation stationary wave model having high vertical and meridional resolution is used to examine the sensitivity of orographically forced (primarily by Himalayas) stationary waves at middle and high latitudes to variations in the basic state zonal wind distribution. We find relatively little sensitivity to the winds in high latitudes, but remarkable sensitivity to small variations in the subtropical jet. Fluctuations well within the range of observed variability in the jet can lead to large variations in the stationary waves of the high latitude stratosphere, and to large changes even in tropospheric stationary waves. Implications for both sudden warmings and large-scale weather are discussed.

  9. Titan's rotation reveals an internal ocean and changing zonal winds

    USGS Publications Warehouse

    Lorenz, R.D.; Stiles, B.W.; Kirk, R.L.; Allison, M.D.; Del Marmo, P.P.; Iess, L.; Lunine, J.I.; Ostro, S.J.; Hensley, S.

    2008-01-01

    Cassini radar observations of Saturn's moon Titan over several years show that its rotational period is changing and is different from its orbital period. The present-day rotation period difference from synchronous spin leads to a shift of ???0.36?? per year in apparent longitude and is consistent with seasonal exchange of angular momentum between the surface and Titan's dense superrotating atmosphere, but only if Titan's crust is decoupled from the core by an internal water ocean like that on Europa.

  10. Equatorial superrotation in a thermally driven zonally symmetric circulation

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.

    1981-01-01

    Near the equator where the Coriolis force vanishes, the momentum balance for the axially symmetric circulation is established between horizontal and vertical diffusion, which, a priori, does not impose constraints on the direction or magnitude of the zonal winds. Solar radiation absorbed at low latitudes is a major force in driving large scale motions with air rising near the equator and falling at higher latitudes. In the upper leg of the meridional cell, angular momentum is redistributed so that the atmosphere tends to subrotate (or corotate) at low latitudes and superrotate at high latitudes. In the lower leg, however, the process is reversed and produces a tendency for the equatorial region to superrotate. The outcome depends on the energy budget which is closely coupled to the momentum budget through the thermal wind equation; a pressure (temperature) maximum is required to sustain equatorial superrotation. Such a condition arises in regions which are convectively unstable and the temperature lapse rate is superadiabatic. It should arise in the tropospheres of Jupiter and Saturn; planetary energy from the interior is carried to higher altitudes where radiation to space becomes important. Upward equatorial motions in the direct and indirect circulations (Ferrel-Thomson type) imposed by insolation can then trap dynamic energy for equatorial heating which can sustain the superrotation of the equatorial region.

  11. Zero potential vorticity envelopes for the zonal-mean velocity of the Venus/Titan atmospheres

    NASA Astrophysics Data System (ADS)

    Allison, M.; del Genio, A. D.; Zhou, W.

    1994-03-01

    The diagnostic analysis of numerical simulations of the Venus/Titan wind regime reveals an overlooked constraint upon the latitudinal structure of their zonal-mean angular momentum. The numerical experiments, as well as the limited planetary observations, are approximately consistent with the hypothesis that within the latitudes bounded by the wind maxima the total Ertel potential vorticity associated with the zonal-mean motion is approximately well mixed with respect to the neutral equatorial value for a stable circulation. The implied latitudinal profile of angular momentum is of the form M equal to or less than Me(cos lambda)2/Ri, where lambda is the latitude and Ri the local Richardson number, generally intermediate between the two extremes of uniform angular momentum (Ri approaches infinity) and uniform angular velocity (Ri = 1). The full range of angular momentum profile variation appears to be realized within the observed meridional - vertical structure of the Venus atmosphere, at least crudely approaching the implied relationship between stratification and zonal velocity there. While not itself indicative of a particular eddy mechanism or specific to atmospheric superrotation, the zero potential vorticity (ZPV) constraint represents a limiting bound for the eddy - mean flow adjustment of a neutrally stable baroclinic circulation and may be usefully applied to the diagnostic analysis of future remote sounding and in situ measurements from planetary spacecraft.

  12. Zonal jets and QBO-like oscillations on Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Showman, Adam P.; Zhang, Xi; Tan, Xianyu

    2016-10-01

    At the levels of their visible cloud decks, the giant planets Jupiter and Saturn exhibit numerous east-west (zonal) jet streams with speeds ranging up to 150 m/sec on Jupiter and 400 m/sec on Saturn. Moreover, both planets exhibit long-term stratospheric oscillations involving perturbations of zonal wind and temperature that propagate downward over time on timescales of ~4 years (Jupiter) and ~15 years (Saturn). These oscillations, dubbed the Quasi Quadrennial Oscillation (QQO) for Jupiter and the Semi-Annual Oscillation (SAO) on Saturn, are thought to be analogous to the Quasi-Biennial Oscillation (QBO) on Earth, which is driven by upward propagation of equatorial waves from the troposphere. Here, we test the hypothesis that the zonal jets on Jupiter and Saturn, as well as QBO-like oscillations, can result from interaction of the stably stratified atmosphere with an underlying convective interior. We performed global, three-dimensional, high-resolution numerical simulations of the flow in the stratosphere and upper troposphere of Jupiter-like planets. The effect of convection is parameterized by introducing thermal perturbations that randomly perturb the radiative convective boundary with some characteristic timescale, horizontal wavenumber, and amplitude. Radiative damping is represented using a Newtonian cooling scheme with a characteristic radiative time constant. In the simulations, the convective perturbations generate atmospheric waves and turbulence that interact with the rotation to produce numerous zonal jets. Moreover, the equatorial stratosphere exhibits stacked eastward and westward jets that migrate downward over time, exactly as occurs in the terrestrial QBO, Jovian QQO, and Saturnian SAO. This is the first demonstration of a QBO-like phenomenon in 3D numerical simulations of a giant planet. We will describe how the properties of the zonal jets and equatorial oscillation depend on the details of the forcing and damping. These simulations have

  13. Influence of the Basic State Zonal Flow on Convectively Coupled Equatorial Waves

    NASA Astrophysics Data System (ADS)

    Kiladis, G. N.; Dias, J.

    2014-12-01

    Observational data are used to test the hypothesis that the basic state modulates the dispersion properties of convectively coupled equatorial waves (CCEWs). This hypothesis is based on shallow water theory, which predicts that the zonal speed of propagation of equatorial modes is altered by the equivalent depth and the basic zonal flow. Typical diagnostics of space-time power spectra of cloudiness data reflect the mean behavior of CCEWs in space and time. Here, localized space-time spectra are calculated to investigate how the global spectral peaks vary across the tropics, and how they are affected by the substantial variations in zonal flow observed geographically and by season. The strength of some convectively coupled mode signals are seen to vary widely across the globe, while others show much less dependence on location. For example, Kelvin waves are observed in all sectors, while mixed Rossby-gravity waves only exist with appreciable amplitude over the western and central Pacific. Doppler shifting of the phase speed of CCEWs by the barotropic component of the wind is readily detectable due to both the mean flow and temporally varying extremes in this flow. However, once the Doppler effect is taken into account, the equivalent depths of CCEWs inferred from global power-spectra are surprisingly uniform, both geographically and temporally. There does not seem to be a unique steering level for CCEWs. For instance, the phase speed of Kelvin waves appear to be more influenced by the upper tropopspheric zonal flow, while mixed Rossby-gravity waves respond more to lower tropospheric flow. There are also detectable phase speed and equivalent depth shifts that are consistent with changes in the zonal flow vertical shear. This is particularly evident for equatorial Rossby modes.

  14. ZASPE: Zonal Atmospheric Stellar Parameters Estimator

    NASA Astrophysics Data System (ADS)

    Brahm, Rafael; Jordan, Andres; Hartman, Joel; Bakos, Gaspar

    2016-07-01

    ZASPE (Zonal Atmospheric Stellar Parameters Estimator) computes the atmospheric stellar parameters (Teff, log(g), [Fe/H] and vsin(i)) from echelle spectra via least squares minimization with a pre-computed library of synthetic spectra. The minimization is performed only in the most sensitive spectral zones to changes in the atmospheric parameters. The uncertainities and covariances computed by ZASPE assume that the principal source of error is the systematic missmatch between the observed spectrum and the sythetic one that produces the best fit. ZASPE requires a grid of synthetic spectra and can use any pre-computed library minor modifications.

  15. The Linear Study of Zonally Asymmetric Barotropic Flows.

    NASA Astrophysics Data System (ADS)

    Zhang, Zuojun

    Available from UMI in association with The British Library. The loss of orthogonality between unstable normal modes is general for any kind of eigen-analysis. In particular for an observed climatological mean flow this is found to be very significant for the development of perturbations. A small perturbation can have a very large projection onto the most unstable normal mode. The adjoint eigenmode is most efficient at exciting the normal mode. The "gain" on projection is described by the projectibility. In general, growthrate and frequency information should be augmented with the projectibility and eigenvectors should be augmented by the corresponding adjoint eigenvectors. For the 300mb January climatological mean flow, the maximum projectibility is found to be 7.8 and the adjoint mode corresponding to the most unstable normal mode has large amplitude over the subtropical Indian Ocean and southeast Asia. The adjoint mode when used as an initial perturbation yields an energy increase of a factor of 50 within 10 days even when a damping is added to make the system stable. Both the initial value problems and forcing problems show that the linear barotropic vorticity equation gives important ideas on atmospheric low-frequency variability and the role of the tropics. The sensitivity of linear analysis to details of flow is studied. It is found that the instability is much more sensitive to the strength of the zonal flow component than to that of the wave components. The variation of leading unstable modes with respect to the strength of the waves is easily traced, as it is also in a simple system which contains only a zonal flow and a wave. Instability depends upon the assumption of the maintenance of the basic state. The sensitivity to basic states maintained by a divergent wind forcing and an equivalent orographic forcing are studied. It is found that the instability is more sensitive to the equivalent orographic forcing than to the divergent wind forcing. The

  16. Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO

    SciTech Connect

    Picaut, J.; Ioualalen, M.; Delcroix, T.

    1996-11-29

    The western equatorial Pacific warm pool is subject to strong east-west migrations on interannual time scales in phase with the Southern Oscillation Index. The dominance of surface zonal advection in this migration is demonstrated with four different current data sets and three oceans models. The eastward advection of warm and less saline water form the western Pacific together with the westward advection of cold and more saline water from the central-eastern Pacific induces a convergence of water masses at the eastern edge of the warm pool and a well-defined salinity front. The location of this convergence is zonally displaced in association with El Nino-La Nina wind-driven surface current variations. These advective processes and water-mass convergences have significant implications for understanding and simulating coupled ocean-atmosphere interactions associated with El Nino-Southern Oscillation (ENSO).

  17. Zonal flow formation in the presence of ambient mean shear

    SciTech Connect

    Hsu, Pei-Chun; Diamond, P. H.

    2015-02-15

    The effect of mean shear flows on zonal flow formation is considered in the contexts of plasma drift wave turbulence and quasi-geostrophic turbulence models. The generation of zonal flows by modulational instability in the presence of large-scale mean shear flows is studied using the method of characteristics as applied to the wave kinetic equation. It is shown that mean shear flows reduce the modulational instability growth rate by shortening the coherency time of the wave spectrum with the zonal shear. The scalings of zonal flow growth rate and turbulent vorticity flux with mean shear are determined in the strong shear limit.

  18. Diagnosis of medium-range predictability enhancement during anomalous winter zonal flows over western North America

    NASA Astrophysics Data System (ADS)

    Byerle, Lee A.; Paegle, Jan

    2004-09-01

    This investigation analyzes medium-range predictability enhancement during winter cases of anomalous, upper troposphere zonal flows over western North America. Time correlations based upon a 50-year record of reanalyses suggest that winters with anomalously strong zonal winds are wetter over the region, while years with anomalously weak zonal winds are relatively drier. Forecasts are selected based upon anomalously weak and strong zonal flows during January. Results from 15-day simulations using a variety of operational and research global model configurations are presented to diagnose the predictability of precipitation and large-scale features. Model forecasts of precipitation accumulation delineate qualitatively between wet and dry events at both 5 and 10 days. Anomaly correlations of the geopotential height field reveal useful predictability for some ensembles extending to 9.5 days. Uniform resolution forecasts are compared with two model configurations that employ rotated, variable resolution. Uniform and variable resolution forecasts maintain representative precipitation into the second week over the western United States. The rotated variable resolution simulations provide more precipitation detail. Diagnostics and model simulations of a small number of extreme events suggest that flow modifications associated with ambient flows exist over the orography during the winter season and that a predictable regional response may be present to ˜10 days. The persistence of the anomalies may also contribute to the improved model performance in certain cases. Improved performance may be related to the large inertia of the flow in wet events and to the persistence and increased predictability of initial, large-scale anomalies in both wet and dry events. Present conclusions are limited by the small case sampling, which will be expanded in future investigations.

  19. Zonal flows in tokamaks with anisotropic pressure

    NASA Astrophysics Data System (ADS)

    Ren, Haijun

    2014-04-01

    Zonal flows (ZFs) in a tokamak plasma with anisotropic pressure are investigated. The dynamics of perpendicular and parallel pressures are determined by the Chew-Goldberger-Low double equations and low-β condition is adopted, where β is the ratio of plasma pressure to the magnetic field pressure. The dispersion relation is analytically derived and illustrates two branches of ZFs. The low frequency zonal flow (LFZF) branch becomes unstable when χ, the ratio of the perpendicular pressure to the parallel one, is greater than a threshold value χc, which is about 3.8. In the stable region, its frequency increases first and then decreases with increasing χ. For χ = 1, the frequency of LFZF agrees well with the experimental observation. For the instability, the growth rate of LFZF increases with χ. The geodesic acoustic mode branch is shown to be always stable with a frequency increasing with χ. The safety factor is shown to diminish the frequencies of both branches or the growth rate of LFZF.

  20. Observed variability in the upper layers at the Equator, 90°E in the Indian Ocean during 2001-2008, 1: zonal currents

    NASA Astrophysics Data System (ADS)

    Rao, R. R.; Horii, T.; Masumoto, Y.; Mizuno, K.

    2016-06-01

    The observed variability of zonal currents (ZC) at the Equator, 90°E shows a strong seasonal cycle in the near-surface 40-350 m water column with periodic east-west reversals most pronounced at semiannual frequency. Superposed on this, a strong intraseasonal variability of 30-90 day periodicity is also prominently seen in the near-surface layer (40-80 m) almost throughout the year with the only exception of February-March. An eastward flowing equatorial undercurrent (EUC) is present in the depth range of 80-160 m during March-April and October-November. The observed intraseasonal variability in the near-surface layer is primarily determined by the equatorial zonal westerly wind bursts (WWBs) through local frictional coupling between the zonal flow in the surface layer and surface zonal winds and shows large interannual variability. The eastward flowing EUC maintained by the ZPG set up by the east-west slope of the thermocline remotely controlled by the zonal wind (ZW) and zonally propagating wave fields also shows significant interannual variability. This observed variability on interannual time scales appears to be controlled by the corresponding variability in the alongshore winds off the Somalia coast during the preceding boreal winter, the ZW field along the equator, and the associated zonally propagating Kelvin and Rossby waves. The salinity induced vertical stratification observed in the near-surface layer through barrier layer thickness (BLT) effects also shows a significant influence on the ZC field on intraseasonal time scale. Interestingly, among all the 8 years (2001-2008), relatively weaker annual cycle is seen in both ZC in the 40-350 m water column and boreal spring sea surface temperature (SST) only during 2001 and 2008 along the equator caused through propagating wave dynamics.

  1. Storm time equatorial plasma bubble zonal drift reversal due to disturbance Hall electric field over the Brazilian region

    NASA Astrophysics Data System (ADS)

    Santos, A. M.; Abdu, M. A.; Souza, J. R.; Sobral, J. H. A.; Batista, I. S.; Denardini, C. M.

    2016-06-01

    The dynamics of equatorial ionospheric plasma bubbles over Brazilian sector during two magnetic storm events are investigated in this work. The observations were made at varying phases of magnetic disturbances when the bubble zonal drift velocity was found to reverse westward from its normally eastward velocity. Calculation of the zonal drift based on a realistic low-latitude ionosphere modeled by the Sheffield University Plasmasphere-Ionosphere Model showed on a quantitative basis a clear competition between vertical Hall electric field and disturbance zonal winds on the variations observed in the zonal velocity of the plasma bubble. The Hall electric field arising from enhanced ratio of field line-integrated conductivities, ΣH/ΣP, is most often generated by an increase in the integrated Hall conductivity, arising from enhanced energetic particle precipitation in the South American Magnetic Anomaly region for which evidence is provided from observation of anomalous sporadic E layers over Cachoeira Paulista and Fortaleza. Such sporadic E layers are also by themselves evidence for the development of the Hall electric field that modifies the zonal drift.

  2. Lower thermosphere wind regime according to radiometeor measurements in Kazan

    NASA Technical Reports Server (NTRS)

    Sidorov, V. V.; Fahrutdinova, A. N.; Makarov, V. A.

    1987-01-01

    Research in dynamic processes in the lower thermosphere has been carried out in Kazan using the meteor radar facilities of the Kazan State University under the MAP-GLOBMET international program. Presented is experimental data on seasonal dependences of the wind for anomalous winter circulation periods, spring and autumn reconstructions and stable summer circulation from observations conducted in 1978 to 1984. Prevailing wind parameters are shown: zonal and meridional component amplitudes and A sub 0 and azimuth of the prevailing wind vector. The values are also presented for semidiurnal zonal and meridional tidal components, their correlation coefficient and zonal component amplitude maximum time.

  3. ON THE VARIATION OF ZONAL GRAVITY COEFFICIENTS OF A GIANT PLANET CAUSED BY ITS DEEP ZONAL FLOWS

    SciTech Connect

    Kong Dali; Zhang Keke; Schubert, Gerald E-mail: kzhang@ex.ac.uk

    2012-04-01

    Rapidly rotating giant planets are usually marked by the existence of strong zonal flows at the cloud level. If the zonal flow is sufficiently deep and strong, it can produce hydrostatic-related gravitational anomalies through distortion of the planet's shape. This paper determines the zonal gravity coefficients, J{sub 2n}, n = 1, 2, 3, ..., via an analytical method taking into account rotation-induced shape changes by assuming that a planet has an effective uniform density and that the zonal flows arise from deep convection and extend along cylinders parallel to the rotation axis. Two different but related hydrostatic models are considered. When a giant planet is in rigid-body rotation, the exact solution of the problem using oblate spheroidal coordinates is derived, allowing us to compute the value of its zonal gravity coefficients J-bar{sub 2n}, n=1,2,3,..., without making any approximation. When the deep zonal flow is sufficiently strong, we develop a general perturbation theory for estimating the variation of the zonal gravity coefficients, {Delta}J{sub 2n}=J{sub 2n}-J-bar{sub 2n}, n=1,2,3,..., caused by the effect of the deep zonal flows for an arbitrarily rapidly rotating planet. Applying the general theory to Jupiter, we find that the deep zonal flow could contribute up to 0.3% of the J{sub 2} coefficient and 0.7% of J{sub 4}. It is also found that the shape-driven harmonics at the 10th zonal gravity coefficient become dominant, i.e., {Delta}J{sub 2n}>=J-bar{sub 2n} for n {>=} 5.

  4. Average vertical and zonal F region plasma drifts over Jicamarca

    SciTech Connect

    Fejer, B.G.; Gonzalez, S.A. ); de Paula, E.R. Utah State Univ., Logan ); Woodman, R.F. )

    1991-08-01

    The seasonal averages of the equatorial F region vertical and zonal plasma drifts are determined using extensive incoherent scatter radar observations from Jicamarca during 1968-1988. The late afternoon and nighttime vertical and zonal drifts are strongly dependent on the 10.7-cm solar flux. The authors show that the evening prereversal enhancement of vertical drifts increases linearly with solar flux during equinox but tends to saturate for large fluxes during southern hemisphere winter. They examine in detail, for the first time, the seasonal variation of the zonal plasma drifts and their dependence on solar flux and magnetic activity. The seasonal effects on the zonal drifts are most pronounced in the midnight-morning sector. The nighttime eastward drifts increase with solar flux for all seasons but decrease slightly with magnetic activity. The daytime westward drifts are essentially independent of season, solar cycle, and magnetic activity.

  5. Changes to Saturn's zonal-mean tropospheric thermal structure after the 2010-2011 northern hemisphere storm

    SciTech Connect

    Achterberg, R. K.; Hesman, B. E.; Gierasch, P. J.; Conrath, B. J.; Fletcher, L. N.; Bjoraker, G. L.; Flasar, F. M.

    2014-05-10

    We use far-infrared (20-200 μm) data from the Composite Infrared Spectrometer on the Cassini spacecraft to determine the zonal-mean temperature and hydrogen para-fraction in Saturn's upper troposphere from observations taken before and after the large northern hemisphere storm in 2010-2011. During the storm, zonal mean temperatures in the latitude band between approximately 25°N and 45°N (planetographic latitude) increased by about 3 K, while the zonal mean hydrogen para-fraction decreased by about 0.04 over the same latitudes, at pressures greater than about 300 mbar. These changes occurred over the same latitude range as the disturbed cloud band seen in visible images. The observations are consistent with low para-fraction gas being brought up from the level of the water cloud by the strong convective plume associated with the storm, while being heated by condensation of water vapor, and then advected zonally by the winds near the plume tops in the upper troposphere.

  6. Comparison of low-latitude ion and neutral zonal drifts using DE 2 data

    SciTech Connect

    Coley, W.R.; Heelis, R.A. ); Spencer, N.W. )

    1994-01-01

    The authors have used data from the ion drift meter and the wind and temperature spectrometer on the DE 2 spacecraft to make statistical comparisons of the zonal ion and neutral drifts at dip latitudes (DLAT) in the [+-]35[degrees] range over all local times. Fourier analysis indicates that the superrotation and the diurnal components of both flows are strongly peaked at the dip equator, with the superrotation term becoming negative for [vert bar]DLAT[vert bar] [ge]20[degrees]. One interesting feature is the presence of a period (2200-0500 solar local time) in the 300-400 km altitude region near the dip equator where the ion drift is more strongly eastward than the neutral flow. This would seem to indicate the presence of an electric field source of greater strength than the F region dynamo elsewhere along the geomagnetic field line. Model calculations indicate that a possible mechanism for this source lies in the vertical shear in the zonal neutral wind in the 100-200 km altitude region. 24 refs., 8 figs., 1 tab.

  7. Simulation of the zonal mean climatology of the middle atmosphere with a three-dimensional spectral model for solstice and equinox conditions

    NASA Technical Reports Server (NTRS)

    Akmaev, R. A.; Fomichev, V. I.; Gavrilov, N. M.; Shved, G. M.

    1992-01-01

    A 3D spectral model was used to simulate the zonal mean state of the middle atmosphere for solstice and equinox conditions. The model incorporates realistic parameterizations of atmospheric infrared cooling and a gravity wave formulation based on a combination of Lindzen's (1981) and Matsuno's (1982) approaches. The temperature distributions for both seasons and the zonal wind distribution for solstice are found to be in satisfactory agreement with the empirical model of Fleming et al. (1988). Net vertical fluxes of horizontal momentum are in good agreement with systematic observations of gravity waves in the middle atmosphere.

  8. Observed nocturnal gravity wave variances and zonal momentum flux in mid-latitude mesopause region over Fort Collins, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Acott, Phil E.; She, C.-Y.; Krueger, David A.; Yan, Z.-A.; Yuan, Tao; Yue, Jia; Harrell, Sean

    2011-03-01

    Twenty-nine nights including 275 h measurements of temperature, zonal and meridional winds, and zonal momentum flux in the mesopause region were made between September 2006 and April 2007 with the Colorado State University (CSU) sodium lidar at Fort Collins, CO (40.6N, 105W). Perturbations with periods between 6 min and 4 h in temperature and winds were calculated and compared to the recently reported observations by a similar lidar located at Starfire Optical Range (SOR), NM (35N, 107W), showing general agreement. The seasonal means of the observed zonal momentum flux of these wave perturbations were found to be 0.12±0.46 m2 s-2 for the equinoctial season and -0.69±0.42 m2 s-2 for the winter season. These results are compared to two such observations in mid-latitude mesosphere and lower thermosphere (MLT) in the literature, i.e., lidar observation at SOR and radar observation near Kyoto, Japan (35N, 106E). Both magnitudes and signs of the CSU lidar observations are consistent with those published.

  9. The Importance of Zonal Asymmetry in the Southern Hemisphere Circulation

    NASA Astrophysics Data System (ADS)

    Solomon, A. L.; Polvani, L. M.

    2015-12-01

    The atmospheric circulation in the Southern Hemisphere is considered a good example of a zonally symmetric jet, but recent papers have questioned the accuracy of this approximation. Numerous studies of the southern annular mode and the budget of zonal-mean momentum have sought to understand the timescales and causes of variability, as well as trends associated with climate change. This raises a question: when does taking the zonal mean give you the wrong answer? To address this question we employ the CESM-Large Ensemble, a 30-member, fully coupled set of simulations, suitable for assessing both the forced response and natural variability of the climate system. We find that in DJF, 20th century trends associated with the ozone hole are uniform with longitude and height, and far exceed the natural variability of the system. In contrast, the JJA circulation and its trends have a longitudinal structure that is obscured by zonal averaging. The consequence is that a significant regional deceleration of the jet stream predicted for the coming century, presumably driven by increasing concentrations of greenhouse gases, is completely eliminated in the zonal mean.

  10. Gyrokinetic Particle Simulation of Alfven Eigenmodes with Zonal Fields

    NASA Astrophysics Data System (ADS)

    Wang, Zhixuan

    2012-03-01

    Effects of collective Shear Alfven wave instabilities on the energetic particle confinement in tokamak depend ultimately on the nonlinear evolution of the turbulence with spontaneously generated zonal fields (zonal flows and zonal currents). In this work, we study nonlinear interaction of Alfv'en eigenmodes with zonal fields using global gyrokinetic toroidal code GTC. We choose to start from the simplest case, linear electrostatic eigenmodes in cylindrical geometry, and then gradually extend our study into electromagnetic eigenmode in toroidal geometry. We have verified GTC for linear simulation in cylindrical geometry with the ExB flow shear. Ion temperature gradient instability is observed to be suppressed when ExB flow shear is strong enough. A good agreement has also been achieved between our simulation result of kinetic Alfv'en wave and LAPD experimental result. Now we are doing TAE (torodicity-induced Alfv'en eigenmodes) simulation using the DIII-D equilibrium data. Linear simulation result agrees well with DIII-D data. Our next step is to include nonlinear effects to study the interaction between zonal fields and TAEs. Work supported by DOE SciDAC GSEP Center and Plasma Science Center.

  11. Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass

    PubMed Central

    Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin

    2014-01-01

    Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks. PMID:24592166

  12. The jovian anticyclone BA. II. Circulation and interaction with the zonal jets

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Legarreta, J.; García-Melendo, E.; Sánchez-Lavega, A.; Pérez-Hoyos, S.

    2009-10-01

    In this second part of our study of the large jovian anticyclone BA we present detailed measurements of its internal circulation and numerical models of its interaction with the zonal jets and nearby cyclonic regions. We characterized the flow using high-resolution observations obtained by the Cassini spacecraft in December 2000 (9 months after the genesis of BA as a result of the merger of two large White Ovals), by the ACS camera onboard HST in January 2005 and April 2006 and by the New Horizons spacecraft in February 2007. Cloud motions were derived from high-resolution images using an automatic correlator that provides a large sampling of the motions in images separated by short time intervals (30 min-2 h). The internal wind structure did not change when the oval changed its color reddening in late 2005-early 2006 and all four datasets from 2000 to 2007 consistently show a similar wind regime: an asymmetric intense anticyclonic vortex with faster winds in its Southern portion with mean speeds of 110 m/s and peak velocities of 135 m/s. These speeds are slightly higher than those measured in the three White Ovals predecessors of BA by the Voyagers [Mitchell, J.L., Beebe, R.F., Ingersoll, A.P., Garneau, G.W., 1981. J. Geophys. Res. 86, 8751-8757] and Galileo [Vasavada, A.R., and 13 colleagues, 1998. Icarus 135, 265-275] but not as much as it has been recently reported [Simon-Miller, A.A., Chanover, N.J., Orton, G.S., Sussman, M., Tsavaris, I.G., Karkoschka, E., 2006. Icarus 185, 558-562; Cheng, A.F., and 14 colleagues, 2008. Astronom. J. 135, 2446-2452]. The asymmetry of the velocities in the vortex is a consequence of the interaction of BA with the zonal circulation and emerges as a natural result in high-resolution simulations of the vortex dynamics using the EPIC model.

  13. EDITORIAL: Experimental studies of zonal flow and turbulence

    NASA Astrophysics Data System (ADS)

    Itoh, Sanae-I.

    2006-04-01

    There has been remarkable progress made in the research of structure formation by turbulence in nonequilibrium plasmas. One of the highlights has been the physics of zonal flow and drift wave turbulence in toroidal plasmas. Extensive theoretical as well as computational studies have revealed the various mechanisms in the system of turbulence and zonal flows, as highlighted in the recent review paper `Zonal flows in plasma—a review' by P H Diamond et al (2005 Plasma Phys. Control. Fusion} 47 R35). There has also been increasing research in experimental studies of zonal flows, geodesic acoustic modes, and the generation of global electric field by turbulence. In recognition of this a cluster Plasma Physics and Controlled Fusion occasionally publishes a small collection of articles on a specific topic. These special sections highlight a specific area of research that is of importance to the journal either as a new or growing research area. The subjects are selected by the Editorial Board and managed by a Guest Editor, Professor Itoh in this case. of 15 papers on `Experimental studies of zonal flow and turbulence' is presented in this issue of Plasma Physics and Controlled Fusion. Each paper in this special cluster describes the present research status and new scientific knowledge/results on the authors' machine involved, on the subject of experimental studies of zonal flows, electric field and nonlinear interactions with turbulence (including studies of Reynolds-Maxwell stresses, etc). Readers of, and contributors to, Plasma Physics and Controlled Fusion have been facing a new phase of plasma physics, with the expanding application of plasma physics to the explosive growth of our knowledge of the astronomical, space and laboratory plasmas, and the approach of ITER. The evolution of modern plasma physics into the new arena is backed up by extensive research as illustrated by this cluster of papers and review papers. We believe that this group of articles will

  14. The fractionation of nuclei from mammalian cells by zonal centrifugation

    PubMed Central

    Johnston, I. R.; Mathias, A. P.; Pennington, F.; Ridge, D.

    1968-01-01

    1. Purified liver nuclei from adult rats separate into two main zones when centrifuged in the slow-speed zonal rotor. One zone contains diploid nuclei, the other tetraploid. 2. The effect of age on the pattern of rat liver ploidy was examined. Tetraploid nuclei are virtually absent from young animals. They increase in proportion steadily with age. Partial hepatectomy disturbs the pattern of ploidy. 3. The zonal centrifuge permits the separation of diploid, tetraploid, octaploid and hexadecaploid nuclei from mouse liver. 4. Rat liver nuclei are isopycnic with sucrose solutions of density 1·35 at 5°. ImagesFig. 1.PLATE 1Fig. 9. PMID:4876099

  15. Zonal flows and turbulence in fluids and plasmas

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey Bok-Cheung

    In geophysical and plasma contexts, zonal flows are well known to arise out of turbulence. We elucidate the transition from statistically homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence with steady zonal flows. Starting from the Hasegawa--Mima equation, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking 'zonostrophic instability'. Zonostrophic instability can be understood in a very general way as the instability of some turbulent background spectrum to a zonally symmetric coherent mode. As a special case, the background spectrum can consist of only a single mode. We find that in this case the dispersion relation of zonostrophic instability from the CE2 formalism reduces exactly to that of the 4-mode truncation of generalized modulational instability. We then show that zonal flows constitute pattern formation amid a turbulent bath. Zonostrophic instability is an example of a Type I s instability of pattern-forming systems. The broken symmetry is statistical homogeneity. Near the bifurcation point, the slow dynamics of CE2 are governed by a well-known amplitude equation, the real Ginzburg-Landau equation. The important features of this amplitude equation, and therefore of the CE2 system, are multiple. First, the zonal flow wavelength is not unique. In an idealized, infinite system, there is a continuous band of zonal flow wavelengths that allow a nonlinear equilibrium. Second, of these wavelengths, only those within a smaller subband are stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets. These behaviors are shown numerically to hold in the CE2 system, and we calculate a stability diagram. The stability diagram is in agreement with direct numerical simulations of the quasilinear

  16. Wind structure and small-scale wind variability in the stratosphere and mesosphere during the November 1980 Energy Budget Campaign

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Carlson, M.; Rees, D.; Offermann, D.; Philbrick, C. R.; Widdel, H. U.

    1982-01-01

    Rocket observations made from two sites in northern Scandinavia between November 6 and December 1, 1980, as part of the Energy Budget Campaign are discussed. It was found that significant vertical and temporal changes in the wind structure were present and that they coincided with different geomagnetic conditions, that is, quiet and enhanced. Before November 16, the meridional wind component above 60 km was found to be positive (southerly), whereas the magnitude of the zonal wind component increased with altitude. After November 16 the meridional component became negative (northerly), and the magnitude of the zonal wind component was observed to decrease with altitude. Time sections of the perturbations of the zonal wind reveal the presence of vertically propagating waves, suggesting gravity wave activity. The waves are found to increase in wavelength from 3-4 km near 40 km to more than 12 km near 80 km. The observational techniques made use of chaff foil, chemical trails, inflatable spheres, and parachutes.

  17. The effect of zonal gradients of sea surface temperature on the Indian Ocean winter monsoon

    NASA Technical Reports Server (NTRS)

    Cohen, C.

    1981-01-01

    Several global climate simulations by the 7-layer, 8 x 10 GISS climate model were designed to test the contributions of various surface boundary conditions to the global climate. The model was run with the sun fixed at a perpetual January. In a comparison of run #5, in which realistic January surface boundary conditions were used, with run #4, which was the same except that a zonally symmetric climatological January sea surface temperature (SST) field was used, one of the results was that run #5 provided a better simulation of the Indian Ocean monsoon. A further comparison of the wind fields over the Indian Ocean that were generated by these two model runs is presented.

  18. Computational aspects of zonal algorithms for solving the compressible Navier-Stokes equations in three dimensions

    NASA Technical Reports Server (NTRS)

    Holst, T. L.; Thomas, S. D.; Kaynak, U.; Gundy, K. L.; Flores, J.; Chaderjian, N. M.

    1985-01-01

    Transonic flow fields about wing geometries are computed using an Euler/Navier-Stokes approach in which the flow field is divided into several zones. The flow field immediately adjacent to the wing surface is resolved with fine grid zones and solved using a Navier-Stokes algorithm. Flow field regions removed from the wing are resolved with less finely clustered grid zones and are solved with an Euler algorithm. Computational issues associated with this zonal approach, including data base management aspects, are discussed. Solutions are obtained that are in good agreement with experiment, including cases with significant wind tunnel wall effects. Additional cases with significant shock induced separation on the upper wing surface are also presented.

  19. Effects of Collisional Zonal Flow Damping on Turbulent Transport

    SciTech Connect

    P.H. Diamond; T.S. Hahm; W.M. Tang; W.W. Lee; Z. Lin

    1999-10-01

    Results from 3D global gyrokinetic particle simulations of ion temperature gradient driven microturbulence in a toroidal plasma show that the ion thermal transport level in the interior region exhibits significant dependence on the ion-ion collision frequency even in regimes where the instabilities are collisionless. This is identified as arising from the Coulomb collisional damping of turbulence-generated zonal flows.

  20. Can zonally symmetric inertial waves drive an oscillating mean flow?

    NASA Astrophysics Data System (ADS)

    Seelig, Torsten; Harlander, Uwe

    2016-04-01

    In the presentation [5] zonal mean flow excitation by inertial waves is studied in analogy to mean flow excitation by gravity waves [3] that plays an important role for the quasi-biennial oscillation in the equatorial atmosphere. In geophysical flows that are stratified and rotating, pure gravity and inertial waves correspond to the two limiting cases: gravity waves neglect rotation, inertial waves neglect stratification. The former are more relevant for fluids like the atmosphere, where stratification is dominant, the latter for the deep oceans or planet cores, where rotation dominates. In the present study a hierarchy of simple analytical and numerical models of zonally symmetric inertial wave-mean flow interactions is considered and the results are compared with data from a laboratory experiment [4]. The main findings can be summarised as follows: (i) when the waves are decoupled from the mean flow they just drive a retrograde (eastward) zonal mean flow, independent of the sign of the meridional phase speed; (ii) when coupling is present and the zonal mean flow is assumed to be steady, the waves can drive vertically alternating jets, but still, in contrast to the gravity wave case, the structure is independent of the sign of the meridional phase speed; (iii) when coupling is present and time-dependent zonal mean flows are considered the waves can drive vertically and temporarily oscillating mean flows. The comparison with laboratory data from a rotating annulus experiment shows a qualitative agreement. It appears that the experiment captures the basic elements of the inertial wave mean flow coupling. The results might be relevant to understand how the Equatorial Deep Jets can be maintained against dissipation [1, 2], a process currently discussed controversially. [1] Greatbatch, R., Brandt, P., Claus, M., Didwischus, S., Fu, Y.: On the width of the equatorial deep jets. J. Phys. Oceanogr. 42, 1729-1740 (2012) [2] Muench, J.E., Kunze, E.: Internal wave

  1. The effects of moist convection on the tropospheric response to tropical and subtropical zonally-asymmetric torques

    NASA Astrophysics Data System (ADS)

    Boos, W. R.; Shaw, T. A.

    2011-12-01

    Tropospheric winds can be altered by vertical transfers of momentum caused by orographic gravity waves and convection, both of which tend to be highly localized in space. We showed in separate work that such zonally-asymmetric torques produce a characteristic response in dry models, with a pattern of tropical ascent that is qualitatively well-described by linear dynamics and a meridional shift of the eddy-driven mid-latitude jet. Here we use several idealized models to examine the effects of moisture on the tropospheric response to zonally-asymmetric torques. While the dynamical response to an upper-tropospheric toque in moist models can have a spatial structure that is qualitatively similar to that in dry models, moisture introduces several important modifications. One of the most dramatic of these is an amplification of the vertical velocity by nearly an order of magnitude in moist models. This occurs in a general circulation model with parameterized moist convection and an entirely oceanic lower boundary, and also in a quasi-linear model of the troposphere's first-baroclinic mode. The amplification is shown to result from the reduced effective static stability of a moist atmosphere, and can thus be rectified by the distribution of precipitation in the basic state. Given this amplification of the irrotational part of the response, we show how the vorticity budget necessitates changes in the horizontal structure of the nondivergent flow. The intensity and horizontal structure of the response in moist models can also be greatly altered by wind-induced surface heat exchange (WISHE), with enhanced zonal winds increasing ocean evaporation and convectively-coupled ascent. We briefly discuss some possible implications of these results for the effect of vertical momentum transfers on regional precipitation.

  2. Response of the intertropical convergence zone to zonally asymmetric subtropical surface forcings

    NASA Astrophysics Data System (ADS)

    Shaw, Tiffany A.; Voigt, Aiko; Kang, Sarah M.; Seo, Jeongbin

    2015-11-01

    The energetic framework predicts no shift of the zonal mean Intertropical Convergence Zone (ITCZ) in response to zonally asymmetric forcings (zonal warming and cooling regions with zero zonal mean) assuming radiative feedbacks are linear. Here we show the ITCZ shifts southward in response to a zonally asymmetric forcing in the Northern Hemisphere subtropics in a slab ocean aquaplanet model. The southward shift is consistent with decreased zonal mean energy input to the atmosphere due to cloud radiative effect changes in the cooling region. When cloud-radiative feedbacks are disabled the ITCZ shifts northward consistent with changes in the warming region where increased energy input via surface heat fluxes and stationary Rossby-wave transport dominate. Competition between cooling and warming regions leads to changes in gross moist stability. Our results show rectification of zonally asymmetric forcings play an important role in zonal mean ITCZ dynamics and highlight the importance of assessing the momentum budget when interpreting ITCZ shifts.

  3. Momentum flux of the migrating diurnal tide in 2002-2012 as seen in the SABER/TIDI wind measurements

    NASA Astrophysics Data System (ADS)

    Chen, Zeyu; Wu, Qian

    The migrating diurnal tide (DW1) is one of the most prominent solar tides in the middle atmosphere. And it is anticipated that it plays a significant role of providing zonal acceleration to the zonal mean zonal winds in the mesosphere and lower thermosphere (MLT), i.e., the altitude range 80-120km, at the Equator. The SABER/TIDI experiment has been collecting measurements of the horizontal winds in the mesosphere and lower thermosphere since 2002. The tidal signals are delineated by using the 10-year measurements for both zonal and meridional winds. Then Hough mode decomposition is applied with the tidal signal. The leading propagating mode prevails through the dataset. It is also observed that the trapped (1, -2) mode is also important. Then, the principles of tidal theory are applied to the mode estimations to derive the zonal momentum flux of the tide. The details will be talked in the presentation.

  4. Behavior of zonal mean aerosol extinction ratio and its relationship with zonal mean temperature during the winter 1978-1979 stratospheric warming

    NASA Technical Reports Server (NTRS)

    Wang, P.-H.; Mccormick, M. P.

    1985-01-01

    The behavior of the zonal mean aerosol extinction ratio in the lower stratosphere near 75 deg N and its relationship with the zonal mean temperature during the January-February 1979 stratospheric sudden warming have been investigated based on the satellite sensor SAM II (Stratospheric Aerosol Measurement) and auxiliary meteorological measurements. The results indicate that distinct changes in the zonal mean aerosol extinction ratio occurred during this stratospheric sudden warming. It is also found that horizontal eddy transport due to planetary waves may have played a significant role in determining the distribution of the zonal mean aerosol extinction ratio.

  5. Coherent structures in ion temperature gradient turbulence-zonal flow

    SciTech Connect

    Singh, Rameswar; Singh, R.; Kaw, P.; Gürcan, Ö. D.; Diamond, P. H.

    2014-10-15

    Nonlinear stationary structure formation in the coupled ion temperature gradient (ITG)-zonal flow system is investigated. The ITG turbulence is described by a wave-kinetic equation for the action density of the ITG mode, and the longer scale zonal mode is described by a dynamic equation for the m = n = 0 component of the potential. Two populations of trapped and untrapped drift wave trajectories are shown to exist in a moving frame of reference. This novel effect leads to the formation of nonlinear stationary structures. It is shown that the ITG turbulence can self-consistently sustain coherent, radially propagating modulation envelope structures such as solitons, shocks, and nonlinear wave trains.

  6. Global variations of zonal mean ozone during stratospheric warming events

    NASA Technical Reports Server (NTRS)

    Randel, William J.

    1993-01-01

    Eight years of Solar Backscatter Ultraviolet (SBUV) ozone data are examined to study zonal mean variations associated with stratospheric planetary wave (warming) events. These fluctuations are found to be nearly global in extent, with relatively large variations in the tropics, and coherent signatures reaching up to 50 deg in the opposite (summer) hemisphere. These ozone variations are a manifestation of the global circulation cells associated with stratospheric warming events; the ozone responds dynamically in the lower stratosphere to transport, and photochemically in the upper stratosphere to the circulation-induced temperature changes. The observed ozone variations in the tropics are of particular interest because transport is dominated by zonal-mean vertical motions (eddy flux divergences and mean meridional transports are negligible), and hence, substantial simplifications to the governing equations occur. The response of the atmosphere to these impulsive circulation changes provides a situation for robust estimates of the ozone-temperature sensitivity in the upper stratosphere.

  7. Zonal isolation and evaluation for cemented horizontal liners

    SciTech Connect

    Gai, H; Summers, T.D.; Cocking, D.A.; Greaves, C.

    1996-12-01

    This paper discusses the novel application of technology in the cementing and bond evaluation from the world-record breaking extended-reach drilling (ERD) wells in Wytch Farm, where horizontal liners of the order of 800 to 1,300 m at TVD of approximately 1,600 m have been successfully cemented and perforated. Detailed analysis of the conditions by a multidisciplinary team provided some practical procedures that enabled the authors to achieve their objectives of zonal isolation and cement bond evaluation successfully. Important aspects of zonal isolation, such as the use of spiral-blade centralizers, rotating the liner, and trials of the external casing packer (ECP), are discussed in detail. Cement bond evaluation is also detailed, involving coiled tubing (CT) deployment and various bond-logging tools, including ultrasonic tools. The cement bond log (CBL) was found to be surprisingly reliable if used correctly.

  8. Statistical properties of Charney-Hasegawa-Mima zonal flows

    NASA Astrophysics Data System (ADS)

    Anderson, Johan; Botha, G. J. J.

    2015-05-01

    A theoretical interpretation of numerically generated probability density functions (PDFs) of intermittent plasma transport events in unforced zonal flows is provided within the Charney-Hasegawa-Mima (CHM) model. The governing equation is solved numerically with various prescribed density gradients that are designed to produce different configurations of parallel and anti-parallel streams. Long-lasting vortices form whose flow is governed by the zonal streams. It is found that the numerically generated PDFs can be matched with analytical predictions of PDFs based on the instanton method by removing the autocorrelations from the time series. In many instances, the statistics generated by the CHM dynamics relaxes to Gaussian distributions for both the electrostatic and vorticity perturbations, whereas in areas with strong nonlinear interactions it is found that the PDFs are exponentially distributed.

  9. Statistical properties of Charney-Hasegawa-Mima zonal flows

    SciTech Connect

    Anderson, Johan; Botha, G. J. J.

    2015-05-15

    A theoretical interpretation of numerically generated probability density functions (PDFs) of intermittent plasma transport events in unforced zonal flows is provided within the Charney-Hasegawa-Mima (CHM) model. The governing equation is solved numerically with various prescribed density gradients that are designed to produce different configurations of parallel and anti-parallel streams. Long-lasting vortices form whose flow is governed by the zonal streams. It is found that the numerically generated PDFs can be matched with analytical predictions of PDFs based on the instanton method by removing the autocorrelations from the time series. In many instances, the statistics generated by the CHM dynamics relaxes to Gaussian distributions for both the electrostatic and vorticity perturbations, whereas in areas with strong nonlinear interactions it is found that the PDFs are exponentially distributed.

  10. Computational fluid dynamics research in three-dimensional zonal techniques

    NASA Technical Reports Server (NTRS)

    Walters, Robert W.

    1989-01-01

    Patched-grid algorithms for the analysis of complex configurations with an implicit, upwind-biased Navier-Stokes solver were investigated. Conservative and non-conservative approaches for performing zonal interpolations were implemented. The latter approach yields the most flexible technique in that it can handle both patched and overlaid grids. Results for a two-dimensional blunt body problem show that either approach yield accurate steady-state shock locations and jump conditions. In addition, calculations of the turbulent flow through a hypersonic inlet on a three-zone grid show that the numerical prediction is in good agreement with the experimental results. Through the use of a generalized coordinate transformation at the zonal interface between two or more blocks, the algorithm can be applied to highly stretched viscous grids and to arbitrarily-shaped zonal boundaries. Applications were made to the F-18 aircraft at subsonic, high-alpha conditions, in support of the NASA High-Alpha Research Program. The calculations were compared to ground-based and flight test experiments and were used as a guide to understanding the ground-based tests, which are laminar and transitional, and their relationship to flight. Calculations about a complete reconnaissance aircraft were also performed in order to further demonstrate the capability of the patched-grid algorithm.

  11. The role of the zonal ExB plasma drift in the low latitude ionosphere at solar minimum and maximum near equinox

    NASA Astrophysics Data System (ADS)

    Pavlov, Anatoli

    The F2-layer peak density, NmF2, and peak altitude, hmF2, which were observed by 12 ionospheric sounders during the geomagnetically quiet time periods at solar minimum (20 September 1964) and maximum (12-13 April 1958) are compared with those calculated by the threedimensional time-dependent theoretical model of the Earth's low and middle latitude ionosphere and plasmasphere. Major features of the data are reproduced by the model. The changes in NmF2 due to the zonal E ×B plasma drift are found to be inessential by day. It is shown that the model, which does not take into account the zonal E ×B plasma drift, underestimates night-time NmF2 up to the maximum factors of 2 (solar minimum) and 2.3 (solar maximum) at low geomagnetic latitudes. The night-time increase of NmF2 caused by the zonal E ×B plasma drift is less pronounced at -20° and 20° geomagnetic latitudes in comparison with that between -10° and 10° geomagnetic latitude. The longitude dependence of the calculated nighttime low latitude influence of the zonal E ×B plasma drift on NmF2 is explained in terms of the longitudinal asymmetry in B (the eccentric magnetic dipole is displaced from the Earth's center and the Earth's eccentric tilted magnetic dipole moment is inclined with respect to the Earth's rotational axis), and the variations of the wind induced plasma drift and the meridional E ×B plasma drift in geomagnetic longitude. The difference between the calculated value of hmF2 and that obtained when the zonal E ×B drift is omitted is essential by night and is not exceeding 17 km in the low latitude ionosphere. The model calculations show that over the geomagnetic equator the zonal E ×B plasma drift produces the increase in the electron density up to the maximum factors of 1.5 and 1.3 (solar minimum) and 2 and 1.6 (solar maximum) at 700 km and 1000 km altitude, respectively, and this increase is not significant above about 1500 km. The maximum effects of the zonal E ×B plasma drift on the

  12. Mean zonal acceleration and heating of the 70- to 100-km region

    SciTech Connect

    Miyahara, S.; Portnyagin, Yu.I.; Forbes, J.M. ); Solovjeva, T.V. )

    1991-02-01

    The dynamical interactions which occur in the atmospheric region around the mesopause ({approximately} 90 km) determine the boundary characteristics for the thermospheric region above. In the present work, using an empirical model of Eulerian-mean meridional motions based on monthly climatological winds from these radar data, the net vertical motions in this atmospheric regime are derived from the continuity equation. Assuming empirical prescriptions of the mean density and temperature fields, mean heat flux divergences and momentum flux divergences are estimated which exhibit very specific characteristics in the height versus latitude domain for winter, summer, and equinox conditions in both hemispheres. A numerical circulation model including gravity wave/mean flow and tide/mean flow interactions is utilized to examine possible origins of these heat and acceleration sources. At low latitudes ({le}30{degree}), it is evident that atmospheric tides represent the primary wave source contribution to zonal mean acceleration and heating of this region of the atmosphere; similarly, at middle and high latitudes ({ge}30{degree}) below about 90 km, dissipation of vertically propagating gravity waves appears to provide the dominant momentum source for the mean zonal circulation. However, above approximately 90 km and between about 40{degree} and 70{degree} latitude, very significant regions of mean heating and acceleration exist which are not accounted for by the effects of vertically propagating gravity waves and tides. The possible origins of these effects are examined. The authors suggest that the two most likely candidates to explain these observed features are (1) obliquely propagating gravity waves and/or (2) planetary scale waves.

  13. A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies

    SciTech Connect

    Stocker, T.F.; Mysak, L.A. ); Wright, D.G. )

    1992-08-01

    A zonally averaged ocean model for the thermohaline circulation is coupled to a zonally averaged, one-layer energy balance model of the atmosphere to form a climate model for paleoclimate studies. The emphasis of the coupled model is on the ocean's thermohaline circulation in the Pacific, Atlantic, and Indian oceans. Under present-day conditions, the global conveyor belt is simulated. Latitude-depth structures of modeled temperature and salinity fields, as well as depth-integrated meridional transports of heat and freshwater, compare well with estimates from observations when wind stress is included. Ekman cells are present in the upper ocean and contribute substantially to the meridional fluxes at low latitudes.The atmospheric component of the coupled climate model consists of a classical balance model. When the two components are coupled after being spun up individually, the system remains steady. If intermittent convection is operating, the coupled model shows systematic deviations of the surface salinity, which may result in reversals of the thermohaline circulation. This climate drift can be inhibited by removing intermittent convection prior to coupling. The climate model is applied to investigate the effect of excess freshwater discharge into the North Atlantic, and the influence of the parameterization of precipitation is tested. The Atlantic thermohalinc flow is sensitive to anomalous freshwater input. Reversals of the deep circulation can occur in the Atlantic, leading to a state where deep water is formed only in the Southern Ocean. A feedback mechanism is identified that may also trigger the reversal of the Pacific thermobaline circulation yielding the inverse conveyor bell as an additional steady state. In total, four different stable equilibria of the coupled model were realized.

  14. Characterization of arbuscular mycorrhizal fungal communities with respect to zonal vegetation in a coastal dune ecosystem.

    PubMed

    Kawahara, Ai; Ezawa, Tatsuhiro

    2013-10-01

    Coastal dune vegetation distributes zonally along the environmental gradients of, e.g., soil disturbance. In the preset study, arbuscular mycorrhizal fungal communities in a coastal dune ecosystem were characterized with respect to tolerance to soil disturbance. Two grass species, Elymus mollis and Miscanthus sinensis, are distributed zonally in the seaward and landward slopes, respectively, in the primary dunes in Ishikari, Japan. The seaward slope is severely disturbed by wind, while the landward slope is stabilized by the thick root system of M. sinensis. The roots and rhizosphere soils of the two grasses were collected from the slopes. The soils were sieved to destruct the fungal hyphal networks, and soil trap culture was conducted to assess tolerance of the communities to disturbance, with parallel analysis of the field communities using a molecular ecological tool. In the landward communities, large shifts in the composition and increases in diversity were observed in the trap culture compared with the field, but in the seaward communities, the impact of trap culture was minimal. The landward field community was significantly nested within the landward trap culture community, implying that most members in the field community did not disappear in the trap culture. No nestedness was observed in the seaward communities. These observations suggest that disturbance-tolerant fungi have been preferentially selected in the seaward slope due to severe disturbance in the habitat. Whereas a limited number of fungi, which are not necessarily disturbance-sensitive, dominate in the stable landward slope, but high-potential diversity has been maintained in the habitat.

  15. Zonal subdivision of marine sequences: achievements and discrepancies

    NASA Astrophysics Data System (ADS)

    Gladenkov, Yuri

    2010-05-01

    It was 150 years ago when a notion of zone was introduced into stratigraphy. By the present time zonal units with a duration of 0.3-3.0 M.y. in average have been established virtually for all systems and stages of the Phanerozoic. Their quantity reached 300. It is not a chance that zonal stratigraphy is considered to be one of the most significant achievement of the modern geology. There are different interpretations of essence and goals of zonal stratigraphy, techniques of separation of zones, and evaluation of zones as stratigraphic units. Particularly it is reflected in International Stratigraphic Guide (Murphy, Salvador, 1999), Russian Stratigraphic Code (Zhamoida, 2006), and a number of stratigraphic reports of the last years. It concerns different approaches to: (a) establishment of different types of zones (biostratigraphic zones and chronozones, oppel-zones and biohorizons, etc.); (b) assessment of spatial distribution of zones (global or provincial) and a role of sedimentological factor; (c) definition of zones as stratigraphic units (relationships with geostratigraphic units of the standard and regional scales). The latest publications show that because of the different interpretations of zones, authors should explain usage of certain type of zone (for example, when they use the terms "interval-zone" or "assemblage-zone", what limitations stem from application of datum-levels, and others). It is common opinion, that biostratigraphic zones used widely by paleontologists and stratigraphers cannot be a final goal of stratigraphy although they provide a base for solution of many important problems (definition of certain stratigraphic levels, correlation of different biofacies, and others). At the same time, the most important stratigraphic units are chronozones, which correspond to stages or phases of geological evolutio of basins and are marked by distinct fossil assemblages and other properties (magnetic and other characteristics) in the type sections

  16. Potential Vorticity Dynamics and Models of Zonal Flow Formation

    NASA Astrophysics Data System (ADS)

    Hsu, Pei-Chun

    We describe the general theory of anisotropic flow formation in quasi two- dimensional turbulence from the perspective on the potential vorticity (PV) trans- port in real space. The aim is to calculate the vorticity or PV flux. In Chapter 2, the general structure of PV flux is deduced non-perturbatively using two relaxation models: the first is a mean field theory for the dynamics of minimum enstrophy relaxation based on the requirement that the mean flux of PV dissipates total po- tential enstrophy but conserves total fluid kinetic energy. The analyses show that the structure of PV flux has the form of a sum of a positive definite hyper-viscous and a negative or positive viscous flux of PV. Turbulence spreading is shown to be related to PV mixing via the link of turbulence energy flux to PV flux. In the relaxed state, the ratio of the PV gradient to zonal flow velocity is homogenized. This structure of the relaxed state is consistent with PV staircases. The homog- enized quantity sets a constraint on the amplitudes of PV and zonal flow in the relaxed state. The second relaxation model is derived from a joint reflection symmetry principle, which constrains the PV flux driven by the deviation from the self- organized state. The form of PV flux contains a nonlinear convective term in addition to viscous and hyper-viscous terms. The nonlinear convective term, how- ever, can be viewed as a generalized diffusion, on account of the gradient-dependent ballistic transport in avalanche-like systems. For both cases, the detailed transport coefficients can be calculated using perturbation theory in Chapter 3. For a broad turbulence spectrum, a modula- tional calculation of the PV flux gives both a negative viscosity and a positive hyper-viscosity. For a narrow turbulence spectrum, the result of a parametric in- stability analysis shows that PV transport is also convective. In both relaxation and perturbative analyses, it is shown that turbulent PV transport is sensitive to

  17. Magnetic Flux Concentration and Zonal Flows in Magnetorotational Instability Turbulence

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning; Stone, James M.

    2014-11-01

    Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhances the amplitude of banded radial density variations known as zonal flows. Moreover, we report that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high-density regions in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few disk scale heights. In the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux concentration is closely related to the fact that the turbulent diffusivity of the MRI turbulence is anisotropic. In addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet formation.

  18. Modelling the effect of radially variable conductivity on dynamo action and zonal flow in the Giant planets

    NASA Astrophysics Data System (ADS)

    Heimpel, M.; Gomez Perez, N.

    2009-05-01

    The surface winds and magnetic fields of Jupiter and Saturn are observed to be broadly comparable. Both planets have strong and prograde equatorial jet and weaker jets, flowing in alternating directions at higher latitudes. Also, both planets exhibit relatively strong, dipolar magnetic fields. Saturn's magnetic field is weaker and more axisymmetric than that of Jupiter. In addition, Saturn's equatorial jet is broader and stronger than that of Jupiter. We have performed a set of numerical simulations of rotating convection and dynamo action in spherical shells. The model fluid is Boussinesq with radially varying electrical conductivity. The electrical conductivity, which is nearly constant in the deeper parts of the shell, exponentially decreases outward, starting at a chosen radius parameter. We find that the character of the dynamo-generated magnetic field, and the fluid flow structure are strongly affected by the afore-mentioned radius parameter, as well as by the size of the inner boundary radius and the temperature boundary conditions. In some of the simulations a strong, magnetostrophic, mainly dipolar dynamo develops in the deeper region of high electrical conductivity. In most cases, a strong zonal flow with an equatorial jet develops near the low-conductivity, free slip outer surface, and penetrates to a depth associated with the conductivity profile. The zonal flow is attenuated by Lorentz forces at depth and is, in some cases, greatly diminished in the dynamo region. The relationship between the structure of equatorial jets and the magnetic fields generated in our models implies that major differences between the surface zonal flow and magnetic fields of Jupiter and Saturn can arise from the presence of a rocky core, and the depth of transition from their low-conductivity molecular envelopes to their liquid metal interiors.

  19. Fine structure zonal flow excitation by beta-induced Alfvén eigenmode

    NASA Astrophysics Data System (ADS)

    Qiu, Zhiyong; Chen, Liu; Zonca, Fulvio

    2016-10-01

    Nonlinear excitation of low frequency zonal structure (LFZS) by beta-induced Alfvén eigenmode (BAE) is investigated using nonlinear gyrokinetic theory. It is found that electrostatic zonal flow (ZF), rather than zonal current, is preferentially excited by finite amplitude BAE. In addition to the well-known meso-scale radial envelope structure, ZF is also found to exhibit fine radial structure due to the localization of BAE with respect to mode rational surfaces. Specifically, the zonal electric field has an even mode structure at the rational surface where radial envelope peaks.

  20. Implementing Multidisciplinary and Multi-Zonal Applications Using MPI

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.

    1995-01-01

    Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. Unfortunately, simple message passing models, like Intel's NX library, only allow point-to-point and global communication within a single system-defined partition. This makes implementation of these applications quite difficult, if not impossible. In this report it is shown that the new Message Passing Interface (MPI) standard is a viable portable library for implementing the message passing portion of multidisciplinary applications. Further, with the extension of a portable loader, fully portable multidisciplinary application programs can be developed. Finally, the performance of MPI is compared to that of some native message passing libraries. This comparison shows that MPI can be implemented to deliver performance commensurate with native message libraries.

  1. Non-axisymmetric instabilities in discs with imposed zonal flows

    NASA Astrophysics Data System (ADS)

    Vanon, R.; Ogilvie, G. I.

    2016-09-01

    We conduct a linear stability calculation of an ideal Keplerian flow on which a sinusoidal zonal flow is imposed. The analysis uses the shearing sheet model and is carried out both in isothermal and adiabatic conditions, with and without self-gravity (SG). In the non-SG regime a structure in the potential vorticity (PV) leads to a non-axisymmetric Kelvin-Helmholtz (KH) instability; in the short-wavelength limit its growth rate agrees with the incompressible calculation by Lithwick (2007), which only considers perturbations elongated in the streamwise direction. The instability's strength is analysed as a function of the structure's properties, and zonal flows are found to be stable if their wavelength is ≳ 8H, where H is the disc's scale height, regardless of the value of the adiabatic index γ. The non-axisymmetric KH instability can operate in Rayleigh-stable conditions, and it therefore represents the limiting factor to the structure's properties. Introducing SG triggers a second non-axisymmetric instability, which is found to be located around a PV maximum, while the KH instability is linked to a PV minimum, as expected. In the adiabatic regime, the same gravitational instability is detected even when the structure is present only in the entropy (not in the PV) and the instability spreads to weaker SG conditions as the entropy structure's amplitude is increased. This eventually yields a non-axisymmetric instability in the non-SG regime, albeit of weak strength, localised around an entropy maximum.

  2. Zonal harmonics of the gravity field in DEF-variables.

    NASA Astrophysics Data System (ADS)

    Aparicio, I.; Floría, L.

    In order to be in a position to take advantage of the linear and regular formulation and treatment of Celestial Mechanics problems, in a recent paper Sharaf & Saad (1997) have given an analytical expansion of the Earth's zonal potential in terms of Kustaanheimo-Stiefel (KS) regular elements (Kustaanheimo & Stiefel 1965; Stiefel & Scheifele 1971), putting special emphasis on the consideration of elliptic-type two-body orbits. In the present paper we carry out an application of the so-called focal method (Burdet 1969) to derive the expression, in terms of the linearizing DEF-variables (Deprit, Elipe & Ferrer 1994, S S 4.1), of any zonal harmonic of the gravitational field created by a central body, and obtain the corresponding equations of motion for any value of the eccentricity. To this end, we will follow a variant of the focal method canonical approach based on the (weakly) canonical extension of the projective-decomposition point-transformation proposed by these authors.

  3. Zonal Flows from Spontaneous Symmetry Breaking of Homogeneous Turbulence

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey; Krommes, John

    2013-10-01

    To study how zonal flows (ZF) arise, we examine one of the simplest possible models, the stochastically forced Hasegawa-Mima equation, which displays the bifurcation of steady ZFs from a state of homogeneous turbulence; thus a statistical treatment is required. Here an approach is adopted in which the ZFs are treated as mean fields that spontaneously break the background symmetry. The resulting inhomogeneous ensemble is treated self-consistently without assuming weak inhomogeneity. Closed statistical equations are obtained by ignoring the drift-wave self-interactions while fully retaining the drift-wave-ZF nonlinearities. We show that from the statistical point of view ZF generation can be understood as pattern formation. This leads to the surprising result that in a saturated turbulent state the ZF wavelength is not unique; a continuous band of ZF scales is allowed. Only those within a smaller sub-band are linearly stable. That stability is analyzed and the stability diagram in parameter space is calculated and successfully compared with simulations. The stability concept provides a way of interpreting the merging of zonal jets, a phenomenon commonly observed in observations and numerical studies. Work supported by U.S DOE Contract No DE-AC02-09CH11466 and by an NSF Graduate Research Fellowship.

  4. Zonally uniform tidal oscillations in the tropical middle atmosphere

    NASA Astrophysics Data System (ADS)

    Sakazaki, T.; Sasaki, T.; Shiotani, M.; Tomikawa, Y.; Kinnison, D. E.

    2015-12-01

    Atmospheric tides have an important role in the vertical coupling of the atmosphere. Since tides are mainly excited in the lower atmosphere, it is necessary to understand the tidal characteristics in these altitude regions. Of all tidal components, this study focuses on the non-Sun-synchronous components, i.e., nonmigrating tides. Sakazaki et al. (2015, J.G.R.) extracted nonmigrating tides using a composite as a function of universal time in physical space, without performing a zonal wave-number decomposition. With this method, it was demonstrated that tropical nonmigrating tides from the troposphere to the lower mesosphere were regarded as gravity waves excited by diabatic heating enhanced over two major continents, specifically Africa and South America. The present study discovered that as well the above mentioned gravity-wave patterns, zonally uniform tidal signals are clearly seen in the tropical middle atmosphere particularly during the Northern Hemisphere summer, by using data from climate chemistry models (CCMs), reanalyses, and satellite measurements (SABER and GPS-RO). Antisymmetric components with respect to the equator are dominant and are characterized by a vertical wavelength of ~15 km and a diurnal frequency. The observed latitudinal and vertical structures can be explained by the second, propagating, antisymmetric Hough mode.

  5. Electrodynamics of the equatorial evening ionosphere: 1. Importance of winds in different regions

    NASA Astrophysics Data System (ADS)

    Richmond, A. D.; Fang, T.-W.; Maute, A.

    2015-03-01

    The importance of winds at different altitudes and latitudes for the electrodynamics of the low-latitude evening ionosphere is examined with a model of the global coupled ionosphere-thermosphere system. The model reproduces the main observed features of the evening equatorial plasma vortex and the prereversal enhancement (PRE) of the vertical drift. The electrodynamics is driven primarily by the zonal wind forced by the diurnally varying zonal pressure-gradient force. The zonal wind lags the zonal pressure-gradient force owing to inertia. When ion drag is important, the time lag of the wind behind the pressure gradient force is shortened, and the high-altitude evening wind turns eastward earlier than the wind at lower altitudes, where ion drag is less important. Therefore, a vertical shear of the zonal wind tends to develop at altitudes around the transition between small and large ion drag at the bottom of the F region. This wind shear is closely associated with the vertical shear in the zonal convection velocity that is part of the evening plasma vortex. Unlike previous studies, we find that the winds driving the PRE lie mainly on field lines with apexes above the peak of the equatorial F layer, field lines that extend in magnetic latitude out to nearly 30° and encompass the entire evening equatorial ionization anomaly region. Contrary to previous suggestions, the westward convection in the bottomside of the evening plasma vortex is found to weaken, rather than strengthen, the PRE. Daytime winds have relatively little influence on the low-latitude evening electrodynamics.

  6. Transonic Navier-Stokes wing solution using a zonal approach. Part 1: Solution methodology and code validation

    NASA Technical Reports Server (NTRS)

    Flores, J.; Holst, T. L.; Kaynak, Unver; Gundy, K.; Thomas, S. D.

    1986-01-01

    A fast diagonalized Beam-Warming algorithm is coupled with a zonal approach to solve the three dimensional Euler/Navier-Stokes equations. The computer code, called Transonic Navier-Stokes (TNS), uses a total of four zones for wing configurations (or can be extended to complete aircraft configurations by adding zones). In the inner blocks near the wing surface, the thin-layer Navier-Stokes equations are solved, while in the outer two blocks the Euler equations are solved. The diagonal algorithm yields a speedup of as much as a factor of 40 over the original algorithm/zonal method code. The TNS code, in addition, has the capability to model wind tunnel walls. Transonic viscous solutions are obtained on a 150,000-point mesh for a NACA 0012 wing. A three-order-of-magnitude drop in the L2-norm of the residual requires approximately 500 iterations, which takes about 45 min of CPU time on a Cray-XMP processor. Simulations are also conducted for a different geometrical wing called WING C. All cases show good agreement with experimental data.

  7. Transonic Navier-Stokes wing solution using a zonal approach. Part 1: Solution methodology and code validation

    NASA Technical Reports Server (NTRS)

    Flores, J.; Gundy, K.; Gundy, K.; Gundy, K.; Gundy, K.; Gundy, K.

    1986-01-01

    A fast diagonalized Beam-Warming algorithm is coupled with a zonal approach to solve the three-dimensional Euler/Navier-Stokes equations. The computer code, called Transonic Navier-Stokes (TNS), uses a total of four zones for wing configurations (or can be extended to complete aircraft configurations by adding zones). In the inner blocks near the wing surface, the thin-layer Navier-Stokes equations are solved, while in the outer two blocks the Euler equations are solved. The diagonal algorithm yields a speedup of as much as a factor of 40 over the original algorithm/zonal method code. The TNS code, in addition, has the capability to model wind tunnel walls. Transonic viscous solutions are obtained on a 150,000-point mesh for a NACA 0012 wing. A three-order-of-magnitude drop in the L2-norm of the residual requires approximately 500 iterations, which takes about 45 min of CPU time on a Cray-XMP processor. Simulations are also conducted for a different geometrical wing called WING C. All cases show good agreement with experimental data.

  8. Harmonic Analysis of Zonal Density Structures in Martian Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Withers, P.; Bougher, S. W.; Keating, G. M.

    2001-05-01

    Mars Global Surveyor Accelerometer measurements of density in the martian upper atmosphere during aerobraking are now available via the PDS [Keating et al, 2001]. We are continuing our investigations of variations in density with longitude at fixed local solar time, latitude, and season, concentrating on Phase 2 of aerobraking. We find that, contrary to previous suspicions, the zonal structure is not dominated solely by wave-2 harmonics. The dominant harmonics are as follows: wave-3 in the northern extratropics, wave-2 and wave-3 in the tropics, and no clearly dominant harmonic in the southern extratropics. The relative amplitudes of the various harmonics vary with latitude. However, their phases remain very stable, despite large changes in the phasing of the corresponding harmonic of zonal topography. Relative to the mean density, the amplitudes of the various harmonics decrease as altitude increases. This is opposite to the behaviour predicted by a simple, dissipation-less model of the martian upper atmosphere, in which deviations from the background state of the atmosphere are proportional to the inverse of the square root of pressure, and indicates the presence of damping in the upper atmosphere. When the martian day was an integer multiple of the spacecraft orbital period, the accelerometer measured densities at the same latitude, local solar time, season, and longitude each martian day. This period of resonance lasted for several days as the spacecraft orbital period decreased through the critical value due to drag. This permits us to examine the true variability of the martian upper atmosphere without the complications of the zonal variability. An accurate estimate of this essentially unpredictable variability is crucial for effective and efficient aerobraking of future spacecraft missions. At an altitude of 130 km, variabilities of 15 percent were typical, though values of 30 percent were observed. This variability also decreased as altitude increased, an

  9. Evapotranspiration Analysis using a Zonal Temperature-Vegetation Remote Sensing Approach

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Gorelick, S.

    2015-12-01

    Remote sensing methods based on temperature-vegetation relationships have been widely used to analyze regional evapotranspiration (ET) patterns. These methods essentially rely on the identification of extreme soil moisture conditions (i.e., cold and hot pixels) as determined from the outer boundaries a triangle or trapezoid-shaped scatterplot of radiometric surface temperature and vegetation fraction. However, the validity of these pixels has been increasingly questioned in studies that involve heterogeneous climatic and land cover conditions, compromising the performance of remote sensing-based ET estimates in large areas. Here we developed a geospatial analysis scheme to discretize a targeted area into climate-land zones based on precipitation, radiation, wind, humidity, soil, and vegetation factors. Zonal ET estimates based on temperature-vegetation indexes were spatially aggregated to generate regional ET estimates over different time scales. We applied this approach to Jordan using Landsat and MODIS images over the period 2005-2014 and compared the ET estimates to MOD16 ET products and pan evaporation measurements. We explored contrasting hydrological conditions across a range of bioclimatic regions. Results show that our approach is able to capture regional ET heterogeneity in both water-limited and energy-limited environments and identify the hydroclimatic controls. Our comparisons of different methods shed light on the efficient estimation of agricultural water use in data-scarce, arid/semi-arid regions based on remote sensing.

  10. Method for Calculating Uncertainty in Automated Cloud-tracking Wind Measurements

    NASA Astrophysics Data System (ADS)

    Blalock, J.; Sayanagi, K. M.

    2015-12-01

    We present a method to estimate the uncertainties in remote-sensing wind measurements of planetary atmospheres. Many planetary missions have measured atmospheric wind speeds by tracking the movements of the clouds. One of the common cloud-tracking methods used today is the two-dimensional Correlation Imaging Velocimetry (CIV) technique, which returns a two-dimensional wind vector field from a pair of images taken at two different times. The CIV algorithm computes a wind vector by calculating the two-dimensional correlation between the pair of maps; a peak in the correlation is judged to be a match. For zonal wind measurements, error bars can be represented by the zonal standard deviation of the wind vectors; while this serves as an indicator of the overall quality of the wind field, it does not address the quality of the individual vectors. Furthermore, the zonal standard deviation contains contributions from both real spatial variations in the wind speed as well as uncertainty in the measurements. This raises a difficulty in distinguishing small, real changes in the wind field from the uncertainties in the measurement. We have developed a technique which isolates real spatial variations from measurement uncertainties by analyzing the correlation fields produced in the CIV algorithm. We determine the size, shape, and orientation of the peak by fitting an ellipse to the peak and calculating the area, eccentricity, and orientation angle of the ellipse. Combining these metrics provides a measure of the uncertainty associated with individual wind vectors. Vectors with smaller, sharper, more circular peaks will have a smaller uncertainty than vectors with larger, flatter, more elliptical peaks. We use our new technique to make zonal wind measurements of Saturn using Cassini ISS images taken between 2004 and 2014. Our measurements reveal small temporal changes in the zonal wind profiles. Our work has been supported by NASA PATM NNX14AK07G and NSF AAG 1212216.

  11. Effect of chlorofluoromethane infrared radiation on zonal atmospheric temperatures

    NASA Technical Reports Server (NTRS)

    Dickinson, R. E.; Donahue, T. M.; Liu, S. C.

    1978-01-01

    Estimates are made of changes in the atmospheric climate due to the radiative effects of 10 ppb of chlorofluoromethanes (CFM's). The estimates are derived on the basis of a 12-layer stratospheric general circulation model with a specified change of ocean temperature. Two tropical maxima in zonal average temperature change were observed: one in the upper troposphere and one centered at the tropopause. The temperature change exceeds the surface temperature change by a factor of at least two. If the 1975 CFM emission rate were to continue indefinitely, stratospheric water-vapor concentrations would increase by up to 60% due to CFM radiative effects. This would reduce ozone concentrations by an additional 4% of the natural ozone column.

  12. Convection driven zonal flows and vortices in the major planets.

    PubMed

    Busse, F. H.

    1994-06-01

    The dynamical properties of convection in rotating cylindrical annuli and spherical shells are reviewed. Simple theoretical models and experimental simulations of planetary convection through the use of the centrifugal force in the laboratory are emphasized. The model of columnar convection in a cylindrical annulus not only serves as a guide to the dynamical properties of convection in rotating sphere; it also is of interest as a basic physical system that exhibits several dynamical properties in their most simple form. The generation of zonal mean flows is discussed in some detail and examples of recent numerical computations are presented. The exploration of the parameter space for the annulus model is not yet complete and the theoretical exploration of convection in rotating spheres is still in the beginning phase. Quantitative comparisons with the observations of the dynamics of planetary atmospheres will have to await the consideration in the models of the effects of magnetic fields and the deviations from the Boussinesq approximation. PMID:12780095

  13. Computing rare transitions between zonal mid-latitude jets

    NASA Astrophysics Data System (ADS)

    Simonnet, Eric; Bouchet, Freddy

    2016-04-01

    Zonal jets are known to naturally emerge from beta-plane turbulence due to the arrest of inverse energy cascade by Rossby waves.Transitions between jets of different wavenumber are indeed observed in particular regimes showing a striking example of bimodality in the context of 2-D turbulence. As the Rayleigh dissipation and stochastic forcing are decreased these transitions become more and more rare. The aim of this talk is to show that it is possible to compute large ensembles of reactive trajectories connecting the different metastable states even at very low probability regimes when direct numerical simulations are not possible. We use an adaptive version of multilevel splitting algorithms on a barotropic quasi geostrophic model of mid-latitude atmosphere. We are able to obtain a detailed statistical description of the high-dimensional phase space as well as the typical transitions. A large-deviation result is also obtained.

  14. Zonal flow dynamics in the double tearing mode with antisymmetric shear flows

    SciTech Connect

    Mao, Aohua; Li, Jiquan; Liu, Jinyuan; Kishimoto, Yasuaki

    2014-05-15

    The generation dynamics and the structural characteristics of zonal flows are investigated in the double tearing mode (DTM) with antisymmetric shear flows. Two kinds of zonal flow oscillations are revealed based on reduced resistive magnetohydrodynamics simulations, which depend on the shear flow amplitudes corresponding to different DTM eigen mode states, elaborated by Mao et al. [Phys. Plasmas 20, 022114 (2013)]. For the weak shear flows below an amplitude threshold, v{sub c}, at which two DTM eigen states with antisymmetric or symmetric magnetic island structure are degenerated, the zonal flows grow oscillatorily in the Rutherford regime during the nonlinear evolution of the DTMs. It is identified that the oscillation mechanism results from the nonlinear interaction between the distorted islands and the zonal flows through the modification of shear flows. However, for the medium shear flows above v{sub c} but below the critical threshold of the Kelvin-Helmholtz instability, an oscillatory growing zonal flow occurs in the linear phase of the DTM evolution. It is demonstrated that the zonal flow oscillation originates from the three-wave mode coupling or a modulation instability pumped by two DTM eigen modes with the same frequency but opposite propagating direction. With the shear flows increasing, the amplitude of zonal flow oscillation increases first and then decreases, whilst the oscillation frequency as twice of the Doppler frequency shift increases. Furthermore, impacts of the oscillatory zonal flows on the nonlinear evolution of DTM islands and the global reconnection are also discussed briefly.

  15. Longitudinal Variations in Jupiter's Winds

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Gierasch, P. J.; Tierney, G.

    2010-01-01

    Long-term studies of Jupiter's zonal wind field revealed temporal variations on the order of 20 to 40 m/s at many latitudes, greater than the typical data uncertainties of 1 to 10 m/s. No definitive periodicities were evident, however, though some latitudinally-confined signals did appear at periods relevant to the Quasi- Quadrennial Oscillation (Simon-Miller & Gierasch, Icarus, in press). As the QQO appears, from vertical temperature profiles, to propagate downward, it is unclear why a signal is not more obvious, unless other processes dominate over possibly weaker forcing from the QQO. An additional complication is that zonal wind profiles represent an average over some particular set of longitudes for an image pair and most data sets do not offer global wind coverage. Lien avoiding known features, such as the large anticyclonic vortices especially prevalent in the south, there can be distinct variations in longitude. We present results on the full wind field from Voyager and Cassini data, showing apparent longitudinal variations of up to 60 m/s or more. These are particularly obvious near disruptions such as the South Equatorial Disturbance, even when the feature itself is not clearly visible. These two dates represent very different states of the planet for comparison: Voyagers 1 & 2 flew by Jupiter shortly after a global upheaval, while many regions were in a disturbed state, while the Cassini view is typical of a more quiescent period present during much of the 1990s and early 2000s.

  16. Remote sensing of mesospheric winds with the High-Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Abreu, V. J.; Burrage, M. D.; Gell, D. A.; Grassi, H. J.; Marshall, A. R.; Morton, Y. T.; Ortland, D. A.; Skinner, W. R.; Wu, D. L.

    1992-01-01

    Observations of the winds in the upper atmosphere obtained with the High-Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) are discussed. This instrument is a very stable high-resolution triple-etalon Fabry-Perot interferometer, which is used to observe the slight Doppler shifts of absorption and emission lines in the O2 Atmospheric bands induced by atmospheric motions. Preliminary observations indicate that the winds in the mesosphere and lower thermosphere are a mixture of migrating and non-migrating tides, and planetary-scale waves. The mean meridional winds are dominated by the 1,1 diurnal tide which is easily extracted from the daily zonal means of the satellite observations. The daily mean zonal winds are a mixture of the diurnal tide and a zonal flow which is consistent with theoretical expectations.

  17. Effects of finite poloidal gyroradius, shaping, and collisions on the zonal flow residual

    SciTech Connect

    Xiao Yong; Catto, Peter J.; Dorland, William

    2007-05-15

    Zonal flow helps reduce and regulate the turbulent transport level in tokamaks. Rosenbluth and Hinton have shown that zonal flow damps to a nonvanishing residual level in collisionless [M. Rosenbluth and F. Hinton, Phys. Rev. Lett. 80, 724 (1998)] and collisional [F. Hinton and M. Rosenbluth, Plasma Phys. Control. Fusion 41, A653 (1999)] banana regime plasmas. Recent zonal flow advances are summarized including the evaluation of the effects on the zonal flow residual by plasma cross-section shaping, shorter wavelengths including those less than an electron gyroradius, and arbitrary ion collisionality relative to the zonal low frequency. In addition to giving a brief summary of these new developments, the analytic results are compared with GS2 numerical simulations [M. Kotschenreuther, G. Rewoldt, and W. Tang, Comput. Phys. Commun. 88, 128 (1991)] to demonstrate their value as benchmarks for turbulence codes.

  18. The residual zonal flow in tokamak plasmas toroidally rotating at arbitrary velocity

    SciTech Connect

    Zhou, Deng

    2014-08-15

    Zonal flows, initially driven by ion-temperature-gradient turbulence, may evolve due to the neoclassic polarization in a collisionless tokamak plasma. In our previous work [D. Zhou, Nucl. Fusion 54, 042002 (2014)], the residual zonal flow in a tokamak plasma rotating toroidally at sonic speed is found to have the same form as that of a static plasma. In the present work, the form of the residual zonal flow is presented for tokamak plasmas rotating toroidally at arbitrary velocity. The gyro-kinetic equation is analytically solved for low speed rotation to give the expression of residual zonal flows, and the expression is then generalized for cases with arbitrary rotating velocity through interpolation. The zonal flow level decreases as the rotating velocity increases. The numerical evaluation is in good agreement with the former simulation result for high aspect ratio tokamaks.

  19. Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends

    NASA Astrophysics Data System (ADS)

    Waugh, D. W.; Oman, L.; Newman, P. A.; Stolarski, R. S.; Pawson, S.; Nielsen, J. E.; Perlwitz, J.

    2009-09-01

    Stratospheric ozone is represented in most climate models by prescribing zonal-mean fields. We examine the impact of this on Southern Hemisphere (SH) trends using a chemistry climate model (CCM): multi-decadal simulations with interactive stratospheric chemistry are compared with parallel simulations using the same model in which the zonal-mean ozone is prescribed. Prescribing zonal-mean ozone results in a warmer Antarctic stratosphere when there is a large ozone hole, with much smaller differences at other times. As a consequence, Antarctic temperature trends for 1960 to 2000 and 2000 to 2050 in the CCM are underestimated when zonal-mean ozone is prescribed. The impacts of stratospheric changes on the tropospheric circulation (i.e., summertime trends in the SH annular mode) are also underestimated. This shows that SH trends related to ozone depletion and recovery are underestimated when interactions between stratospheric ozone and climate are approximated by an imposed zonal-mean ozone field.

  20. Why are surface equatorial ENSO winds anomalously westerly under anomalous large-scale convection?

    SciTech Connect

    Clarke, A.J.

    1994-10-01

    Previous work has shown that the near-surface tropospheric response to anomalous heating can be described in terms of damped equatorial Rossby waves and a damped equatorial Kelvin wave. The zonal and meridional extent of the dominant ENSO heating/cooling region is such that the westward decaying Rossby waves dominate the response. Consequently, eastward of the forcing region the flow is small. Zonal convergence caused by the heating and small zonal flow to the east together imply that winds must be anomalously westerly in the heating region. 5 refs., 4 figs.

  1. Thermospheric wind observed by GOCE: Wind jets and seasonal variations

    NASA Astrophysics Data System (ADS)

    Liu, Huixin; Doornbos, Eelco; Nakashima, Junichiro

    2016-07-01

    Four years of GOCE observation near ˜250 km altitude during 2010-2013 provide a large data set for examining winds near dawn and dusk. The analysis has revealed interesting new features on the spatial and seasonal variation of the quiet time F region wind. (1) The wind structure in equatorial regions is aligned with the dip equator in all seasons but June solstice, forming a strong eastward jet in the evening sector but a weak westward jet in the morning sector. This demonstrates a magnetic control of the thermospheric wind. (2) The equatorial evening eastward wind reaches over 120 m/s in December but drops below 90 m/s in June. This weak wind likely leads to the frequently observed weak prereversal enhancement in June. (3) At middle latitudes, winds experience a marked annual variation but with opposite phase between the evening and morning sectors. The evening eastward wind maximizes in local winter (˜140 m/s) and minimizes in local summer (˜60 m/s), while the morning westward wind behaves vice versa. This annual variation may be attributed to the Midlatitude Summer Night Anomaly. (4) Although HWM14 empirical wind model significantly improved over HWM07, neither captures the wind's alignment with the dip equator. This leads to large underestimation of zonal winds by over 50 m/s at low latitudes in the evening sector at all longitudes in all seasons. Care should thus be taken when using HWMs to drive physical models, as they likely produce weaker upward plasma drift.

  2. Satellite Studies of Ionospheric Electric Fields and Neutral Winds

    NASA Technical Reports Server (NTRS)

    Fejer, Bela G.

    2002-01-01

    We have studied mid- and low-latitude electrodynamic and neutral thermospheric dynamic processes using measurements on board the AE-E, DE-2, and UARS (Upper Atmosphere Research Satellite) satellites, and global convection and general circulation models. These studies have determined the morphology of the equatorial zonal electric fields, the response of equatorial plasma irregularities to magnetospheric disturbances, and the time dependent response of the mid- and low latitude electric fields to magnetospheric disturbances. We have also used extensive F region zonal and meridional wind data obtained by Wind Imaging Interferometer (WINDII) instrument on board the UARS to study the latitudinal dependence of daytime disturbance winds during magnetically disturbed periods and the general characteristics of the global thermospheric disturbance wind system during geomagnetically active periods. This project has supported the PhD thesis research of John Emmert.

  3. The zonal motion of equatorial plasma bubbles relative to the background ionosphere

    NASA Astrophysics Data System (ADS)

    Kil, Hyosub; Lee, Woo Kyoung; Kwak, Young-Sil; Zhang, Yongliang; Paxton, Larry J.; Milla, Marco

    2014-07-01

    The zonal motions of plasmas inside equatorial plasma bubbles are different from those in the background ionosphere. The difference was explained in terms of the tilt of bubbles by recent studies, but observational evidence of this hypothesis has not yet been provided. We examine this hypothesis and, at the same time, look for an alternative explanation on the basis of the coincident satellite and radar observations over Jicamarca (11.95°S, 76.87°W) in Peru. In the observations at premidnight by the first Republic of China satellite (altitude: 600 km, inclination: 35°), plasmas inside bubbles drift westward relative to ambient plasmas. The same phenomenon is identified by radar observations. However, the relative westward plasma motions inside bubbles occur regardless of the tilt of bubbles, and therefore, the tilt is not the primary cause of the deviation of the plasma motions inside bubbles. The zonal plasma motions in the topside are characterized by systematic eastward drifts, whereas the zonal motions of plasmas in the bottomside backscatter layer show a mixture of eastward and westward drifts. The zonal plasma motions inside backscatter plumes resemble those in the bottomside backscatter layer. These observations indicate that plasmas inside bubbles maintain the properties of the zonal plasma motions in the bottomside where the bubbles originate. With this assumption, the deviation of the zonal motions of plasmas inside bubbles from those of ambient plasmas is understood in terms of the difference of the zonal plasma flows in the bottomside and topside.

  4. A mechanism for the formation of non-zonal striations in the thermocline

    NASA Astrophysics Data System (ADS)

    Chen, R.; Flierl, G.; Wunsch, C. I.

    2011-12-01

    Striations--banded structures in the temporal average of spatially high-pass filtered zonal velocity--have recently been identified in both observations and numerical models. The striations are non-zonal in the thermocline of the Central and East North Pacific regions (Figure 1). The mechanism of the formation of these non-zonal striations is still unknown. Several hypotheses have been proposed, such as those related to the Rhines jet mechanism, the net effect of eddy propagation, and radiating instabilities of an eastern boundary current. A mechanism for the formation of non-zonal thermocline striations in the subtropical gyre is investigated. Rhines found zonal bands in decaying barotropic turbulence on a beta plane. However, the thermocline striations are more complicated: they are embedded in the large-scale gyre flow and gyre-structured potential vorticity (Figure 1). Motivated by this, a simple theoretical model for thermocline striations is developed using a 1.5 layer model but with large scale flow and PV gradients from the Sverdrup relation. This model is solved numerically to study how the striations are formed in a subtropical gyre and a mechanism has been identified. In the subtropical gyre, the eddy propagation direction is non-zonal due to the presence of the large-scale gyre flow and non-zonal PV. The striations arise as a net effect of many eddies propagating in the same direction, as proposed by Schlax and Chelton (2008). Thus, the striations follow the eddy propagation direction and are therefore non-zonal. This mechanism, identified from the simple theoretical model, is relevant to the formation of non-zonal thermocline striations in the ECCO2 state estimate. The implications of the striations on mixing, transport and eddy-mean flow interaction are now also being explored.

  5. Photospheric subrotations, differential rotation and zonal wind bands - A reverse pirouette

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.; Mayr, H. G.; Levine, R. H.

    1981-01-01

    It is noted that on the sun the core is assumed to be rotating with a period of about 12 days while the overlying 'mantle' convection zone has a solid body component of about 27 days. It is proposed that this phenomenon could simply be understood as a 'reverse pirouette'. It is noted that while previously proposed models provide solutions of valid equations and computer analyses, they lack a simple physical picture to explain the phenomenon. In the model proposed here, the solar oblateness is conventionally providing added heat input at the poles. The result is the large scale transport of material toward the equator, causing subrotation. The model is thus seen as facilitating an understanding of the formation of a slowly rotating convection zone above the more rapidly rotating core. The latitudinal photospheric differential rotation is interpreted as a 'second order' effect associated with the horizontal transport of momentum.

  6. A numerical technique for two-way radio occultations by oblate axisymmetric atmospheres with zonal winds

    NASA Astrophysics Data System (ADS)

    Schinder, P. J.; Flasar, F. M.; Marouf, E. A.; French, R. G.; Anabtawi, A.; Barbinis, E.; Kliore, A. J.

    2015-07-01

    The Ultra Stable Oscillator aboard the Cassini spacecraft failed in late 2011, which means that all radio occultations after that date have to be done in two-way mode, using a ground-based signal transmitted to the spacecraft as the frequency reference. Here we present the numerical technique we use to analyze the data from the two-way atmospheric radio occultations of both Saturn and Titan that have occurred since the Ultra Stable Oscillator (USO) failure, along with the theoretical reasons behind this technique. Since our two-way technique is based upon our earlier one-way technique which used the USO as the frequency reference, we also present our one-way technique which we used for Saturn occultations prior to the loss of the USO.

  7. ANALYSIS OF 200 MB ZONAL WIND FOR THE PERIOD 1958-1997. (R824993)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    NASA Astrophysics Data System (ADS)

    Yamagishi, Osamu; Sugama, Hideo

    2016-03-01

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  9. Advances and Current Challenges in the Theory of Zonal-Flow Generation

    SciTech Connect

    Krommes, John A.

    2010-11-23

    Some remarks are made about the use of modern statistical formalism in the calculation of the zonal-flow growth rate and the backreaction of zonal flows on drift waves. The intimate connection between the zonal growth-rate calculation and the derivation of a statistical formula for eddy viscosity in two-dimensional neutral fluids is emphasized, as is the the role of Casimir invariants in disparate-scale expansion. Also stressed is the importance of random Galilean invariance in the calculation of the triad interaction time between short-wavelength drift waves and long-wavelength flows.

  10. Zonal Flow as Pattern Formation: Merging Jets and the Ultimate Jet Length Scale

    SciTech Connect

    Jeffrey B. Parker and John A. Krommes

    2013-01-30

    Zonal flows are well known to arise spontaneously out of turbulence. It is shown that for statisti- cally averaged equations of quasigeostrophic turbulence on a beta plane, zonal flows and inhomoge- neous turbulence fit into the framework of pattern formation. There are many implications. First, the zonal flow wavelength is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets.

  11. Empirical models of storm time equatorial zonal electric fields

    NASA Astrophysics Data System (ADS)

    Fejer, Bela G.; Scherliess, Ludger

    1997-10-01

    Ionospheric plasma drifts often show highly complex and variable signatures during geomagnetically active periods due to the effects of different disturbance processes. We describe initially a methodology for the study of storm time dependent ionospheric electric fields. We present empirical models of equatorial disturbance zonal electric fields obtained using extensive F region vertical plasma drift measurements from the Jicamarca Observatory and auroral electrojet indices. These models determine the plasma drift perturbations due to the combined effects of short-lived prompt penetration and longer lasting disturbance dynamo electric fields. We show that the prompt penetration drifts obtained from a high time resolution empirical model are in excellent agreement with results from the Rice Convection Model for comparable changes in the polar cap potential drop. We also present several case studies comparing observations with results obtained by adding model disturbance drifts and season and solar cycle dependent average quiet time drift patterns. When the disturbance drifts are largely due to changes in magnetospheric convection and to disturbance dynamo effects, the measured and modeled drift velocities are generally in good agreement. However, our results indicate that the equatorial disturbance electric field pattern can be strongly affected by variations in the shielding efficiency, and in the high-latitude potential and energy deposition patterns which are not accounted for in the model. These case studies and earlier results also suggest the possible importance of additional sources of plasmaspheric disturbance electric fields.

  12. Status of surface processes in the LLNL zonally symmetric model

    SciTech Connect

    Gleckler, P.J. )

    1989-09-30

    A surface package has been developed for use in the LLNL zonally symmetric model (ZSM). Surface energy balances are computed for both land and ocean. The ocean is modeled as a well-mixed slab, the land as a single layer with constant thermal conductivity. A land surface moisture budget includes rain, evaporation, sublimation, snowfall, snowmelt and runoff. There is a highly simplified parameterization of surface albedo for freezing oceans and snow covered land. Land and sea air is instantly mixed' by averaging pertinent land and sea surface variables (weighted by their respective areas in each zone) before use in subsequent atmospheric computations. Initial tests have demonstrated that the surface package is working properly. It has been demonstrated that the model produces a reasonable annually averaged' climate. There are some aspects of ZSM which need to be improved, most notably that of cloud cover. The next stage in the development is to test the model in seasonal mode. An improved treatment of surface albedo is currently being coded. When ZSM has been tested in seasonal mode, a sea ice routine will be added to the surface package. There are also plans to implement a method which accounts for the interaction between land and sea air. 5 refs., 15 figs.

  13. Elasticity in drift-wave-zonal-flow turbulence.

    PubMed

    Guo, Z B; Diamond, P H; Kosuga, Y; Gürcan, Ö D

    2014-04-01

    We present a theory of turbulent elasticity, a property of drift-wave-zonal-flow (DW-ZF) turbulence, which follows from the time delay in the response of DWs to ZF shears. An emergent dimensionless parameter |〈v〉'|/Δωk is found to be a measure of the degree of Fickian flux-gradient relation breaking, where |〈v〉'| is the ZF shearing rate and Δωk is the turbulence decorrelation rate. For |〈v〉'|/Δωk>1, we show that the ZF evolution equation is converted from a diffusion equation, usually assumed, to a telegraph equation, i.e., the turbulent momentum transport changes from a diffusive process to wavelike propagation. This scenario corresponds to a state very close to the marginal instability of the DW-ZF system, e.g., the Dimits shift regime. The frequency of the ZF wave is ΩZF=±γd1/2γmodu1/2, where γd is the ZF friction coefficient and γmodu is the net ZF growth rate for the case of the Fickian flux-gradient relation. This insight provides a natural framework for understanding temporally periodic ZF structures in the Dimits shift regime and in the transition from low confined mode to high confined mode in confined plasmas. PMID:24827182

  14. Mean winds and tidal components during counter electrojet events

    SciTech Connect

    Somayajulu, V.V.; Cherian, L.; Rajeev, K.; Ramkumar, G.; Reddi, C.R.

    1993-07-23

    This paper reports the observation of mean winds and tidal components during a series of equatorial counter electrojet (CEJ) events in Jan 1987. The results are compared to a similar series of measurements of normal equatorial electrojet events from earlier in the month. The results are from the Trivandrum site, using a meteor wind radar. During normal electojet events the mean zonal winds are generally eastward at an altitude from 90 to 105km, and generally westward for counter electojet events. These observations show the amplitudes and phases of the tidal wind components to be considerably different for these types of events.

  15. A zonally averaged, three-basin ocean circulation model for climate studies

    SciTech Connect

    Hovine, S.; Fichefet, T.

    1994-09-01

    A two-dimensional, three-basin ocean model suitable for long-term climate studies is developed. The model is based on the zonally averaged form of the primitive equations written in spherical coordinates. The east-west density difference which arises upon averaging the momentum equations is taken to be proportional to the meridional density gradient. Lateral exchanges of heat and salt between the basins are explicitly resolved. Moreover, the model includes bottom topography and has representations of the Arctic Ocean and of the Weddell and Ross seas. Under realistic restoring boundary conditions, the model reproduces the global conveyor belt: deep water is formed in the Atlantic between 60 and 70{degree}N at a rate of about 17 Sv (1 Sv=10{sup 6} m{sup 3}S{sup {minus}1}) and in the vicinity of the Antarctic continent, while the Indian and Pacific basins show broad upwelling. Superimposed on this thermohaline circulation are vigorous wind-driven cells in the upper thermocline. The simulated temperature and salinity fields and the computed meridional heat transport compare reasonably well with the observational estimates. When mixed boundary conditions i.e., a restoring condition no sea-surface temperature and flux condition on sea-surface salinity are applied, the model exhibits an irregular behavior before reaching a steady state characterized by self-sustained oscillations of 8.5-y period. The conveyor-belt circulation always results at this stage. A series of perturbation experiments illustrates the ability of the model to reproduce different steady-state circulations under mixed boundary conditions. Finally, the model sensitivity to various factors is examined. This sensitivity study reveals that the bottom topography and the presence of a submarine meridional ridge in the zone of the Drake passage play a crucial role in determining the properties of the model bottom-water masses. The importance of the seasonality of the surface forcing is also stressed.

  16. Parameterization of eddy sensible heat transports in a zonally averaged dynamic model of the atmosphere

    NASA Technical Reports Server (NTRS)

    Genthon, Christophe; Le Treut, Herve; Sadourny, Robert; Jouzel, Jean

    1990-01-01

    A Charney-Branscome based parameterization has been tested as a way of representing the eddy sensible heat transports missing in a zonally averaged dynamic model (ZADM) of the atmosphere. The ZADM used is a zonally averaged version of a general circulation model (GCM). The parameterized transports in the ZADM are gaged against the corresponding fluxes explicitly simulated in the GCM, using the same zonally averaged boundary conditions in both models. The Charney-Branscome approach neglects stationary eddies and transient barotropic disturbances and relies on a set of simplifying assumptions, including the linear appoximation, to describe growing transient baroclinic eddies. Nevertheless, fairly satisfactory results are obtained when the parameterization is performed interactively with the model. Compared with noninteractive tests, a very efficient restoring feedback effect between the modeled zonal-mean climate and the parameterized meridional eddy transport is identified.

  17. Stationary Zonal Flows during the Formation of the Edge Transport Barrier in the JET Tokamak.

    PubMed

    Hillesheim, J C; Delabie, E; Meyer, H; Maggi, C F; Meneses, L; Poli, E; Jet Contributors

    2016-02-12

    High spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge Er. We observe fine-scale spatial structures in the edge Er well with a wave number krρi≈0.4-0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E×B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-mode transition, while below the minimum they are reduced below measurable amplitude during L mode, before the L-H transition.

  18. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    SciTech Connect

    Asahi, Y. Tsutsui, H.; Tsuji-Iio, S.; Ishizawa, A.; Watanabe, T.-H.

    2014-05-15

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger than or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.

  19. Thermodynamic and dynamic controls on changes in the zonally anomalous hydrological cycle

    NASA Astrophysics Data System (ADS)

    Wills, Robert C.; Byrne, Michael P.; Schneider, Tapio

    2016-05-01

    The wet gets wetter, dry gets drier paradigm explains the expected moistening of the extratropics and drying of the subtropics as the atmospheric moisture content increases with global warming. Here we show, using precipitation minus evaporation (P - E) data from climate models, that it cannot be extended to apply regionally to deviations from the zonal mean. Wet and dry zones shift substantially in response to shifts in the stationary-eddy circulations that cause them. Additionally, atmospheric circulation changes lead to a smaller increase in the zonal variance of P - E than would be expected from atmospheric moistening alone. The P - E variance change can be split into dynamic and thermodynamic components through an analysis of the atmospheric moisture budget. This reveals that a weakening of stationary-eddy circulations and changes in the zonal variation of transient-eddy moisture fluxes moderate the strengthening of the zonally anomalous hydrological cycle with global warming.

  20. Stationary Zonal Flows during the Formation of the Edge Transport Barrier in the JET Tokamak

    NASA Astrophysics Data System (ADS)

    Hillesheim, J. C.; Delabie, E.; Meyer, H.; Maggi, C. F.; Meneses, L.; Poli, E.; JET Contributors; EUROfusion Consortium, JET, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom

    2016-02-01

    High spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge Er. We observe fine-scale spatial structures in the edge Er well with a wave number krρi≈0.4 -0.8 , consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E ×B shear increases. Above the minimum of the L -H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H -mode transition, while below the minimum they are reduced below measurable amplitude during L mode, before the L -H transition.

  1. Theory of Fine-scale Zonal Flow Generation From Trapped Electron Mode Turbulence

    SciTech Connect

    Lu Wang and T.S. Hahm

    2009-06-11

    Most existing zonal flow generation theory has been developed with a usual assumption of qrρθ¡ << 1 (qr is the radial wave number of zonal flow, and ρθ¡ is the ion poloidal gyrora- dius). However, recent nonlinear gyrokinetic simulations of trapped electron mode (TEM) turbulence exhibit a relatively short radial scale of the zonal flows with qrρθ¡ ~ 1 [Z. Lin et al., IAEA-CN/TH/P2-8 (2006); D. Ernst et al., Phys. Plasmas 16, 055906 (2009)]. This work reports an extension of zonal flow growth calculation to this short wavelength regime via the wave kinetics approach. A generalized expression for the polarization shielding for arbitrary radial wavelength [Lu Wang and T.S. Hahm, to appear in Phys. Plasmas (2009)] which extends the Rosenbluth-Hinton formula in the long wavelength limit is applied.

  2. Stationary zonal flows during the formation of the edge transport barrier in the JET tokamak

    DOE PAGES

    Hillesheim, J. C.; Meyer, H.; Maggi, C. F.; Meneses, L.; Poli, E.; Delabie, E.

    2016-02-10

    In this study, high spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge Er. We observe fine-scale spatial structures in the edge Er well with a wave number krρi ≈ 0.4-0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E x B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-mode transition, while belowmore » the minimum they are reduced below measurable amplitude during L mode, before the L-H transition.« less

  3. Studies of Zonal Flows Driven by Drift Mode Turbulence in Laboratory and Space Plasmas

    SciTech Connect

    Bingham, R.; Trines, R.; Dunlop, M. W.; Davies, J. A.; Bamford, R. A.; Mendonca, J. T.; Silva, L. O.; Shukla, P. K.; Vaivads, A.; Mori, W. B.; Tynan, G.

    2008-10-15

    The interaction between broadband drift mode turbulence and zonal flows is an important topic associated with transport at plasma boundaries. The generation of zonal flows by the modulational instability of broad band drift waves has resulted in the observation of self organized solitary wave structures at the magnetopause. To understand these structures and their importance to future burning plasmas and space plasmas we have developed a unique numerical simulation code that describes drift wave--zonal flow turbulence. We show that observations by cluster spacecraft confirms the role of drift wave zonal flow turbulence at the Earth's magnetopause and further demonstrates that the magnetopause boundary acts in a s similar manner to transport barriers in tokamak fusion devices. Thus cementing the relationship between the plasma physics of laboratory devices and space plasmas.

  4. Separation-bubble flow solution using Euler/Navier-Stokes zonal approach with downstream compatibility conditions

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Wong, T. C.; Kandil, O. A.

    1988-01-01

    The two-dimensional flow over a blunt leading-edge plate is simulated on the basis of an Euler/Navier-Stokes zonal scheme. The scheme uses an implicit upwind finite-volume scheme, which is based on the van Leer flux-vector splitting. It is shown that the Euler/Navier-Stokes zonal scheme with downstream boundary-layer compatibility conditions is accurate and efficient.

  5. Generation of magnetoacoustic zonal flows by Alfven waves in a rotating plasma

    SciTech Connect

    Mikhailovskii, A. B.; Lominadze, J. G.; Churikov, A. P.; Erokhin, N. N.; Tsypin, V. S.; Smolyakov, A. I.; Galvao, R. M. O.

    2007-08-15

    Analytical theory of nonlinear generation of magnetoacoustic zonal flows in a rotating plasma is developed. As the primary modes causing such a generation, a totality of the Alfven waves are considered, along with the kinetic, inertial, and rotational. It is shown that in all these cases of the Alfven waves the generation is possible if the double plasma rotation frequency exceeds the zonal flow frequency.

  6. Seasat A Satellite Scatterometer measurements of equatorial surface winds

    SciTech Connect

    Halpern, D. )

    1989-04-15

    Seasat A Satellite Scatterometer measurements of surface wind components were made under normal weather conditions with unsurpassed space and time resolutions during August and September 1978. Longitudinal distributions of the monthly mean zonal component were markedly different in each ocean: in the Pacific the zonal profile resembled a semicircle; a linear change occurred in the Atlantic, and quasi-uniform values prevailed in the Indian Ocean. Only in the Atlantic and Pacific was the prevailing direction of the zonal component westward. In the Pacific the monthly mean standard deviations increased towards the west. This indicated that the larger day-to-day wind variability observed at the western islands compared to moored buoy measurements in the eastern region was a natural phenomenon and not caused by islands. The average monthly mean slope of the wave number spectra throughout the 550- to 2,200-km wavelength band was {minus}1.7, which was approximately equal to the {minus}5/3 power law associated with turbulent motions. That the spectra levels of the zonal wind, but not the meridional component, were substantially different in each equatorial ocean represents an enigma. Largest spectral values occurred in the Atlantic where variances were nearly 10 times greater than in the Pacific, which contained the smallest values.

  7. Atmospheric Response to Zonal Variations in Midlatitude SST: Transient and Stationary Eddies and Their Feedback(.

    NASA Astrophysics Data System (ADS)

    Inatsu, Masaru; Mukougawa, Hitoshi; Xie, Shang-Ping

    2003-10-01

    Midwinter storm track response to zonal variations in midlatitude sea surface temperatures (SSTs) has been investigated using an atmospheric general circulation model under aquaplanet and perpetual-January conditions. Zonal wavenumber-1 SST variations with a meridionally confined structure are placed at various latitudes. Having these SST variations centered at 30°N leads to a zonally localized storm track, while the storm track becomes nearly zonally uniform when the same SST forcing is moved farther north at 40° and 50°N. Large (small) baroclinic energy conversion north of the warm (cold) SST anomaly near the axis of the storm track (near 40°N) is responsible for the large (small) storm growth. The equatorward transfer of eddy kinetic energy by the ageostrophic motion and the mechanical damping are important to diminish the storm track activity in the zonal direction.Significant stationary eddies form in the upper troposphere, with a ridge (trough) northeast of the warm (cold) SST anomaly at 30°N. Heat and vorticity budget analyses indicate that zonally localized condensational heating in the storm track is the major cause for these stationary eddies, which in turn exert a positive feedback to maintain the localized storm track by strengthening the vertical shear near the surface. These results indicate an active role of synoptic eddies in inducing deep, tropospheric-scale response to midlatitude SST variations. Finally, the application of the model results to the real atmosphere is discussed.

  8. Tightly linked zonal and meridional sea surface temperature gradients over the past five million years

    NASA Astrophysics Data System (ADS)

    Fedorov, Alexey V.; Burls, Natalie J.; Lawrence, Kira T.; Peterson, Laura C.

    2015-12-01

    The climate of the tropics and surrounding regions is defined by pronounced zonal (east-west) and meridional (equator to mid-latitudes) gradients in sea surface temperature. These gradients control zonal and meridional atmospheric circulations, and thus the Earth’s climate. Global cooling over the past five million years, since the early Pliocene epoch, was accompanied by the gradual strengthening of these temperature gradients. Here we use records from the Atlantic and Pacific oceans, including a new alkenone palaeotemperature record from the South Pacific, to reconstruct changes in zonal and meridional sea surface temperature gradients since the Pliocene, and assess their connection using a comprehensive climate model. We find that the reconstructed zonal and meridional temperature gradients vary coherently over this time frame, showing a one-to-one relationship between their changes. In our model simulations, we systematically reduce the meridional sea surface temperature gradient by modifying the latitudinal distribution of cloud albedo or atmospheric CO2 concentration. The simulated zonal temperature gradient in the equatorial Pacific adjusts proportionally. These experiments and idealized modelling indicate that the meridional temperature gradient controls upper-ocean stratification in the tropics, which in turn controls the zonal gradient along the equator, as well as heat export from the tropical oceans. We conclude that this tight linkage between the two sea surface temperature gradients posits a fundamental constraint on both past and future climates.

  9. Model test of anchoring effect on zonal disintegration in deep surrounding rock masses.

    PubMed

    Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning

    2013-01-01

    The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration.

  10. Model Test of Anchoring Effect on Zonal Disintegration in Deep Surrounding Rock Masses

    PubMed Central

    Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning

    2013-01-01

    The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration. PMID:23997683

  11. On the possible role of zonal dynamics in the formation and evolution of F3 layers over equator

    NASA Astrophysics Data System (ADS)

    Mridula, N.; Pant, Tarun Kumar

    2015-11-01

    In the present study, occurrences of F3 layer over Thiruvananthapuram (8.5°N; 77°E; dip latitude ~0.5°N), a dip equatorial station in India have been investigated using ionosonde data for the years 2004-2007. The F3 layers appearing in the ionograms during the pre noon hours only have been included in the analysis. The result indicates that a weak EIA resulting in low ionospheric height and high ionization density prevails before the occurrence of F3 layer and serves as an essential condition for its occurrence. The relative Slant Total Electron Content (rSTEC) measured using collocated ground based coherent low earth orbiting (LEO) radio beacon receiver has also been used along with electron densities measured by CHAMP satellite for the year 2006 and 2007 to illustrate this difference in the evolution of Equatorial Ionization Anomaly (EIA) on F3 and non F3 days. A new mechanism for F3 generation has been proposed. It has been shown that the coupling of the thermospheric zonal wind jet over equator and enhanced ionospheric density at lower heights over Indian longitude can account for the generation of F3 layer through ion-drag. The vertical wind associated with the thermospheric heating resulting from ion-drag causes the generation of an additional eastward field which, along with the prevailing F-region electric field, leads to the upward excursion of the F3 layer.

  12. Vertical Wind Shear in Neptune's Atmosphere Explained with a Modified Thermal Wind Equation

    NASA Astrophysics Data System (ADS)

    Tollefson, Joshua; de Pater, Imke; Marcus, Philip; Luszcz-Cook, Statia H.; Sromovsky, Lawrence A.; Fry, Patrick M.; Fletcher, Leigh N.; Wong, Michael H.

    2016-10-01

    We present observations of Neptune taken in H-(1.4-1.8 μm) and K'-(2.0-2.4 μm) bands on the nights of July 3, 2013 and August 20, 2014 from the 10-m W.M. Keck II Telescope using NIRC2 coupled to the Adaptive Optics (AO) system. We track the positions of about 100 bright atmospheric features over a 4-5 hour window on each night to derive zonal velocities and wind profiles.Our results deviate from the smooth Voyager zonal wind profile from Sromovsky et al. (1993), often by 100-200 m/s, and often by 3-10 times their estimated uncertainties. Besides what appears to be a random dispersion, there is also a systematic deviation that is wavelength dependent. The H-band profile is best described with a 73-106 m/s shift towards the east for a retrograde flow from the Voyager profile at the equator. The K'-band profile is consistent with Voyager on both nights. Comparing K'/H intensity versus latitude and zonal velocity variation suggests equatorial H-band features are, on average, deeper and have greater eastward velocities than K'-band features. Assuming the average variations in the zonal wind profiles result from wind shear over 3-5 scale heights, we predict vertical wind shears between -1.0 and -2.2 m/(s x km) at the equator.The standard thermal wind equation and meridional thermal profile for Neptune given by Voyager/IRIS spectra predict wind shear of the wrong sign relative to the observations. We consider two effects that reconcile this inconsistency. First, we calculate the meridional temperature gradients at pressures outside the Voyager/IRIS sensitivity window required to match our predicted wind shears. Second, we generalize to a thermal wind equation that considers global methane variations and re-derive the temperature structure needed to match the observed wind shear. If methane is uniformly distributed or weakly-varying, the equator must be 2-15 K cooler than the mid latitudes below 1 bar. If methane is strongly-varying, the equator can be 2-3 K warmer than

  13. Venera-11 and Venera 12: Preliminary estimates for the wind speed and turbulence in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Kerzhanovich, V. V.; Makarov, M. Y.; Marov, F.; Roshdestvenskiy, M. K.; Sorokin, V. P.

    1979-01-01

    The methods and results of measurements for wind speed and atmospheric turbulence in the clouds of Venus are described, and compared with earlier results. The distribution of wind speed obtained from the data of Venera 12 is in good conformity with the data of the preceding Venera and Pioneer probes, indicating the existence of a constant and powerful zonal movement of the troposphere.

  14. Zonal winds near Venus' cloud top level - A model study of the interaction between the zonal mean circulation and the semidiurnal tide

    NASA Astrophysics Data System (ADS)

    Baker, N. L.; Leovy, C. B.

    1987-02-01

    A primitive equation wave-mean flow interaction model, designed by J. R. Holton and used originally to study Earth's middle atmosphere, has been adapted to Venus in order to clarify the understanding of the interaction between the semidiurnal tide and the thermally driven mean meridional circulation near the cloud top level. With or without the tide the model produces midlatitude jets whose structure is insensitive to vertical shear of the background angular velocity above and below the cloud top level, but it is sensitive to background angular velocity at the cloud top level. Agreement between the model tide and the observed tide, or the tide determined in the more detailed calculations of Pechmann and Ingersoll, is best when the background angular velocity at the jet level is about 30% larger than that observed.

  15. Wind structure and small-scale wind variability in the stratosphere and mesosphere during the November 1980 energy budget campaign

    NASA Astrophysics Data System (ADS)

    Schmidlin, F. J.; Carlson, M.; Rees, D.; Offermann, D.; Philbrick, C. R.; Widdel, H. U.

    Between November 6 and December 1, 1980, a series of rocket observations obtained from two sites in northern Scandinavia as part of the Energy Budget Campaign indicated that significant vertical and temporal changes in the wind structure were present and were noted to coincide with different geomagnetic conditions, i.e., quiet and enhanced. This series of observations represents for the first time the largest amount of data ever gathered at high latitudes over such a short interval of time. It is observed that prior to November 16, the meridional wind component above 60 kilometers was found to be positive (southerly) while the magnitude of the zonal wind component increased with altitude. After November 16 the meridional component became negative (northerly) and the magnitude of the zonal wind component was noted to decrease with altitude. Time-sections of the perturbations of the zonal wind show the presence of vertically propagating waves which suggest gravity wave activity. These waves increase in wavelength from 3-4 kilometers near 40 kilometers to over 12 kilometers near 80 kilometers. The observational techniques employed at Andoya, Norway, and ESRANGE in Sweden, consisted of chaff foil, chemical trails, inflatable spheres, and parachutes.

  16. Synthetic thermosphere winds based on CHAMP neutral and plasma density measurements

    NASA Astrophysics Data System (ADS)

    Gasperini, F.; Forbes, J. M.; Doornbos, E. N.; Bruinsma, S. L.

    2016-04-01

    Meridional winds in the thermosphere are key to understanding latitudinal coupling and thermosphere-ionosphere coupling, and yet global measurements of this wind component are scarce. In this work, neutral and electron densities measured by the Challenging Minisatellite Payload (CHAMP) satellite at solar low and geomagnetically quiet conditions are converted to pressure gradient and ion drag forces, which are then used to solve the horizontal momentum equation to estimate low latitude to midlatitude zonal and meridional "synthetic" winds. We validate the method by showing that neutral and electron densities output from National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Mesosphere Electrodynamics-General Circulation Model (TIME-GCM) can be used to derive solutions to the momentum equations that replicate reasonably well (over 85% of the variance) the winds self-consistently calculated within the TIME-GCM. CHAMP cross-track winds are found to share over 65% of the variance with the synthetic zonal winds, providing further reassurance that this wind product should provide credible results. Comparisons with the Horizontal Wind Model 14 (HWM14) show that the empirical model largely underestimates wind speeds and does not reproduce much of the observed variability. Additionally, in this work we reveal the longitude, latitude, local time, and seasonal variability in the winds; show evidence of ionosphere-thermosphere (IT) coupling, with enhanced postsunset eastward winds due to depleted ion drag; demonstrate superrotation speeds of ˜27 m/s at the equator; discuss vertical wave coupling due the diurnal eastward propagating tide with zonal wave number 3 and the semidiurnal eastward propagating tide with zonal wave number 2.

  17. Zonal Flow Magnetic Field Interaction in the Semi-Conducting Region of Giant Planets

    NASA Astrophysics Data System (ADS)

    Cao, Hao; Stevenson, David J.

    2016-10-01

    All four giant planets in the Solar System feature zonal flows on the order of 100 m/s in the cloud deck, and large-scale intrinsic magnetic fields on the order of 1 Gauss near the surface. The vertical structure of the zonal flows remains obscure. The end-member scenarios are shallow flows confined in the radiative atmosphere and deep flows throughout the planet with constant velocity along the direction of the spin-axis. The electrical conductivity increases smoothly as a function of depth inside Jupiter and Saturn, while a discontinuity of electrical conductivity inside Uranus and Neptune cannot be ruled out. Deep zonal flows will inevitably interact with the magnetic field, at depth with even modest electrical conductivity. Here we investigate the interaction between zonal flows and magnetic fields in the semi-conducting region of giant planets. Employing mean-field electrodynamics, we show that the interaction will generate detectable poloidal magnetic field perturbations spatially correlated with the deep zonal flows. Assuming the peak amplitude of the dynamo α-effect to be 0.1 mm/s, deep zonal flows on the order of 0.1 – 1 m/s in the semi-conducting region of Jupiter and Saturn would generate poloidal magnetic perturbations on the order of 0.01 % – 1 % of the background dipole field. These poloidal perturbations should be detectable with the in-situ magnetic field measurements from the upcoming Juno mission and the Cassini Grand Finale. This implies that magnetic field measurements can be employed to constrain the properties of deep zonal flows in the semi-conducting region of giant planets.

  18. Lidar observations of wind over Xin Jiang, China: general characteristics and variation

    NASA Astrophysics Data System (ADS)

    Han, Yan; Sun, Dong-song; Weng, Ning-quan; Wang, Jian-guo; Dou, Xian-kang; Zhang, Yan-hong; Guan, Jun; Miao, Qingjian; Chen, Xin

    2016-08-01

    The mobile Rayleigh Doppler lidar based on a Fabry-Perot etalon is developed for wind measurement. The structure and technical parameters of this lidar system are described in brief. The 1740 wind profiles from 8 to 40 km altitudes by the lidar in Xinjiang, China, were obtained in 2010 and 2011, and were used to analyze the characteristics and variations of wind. The results shown that the wind velocity is within a three-layer structure: westerly jet layer (9-14 km), quasi-zero velocity layer (18-22 km) and gale layer (22-40 km). In August and September, the wind direction is within a three-layer structure: zonal westerly wind layer (5-18 km) where wind direction is west, zonal wind reverse layer (18-22 km) where wind direction is unstable and easterly wind layer (22-40 km) where wind direction is east. In October, wind direction is west (8-40 km). Wind observations by lidar are a realistic offset to the rawins.

  19. Including outer scale effects in zonal adaptive optics calculations.

    PubMed

    Ellerbroek, B L

    1997-12-20

    Mellin transform techniques are applied to evaluate the covariance of the integrated turbulence-induced phase distortions along a pair of ray paths through the atmosphere from two points in a telescope aperture to a pair of sources at finite or infinite range. The derivation is for the case of a finite outer scale and a von Karman turbulence spectrum. The Taylor hypothesis is assumed if the two phase distortions are evaluated at two different times and amplitude scintillation effects are neglected. The resulting formula for the covariance is a power series in one variable for the case of a fixed atmospheric wind velocity profile and a power series in two variables for a fixed wind-speed profile with a random and uniformly distributed wind direction. These formulas are computationally efficient and can be easily integrated into computer codes for the numerical evaluation of adaptive optics system performance. Sample numerical results are presented to illustrate the effect of a finite outer scale on the performance of natural and laser guide star adaptive optics systems for an 8-m astronomical telescope. A hypothetical outer scale of 10 m significantly reduces the magnitude of tilt anisoplanatism, thereby improving the performance of a laser guide star adaptive optics system if the auxiliary natural star used for full-aperture tip/tilt sensing is offset from the science field. The reduction in higher-order anisoplanatism that is due to a 10-m outer scale is smaller, and the off-axis performance of a natural guide star adaptive optics system is not significantly improved.

  20. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    NASA Astrophysics Data System (ADS)

    Staebler, G. M.; Candy, J.; Howard, N. T.; Holland, C.

    2016-06-01

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the threshold for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.

  1. Planetesimal Formation in Zonal Flows Arising in Magneto-Rotationally-Unstable Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Dittrich, Karsten; Klahr, Hubert; Johansen, Anders

    2014-04-01

    Recent simulations show long -lived sub- and super-Keplerian flows in protoplanetary disks. These so-called zonal flows are found in local as well as global simulations of magneto-rotationally unstable disks. We investigate the strength and life-time of the resulting long-lived gas over- and under-densities as well as particle concentrations function of the azimuthal and radial size of the local shearing box. Changes in the azimuthal extent do not affect the zonal flow features. However, strength and life-time of zonal flows increase with increasing radial box sizes. Our simulations show indications, and support earlier results, that zonal flows have a natural length scale of approximately 5 pressure scale heights. For the first time, the reaction of dust particles in boxes with zonal flows are studied. We show that particles of some centimeters in size reach a hundred-fold higher density than initially, without any self-gravitating forces acting on the point masses. We further investigate collision velocities of dust grains in a turbulent medium.

  2. Gyrokinetic study of the spatial entropy dynamics in turbulent plasmas with zonal flow

    NASA Astrophysics Data System (ADS)

    Imadera, Kenji; Kishimoto, Yasuaki; Li, Jiquan; Utsumi, Takayuki

    2009-11-01

    We have developed a new computational algorithm based on the IDO-CF (Conservative Form of Interpolated Differential Operator) scheme [1], which is efficient in capturing sharp domain structure in long time scale, for solving full-f Gyrokineitc Vlasov-Poisson system. By using the developed code, we have performed the ITG simulation focusing on entropy dynamics and associated zonal flow formation. Here, we have introduced the modified local entropy defined asδSm(x)=<δf^2/ 2f0(-1+v||^2 /T) >yzdv , which retains the spatial information. It is found that the entropy balances with the acoustic coupling driven by ITG mode in the linear stage, and then the zonal flows expel the entropy to outside region via its convection. The spatial structure of the entropy is regulated by the zonal flows, and finally, the quasi-steady state where the entropy and zonal flows have similar structure is established. This indicates that the zonal flows couple with the entropy spatially [1] Y.Imai et al., J. Comput. Phys. 227 (2008) 2263.

  3. An implicit, conservative, zonal-boundary scheme for Euler equation calculations

    NASA Technical Reports Server (NTRS)

    Rai, M. M.

    1985-01-01

    A zonal, or patched, grid approach is one in which the flow region of interest is divided into subregions which are then discretized independently, using existing grid generators. The equations of motion are integrated in each subregion in conjunction with zonal boundary schemes which allow proper information transfer across interfaces that separate subregions. The zonal approach greatly simplifies the treatment of complex geometries and also the addition of grid points to selected regions of the flow. A conservative, zonal boundary condition that could be used with explicit schemes was extended so that it can be used with existing second order accurate implicit integration schemes such as the Beam-Warming and Osher schemes. In the test case considered, the implicit schemes increased the rate of convergence considerably (by a factor of about 30 over that of the explicit scheme). Results demonstrating the time accuracy of the zonal scheme and the feasibility of performing calculations on zones that move relative to each other are also presented.

  4. Successive bifurcations in a simple model of atmospheric zonal-flow vacillation

    NASA Astrophysics Data System (ADS)

    Koo, Seongjoon; Ghil, Michael

    2002-06-01

    Low-frequency variability of the atmospheric flow in the Southern Hemisphere is dominated by irregular changes in the latitude and intensity of the mid-latitude eastward jet about its climatological mean state. This phenomenon, known as atmospheric zonal-flow vacillation, is characterized by the existence of two persistent states of the zonal (i.e., east-west oriented) jet and irregular transitions between them. Nonlinear interactions between the mean flow and the waves play a key role in the dynamics of this vacillation. In the present study, we develop a low-order, deterministic model for the nonlinear dynamics of atmospheric zonal-flow vacillation. Multiple equilibria arise in this model's zonal-mean flow, that is, in the longitudinal flow averaged along a given latitude circle. These equilibria bear a strong resemblance to the two persistent flow regimes found in Southern Hemisphere observations. The two equilibrium states are maintained by wave forcing against surface drag, as in the observations. Successive bifurcations to periodic and chaotic zonal-mean flow regimes occur as the model's dissipation parameter is reduced.

  5. North South Asymmetry of Zonal and Meridional Flows Determined From Ring Diagram Analysis of Gong ++ Data

    NASA Astrophysics Data System (ADS)

    Zaatri, A.; Komm, R.; González Hernández, I.; Howe, R.; Corbard, T.

    2006-07-01

    We study the North South asymmetry of zonal and meridional components of horizontal, solar subsurface flows during the years 2001 2004, which cover the declining phase of solar cycle 23. We measure the horizontal flows from the near-surface layers to 16 Mm depth by analyzing 44 consecutive Carrington rotations of Global Oscillation Network Group (GONG) Doppler images with a ring-diagram analysis technique. The meridional flow and the errors of both flow components show an annual variation related to the B 0-angle variation, while the zonal flow is less affected by the B 0-angle variation. After correcting for this effect, the meridional flow is mainly poleward but it shows a counter cell close to the surface at high latitudes in both hemispheres. During the declining phase of the solar cycle, the meridional flow mainly increases with time at latitudes poleward of about 20˚, while it mainly decreases at more equatorward latitudes. The temporal variation of the zonal flow in both hemispheres is significantly correlated at latitudes less than about 20˚. The zonal flow is larger in the southern hemisphere than the northern one, and this North South asymmetry increases with depth. Details of the North South asymmetry of zonal and meridional flow reflect the North South asymmetry of the magnetic flux. The North South asymmetries of the flows show hints of a variation with the solar cycle.

  6. Wind regime peculiarities in the lower thermosphere in the winter of 1983/84

    NASA Technical Reports Server (NTRS)

    Lysenko, I. A.; Makarov, N. A.; Portnyagin, Yu. I.; Petrov, B. I.; Greisiger, K. M.; Schminder, R.; Kurschner, D.

    1987-01-01

    Temporal variations of prevailing winds at 90 to 100 km obtained from measurements carried out in winter 1983 to 1984 at three sites in the USSR and two sites in East Germany are reported. These variations are compared with those of the thermal stratospheric regime. Measurements were carried out using the drifts D2 method (meteor wind radar) and the D1 method (ionospheric drifts). Temporal variations of zonal and meridional prevailing wind components for all the sites are given. Also presented are zonal wind data obtained using the partial reflection wind radar. Wind velocity values were obtained by averaging data recorded at between 105 and 91 km altitude. Wind velocity data averaged in such a way can be related to about the same height interval to which the data obtained by the meteor radar and ionospheric methods at other sites, i.e., the mean height of the meteor zone (about 95 km). The results presented show that there are significant fluctuations about the seasonal course of both zonal and meridional prevailing winds.

  7. A Comparison of VHF Wind Profiler Observations and the NCEP-NCAR Reanalysis over the Tropical Pacific.

    NASA Astrophysics Data System (ADS)

    Schafer, Robert; Avery, Susan K.; Gage, Kenneth S.

    2003-07-01

    VHF wind profiler measurements of zonal and meridional winds are compared with the NCEP-NCAR reanalysis at sites in the tropical Pacific. By December 1999 the profilers at Darwin, Australia, and Biak, Indonesia, in the western Pacific; Christmas Island, Kiribati, in the central Pacific; and Piura Peru, in the eastern Pacific had collected between 8 and 13 yr of nearly continuous data. While these profilers routinely observe winds up to about 20 km, only winds at Christmas Island are assimilated into the reanalysis. The long period of profiler operation provides an opportunity to study differences between the profiler and reanalysis winds in the equatorial Pacific, a region with geographically sparse observations. Mean and seasonal mean zonal and meridional winds are used to identify differences in the profiler and reanalysis winds. Two potential causes for the discrepancy between profiler and reanalysis winds are identified. The first of these is related to different spatial and temporal characteristics of the reanalysis and profiler data. The second cause is the geographical sparseness of rawinsonde data, and not assimilating wind profiler observations. The closest agreement between the mean and seasonal mean zonal winds was found at Christmas Island, a site at which profiler winds are assimilated. A good agreement between reanalysis and profiler meridional and zonal winds is also shown at Darwin, where nearby rawinsonde observations are available. The poorest agreement was found at Piura (where profiler winds are not assimilated), the closest rawinsonde is almost 2000 km from the profiler site, and topography is not adequately resolved in the reanalysis.

  8. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    NASA Technical Reports Server (NTRS)

    Simon-Miller, A. A.; Rogers, John H.; Gierasch, Peter J.; Choi, David; Allison, Michael; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-01-01

    We have conducted a detailed study of the cloud features in the strong southern equatorial wind jet near 7.5 S planetographic latitude. To understand the apparent variations in average zonal wind jet velocity at this latitude [e.g.. 1,2,3], we have searched for variations iIi both feature latitude and velocity with longitude and time. In particular, we focused on the repetitive chevron-shaped dark spots visible on most dates and the more transient large anticyclonic system known as the South Equatorial Disturbance (SED). These small dark spots are interpreted as cloud holes, and are often used as material tracers of the wind field.

  9. Generation of zonal magnetic fields by low-frequency dispersive electromagnetic waves in a nonuniform dusty magnetoplasma.

    PubMed

    Shukla, P K

    2004-04-01

    It is shown that zonal magnetic fields can be parametrically excited by low-frequency dispersive driftlike compressional electromagnetic (DDCEM) modes in a nonuniform dusty magnetoplasma. For this purpose, we derive a pair of coupled equations which exhibits the nonlinear coupling between DDCEM modes and zonal magnetic fields. The coupled mode equations are Fourier analyzed to derive a nonlinear dispersion relation. The latter depicts that zonal magnetic fields are nonlinearly generated at the expense of the low-frequency DDCEM wave energy. The relevance of our investigation to the transfer of energy from short scale DDCEM waves to long scale zonal magnetic field structures in dark molecular clouds is discussed.

  10. Data Descriptions and Vertical Structure Plots for Mean, Diurnal, and Semidurnal Components of Eastward and Northward (ordered by Latitude). Mean Winds and Tides over Poker Flat, Alaska (65 Deg N, 147 Deg W), During November 1981

    NASA Technical Reports Server (NTRS)

    Avery, S. K.

    1985-01-01

    The mean zonal and meridional winds and the amplitude and phase structures for the tidal harmonics for the month of November, 1981 are given. The mean winds are weak westerlies and weak southerlies. The westerlies are approximately 10 ms (-1) lower than those during November 1980 and 1982. The diurnal amplitudes are small in both the zonal and meridional wind components. The diurnal phase structures are characteristic of a propagating wave having a ertical wavelength of approximately 50 km. The semidiurnal tidal harmonic amplitudes are slightly larger than the diurnal amplitudes. However, the phase structures are different for the zonal and meridional components. The meridional phase structure appears evanescent. The zonal phase structure has a phase reversal at 88 km with downward phase progression below that level and upward phase progression above that level. The vertical wavelength is roximately 12 km. This short vertical wavelength occurs during other months of the year but longer wavelengths are more common.

  11. Convergence acceleration for a three-dimensional Euler/Navier-Stokes zonal approach

    NASA Technical Reports Server (NTRS)

    Flores, J.

    1985-01-01

    A fast diagonal algorithm is coupled with a zonal approach to solve the three-dimensional Euler/Navier-Stokes equations. Transonic viscous solutions are obtained on a 150,000 point mesh for a NACA 0012 wing. The new computational approach yields a speedup by as much as a factor of 40 over the standard Beam-Warming algorithm/zonal method originally coded. A three-order-of-magnitude drop in the L2-norm of the residual requires approximately 500 iterations, which takes about 45 min of CPU time on a Cray-XMP. The numerically computed solutions are in good agreement with experimental results. Effects on convergence rate owing to increasing the zonal boundary overlap regions, different stretching distributions in the viscous regions, and different CFL values are also explored.

  12. Zonal flow generation and its feedback on turbulence production in drift wave turbulence

    SciTech Connect

    Pushkarev, Andrey V.; Bos, Wouter J. T.; Nazarenko, Sergey V.

    2013-04-15

    Plasma turbulence described by the Hasegawa-Wakatani equations is simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and particle transport. For high values of C, turbulence evolves towards highly anisotropic states with a dominant contribution of the zonal sector to the kinetic energy. This anisotropic flow leads to a decrease of turbulence production in the meridional sector and limits the particle transport across the mean isopycnal surfaces. This behavior allows to consider the Hasegawa-Wakatani equations a minimal PDE model, which contains the drift-wave/zonal-flow feedback loop mechanism.

  13. Conservative zonal schemes for patched grids in 2 and 3 dimensions

    NASA Technical Reports Server (NTRS)

    Hessenius, Kristin A.

    1987-01-01

    The computation of flow over complex geometries, such as realistic aircraft configurations, poses difficult grid generation problems for computational aerodynamicists. The creation of a traditional, single-module grid of acceptable quality about an entire configuration may be impossible even with the most sophisticated of grid generation techniques. A zonal approach, wherein the flow field is partitioned into several regions within which grids are independently generated, is a practical alternative for treating complicated geometries. This technique not only alleviates the problems of discretizing a complex region, but also facilitates a block processing approach to computation thereby circumventing computer memory limitations. The use of such a zonal scheme, however, requires the development of an interfacing procedure that ensures a stable, accurate, and conservative calculation for the transfer of information across the zonal borders.

  14. Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma

    PubMed Central

    Arakawa, H.; Inagaki, S.; Sasaki, M.; Kosuga, Y.; Kobayashi, T.; Kasuya, N.; Nagashima, Y.; Yamada, T.; Lesur, M.; Fujisawa, A.; Itoh, K.; Itoh, S.-I.

    2016-01-01

    Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and eddies. The mutual-interactions between flow and the eddy give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence. In fusion plasma, clarifying structure formation by Drift-wave turbulence, driven by density gradients in magnetized plasma, is an important issue. Here, a new mutual-interaction among eddy, drift wave and flow in magnetized plasma is discovered. A two-dimensional solitary eddy, which is a perturbation with circumnavigating motion localized radially and azimuthally, is transiently organized in a drift wave – zonal flow (azimuthally symmetric band-like shear flows) system. The excitation of the eddy is synchronized with zonal perturbation. The organization of the eddy has substantial impact on the acceleration of zonal flow. PMID:27628894

  15. Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma

    NASA Astrophysics Data System (ADS)

    Arakawa, H.; Inagaki, S.; Sasaki, M.; Kosuga, Y.; Kobayashi, T.; Kasuya, N.; Nagashima, Y.; Yamada, T.; Lesur, M.; Fujisawa, A.; Itoh, K.; Itoh, S.-I.

    2016-09-01

    Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and eddies. The mutual-interactions between flow and the eddy give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence. In fusion plasma, clarifying structure formation by Drift-wave turbulence, driven by density gradients in magnetized plasma, is an important issue. Here, a new mutual-interaction among eddy, drift wave and flow in magnetized plasma is discovered. A two-dimensional solitary eddy, which is a perturbation with circumnavigating motion localized radially and azimuthally, is transiently organized in a drift wave – zonal flow (azimuthally symmetric band-like shear flows) system. The excitation of the eddy is synchronized with zonal perturbation. The organization of the eddy has substantial impact on the acceleration of zonal flow.

  16. Zonal flow generation and its feedback on turbulence production in drift wave turbulence

    NASA Astrophysics Data System (ADS)

    Pushkarev, Andrey V.; Bos, Wouter J. T.; Nazarenko, Sergey V.

    2013-04-01

    Plasma turbulence described by the Hasegawa-Wakatani equations is simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and particle transport. For high values of C, turbulence evolves towards highly anisotropic states with a dominant contribution of the zonal sector to the kinetic energy. This anisotropic flow leads to a decrease of turbulence production in the meridional sector and limits the particle transport across the mean isopycnal surfaces. This behavior allows to consider the Hasegawa-Wakatani equations a minimal PDE model, which contains the drift-wave/zonal-flow feedback loop mechanism.

  17. Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma.

    PubMed

    Arakawa, H; Inagaki, S; Sasaki, M; Kosuga, Y; Kobayashi, T; Kasuya, N; Nagashima, Y; Yamada, T; Lesur, M; Fujisawa, A; Itoh, K; Itoh, S-I

    2016-01-01

    Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and eddies. The mutual-interactions between flow and the eddy give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence. In fusion plasma, clarifying structure formation by Drift-wave turbulence, driven by density gradients in magnetized plasma, is an important issue. Here, a new mutual-interaction among eddy, drift wave and flow in magnetized plasma is discovered. A two-dimensional solitary eddy, which is a perturbation with circumnavigating motion localized radially and azimuthally, is transiently organized in a drift wave - zonal flow (azimuthally symmetric band-like shear flows) system. The excitation of the eddy is synchronized with zonal perturbation. The organization of the eddy has substantial impact on the acceleration of zonal flow. PMID:27628894

  18. Thermodynamic and dynamic controls on the amplitude of the zonally anomalous hydrological cycle

    NASA Astrophysics Data System (ADS)

    Wills, Robert; Byrne, Michael; Schneider, Tapio

    2016-04-01

    The "wet gets wetter, dry gets drier" paradigm is a useful starting point for under- standing zonal-mean changes in precipitation minus evaporation (P-E). It can explain the expected moistening of the high latitudes and drying of the subtropics in response to global warming. We examine P-E changes over the next century in comprehensive climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We show that "wet gets wetter, dry gets drier" can not be extended to apply to regional variations about the zonal mean, which account for the majority of the spatial variability of P-E in the modern climate. Wet and dry zones shift substantially in response to shifts in the stationary-eddy circulations that cause them. The largest changes are in the tropical oceans where wet zones get drier and dry zones get wetter in response to a restructuring and decrease in strength of tropical circulations such as the Walker circulation. Further progress can be made by examining changes in the zonal variance of P-E. The zonal variance of P-E increases robustly at all latitudes in the Representative Concentration Pathways RCP8.5 scenario, but with a smaller fractional increase than the moisture content of the atmosphere. The variance change can be split into dynamic and thermodynamic components by relating it to changes in surface specific humidity, stationary-eddy divergent circulations, and transient-eddy fluxes. The modeled sub Clausius-Clapeyron change of zonal P-E variance gives evidence of a decrease in stationary-eddy overturning and in zonally anomalous transient-eddy moisture flux convergence with global warming.

  19. On the normal modes of Laplace's tidal equations for zonal wavenumber zero

    NASA Technical Reports Server (NTRS)

    Tanaka, H. L.; Kasahara, Akira

    1992-01-01

    The characteristic differences between two different rotational modes of Laplace's tidal equations for wavenumber m = 0, called the K- and the S-modes, are compared in their energy ratio and structures. It is shown that the K-mode representation captures most of the observed zonal energy with a few terms, whereas the S-mode representation requires many terms. For small vertical scale components, the K-mode series converges faster than the S-mode series. Attention is also given to the differences between the energy spectra projected upon the K- and S-modes and the merits of each set as expansion functions for the zonal atmospheric motions.

  20. Electromagnetic interchange-like mode and zonal flow in electron-magnetohydrodynamic plasma

    SciTech Connect

    Chakrabarti, Nikhil; Horiuchi, Ritoku

    2006-10-15

    A numerical simulation of the nonlinear state of interchange instability associated with electron inertia in an unmagnetized plasma is studied. It is shown that a self-consistent sheared transverse electron current flow is generated due to nonlinear mechanisms. This zonal flow can reduce the growth rate of the magnetic interchange-like instability and reach a steady state. The zonal flow generation mechanisms are discussed by truncated Fourier mode representation. In the truncated model, three mode equations are considered that have an exact analytic solution that matches well with the numerical solution. The effect of different boundary conditions in such investigations is also discussed.

  1. Triple Cascade Behavior in Quasigeostrophic and Drift Turbulence and Generation of Zonal Jets

    SciTech Connect

    Nazarenko, Sergey; Quinn, Brenda

    2009-09-11

    We study quasigeostrophic (QG) and plasma drift turbulence within the Charney-Hasegawa-Mima (CHM) model. We focus on the zonostrophy, an extra invariant in the CHM model, and on its role in the formation of zonal jets. We use a generalized Fjoertoft argument for the energy, enstrophy, and zonostrophy and show that they cascade anisotropically into nonintersecting sectors in k space with the energy cascading towards large zonal scales. Using direct numerical simulations of the CHM equation, we show that zonostrophy is well conserved, and the three invariants cascade as predicted by the Fjoertoft argument.

  2. Comparison of Global Distributions of Zonal-Mean Gravity Wave Variance Inferred from Different Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Preusse, Peter; Eckermann, Stephen D.; Offermann, Dirk; Jackman, Charles H. (Technical Monitor)

    2000-01-01

    Gravity wave temperature fluctuations acquired by the CRISTA instrument are compared to previous estimates of zonal-mean gravity wave temperature variance inferred from the LIMS, MLS and GPS/MET satellite instruments during northern winter. Careful attention is paid to the range of vertical wavelengths resolved by each instrument. Good agreement between CRISTA data and previously published results from LIMS, MLS and GPS/MET are found. Key latitudinal features in these variances are consistent with previous findings from ground-based measurements and some simple models. We conclude that all four satellite instruments provide reliable global data on zonal-mean gravity wave temperature fluctuations throughout the middle atmosphere.

  3. Wind Simulation

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  4. Disturbed time observations of the temporal dependence and dynamics of TEC, scintillation, and ionospheric irregularity zonal drifts

    NASA Astrophysics Data System (ADS)

    Muella, Marcio; de Paula, Eurico; Kintner, Paul; Kantor, Ivan; Cerruti, Alessandro; Mitchell, Cathryn; Crowley, Geoff; Smorigo, Paulo; Batista, Inez

    GPS amplitude scintillations at the L1 frequency (1.575 GHz) and integral data of total electron content (TEC) obtained from measurements of the Brazilian ground-based GPS network are used to study specific relationships between TEC, scintillations and ionospheric electron density imaged at near the southern crest of the Equatorial Ionization Anomaly (EIA). Using a time-dependent tomographic model, 3-dimensional images are created to couple the geophysical quantities measured by the GPS receivers during the storm time period of November 18-23. It allows studying large variations in the temporal and spatial evolution of the electron density affecting the behavior and dynamics of the scintillations. Estimations of the ionospheric irregularity zonal drift velocities at 350 km obtained from two-spaced GPS receivers observations, and the coupling of the neutral atmosphere and the ionosphere obtained from the ASPEN- TIMEGCM model results are also used in the investigation. The model is used to analyze the north-south symmetry/asymmetry conditions in the ionization distribution of the equatorial anomaly produced by a meridional/transequatorial wind, and its effect to the development and evolution of the scintillations associated to the ionospheric irregularities. In this work we present some relevant aspects of the ionospheric dynamics and the thermosphere-ionosphere coupling system, which are some of the most important topics of study during the occurrence of geomagnetic storms.

  5. Influence of the Atlantic zonal mode on monsoon depressions in the Bay of Bengal during boreal summer

    NASA Astrophysics Data System (ADS)

    Pottapinjara, Vijay; Girishkumar, M. S.; Ravichandran, M.; Murtugudde, R.

    2014-06-01

    The influence of the Atlantic Zonal Mode (AZM) or the Atlantic Niño on monsoon depressions in the Bay of Bengal during the boreal summer (June-August) is studied. Our analysis shows that there is a statistically significant difference in the number of monsoon depressions in the Bay of Bengal between the warm and cold phases of the AZM; more (fewer) monsoon depressions form during the cold (warm) phase of AZM. It also shows that there are differences in spatial pattern of trajectories of monsoon depressions; during the cold phase of AZM, the tracks are relatively long and seem to cluster along the axis of core monsoon region compared to the warm phase of AZM. The analysis indicates an increase (a reduction) in low-level cyclonic vorticity and midtropospheric humidity but a reduction (an increase) in vertical wind shear due to anomalous circulation pattern. All of these changes are favorable for the enhancement (suppression) of monsoon depressions during the cold (warm) phase of the AZM. Our analysis further shows a teleconnection pathway by which the AZM can influence the remote Indian Ocean. This could have implications for enhancing monsoon prediction skill, especially during non-El Niño-Southern Oscillation years.

  6. Response of the F Region Zonal Electricfield at the Magnetic Equator to the Interplanetary Electric Filed Fluctuations during Disturbed Days

    NASA Astrophysics Data System (ADS)

    Bhuvanendran, C. Bhuvanendran; Prabhakaran Nayar, S. R.; Mathew, Tiju Joseph

    The interplanetary magnetic field plays a prominent role in the transfer of energy from solar wind to the magnetosphere there after into the lower atmosphere. During magnetically dis-turbed periods, significant perturbations occur at equatorial as well as at higher latitudes. The fluctuations in the equatorial F-region electric field are thought to be due to the perturbations in the neutral air due to the presence of a variety of waves or due to the penetration of in-terplanetary electric field into the low latitude ionosphere. The simultaneous observation of electric field at the equatorial F-region (Ey) and at magnetopause (Eyy) enables us to study the relationship between them. The zonal component of the equatorial dynamo electric field Ey causes vertical plasma drifts. Large and rapid southward and northward reversals of Bz component of interplanetary magnetic field impose an east-west electric field which penetrate through the magnetosphere down to the equatorial ionosphere. The induced electric field is given by E = -V x Bz, V is the solar wind velocity and B is the IMF and would be opposite to the normal Sq electric field. In this work, the effect of the interplanetary electric field on the equatorial ionospheric zonal electric field during magnetically disturbed days has been dis-cussed. The HF radar system operated at 5.5MHz and a Multi frequency Radar operated at 2.5, 3.5 and 4.5 MHz at the Kerala University have been used for measuring vertical drifts in the equatorial F region. The interplanetary magnetic field components and solar wind velocity are obtained from IMP-8 and WIND satellites .The comparison of the fluctuations in EYY and EY presented in this work reveals that the fluctuations simultaneously present in both EYY and EY are different in magnitude and they are in anti-phase during the day-time and in phase at night. In the time interval between connection and reconnection, geomagnetic field lines are open and IEF can penetrate to the polar

  7. The lower thermosphere wind regime from simultaneous observations over Euroasia (Collm, Dushanbe, Frunze)

    NASA Technical Reports Server (NTRS)

    Schminder, R.; Kurschner, D.; Karimov, K. A.; Bekbasarov, R. B.; Riazanova, L. A.; Chebotarev, R. P.; Nabotov, KH.

    1987-01-01

    The circulation in the lower thermosphere as determined from the results of measurements in 1984 is considered. Ionospheric drift measurements were taken using the method of spaced reception in the long wave range. Other measurements were taken using the D2 method. Average daily values of wind velocity were used. Discontinuity of measurements ranged from a day to a week. Preliminary data were reduced to the common average height of 93 km with the help of vertical profiles of wind velocity components. The results of measurements of zonal and meridional wind velocity components are presented. Zonal circulation changes from westerly to easterly winds were observed in winter, in periods of spring time reversal and during stratomesospheric rises in temperature.

  8. The latitude dependence of the variance of zonally averaged quantities. [in polar meteorology with attention to geometrical effects of earth

    NASA Technical Reports Server (NTRS)

    North, G. R.; Bell, T. L.; Cahalan, R. F.; Moeng, F. J.

    1982-01-01

    Geometric characteristics of the spherical earth are shown to be responsible for the increase of variance with latitude of zonally averaged meteorological statistics. An analytic model is constructed to display the effect of a spherical geometry on zonal averages, employing a sphere labeled with radial unit vectors in a real, stochastic field expanded in complex spherical harmonics. The variance of a zonally averaged field is found to be expressible in terms of the spectrum of the vector field of the spherical harmonics. A maximum variance is then located at the poles, and the ratio of the variance to the zonally averaged grid-point variance, weighted by the cosine of the latitude, yields the zonal correlation typical of the latitude. An example is provided for the 500 mb level in the Northern Hemisphere compared to 15 years of data. Variance is determined to increase north of 60 deg latitude.

  9. Educational Change Leadership through a New Zonal Theory Lens: Using Mathematics Curriculum Change as the Example

    ERIC Educational Resources Information Center

    Lamb, Janeen; Branson, Christopher M.

    2015-01-01

    This paper outlines actions that educational change leaders can take to better meet their curriculum change obligations and responsibilities. In order to do this we extend Vygotsky's (1978) zonal theory and its many extensions and elaborations by positioning educational change leadership within this theory. We rename the zones to Zone of Principal…

  10. OCT Angiography Identification of Choroidal Neovascularization Secondary to Acute Zonal Occult Outer Retinopathy.

    PubMed

    Levison, Ashleigh L; Baynes, Kimberly; Lowder, Careen Y; Srivastava, Sunil K

    2016-01-01

    A 74-year-old female with acute zonal occult outer retinopathy presented with a new lesion suspicious for choroidal neovascularization (CNV) in her right eye. Optical coherence tomography angiography (OCTA) confirmed the presence of CNV. OCTA is a new imaging technique that may help guide diagnosis and management of choroidal neovascular membranes in uveitic diseases.

  11. Analysis of antifungal and anticancer effects of the extract from Pelargonium zonale.

    PubMed

    Lewtak, Kinga; Fiołka, Marta J; Szczuka, Ewa; Ptaszyńska, Aneta A; Kotowicz, Natalia; Kołodziej, Przemysław; Rzymowska, Jolanta

    2014-11-01

    The extract from Pelargonium zonale stalks exhibits activity against Candida albicans and exerts an effect on the HeLa cell line. The action against C. albicans cells was analysed using light, CLSM, SEM, and TEM microscopes. The observations indicate that the extract influenced fungal cell morphology and cell metabolic activity. The morphological changes include cell wall damage, deformations of cell surfaces, and abnormalities in fungal cell shape and size. Cells of C. albicans treated with the extract exhibited disturbances in the budding pattern and a tendency to form agglomerates and multicellular chains. The P. zonale extract caused a significant decrease in the metabolic activity of C. albicans cells. Cells died via both apoptosis and necrosis. The antitumor activity of the extract was analysed using the MTT assay. The P. zonale extract exhibited minor cytotoxicity against the HeLa cell line but a dose-dependent cytopathic effect was noticed. The P. zonale extract is a promising source for the isolation of antifungal and anticancer compounds.

  12. A Rare Excitatory Amino Acid from Flowers of Zonal Geranium responsible for Paralyzing the Japanese Beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    e Japanese beetle (Popillia japonica) exhibits rapid paralysis after consuming flowers from zonal geranium (Pelargonium × hortorum). Activity-guided fractionations were conducted with polar flower petal extracts from Pelargonium × hortorum cv. Nittany Lion Red, which led to the isolation of a paraly...

  13. Stimulated zonal flow generation in the case of TEM and TIM microturbulence

    NASA Astrophysics Data System (ADS)

    Gravier, E.; Lesur, M.; Reveille, T.; Drouot, T.

    2016-09-01

    In this paper, we show that in some parameter range in gyrokinetic simulations, it is possible to apply a control method to stimulate the appearance of zonal flows while minimizing the duration of the control process and the impact on plasma parameters. For this purpose, a gyrokinetic code considering only trapped particles is used. The starting point of our work is a situation where zonal flows transiently appear after the nonlinear phase of saturation of trapped electron modes or trapped ion modes' micro-instabilities. These are observed to be strongly reduced in a later phase, permitting streamers to govern the plasma behavior in the steady-state. By intervening during this latter state (after this transient growth and decay of zonal flow), i.e., by increasing the ion/electron temperature ratio for a short time, it is found to be possible to bifurcate to a new steady-state, in which zonal flows are strongly present and are maintained indefinitely, thereby allowing a significant reduction in radial heat fluxes.

  14. Self-Organization of Zonal Jets in Outer Planet Atmospheres: Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Friedson, A. James

    1997-01-01

    The statistical mechnical theory of a two-dimensional Euler fluid is appleid for the first time to explore the spontaneous self-oganization of zonal jets in outer planet atmospheres. Globally conserved integralls of motion are found to play a central role in defining jet structure.

  15. A walk to remember: Endocrine Society of India Torrent Young Scholar Award East Zonal round 2015

    PubMed Central

    Beatrice, Anne M.; Dutta, Deep

    2015-01-01

    This letter aims to bring out a few highlights and the experiences of the participants, audience, quizmasters, and the judges at Endocrine Society of India Torrent Young Scholar Award East Zonal round 2015 held in Kolkata on 6th September, 2015. PMID:26693440

  16. Analysis of antifungal and anticancer effects of the extract from Pelargonium zonale.

    PubMed

    Lewtak, Kinga; Fiołka, Marta J; Szczuka, Ewa; Ptaszyńska, Aneta A; Kotowicz, Natalia; Kołodziej, Przemysław; Rzymowska, Jolanta

    2014-11-01

    The extract from Pelargonium zonale stalks exhibits activity against Candida albicans and exerts an effect on the HeLa cell line. The action against C. albicans cells was analysed using light, CLSM, SEM, and TEM microscopes. The observations indicate that the extract influenced fungal cell morphology and cell metabolic activity. The morphological changes include cell wall damage, deformations of cell surfaces, and abnormalities in fungal cell shape and size. Cells of C. albicans treated with the extract exhibited disturbances in the budding pattern and a tendency to form agglomerates and multicellular chains. The P. zonale extract caused a significant decrease in the metabolic activity of C. albicans cells. Cells died via both apoptosis and necrosis. The antitumor activity of the extract was analysed using the MTT assay. The P. zonale extract exhibited minor cytotoxicity against the HeLa cell line but a dose-dependent cytopathic effect was noticed. The P. zonale extract is a promising source for the isolation of antifungal and anticancer compounds. PMID:24972056

  17. Time-varying zonal asymmetries in stratospheric nitrous oxide and methane

    NASA Technical Reports Server (NTRS)

    Gao, H.; Stanford, J. L.

    1993-01-01

    Previously analyses of Stratospheric And Mesospheric Sounder (SAMS) data of atmospheric constituent gases have dealt almost exclusively with zonal means (and mostly monthly means), owing perhaps to concern over data quality. The purpose of this note is to show that, with care, time-dependent zonally-asymmetric features may be recovered from the SAMS nitrous oxide and methane data. As an example, we demonstrate the existence of zonal wave-1 constituent perturbations with periods of a few weeks in the middle and upper stratosphere. When the perturbations are normalized by the constituent zonal-mean mixing ratio to compensate for the slowly varying (in both space and time) background concentration of constituents, wavepacket-like features are found over all latitudes and seasons in the three-year SAMS record. One specific low-latitude case discussed had features which appear to be consistent with constituent oscillations induced by episodic equatorial Kelvin waves. Further studies are needed to better identify the nature of the plethora of observed wave-like phenomena.

  18. Validation of the geostrophic method for estimating zonal currents at the equator from Geosat altimeter data

    NASA Technical Reports Server (NTRS)

    Picaut, Joel; Camusat, Bruno; Busalacchi, Antonio J.; Mcphaden, Michael J.

    1990-01-01

    The applicability of satellite altimeter data for estimating zonal current variability at the equator is assessed using the meriodionally differenced form of the geostrophic balance. Estimates of geostrophic zonal flow anomalies in the equatorial Pacific have been deduced from 17-day collinear altimeter data during the first year of the Geosat Exact Repeat Mission. Altimeter-derived geostrophic estimates agree well with in situ zonal current variability. Comparison of flow-frequency near-surface zonal current observed from equatorial moorings at 165 deg E, 140 deg W, and 110 deg W yield correlations of 0.83, 0.85, and 0.51, respectively, with a mean rms difference of 23 cm/sec. The inclusion of up to 11 ascending and descending Geosat tracks within the 9-deg band for every 17-day repeat effectively reduced the temporal sampling interval to 1.5 days at 165 deg E and 140 deg W. The 6.8-km along track spacing of the altimeter measurements provides sufficient resolution for the effective filtering of small-scale meridional noise, both instrumental and oceanic.

  19. Effects of density stratification in driving zonal flow in gas giants

    NASA Astrophysics Data System (ADS)

    Gastine, T.; Wicht, J.

    2011-12-01

    The banded structures at the surfaces of Jupiter and Saturn are associated with prograde and retrograde zonal flows. The depth of these jets remains however poorly known. Theoretical scenarios range from ``shallow models'', that assume that zonal flows are restricted to a very thin layer close to the surface; to ``deep models'' that suppose that the jets involve the whole molecular shell (typically 104 kms). The latter idea was supported by fully 3-D numerical simulations (e.g. Heimpel, 2005) using the Boussinesq approximation, meaning that the background properties (temperature, density, ...) are constant with radius (Christensen, 2002). While this approximation is suitable for liquid iron cores of planets, it is more questionable in the envelopes of gas giants, where density increases by several orders of magnitude (Guillot, 1999). The anelastic approximation provides a more realistic framework to simulate the dynamics of zonal flows as it allows compressibility effects, while filtering out fast acoustic waves (Lantz & Fan, 1999). Recent anelastic simulations suggest that including compressibility effects yields interesting differences to Boussinesq approaches (Jones, 2009; Showman et al., 2011). Here, we therefore adopt an anelastic formulation to simulate 3-D compressible flows in rapidly rotating shells. We have conducted a systematic parametric study on the effects of background density stratification and analysed the influences on both convective flows and zonal jets. Despite the strong dependence of convection on the density stratification (i.e. the typical lengthscale of convective flows decreases when compressibility increases), the comparison between Boussinesq and anelastic simulations reveals striking common features: the latitudinal extent, the amplitude and the number of zonal jets is found to be nearly independent of the density stratification, provided convection is strongly driven. Mass-weighted properties of the flow (and notably a mass

  20. Comparison of Satellite-Derived Wind Measurements with Other Wind Measurement Sensors

    NASA Technical Reports Server (NTRS)

    Susko, Michael; Herman, Leroy

    1995-01-01

    The purpose of this paper is to compare the good data from the Jimsphere launches with the data from the satellite system. By comparing the wind speeds from the Fixed Pedestal System 16 (FPS-16) Radar/Jimsphere Wind System and NASA's 50-MHz Radar Wind Profiler, the validation of winds from Geostationary Operational Environmental Satellite 7 (GOES-7) is performed. This study provides an in situ data quality check for the GOES-7 satellite winds. Comparison was made of the flowfields in the troposphere and the lower stratosphere of case studies of pairs of Jimsphere balloon releases and Radar Wind Profiler winds during Space Shuttle launches. The mean and standard deviation of the zonal component statistics, the meridional component statistics, and the power spectral density curves show good agreement between the two wind sensors. The standard deviation of the u and v components for the STS-37 launch (consisting of five Jimsphere/Radar Wind Profiler data sets) was 1.92 and 1.67 m/s, respectively; for the STS-43 launch (there were six Jimsphere/Wind Profiler data sets) it was 1.39 and 1.44 m/s, respectively. The overall standard deviation was 1.66 m/s for the u component and 1.55 m/s tor the v component, and a standard deviation of 2.27 m/s tor the vector wind difference. The global comparison of satellite with Jimsphere balloon vector winds shows a standard deviation of 3.15 m/s for STS-43 and 4.37 m/s for STS-37. The overall standard deviation of the vector wind was 3.76 m/s, with a root-mean-square vector difference of 4.43 m/s. These data have demonstrated that this unique comparison of the Jimsphere and satellite winds provides excellent ground truth and a frame of reference during testing and validation of satellite data

  1. 3D Effects in the Formation of Zonal Jets Through Inverse Cascade

    NASA Astrophysics Data System (ADS)

    Sayanagi, Kunio M.; Showman, A. P.

    2006-09-01

    The atmospheric zonal jets on Jupiter and Saturn are characterized by the broad, prograde, equatorial jet and the narrower, higher-latitude jets that alternate between prograde and retrograde. The question of what controls the widths and directions of those jets remains a major unsolved problem in geophysical fluid dynamics. Past studies have shown that, in shallow flows on a rotating sphere, small random vortices can undergo inverse cascade to form zonal jets with a characteristic width called the Rhines scale. Most of the studies to date use 2D non-divergent or shallow-water models in studying this zonal jet formation mechanism. However, in the parameter ranges representative of the Jovian conditions, the flows produced by 2D non-divergent models are typically dominated by strong circumpolar jets, and the shallow-water models produce a robust retrograde equatorial jet. These models' apparent inabilities in reproducing some key Jovian jet features may suggest the importance of 3D effects in controlling the jets' large-scale horizontal structures. To date, Kitamura and Matsuda (Fluid Dynamics Research, 34, 33-57, 2004) is the only published study that analyzes the 3D effects in the zonalization of fine-scale random turbulence through the inverse cascade. Their two-layer primitive equation simulations of free-evolving flows resulted in circumpolar jet dominated flows, although slower mid-latitude jets are also present. Our study is a significant extension over that by Kitamura and Matsuda and includes substantially more layers to study the zonalization process to more fully resolve relevant 3D effects in the inverse cascade. We test the flow behavior's dependence on the deformation radius and the resulting vertical structures in both spherical and beta-plane geometries. Our study uses the Explicit Planetary Isentropic Coordinate (EPIC) model (Dowling et al, Icarus, 32, 221-238., 1998). The research is supported by a NASA Planetary Atmospheres grant to APS.

  2. 3D Effects in the Formation of Zonal Jets Through Inverse Cascade

    NASA Astrophysics Data System (ADS)

    Sayanagi, K. M.; Showman, A. P.

    2006-12-01

    The atmospheric zonal jets on Jupiter and Saturn are characterized by the broad, prograde, equatorial jet and the narrower, higher-latitude jets that alternate between prograde and retrograde. The question of what controls the widths and directions of those jets remains a major unsolved problem in geophysical fluid dynamics. Past studies have shown that, in shallow flows on a rotating sphere, small random vortices can undergo inverse cascade to form zonal jets with a characteristic width called the Rhines scale. Most of the studies to date use 2D non-divergent or shallow-water models in studying this zonal jet formation mechanism. However, in the parameter ranges representative of the Jovian conditions, the flows produced by 2D non- divergent models are typically dominated by strong circumpolar jets, and the shallow-water models produce a robust retrograde equatorial jet. These models' apparent inabilities in reproducing some key Jovian jet features may suggest the importance of 3D effects in controlling the jets' large-scale horizontal structures. To date, Kitamura and Matsuda (Fluid Dynamics Research, 34, 33-57, 2004) is the only published study that analyzes the 3D effects in the zonalization of fine-scale random turbulence through the inverse cascade. Their two-layer primitive equation simulations of free-evolving flows resulted in circumpolar jet dominated flows, although slower mid-latitude jets are also present. Our study is a significant extension over that by Kitamura and Matsuda and includes substantially more layers to study the zonalization process to more fully resolve relevant 3D effects in the inverse cascade. We test the flow behavior's dependence on the deformation radius and the resulting vertical structures in both spherical and beta-plane geometries. Our study uses the Explicit Planetary Isentropic Coordinate (EPIC) model (Dowling et al, Icarus, 32, 221-238., 1998). The research is supported by a NASA Planetary Atmospheres grant to APS.

  3. Gyroaverage effects on chaotic transport by drift waves in zonal flows

    NASA Astrophysics Data System (ADS)

    Martinell, Julio J.; del-Castillo-Negrete, Diego

    2013-02-01

    Finite Larmor radius (FLR) effects on E × B test particle chaotic transport in the presence of zonal flows is studied. The FLR effects are introduced by the gyro-average of a simplified E × B guiding center model consisting of the linear superposition of a non-monotonic zonal flow and drift waves. Non-monotonic zonal flows play a critical role on transport because they exhibit robust barriers to chaotic transport in the region(s) where the shear vanishes. In addition, the non-monotonicity gives rise to nontrivial changes in the topology of the orbits of the E × B Hamiltonian due to separatrix reconnection. The present study focuses on the role of FLR effects on these two signatures of non-monotonic zonal flows: shearless transport barriers and separatrix reconnection. It is shown that, as the Larmor radius increases, the effective zonal flow profile bifurcates and multiple shearless regions are created. As a result, the topology of the gyro-averaged Hamiltonian exhibits very complex separatrix reconnection bifurcations. It is also shown that FLR effects tend to reduce chaotic transport. In particular, the restoration of destroyed transport barriers is observed as the Larmor radius increases. A detailed numerical study is presented on the onset of global chaotic transport as function of the amplitude of the drift waves and the Larmor radius. For a given amplitude, the threshold for the destruction of the shearless transport barrier, as function of the Larmor radius, exhibits a fractal-like structure. The FLR effects on a thermal distribution of test particles are also studied. In particular, the fraction of confined particles with a Maxwellian distribution of gyroradii is computed, and an effective transport suppression is found for high enough temperatures.

  4. Low-frequency intraseasonal variability in a zonally symmetric aquaplanet model

    NASA Astrophysics Data System (ADS)

    Das, Surajit; Sengupta, Debasis; Chakraborty, A.; Sukhatme, Jai; Murtugudde, Raghu

    2016-04-01

    We use the aquaplanet version of the community atmospheric model, with perpetual spring equinox forcing and zonally symmetric sea surface temperature (SST), to study tropical intraseasonal oscillations (ISOs). In the first two experiments, we specify zonally symmetric SST profiles that mimic observed climatological July and January SSTs as surface boundary conditions. In the January SST simulation, we find a zonal wavenumber 1 mode with dominant period of 60 days, moving east at about 6 m s-1. This mode, which resembles the Madden-Julian oscillation (MJO), is absent in the July SST case, although convectively coupled Kelvin waves are prominent in both experiments. To further investigate the influence of tropical SST on ISO and convectively coupled equatorial waves, we conduct experiments with idealised symmetric SST profiles having different widths of warm ocean centered at the equator. In the narrowest SST experiment, the variance of moist activity is predominantly in weather-scale Kelvin waves. When the latitudinal extent of warm SST is comparable to or larger than the equatorial Rossby radius, we find a dominant low frequency (50-80 days) eastward mode that resembles the MJO, as in the January SST experiment. We also find westward propagating waves with intraseasonal (30-120 days) periods and zonal wavenumber 1-3; the structure of these signals projects onto equatorially trapped Rossby waves with meridional mode numbers 1, 3 and 5, associated with convection that is symmetric about the equator. In addition, the model generates 30-80 days westward moving signals with zonal wavenumber 4-7, particularly in the narrow SST experiment. Although these waves are seen in the wavenumber-frequency spectra in the equatorial region, they have largest amplitude in the middle and high latitudes. Thus, our study shows that wider, meridionally symmetric SST profiles support a strong MJO-like eastward propagation, and even in an aquaplanet setting, westward propagating Rossby

  5. Gyroaverage effects on chaotic transport by drift waves in zonal flows

    SciTech Connect

    Martinell, Julio J.; Castillo-Negrete, Diego del

    2013-02-15

    Finite Larmor radius (FLR) effects on E Multiplication-Sign B test particle chaotic transport in the presence of zonal flows is studied. The FLR effects are introduced by the gyro-average of a simplified E Multiplication-Sign B guiding center model consisting of the linear superposition of a non-monotonic zonal flow and drift waves. Non-monotonic zonal flows play a critical role on transport because they exhibit robust barriers to chaotic transport in the region(s) where the shear vanishes. In addition, the non-monotonicity gives rise to nontrivial changes in the topology of the orbits of the E Multiplication-Sign B Hamiltonian due to separatrix reconnection. The present study focuses on the role of FLR effects on these two signatures of non-monotonic zonal flows: shearless transport barriers and separatrix reconnection. It is shown that, as the Larmor radius increases, the effective zonal flow profile bifurcates and multiple shearless regions are created. As a result, the topology of the gyro-averaged Hamiltonian exhibits very complex separatrix reconnection bifurcations. It is also shown that FLR effects tend to reduce chaotic transport. In particular, the restoration of destroyed transport barriers is observed as the Larmor radius increases. A detailed numerical study is presented on the onset of global chaotic transport as function of the amplitude of the drift waves and the Larmor radius. For a given amplitude, the threshold for the destruction of the shearless transport barrier, as function of the Larmor radius, exhibits a fractal-like structure. The FLR effects on a thermal distribution of test particles are also studied. In particular, the fraction of confined particles with a Maxwellian distribution of gyroradii is computed, and an effective transport suppression is found for high enough temperatures.

  6. Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Johnson, M. A.; Mclaren, R. A.; Sutton, E. C.

    1975-01-01

    Strong 10 micrometer line emission from (c-12)(o-16)2 in the upper atmosphere of Venus was detected by heterodyne techniques. Observations of the absolute Doppler shift of the emission features indicate mean zonal wind velocities less than 10 m/sec in the upper atmosphere near the equator. No evidence was found of the 100 m/sec wind velocity implied by the apparent 4-day rotation period of ultraviolet cloud features.

  7. Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Johnson, M. A.; Mclaren, R. A.; Sutton, E. C.

    1976-01-01

    Strong 10-micron line emission from (C-12)(O-16)2 in the upper atmosphere of Venus has been detected by heterodyne techniques. Observations of the absolute Doppler shift of the emission features indicated mean zonal wind velocities less than 10 m/s in the upper atmosphere near the equator. No evidence was found for the 100-m/s wind velocity implied by the apparent four-day rotation period of ultraviolet cloud features.

  8. Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Johnson, M. A.; Mclaren, R. A.; Sutton, E. C.

    1975-01-01

    Strong 10 micrometer line emission from (C-12)(O-16)2 in the upper atmosphere of Venus was detected by heterodyne techniques. Observations of the absolute Doppler shift of the emission features indicate mean zonal wind velocities less than 10 m/sec in the upper atmosphere near the equator. No evidence was found of the 100 m/sec wind velocity implied by the apparent 4-day rotation period of ultraviolet cloud features.

  9. Processes driving intraseasonal displacements of the eastern edge of the warm pool: the contribution of westerly wind events

    NASA Astrophysics Data System (ADS)

    Drushka, Kyla; Bellenger, Hugo; Guilyardi, Eric; Lengaigne, Matthieu; Vialard, Jérôme; Madec, Gurvan

    2015-02-01

    We investigate the processes responsible for the intraseasonal displacements of the eastern edge of the western Pacific warm pool (WPEE), which appear to play a role in the onset and development of El Niño events. We use 25 years of output from an ocean general circulation model experiment that is able to accurately capture the observed displacements of the WPEE, sea level anomalies, and upper ocean zonal currents at intraseasonal time scales in the western and central Pacific Ocean. Our results confirm that WPEE displacements driven by westerly wind events (WWEs) are largely controlled by zonal advection. This paper has also two novel findings: first, the zonal current anomalies responsible for the WPEE advection are driven primarily by local wind stress anomalies and not by intraseasonal wind-forced Kelvin waves as has been shown in most previous studies. Second, we find that intraseasonal WPEE fluctuations that are not related to WWEs are generally caused by intraseasonal variations in net heat flux, in contrast to interannual WPEE displacements that are largely driven by zonal advection. This study hence raises an interesting question: can surface heat flux-induced zonal WPEE motions contribute to El Niño-Southern Oscillation evolution, as WWEs have been shown to be able to do?

  10. Earth-Based Radio Tracking of the Galileo Probe for Jupiter Wind Estimation

    PubMed

    Folkner; Preston; Border; Navarro; Wilson; Oestreich

    1997-01-31

    Although the Galileo probe was designed to communicate only to the orbiter, the probe radio signal was detected at two Earth-based radio observatories where the signal was a billion times weaker. The measured signal frequency was used to derive a vertical profile of the jovian zonal wind speed. Due to the mission geometry, the Earth-based wind estimates are less sensitive to descent trajectory errors than estimates based on probe-orbiter Doppler measurements. The two estimates of wind profiles agree qualitatively; both show high wind speeds at all depths sampled.

  11. Earth-Based Radio Tracking of the Galileo Probe for Jupiter Wind Estimation

    PubMed

    Folkner; Preston; Border; Navarro; Wilson; Oestreich

    1997-01-31

    Although the Galileo probe was designed to communicate only to the orbiter, the probe radio signal was detected at two Earth-based radio observatories where the signal was a billion times weaker. The measured signal frequency was used to derive a vertical profile of the jovian zonal wind speed. Due to the mission geometry, the Earth-based wind estimates are less sensitive to descent trajectory errors than estimates based on probe-orbiter Doppler measurements. The two estimates of wind profiles agree qualitatively; both show high wind speeds at all depths sampled. PMID:9005845

  12. The Huygens Doppler Wind Experiment: Ten Years Ago

    NASA Astrophysics Data System (ADS)

    Bird, Michael; Dutta-Roy, Robin; Dzierma, Yvonne; Atkinson, David; Allison, Michael; Asmar, Sami; Folkner, William; Preston, Robert; Plettemeier, Dirk; Tyler, Len; Edenhofer, Peter

    2015-04-01

    The Huygens Doppler Wind Experiment (DWE) achieved its primary scientific goal: the derivation of Titan's vertical wind profile from the start of Probe descent to the surface. The carrier frequency of the ultra-stable Huygens radio signal at 2040 MHz was recorded using special narrow-band receivers at two large radio telescopes on Earth: the Green Bank Telescope in West Virginia and the Parkes Radio Telescope in Australia. Huygens drifted predominantly eastward during the parachute descent, providing the first in situ confirmation of Titan's prograde super-rotational zonal winds. A region of surprisingly weak wind with associated strong vertical shear reversal was discovered within the range of altitudes from 65 to 100 km. Below this level, the zonal wind subsided monotonically from 35 m/s to about 7 km, at which point it reversed direction. The vertical profile of the near-surface winds implies the existence of a planetary boundary layer. Recent results on Titan atmospheric circulation within the context of the DWE will be reviewed.

  13. Circulation of mesosphere of Venus according to wind tracking results obtained from VMC and VIRTIS onboard Venus Express

    NASA Astrophysics Data System (ADS)

    Patsaeva, Marina; Khatuntsev, Igor; Ignatiev, Nikolay

    2012-07-01

    Six years of permanent monitoring of the Venus' cloud layer by the ESA spacecraft Venus Express (VEx) provided the opportunity to study dynamics of various mesospheric layers. UV images provided by the VMC allowed studying the circulation at the top cloud layer. 550 orbits covering about 10 Venusian years have been processed by means of an automated cloud tracking method giving 400000 displacement vectors. Average zonal and meridional wind profiles have been calculated, and vector fields of wind velocities in latitude-time coordinates have been built. The plots show that zonal and meridional wind velocities depend on local time. A diurnal wave of zonal wind velocity at the equatorial region can be seen clearly. It has maximum at 9 a.m. which is in good agreement with data obtained by the FS onboard Venera-15. The average wind velocity at the equator is 97±2 m/s. The period of zonal rotation has maximum (about 5 terrestrial days) at the equator and minimum (3 terrestrial days) at the latitude 50S. The visual cloud tracking method, due to better sensitivity to small image details at middle and high latitudes, shows a jet at the latitude 50S±3. Having maximum at 50S, the zonal wind velocity decreases to the South pole in linear fashion. The meridional wind velocity is about 0 m/s at the equator, increases in linear fashion to -10 m/s (the negative velocity represents the flow from the equator to the South pole) at 50S, and decreases to a low positive value at 75S. Within the equatorial region, up to 35S, the zonal wind velocity oscillates with a period about 4.83 days which is close to the super-rotation period at the equator. The average oscillation amplitude is 4.28 m/s and the maximum amplitude is 17.44 m/s. The oscillation amplitude of the zonal wind velocity depends on latitude. The oscillation amplitude and phase change with time, but can be stable as long as 70 days. VIRTIS images for the 1.27 μ m spectral band (molecular oxygen airglow), obtained at the

  14. Meteor wind results from Atlanta, USA, and Ramey, Puerto Rico

    NASA Technical Reports Server (NTRS)

    Roper, R. G.

    1984-01-01

    Results obtained using the French (CNET) meteor wind radar at Ramey, Puerto Rico, and the Georgia Tech radio meteor wind facility in Atlanta, U.S.A., are presented and compared. Prevailing wind, diurnal, and semidiurnal wind amplitudes are considerably larger over Ramey than over Atlanta, but the mean zonal circulation over Atlanta is more characteristic of the equatorial circulation than winds measured by stations at higher midlatitudes. The value of continuous observations, with a height resolution of + or - 2 km, is emphasized, as is the need for the application of several techniques, groundbased, in situ and satellite, if projects such as the MAP GLOBMET are to succeed in delineating the global meteorology of the mesopause.

  15. The Evaluation of Winds from Geopotential Height Data in the Stratosphere.

    NASA Astrophysics Data System (ADS)

    Randel, William J.

    1987-10-01

    Several methods of obtaining horizontal wind fields in the extratropical stratosphere from geopotential height data are evaluated and compared to geostrophic estimates, with focus on the poleward fluxes of momentum and heat and on the resulting Eliassen-Palm (EP) flux divergence estimates. Winds derived from a coupled iterative solution of the zonal and meridional momentum equations (`balance' winds) are proposed and tested, in addition to winds derived from linearizing these equations about the zonal mean flow (`linen' winds). Comparison of the different analysis methods are made for a general circulation model simulation of the Northern Hemisphere (NH) winter stratosphere, and for NH and Southern Hemisphere (SH) winter observational data.The balance and linear wind estimates of poleward momentum flux are similar and substantially smaller than geostrophic values in the high-latitude stratosphere; neglect of local curvature effects is the primary cause of the geostrophic overestimate. The relative errors are larger in the southern winter stratosphere due to the stronger polar night jet. Poleward beat flux estimates are not substantially changed. Use of the improved wind fluxes results in a sizable reduction in the EP flux divergence in the high-latitude stratosphere.Comparison with model winds suggests that the balance method is the superior analysis technique for evaluating local winds, particularly in the NH winter where local nonlinear effects can be important. Based on observed balance winds, estimates are made of the relative importance of rotational versus divergent motions in the winter stratosphere.

  16. High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells

    SciTech Connect

    Fabian, Paul

    2012-03-31

    The U.S. Department of Energy is leading the development of alternative energy sources that will ensure the long-term energy independence of our nation. One key renewable resource being advanced is geothermal energy which offers an environmentally benign, reliable source of energy for the nation. To utilize this resource, water will be introduced into wells 3 to 10 km deep to create a geothermal reservoir. This approach is known as an Enhanced Geothermal System (EGS). The high temperatures and pressures at these depths have become a limiting factor in the development of this energy source. For example, reliable zonal isolation for high-temperature applications at high differential pressures is needed to conduct mini-fracs and other stress state diagnostics. Zonal isolation is essential for many EGS reservoir development activities. To date, the capability has not been sufficiently demonstrated to isolate sections of the wellbore to: 1) enable stimulation; and 2) seal off unwanted flow regions in unknown EGS completion schemes and high-temperature (>200°C) environments. In addition, packers and other zonal isolation tools are required to eliminate fluid loss, to help identify and mitigate short circuiting of flow from injectors to producers, and to target individual fractures or fracture networks for testing and validating reservoir models. General-purpose open-hole packers do not exist for geothermal environments, with the primary barrier being the poor stability of elastomeric seals at high temperature above 175°C. Experimental packer systems have been developed for geothermal environments but they currently only operate at low pressure, they are not retrievable, and they are not commercially available. The development of the high-temperature, high-pressure (HTHP) zonal isolation device would provide the geothermal community with the capability to conduct mini-fracs, eliminate fluid loss, to help identify and mitigate short circuiting of flow from injectors to

  17. THERMAL-GRAVITATIONAL WIND EQUATION FOR THE WIND-INDUCED GRAVITATIONAL SIGNATURE OF GIANT GASEOUS PLANETS: MATHEMATICAL DERIVATION, NUMERICAL METHOD, AND ILLUSTRATIVE SOLUTIONS

    SciTech Connect

    Zhang, Keke; Kong, Dali; Schubert, Gerald E-mail: D.Kong@exeter.ac.uk

    2015-06-20

    The standard thermal wind equation (TWE) relating the vertical shear of a flow to the horizontal density gradient in an atmosphere has been used to calculate the external gravitational signature produced by zonal winds in the interiors of giant gaseous planets. We show, however, that in this application the TWE needs to be generalized to account for an associated gravitational perturbation. We refer to the generalized equation as the thermal-gravitational wind equation (TGWE). The generalized equation represents a two-dimensional kernel integral equation with the Green’s function in its integrand and is hence much more difficult to solve than the standard TWE. We develop an extended spectral method for solving the TGWE in spherical geometry. We then apply the method to a generic gaseous Jupiter-like object with idealized zonal winds. We demonstrate that solutions of the TGWE are substantially different from those of the standard TWE. We conclude that the TGWE must be used to estimate the gravitational signature of zonal winds in giant gaseous planets.

  18. Thermal-gravitational Wind Equation for the Wind-induced Gravitational Signature of Giant Gaseous Planets: Mathematical Derivation, Numerical Method, and Illustrative Solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Keke; Kong, Dali; Schubert, Gerald

    2015-06-01

    The standard thermal wind equation (TWE) relating the vertical shear of a flow to the horizontal density gradient in an atmosphere has been used to calculate the external gravitational signature produced by zonal winds in the interiors of giant gaseous planets. We show, however, that in this application the TWE needs to be generalized to account for an associated gravitational perturbation. We refer to the generalized equation as the thermal-gravitational wind equation (TGWE). The generalized equation represents a two-dimensional kernel integral equation with the Green’s function in its integrand and is hence much more difficult to solve than the standard TWE. We develop an extended spectral method for solving the TGWE in spherical geometry. We then apply the method to a generic gaseous Jupiter-like object with idealized zonal winds. We demonstrate that solutions of the TGWE are substantially different from those of the standard TWE. We conclude that the TGWE must be used to estimate the gravitational signature of zonal winds in giant gaseous planets.

  19. Results of a zonally truncated three-dimensional model of the Venus middle atmosphere

    NASA Technical Reports Server (NTRS)

    Newman, M.

    1992-01-01

    Although the equatorial rotational speed of the solid surface of Venus is only 4 m s(exp-1), the atmospheric rotational speed reaches a maximum of approximately 100 m s(exp-1) near the equatorial cloud top level (65 to 70 km). This phenomenon, known as superrotation, is the central dynamical problem of the Venus atmosphere. We report here the results of numerical simulations aimed at clarifying the mechanism for maintaining the equatorial cloud top rotation. Maintenance of an equatorial rotational speed maximum above the surface requires waves or eddies that systematically transport angular momentum against its zonal mean gradient. The zonally symmetric Hadley circulation is driven thermally and acts to reduce the rotational speed at the equatorial cloud top level; thus wave or eddy transport must counter this tendency as well as friction. Planetary waves arising from horizontal shear instability of the zonal flow (barotropic instability) could maintain the equatorial rotation by transporting angular momentum horizontally from midlatitudes toward the equator. Alternatively, vertically propagating waves could provide the required momentum source. The relative motion between the rotating atmosphere and the pattern of solar heating, which as a maximum where solar radiation is absorbed near the cloud tops, drives diurnal and semidiurnal thermal tides that propagate vertically away from the cloud top level. The effect of this wave propagation is to transport momentum toward the cloud top level at low latitudes and accelerate the mean zonal flow there. We employ a semispectral primitive equation model with a zonal mean flow and zonal wavenumbers 1 and 2. These waves correspond to the diurnal and semidiurnal tides, but they can also be excited by barotropic or baroclinic instability. Waves of higher wavenumbers and interactions between the waves are neglected. Symmetry about the equator is assumed, so the model applies to one hemisphere and covers the altitude range 30 to

  20. Vector wind profile gust model

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    1981-01-01

    To enable development of a vector wind gust model suitable for orbital flight test operations and trade studies, hypotheses concerning the distributions of gust component variables were verified. Methods for verification of hypotheses that observed gust variables, including gust component magnitude, gust length, u range, and L range, are gamma distributed and presented. Observed gust modulus has been drawn from a bivariate gamma distribution that can be approximated with a Weibull distribution. Zonal and meridional gust components are bivariate gamma distributed. An analytical method for testing for bivariate gamma distributed variables is presented. Two distributions for gust modulus are described and the results of extensive hypothesis testing of one of the distributions are presented. The validity of the gamma distribution for representation of gust component variables is established.

  1. Long-range correlations induced by the self-regulation of zonal flows and drift-wave turbulence

    SciTech Connect

    Manz, P.; Ramisch, M.; Stroth, U.

    2010-11-15

    By means of a unique probe array, the interaction between zonal flows and broad-band drift-wave turbulence has been investigated experimentally in a magnetized toroidal plasma. Homogeneous potential fluctuations on a magnetic flux surface, previously reported as long range correlations, could be traced back to a predator-prey-like interaction between the turbulence and the zonal flow. At higher frequency the nonlocal transfer of energy to the zonal flow is dominant and the low-frequency oscillations are shown to result from the reduced turbulence activity due to this energy loss. This self-regulation process turns out to be enhanced with increased background shear flows.

  2. The GalileoJupiter Probe Doppler Wind Experiment

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.

    2001-09-01

    The GalileoJupiter atmospheric entry probe was launched along with the Galileoorbiter spacecraft from Cape Canaveral in Florida, USA, on October 18, 1989. Following a cruise of greater than six years, the probe arrived at Jupiter on December 7, 1995. During its 57-minute descent, instruments on the probe studied the atmospheric composition and structure, the clouds, lightning, and energy structure of the upper Jovian atmosphere. One of the two radio channels over which the experiment data was transmitted to the orbiter was driven by an ultrastable oscillator. All motions of the probe and orbiter, including the speed of probe descent, Jupiter's rotation, and the atmospheric winds, contributed to a Doppler shift of the probe radio frequency. By accurately measuring the frequency of the probe radio signal, an accurate time history of the probe-orbiter relative motions could be reconstructed. Knowledge of the nominal probe and orbiter trajectories allowed the nominal Doppler shift to be removed from the probe radio frequency leaving a measurable frequency residual arising primarily from the zonal winds in Jupiter's atmosphere, and micromotions of the probe arising from probe spin, swing under the parachute, atmospheric turbulence, and aerodynamic effects. Assuming that the zonal horizontal winds dominate the residual probe motion, a profile of frequency residuals was generated. Inversion of the frequency residuals resulted in the first in situ measurements of the vertical profile of Jupiter's deep zonal winds. It is found that beneath 700 mb, the winds are strong and prograde, rising rapidly to 170 m/s between 1 and 4 bars. Beneath 4 bars to 21 bars, the depth at which the link with the probe was lost, the winds remain constant and strong. When corrections for the high temperatures encountered by the probe are considered, there is no evidence of diminishing or strengthening of the zonal winds in the deepest regions explored by the Galileoprobe. Following the wind

  3. Calculation of a residual mean meridional circulation for a zonal-mean tracer transport model

    SciTech Connect

    Choi, W.K.; Rotman, D.A.; Wuebbles, D.J.

    1995-04-01

    Because of their computational advantages, zonally-averaged chemical-radiative-transport models are widely used to investigate the distribution of chemical species and their change due to the anthropogenic chemicals in the lower and middle atmosphere. In general, the Lagrangian-mean formulation would be ideal to treat transport due to the zonal mean circulation and eddies. However, the Lagrangian formulation is difficult to use in practical applications. The most widely-used formulation for treating global atmospheric dynamics in two-dimensional models is the transformed Eulerian mean (TEM) equations. The residual mean meridional circulation (RMMC) in the TEM system is used to advect tracers. In this study, the authors describe possible solution techniques for obtaining the RMMC in the LLNL two-dimensional chemical-radiative-transport model. In the first section, the formulation will be described. In sections 3 and 4, possible solution procedures will be described for a diagnostic and prognostic case, respectively.

  4. Zonal wavefront sensing using a grating array printed on a polyester film

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Kumar, Suraj; Boruah, Bosanta R.

    2015-12-01

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.

  5. Zonal wavefront sensing using a grating array printed on a polyester film.

    PubMed

    Pathak, Biswajit; Kumar, Suraj; Boruah, Bosanta R

    2015-12-01

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.

  6. Zonal wavefront sensing using a grating array printed on a polyester film

    SciTech Connect

    Pathak, Biswajit; Boruah, Bosanta R.; Kumar, Suraj

    2015-12-15

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.

  7. Earth zonal harmonics from rapid numerical analysis of long satellite arcs

    NASA Technical Reports Server (NTRS)

    Wagner, C. A.

    1972-01-01

    A zonal geopotential is presented to degree 21 from evaluation of mean elements for 21 satellites including 2 of low inclination. Each satellite is represented by an arc of at least one apsidal rotation. The lengths range from 200 to 800 days. Differential correction of the initial elements in all of the arcs, together with radiation pressure and atmospheric drag coefficients, was accomplished simultaneously with the correction for the zonal harmonics. The satellite orbits and their variations are generated by numerical integration of the Lagrange equations for mean elements. Disturbances due to precession and nutation of the earth's pole, atmospheric drag, radiation pressure and luni-solar gravity are added at from 1- to 8-day intervals in the integrated orbits. The results agree well with recent solutions from other authors using different methods and different satellite sets.

  8. Interaction of Moist Convection with Zonal Jets on Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Li, Liming; Ingersoll, Andrew P.; Huang, Xianglei

    2006-01-01

    Observations suggest that moist convection plays an important role in the large-scale dynamics of Jupiter s and Saturn s atmospheres. Here we use a reduced-gravity quasigeostrophic model, with a parameterization of moist convection that is based on observations, to study the interaction between moist convection and zonal jets on Jupiter and Saturn. Stable jets with approximately the same width and strength as observations are generated in the model. The observed zonal jets violate the barotropic stability criterion but the modeled jets do so only if the flow in the deep underlying layer is westward. The model results suggest that a length scale and a velocity scale associated with moist convection control the width and strength of the jets. The length scale and velocity scale offer a possible explanation of why the jets of Saturn are stronger and wider than those of Jupiter.

  9. Temporal variations in low degree zonal harmonics from Starlette orbit analysis

    NASA Technical Reports Server (NTRS)

    Cheng, M. K.; Eanes, R. J.; Shum, C. K.; Schutz, B. E.; Tapley, B. D.

    1989-01-01

    The dynamical effect of temporal variations in the zonal harmonics of the earth's gravitational potential due to tidal and meteorological mass redistribution has been observed using satellite laser ranging (SLR) measurements to Starlette. The secular variations in the Earth's zonal harmonics and the year-to-year fluctuation of the even degree annual and semi-annual tides, S(a) and S(sa) have been determined from a continuous Starlette orbit spanning from 1983 through 1985. The mean values for S(a) and S(sa) tides are in good agreement with other tide solutions. The year-to-year fluctuations of the even degree S(a), deduced from Starlette node variations, are about 25 percent of the mean value obtained during the three-year Starlette orbit span.

  10. Measurement of osmotic second virial coefficients by zonal size-exclusion chromatography.

    PubMed

    Winzor, Donald J

    2016-07-01

    Numerical simulation of protein migration reflecting linear concentration dependence of the partition isotherm has been used to invalidate a published procedure for measuring osmotic second virial coefficients (B22) by zonal exclusion chromatography. Failure of the zonal procedure to emulate its frontal chromatographic counterpart reflects ambiguity about the solute concentration that should be used to replace the applied concentration in the rigorous quantitative expression for frontal migration; the recommended use of the peak concentration in the eluted zone is incorrect on theoretical grounds. Furthermore, the claim for its validation on empirical grounds has been traced to the use of inappropriate B22 magnitudes as the standards against which the experimentally derived values were being tested. PMID:27095059

  11. Zonal average earth radiation budget measurements from satellites for climate studies

    NASA Technical Reports Server (NTRS)

    Ellis, J. S.; Haar, T. H. V.

    1976-01-01

    Data from 29 months of satellite radiation budget measurements, taken intermittently over the period 1964 through 1971, are composited into mean month, season and annual zonally averaged meridional profiles. Individual months, which comprise the 29 month set, were selected as representing the best available total flux data for compositing into large scale statistics for climate studies. A discussion of spatial resolution of the measurements along with an error analysis, including both the uncertainty and standard error of the mean, are presented.

  12. Zonal centrifuge purification of human rabies vaccine obtained on bovine fetal kidney cells. Biological results.

    PubMed

    Atanasiu, P; Tsiang, H; Reculard, P; Aguilon, F; Lavergne, M; Adamovicz, P

    1978-01-01

    An inactivated human rabies vaccine prepared on bovine fetal kidney cells is concentrated and purified by zonal centrifugation. The peak of rabies particles is monitored by hemagglutination. Immunogenicity of the purified particles was evaluated by titration of specific antibodies from vaccinated animals. Protective activity of the vaccine was assayed on guinea pigs challenged with street rabies. Biological results were compared with those obtained with other tissue culture vaccines.

  13. Self-organized zonal flow in the flute-mode turbulence of a plasma

    SciTech Connect

    Kodama, Y.; Pavlenko, V.P.

    1988-04-11

    Flute-mode turbulence has a forward spectral cascade unlike the case of drift-wave turbulence. Therefore the linear flute instability may be reduced by this energy cascading toward large wave numbers. As a consequence of three-wave cascade processes derivable from model equations including the effects of density gradient and finite ion Larmor radius the formation of zonal flows in flute mode turbulence is predicted.

  14. Simulation of transonic viscous wing and wing-fuselage flows using zonal methods

    NASA Technical Reports Server (NTRS)

    Flores, Jolen

    1987-01-01

    The thin-layer Navier-Stokes equations are coupled with a zonal scheme (or domain-decomposition method) to develop the Transonic Navier-Stokes (TNS) wing-alone code. The TNS has a total of 4 zones and is extended to a total of 16 zones for the wing-fuselage version of the code. Results are compared on the Cray X-MP-48 and compared with experimental data.

  15. A Novel Wind Profiler Radar at 205 MHz: Technical aspects and Validation

    NASA Astrophysics Data System (ADS)

    Kottayil, Ajil; Mohanakumar, Kesavapillai

    2016-07-01

    An experimental wind profiler radar operating at 205 MHz has been set up for the first time in the World in the near equatorial region at Cochin (10.04 degree N; 76.33 degree E), India. Here we present a system description and first time validation of this radar. This profiler constitutes 49, three element Yagi-Uda antennae with an effective aperture area of 42 m2. Doppler Beam Swinging method is used for measuring the three dimensional wind components. The radar wind profiles have been validated against collocated GPS- radiosonde measurements for the altitude range of 1-6 km. The validation shows a very good agreement between radar and radiosonde wind measurements both in terms of magnitude and direction, with an observed correlation of 0.91 and 0.85, for zonal and meridional winds, respectively. The standard deviation of the difference between radiosonde and radar for zonal wind is found to be 1.95 m/s and 1.56 m/s for meridional wind. The radar has been set up as a predecessor to a bigger radar bearing 619 antennae with an aim of studying the regional monsoon characteristics. The results show that the 205 MHz Wind Profiler is capable of providing high quality wind data which can boost studies on the Indian summer monsoon.

  16. Turbulent anti-resistivity and the zonal magnetic field dynamo in drift-ballooning turbulence

    SciTech Connect

    Kleva, Robert G.; Guzdar, Parvez N.

    2007-11-15

    The effect of turbulent fluctuations on the zonal (flux surface averaged) magnetic field in drift-ballooning turbulence is shown to be equivalent to a turbulent anti-resistivity. The flux surface average of the convective nonlinearity in Ohm's law is proportional to the flux surface average of the current. The coefficient of proportionality can be defined as a turbulent resistivity {eta}{sub turb}. The correlation of the flux surface average of the convective nonlinearity with the negative of the flux surface average of the current is nearly 100%. Because the convective nonlinearity is correlated with the negative of the current, and not the current, the turbulent resistivity is negative. The magnitude of {eta}{sub turb} is virtually identical to the magnitude of the collisional resistivity {eta}, but opposite in sign, so that the total resistivity {eta}{sub total}={eta}+{eta}{sub turb} is nearly zero. The effect of the fluctuations is to balance the effect of collisional resistive diffusion. As a result, while the energy in the zonal flow increases to a large value as the fluctuations grow and saturate, the energy in the zonal magnetic field remains very small.

  17. Generation of zonal flow and magnetic field in the ionospheric E-layer

    NASA Astrophysics Data System (ADS)

    Kahlon, L. Z.; Kaladze, T. D.

    2015-10-01

    > We review the generation of zonal flow and magnetic field by coupled electromagnetic ultra-low-frequency waves in the Earth's ionospheric E-layer. It is shown that, under typical ionospheric E-layer conditions, different planetary low-frequency waves can couple with each other. Propagation of coupled internal-gravity-Alfvén, coupled Rossby-Khantadze and coupled Rossby-Alfvén-Khantadze waves is revealed and studied. A set of appropriate equations describing the nonlinear interaction of such waves with sheared zonal flow is derived. The conclusion on the instability of short-wavelength turbulence of such coupled waves with respect to the excitation of low-frequency and large-scale perturbation of the sheared zonal flow and sheared magnetic field is deduced. The nonlinear mechanism of the instability is based on the parametric triple interaction of finite-amplitude coupled waves leading to the inverse energy cascade towards longer wavelength. The possibility of generation of an intense mean magnetic field is shown. Obtained growth rates are discussed for each case of the considered coupled waves.

  18. ZONAL FLOWS AND LONG-LIVED AXISYMMETRIC PRESSURE BUMPS IN MAGNETOROTATIONAL TURBULENCE

    SciTech Connect

    Johansen, A.; Youdin, A.; Klahr, H. E-mail: youd@cita.utoronto.ca

    2009-06-01

    We study the behavior of magnetorotational turbulence in shearing box simulations with a radial and azimuthal extent up to 10 scale heights. Maxwell and Reynolds stresses are found to increase by more than a factor of 2 when increasing the box size beyond two scale heights in the radial direction. Further increase of the box size has little or no effect on the statistical properties of the turbulence. An inverse cascade excites magnetic field structures at the largest scales of the box. The corresponding 10% variation in the Maxwell stress launches a zonal flow of alternating sub- and super-Keplerian velocity. This, in turn, generates a banded density structure in geostrophic balance between pressure and Coriolis forces. We present a simplified model for the appearance of zonal flows, in which stochastic forcing by the magnetic tension on short timescales creates zonal flow structures with lifetimes of several tens of orbits. We experiment with various improved shearing box algorithms to reduce the numerical diffusivity introduced by the supersonic shear flow. While a standard finite difference advection scheme shows signs of a suppression of turbulent activity near the edges of the box, this problem is eliminated by a new method where the Keplerian shear advection is advanced in time by interpolation in Fourier space.

  19. MPIRUN: A Portable Loader for Multidisciplinary and Multi-Zonal Applications

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.; Woodrow, Thomas S. (Technical Monitor)

    1994-01-01

    Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. One method for implementing the message passing portion of these codes is with the new Message Passing Interface (MPI) standard. Unfortunately, this standard only specifies the message passing portion of an application, but does not specify any portable mechanisms for loading an application. MPIRUN was developed to provide a portable means for loading MPI programs, and was specifically targeted at multidisciplinary and multi-zonal applications. Programs using MPIRUN for loading and MPI for message passing are then portable between all machines supported by MPIRUN. MPIRUN is currently implemented for the Intel iPSC/860, TMC CM5, IBM SP-1 and SP-2, Intel Paragon, and workstation clusters. Further, MPIRUN is designed to be simple enough to port easily to any system supporting MPI.

  20. Computation of transonic separated wing flows using an Euler/Navier-Stokes zonal approach

    NASA Technical Reports Server (NTRS)

    Kaynak, Uenver; Holst, Terry L.; Cantwell, Brian J.

    1986-01-01

    A computer program called Transonic Navier Stokes (TNS) has been developed which solves the Euler/Navier-Stokes equations around wings using a zonal grid approach. In the present zonal scheme, the physical domain of interest is divided into several subdomains called zones and the governing equations are solved interactively. The advantages of the Zonal Grid approach are as follows: (1) the grid for any subdomain can be generated easily; (2) grids can be, in a sense, adapted to the solution; (3) different equation sets can be used in different zones; and, (4) this approach allows for a convenient data base organization scheme. Using this code, separated flows on a NACA 0012 section wing and on the NASA Ames WING C have been computed. First, the effects of turbulence and artificial dissipation models incorporated into the code are assessed by comparing the TNS results with other CFD codes and experiments. Then a series of flow cases is described where data are available. The computed results, including cases with shock-induced separation, are in good agreement with experimental data. Finally, some futuristic cases are presented to demonstrate the abilities of the code for massively separated cases which do not have experimental data.

  1. Intermediate Zonal Jets in the Equatorial Pacific Ocean Observed by Argo floats

    NASA Astrophysics Data System (ADS)

    Cravatte, S. E.; Kessler, W. S.; Marin, F.

    2012-12-01

    Argo float data in the equatorial Pacific Ocean during January 2003 to August 2011 are analyzed to obtain lagrangian subsurface velocities at their parking depths. We present maps of mean zonal velocities at 1000m and 1500m. A series of alternating zonal jets with a meridional scale of 1.5° are seen from 10°S to 10°N, with mean speeds about 5 cm/s. These alternating jets are clearly present in the western and central parts of the basin, but weaken and disappear approaching the eastern coast, near 110°W at the equator. They are stronger in the southern hemisphere. The jets closer to the equator appear remarkably zonally consistent across the basin, but further poleward appear broken in several segments, with their meridional separation increasing from east to west. Along the equator at both 1000m and 1500m, a westward jet is seen. At the western boundary in the south (Solomon Islands and Papua New Guinea), the alternating jets appear to connect in narrow boundary currents. The annual cycle within about ±5° latitude is a Rossby wave consistent with that previously observed in other fields.

  2. What controls equatorial Atlantic winds in boreal spring?

    NASA Astrophysics Data System (ADS)

    Richter, Ingo; Behera, Swadhin K.; Doi, Takeshi; Taguchi, Bunmei; Masumoto, Yukio; Xie, Shang-Ping

    2014-12-01

    The factors controlling equatorial Atlantic winds in boreal spring are examined using both observations and general circulation model (GCM) simulations from the coupled model intercomparison phase 5. The results show that the prevailing surface easterlies flow against the attendant pressure gradient and must therefore be maintained by other terms in the momentum budget. An important contribution comes from meridional advection of zonal momentum but the dominant contribution is the vertical transport of zonal momentum from the free troposphere to the surface. This implies that surface winds are strongly influenced by conditions in the free troposphere, chiefly pressure gradients and, to a lesser extent, meridional advection. Both factors are linked to the patterns of deep convection. Applying these findings to GCM errors indicates, that, consistent with the results of previous studies, the persistent westerly surface wind bias found in most GCMs is due mostly to precipitation errors, in particular excessive precipitation south of the equator over the ocean and deficient precipitation over equatorial South America. Free tropospheric influences also dominate the interannual variability of surface winds in boreal spring. GCM experiments with prescribed climatological sea-surface temperatures (SSTs) indicate that the free tropospheric influences are mostly associated with internal atmospheric variability. Since the surface wind anomalies in boreal spring are crucial to the development of warm SST events (Atlantic Niños), the results imply that interannual variability in the region may rely far less on coupled air-sea feedbacks than is the case in the tropical Pacific.

  3. Meteorology (Wind)

    Atmospheric Science Data Center

    2014-09-25

    Wind speed at 50 m (m/s) The average and percent difference minimum and ... are given.   Percent of time for ranges of wind speed at 50 m (percent) Percentage [frequency] of time that wind speed is in each range (0-2, 3-6, 7-10, 11-14, 15-18, 19-25 m/s).   ...

  4. High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation

    PubMed Central

    Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua

    2014-01-01

    This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine–airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. PMID:25024411

  5. High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation.

    PubMed

    Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua

    2014-08-13

    This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine-airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. PMID:25024411

  6. High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation.

    PubMed

    Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua

    2014-08-13

    This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine-airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed.

  7. Wind structure and variability in the middle atmosphere during the November 1980 energy budget campaign

    NASA Astrophysics Data System (ADS)

    Schmidlin, F. J.; Carlson, M.; Rees, D.; Offermann, D.; Philbrick, C. R.; Widdel, H. U.

    1985-03-01

    Between November 6 and December 1, 1980 series of rocket observations were obtained from two sites in northern Scandinavia (68 deg N) as part of the Energy Budget Campaign, revealing the presence of significant vertical and temporal changes in the wind structure. These changes coincided with different geomagnetic conditions, i.e. quiet and enhanced. Large amounts of rocket data were gathered from high latitudes over such a short interval of time. Prior to November 16 the meridional wind component above 60 km was found to be positive (southerly), while the magnitude of the zonal wind component incresed with altitude. After November 16 the meridional component became negative (northerly) and the magnitude of the zonal wind component was noted to decrease with altitude. Time-sections of the perturbations of the zonal wind show the presence of vertically propagating waves, which suggest gravity wave activity. These waves increase in length from 1 km near 30 km to over 12 km near 80 km. The observational techniques employed Andoya (69 deg N), Norway, and Esrange (67.9 deg N), Sweden, consisted of chaff foil, instrumented rigid spheres, chemical trails, inflatable spheres and parachutes.

  8. Wind structure and variability in the middle atmosphere during the November 1980 energy budget campaign

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Carlson, M.; Rees, D.; Offermann, D.; Philbrick, C. R.; Widdel, H. U.

    1985-01-01

    Between November 6 and December 1, 1980 series of rocket observations were obtained from two sites in northern Scandinavia (68 deg N) as part of the Energy Budget Campaign, revealing the presence of significant vertical and temporal changes in the wind structure. These changes coincided with different geomagnetic conditions, i.e. quiet and enhanced. Large amounts of rocket data were gathered from high latitudes over such a short interval of time. Prior to November 16 the meridional wind component above 60 km was found to be positive (southerly), while the magnitude of the zonal wind component incresed with altitude. After November 16 the meridional component became negative (northerly) and the magnitude of the zonal wind component was noted to decrease with altitude. Time-sections of the perturbations of the zonal wind show the presence of vertically propagating waves, which suggest gravity wave activity. These waves increase in length from 1 km near 30 km to over 12 km near 80 km. The observational techniques employed Andoya (69 deg N), Norway, and Esrange (67.9 deg N), Sweden, consisted of chaff foil, instrumented rigid spheres, chemical trails, inflatable spheres and parachutes.

  9. Rossby and drift wave turbulence and zonal flows: The Charney-Hasegawa-Mima model and its extensions

    NASA Astrophysics Data System (ADS)

    Connaughton, Colm; Nazarenko, Sergey; Quinn, Brenda

    2015-12-01

    A detailed study of the Charney-Hasegawa-Mima model and its extensions is presented. These simple nonlinear partial differential equations suggested for both Rossby waves in the atmosphere and drift waves in a magnetically-confined plasma, exhibit some remarkable and nontrivial properties, which in their qualitative form, survive in more realistic and complicated models. As such, they form a conceptual basis for understanding the turbulence and zonal flow dynamics in real plasma and geophysical systems. Two idealised scenarios of generation of zonal flows by small-scale turbulence are explored: a modulational instability and turbulent cascades. A detailed study of the generation of zonal flows by the modulational instability reveals that the dynamics of this zonal flow generation mechanism differ widely depending on the initial degree of nonlinearity. The jets in the strongly nonlinear case further roll up into vortex streets and saturate, while for the weaker nonlinearities, the growth of the unstable mode reverses and the system oscillates between a dominant jet, which is slightly inclined to the zonal direction, and a dominant primary wave. A numerical proof is provided for the extra invariant in Rossby and drift wave turbulence-zonostrophy. While the theoretical derivations of this invariant stem from the wave kinetic equation which assumes weak wave amplitudes, it is shown to be relatively well-conserved for higher nonlinearities also. Together with the energy and enstrophy, these three invariants cascade into anisotropic sectors in the k-space as predicted by the Fjørtoft argument. The cascades are characterised by the zonostrophy pushing the energy to the zonal scales. A small scale instability forcing applied to the model has demonstrated the well-known drift wave-zonal flow feedback loop. The drift wave turbulence is generated from this primary instability. The zonal flows are then excited by either one of the generation mechanisms, extracting energy from

  10. Comparison of zonal elution and nonlinear chromatography in determination of the interaction between seven drugs and immobilised β(2)-adrenoceptor.

    PubMed

    Li, Qian; Wang, Jing; Zheng, Yuqing Yuan; Yang, Lingjian; Zhang, Yajun; Bian, Liujiao; Zheng, Jianbin; Li, Zijian; Zhao, Xinfeng; Zhang, Youyi

    2015-07-01

    Zonal elution and nonlinear chromatography are two mainstream models for the determination of drug-protein interaction in affinity chromatography. This work intended to compare the results by zonal elution with that by nonlinear chromatography when it comes to the analysis of the interaction between seven drugs and immobilised β2-adrenoceptor (β2-AR). The results of the zonal elution showed that clorprenaline, clenbuterol, methoxyphenamine, salbutamol, terbutaline, tulobuterol and bambuterol have only one type of binding site on immobilised β2-AR, while nonlinear chromatography confirmed the existence of at least two types of binding sites between β2-AR and clorprenaline, clenbuterol and bambuterol. On these sites, both zonal elution and nonlinear chromatography presented the same rank order for the association constants of the seven drugs. Compared with the data from zonal elution, the association constants calculated using nonlinear chromatography gave a good linear response to the corresponding values by radio-ligand binding assay. The sampling efficiencies of nonlinear chromatography were clearly higher than zonal elution. Nonlinear chromatography will probably become a powerful alternative for the high throughput determination of drug-protein interaction.

  11. Effect of the magnetic field curvature on the generation of zonal flows by drift-Alfven waves

    SciTech Connect

    Mikhailovskii, A. B.; Kovalishen, E. A.; Shirokov, M. S.; Tsypin, V. S.; Galvao, R. M. O.

    2007-05-15

    The generation of zonal flows by drift-Alfven waves is studied with allowance for magnetic curvature effects. The basic plasmadynamic equations relating the electrostatic potential, vector potential, and perturbed plasma density are the vorticity equation, longitudinal Ohm's law, and continuity equation. The basic equations are analyzed by applying a parametric formalism similar to that used in the theory of the generation of convective cells. In contrast to most previous investigations on the subject, consideration is given to primary modes having an arbitrary spectrum rather than to an individual monochromatic wave packet. The parametric approach so modified makes it possible to reveal a new class of instabilities of zonal flows that are analogous to two-stream instabilities in linear theory. It is shown that, in the standard theory of zonal flows, the zonal components of the vector potential and perturbed density are not excited. It is pointed out that zonal flows can be generated both in the case of a magnetic hill and in the case of a magnetic well. In the first case, the instabilities of zonal flows are analogous to negative-mass instabilities in linear theory, and, in the second case, they are analogous to two-stream instabilities.

  12. Turbulent Deep Convection at low Rossby Number: A Model for Zonal Flow and Thermal Emissions of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Heimpel, M.; Aurnou, J.; Wicht, J.

    2007-12-01

    We use numerical models to show that deep convection can result in the observed surface fluid flow and thermal emission patterns of Jupiter and Saturn. The simulations of Boussinesq convection in a spherical shell are dynamically self-consistent and generate large-scale zonal jets that interact with thermal plumes to produce the surface heat flow pattern. The surface fluid flow is dominantly zonal with a prograde equatorial jet and multiple alternating jets at higher latitudes. The zonal jet widths in our numerical models, and of Jupiter and Saturn, follow Rhines scaling. The scaling for zonal flow in a spherical shell is distinguished from that in a full sphere or a shallow layer by the effect of the tangent cylinder, which marks a reversal in the sign of the planetary β - parameter and a jump in the Rhines length. This jump is present in the numerical simulations as a sharp equator-ward increase in jet widths - a transition that is also apparent on Jupiter and Saturn. Our models generate a surface heat flow pattern with a broad minimum at the equator and peaks at the poles. The zonal jets modulate this pattern at smaller latitudinal scales. Superposing the model heat flow pattern with incoming solar radiation results in global heat flow that, similar to Jupiter and Saturn, is roughly constant in latitude. Our results support the hypothesis that the large-scale patterns of heat and zonal flow originate deep within the molecular hydrogen envelopes of the giant planets.

  13. Magneto-optic Doppler analyzer: a new instrument to measure mesopause winds

    NASA Astrophysics Data System (ADS)

    Williams, Bifford P.; Tomczyk, Steven

    1996-11-01

    The magneto-optic Doppler analyzer (MODA) is a new type of passive optical instrument that one can use to measure the Doppler shift of the sodium nightglow emitted at approximately 91 km near the mesopause. From this measurement, horizontal wind signatures are inferred. The MODA is based on a sodium vapor magneto-optic filter that provides inherent wavelength stability at a low cost. The instrument has been used to take nightly zonal and meridional wind measurements since October 1994 at Niwot Ridge, Colorado (40 N, 105 W). We obtained an internally consistent wind signal and measured the semidiurnal tide for several seasons.

  14. Saturn's Doppler velocimetry wind measurements with VLT/UVES

    NASA Astrophysics Data System (ADS)

    Silva, Miguel; Mota Machado, Pedro; Luz, David; Sanchez-Lavega, Agustin; Hueso, Ricardo; Peralta, Javier

    2016-10-01

    We present Doppler wind velocity results of Saturn's zonal flow at ~0.4 mbar pressure level. Our aim is help to constrain the characterization of the equatorial jet at the referred altitude and the latitudinal variation of the zonal winds, to contribute to monitor the spatial and temporal variability in order to achieve a better understanding of the dynamics of Saturn's zonal winds, which Sánchez-Lavega et al. (2003, Nature, 423, 623) have found to have strongly changed in recent years, as the planet approached southern summer solstice.The UVES/VLT instrument has been used, which simultaneously achieves high spectral resolving power and high spatial resolution. The field has been derotated in order to have the aperture aligned perpendicularly to Saturn's rotation axis. In this configuration, spatial information in the East-West direction is preserved in a set of spectra in the direction perpendicular to dispersion.The technique of absolute accelerometry (AA, Connes, 1985, ApSS 110, 211) has been applied to the backscattered solar spectrum in order to determine the Doppler shift associated with the zonal circulation. Our measurements have been made in the wavelength range of 480-680 nm. Previously we successfully adapted this Doppler velocimetry technique for measuring winds at Venus cloud tops (Machado et al. 2012).The observations consisted of 4 blocks of 15 exposures of 90 sec, plus two shorter blocks of 9 exposures, totalling 7.3 hours of telescope time. In order to cover the whole disk the aperture has been offset by 1 arcsec in the North-South direction between consecutive exposures. Most of the northern hemisphere was covered by the rings. Saturn's diameter was 17.4 arcsec, and the slit aperture was 0.3x25 arcsec. The aperture offset between consecutive exposures was 1 arcsec. Two observations blocks of 9 exposures only covered the central part of the disk, and four others covered the whole disk. The sub-terrestrial point was at -26.1 degrees South. The

  15. Variability in Pacific trade winds inferred from coral Mn/Ca: Implications for the rate of global warming

    NASA Astrophysics Data System (ADS)

    Thompson, D. M.; Cole, J. E.; Shen, G. T.; Tudhope, A. W.; Meehl, G. A.

    2014-12-01

    Zonal wind strength and direction are fundamental components of the El Niño-Southern Oscillation (ENSO) and likely play an important role in global temperature modulation. However, historical observations of tropical Pacific winds are limited, and existing datasets disagree on long-term trends, emphasizing the need for independent data to assess zonal wind variability. Earlier work using a 17-year dataset from Tarawa Atoll suggests that Mn/Ca in corals near west-facing lagoons record westerly winds associated with the onset and maintenance of El Niño events. These westerly wind anomalies trigger strong physical mixing and release of Mn from the Mn-enriched lagoonal sediments, which is incorporated into the coral skeleton. Here we present a new ~90 year Mn/Ca record from Tarawa that allows us to assess westerly wind anomalies before the mid-20th century, when instrumental data from the tropical Pacific are scarce. We compare this new Mn/Ca record with 20th-century reanalysis zonal wind and demonstrate a strong association between the frequency of westerly winds and Tarawa Mn/Ca from 1890-1982. This new wind reconstruction also corroborates and extends the idea, developed from models and analyses of the well-observed late 20th century, that periods of strong Pacific trade winds are associated with cooler equatorial Pacific SSTs and a slower rate of global warming, and vice versa. By adding Mn/Ca to the suite of coral tracers measured for paleoclimate reconstructions from appropriate sites, we can expand our view of past climate variability to include westerly winds, along with the more commonly reconstructed variables of SST and salinity. Development of additional Mn/Ca records from other equatorial atolls with westerly facing lagoons will be used to obtain a broader multivariate perspective on the dynamics of recent climate variability.

  16. Non-Migrating Tides, with Zonally Symmetric Component, Generated in the Mesosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. R.; Porter, H. S.; Hines, C. O.

    2003-01-01

    For comparison with measurements from the TIMED satellite and coordinated ground based observations, we discuss results from our Numerical Spectral Model (NSM) that incorporates the Doppler Spread Parameterization (Hines, 1997) for small-scale gravity waves (GWs). The NSM extends from the ground into the thermosphere and describes the major dynamical features of the atmosphere including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. With emphasis on the non-migrating tides, having periods of 24 and 12 hours, we discuss our modeling results that account for the classical migrating solar excitation sources only. As reported earlier, the NSM reproduces the observed seasonal variations and in particular the large equinoctial maxima in the amplitude of the migrating diurnal tide at altitudes around 90 km. Filtering of the tide by the zonal circulation and GW momentum deposition was identified as the cause. The GWs were also shown to produce a strong non-linear interaction between the diurnal and semi-diurnal tides. Confined largely to the mesosphere, the NSM produces through dynamical interactions a relatively large contribution of non-migrating tides. A striking feature is seen in the diurnal and semi-diurnal oscillations of the zonal mean (m = 0). Eastward propagating tides are also generated for zonal wave numbers m = 1 to 4. When the NSM is run without GWs, the amplitudes for the non-migrating tides, including m = 0, are generally small. Planetary wave interaction and non-linear coupling that involves the filtering of GWs and related height integration of dynamical features are discussed as possible mechanisms for generating these non-migrating tides in the NSM. As is the case for the solar migrating tides, the non-migrating tides reveal persistent seasonal variations. Under the influence of the QBO and SAO, interannual variations are produced.

  17. Modeling the Interaction of Moist Convection with the Zonal Jets of Jupiter

    NASA Astrophysics Data System (ADS)

    Li, L.; Ingersoll, A. P.

    2004-11-01

    We use a reduced-gravity quasi-geostrophic model with a parameterization of moist convection that is based on Galileo and Cassini observations of lightning and convective storms (Little et al., 1999; Gierasch et al., 2000; Porco et al., 2003). The features of the jets we want to reproduce in the model include: (1) the curvature of the zonal jet profile, which violates the barotropic stability criterion near many of the westward jets (Ingersoll et al., 1981; Li et al., 2004), (2) the speed of the zonal jets, which is related to their width, given that the jets marginally violate the barotropic stability criterion, and (3) the sign of the eddy momentum flux, which is into the jets and tends to sustain them (Beebe et al., 1979; Ingersoll et al., 1981; Salyk et al., 2004). The features of moist convective storms that are taken from observation include: (1) the tendency of the storms to occur in the cyclonic belts, (2) the rapid divergence of horizontal velocity near the cloud tops, and (3) the lifetime of the storms, which is on average 4-5 days (Li et al., 2004). We find that moist convection leads to zonal jets in the upper layer, but the jets violate the barotropic stability criterion only if the flow in the deep underlying layer is westward. We can reproduce the chevron shape on the sides of the jets if we postulate that the clouds persist longer than the storms that produce them. We can reproduce the number and frequency of moist convection storms by assuming that they carry most of the planet's vertical heat flux (Gierasch et al., 2000). The NASA Planetary Atmospheres Program supported this research.

  18. Saturn Ring Mass and Zonal Gravitational Harmonics Estimate at the End of the Cassini "Grand Finale"

    NASA Astrophysics Data System (ADS)

    Brozovic, M.; Jacobson, R. A.; Roth, D. C.

    2015-12-01

    "Solstice" mission is the 7-year extension of the Cassini-Huygens spacecraft exploration of the Saturn system that will culminate with the "Grand Finale". Beginning in mid-2017, the spacecraft is scheduled to execute 22 orbits that have their periapses between the innermost D-ring and the upper layers of Saturn's atmosphere. These orbits will be perturbed by the gravitational field of Saturn as well as by the rings. We present an analysis of simulated "Grand Finale" radiometric data, and we investigate their sensitivity to the ring mass and higher zonal gravitational harmonics of the planet. We model the data quantity with respect to the available coverage of the tracking stations on Earth, and we account for the times when the spacecraft is occulted either by Saturn or the rings. We also use different data weights to simulate changes in the data quality. The dynamical model of the spacecraft motion includes both gravitational and non-gravitational forces, such as the daily momentum management due to Reaction Wheel Assembly and radioisotope thermo-electric generator accelerations. We solve the equations of motion and use a weighted-least squares fit to obtain spacecraft's state vector, mass(es) of the ring or the individual rings, zonal harmonics, and non-gravitational accelerations. We also investigate some a-priori values of the A- and B-ring masses from Tiscareno et al. (2007) and Hedman et al. (2015) analyses. The preliminary results suggest that the "Grand Finale" orbits should remain sensitive to the ring mass even for GMring<2 km3/s2 and that they will also provide high accuracy estimates of the zonal harmonics J8, J10, and J12.

  19. In vitro anti-HMPV activity of meroditerpenoids from marine alga Stypopodium zonale (Dictyotales).

    PubMed

    Mendes, Gabriella; Soares, Angélica Ribeiro; Sigiliano, Lorena; Machado, Fernanda; Kaiser, Carlos; Romeiro, Nelilma; Gestinari, Lísia; Santos, Norma; Romanos, Maria Teresa Villela

    2011-01-01

    In this paper, we evaluated the antiviral activity against HMPV replication of crude extract of the marine algae Stypopodium zonale and of two meroditerpenoids obtained from it, atomaric acid and epitaondiol, and a methyl ester derivative of atomaric acid. Their selectivity indexes were 20.78, >56.81, 49.26 and 12.82, respectively. Compared to ribavirin, the substances showed a relatively low cytotoxicity on LLC-MK2 cells, with a significant antiviral activity, inhibiting at least 90% of viral replication in vitro, which demonstrates the potential of these marine natural products to combat infections caused by HMPV in vitro. PMID:21986522

  20. Long period perturbations of earth satellite orbits. [Von Zeipel method and zonal harmonics

    NASA Technical Reports Server (NTRS)

    Wang, K. C.

    1979-01-01

    All the equations involved in extending the PS phi solution to include the long periodic and second order secular effects of the zonal harmonics are presented. Topics covered include DSphi elements and relations for their conconical transformation into the PS phi elements; the solution algorithm based on the Von Zeipel method; and the elimination of long periodic terms and analytical integration of primed variables. The equations were entered into the ASOP program, checked out, and verified. Comparisons with numerical integrations show the long period theory to be accurate within several meters after 800 revolutions.

  1. Isotope effect on gyro-fluid edge turbulence and zonal flows

    NASA Astrophysics Data System (ADS)

    Meyer, O. H. H.; Kendl, A.

    2016-11-01

    The role of ion polarisation and finite Larmor radius on the isotope effect on turbulent tokamak edge transport and flows is investigated by means of local electromagnetic multi-species gyro-fluid computations. Transport is found to be reduced with the effective plasma mass for protium, deuterium and tritium mixtures. This isotope effect is found for both cold and warm ion models, but significant influence of finite Larmor radius and polarisation effects are identified. Sheared flow reduction of transport through self generated turbulent zonal flows and geodesic acoustic modes in the present model (not including neoclassical flows) is found to play only a minor role on regulating isotopically improved confinement.

  2. LETTER TO THE EDITOR: Magnetic islands and spontaneous generation of zonal flows

    NASA Astrophysics Data System (ADS)

    Grasso, D.; Margheriti, L.; Porcelli, F.; Tebaldi, C.

    2006-09-01

    A study of saturated magnetic island equilibria on the basis of the resistive magneto-hydro-dynamic model is presented. A bifurcation in the sequence of equilibria is found as the ratio of the width of the current layer in the initial (non-reconnected) configuration over the island periodicity length reaches a critical threshold. Below this threshold, spontaneous generation of zonal flows occurs. This result is suggestive of a possible evolution of current sheets in magnetically confined plasmas and may be relevant to the understanding of the suppression of drift-wave turbulence and the formation of internal transport barriers in tokamak experiments.

  3. Zonal flow driven by energetic particle during magneto-hydro-dynamic burst in a toroidal plasma

    NASA Astrophysics Data System (ADS)

    Ohshima, S.; Fujisawa, A.; Shimizu, A.; Nakano, H.; Iguchi, H.; Yoshimura, Y.; Nagaoka, K.; Minami, T.; Isobe, M.; Nishimura, S.; Suzuki, C.; Akiyama, T.; Takahashi, C.; Takeuchi, M.; Ito, T.; Watari, T.; Kumazawa, R.; Itoh, S.-I.; Itoh, K.; Matsuoka, K.; Okamura, S.

    2007-11-01

    The internal structural measurements of electric field and density using twin heavy ion beam probes have been performed to elucidate the nonlinear evolution of the magneto-hydro-dynamic (MHD) bursty phenomenon driven by the interaction with high-energy particles in a toroidal plasma. The results have given the finest observation of the internal structure of plasma quantities, such as electric field, density and magnetic field distortion, which nonlinearly develop during the MHD phenomenon. In particular, the finding of a new kind of oscillating zonal flow driven by interaction between energetic particles and MHD modes should be emphasized for burning state plasmas.

  4. Recursive analytical solution describing artificial satellite motion perturbed by an arbitrary number of zonal terms

    NASA Technical Reports Server (NTRS)

    Mueller, A. C.

    1977-01-01

    An analytical first order solution has been developed which describes the motion of an artificial satellite perturbed by an arbitrary number of zonal harmonics of the geopotential. A set of recursive relations for the solution, which was deduced from recursive relations of the geopotential, was derived. The method of solution is based on Von-Zeipel's technique applied to a canonical set of two-body elements in the extended phase space which incorporates the true anomaly as a canonical element. The elements are of Poincare type, that is, they are regular for vanishing eccentricities and inclinations. Numerical results show that this solution is accurate to within a few meters after 500 revolutions.

  5. Can meridionally propagating inertial waves drive an oscillating zonal mean flow?

    NASA Astrophysics Data System (ADS)

    Seelig, Torsten; Harlander, Uwe

    2015-04-01

    Zonal mean flow excitation by inertial waves is studied in analogy to mean flow excitation by gravity waves [3]. In geophysical flows that are stratified and rotating, the two classes of waves correspond to the two limiting cases: gravity waves neglect rotation, inertial waves neglect stratification. The former are more relevant for fluids like the atmosphere, where stratification is dominant, the latter for the deep oceans or planet cores, where rotation dominates. In the present study waves are suggested to propagate in the meridional plane. A hierarchy of simple analytical and numerical models is considered and the results are compared with data from a laboratory experiment. The main findings can be summarised as follows: (i) when the waves are decoupled from the mean flow they just drive a retrograde (eastward) zonal mean flow, independent of the sign of the meridional phase speed; (ii) when coupling is present and the zonal mean flow is assumed to be steady, the waves can drive vertically alternating jets, but still, in contrast to the gravity wave case, the structure is independent of the sign of the meridional phase speed; (iii) when coupling is present and time-dependent zonal mean flows are considered the waves can drive vertically and temporarily oscillating mean flows. The comparison with laboratory data from a rotating annulus experiment shows a qualitative agreement. It appears that the experiment captures the basic elements of the inertial wave mean flow coupling. The results might be relevant to understand how the Equatorial Deep Jets can be maintained against dissipation [1, 2], a process currently discussed controversially. [1] Greatbatch, R., Brandt, P., Claus, M., Didwischus, S., Fu, Y.: On the width of the equatorial deep jets. Journal of Physical Oceanography 42, 1729-1740 (2012) [2] Muench, J.E., Kunze, E.: Internal wave interactions with equatorial deep jets. Part II: Acceleration of the jets. J. Phys. Oceanogr. 30, 2099-2110 (2000) [3] Plumb

  6. From international to zonal trials: the origins of the Nuremberg medical trial.

    PubMed

    Weindling, P

    2000-01-01

    This article examines how plans to have a second International Military Tribunal led to the Medical Trial at Nuremberg. While the British opposed a second international trial because of their distrust of the Soviets, they supported a plan for a series of special zonal trials to be conducted by the American authorities at Nuremberg. In December 1945 the British became aware of the extent of medical war crimes committed by the Germans. Their investigation led to an eventual handover to the Americans of a group of German doctors for trial at Nuremberg. At the same time the British and French Supported an International Scientific Commission for the Investigation of Medical War Crimes.

  7. Purification and concentration of influenza inactivated viruses by continuous-flow zonal centrifugation.

    PubMed

    Mistretta, A P; Crovari-Cuneo, P; Giacometti, G; Sacchi, G; Strozzi, F

    1975-01-01

    A mathod is described for the purification, on an industrial scale, of influenza viruses grown in allantoic cavity of embryonated eggs. The mehtod consists of combining continuous-flow centrifugation with zonal centrifugation in a sucrose (36.6 per cent-52.5 per cent w/v) density gradient. The sample flow rate is approximately 3.7 litres/h and the volumes treated vary between 3 and 33 litres of allantoic fluid. Both the recovery of the virus and the degree of concentration and purification result satisfactory.

  8. Zonal flows and magnetic fields driven by large-amplitude Rossby-Alfvén-Khantadze waves in the E-layer ionosphere

    NASA Astrophysics Data System (ADS)

    Kaladze, T. D.; Horton, W.; Kahlon, L. Z.; Pokhotelov, O.; Onishchenko, O.

    2013-12-01

    waves and vortices in the weakly ionized ionospheric E layer are dominated by the Hall conductivity that couples the Rossby and Alfvén dynamics giving rise to what are called Rossby-Alfvén-Khantadze electromagnetic structures. At finite amplitudes we show that the nonlinearities in the dynamics generate sheared zonal-flow velocities and zonal magnetic field fluctuations. The zonal-flow mechanism is based on the parametric excitation of the zonal variations through three-wave mode coupling in the planetary-scale waves. The coupled dynamics of the nonlinear 3-D incompressible flows and the magnetic field fluctuations are derived and used to derive the structure and growth rates for the zonal flows and zonal magnetic fields. Large-amplitude planetary waves are shown to drive up magnetic fluctuations up to 100 nT.

  9. Computation of averaged monthly zonal albedo utilizing the solar zenith angle, properties of clear and cloudy atmospheres

    NASA Technical Reports Server (NTRS)

    Dhuria, H.

    1981-01-01

    The zonal temporal averages of albedos at the top of the atmosphere were considered as a function of the length of the day. The length of the day were used to determine the average daily values of mu sub 0(=Cos of the solar zenith angle, theta sub 0). Polynominal fits of the slope and intercept functions of A sub s (cloud-free albedo) and A sub c(cloud albedo) as function of Cos theta sub 0 were obtained by using the sample values of albedo corresponding to solar zenith angles from 0 to 90 deg with interval of 5 deg. The daily zonal values of mu sub 0 and the surface albedos were used to compute the daily zonal values of albedos at the top of the clear and cloudy atmosphere. The monthly zonal cloud fractions were used to compute planetary albedo A at the top of the atmosphere. The global values of monthly albedos A sub s, A sub c and A were computed by using the weighting function defined as the difference of the sins of zonal values of latitudes. The computer program implementation is also described.

  10. Wind generator

    SciTech Connect

    Wurtz, F.R.

    1980-01-29

    A wind operated generator is disclosed herein having a stationary frame or base rotatably supporting at least four sets of pivotal blades intended to be driven by impinging wind currents. Each set of blades operates in unison for opening and closing air passageways between adjacent ones of the blades as the sets of blades rotate about a common vertical axis. A wind direction sensor is provided which moves into the direction of the wind, and electro-mechanical or mechanical interface networks operably couple the wind direction sensor to the respective sets of blades whereby the blades are responsive to wind direction so as to be properly feathered to propel the sets of blades. By employment of the interface network, those blades that are in position to actuate or rotate the windmill will receive the full force of the wind while other blades which are not in a position to accomplish the proper operation will be turned to permit passage of the wind thereby.

  11. Wind energy.

    PubMed

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented.

  12. Wind energy.

    PubMed

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented. PMID:17272245

  13. Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0 - 120 km

    NASA Technical Reports Server (NTRS)

    Fleming, Eric L.; Chandra, Sushil; Schoeberl, Mark R.; Barnett, John J.

    1988-01-01

    A monthly mean climatology is presented of temperature, wind, and geopotential height with nearly pole-to-pole coverage (80 S to 80 N) for 0 to 210 km, which can be used as a function of altitude and pressure. The purpose is to provide a reference for various atmospheric research and analysis activities. Data sources and methods of computation are described; in general, hydrostatic and thermal wind balance are maintained at all levels and latitudes. As observed in a series of cross-sectional plots, this climatology accurately reproduces most of the characteristic features of the atmosphere such as equatorial wind and the general structure of the tropopause, stratopause, and mesopause. A series of zonal wind profiles is also represented comparing this climatological wind with monthly mean climatological direct wind measurements in the upper mesosphere and lower thermosphere. The temperature and zonal wind climatology at stratospheric levels is compared with corresponding data from the National Meteorological Center, and general agreement is observed between the two data sets. Tables of the climatological values as a function of latitude and height for each month are contained in Appendix B, and are also available in floppy disk.

  14. Shear-flow trapped-ion-mode interaction revisited. I. Influence of low-frequency zonal flow on ion-temperature-gradient driven turbulence

    SciTech Connect

    Ghizzo, A.; Palermo, F.

    2015-08-15

    Collisionless trapped ion modes (CTIMs) turbulence exhibits a rich variety of zonal flow physics. The coupling of CTIMs with shear flow driven by the Kelvin-Helmholtz (KH) instability has been investigated. The work explores the parametric excitation of zonal flow modified by wave-particle interactions leading to a new type of resonant low-frequency zonal flow. The KH-CTIM interaction on zonal flow growth and its feedback on turbulence is investigated using semi-Lagrangian gyrokinetic Vlasov simulations based on a Hamiltonian reduction technique, where both fast scales (cyclotron plus bounce motions) are gyro-averaged.

  15. The Brown Alga Stypopodium zonale (Dictyotaceae): A Potential Source of Anti-Leishmania Drugs.

    PubMed

    Soares, Deivid Costa; Szlachta, Marcella Macedo; Teixeira, Valéria Laneuville; Soares, Angelica Ribeiro; Saraiva, Elvira Maria

    2016-01-01

    This study evaluated the anti-Leishmania amazonensis activity of a lipophilic extract from the brown alga Stypopodium zonale and atomaric acid, its major compound. Our initial results revealed high inhibitory activity for intracellular amastigotes in a dose-dependent manner and an IC50 of 0.27 μg/mL. Due to its high anti-Leishmania activity and low toxicity toward host cells, we fractionated the lipophilic extract. A major meroditerpene in this extract, atomaric acid, and its methyl ester derivative, which was obtained by a methylation procedure, were identified by nuclear magnetic resonance (NMR) spectroscopy. Both compounds inhibited intracellular amastigotes, with IC50 values of 20.2 μM (9 μg/mL) and 22.9 μM (10 μg/mL), and selectivity indexes of 8.4 μM and 11.5 μM. The leishmanicidal activity of both meroditerpenes was independent of nitric oxide (NO) production, but the generation of reactive oxygen species (ROS) may be at least partially responsible for the amastigote killing. Our results suggest that the lipophilic extract of S. zonale may represent an important source of compounds for the development of anti-Leishmania drugs. PMID:27618071

  16. The Brown Alga Stypopodium zonale (Dictyotaceae): A Potential Source of Anti-Leishmania Drugs

    PubMed Central

    Soares, Deivid Costa; Szlachta, Marcella Macedo; Teixeira, Valéria Laneuville; Soares, Angelica Ribeiro; Saraiva, Elvira Maria

    2016-01-01

    This study evaluated the anti-Leishmania amazonensis activity of a lipophilic extract from the brown alga Stypopodium zonale and atomaric acid, its major compound. Our initial results revealed high inhibitory activity for intracellular amastigotes in a dose-dependent manner and an IC50 of 0.27 μg/mL. Due to its high anti-Leishmania activity and low toxicity toward host cells, we fractionated the lipophilic extract. A major meroditerpene in this extract, atomaric acid, and its methyl ester derivative, which was obtained by a methylation procedure, were identified by nuclear magnetic resonance (NMR) spectroscopy. Both compounds inhibited intracellular amastigotes, with IC50 values of 20.2 μM (9 μg/mL) and 22.9 μM (10 μg/mL), and selectivity indexes of 8.4 μM and 11.5 μM. The leishmanicidal activity of both meroditerpenes was independent of nitric oxide (NO) production, but the generation of reactive oxygen species (ROS) may be at least partially responsible for the amastigote killing. Our results suggest that the lipophilic extract of S. zonale may represent an important source of compounds for the development of anti-Leishmania drugs. PMID:27618071

  17. The Brown Alga Stypopodium zonale (Dictyotaceae): A Potential Source of Anti-Leishmania Drugs.

    PubMed

    Soares, Deivid Costa; Szlachta, Marcella Macedo; Teixeira, Valéria Laneuville; Soares, Angelica Ribeiro; Saraiva, Elvira Maria

    2016-09-08

    This study evaluated the anti-Leishmania amazonensis activity of a lipophilic extract from the brown alga Stypopodium zonale and atomaric acid, its major compound. Our initial results revealed high inhibitory activity for intracellular amastigotes in a dose-dependent manner and an IC50 of 0.27 μg/mL. Due to its high anti-Leishmania activity and low toxicity toward host cells, we fractionated the lipophilic extract. A major meroditerpene in this extract, atomaric acid, and its methyl ester derivative, which was obtained by a methylation procedure, were identified by nuclear magnetic resonance (NMR) spectroscopy. Both compounds inhibited intracellular amastigotes, with IC50 values of 20.2 μM (9 μg/mL) and 22.9 μM (10 μg/mL), and selectivity indexes of 8.4 μM and 11.5 μM. The leishmanicidal activity of both meroditerpenes was independent of nitric oxide (NO) production, but the generation of reactive oxygen species (ROS) may be at least partially responsible for the amastigote killing. Our results suggest that the lipophilic extract of S. zonale may represent an important source of compounds for the development of anti-Leishmania drugs.

  18. The global atmospheric response to low-frequency tropical forcing: Zonally averaged basic states

    NASA Technical Reports Server (NTRS)

    Li, Long; Nathan, Terrence R.

    1994-01-01

    The extratropical response to localized, low-frequency tropical forcing is examined using a linearized, non-divergent barotropic model on a sphere. Zonal-mean basic states characterized by solid-body rotation or critical latitudes are considered. An analytical analysis based on WKB and ray tracing methods shows that, in contrast to stationary Rossby waves, westward moving, low-frequency Rossby waves can propagate through the tropical easterlies into the extratropics. It is shown analytically that the difference between the stationary and low-frequency ray paths is proportional to the forcing frequency and inversely proportional to the zonal wavenumber cubed. An expression for the disturbance amplitude is derived that shows the ability of the forced waves to maintain their strength well into middle latitudes depends on their meridional wave scale and northward group velocity, both of which are functions of the slowly varying background flow. A local energetics analysis shows that the combination of energy dispersion from the forcing region and energy extraction from the equatorward flank of the midlatitude jet produces disturbances that have the greatest impact on the extratropical circulation. Under the assumption that the forcing amplitude is independent of frequency, this impact is largest when the tropical forcing period is in the range 10-20 days.

  19. The switching between zonal and blocked mid-latitude atmospheric circulation: a dynamical system perspective

    NASA Astrophysics Data System (ADS)

    Faranda, Davide; Masato, Giacomo; Moloney, Nicholas; Sato, Yuzuru; Daviaud, Francois; Dubrulle, Bérengère; Yiou, Pascal

    2016-09-01

    Atmospheric mid-latitude circulation is dominated by a zonal, westerly flow. Such a flow is generally symmetric, but it can be occasionally broken up by blocking anticyclones. The subsequent asymmetric flow can persist for several days. In this paper, we apply new mathematical tools based on the computation of an extremal index in order to reexamine the dynamical mechanisms responsible for the transitions between zonal and blocked flows. We discard the claim that mid-latitude circulation features two distinct stable equilibria or chaotic regimes, in favor of a simpler mechanism that is well understood in dynamical systems theory: we identify the blocked flow as an unstable fixed point (or saddle point) of a single basin chaotic attractor, dominated by the westerlies regime. We also analyze the North Atlantic Oscillation and the Arctic Oscillation atmospheric indices, whose behavior is often associated with the transition between the two circulation regimes, and investigate analogies and differences with the bidimensional blocking indices. We find that the Arctic Oscillation index, which can be thought as a proxy for a hemispheric average of the Tibaldi-Molteni blocking index, tracks unstable fixed points. On the other hand, the North Atlantic Oscillation, representative only for local properties of the North Atlantic blocking dynamics, does not show any trace of the presence of unstable fixed points of the dynamics.

  20. Zonal heterogeneity of the effects of chronic ethanol feeding on hepatic fatty acid metabolism.

    PubMed

    Guzman, M; Castro, J

    1990-11-01

    Periportal and perivenous hepatocytes were isolated from rats fed a high-fat, ethanol-containing diet to investigate the acinar heterogeneity of the effects of prolonged ethanol administration on lipid metabolism. Chronic feeding of ethanol caused a rather selective accumulation of triacylglycerols in the perivenous zone of the liver. In control animals the rate of lipogenesis and the activity of acetyl-CoA carboxylase were higher in perivenous than in periportal hepatocytes, whereas the rate of fatty acid oxidation and the activity of carnitine palmitoyltransferase I were higher in periportal than in perivenous cells; however, no zonation was evident for very-low-density-lipoprotein-lipid secretion. Prolonged ethanol administration abolished the zonal asymmetry of the lipogenic process and inverted the acinar distribution of the fatty acid-oxidative process (i.e., in ethanol-fed animals the rate of fatty acid oxidation and the activity of carnitine palmitoyltransferase I were higher in perivenous than in periportal hepatocytes). Moreover, chronic feeding of ethanol led to a marked and selective inhibition of very-low-density-lipoprotein-triacylglycerol secretion by the perivenous zone of the liver. Nevertheless, no zonal differences were observed between control and ethanol-fed animals with respect to the effects of acute doses of ethanol and acetaldehyde on lipid metabolism. In conclusion, our results show that chronic ethanol intake produces important alterations in the acinar distribution of the different fatty acid-metabolizing pathways.

  1. Centrilobular zonal necrosis as a hallmark of a distinctive subtype of autoimmune hepatitis

    PubMed Central

    Abe, Hiroshi; Sugita, Tomonori; Seki, Nobuyoshi; Chuganji, Yoshimichi; Furumoto, Youhei; Sakata, Akihiko

    2016-01-01

    Background and aim Centrilobular zonal necrosis (CZN) is a known histological variant of autoimmune hepatitis (AIH). However, the significance of CZN is yet to be fully elucidated. This study aimed to determine whether CZN is a hallmark of a distinctive subtype of AIH. Methods Histological changes in the centrilobular zones of liver biopsies from 113 AIH patients were assessed by a single pathologist and classified into three categories: typical zonal necrosis defined as CZN (15 patients); other necroinflammatory change (NIC; 24 patients); and absence of necrosis (non-NIC; 74 patients). The clinicopathological features and immunogenetic background of CZN patients were then assessed. Results The clinicopathological features of AIH with CZN were distinct from other types of AIH, including a higher frequency of acute onset, lower frequency of antinuclear antibodies, lower antinuclear antibody titers, lower serum immunoglobulin G levels, lower grade interface hepatitis, less prominent lymphoplasmacytic infiltration, and lower AIH score. Increased and decreased frequencies of HLA-DR9 and HLA-DR4, respectively, were identified as immunogenetic features of AIH with CZN. Conversely, the clinicopathological characteristics of AIH with NIC were similar to those of non-NIC AIH, including the majority of the AIH patients. The therapeutic outcomes of AIH with CZN were excellent when precise diagnoses were made without delay. Conclusion The clinicopathological features and immunogenetic background of AIH with CZN differed from AIH without CZN. CZN may be a hallmark of a distinct subtype of AIH. PMID:26657454

  2. Zonal Toroidal Harmonic Expansions of External Gravitational Fields for Ring-like Objects

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2016-08-01

    We present an expression of the external gravitational field of a general ring-like object with axial and plane symmetries such as oval toroids or annular disks with an arbitrary density distribution. The main term is the gravitational field of a uniform, infinitely thin ring representing the limit of zero radial width and zero vertical height of the object. The additional term is derived from a zonal toroidal harmonic expansion of a general solution of Laplace’s equation outside the Brillouin toroid of the object. The special functions required are the point value and the first-order derivative of the zonal toroidal harmonics of the first kind, namely, the Legendre function of the first kind of half integer degree and an argument that is not less than unity. We developed a recursive method to compute them from two pairs of seed values explicitly expressed by some complete elliptic integrals. Numerical experiments show that appropriately truncated expansions converge rapidly outside the Brillouin toroid. The truncated expansion can be evaluated so efficiently that, for an oval toroid with an exponentially damping density profile, it is 3000–10,000 times faster than the two-dimensional numerical quadrature. A group of the Fortran 90 programs required in the new method and their sample outputs are available electronically.

  3. A two-dimensional approach to modelling the short timescale zonal flow in Earth's core

    NASA Astrophysics Data System (ADS)

    More, C.; Dumberry, M.

    2015-12-01

    Reconstructions of flow in Earth's outer core based on surface magnetic data predict mean zonal accelerations on several timescales. Since accelerations in the core couple to the angular momentum of the mantle, their existence has been confirmed by length-of-day observations. Recent studies suggest that free modes of torsional oscillations are responsible for relatively weak signals with a 5-6 year period. The mechanisms responsible for stronger decadal signals are less well understood.To address the problem, we construct a quasi-geostrophic model of magnetoconvection, with thermally-driven flows perturbing a steady, imposed background magnetic field. This approach is justified by the Taylor-Proudman theorem, in which velocities in a rapidly rotating system vary little parallel to the rotational axis. Using only two dimensions allows a much more rapid exploration of parameter space than traditional three-dimensional approaches.Our model is capable of producing mean zonal accelerations similar to those predicted by the geomagnetic reconstructions of Earth. In particular, we see a clear separation in period between the free modes (short) and forced modes (long) of torsional oscillations. We then systematically run the model with a variety of parameters, attempting to extrapolate our results to the conditions found in Earth's core.

  4. Zonal Toroidal Harmonic Expansions of External Gravitational Fields for Ring-like Objects

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2016-08-01

    We present an expression of the external gravitational field of a general ring-like object with axial and plane symmetries such as oval toroids or annular disks with an arbitrary density distribution. The main term is the gravitational field of a uniform, infinitely thin ring representing the limit of zero radial width and zero vertical height of the object. The additional term is derived from a zonal toroidal harmonic expansion of a general solution of Laplace’s equation outside the Brillouin toroid of the object. The special functions required are the point value and the first-order derivative of the zonal toroidal harmonics of the first kind, namely, the Legendre function of the first kind of half integer degree and an argument that is not less than unity. We developed a recursive method to compute them from two pairs of seed values explicitly expressed by some complete elliptic integrals. Numerical experiments show that appropriately truncated expansions converge rapidly outside the Brillouin toroid. The truncated expansion can be evaluated so efficiently that, for an oval toroid with an exponentially damping density profile, it is 3000-10,000 times faster than the two-dimensional numerical quadrature. A group of the Fortran 90 programs required in the new method and their sample outputs are available electronically.

  5. Retrieval of the cyclostrophic wind in the Venus mesosphere from the VIRTIS/Venus Express temperature sounding.

    NASA Astrophysics Data System (ADS)

    Piccialli, Arianna; Titov, Dmitri; Grassi, Davide; Khatuntsev, Igor; Drossart, Pierre; Piccioni, Giuseppe; Migliorini, Alessandra

    Venus mesosphere is characterized by an extremely complex dynamics: a retrograde super rotation flow near the cloud top completes a full rotation of the planets in only four earth days and in the upper thermosphere a solar - antisolar circulation reaches speeds of 100 m/s. Earlier studies have shown that the strong zonal winds at cloud top are the result of local balance of pressure gradient and centripetal force which is called cyclostrophic balance. The thermal wind equation that describes this balance relates the vertical wind gradient to the latitudinal temperature gradient on isobaric levels. The temperature structure of Venus mesosphere has been observed with a good spatial and temporal coverage in the last two years from VIRTIS (Visual and Infrared Thermal Imaging Spectrometer) on board the Venus Express spacecraft. Here we present preliminary retrievals of the cyclostrophic wind derived from VIRTIS temperature sounding. The main features of the wind are 1) the midlatitude jet with a maximum speed of 80 - 90 ± 10 m/s which occurs around 50° S latitude at 70 km altitude; 2) the fast decrease of the wind speed from 60° S toward the pole; 3) the decrease of the wind speed with increasing height above the jet. The dependence of zonal wind on local time has been analysed, our preliminary results show that parameters of the mid-latitude jet only weekly depend on local solar time. Comparison with cloud - tracked wind derived from the Venus Monitoring Camera (VMC) show a general good agreement.

  6. Shear-flow trapped-ion-mode interaction revisited. II. Intermittent transport associated with low-frequency zonal flow dynamics

    SciTech Connect

    Ghizzo, A.; Palermo, F.

    2015-08-15

    We address the mechanisms underlying low-frequency zonal flow generation in turbulent system and the associated intermittent regime of ion-temperature-gradient (ITG) turbulence. This model is in connection with the recent observation of quasi periodic zonal flow oscillation at a frequency close to 2 kHz, at the low-high transition, observed in the ASDEX Upgrade [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)] and EAST tokamak [Xu et al., Phys. Rev. Lett 107, 125001 (2011)]. Turbulent bursts caused by the coupling of Kelvin-Helmholtz (KH) driven shear flows with trapped ion modes (TIMs) were investigated by means of reduced gyrokinetic simulations. It was found that ITG turbulence can be regulated by low-frequency meso-scale zonal flows driven by resonant collisionless trapped ion modes (CTIMs), through parametric-type scattering, a process in competition with the usual KH instability.

  7. Analysis of the effects of zonal averaging on reaction rate calculations in two-dimensional atmospheric models

    NASA Technical Reports Server (NTRS)

    Kaye, Jack A.

    1987-01-01

    The usual assumption by which chemical reaction rates are calculated in two-dimensional atmospheric models is by using a product of zonal means of rate coefficients and constituent concentrations rather than the rigorous zonal mean of the corresponding products. This assumption has been tested for the reactions O + NO2 yields NO + O2 and NO + O3 yields NO2 + O2 using mapped limb infrared monitor of the stratosphere data from the Nimbus 7 satellite and found to be quite satisfactory for winter 1979 at 60 deg N in the upper stratosphere. Relative differences between the two-dimensional averaged rate and the more rigorous rate, calculated from the full, longitudinally varying temperatures and mixing ratios, were small (usually below 5 percent) and exceeded 15 percent only during times of strong dynamical activity. At those times or locations where stratospheric circulation is primarily zonal, the two averages agreed to within a few percent.

  8. Detecting cross-equatorial wind change as a fingerprint of climate response to anthropogenic aerosol forcing

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Xie, Shang-Ping; Tokinaga, Hiroki; Liu, Qinyu; Kosaka, Yu

    2016-04-01

    Anthropogenic aerosols are a major driver of the twetieth century climate change. In climate models, the aerosol forcing, larger in the Northern than Southern Hemispheres, induces an interhemispheric Hadley circulation. In support of the model result, we detected a robust change in the zonal mean cross-equatorial wind over the past 60 years from ship observations and reanalyses, accompanied by physically consistent changes in atmospheric pressure and marine cloud cover. Single-forcing experiments indicate that the observed change in cross-equatorial wind is a fingerprint of aerosol forcing. This zonal mean mode follows the evolution of global aerosol forcing that is distinct from regional changes in the Atlantic sector. Atmospheric simulations successfully reproduce this interhemispheric mode, indicating the importance of sea surface temperature mediation in response to anthropogenic aerosol forcing. As societies awaken to reduce aerosol emissions, a phase reversal of this interhemispheric mode is expected in the 21st century.

  9. Direct evidence of stationary zonal flows and critical gradient behavior for Er during formation of the edge pedestal in JET

    NASA Astrophysics Data System (ADS)

    Hillesheim, Jon

    2015-11-01

    High spatial resolution measurements with Doppler backscattering in JET have provided new insights into the development of the edge radial electric field during pedestal formation. The characteristics of Er have been studied as a function of density at 2.5 MA plasma current and 3 T toroidal magnetic field. We observe fine-scale spatial structure in the edge Er well prior to the LH transition, consistent with stationary zonal flows. Zonal flows are a fundamental mechanism for the saturation of turbulence and this is the first direct evidence of stationary zonal flows in a tokamak. The radial wavelength of the zonal flows systematically decreases with density. The zonal flows are clearest in Ohmic conditions, weaker in L-mode, and absent in H-mode. Measurements also show that after neutral beam heating is applied, the edge Er builds up at a constant gradient into the core during L-mode, at radii where Er is mainly due to toroidal velocity. The local stability of velocity shear driven turbulence, such as the parallel velocity gradient mode, will be assessed with gyrokinetic simulations. This critical Er shear persists across the LH transition into H-mode. Surprisingly, a reduction in the apparent magnitude of the Er well depth is observed directly following the LH transition at high densities. Establishing the physics basis for the LH transition is important for projecting scalings to ITER and these observations challenge existing models based on increased Er shear or strong zonal flows as the trigger for the transition. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  10. Stellar Winds

    NASA Astrophysics Data System (ADS)

    Owocki, Stan

    A "stellar wind" is the continuous, supersonic outflow of matter from the surface layers of a star. Our sun has a solar wind, driven by the gas-pressure expansion of the hot (T > 106 K) solar corona. It can be studied through direct in situ measurement by interplanetary spacecraft; but analogous coronal winds in more distant solar-type stars are so tenuous and transparent that that they are difficult to detect directly. Many more luminous stars have winds that are dense enough to be opaque at certain wavelengths of the star's radiation, making it possible to study their wind outflows remotely through careful interpretation of the observed stellar spectra. Red giant stars show slow, dense winds that may be driven by the pressure from magnetohydrodyanmic waves. As stars with initial mass up to 8 M ⊙ evolve toward the Asymptotic Giant Branch (AGB), a combination of stellar pulsations and radiative scattering off dust can culminate in "superwinds" that strip away the entire stellar envelope, leaving behind a hot white dwarf stellar core with less than the Chandrasekhar mass of ˜ ​​ 1. 4M ⊙. The winds of hot, luminous, massive stars are driven by line-scattering of stellar radiation, but such massive stars can also exhibit superwind episodes, either as Red Supergiants or Luminous Blue Variable stars. The combined wind and superwind mass loss can strip the star's hydrogen envelope, leaving behind a Wolf-Rayet star composed of the products of earlier nuclear burning via the CNO cycle. In addition to such direct effects on a star's own evolution, stellar winds can be a substantial source of mass, momentum, and energy to the interstellar medium, blowing open large cavities or "bubbles" in this ISM, seeding it with nuclear processed material, and even helping trigger the formation of new stars, and influencing their eventual fate as white dwarves or core-collapse supernovae. This chapter reviews the properties of such stellar winds, with an emphasis on the various

  11. I. Thermal evolution of Ganymede and implications for surface features. II. Magnetohydrodynamic constraints on deep zonal flow in the giant planets. III. A fast finite-element algorithm for two-dimensional photoclinometry

    SciTech Connect

    Kirk, R.L.

    1987-01-01

    Thermal evolution of Ganymede from a hot start is modeled. On cooling ice I forms above the liquid H/sub 2/O and dense ices at higher entropy below it. A novel diapiric instability is proposed to occur if the ocean thins enough, mixing these layers and perhaps leading to resurfacing and groove formation. Rising warm-ice diapirs may cause a dramatic heat pulse and fracturing at the surface, and provide material for surface flows. Timing of the pulse depends on ice rheology but could agree with crater-density dates for resurfacing. Origins of the Ganymede-Callisto dichotomy in light of the model are discussed. Based on estimates of the conductivity of H/sub 2/ (Jupiter, Saturn) and H/sub 2/O (Uranus, Neptune), the zonal winds of the giant planets will, if they penetrate below the visible atmosphere, interact with the magnetic field well outside the metallic core. The scaling argument is supported by a model with zonal velocity constant on concentric cylinders, the Lorentz torque on each balanced by viscous stresses. The problem of two-dimensional photoclinometry, i.e. reconstruction of a surface from its image, is formulated in terms of finite elements and a fast algorithm using Newton-SOR iteration accelerated by multigridding is presented.

  12. The Huygens Doppler Wind Experiment - Titan Winds Derived from Probe Radio Frequency Measurements

    NASA Astrophysics Data System (ADS)

    Bird, M. K.; Dutta-Roy, R.; Heyl, M.; Allison, M.; Asmar, S. W.; Folkner, W. M.; Preston, R. A.; Atkinson, D. H.; Edenhofer, P.; Plettemeier, D.; Wohlmuth, R.; Iess, L.; Tyler, G. L.

    2002-07-01

    A Doppler Wind Experiment (DWE) will be performed during the Titan atmospheric descent of the ESA Huygens Probe. The direction and strength of Titan's zonal winds will be determined with an accuracy better than 1 m s-1 from the start of mission at an altitude of ~160 km down to the surface. The Probe's wind-induced horizontal motion will be derived from the residual Doppler shift of its S-band radio link to the Cassini Orbiter, corrected for all known orbit and propagation effects. It is also planned to record the frequency of the Probe signal using large ground-based antennas, thereby providing an additional component of the horizontal drift. In addition to the winds, DWE will obtain valuable information on the rotation, parachute swing and atmospheric buffeting of the Huygens Probe, as well as its position and attitude after Titan touchdown. The DWE measurement strategy relies on experimenter-supplied Ultra-Stable Oscillators to generate the transmitted signal from the Probe and to extract the frequency of the received signal on the Orbiter. Results of the first in-flight checkout, as well as the DWE Doppler calibrations conducted with simulated Huygens signals uplinked from ground (Probe Relay Tests), are described. Ongoing efforts to measure and model Titan's winds using various Earth-based techniques are briefly reviewed.

  13. The Huygens Doppler Wind Experiment - Titan Winds Derived from Probe Radio Frequency Measurements

    NASA Astrophysics Data System (ADS)

    Bird, M. K.; Dutta-Roy, R.; Heyl, M.; Allison, M.; Asmar, S. W.; Folkner, W. M.; Preston, R. A.; Atkinson, D. H.; Edenhofer, P.; Plettemeier, D.; Wohlmuth, R.; Iess, L.; Tyler, G. L.

    2002-07-01

    A Doppler Wind Experiment (DWE) will be performed during the Titan atmospheric descent of the ESA Huygens Probe. The direction and strength of Titan's zonal winds will be determined with an accuracy better than 1 m s-1 from the start of mission at an altitude of ˜160 km down to the surface. The Probe's wind-induced horizontal motion will be derived from the residual Doppler shift of its S-band radio link to the Cassini Orbiter, corrected for all known orbit and propagation effects. It is also planned to record the frequency of the Probe signal using large ground-based antennas, thereby providing an additional component of the horizontal drift. In addition to the winds, DWE will obtain valuable information on the rotation, parachute swing and atmospheric buffeting of the Huygens Probe, as well as its position and attitude after Titan touchdown. The DWE measurement strategy relies on experimenter-supplied Ultra-Stable Oscillators to generate the transmitted signal from the Probe and to extract the frequency of the received signal on the Orbiter. Results of the first in-flight checkout, as well as the DWE Doppler calibrations conducted with simulated Huygens signals uplinked from ground (Probe Relay Tests), are described. Ongoing efforts to measure and model Titan's winds using various Earth-based techniques are briefly reviewed.

  14. Filament winding

    NASA Astrophysics Data System (ADS)

    Shibley, A. M.

    The major aspects of filament winding are discussed, emphasizing basic reinforcement and matrix materials, winding procedures, process controls, and cured composite properties. Fiberglass (E-glass and S-glass strengths are 500,000 and 665,000 psi respectively) and polyester resins are the principal reinforcement constituent materials. Graphite and aramid reinforcements are being used more frequently, primarily for the more critical pressure vessels. Matrix systems are most commonly based on epoxy as it has superior mechanical properties, fatigue behavior, and heat resistance as compard with polyesters. A fiberglass overwrap of PVC pipe is an anticipated development in on-site winding and combination winding, and the compression molding of filament wound lay-ups will be investigated. The fabrication of weight-sensitive structural components may be achieved by using such moldings.

  15. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ...-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel...

  16. The role of the southward wind shift in both, the seasonal synchronization and duration of ENSO events

    NASA Astrophysics Data System (ADS)

    Abellán, Esteban; McGregor, Shayne

    2016-07-01

    Near the end of the calendar year, when El Niño events typically reach their peak amplitude, there is a southward shift of the zonal wind anomalies, which were centred around the equator prior to the event peak. Previous studies have shown that ENSO's anomalous wind stresses, including this southward shift, can be reconstructed with the two leading EOFs of wind stresses over the tropical Pacific. Here a hybrid coupled model is developed, featuring a statistical atmosphere that utilises these first two EOFs along with a linear shallow water model ocean, and a stochastic westerly wind burst model. This hybrid coupled model is then used to assess the role of this meridional wind movement on both the seasonal synchronization as well as the duration of the events. It is found that the addition of the southward wind shift in the model leads to a Christmas peak in variance, similar to the observed timing, although with weaker amplitude. We also find that the added meridional wind movement enhances the termination of El Niño events, making the events shorter, while this movement does not appear to play an important role on the duration of La Niña events. Thus, our results strongly suggest that the meridional movement of ENSO zonal wind anomalies is at least partly responsible for seasonal synchronization of ENSO events and the duration asymmetry between the warm (El Niño) and cool (La Niña) phases.

  17. Seasonal variations in the equatorial thermospheric wind measured at Arequipa, Peru

    SciTech Connect

    Biondi, M.A.; Merriwether, J.W.; Fejer, B.G.; Gonzalez, S.A.

    1990-08-01

    Studies have been carried out Arequipa, Peru, of the seasonal variations in the thermospheric winds at moderate solar flux levels and geomagnetic activity. Fabry-Perot interferometer measurements of the doppler shifts in the 630.0 nm nightglow emission line from March to August 1983 and from April to October 1988 have yielded monthly-average meridional winds that are nearly zero (<50 m/s) and possible fluctuating in direction through much of the night but develop a southward flow at 50 - 100 m/s in the early and the late night from May onward. The average zonal winds are eastward throughout the night, reaching peak velocities before local midnight and then decreasing. The peak velocities increase to a maximum around the June solstice. The winds are generally stronger in 1988 than in 1983, even thought the solar EUV fluxes are comparable fro both years. Comparison of the present results with earlier satellite measurements, as embodied in the Horizontal Wind Model of Hedin et al., reveals generally satisfactory agreement at the equinox and June solstice, except for the June 1988 period. NCAR Therospheric General Circulation Model, calculated for similar solar flux levels, yields meridional and zonal wind variations which exhibit the same temporal behaviors but generally smaller values than the present measurements.

  18. Wind influence on surface current variability in the Ibiza Channel from HF Radar

    NASA Astrophysics Data System (ADS)

    Lana, Arancha; Marmain, Julien; Fernández, Vicente; Tintoré, Joaquin; Orfila, Alejandro

    2016-04-01

    Surface current variability is investigated using 2.5 years of continuous velocity measurements from an high frequency radar (HFR) located in the Ibiza Channel (Western Mediterranean Sea). The Ibiza Channel is identified as a key geographical feature for the exchange of water masses but still poorly documented. Operational, quality controlled, HFR derived velocities are provided by the Balearic Islands Coastal Observing and Forecasting System (SOCIB). They are assessed by performing statistical comparisons with current-meter, ADCP, and surface lagrangian drifters. HFR system does not show significant bias, and its accuracy is in accordance with previous studies performed in other areas. The main surface circulation patterns are deduced from an EOF analysis. The first three modes represent almost 70 % of the total variability. A cross-correlation analysis between zonal and meridional wind components and the temporal amplitudes of the first three modes reveal that the first two modes are mainly driven by local winds, with immediate effects of wind forcing and veering following Ekman effect. The first mode (37 % of total variability) is the response of meridional wind while the second mode (24 % of total variability) is linked primarily with zonal winds. The third and higher order modes are related to mesoscale circulation features. HFR derived surface transport presents a markedly seasonal variability being mostly southwards. Its comparison with Ekman-induced transport shows that wind contribution to the total surface transport is on average around 65 %.

  19. Mid- and low-latitude prompt-penetration ionospheric zonal plasma drifts

    NASA Astrophysics Data System (ADS)

    Fejer, Bela G.; Scherliess, Ludger

    We have used ion drift observations from the DE-2 satellite to determine the latitudinal variation and the temporal evolution of mid- and low-latitude prompt penetration zonal plasma drifts driven by magnetospheric electric fields. Our results indicate that sudden increases in convection lead to predominantly westward perturbation drifts which decrease equartorwards and have largest amplitudes in the dusk-midnight sector. The diurnal perturbation drift patterns shift to later local times with increasing storm time and decay to new quasi-equilibrium values in about 2 hours, as the ring current readjusts to the new polar cap potential. The daily and latitudinal variations and temporal evolution of the DE-2 prompt penetration drifts are generally in good agreement with predictions from the Rice Convection Model, although the experimental results show larger amplitudes and longer shielding time constants.

  20. The long-term behavior of near-circular orbits in a zonal gravity field

    NASA Technical Reports Server (NTRS)

    Cook, Richard A.

    1992-01-01

    A simple solution has been developed for the long term behavior of a near-circular orbit in a zonal gravity field. The solution is obtained by linearizing the singly averaged variational equations of motion and eliminating a degree of freedom with an integral of motion. The resulting solution is expressed in semiequinoctial elements (h and k), and has either an exponential or periodic form. The type of solution is dependent upon a stability factor determined by the inclination and the values of the gravity field coefficients. Frozen orbits correspond to the equilibrium solutions of the set of simplified variational equations. An approximate expression for the location of these orbits has been developed and can be useful for certain mission design applications.

  1. Small scale coherent vortex generation in drift wave-zonal flow turbulence

    SciTech Connect

    Guo, Z. B. Hahm, T. S.; Diamond, P. H.

    2015-12-15

    We present a paradigm for the generation of small scale coherent vortex (SSCV) in drift wave-zonal flow (DW-ZF) turbulence. We demonstrate that phases of DWs can couple coherently, mediated by the ZF shearing. A SSCV is formed when the phases of the DWs are “attracted” to form a stable “phase cluster.” We show that the ZF shearing induces asymmetry between “attractive” and “repulsive” phase couplings, so that a net attractive phase coupling results. The turbulent DWs will (partially)synchronize into a stable SSCV at locations, where the attractive phase coupling induced by the ZF shearing exceeds the “detuning” effects by the DW dispersion and random phase scattering. We also discuss the “self-binding” effect of the newly formed SSCV.

  2. Using box models to quantify zonal distributions and emissions of halocarbons in the background atmosphere.

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Nance, J. D.; Dutton, G. S.; Montzka, S. A.; Hall, B. D.; Miller, B.; Butler, J. H.; Mondeel, D. J.; Siso, C.; Moore, F. L.; Hintsa, E. J.; Wofsy, S. C.; Rigby, M. L.

    2015-12-01

    The Halocarbons and other Atmospheric Trace Species (HATS) of NOAA's Global Monitoring Division started measurements of the major chlorofluorocarbons and nitrous oxide in 1977 from flask samples collected at five remote sites around the world. Our program has expanded to over 40 compounds at twelve sites, which includes six in situ instruments and twelve flask sites. The Montreal Protocol for Substances that Deplete the Ozone Layer and its subsequent amendments has helped to decrease the concentrations of many of the ozone depleting compounds in the atmosphere. Our goal is to provide zonal emission estimates for these trace gases from multi-box models and their estimated atmospheric lifetimes in this presentation and make the emission values available on our web site. We plan to use our airborne measurements to calibrate the exchange times between the boxes for 5-box and 12-box models using sulfur hexafluoride where emissions are better understood.

  3. Radiative modelling by the zonal method and WSGG model in inhomogeneous axisymmetric cylindrical enclosure

    NASA Astrophysics Data System (ADS)

    Méchi, Rachid; Farhat, Habib; Said, Rachid

    2016-01-01

    Nongray radiation calculations are carried out for a case problem available in the literature. The problem is a non-isothermal and inhomogeneous CO2-H2O- N2 gas mixture confined within an axisymmetric cylindrical furnace. The numerical procedure is based on the zonal method associated with the weighted sum of gray gases (WSGG) model. The effect of the wall emissivity on the heat flux losses is discussed. It is shown that this property affects strongly the furnace efficiency and that the most important heat fluxes are those leaving through the circumferential boundary. The numerical procedure adopted in this work is found to be effective and may be relied on to simulate coupled turbulent combustion-radiation in fired furnaces.

  4. A parameterization of eddy transfer coefficients for two-level seasonal statistical dynamical zonally averaged models

    NASA Technical Reports Server (NTRS)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1989-01-01

    This paper examines a parameterization of a quasi-geostrophic eddy transport that takes into account the time variation of eddy transfer coefficients according to Green's (1970) theory. It was found that, in the original eddy transfer relationship of Green, connecting the integral of the northward eddy entropy flux through midlatitudes with the second power of the difference in 500-mb entropy across the region of baroclinic activity, a value of 4 for the exponent is obtained when the temperature gradients at 500 mb are used. When the gradients at 1000 mb are used, an exponent of 1.5 is obtained. The differences in the powers in the eddy transfer relation were explored in a two-level zonally averaged model. It was found that an appropriate choice of power may be of special importance if the model is devised to simulate the seasonal climate cycle or to test astronomical changes inducing different seasonalities.

  5. Modes of zonal mean temperature variability 20-100 km from the TIMED/SABER observations

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Sheng, Z.; Shi, H. Q.

    2014-03-01

    In this study we investigate the spatial variabilities of the zonal mean temperature (20-100 km) from the TIMED (Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics)/SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) satellite using the empirical orthogonal functions (EOFs). After removing the climatological annual mean, the first three EOFs are able to explain 87.0% of temperature variabilities. The primary EOF represents 74.1% of total anomalies and is dominated by the north-south contrast. Patterns in the second and third EOFs are related to the semiannual oscillations (SAO) and mesospheric temperature inversions (MTI), respectively. The quasi-biennial oscillation (QBO) component is also decomposed into the seventh EOF with contributions of 1.2%. Last, we use the first three modes and annual mean temperature to reconstruct the data. The result shows small differences are in low latitude, which increase with latitude in the middle stratosphere and upper mesosphere.

  6. Observations of zonal flows in electrode biasing experiments on the Joint Texas Experimental tokamak

    NASA Astrophysics Data System (ADS)

    Shen, H. G.; Lan, T.; Chen, Z. P.; Kong, D. F.; Zhao, H. L.; Wu, J.; Sun, X.; Liu, A. D.; Xie, J. L.; Li, H.; Ding, W. X.; Liu, W. D.; Yu, C. X.; Xu, M.; Sun, Y.; Liu, H.; Wang, Z. J.; Zhuang, G.

    2016-04-01

    Zonal flows (ZFs) are observed during the electrode biasing (EB) high confinement mode (H-mode) using Langmuir probe arrays on the edge of J-TEXT tokamak. The long-distance correlation characteristics of floating potentials and interactions with turbulence are studied. During positive biasing H-mode, either the geodesic acoustic mode or low frequency ZF increases. Strong suppression of radial transport by ZFs is found in the low frequency region. The components of the radial particle flux without and with EB are compared in the frequency domain. The interaction between ZFs and ambient turbulence is also discussed. The results show that the rate of ZFs' shear is comparable with that of E × B shear, suggesting that ZFs could be the trigger of the biasing H-mode.

  7. Present-day secular variations in the zonal harmonics of earth's geopotential

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Peltier, W. R.

    1993-01-01

    The mathematical formulation required for predicting secular variation in the geopotential is developed for the case of a spherically symmetric, self-gravitating, viscoelastic earth model and an arbitrary surface load which can include a gravitational self-consistent ocean loading component. The theory is specifically applied to predict the present-day secular variation in the zonal harmonics of the geopotenial arising from the surface mass loading associated with the late Pleistocene glacial cycles. A procedure is outlined in which predictions of the present-day geopotential signal due to the late Pleistocene glacial cycles may be used to derive bounds on the net present-day mass flux from the Antarctic and Greenland ice sheets to the local oceans.

  8. Effects of energetic particles on zonal flow generation by toroidal Alfvén eigenmode

    NASA Astrophysics Data System (ADS)

    Qiu, Z.; Chen, L.; Zonca, F.

    2016-09-01

    Generation of zonal flow (ZF) by energetic particle (EP) driven toroidal Alfvén eigenmode (TAE) is investigated using nonlinear gyrokinetic theory. It is found that nonlinear resonant EP contribution dominates over the usual Reynolds and Maxwell stresses due to thermal plasma nonlinear response. ZF can be forced driven in the linear growth stage of TAE, with the growth rate being twice the TAE growth rate. The ZF generation mechanism is shown to be related to polarization induced by resonant EP nonlinearity. The generated ZF has both the usual meso-scale and micro-scale radial structures. Possible consequences of this forced driven ZF on the nonlinear dynamics of TAE are also discussed.

  9. A zonal computational procedure adapted to the optimization of two-dimensional thrust augmentor inlets

    NASA Technical Reports Server (NTRS)

    Lund, T. S.; Tavella, D. A.; Roberts, L.

    1985-01-01

    A viscous-inviscid interaction methodology based on a zonal description of the flowfield is developed as a mean of predicting the performance of two-dimensional thrust augmenting ejectors. An inviscid zone comprising the irrotational flow about the device is patched together with a viscous zone containing the turbulent mixing flow. The inviscid region is computed by a higher order panel method, while an integral method is used for the description of the viscous part. A non-linear, constrained optimization study is undertaken for the design of the inlet region. In this study, the viscous-inviscid analysis is complemented with a boundary layer calculation to account for flow separation from the walls of the inlet region. The thrust-based Reynolds number as well as the free stream velocity are shown to be important parameters in the design of a thrust augmentor inlet.

  10. Zonal representation-based residual-wavefront reconstruction using multiframe Shack-Hartmann measurements

    NASA Astrophysics Data System (ADS)

    Guo, Shiping; Zhang, Rongzhi; Li, Jisheng; Zou, Jianhua; Xu, Rong; Liu, Changhai

    2015-11-01

    Atmospheric turbulence-induced wavefront deformation can be only partially corrected by adaptive optics (AO) techniques in astronomical or artificial space object imaging; an accurate estimation of the residual-wavefront phase is still needed to approach the diffraction-limited resolution. The discrete phase gradients measured by Shack-Hartmann wavefront sensors (SHWFS) can help with the estimation. In this study, we build a dynamic average slopes measurement model for SHWFS in short-exposure AO images postprocessing; the proposed model is based on a zonal representation of the wavefront phase using Bernstein basis polynomials instead of the traditional Zernike modal expansion. Further, the turbulence's frozen flow hypothesis is adopted to update the initial model using multiframe SHWFS measurement data to achieve a more accurate reconstruction. Numerical experiments show the reconstruction errors significantly decrease even in poor seeing conditions, and show that our method is less sensitive to different SHWFS measurement noise levels.

  11. Purification of large quantities of coxiella burnetii rickettsia by density gradient zonal centrifugation.

    PubMed

    Canonico, P G; Van Zwieten, M J; Christmas, W A

    1972-05-01

    The purification of large quantities of inactivated, phase II Coxiella burnetii by isopycnic zonal centrifugation for use as diagnostic antigen and as a vaccine is described. The fractionation of egg yolk sac-derived C. burnetii vaccine resulted in the separation of two distinct populations of organisms, each devoid of microscopically and serologically recognizable components of egg yolk sac. One population of organisms, characterized by an equilibrium density of 1.240, was rod shaped (1.0 by 0.5 mumole) with a thick, densely strained wall and prominent central body. The second population, with an equilibrium density of 1.280, had a coccobacillary shape (approximately 1 mumole in diameter), granular, sometimes fibrillar cytoplasm, thin cellular walls, and lacked a prominent nucleoid.

  12. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures.

    PubMed

    Douglas, Peter M J; Affek, Hagit P; Ivany, Linda C; Houben, Alexander J P; Sijp, Willem P; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-05-01

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands.

  13. The Influence of the Zonal Wave Three on Antarctic Sea Ice during Ice Advance Season

    NASA Astrophysics Data System (ADS)

    Khan, H. M.; Raphael, M. N.

    2015-12-01

    Previous works have looked at the influence of key atmospheric circulation patterns on sea ice in the Antarctic in terms of the atmosphere's seasonal cycle. This study examines the influence of one of these atmospheric patterns, the zonal wave three (ZW3), in terms of the sea ice's seasons from 1979-2009 in order to better understand the response of the sea ice. An index to represent the amplitude of the ZW3 was calculated using zonal anomalies of 850 hPa geopotential heights taken from the ERA-Interim data set. Sea ice concentrations (SIC), taken from the Hadley Center sea ice and sea surface temperature data set, were found to be significantly positively correlated with the ZW3 index during the ice advance season (March to August) in the Ross and Weddell Seas and off the Amery ice shelf. These regions align with where cold, southerly flow associated with the ZW3 are found. In the Amundsen-Bellingshausen Seas region, SIC was found to be negatively correlated with the ZW3 index, which coincides with where the warm, northerly flow of the wave is found in this region. Regression analysis showed SIC to be significantly dependent upon the ZW3 in parts of the Ross Sea, the ice edge in the Amundsen-Bellingshausen Seas and off the Amery ice shelf during ice advance season. The results suggest that the ZW3 plays a role in the occurrence of the observed sea ice trends in the Ross Sea, Amundsen-Bellingshausen Seas, Weddell Sea and off the Amery ice shelf regions during the ice advance season, the critical period for sea ice growth. The results also demonstrate that re-examining the influence of relevant atmospheric patterns on sea ice in terms of the ice's seasonal cycles could allow firmer connections to be established between sea ice trends and atmospheric patterns.

  14. Development of a Sea Ice Model for Use in Zonally Averaged Energy Balance Climate Models.

    NASA Astrophysics Data System (ADS)

    Harvey, L. D. Danny

    1988-12-01

    A sea ice model for use in zonally averaged energy balance climate models is presented which includes the following processes: surface melting, basal freezing and melting, lateral melting from ice-flee water or growth of new ice in leads, snowfall and the formation of white ice, ice advection, and a parameterized ice and snow thickness distribution which represents the effects of small-scale dynamics. The ice growth equations of Hibler are solved analytically, thereby permitting a gradual increase in zonal ice fraction in fall and winter. Both lateral and vertical melting lead to a continuous decrease of ice fraction during ice decay.The correlation between ice thickness and ice thickness sensitivity to the upward heat flux at the ice base is of opposite sign seasonally and latitudinally. The parameterized feedback between ice thickness and the minimum permitted lead fraction is found to be very important to the ice simulation, and is a process which needs to be studied using higher resolution, dynamic-thermodynamic sea ice models. The interaction between lateral melting and advection is crucial to the simulated rapid retreat of Southern Hemisphere ice area in spring. With uniform snow on ice, the introduction of an ice-thickness distribution increases mean annual ice thickness by up to 20%, but simultaneously introducing an ice and snow thickness distribution such that the ratio of snow to ice thickness is constant for each ice thickness category leads to increase of mean ice thickness of up to 90%. The effect on mean annual sea ice thickness of the parameterized surface albedo temperature dependence tends to increase with increasing latitude, even though the length of the melt season and incident solar radiation decrease with latitude. Model sensitivity to variation of time-step length from 1 to 6 days is insignificant.

  15. The Atlantic Multi-Decadal Oscillation Climate Impact - Zonal and Meridional Coupling

    NASA Astrophysics Data System (ADS)

    Werner, Rolf; Kirillov, Andrey; Valev, Dimitar; Atanassov, Atanas; Danov, Dimitar; Guineva, Veneta

    2016-07-01

    The Atlantic multi-decadal oscillation (AMO) shows a period of about 60-70 years. Over the time span from 1860 up to 2014 the AMO has had a strong climate impact on the Northern Hemisphere. The AMO is considered to be related to the Atlantic overturning circulation, but the origin of the oscillation is not fully understood up till now. To study the AMO impact on climate, the Hadcrut4, Crut4 and HadSST3 temperature data sets have been employed in the current study. The influence of the AMO on the zonal and meridional temperature distribution has been investigated in detail. The strongest zonal AMO impact was obtained in the Arctic region. The results indicated that the AMO influence on temperature at Southern latitudes was opposite in phase compared to the temperature influence in the Northern Hemisphere, in agreement with the well known heat transfer phenomenon from South to North Atlantic. In the Northern Hemisphere the strongest AMO temperature impact was found over the Atlantic and America. In the West from American continent, over the Pacific, the AMO impact was the lowest obtained over the whole Northern Hemisphere. The Rocky Mountains and Sierra Madre, connected with it southwards, built up an atmospheric circulation barrier preventing a strong propagation of the AMO temperature signal westerly. The amplitude of the AMO index itself was greater during summer-fall. However stronger AMO influence on the Northern Hemisphere temperatures was found during the fall-winter season, when the differences between the Northern Hemisphere temperatures and the temperatures in the tropics were the greatest.

  16. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures

    PubMed Central

    Douglas, Peter M. J.; Affek, Hagit P.; Ivany, Linda C.; Houben, Alexander J. P.; Sijp, Willem P.; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-01-01

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10–17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands. PMID:24753570

  17. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures.

    PubMed

    Douglas, Peter M J; Affek, Hagit P; Ivany, Linda C; Houben, Alexander J P; Sijp, Willem P; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-05-01

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands. PMID:24753570

  18. The role of the zonal E×B plasma drift in the low-latitude ionosphere at high solar activity near equinox from a new three-dimensional theoretical model

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.

    2006-10-01

    of the longitudinal asymmetry in B (the eccentric magnetic dipole is displaced from the Earth's center and the Earth's eccentric tilted magnetic dipole moment is inclined with respect to the Earth's rotational axis) and the variations of the wind induced plasma drift and the meridional E×B plasma drift in geomagnetic longitude. The study of the influence of the zonal E×B plasma drift on the topside low-latitude electron density is presented for the first time.

  19. Long-period variations of wind parameters in the mesopause region and the solar cycle dependence

    NASA Technical Reports Server (NTRS)

    Greisiger, K. M.; Schminder, R.; Kuerschner, D.

    1987-01-01

    The solar cycle dependence of wind parameters below 100 km on the basis of long term continuous ionospheric drift measurements in the low frequency range is discussed. For the meridional prevailing wind no significant variation was found. The same comparison as for winter was done for summer where the previous investigations gave no correlation. Now the radar meteor wind measurement values, too, showed a significant negative correlation of the zonal prevailing wind with solar activity for the years 1976 to 1983. The ionospheric drift measurement results of Collm have the same tendency but a larger dispersion due to the lower accuracy of the harmonic analysis because of the shorter daily measuring interval in summer. Continuous wind observations in the upper mesopause region over more than 20 years revealed distinct long term variations, the origin of which cannot be explained with the present knowledge.

  20. The Need for Wind Profile Measurements From Space

    NASA Astrophysics Data System (ADS)

    Källén, E.

    2008-12-01

    Measurements of atmospheric winds are inadequate in the present global observing system. Wind profiles have been stated as the most urgently needed observation type for climate studies as well as numerical weather prediction (WMO, 2004). Within the Earth Explorer programme ESA will launch a new satellite mission devoted to wind observations, the Atmospheric Dynamics Mission (ADM/Aeolus). It will provide line- of-sight wind profiles using a Doppler lidar measurement technique. An overview of the mission can be found in Stoffelen et al. (2005). The main purpose of the mission is to measure winds, in particular in tropical regions there is a serious lack of wind information. Tropical atmospheric variability is governed by the winds, with only temperature and pressure information present day weather prediction systems have difficulties in properly representing some aspects of tropical weather. One example of this is given by Kistler et al. (2001) when they compare zonally averaged wind fields from two separate re-analysis systems. It is clear that two separate re-analyses differ markedly in the tropical regions while they are quite similar in mid-latitude and polar regions. This is not due to a deficiency in any of the re-analysis models used, but can be argued to result from a lack of wind information in the tropics. Other important areas where wind observations are needed is the prediction of midlatitude storms and analysis of meridional heat transports. Vertically deep structures with a limited horizontal scale are most sensitive to wind information. The meridional heat transport in midlatitudes can be estimated from re-analysis products, but it has been found that such estimates must be bias corrected as the re-analysis fields have relatively large systematic errors in the zonally averaged meridional wind field (Graversen et al., 2007). Part of this bias can be due to a lack of sufficient wind information to define the ageostrophic, zonally averaged meridional wind

  1. Self-generated zonal flows in the plasma turbulence driven by trapped-ion and trapped-electron instabilities

    SciTech Connect

    Drouot, T.; Gravier, E.; Reveille, T.; Collard, M.

    2015-10-15

    This paper presents a study of zonal flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of zonal flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of zonal flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of the temperature ratio T{sub e}/T{sub i} on the reduction of zonal flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations n{sub e} and n{sub i} gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.

  2. Tracking Jupiter's Quasi-Quadrennial Oscillation and Mid-Latitude Zonal Waves with High Spectral Resolution Mid-Infrared Observations

    NASA Astrophysics Data System (ADS)

    Greathouse, Thomas K.; Orton, Glenn S.; Cosentino, Rick; Morales-Juberias, Raul; Fletcher, Leigh N.; Giles, Rohini Sara; Melin, Henrik; Encrenaz, Therese A.; Fouchet, Thierry; DeWitt, Curtis N.

    2016-10-01

    We report on early results of a long term observational study to track the temporal and 3-dimensional evolution of the Quasi-Quadrennial Oscillation (QQO) and the propagation and evolution of mid-latitude zonal waves in Jupiter's stratosphere. These wave-driven phenomena affect variations in Jupiter's vertical and horizontal temperature field, which can be inferred by measuring methane emission in the thermal infrared near 1245 cm-1. Using TEXES, the Texas Echelon cross-dispersed Echelle Spectrograph, mounted on the NASA Infrared Telescope Facility (IRTF) we observed high-spectral resolution (R=75,000) scan maps of Jupiter's equator to mid-latitudes from January 2012 through to the present. We will present the zonally averaged inferred thermal structure within ±30° latitude of the equator and between 10 and 0.01 mbar, showing the QQO's downward progression along with inferred 3-dimensional thermal maps (latitude, longitude, pressure) displaying a multitude of independent waves and eddies at various latitudes and pressures. These results reveal a vast array of wave activity on Jupiter and will serve to: 1) significantly improve the determination of the period and vertical descent velocity of Jupiter's QQO; 2) measure the zonal wavenumbers, vertical wavelengths, zonal group velocities and lifetimes of transient mid-latitude waves; and 3) record the thermal state of Jupiter's stratosphere in detail prior to, during, and after Juno's prime mission.

  3. Self-generated zonal flows in the plasma turbulence driven by trapped-ion and trapped-electron instabilities

    NASA Astrophysics Data System (ADS)

    Drouot, T.; Gravier, E.; Reveille, T.; Collard, M.

    2015-10-01

    This paper presents a study of zonal flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of zonal flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of zonal flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of the temperature ratio Te/Ti on the reduction of zonal flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations ne and ni gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.

  4. Galactic Winds

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  5. Wind Generators

    NASA Astrophysics Data System (ADS)

    1989-01-01

    When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.

  6. Wind turbine

    DOEpatents

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  7. The effects of polar stratwarms on the winds at the mesopause level in mid latitudes

    NASA Technical Reports Server (NTRS)

    Roper, R. G.

    1978-01-01

    The continuous measurement of the wind profile over the 80 to 100 km region by means of radio reflections from meteor trails provides data which can be correlated with stratospheric temperature changes inferred from satellite radiance data. The very preliminary results presented show a tendency for stratospheric warming events to produce dramatic changes in the circulation in the neighborhood of the mesopause at 34 deg N. The mean zonal wind over the height range 80 to 100 km above Atlanta for the period November, 1974 through February, 1975 is presented in a graph.

  8. Wind energy systems

    NASA Technical Reports Server (NTRS)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  9. Neptune at summer solstice: Zonal mean temperatures from ground-based observations, 2003-2007

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; de Pater, Imke; Orton, Glenn S.; Hammel, Heidi B.; Sitko, Michael L.; Irwin, Patrick G. J.

    2014-03-01

    Imaging and spectroscopy of Neptune’s thermal infrared emission from Keck/LWS (2003), Gemini-N/MICHELLE (2005); VLT/VISIR (2006) and Gemini-S/TReCS (2007) is used to assess seasonal changes in Neptune’s zonal mean temperatures between Voyager-2 observations (1989, heliocentric longitude Ls=236°) and southern summer solstice (2005, Ls=270°). Our aim was to analyse imaging and spectroscopy from multiple different sources using a single self-consistent radiative-transfer model to assess the magnitude of seasonal variability. Globally-averaged stratospheric temperatures measured from methane emission tend towards a quasi-isothermal structure (158-164 K) above the 0.1-mbar level, and are found to be consistent with spacecraft observations of AKARI. This remarkable consistency, despite very different observing conditions, suggests that stratospheric temporal variability, if present, is <±5 K at 1 mbar and <±3 K at 0.1 mbar during this solstice period. Conversely, ethane emission is highly variable, with abundance determinations varying by more than a factor of two (from 500 to 1200 ppb at 1 mbar). The retrieved C2H6 abundances are extremely sensitive to the details of the T(p) derivation, although the underlying cause of the variable ethane emission remains unidentified. Stratospheric temperatures and ethane are found to be latitudinally uniform away from the south pole (assuming a latitudinally-uniform distribution of stratospheric methane), with no large seasonal hemispheric asymmetries evident at solstice. At low and mid-latitudes, comparisons of synthetic Voyager-era images with solstice-era observations suggest that tropospheric zonal temperatures are unchanged since the Voyager 2 encounter, with cool mid-latitudes and a warm equator and pole. A re-analysis of Voyager/IRIS 25-50 μm mapping of tropospheric temperatures and para-hydrogen disequilibrium (a tracer for vertical motions) suggests a symmetric meridional circulation with cold air rising at mid

  10. Wind tunnel investigation on wind turbine wakes and wind farms

    NASA Astrophysics Data System (ADS)

    Iungo, G. V.; Coëffé, J.; Porté-Agel, F.

    2012-04-01

    The interaction between atmospheric boundary layer and wind farms leads to flow modifications, which need to be deeply characterized in order to relate them to wind farm performance. The wake flow produced from a wind farm is the result of a strong interaction between multiple turbine wakes, so that the wind farm configuration turns out to be one of the dominant features to enhance power production. For the present work a wind tunnel investigation was carried out with hot-wire anemometry and velocity measurements performed with multi-hole pressure probes. The tested wind farms consist of miniature three-bladed wind turbine models. Preliminarily, the wake flow generated from a single wind turbine is surveyed, which is characterized by a strong velocity defect lying in proximity of the wind turbine hub height. The wake gradually recovers by moving downstream; the characteristics of the incoming boundary layer and wind turbulence intensity can strongly affect the wake recovery, and thus performance of following wind turbines. An increased turbulence level is typically detected downstream of each wind turbine for heights comparable to the wind turbine blade top-tip. These wake flow fluctuations produce increased fatigue loads on the following wind turbines within a wind farm, which could represent a significant hazard for real wind turbines. Dynamics of vorticity structures present in wind turbine wakes are also investigated; particular attention is paid to the downstream evolution of the tip helicoidal vortices and to oscillations of the hub vortex. The effect of wind farm layout on power production is deeply investigated. Particular emphasis is placed on studying how the flow adjusts as it moves inside the wind farm and can affect the power production. Aligned and staggered wind farm configurations are analysed, also with varying separation distances in the streamwise and spanwise directions. The present experimental results are being used to test and guide the

  11. Empirical wind model for the middle and lower atmosphere. Part 1: Local time average

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.; Fleming, E. L.; Manson, A. H.; Schmidlin, F. J.; Avery, S. K.; Franke, S. J.

    1993-01-01

    The HWM90 thermospheric wind model was revised in the lower thermosphere and extended into the mesosphere and lower atmosphere to provide a single analytic model for calculating zonal and meridional wind profiles representative of the climatological average for various geophysical conditions. Gradient winds from CIRA-86 plus rocket soundings, incoherent scatter radar, MF radar, and meteor radar provide the data base and are supplemented by previous data driven model summaries. Low-order spherical harmonics and Fourier series are used to describe the major variations throughout the atmosphere including latitude, annual, semiannual, and longitude (stationary wave 1). The model represents a smoothed compromise between the data sources. Although agreement between various data sources is generally good, some systematic differences are noted, particularly near the mesopause. Root mean square differences between data and model are on the order of 15 m/s in the mesosphere and 10 m/s in the stratosphere for zonal wind, and 10 m/s and 4 m/s, respectively, for meridional wind.

  12. Wind increase over cooling Southern Ocean driven by tropical warming and polar ozone hole

    NASA Astrophysics Data System (ADS)

    Schneider, D. P.; Fan, T.; Deser, C.

    2014-12-01

    Changing winds over the Southern Ocean have had dramatic impacts on Antarctic sea ice extent, anthropogenic heat and carbon uptake by the ocean, and the contribution of the Antarctic ice sheet to global sea level rise. An overall intensification of the surface westerly winds has been attributed to several different forcings, including stratospheric ozone depletion, greenhouse gasses, and tropical sea surface temperatures (SSTs). However, the relative roles of these drivers have not been well quantified. Reconciling previous explanations, here we show that a combination of tropical SSTs and stratospheric ozone loss largely explains the magnitude, regional patterns, and seasonality of observed lower tropospheric zonal wind trends over the Southern Ocean. We evaluate multiple ensembles of atmospheric model simulations, with each ensemble forced by one or a combination of drivers. Considering all months of the year, tropical SSTs are the largest contributor to observed zonal wind trends over 40°S-80°S. In austral summer, tropical SSTs and stratospheric ozone loss have contributed approximately equally to near-surface wind trends. The tropical contribution in austral summer is associated with tropics-wide warming, which has been moderated in recent decades by a prevalence of La-Niña events. The relative phasing of natural variability with anthropogenic forcing is therefore essential for understanding and predicting Southern Ocean climate change.

  13. Drift zonal plasma ionospheric in the Brazilian sector during a period of extreme low solar activity

    NASA Astrophysics Data System (ADS)

    Abalde Guede, Jose Ricardo; Tardelli-Coelho, Flavia Elaine

    2016-07-01

    The zonal drift velocities of the ionospheric plasma irregularities of large scale were analyzed; these irregularities were observed using optical emission techniques OI 630.0 nm obtained by photometers imagers installed in two locations on the campus of Urbanova UNIVAP in São José dos Campos - SP designated SJC and Campus ULBRA in Palmas - TO cited as PAL. Data were collected from five years, from 2006 to 2010, low solar activity period. Of the total of 337 nights in SJC and 329 nights in PAL analyzed were selected a total of 18 nights of significant plasma bubble occurrences, 9 nights in SJC and 9 nights in PAL, and studied under two conditions: considering fixed altitude of 280 km OI emission layer of 630.0 nm and calculating the height of this variable layer over each night analyzed. To find these varying altitudes along each night we were assisted with the analysis of CADI digital ionosonde data operating in conjunction with the imaging photometer in its observatory. The radio data available in digisonde allowed to do the analysis on 12 variables altitudes of 18 nights studied for fixed altitude; this occurred because of scattering present in ionograms for those nights and times, due to the presence of plasma bubbles in the study through the of the observatory zenith. Quantitative analysis determined the drift velocity zone for each of the analyzed bubbles 18 nights during the given fixed height and 12 nights evaluating varying altitudes along each night. The means were obtained nights analyzed in each observatory for both methods; SJC in the average velocities is derived from the plasma zone 9 nights bubbles analyzed in the method is fixed altitude 84 ± 18 m / s in the case of PAL the average velocities found is 87 ± 12 m / s. In the other case with variable altitude emission to SJC 8 nights analyzed, we reached a mean value of 87 ± 12 m / s, and for PAL, 4 of 9 nights initially selected, the average speed of the zonal drift plasma bubbles were found 85

  14. Global ozone observations from the UARS MLS: An overview of zonal-mean results

    NASA Technical Reports Server (NTRS)

    Froidevaux, Lucien; Waters, Joe W.; Read, William G.; Elson, Lee S.; Flower, Dennis A.; Jarnot, Robert F.

    1994-01-01

    Global ozone observations from the Microwave Limb Sounder (MLS) aboard the Upper Atmosphere Research Satellite (UARS) are presented, in both vertically resolved and column abundance formats. The authors review the zonal-mean ozone variations measured over the two and a half years since launch in September 1991. Well-known features such as the annual and semiannual variations are ubiquitous. In the equatorial regions, longer-term changes are believed to be related to the quasi-biennial oscillation (QBO), with a strong semiannual signal above 20 hPa. Ozone values near 50 hPa exhibit an equatorial low from October 1991 to June 1992, after which the low ozone pattern splits into two subtropical lows (possibly in connection with residual circulation changes tied to the QBO) and returns to an equatorial low in September 1993. The ozone hole development at high southern latitudes is apparent in MLS column data integrated down to 100 hPa, the MLS data reinforce current knowledge of this lower-stratospheric phenomenon by providing a height-dependent view of the variations. The region from 30 deg S to 30 deg N (an area equal to half the global area) shows very little change in the ozone column from year to year and within each year. The most striking ozone changes have occurred at northern midlatitudes, with the October 1992 to July 1993 column values significantly lower than during the prior year. The zonal-mean changes manifest themselves as a slower rate of increase during the 1992/93 winter, and there is some evidence for a lower fall minimum. A recovery occurs during late summer of 1993; early 1994 values are significantly larger than during the two previous winters. The timing and latitudinal extent of the northern midlatitude decreases appear to rule out observed ClO enhancements in the Arctic vortex, with related chemical processing and ozone dilution effects, as a unique cause. Local depletion from ClO-related chemical mechanisms alone is also not sufficient, based

  15. Experiments on tropical stratospheric mean-wind variations in a spectral general circulation model

    SciTech Connect

    Hamilton, K.; Yuan, L. )

    1992-12-15

    A 30-level version of the rhomboidal-15 GFDL spectral climate model was constructed with roughly 2-km vertical resolution. This model fails to produce a realistic quasi-biennial oscillation (QBO) in the tropical stratosphere. Several simulations were conducted in which the zonal-mean winds and temperatures in the equatorial lower and middle stratosphere were instantaneously perturbed and the model was integrated while the mean state relaxed toward its equilibrium. The time scale for the mean wind relaxation varied from over one month at 40 km to a few months in the lower stratosphere. The wind relaxations in the model also displayed the downward phase propagation characteristic of QBO wind reversals, and mean wind anomalies of opposite sign to the imposed perturbation appear at higher levels. In the GCM the downward propagation is clear only above about 20 mb. Detailed investigations were made of the zonal-mean zonal momentum budget in the equatorial stratosphere. The mean flow relaxations above 20 mb were mostly driven by the vertical Eliassen-Palm flux convergence. The anomalies in the horizontal Eliassen-Palm fluxes from extratropical planetary waves were found to be the dominant effect forcing the mean flow to its equilibrium at altitudes below 20 mb. The vertical eddy momentum fluxes near the equator in the model were decomposed using space-time Fourier analysis. While total fluxes associated with easterly and westerly waves are comparable to those used in simple mechanistic models of the QBO, the GCM has its flux spread over a broad range of wavenumbers and phase speeds. The effects of vertical resolution were studied by repeating part of the control integration with a 69-level version of the model with greatly enhance vertical resolution in the lower and middle stratosphere. The results showed that there is almost no sensitivity of the simulation in the tropical stratosphere to the increased vertical resolution. 34 refs., 16 figs., 3 tabs.

  16. Effects of zonal harmonics on the out-of-plane equilibrium points in the generalized Robe's circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Singh, Jagadish; Omale, Achonu Joseph

    2016-02-01

    This article examines the effects of the zonal harmonics on the out-of-plane equilibrium points of Robe's circular restricted three-body problem when the hydrostatic equilibrium shape of the first primary is an oblate spheroid, the shape of the second primary is an oblate spheroid with oblateness coefficients up to the second zonal harmonic, and the full buoyancy of the fluid is considered. It is observed that the size of the oblateness and the zonal harmonics affect the positions of the out-of-plane equilibrium points L6 and L7. It is also observed that these points within the possible region of motion are unstable.

  17. Site characterization, visualization, and uncertainty assessment using zonal kriging and conditional simulation

    SciTech Connect

    Wingle, W.L.

    1996-12-31

    When evaluating a site, whether for oil, minerals, or contaminants in ground water, a principle concern is the distribution of material properties. A traditional approach has been to apply geostatistical methods such as kriging or conditional simulation. These approaches are based on the assumption of stationarity (i.e. that the spatial variation of properties is consistent across the site). At many sites, the stationarity assumption is not valid and can lead to inaccurate results. One approach to circumvent this limitation is to divide the area into zones where the stationarity assumptions are reasonable, krige each zone, and manually merge the results together. This approach has three major draw backs, (1) boundaries between zones are abrupt, (2) the merging process is tedious, and (3) there is no way to manage{open_quote}gradational{close_quote} boundaries. An integrated system which allows a modeler to: (1) define multiple, distinct zones within a model; (2) define zonal inter-relationships (e.g. Zone A grades into zone B. Zone C and Zone D have a sharp contact), and model the results using simple or ordinary kriging, or conditional simulation is presented. This technique is integrated into a modeling package which allows users to examine basic site statistics, develop and model semivariograms, krige and simulate material properties, model ground water flow and contaminant transport, assess risk or uncertainty, and visualize results with 2D, 2-1/2D, and 3D tools.

  18. Site characterization, visualization, and uncertainty assessment using zonal kriging and conditional simulation

    SciTech Connect

    Wingle, W.L. )

    1996-01-01

    When evaluating a site, whether for oil, minerals, or contaminants in ground water, a principle concern is the distribution of material properties. A traditional approach has been to apply geostatistical methods such as kriging or conditional simulation. These approaches are based on the assumption of stationarity (i.e. that the spatial variation of properties is consistent across the site). At many sites, the stationarity assumption is not valid and can lead to inaccurate results. One approach to circumvent this limitation is to divide the area into zones where the stationarity assumptions are reasonable, krige each zone, and manually merge the results together. This approach has three major draw backs, (1) boundaries between zones are abrupt, (2) the merging process is tedious, and (3) there is no way to manage[open quote]gradational[close quote] boundaries. An integrated system which allows a modeler to: (1) define multiple, distinct zones within a model; (2) define zonal inter-relationships (e.g. Zone A grades into zone B. Zone C and Zone D have a sharp contact), and model the results using simple or ordinary kriging, or conditional simulation is presented. This technique is integrated into a modeling package which allows users to examine basic site statistics, develop and model semivariograms, krige and simulate material properties, model ground water flow and contaminant transport, assess risk or uncertainty, and visualize results with 2D, 2-1/2D, and 3D tools.

  19. A cyclostrophic transformed Eulerian zonal mean model for the middle atmosphere of slowly rotating planets

    NASA Astrophysics Data System (ADS)

    Li, K. F.; Yao, K.; Taketa, C.; Zhang, X.; Liang, M. C.; Jiang, X.; Newman, C. E.; Tung, K. K.; Yung, Y. L.

    2015-12-01

    With the advance of modern computers, studies of planetary atmospheres have heavily relied on general circulation models (GCMs). Because these GCMs are usually very complicated, the simulations are sometimes difficult to understand. Here we develop a semi-analytic zonally averaged, cyclostrophic residual Eulerian model to illustrate how some of the large-scale structures of the middle atmospheric circulation can be explained qualitatively in terms of simple thermal (e.g. solar heating) and mechanical (the Eliassen-Palm flux divergence) forcings. This model is a generalization of that for fast rotating planets such as the Earth, where geostrophy dominates (Andrews and McIntyre 1987). The solution to this semi-analytic model consists of a set of modified Hough functions of the generalized Laplace's tidal equation with the cyclostrohpic terms. As examples, we apply this model to Titan and Venus. We show that the seasonal variations of the temperature and the circulation of these slowly-rotating planets can be well reproduced by adjusting only three parameters in the model: the Brunt-Väisälä bouyancy frequency, the Newtonian radiative cooling rate, and the Rayleigh friction damping rate. We will also discuss the application of this model to study the meridional transport of photochemically produced tracers that can be observed by space instruments.

  20. Simulation of deep-seated zonal jets and shallow vortices in gas giant atmospheres

    NASA Astrophysics Data System (ADS)

    Heimpel, Moritz; Gastine, Thomas; Wicht, Johannes

    2016-01-01

    Jupiter's banded cloud layer hosts spots of various sizes. The bands are defined by eastward and westward jet streams and the spots correspond to vortices, predominantly anticyclones, which rotate in the opposite direction of Earth's cyclonic storms. Despite 350 years of observation, the origin and dynamics of jets and vortices in the atmospheres of giant planets remain debated. Simulations of the shallow weather layer produce both features, but only reproduce observed prograde equatorial flow on Jupiter and Saturn under special conditions. In contrast, deep convection models reproduce equatorial superrotation, but lack coherent vortices. Here we combine both approaches in a three-dimensional simulation where deep convection grades into a stably stratified shallow layer. We find that steady zonal jets are driven by deep convective flows, whereas anticyclonic vortices form where upwelling plumes impinge on the shallow layer. The simulated vortex circulation consists of cool anticyclones shielded by warm downwelling cyclonic rings and filaments, in agreement with observations and theory. We find that the largest vortices form in westward anticyclonic shear flow nearest to the equatorial jet, similar to Saturn's so-called storm alley and Jupiter's Great Red Spot. We conclude that vortices have a deep origin in gas giant atmospheres.

  1. Flow Optimization in the Princeton MRI Experiment and Zonal Flow Generation in HTX

    NASA Astrophysics Data System (ADS)

    Caspary, Kyle; Burin, Michael; Gilson, Erik; Goodman, Jeremy; Ji, Hantao; McNulty, Michael; Schartman, Ethan; Sloboda, Peter; Wei, Xing

    2015-11-01

    The Princeton Magneto-Rotational Instability (MRI) experiment and the Hydrodynamic Turbulence Experiment (HTX) are a pair of modified Taylor-Couette devices which explore rotating magnetohydrodynamic and hydrodynamic flows. The Princeton MRI experiment uses a GaInSn working fluid and was designed to study the MRI, which is believed to be the mechanism responsible for the rapid accretion rate observed in some magnetized accretion disks. The experiment utilizes ultrasound Doppler velocimetry to measure velocity profiles and a newly installed suite of hall sensors on the inner and outer cylinders to characterize the magnetic field. Results are presented from experiments which seek to optimize the flow by varying the inner ring speed for a given magnetic field strength. In HTX, we explore the generation of zonal flows from turbulence by flow jets with water as the working fluid. Laser Doppler velocimetry is used to measure the mean and fluctuating velocity. The generation of anisotropic mean flow by means of beta plane turbulence is investigated through the use of a sloped end-cap. The impact of varying the end cap slope, fluid height and jet flow rate will be discussed.

  2. The zonally averaged transport characteristics of the atmosphere as determined by a general circulation model

    NASA Technical Reports Server (NTRS)

    Plumb, R. A.

    1985-01-01

    Two dimensional modeling has become an established technique for the simulation of the global structure of trace constituents. Such models are simpler to formulate and cheaper to operate than three dimensional general circulation models, while avoiding some of the gross simplifications of one dimensional models. Nevertheless, the parameterization of eddy fluxes required in a 2-D model is not a trivial problem. This fact has apparently led some to interpret the shortcomings of existing 2-D models as indicating that the parameterization procedure is wrong in principle. There are grounds to believe that these shortcomings result primarily from incorrect implementations of the predictions of eddy transport theory and that a properly based parameterization may provide a good basis for atmospheric modeling. The existence of these GCM-derived coefficients affords an unprecedented opportunity to test the validity of the flux-gradient parameterization. To this end, a zonally averaged (2-D) model was developed, using these coefficients in the transport parameterization. Results from this model for a number of contrived tracer experiments were compared with the parent GCM. The generally good agreement substantially validates the flus-gradient parameterization, and thus the basic principle of 2-D modeling.

  3. Exact two-dimensional zonal wavefront reconstruction with high spatial resolution in lateral shearing interferometry

    NASA Astrophysics Data System (ADS)

    Dai, Fengzhao; Li, Jie; Wang, Xiangzhao; Bu, Yang

    2016-05-01

    A novel zonal method is proposed for exact discrete reconstruction of a two-dimensional wavefront with high spatial resolution for lateral shearing interferometry. Four difference wavefronts measured in the x and y shear directions are required. Each of the two shear directions is measured twice with different shear amounts. The shear amounts of the second measurements of the x and y directions are Sx+1 pixels and Sy+1 pixels, where Sx pixels and Sy pixels are the shear amounts of the first measurements in the x and y directions, respectively. The shear amount in each direction can be chosen freely, provided that it is below a maximum value determined by the pupil shape and the number of samples N in that direction; thus, the choices are not limited by the more stringent condition required by previous methods, namely, that the shear amounts must be divisors of N. This method can exactly reconstruct any wavefront at evaluation points up to an arbitrary constant if the data is noiseless, and high spatial resolution can be achieved even with large shear amounts. The method is applicable not only to square pupils, but also to general pupil shapes if a sufficient number of Gerchberg iterations are employed. In this study, the validity and capability of the method were confirmed by numerical experiments. In addition, the experiments demonstrated that the method is stable with respect to noise in the difference wavefronts.

  4. Landscape vision and zonal orientation in the Equatorial sandhopper Talorchestia martensii.

    PubMed

    Ugolini, Alberto; Ciofini, Alice

    2016-01-01

    We investigate the role of the landscape in the zonal recovery of the Equatorial sandhopper Talorchestia martensii Weber. It is known that this species uses the sun and the magnetic compasses to return to the belt of damp sand of the beach following the shortest route (the sea-land axis). However, the sun is not always easy to use at Equatorial latitudes because of astronomical reasons (its zenithal culmination and its hourly azimuthal speed) at least during the central time of the day (around noon) and close to the equinox. Our experiments were performed in Kenya, during the equinoctial period. We tested adult individuals, belonging to Malindi (Kenya) population, in a confined environment with and without the vision of the landscape of their home beach and with the vision of the prominent landscape of a different-orientated shore (Temple Point). Releases were carried out with either natural or zeroed magnetic field. Results clearly show the importance of the landscape as an orienting factor mainly during the central hours of the day when it seems to assume a greater importance than magnetic cues. PMID:26512016

  5. Zonal-flow-driven nonlinear energy transfer in experiment and simulation

    SciTech Connect

    Holland, C.; Tynan, G. R.; Fonck, R. J.; McKee, G. R.; Candy, J.; Waltz, R. E.

    2007-05-15

    Using a newly developed algorithm, the nonlinear transfer of internal fluctuation energy vertical bar n-tilde vertical bar{sup 2} due to convection of drift-wave turbulence by a geodesic acoustic mode (GAM, a finite-frequency zonal flow) has now been measured directly in a high-temperature plasma. By combining spatially resolved density fluctuation measurements obtained via an upgraded beam emission spectroscopy system in the edge region of the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] with a velocity inference algorithm, the convection of turbulent fluctuations by the GAM has been measured. Taken together, the results strongly suggest that GAM convection of turbulence leads to a transfer of internal fluctuation energy from low to high frequencies, in agreement with expectations from theory and simulation. In addition, the GAM is found to modulate the intensity of the density fluctuations. Calculations of the measured nonlinear interactions in the gyrokinetic code GYRO are found to be in good qualitative agreement with the experimental observations.

  6. Version 8 SBUV Ozone Profile Trends Compared with Trends from a Zonally Averaged Chemical Model

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.; Frith, Stacey; Stolarski, Richard

    2004-01-01

    Linear regression trends for the years 1979-2003 were computed using the new Version 8 merged Solar Backscatter Ultraviolet (SBUV) data set of ozone profiles. These trends were compared to trends computed using ozone profiles from the Goddard Space Flight Center (GSFC) zonally averaged coupled model. Observed and modeled annual trends between 50 N and 50 S were a maximum in the higher latitudes of the upper stratosphere, with southern hemisphere (SH) trends greater than northern hemisphere (NH) trends. The observed upper stratospheric maximum annual trend is -5.5 +/- 0.9 % per decade (1 sigma) at 47.5 S and -3.8 +/- 0.5 % per decade at 47.5 N, to be compared with the modeled trends of -4.5 +/- 0.3 % per decade in the SH and -4.0 +/- 0.2% per decade in the NH. Both observed and modeled trends are most negative in winter and least negative in summer, although the modeled seasonal difference is less than observed. Model trends are shown to be greatest in winter due to a repartitioning of chlorine species and the increasing abundance of chlorine with time. The model results show that trend differences can occur depending on whether ozone profiles are in mixing ratio or number density coordinates, and on whether they are recorded on pressure or altitude levels.

  7. Comparison of Photoacoustic Signals in Photosynthetic and Nonphotosynthetic Leaf Tissues of Variegated Pelargonium zonale

    NASA Astrophysics Data System (ADS)

    Veljović-Jovanović, S.; Vidović, M.; Morina, F.; Prokić, Lj.; Todorović, D. M.

    2016-09-01

    Green-white variegated leaves of Pelargonium zonale were studied using the photoacoustic method. Our aim was to characterize photosynthetically active green tissue and nonphotosynthetically active white tissue by the photoacoustic amplitude signals. We observed lower stomatal conductance and higher leaf temperature in white tissue than in green tissue. Besides these thermal differences, significantly higher absorbance in green tissue was based on chlorophyll and carotenoids which were absent in white tissue. However, optical properties of epidermal layers of both tissues were equal. The photoacoustic amplitude of white tissue was over four times higher compared to green tissue, which was correlated with lower stomatal conductance. In addition, at frequencies >700 Hz, the significant differences between the photoacoustic signals of green and white tissue were obtained. We identified the photoacoustic signal deriving from photosynthetic oxygen evolution in green tissue, using high intensity of red light modulated at 10 Hz. Moreover, the photoacoustic amplitude of green tissue increased progressively with time which corresponded to the period of induction of photosynthetic oxygen evolution. For the first time, very high frequencies (1 kHz to 5 kHz) were applied on leaf material.

  8. Characterisation of antioxidants in photosynthetic and non-photosynthetic leaf tissues of variegated Pelargonium zonale plants.

    PubMed

    Vidović, M; Morina, F; Milić-Komić, S; Vuleta, A; Zechmann, B; Prokić, Lj; Veljović Jovanović, S

    2016-07-01

    Hydrogen peroxide is an important signalling molecule, involved in regulation of numerous metabolic processes in plants. The most important sources of H2 O2 in photosynthetically active cells are chloroplasts and peroxisomes. Here we employed variegated Pelargonium zonale to characterise and compare enzymatic and non-enzymatic components of the antioxidative system in autotrophic and heterotrophic leaf tissues at (sub)cellular level under optimal growth conditions. The results revealed that both leaf tissues had specific strategies to regulate H2 O2 levels. In photosynthetic cells, the redox regulatory system was based on ascorbate, and on the activities of thylakoid-bound ascorbate peroxidase (tAPX) and catalase. In this leaf tissue, ascorbate was predominantly localised in the nucleus, peroxisomes, plastids and mitochondria. On the other hand, non-photosynthetic cells contained higher glutathione content, mostly located in mitochondria. The enzymatic antioxidative system in non-photosynthetic cells relied on the ascorbate-glutathione cycle and both Mn and Cu/Zn superoxide dismutase. Interestingly, higher content of ascorbate and glutathione, and higher activities of APX in the cytosol of non-photosynthetic leaf cells compared to the photosynthetic ones, suggest the importance of this compartment in H2 O2 regulation. Together, these results imply different regulation of processes linked with H2 O2 signalling at subcellular level. Thus, we propose green-white variegated leaves as an excellent system for examination of redox signal transduction and redox communication between two cell types, autotrophic and heterotrophic, within the same organ.

  9. A cyclostrophic transformed Eulerian zonal mean model for the middle atmosphere of slowly rotating planets

    NASA Astrophysics Data System (ADS)

    Li, King-Fai; Yao, Kaixuan; Taketa, Cameron; Zhang, Xi; Liang, Mao-Chang; Jiang, Xun; Newman, Claire; Tung, Ka-Kit; Yung, Yuk L.

    2016-04-01

    With the advance of modern computers, studies of planetary atmospheres have heavily relied on general circulation models (GCMs). Because these GCMs are usually very complicated, the simulations are sometimes difficult to understand. Here we develop a semi-analytic zonally averaged, cyclostrophic residual Eulerian model to illustrate how some of the large-scale structures of the middle atmospheric circulation can be explained qualitatively in terms of simple thermal (e.g. solar heating) and mechanical (the Eliassen-Palm flux divergence) forcings. This model is a generalization of that for fast rotating planets such as the Earth, where geostrophy dominates (Andrews and McIntyre 1987). The solution to this semi-analytic model consists of a set of modified Hough functions of the generalized Laplace's tidal equation with the cyclostrohpic terms. As an example, we apply this model to Titan. We show that the seasonal variations of the temperature and the circulation of these slowly-rotating planets can be well reproduced by adjusting only three parameters in the model: the Brunt-Väisälä bouyancy frequency, the Newtonian radiative cooling rate, and the Rayleigh friction damping rate. We will also discuss an application of this model to study the meridional transport of photochemically produced tracers that can be observed by space instruments.

  10. Vaporization and Zonal Mixing in Performance Modeling of Advanced LOX-Methane Rockets

    NASA Technical Reports Server (NTRS)

    Williams, George J., Jr.; Stiegemeier, Benjamin R.

    2013-01-01

    Initial modeling of LOX-Methane reaction control (RCE) 100 lbf thrusters and larger, 5500 lbf thrusters with the TDK/VIPER code has shown good agreement with sea-level and altitude test data. However, the vaporization and zonal mixing upstream of the compressible flow stage of the models leveraged empirical trends to match the sea-level data. This was necessary in part because the codes are designed primarily to handle the compressible part of the flow (i.e. contraction through expansion) and in part because there was limited data on the thrusters themselves on which to base a rigorous model. A more rigorous model has been developed which includes detailed vaporization trends based on element type and geometry, radial variations in mixture ratio within each of the "zones" associated with elements and not just between zones of different element types, and, to the extent possible, updated kinetic rates. The Spray Combustion Analysis Program (SCAP) was leveraged to support assumptions in the vaporization trends. Data of both thrusters is revisited and the model maintains a good predictive capability while addressing some of the major limitations of the previous version.

  11. Transient pressure analysis of fractured well in bi-zonal gas reservoirs

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Long; Zhang, Lie-Hui; Liu, Yong-hui; Hu, Shu-Yong; Liu, Qi-Guo

    2015-05-01

    For hydraulic fractured well, how to evaluate the properties of fracture and formation are always tough jobs and it is very complex to use the conventional method to do that, especially for partially penetrating fractured well. Although the source function is a very powerful tool to analyze the transient pressure for complex structure well, the corresponding reports on gas reservoir are rare. In this paper, the continuous point source functions in anisotropic reservoirs are derived on the basis of source function theory, Laplace transform method and Duhamel principle. Application of construction method, the continuous point source functions in bi-zonal gas reservoir with closed upper and lower boundaries are obtained. Sequentially, the physical models and transient pressure solutions are developed for fully and partially penetrating fractured vertical wells in this reservoir. Type curves of dimensionless pseudo-pressure and its derivative as function of dimensionless time are plotted as well by numerical inversion algorithm, and the flow periods and sensitive factors are also analyzed. The source functions and solutions of fractured well have both theoretical and practical application in well test interpretation for such gas reservoirs, especial for the well with stimulated reservoir volume around the well in unconventional gas reservoir by massive hydraulic fracturing which always can be described with the composite model.

  12. Landscape vision and zonal orientation in the Equatorial sandhopper Talorchestia martensii.

    PubMed

    Ugolini, Alberto; Ciofini, Alice

    2016-01-01

    We investigate the role of the landscape in the zonal recovery of the Equatorial sandhopper Talorchestia martensii Weber. It is known that this species uses the sun and the magnetic compasses to return to the belt of damp sand of the beach following the shortest route (the sea-land axis). However, the sun is not always easy to use at Equatorial latitudes because of astronomical reasons (its zenithal culmination and its hourly azimuthal speed) at least during the central time of the day (around noon) and close to the equinox. Our experiments were performed in Kenya, during the equinoctial period. We tested adult individuals, belonging to Malindi (Kenya) population, in a confined environment with and without the vision of the landscape of their home beach and with the vision of the prominent landscape of a different-orientated shore (Temple Point). Releases were carried out with either natural or zeroed magnetic field. Results clearly show the importance of the landscape as an orienting factor mainly during the central hours of the day when it seems to assume a greater importance than magnetic cues.

  13. Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.

  14. Zonal Dynamic Equivalents Based on the Concept of Relative Electrical Distance

    NASA Astrophysics Data System (ADS)

    Agrawal, Rimjhim; Dhadbanjan, Thukaram

    2013-05-01

    Abstract: This article presents a systematic approach to construct the zonal dynamic equivalents of a large-power system based on the concept of relative electrical distance (RED). The task of dynamic equivalencing is to eliminate the full model of the external system and replace it with an equivalent model, which has dynamic characteristics close enough to the full model. The dynamic equivalent models are used for large-scale power system offline transient stability analysis with large disturbance. Dynamic equivalencing also helps in reducing the computation burden and memory requirements in wide area monitoring system (WAMS) for online stability assessment. The procedure is illustrated on IEEE 39 bus system and on a practical 205 bus system consisting of three zones of Indian Southern grid, where an equivalent of a zone has been constructed. The simulation results of the original system and equivalent system are compared. The proposed approach is also compared with the existing Ward equivalent method and the results are found to be similar. The simulation results show that the developed equivalent system has close accuracy in representing the dynamic characteristics of the original system.

  15. Jupiter's Zonal Jets and Turbulent Eddies: the Importance of Moist Convective Processes on a Global Scale

    NASA Astrophysics Data System (ADS)

    Young, R. M. B.; Read, P. L.

    2015-12-01

    We present the first results from a general circulation model of Jupiter's weather layer that includes latent heat and moist convective processes on a global scale. This model uses the MITgcm as the dynamical core with additions relevant to Jupiter such as a 2-stream radiation scheme, vertical diffusion, internal heat flux, dry convective adjustment, MHD drag, a simple parametrization of NH3, NH4SH, and H2O cloud formation and subsidence, and, most recently latent heat and moist convective processes. The model has been developed primarily to examine the physical phenomena underlying the formation and maintenance of zonal jets on Jupiter, and the interactions between these and small-scale turbulent eddies, in particular how these depend on moist convective processes. Initial work without moist convection found a strong dependence of the strength and direction of the equatorial jet on the internal heat flux, including a prograde equatorial jet, but not at the speeds observed on the planet. We will also compare our model results against recent analyses of Jupiter's turbulence using kinetic energy spectra and structure functions, which show a clear upscale transfer of energy in the 3rd order structure function on scales larger than a few times the deformation radius.

  16. Estimates of the zonal slope and seasonal transport of the Atlantic North Equatorial Countercurrent

    NASA Technical Reports Server (NTRS)

    Carton, James A.; Katz, Eli J.

    1990-01-01

    Data from six inverted echo sounder moorings and the Geosat satellite altimeter are used to examine the seasonal variability of sea surface elevation. Monthly sea level maps are constructed using a contemporaneous subsurface temperature survey to provide a reference sea level field. The maps are then used to describe the origin and structure of the western tropical Atlantic North Equatorial Countercurrent (NECC) during a two-year period beginning in November 1987. The data reveal a zonal current which is confined between 3 deg N and 9 deg N with a typical width of 300 km. The NECC flows strongly eastward during November and December 1986 and May 1987 through January 1988. The reappearance of the current is then delayed until August, but the current flows strongly from August until the end of the record in October 1988. Volume transport is estimated for the two-year period from surface elevation by approximating the vertical structure of the ocean as a two-layer fluid. It is found that the NECC has a maximum transport of 40 x 10 to the 6th cu m/s at 38 deg W.

  17. Zonal mean flow excitation due to inertial waves propagating in the meridional plane

    NASA Astrophysics Data System (ADS)

    Seelig, T.; Harlander, U.; Borcia, I. D.; Egbers, C.

    2012-04-01

    The large-scale oscillation of the atmosphere and oceans is organized by many processes. Waves are a main part. They transport momentum and transfer this locally to the environment. Slowly variating mean flows come into existence, that influence the variability of weather and climate. The quasi-biennial oscillation (QBO) and equatorial deep jets (EDJ) are prominent examples for wave-driven mean flows. The rotation of the earth and associated propagating inertial waves are of main importance for such wave-mean flow interactions. Because of that, we want tho clarify theoretically and later experimentally, wether and how a mean flow will be excitated through inertial waves. We discuss a simple model for the inertial-wave-driven mean flow obtained from the primitive equations. Plumb [1] described the generation of a 'mean zonal motion' due to momentum transport of vertically propagating gravity waves. Based on the mathematical analogy we show that in the meridional plane, propagating inertial waves can transfer their momentum in the same manner to a sheared mean flow. Even an oscillating mean flow can be driven by the inertial waves in close analogy to gravity-wave-driven mean flow variations. [1] Plumb, R. A.: Momentum transport by the thermal tide in the stratosphere of Venus. Quart. J. Roy. Meteor. Soc. 101, 763-776 (1975)

  18. Zonally averaged thermal balance and stability models for nitrogen polar caps on Triton

    NASA Technical Reports Server (NTRS)

    Stansberry, John A.; Lunine, J. I.; Porco, C. C.; Mcewen, A. S.

    1990-01-01

    Voyager four-color imaging data of Triton are analyzed to calculate the bolometric hemispheric albedo as a function of latitude and longitude. Zonal averages of these data have been incorporated into a thermal balance model involving insolation, reradiation, and latent heat of sublimation of N2 ice for the surface. The current average bolometric albedo of Triton's polar caps is 0.8, implying an effective temperature of 34.2 K and a surface pressure of N2 of 1.6 microbar for unit emissivity. This pressure is an order of magnitude lower than the surface pressure of 18 microbar inferred from Voyager data (Broadfoot et al., 1989; Conrath et al., 1989), a discrepancy that can be reconciled if the emissivity of the N2 on Triton's surface is 0.66. The model predicts that Triton's surface north of 15 deg N latitude is experiencing deposition of N2 frosts, as are the bright portions of the south polar cap near the equator. This result explains why the south cap covers nearly the entire southern hemisphere of Triton.

  19. RESOLUTION OF THREE DISTINCT POPULATIONS OF NERVE ENDINGS FROM RAT BRAIN HOMOGENATES BY ZONAL ISOPYCNIC CENTRIFUGATION

    PubMed Central

    Bretz, Ursula; Baggiolini, Marco; Hauser, Rolf; Hodel, Christian

    1974-01-01

    Conditions have been established for the fractionation of subcellular components of rat forebrain homogenates by zonal isopycnic equilibration in continuous sucrose density gradients using a B-XIV rotor. The fractions were analyzed biochemically and by ultra-structural morphometry. Starting from postnuclear supernates of forebrain homogenates, it has been possible to resolve three distinct populations of nerve endings from one another, as well as from free mitochondria and myelin fragments. The three types of nerve endings differ in their apparent specific gravity, their biochemical properties, and their ability selectively to accumulate exogenous transmitter substances in vitro. These three particle populations are likely to represent, in order of increasing modal equilibrium density, (a) cholinergic nerve endings, characterized by their high content of acetylcholine, (b) γ-amino butyric acid (GABA)-containing nerve endings with high glutamate decarboxylase activity and the ability to accumulate exogenous GABA, (c) adrenergic nerve endings that accumulate exogenous dopamine and noradrenaline and exhibit high monoamine oxidase activity. PMID:4363959

  20. Zonal flow and vortices with deep convection and shallow stable stratification

    NASA Astrophysics Data System (ADS)

    Heimpel, M. H.; Gastine, T.; Wicht, J.

    2014-12-01

    Bands and vortices are the two main features of Jupiter's cloud layer. The bands correspond to zonal jets, with strong eastward flow near the equator, and alternating east-west jets at higher latitudes. The vortices are mostly anticyclonic, including the Great Red Spot, which drifts at a southern latitude in the first anticyclonic shear zone away from the equator. Although space missions and ground based observations have revealed beautiful and detailed images of cloud layer flow and thermal emissions, fundamental questions remain unanswered. How deeply are the jets and vortices seated? Why are most jovian vortices anticyclonic, opposite to cyclones on Earth? Previous investigations of planetary flows have focussed on either jets or vortices with few studies of systems that host both features. Here we study rotating convection using the benchmarked 3D spherical anelastic dynamo code MAGIC, with flow driven by convection at depth, but with a stably stratified outer layer. Our results show that multiple jets, which are driven by convection, penetrate deeper than vortices, which are confined to the shallow stably stratified layer. Due to computational limitations requiring high viscosity, model vortices have short lifetimes. Nevertheless, similar to the Great Red Spot, the largest model vortices occur in the lowest latitude anticyclonic shear bands, which form near the outer boundary latitudes corresponding to the inner boundary tangent cylinder. The dominance of anticyclonic vortices is explained simply in that they arise from ascending (divergent) plumes which are spun in the anticyclonic direction by the Coriolis force.

  1. Dependency of the North Pacific winter storm tracks on the zonal distribution of MJO convection

    NASA Astrophysics Data System (ADS)

    Lee, Yun-Young; Lim, Gyu-Ho

    2012-07-01

    We investigate the effects of the tropical Madden Julian Oscillation (MJO) convection on the zonal location and intensity of storm activity during the boreal cool season (Nov. 1 to Feb. 28, 120 days) over the Pacific Ocean. As tropical convection shifts eastward from the eastern Indian Ocean to the western North Pacific, MJO-induced local Hadley circulation leads to an eastward displacement of extratropical Rossby Wave Source (RWS). Consequently, this influence leads to an eastward shift of the peak area of the storm track. The storm track is strongest with the MJO convection over the eastern Indian Ocean (phase 3), and it experiences the suppression when MJO convection is located over the Maritime continents (phase 4), and it increases again when the MJO propagates to the western Pacific (phase 5), after which it weakens again (phase 6). The intensity of the storm track, particularly over the western North Pacific (120°E-180°), is determined by the integrated effects of three factors: the midlatitude convective forcing (MCF), the jet stream, and RWS. These factors are associated with the locations of MJO convections. It is estimated that MJO-induced suppression accounts for only 2.5% of the total observed midwinter suppression (MWS). However, the pattern generated by the MJO is remarkably similar to the observed meridional displacement of North Pacific storm track associated with sub-seasonal variation. We conclude that the spatial distribution of MJO affects the variation of the Pacific storm track, but is not a cause of the MWS.

  2. Zonal Flow Velocimetry using Acoustic Modes in Experimental Models of a Planetary Core

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Mautino, A. R.; Stone, D.; Triana, S. A.; Lekic, V.; Lathrop, D. P.

    2015-12-01

    Rotating hydromagnetic experiments can serve as models of planetary cores, matching some of the dimensionless parameters relevant to planets. One challenge with such experiments is determining the flows present. The opacity of the fluids used in these experiments (e.g. liquid sodium) prevents direct flow visualization techniques from being employed. One method allowing determination of zonal flows in such experiments is acoustic mode velocimetry. In this technique, the rotational splittings of acoustic mode spectra are used to infer the azimuthal velocity profile of the flow. Here we present the use of this technique to study flows in experimental models of the Earth's core. Most of these results were obtained in a 60 cm diameter spherical Couette device, with a 20 cm diameter inner sphere, and using nitrogen gas as the working fluid. Turbulent flow is driven in the system via differential rotation of the outer shell and inner sphere. Acoustic modes are excited in the fluid volume using a speaker, and microphones are used to measure the frequencies and rotational splittings of the modes. We compare the observed splittings with those predicted by theory as a way of validating the method, and infer mean flows from these observations. We also present some preliminary results of acoustic studies in the 3 m diameter liquid sodium spherical Couette experiment. Finally, we discuss future prospects for this experimental technique.

  3. Composition of structural fragments and the mineralization rate of organic matter in zonal soils

    NASA Astrophysics Data System (ADS)

    Larionova, A. A.; Zolotareva, B. N.; Kolyagin, Yu. G.; Kvitkina, A. K.; Kaganov, V. V.; Kudeyarov, V. N.

    2015-10-01

    Comparative analysis of the climatic characteristics and the recalcitrance against decomposition of organic matter in the zonal soil series of European Russia, from peat surface-gley tundra soil to brown semidesert soil, has assessed the relationships between the period of biological activity, the content of chemically stable functional groups, and the mineralization of humus. The stability of organic matter has been determined from the ratio of functional groups using the solid-state 13C NMR spectroscopy of soil samples and the direct measurements of organic matter mineralization from CO2 emission. A statistically significant correlation has been found between the period of biological activity and the humification indices: the CHA/CFA ratio, the aromaticity, and the alkyl/ O-alkyl ratio in organic matter. The closest correlation has been observed between the period of biological activity and the alkyl/ O-alkyl ratio; therefore, this parameter can be an important indicator of the soil humus status. A poor correlation between the mineralization rate and the content of chemically stable functional groups in soil organic matter has been revealed for the studied soil series. At the same time, the lowest rate of carbon mineralization has been observed in southern chernozem characterized by the maximum content of aromatic groups (21% Corg) and surface-gley peat tundra soil, where an extremely high content of unsubstituted CH2 and CH3 alkyl groups (41% Corg) has been noted.

  4. Estimation of Venus wind velocities from high-resolution infrared spectra. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.

    1978-01-01

    Zonal velocity profiles in the Venus atmosphere above the clouds were estimated from measured asymmetries of HCl and HF infrared absorption lines in high-resolution Fourier interferometer spectra of the planet. These asymmetries are caused by both pressure-induced shifts in the positions of the hydrogen-halide lines perturbed by CO2 and Doppler shifts due to atmospheric motions. Particularly in the case of the HCl 2-0 band, the effects of the two types of line shifts can be easily isolated, making it possible to estimate a profile of average Venus equatorial zonal velocity as a function of pressure in the region roughly 60 to 70 km above the surface of the planet. The mean profiles obtained show strong vertical shear in the Venus zonal winds near the cloud-top level, and both the magnitude and direction of winds at all levels in this region appear to vary greatly with longitude relative to the sub-solar point.

  5. Temporal variation of the earth's low-degree zonal gravitational field caused by atmospheric mass redistribution - 1980-1988

    NASA Technical Reports Server (NTRS)

    Chao, B. Fong; Au, Andrew Y.

    1991-01-01

    Temporal variations in the low-degree zonal harmonics of the earth's gravitational field have recently been observed by satellite laser ranging. A host of geophysical processes contribute to these variations. The present paper studies quantitatively a prime contributor, atmospheric mass redistribution, using ECMWF global surface pressure data for the period of 1980-1988. The annual and semiannual amplitudes and phases of the zonal J(l) coefficient with degree l = 2-6 with and without the oceanic inverted-barometer (IB) effect are computed to obtain the predicted effects on the orbit nodal residuals of Lageos and Starlette. These predicted values are then compared with observations. It is found that the atmospheric influence, combined with the hydrological influence agree well with the Lageos observation for the annual term. The corresponding match appears poorer for Starlette.

  6. Calculation of a residual mean meridional circulation for a zonal-mean tracer transport model: Revision 1

    SciTech Connect

    Choi, W.K.; Rotman, D.A.; Wuebbles, D.J.

    1995-01-01

    Because of their computational advantages, zonally-averaged chemical-radiative-transport models are widely used to investigate the distribution of chemical species and their change due to the anthropogenic chemicals in the lower and middle atmosphere. In general, the Lagrangian-mean formulation would be ideal to treat transport due to the zonal mean circulation and eddies. However, the Lagrangian formulation is difficult to use in practical applications. The most widely-used formulation for treating global atmospheric dynamics in two-dimensional models is the transformed Eulerian mean (TEM) equations. The residual mean meridional circulation (RMMC) in the TEM system is used to advect tracers. In this study, we describe possible solution techniques for obtaining the RMMC in the LLNL two-dimensional chemical-radiative-transport model. In the next section, the formulation will be described. In sections 3 and 4, possible solution procedures will be described for a diagnostic and prognostic case, respectively.

  7. Mars atmospheric dynamics as simulated by the NASA AMES General Circulation Model. I - The zonal-mean circulation

    NASA Astrophysics Data System (ADS)

    Haberle, R. M.; Pollack, J. B.; Barnes, J. R.; Zurek, R. W.; Leovy, C. B.; Murphy, J. R.; Lee, H.; Schaeffer, J.

    1993-02-01

    The characteristics of the zonal-mean circulation and how it responds to seasonal variations and dust loading are described. This circulation is the main momentum-containing component of the general circulation, and it plays a dominant role in the budgets of heat and momentum. It is shown that in many ways the zonal-mean circulation on Mars, at least as simulated by the model, is similar to that on earth, having Hadley and Ferrel cells and high-altitude jet streams. However, the Martian systems tend to be deeper, more intense, and much more variable with season. Furthermore, the radiative effects of suspended dust particles, even in small amounts, have a major influence on the general circulation.

  8. Changes in the zonal propagation of El Niño-related SST anomalies: a possible link to the PDO

    NASA Astrophysics Data System (ADS)

    Antico, Pablo L.; Barros, Vicente R.

    2016-03-01

    Long-term variability of El Niño (EN) cycle has been the topic of several studies, mainly because of its impacts on climate around the globe. This variability has been mainly described by changes in the intensity and frequency of EN events. In this study, interdecadal changes in the zonal evolution of EN-related sea surface temperature anomalies (SSTA) and their possible link with a well-known mode of Pacific interdecadal variability are analyzed. EN events are classified according to the sense of zonal propagation of SSTA along the equatorial Pacific during the period 1900-2012. As a result, two types of EN are defined: eastward-directed and westward-directed EN. It is found that EN-related SSTA preferably evolves to the east (west) during the warm (cold) phase of the Pacific Decadal Oscillation. Hence, this study offers new insights into the possible causes of long-term EN changes.

  9. Evidence for wavelike anomalies with short meridional and large zonal scales in the lower stratospheric temperature field

    NASA Technical Reports Server (NTRS)

    Stanford, J. L.; Short, D. A.

    1981-01-01

    Global microwave brightness temperature measurements are analyzed to investigate the range of meridional wavelengths 2000-3000 km where spectral studies reveal larger than expected variance. The data, from the TIROS-N Microwave Sounding Unit, are sensitive to lower stratospheric temperatures (30-150 mb). The results reveal striking temperature anomalies with short meridional wavelengths (2000-3000 km) and long zonal wavelengths (zonal wavenumbers 1-4). The anomalies, with amplitudes approximately 1-2 K, extend from the equatorial region to at least as high as 70 deg N and 70 deg S during January 1979. The features exhibit slow eastward movement or else are nearly stationary for several days. In the Northern Hemisphere, comparison with NMC data reveals that the strongest features tend to be associated with major jet streams.

  10. Wind interaction with falling ejecta - Origin of the parabolic features on Venus

    NASA Technical Reports Server (NTRS)

    Vervack, Ronald J., Jr.; Melosh, H. J.

    1992-01-01

    A quantitative model in which the parabolic features are produced by the interaction of the zonal winds with material ejected ballistically from the impact crater is proposed. As the ejecta particles fall through the atmosphere, the winds transport them downwind from their entry point, smaller particles being transported a greater distance. Since the ejecta distribution is initially axially symmetric and smaller particles are thrown farther from the crater, the winds blow the particles on the upwind side back upon one another, leading to a pile-up of material. On the downwind side, the winds disperse the ejecta particles and no pile-up occurs. The resulting thickness distribution on the Venusian surface matches the observed parabolic features closely. The dual parabolic features associated with the crater Carson is also explained by this model.

  11. Calculation of meridional neutral winds in the middle latitudes from the Irkutsk incoherent scatter radar

    NASA Astrophysics Data System (ADS)

    Shcherbakov, A. A.; Medvedev, A. V.; Kushnarev, D. S.; Tolstikov, M. V.; Alsatkin, S. S.

    2015-12-01

    This paper presents a consistent technique for velocity determination of meridional neutral winds from the Irkutsk incoherent scatter radar (IISR.) We calculated plasma drift velocity based on phase analysis of an autocorrelation function of an incoherent scatter signal. We also preliminary tested the described technique by determining several low-orbit satellite velocities. Midlatitude meridional neutral winds were calculated using a "three-beam" technique from the IISR velocity with taking into account motions due to electric fields across magnetic field lines in both meridional and zonal directions. It has been shown that an underestimated impact of the motions generated by electric fields can seriously interfere in determining wind velocities. The results obtained were compared with the modeled wind values.

  12. Interpretation of the mesospheric and lower thermospheric mean winds observed by MF radar at about 30°N with the 2D-SOCRATES model

    NASA Astrophysics Data System (ADS)

    Xiao, C. Y.; Hu, X.; Zhang, X. X.; Zhang, D. Y.; Wu, X. C.; Gong, X. Y.; Igarashi, K.

    Data obtained by Wuhan (30.5°N, 114.4°E) MF radar and Yamagawa (31.2°N, 130.6°E) MF radar have been used to study the mean winds in the mesosphere and lower thermosphere (MLT) at about 30°N. The observed mean zonal and mean meridional winds show obviously seasonal variations. Westerly wind prevails in winter, and decreases with the increasing height above 76 km, even reverses above 96 km sometimes. The summer mean zonal wind is westward in the mesosphere and eastward in the lower thermosphere, with the reversal height of about 80 km. From 70 to 95 km, the mean meridional wind blows northward in winter and southward in summer. Northerly wind prevails between 95 and 98 km throughout seasons. These wind features have similar patterns to those of the empirical HWM93 wind model. 2D-SOCRATES model is used to try to give physical interpretations of the observed wind fields, with which dynamic contributions to the MLT wind structures are analyzed. Simulations show that the planetary waves play an unimportant role in the MLT region since they have relatively small magnitudes during winter and even cannot propagate upward into the upper atmosphere during summer. The gravity waves play a crucial role in determining the wind structures in the MLT region, providing forcing of about 40 m/s/day and diffusion coefficients of about 50 m 2/s at 30°N. The atmospheric tidal waves have significant influences in the wind structures with forcing of about 10 m/s/day and diffusion coefficients of about several m 2/s in the MLT at 30°N. Breakings of these atmospheric waves tend to close off the westerly jet in winter and easterly jet in summer, to produce strong wind shear in the mesopause, and to drive the meridional wind directed from the summer hemisphere to the winter hemisphere.

  13. Response of the Earth system to zonal tidal forcing examined by VLBI based dUT1 variations

    NASA Astrophysics Data System (ADS)

    Boehm, S.; Schuh, H.

    2011-10-01

    The VLBI group at the Institute of Geodesy and Geophysics of Vienna University of Technology is developing the software VieVS (Vienna VLBI software) for the analysis of geodetic VLBI data. VieVS incorporates the most recent models recommended by the IERS Conventions and in contrast to other VLBI software uses a parameterization with piece-wise linear offsets at integer hours. Thus it provides more flexibility for combination or comparison with time series from other space geodetic techniques or of geophysical origin. We employed this new software to re-process all available geodetic VLBI sessions from 1984 till 2010, suitable for the determination of the Earth rotation parameters (ERP), i.e. dUT1 (UT1-UTC) and the polar motion coordinates xp and yp. Zonal tidal signals with periods from 5 to 35 days in the derived dUT1 long-time series were then used to estimate the so-called zonal response coefficient κ defined by Agnew and Farrell (1978). The frequency dependent zonal response coefficient is an extension to the concept of the Love number k2 which allows for a response of the Earth to tidal forcing, deviating from purely elastic behaviour and thus taking into account effects of ocean tides, a fluid core and mantle anelasticity. A tidally induced change of the rotation rate of the Earth and consequently of dUT1 is proportional to the tide-generating potential through the zonal response coefficient κ. The values estimated for κ for different tidal frequencies from VLBI observations of dUT1 were compared to theory and to the results of previous determinations of κ from observations of space geodetic techniques.

  14. Comparison between reference atmosphere winds and radar winds from selected locations

    NASA Technical Reports Server (NTRS)

    Manson, A. H.; Meek, C. E.; Vincent, R. A.; Craig, R. L.; Phillips, A.; Fraser, G. J.; Smith, M. J.; Fellous, J. L.; Massebeuf, M.; Chandra, S.

    1990-01-01

    Zonal and meridional 60-110-km wind profiles obtained by radar measurements at Saskatoon, Adelaide, Christchurch, Puerto Rico, and Mawson are presented graphically and compared with those from the COSPAR International Reference Atmosphere (CIRA) for 1986. Good general agreement is found below about 80 km, but above 80 km the CIRA 1986 models show discrepancies, including: (1) no spring tongue of weak westward flow at latitudes 20-70 deg; (2) too strong an eastward flow at 20-52 deg in summer; (3) too great reversal heights at 35-43 deg N in summer; and (4) too strong (by a factor of 2) summer and winter jets at 65-70 deg N.

  15. Numerical solution of transonic wing flows using an Euler/Navier-Stokes zonal approach

    NASA Technical Reports Server (NTRS)

    Holst, T. L.; Gundy, K. L.; Thomas, S. D.; Chaderjian, N. M.; Flores, J.

    1985-01-01

    Transonic flow fields about wing geometries are computed using an Euler/Navier-Stokes approach in which the flow field is divided into several zones. The grid zones immediately adjacent to the wing surface are suitably clustered and solved with the Navier-Stokes equations. Grid zones removed from the wing are less finely clustered and are solved with the Euler equations. Wind tunnel wall effects are easily and accurately modeled with the new grid-zoning algorithm because the wind tunnel grid is constructed as an exact subset of the corresponding free-air grid. Solutions are obtained that are in good agreement with experiment, including cases with significant wind tunnel wall effects and shock-induced separation on the upper wing surface.

  16. Jupiter's Global Winds in Advance of the Juno Encounters

    NASA Astrophysics Data System (ADS)

    Wong, Michael H.; Tollefson, Joshua; Simon, Amy A.; Cosentino, Rick; de Pater, Imke; Marcus, Philip; Orton, Glenn S.; Morales-Juberias, Raul; Johnson, Perianne

    2016-10-01

    We use Hubble/WFC3 imaging observations in February 2016 to derive Jupiter's global wind field, the closest wind velocity measurement to Juno's focused atmospheric campaign (November 2016 through January 2017).Using the methods of Asay-Davis et al. (2011, Icarus 211, 1215), we derive zonal wind profiles from Outer Planet Atmospheres Legacy (OPAL) program data in 2015 and 2016, and from 2009 and 2012 data, all taken at red optical wavelengths with the WFC3/UVIS instrument. Several jets show significant variability in peakspeed over the 2000-2016 time period, while most jets are very stable.We quantify uncertainties in order to determine which changes are significant, and we find a roughly 2x improvement in precision compared to the HST/WFPC2 and Cassini-derived zonal wind profiles in Asay-Davis et al. (2011). Some improvement in precision is likely to be instrumental. The WFC3/UVIS detector better samples the HST point-spread function by about 15% compared to WFPC2, and the larger WFC3/UVIS field of view reduces navigational uncertainty by capturing the entire planetary disk in every image. It is not yet clear whether instrumental effects can explain the entire reduction in uncertainty, which could potentially include time-variable noise due to coherent features (waves, vortices) as well as turbulence. Global variability of this magnitude would be a surprise, since Asay-Davis et al. (2011) found the same level of velocity uncertainty (~11 m/s) in both Cassini data from 2000 and HST/WFPC2 data from 2008.We will generate spatial spectra of kinetic energy and cloud features (in multiple filters), using Fourier transforms of OPAL Jupier imaging data and 2D velocity fields. We will fit composite linear models (Barrado-Izagirre et al. 2009, Icarus 202, 181; Choi and Showman 2011, Icarus 216, 597) to the kinetic energy and cloud albedo spectra, comparing spectral indices to past observations and determining forcing scales.

  17. Mixed boundary conditions versus coupling with an energy-moisture balance model for a zonally averaged ocean climate model

    SciTech Connect

    Bjornsson, H.; Mysak, L.A.; Schmidt, G.A.

    1997-10-01

    The Wright and Stocker oceanic thermohaline circulation model is coupled to a recently developed zonally averaged energy moisture balance model for the atmosphere. The results obtained with this coupled model are compared with those from an ocean-only model that employs mixed boundary conditions. The ocean model geometry uses either one zonally averaged interhemispheric basin (the {open_quotes}Atlantic{close_quotes}) or two zonally averaged basins (roughly approximating the Atlantic and the Pacific Oceans) connected by a parameterized Antarctic Circumpolar Current. The differences in the steady states and their linear stability are examined over a wide range of parameters. The presence of additional feedbacks between the ocean circulation and the atmosphere and hydrological cycle in the coupled model produces significant differences between the latter and the ocean-only model, in both the one-basin and two-basin geometries. The authors conclude that due to the effects produced by the feedbacks in the coupled model, they must have serious reservations about the results concerning long-term climate variability obtained from ocean-only models. Thus, to investigate long-term climatic variability a coupled model is necessary. 31 refs., 15 figs., 7 tabs.

  18. Influence of the parallel nonlinearity on zonal flows and heat transport in global gyrokinetic particle-in-cell simulations

    SciTech Connect

    Jolliet, S.; McMillan, B. F.; Vernay, T.; Villard, L.; Hatzky, R.; Bottino, A.; Angelino, P.

    2009-07-15

    In this paper, the influence of the parallel nonlinearity on zonal flows and heat transport in global particle-in-cell ion-temperature-gradient simulations is studied. Although this term is in theory orders of magnitude smaller than the others, several authors [L. Villard, P. Angelino, A. Bottino et al., Plasma Phys. Contr. Fusion 46, B51 (2004); L. Villard, S. J. Allfrey, A. Bottino et al., Nucl. Fusion 44, 172 (2004); J. C. Kniep, J. N. G. Leboeuf, and V. C. Decyck, Comput. Phys. Commun. 164, 98 (2004); J. Candy, R. E. Waltz, S. E. Parker et al., Phys. Plasmas 13, 074501 (2006)] found different results on its role. The study is performed using the global gyrokinetic particle-in-cell codes TORB (theta-pinch) [R. Hatzky, T. M. Tran, A. Koenies et al., Phys. Plasmas 9, 898 (2002)] and ORB5 (tokamak geometry) [S. Jolliet, A. Bottino, P. Angelino et al., Comput. Phys. Commun. 177, 409 (2007)]. In particular, it is demonstrated that the parallel nonlinearity, while important for energy conservation, affects the zonal electric field only if the simulation is noise dominated. When a proper convergence is reached, the influence of parallel nonlinearity on the zonal electric field, if any, is shown to be small for both the cases of decaying and driven turbulence.

  19. Sequential differentiation of mesenchymal stem cells in an agarose scaffold promotes a physis-like zonal alignment of chondrocytes.

    PubMed

    Schmitt, Jacqueline Frida; See, Kwee Hua; Hua, See Kwee; Yang, Zheng; Zheng, Yang; Hui, James Hoi Po; Po, James Hui Hoi; Lee, Eng Hin; Hin, Lee Eng

    2012-11-01

    Chondrocytes of the epiphyseal growth plate (physis) differentiate and mature in defined linear zones. The current study examines the differentiation of human bone marrow derived mesenchymal stem cells (hBMSCs) into zonal physeal cartilage. hBMSCs were embedded in an agarose scaffold with only the surface of the scaffold in direct contact with the culture medium. The cells were differentiated using a two-step system involving the sequential addition of TGFβ followed by BMP2. The resultant samples displayed a heterogenic population of physis-like collagen type 2 positive cells including proliferating chondrocytes and mature chondrocytes showing hypertrophy, expression of early bone markers and matrix mineralization. Histological analysis revealed a physis-like linear zonal alignment of chondrocytes in varying stages of differentiation. The less mature chondrocytes were seen at the base of the construct while hypertrophic chondrocytes and matrix mineralization was observed closer to the surface of the construct. The described differentiation protocol using hBMSCs in an agarose scaffold can be used to study the factors and conditions that influence the differentiation, proliferation, maturation, and zonal alignment of physeal chondrocytes. PMID:22517299

  20. Generation of zonal flow and magnetic field by finite-amplitude waves in the ionospheric E-layer

    NASA Astrophysics Data System (ADS)

    Kahlon, Laila; Kaladze, Tamaz

    2016-07-01

    We review the generation of zonal flow and magnetic field by coupled electromagnetic (EM) ULF waves in the Earth's ionospheric E layer. It is shown that under the typical ionospheric E-layer conditions different planetary low-frequency waves can couple with each other. Propagation of coupled internal-gravity-Alfvén (CIGA), coupled Rossby-Khantadze (CRK) and coupled Rossby-Alfvén-Khantadze (CRAK) waves is revealed and studied. A set of appropriate equations describing the nonlinear interaction of such waves with sheared zonal flow is derived. The conclusion on the instability of short wavelength turbulence of such coupled waves with respect to the excitation of low-frequency and large-scale perturbation of the sheared zonal flow and sheared magnetic field is deduced. The nonlinear mechanism of the instability is based on the parametric triple interaction of finite amplitude coupled waves leading to the inverse energy cascade toward the longer wavelength. The possibility of generation of the intense mean magnetic field is shown. Obtained growth rates are discussed for each case of the considered coupled waves.

  1. Zonal management of multi-purposes groundwater utilization based on water quality and impact on the aquifer.

    PubMed

    Liang, Ching-Ping; Jang, Cheng-Shin; Chen, Ching-Fang; Chen, Jui-Sheng

    2016-07-01

    Groundwater is widely used for drinking, irrigation, and aquaculture in the Pingtung Plain, Southwestern Taiwan. The overexploitation and poor quality of groundwater in some areas of the Pingtung Plain pose great challenges for the safe use and sustainable management of groundwater resources. Thus, establishing an effective management plan for multi-purpose groundwater utilization in the Pingtung Plain is imperative. Considerations of the quality of the groundwater and potential impact on the aquifer of groundwater exploitation are paramount to multi-purpose groundwater utilization management. This study proposes a zonal management plan for the multi-purpose use of groundwater in the Pingtung Plain. The zonal management plan is developed by considering the spatial variability of the groundwater quality and the impact on the aquifer, which is defined as the ratio of the actual groundwater extraction rate to transmissivity. A geostatistical Kriging approach is used to spatially delineate the safe zones based on the water quality standards applied in the three groundwater utilization sectors. Suitable zones for the impact on the aquifer are then spatially determined. The evaluation results showing the safe water quality zones for the three types of utilization demands and suitable zones for the impact on aquifer are integrated to create a zonal management map for multi-purpose groundwater utilization which can help government administrators to establish a water resource management strategy for safe and sustainable use of groundwater to meet multi-purpose groundwater utilization requirements in the Pingtung Plain.

  2. Zonal management of multi-purposes groundwater utilization based on water quality and impact on the aquifer.

    PubMed

    Liang, Ching-Ping; Jang, Cheng-Shin; Chen, Ching-Fang; Chen, Jui-Sheng

    2016-07-01

    Groundwater is widely used for drinking, irrigation, and aquaculture in the Pingtung Plain, Southwestern Taiwan. The overexploitation and poor quality of groundwater in some areas of the Pingtung Plain pose great challenges for the safe use and sustainable management of groundwater resources. Thus, establishing an effective management plan for multi-purpose groundwater utilization in the Pingtung Plain is imperative. Considerations of the quality of the groundwater and potential impact on the aquifer of groundwater exploitation are paramount to multi-purpose groundwater utilization management. This study proposes a zonal management plan for the multi-purpose use of groundwater in the Pingtung Plain. The zonal management plan is developed by considering the spatial variability of the groundwater quality and the impact on the aquifer, which is defined as the ratio of the actual groundwater extraction rate to transmissivity. A geostatistical Kriging approach is used to spatially delineate the safe zones based on the water quality standards applied in the three groundwater utilization sectors. Suitable zones for the impact on the aquifer are then spatially determined. The evaluation results showing the safe water quality zones for the three types of utilization demands and suitable zones for the impact on aquifer are integrated to create a zonal management map for multi-purpose groundwater utilization which can help government administrators to establish a water resource management strategy for safe and sustainable use of groundwater to meet multi-purpose groundwater utilization requirements in the Pingtung Plain. PMID:27343131

  3. Recent intensification of the South and East Asian monsoon contrast associated with an increase in the zonal tropical SST gradient

    NASA Astrophysics Data System (ADS)

    Yun, Kyung-Sook; Lee, June-Yi; Ha, Kyung-Ja

    2014-07-01

    Observed analysis of the 35 years of 1979-2013 reveals considerable interdecadal change and significant recent intensification in the difference of convective precipitation between the South Asian monsoon (SAM) and East Asian monsoon (EAM) systems during the major summer monsoon season (June-July). We propose that the recent strengthening of the zonal gradient of sea surface temperature (SST) between the Indian Ocean, western Pacific, and eastern Pacific is a possible cause for the intensification of the convective precipitation contrast. It is noted that the strengthening of the zonal SST gradient associated with the recent mega-La Niña trend tends to reinforce the negative connection between SAM and EAM systems by inducing enhanced convection over the maritime continent and then facilitating the northwestward emanation of Rossby waves. Consequently, a cyclonic circulation anomaly that effectively changes the local Hadley circulation has been formed over the SAM region, resulting in the noticeable difference between the SAM and EAM. The years 2013 and 1983 are further investigated as the strongest extreme years for positive and negative phases of submonsoon contrast, respectively. The result confirms that the meridional dipole height pattern along the Asian Jet stream, which is caused by the strong zonal gradient of tropical SST, serves as a key trigger in strengthening the submonsoon contrast.

  4. Nonlinear magnetohydrodynamic waves in a steady zonal circulation for a shallow fluid shell on the surface of a rotating sphere

    NASA Technical Reports Server (NTRS)

    Lou, Y. Q.

    1987-01-01

    This paper considers two-dimensional nonlinear MHD waves of large horizontal spatial scales for a thin magnetofluid layer on the surface of a rotating sphere. The 'shallow fluid' hydrodynamic equations are generalized to include the effects of magnetic fields, and it is shown that the resulting MHD equations can be reduced to a single scalar equation for a stream function involving several free functions. For special choices of these free functions, two kinds of finite-amplitude MHD waves are obtained, propagating in the azimuthal direction relative to the uniformly rotating background atmosphere in the presence of a background zonal magnetic field and a steady differential zonal flow. These two kinds of MHD waves are fundamentally due to the joint effects of the uniform rotation of the background atmosphere and background magnetic field; the first is an inertial wave of the Rossby (1939) and Haurwitz (1940) type, modified by the presence of the background zonal magnetic field, while the second is a magnetic Alfven-like wave which is modified by the uniform rotation of the background atmosphere.

  5. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  6. Absolute wind measurements in the lower thermosphere of Venus using infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Goldstein, Jeffrey J.

    1990-01-01

    The first absolute wind velocities above the Venusian cloud-tops were obtained using NASA/Goddard infrared heterodyne spectrometers at the NASA Infrared Telescope Facility (IRTF) and the McMath Solar Telescope. Beam-integrated Doppler displacements in the non-thermal emission core of (12)C(16)O2 10.33 micron R(8) sampled the line of sight projection of the lower thermospheric wind field (100 to 120 km). A field-usable Lamb-dip laser stabilization system, developed for spectrometer absolute frequency calibration to less than + or - 0.1 MHz, allowed S/N-limited line of sight velocity resolution at the 1 m/s level. The spectrometer's diffraction-limited beam (1.7 arc-second HPBW at McMath, 0.9 arc-second HPBW at IRTF), and 1 to 2 arc-second seeing, provided the spatial resolution necessary for circulation model discrimination. Qualitative analysis of beam-integrated winds provided definitive evidence of a dominant subsolar-antisolar circulation in the lower thermosphere. Beam-integrated winds were modelled with a 100x100 grid over the beam, incorporating beam spatial rolloff and across-the-beam gradients in non-thermal emission intensity, line of sight projection geometry, and horizontal wind velocity. Horizontal wind velocity was derived from a 2-parameter model wind field comprised of subsolar-antisolar and zonal components. Best-fit models indicated a dominant subsolar-antisolar flow with 120 m/s cross-terminator winds and a retrograde zonal component with a 25 m/s equatorial velocity. A review of all dynamical indicators above the cloud-tops allowed development of an integrated and self-consistent picture of circulation in the 70 to 200 km range.

  7. Vertical winds and momentum fluxes due to equatorial planetary scale waves using all-sky meteor radar over Brazilian region

    NASA Astrophysics Data System (ADS)

    Egito, F.; Andrioli, V. F.; Batista, P. P.

    2016-11-01

    In the equatorial region planetary scale waves play an important role transporting significant amount of energy and momentum through atmosphere. Quantifying the momentum transported by these waves and its effects on the mean flow is rather important. Direct estimates of the momentum flux transported by waves require horizontal and vertical wind measurements. Ground-based meteor radars have provided continuous and reliable measurements of the horizontal wind components in the Mesosphere and Lower Thermosphere (MLT) region and have contributed to improve our knowledge of the dynamics of this region. However, instrumental limitations hinder its use for measuring vertical winds and momentum fluxes. On the other hand, according to Babu et al (2012), all- sky meteor radars are able to infer tridimensional winds when using a large number of meteor echoes centered at the meteor ablation peak. Following this approach, we have used measurements performed by a Meteor Radar installed at São João do Cariri, Brazil (7.4°S; 36.5°W) in order to measure vertical winds and calculate the momentum flux transported by equatorial planetary scale waves. In order to evaluate the accuracy of vertical wind values we have performed several tests based on a simple model considering real meteor distributions and theoretical equations for the MLT winds motion. From our tests, we inferred that Brazilian meteor radar data can be used for this purpose with an accuracy of ~ 1.8 m/s. The results show that the vertical wind presents magnitudes of a few meters per second and occasionally reaches magnitudes around 10 m/s. Below 92 km the vertical wind is predominantly upward during the whole year and above exhibits a semi-annual oscillation with downward phase during the equinoxes. Variations associated to planetary scale waves in the vertical wind are also observed and some of them appear simultaneously in the zonal and meridional wind as well. Largest wave induced amplitudes in the vertical wind

  8. An experimental study of multiple zonal jet formation in rotating, thermally driven convective flows on a topographic beta-plane

    NASA Astrophysics Data System (ADS)

    Read, P. L.; Jacoby, T. N. L.; Rogberg, P. H. T.; Wordsworth, R. D.; Yamazaki, Y. H.; Miki-Yamazaki, K.; Young, R. M. B.; Sommeria, J.; Didelle, H.; Viboud, S.

    2015-08-01

    A series of rotating, thermal convection experiments were carried out on the Coriolis platform in Grenoble, France, to investigate the formation and energetics of systems of zonal jets through nonlinear eddy/wave-zonal flow interactions on a topographic β-plane. The latter was produced by a combination of a rigid, conically sloping bottom and the rotational deformation of the free upper surface. Convection was driven by a system of electrical heaters laid under the (thermally conducting) sloping bottom and led to the production of intense, convective vortices. These were observed to grow in size as each experiment proceeded and led to the development of weak but clear azimuthal jet-like flows, with a radial scale that varied according to the rotation speed of the platform. Detailed analyses reveal that the kinetic energy-weighted radial wavenumber of the zonal jets, kJy, scales quite closely either with the Rhines wavenumber as kJy ≃ 2(βT/2urms)1/2, where urms is the rms total or eddy velocity and βT is the vorticity gradient produced by the sloping topography, or the anisotropy wavenumber as k J y ≃ 1 . 25 ( βT 3 / ɛ ) 1 / 5 , where ɛ is the upscale turbulent energy transfer rate. Jets are primarily produced by the direct quasi-linear action of horizontal Reynolds stresses produced by trains of topographic Rossby waves. The nonlinear production rate of zonal kinetic energy is found to be strongly unsteady, however, with fluctuations of order 10-100 times the amplitude of the mean production rate for all cases considered. The time scale of such fluctuations is found to scale consistently with either an inertial time scale, τ p ˜ 1 . / √{ u r m s β T } , or the Ekman spin-down time scale. Kinetic energy spectra show some evidence for a k-5/3 inertial subrange in the isotropic component, suggestive of a classical Kolmogorov-Batchelor-Kraichnan upscale energy cascade and a steeper spectrum in the zonal mean flow, though not as steep as k-5, as

  9. Zonal Wave Number 2 Rossby Wave (3.5-day oscillation) Over The Martian Lower Atmosphere

    NASA Astrophysics Data System (ADS)

    Ghosh, P.; Thokuluwa, R. K.

    2013-12-01

    to get decreasing monotonously to the statistically significant lowest power of 20 K^2 in the height of 450 Pascal level. Similar to the 0-30E longitude region, there is no significant wave in all the heights above the 450 Pascal level. The 190-230 E region shows similar wave characteristics (both the power and height structure) as observed for the 0-30 E region. This would indicate that the here reporting 3.5 day wave might be associated with eastward propagating (observed the zonal phase speed of ~0.5 days per 30 degree longitude) wave number 2 Rossby wave as the wave shows similar characteristics in the two longitude regions of 0-30E and 190-230 E with the longitudinal interval of 180 degrees. Peculiarly, in the 250-280 E region, the wave shows maximum power (120 K^2) in the two heights of 550 and 700 Pascal levels. As a further support for the zonal wave number 2 structure, there is no significant 3.5-day oscillation in all the height levels in the 290-320 E longitude region which is similar to what observed in the 35-60E longitude sector. A detailed investigation of this 3.5 day oscillation will be presented also for other periods of different years.

  10. Landscape and zonal features of the formation of producing economy in Russia

    NASA Astrophysics Data System (ADS)

    Nizovtsev, Vyacheslav; Natalia, Erman

    2016-04-01

    Based on analysis of the extensive source base, including complex landscape, component, paleogeographic and archeological published and scientific materials as well as the connected analysis of published paleogeographical, paleolandscape and historical and geographic maps of the territory of Russia landscape and zonal features of the transition from appropriating economy to producing economy were determined. All the specifics of historical changes in the landscape use of the vast areas of Russia is caused by the variety of its landscape zones and the specifics of their constituent landscapes. Human economic activities as a factor of differentiation and development of landscapes became apparent almost in all landscape zones together with the emergence of the producing type of economy from the Aeneolithic-Bronze Age (Atlantic period) in the southern steppe regions (in the northern areas of the main centers of the producing economy) and from the Bronze Age in the forest areas. The emergence of the producing economy in the forest-steppe and steppe landscape zones on the territory of Russia is dated IV (Aeneolithic) - III (Early Bronze Age) millennium BC. It is from this period that on the European part of Russia and in Siberia the so-called Neolithic revolution begins. The use of copper and bronze axes helped to develop new areas for planting crops in the forest-steppe zone. In the forest-steppe zone swidden and lea tillage cultivation develops. In the steppe and forest-steppe Eurasia depending on the local landscape conditions two ways of producing economy with a predominance of cattle-breeding developed: nomadic cattle breeding and house cattle breeding with a significant influence of agriculture in the economy and long-term settlements. The steppe areas were completely dominated by the mobile nomadic herding, breeding cattle and small cattle. Along with the valley landscapes the interfluvial landscapes were also actively explored. Almost in all the steppe areas

  11. Sensitive Indicators of Zonal Stipa Species to Changing Temperature and Precipitation in Inner Mongolia Grassland, China

    PubMed Central

    Lv, Xiaomin; Zhou, Guangsheng; Wang, Yuhui; Song, Xiliang

    2016-01-01

    Climate change often induces shifts in plant functional traits. However, knowledge related to sensitivity of different functional traits and sensitive indicator representing plant growth under hydrothermal change remains unclear. Inner Mongolia grassland is predicted to be one of the terrestrial ecosystems which are most vulnerable to climate change. In this study, we analyzed the response of four zonal Stipa species (S. baicalensis, S. grandis, S. breviflora, and S. bungeana) from Inner Mongolia grassland to changing temperature (control, increased 1.5, 2, 4, and 6°C), precipitation (decreased 30 and 15%, control, increased 15 and 30%) and their combined effects via climate control chambers. The relative change of functional traits in the unit of temperature and precipitation change was regarded as sensitivity coefficient and sensitive indicators were examined by pathway analysis. We found that sensitivity of the four Stipa species to changing temperature and precipitation could be ranked as follows: S. bungeana > S. grandis > S. breviflora > S. baicalensis. In particular, changes in leaf area, specific leaf area and root/shoot ratio could account for 86% of the changes in plant biomass in the four Stipa species. Also these three measurements were more sensitive to hydrothermal changes than the other functional traits. These three functional indicators reflected the combination of plant production capacity (leaf area), adaptive strategy (root/shoot ratio), instantaneous environmental effects (specific leaf area), and cumulative environmental effects (leaf area and root/shoot ratio). Thus, leaf area, specific leaf area and root/shoot ratio were chosen as sensitive indicators in response to changing temperature and precipitation for Stipa species. These results could provide the basis for predicting the influence of climate change on Inner Mongolia grassland based on the magnitude of changes in sensitive indicators. PMID:26904048

  12. Mercury in the North Atlantic Ocean: The U.S. GEOTRACES zonal and meridional sections

    NASA Astrophysics Data System (ADS)

    Bowman, Katlin L.; Hammerschmidt, Chad R.; Lamborg, Carl H.; Swarr, Gretchen

    2015-06-01

    Mercury (Hg) in the ocean undergoes many chemical transformations, including in situ production of monomethylmercury (MMHg), the form that biomagnifies in marine food webs. Because the ocean is a primary and dynamic reservoir of Hg cycling at earth's surface and the principal source of human MMHg exposures through seafood, it is important to understand the distribution of Hg and its chemical species in marine environments. We examined total Hg, elemental Hg (Hg0), MMHg, and dimethylmercury (DMHg) with fully resolved high-resolution profiles during the U.S. GEOTRACES zonal and meridional sections of the North Atlantic Ocean (GEOTRACES GA03). Total Hg in filtered water had both scavenged- and nutrient-type vertical distributions, whereas concentrations of DMHg, Hg0, and filtered MMHg were increased in the oxygen deficient zone of the permanent thermocline across the basin, relative to water above and often below. Total Hg and MMHg on suspended particles accounted for less than 10% of total concentrations. The TAG hydrothermal vent on the Mid-Atlantic Ridge (MAR) was a source of total Hg and MMHg to nearby waters with apparent scavenging and Hg transformation occurring in the buoyant plume. Uniquely, we observed significant horizontal segregation of filtered total Hg and MMHg, DMHg, and Hg0 in North Atlantic Deep Water (NADW) between younger water on the western and older water on the eastern side of the MAR. Relative to eastern NADW, Hg concentrations in western NADW were greater, on average, by 1.14× for filtered total Hg, 1.6× for Hg0, 2.5× for filtered MMHg, and 2.6× for DMHg. Total Hg enrichment in deep water of the western basin may have resulted from downwelling of anthropogenic Hg during NADW formation. Enrichment of MMHg, DMHg, and Hg0 in western basin NADW may be explained by either greater Hg substrate availability or greater methylation and reduction potentials in younger deep waters.

  13. Fluctuating zonal flows in the I-mode regime in Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Cziegler, I.; Diamond, P. H.; Fedorczak, N.; Manz, P.; Tynan, G. R.; Xu, M.; Churchill, R. M.; Hubbard, A. E.; Lipschultz, B.; Sierchio, J. M.; Terry, J. L.; Theiler, C.

    2013-05-01

    Velocity fields and density fluctuations of edge turbulence are studied in I-mode [F. Ryter et al., Plasma Phys. Controlled Fusion 40, 725 (1998)] plasmas of the Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] tokamak, which are characterized by a strong thermal transport barrier in the edge while providing little or no barrier to the transport of both bulk and impurity particles. Although previous work showed no clear geodesic-acoustic modes (GAM) on C-Mod, using a newly implemented, gas-puff-imaging based time-delay-estimate velocity inference algorithm, GAM are now shown to be ubiquitous in all I-mode discharges examined to date, with the time histories of the GAM and the I-mode specific [D. Whyte et al., Nucl. Fusion 50, 105005 (2010)] Weakly Coherent Mode (WCM, f = 100-300 kHz, Δf/f≈0.5, and kθ≈1.3 cm-1) closely following each other through the entire duration of the regime. Thus, the I-mode presents an example of a plasma state in which zero frequency zonal flows and GAM continuously coexist. Using two-field (density-velocity and radial-poloidal velocity) bispectral methods, the GAM are shown to be coupled to the WCM and to be responsible for its broad frequency structure. The effective nonlinear growth rate of the GAM is estimated, and its comparison to the collisional damping rate seems to suggest a new view on I-mode threshold physics.

  14. Characterisation of antioxidants in photosynthetic and non-photosynthetic leaf tissues of variegated Pelargonium zonale plants.

    PubMed

    Vidović, M; Morina, F; Milić-Komić, S; Vuleta, A; Zechmann, B; Prokić, Lj; Veljović Jovanović, S

    2016-07-01

    Hydrogen peroxide is an important signalling molecule, involved in regulation of numerous metabolic processes in plants. The most important sources of H2 O2 in photosynthetically active cells are chloroplasts and peroxisomes. Here we employed variegated Pelargonium zonale to characterise and compare enzymatic and non-enzymatic components of the antioxidative system in autotrophic and heterotrophic leaf tissues at (sub)cellular level under optimal growth conditions. The results revealed that both leaf tissues had specific strategies to regulate H2 O2 levels. In photosynthetic cells, the redox regulatory system was based on ascorbate, and on the activities of thylakoid-bound ascorbate peroxidase (tAPX) and catalase. In this leaf tissue, ascorbate was predominantly localised in the nucleus, peroxisomes, plastids and mitochondria. On the other hand, non-photosynthetic cells contained higher glutathione content, mostly located in mitochondria. The enzymatic antioxidative system in non-photosynthetic cells relied on the ascorbate-glutathione cycle and both Mn and Cu/Zn superoxide dismutase. Interestingly, higher content of ascorbate and glutathione, and higher activities of APX in the cytosol of non-photosynthetic leaf cells compared to the photosynthetic ones, suggest the importance of this compartment in H2 O2 regulation. Together, these results imply different regulation of processes linked with H2 O2 signalling at subcellular level. Thus, we propose green-white variegated leaves as an excellent system for examination of redox signal transduction and redox communication between two cell types, autotrophic and heterotrophic, within the same organ. PMID:26712503

  15. Global ozone observations from the UARS MLS: An overview of zonal-mean results

    SciTech Connect

    Froidevaux, L.; Waters, J.W.; Read, W.G.; Elson, L.S.; Flower, D.A.; Jarnot, R.F.

    1994-10-15

    Global ozone observations from the Microwave Limb Sounder (MLS) aboard the Upper Atmosphere Research Satellite (UARS) are presented, in both vertically resolved and column abundance formats. The authors review the zonal-mean ozone variations measured over the two and a half years since launch in September 1991. Well-known features such as the annual and semiannual variations are ubiquitous. In the equatorial regions, longer-term changes are believed to be related to the quasi-biennial oscillation (QBO), with a strong semiannual signal above 20 hPa. Ozone values near 50 hPa exhibit an equatorial low from October 1991 to June 1992, after which the low ozone pattern splits into two subtropical lows (possibly in connection with residual circulation changes tied to the QBO) and returns to an equatorial low in September 1993. The ozone hole development at high southern latitudes is apparent in MLS column data integrated down to 100 hPa, with a pattern generally consistent with Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) measurements of total column; the MLS data reinforce current knowledge of this lower-stratospheric phenomenon by providing a height-dependent view of the variations. The region from 30{degrees}S to 30{degrees}N (an area equal to half the global area) shows very little change in the ozone column from year to year and within each year. Finally, residual ozone values extracted from TOMS-minus-MLS column data are briefly presented as a preliminary view into the potential usefulness of such studies, with information on tropospheric ozone as an ultimate goal. 99 refs., 13 figs.

  16. Vineyard zonal management for grape quality assessment by combining airborne remote sensed imagery and soil sensors

    NASA Astrophysics Data System (ADS)

    Bonilla, I.; Martínez De Toda, F.; Martínez-Casasnovas, J. A.

    2014-10-01

    Vineyard variability within the fields is well known by grape growers, producing different plant responses and fruit characteristics. Many technologies have been developed in last recent decades in order to assess this spatial variability, including remote sensing and soil sensors. In this paper we study the possibility of creating a stable classification system that better provides useful information for the grower, especially in terms of grape batch quality sorting. The work was carried out during 4 years in a rain-fed Tempranillo vineyard located in Rioja (Spain). NDVI was extracted from airborne imagery, and soil conductivity (EC) data was acquired by an EM38 sensor. Fifty-four vines were sampled at véraison for vegetative parameters and before harvest for yield and grape analysis. An Isocluster unsupervised classification in two classes was performed in 5 different ways, combining NDVI maps individually, collectively and combined with EC. The target vines were assigned in different zones depending on the clustering combination. Analysis of variance was performed in order to verify the ability of the combinations to provide the most accurate information. All combinations showed a similar behaviour concerning vegetative parameters. Yield parameters classify better by the EC-based clustering, whilst maturity grape parameters seemed to give more accuracy by combining all NDVIs and EC. Quality grape parameters (anthocyanins and phenolics), presented similar results for all combinations except for the NDVI map of the individual year, where the results were poorer. This results reveal that stable parameters (EC or/and NDVI all-together) clustering outcomes in better information for a vineyard zonal management strategy.

  17. Large-scale tropical transients in aquaplanet simulations with zonally symmetric sea surface temperature distributions (Invited)

    NASA Astrophysics Data System (ADS)

    Kuang, Z.

    2010-12-01

    Spectral analyses of sub-seasonal variations of tropical convection revealed features such as convectively coupled equatorial waves (CCEW) and the Madden-Julian Oscillations (MJO) over a red noise background. In this work, the super-parameterized Community Atmosphere Model (SPCAM) is used in aquaplanet experiments forced with zonally symmetric sea surface temperature distributions to investigate the roles of various processes in shaping the tropical spectra. Control experiments with the SPCAM model were able to produce the red noise background spectrum, CCEWs, and in some Intertropical Convergence Zone (ITCZ) configurations, “MJO-like” disturbances. To unravel the roles of various processes, experiments with simplified dynamics/settings are performed. In experiments where the large-scale dynamics in the model is largely linearized and with no feedbacks from radiative heating or surface sensible/latent heat and momentum fluxes, the spectra of large-scale tropical convectively coupled transients are dominated by the CCEWs, in ways generally consistent with results from the simple model of Andersen and Kuang (2008), and there are no red noise background spectra. Additional experiments show that the red noise aspect of the spectrum is mostly due to eddy stirring of the moisture field across its meridional gradient at the edge of the ITCZ, in particular the deep dry intrusions from the subtropics to the tropics. We will also discuss the effects of surface friction and idealized moist static energy sources, and use a simple model to understand these behaviors. It is hoped that through these and additional idealized studies, the various mechanisms that shape the tropical spectra can be elucidated. Ref:Andersen, J. A., Z. Kuang, A toy model of the instability in the equatorially trapped convectively coupled waves on the equatorial beta plane, Journal of Atmospheric Sciences, 65, 3736-3757, (2008)

  18. Climate contributes to zonal forest mortality in Southern California's San Jacinto Mountains

    NASA Astrophysics Data System (ADS)

    Fellows, A.; Goulden, M.

    2010-12-01

    An estimated 4.6 million trees died over ~375,000 acres of Southern California forest in 2002-2004. This mortality punctuated a decline in forest health that has been attributed to air pollution, stem densification, or drought. Bark beetles were the proximate cause of most tree death but the underlying cause of this extensive mortality is arguably poor forest health. We investigated the contributions that climate, particularly drought, played in tree mortality and how physiological drought stress may have structured the observed patterns of mortality. Field surveys showed that conifer mortality was zonal in the San Jacinto Mountains of Southern California. The proportion of conifer mortality increased with decreasing elevation (p=0.01). Mid-elevation conifers (White Fir, Incense Cedar, Coulter Pine, Sugar Pine, Ponderosa and Jeffrey Pine) died in the lower portions of their respective ranges, which resulted in an upslope lean in species’ distribution and an upslope shift in species’ mean elevation. Long-term precipitation (P) is consistent with elevation over the conifer elevation range (p=0.43). Potential evapotranspiration (ET) estimated by Penman Monteith declines with elevation by nearly half over the same range. These trends suggest that ET, more than P, is critical in structuring the elevational trend in drought stress and may have contributed to the patterns of mortality that occurred in 2002-04. Physiological measurements in a mild drought year (2009) showed late summer declines in plant water availability with decreasing elevation (p < 0.01) and concomitant reductions in carbon assimilation and stomatal conductance with decreasing elevation. We tie these observations together with a simple water balance model.

  19. Zonal shear and super-rotation in a magnetized spherical Couette flow experiment

    NASA Astrophysics Data System (ADS)

    Brito, D.; Alboussière, T.; Cardin, P.; Gagnière, N.; Jault, D.; La Rizza, P.; Masson, J.; Nataf, H.; Schmitt, D.

    2011-12-01

    We present measurements performed in a spherical shell filled with liquid sodium, where a 74 mm-radius inner sphere is rotated while a 210 mm-radius outer sphere is at rest. The inner sphere holds a dipolar magnetic field and acts as a magnetic propeller when rotated. In this experimental set-up called DTS, direct measurements of the velocity are performed by ultrasonic Doppler velocimetry. Differences in electric potential and the induced magnetic field are also measured to characterize the magnetohydrodynamic flow. Rotation frequencies of the inner sphere are varied between -30 Hz and +30 Hz, the magnetic Reynolds number based on measured sodium velocities and on the shell radius reaching to about 33. We have investigated the mean axisymmetric part of the flow, which consists of differential rotation. Strong super-rotation of the fluid with respect to the rotating inner sphere is directly measured. It is found that the organization of the mean flow does not change much throughout the entire range of parameters covered by our experiment. The direct measurements of zonal velocity give a nice illustration of Ferraro's law of isorotation in the vicinity of the inner sphere where magnetic forces dominate inertial ones. The transition from a Ferraro regime in the interior to a geostrophic regime, where inertial forces predominate, in the outer regions has been well documented. It takes place where the local Elsasser number is about 1. A quantitative agreement with non-linear numerical simulations is obtained when keeping the same Elsasser number. The experiments also reveal a region that violates Ferraro's law just above the inner sphere.

  20. Formation mechanism for the amplitude of interannual climate variability in subtropical northern hemisphere: relative contributions from the zonal asymmetric mean state and the interannual variability of SST

    NASA Astrophysics Data System (ADS)

    He, Chao; Lin, Ailan; Gu, Dejun; Li, Chunhui; Zheng, Bin

    2016-04-01

    The Amplitude Interannual climate Variability (AIV) differs among the subtropical northern hemisphere, and the Western North Pacific (WNP) was claimed to exhibit the largest AIV. The robustness of the AIV pattern is investigated in this study with different atmospheric variables from multiple datasets. As consistently shown by the interannual variance patterns of precipitation and circulation, the AIV over subtropical northern hemisphere closely follows the mean state of precipitation, where higher (lower) AIV is located at moister (drier) regions. The largest AIV is seen over the broad area from South Asia to WNP, followed by a secondary local maximum over the Gulf of Mexico. To further investigate the formation mechanism for the AIV pattern, numerical simulations are performed by Community Atmosphere Model version 4 (CAM4). The zonal asymmetry of AIV is reduced if the interannual SST variability is removed, and it almost disappears if the zonal asymmetry of SST mean state is removed. The results suggest that the zonal asymmetric AIV pattern primarily originates from the zonal asymmetric SST mean state, and it is amplified by the interannual SST variability. The atmospheric convection-circulation feedback plays a key role in connecting the AIV with the mean state precipitation. In both observation and CAM4 simulations, stronger (weaker) convection-circulation feedback is seen in moister (drier) regions. By modulating the mean state precipitation and the associated intensity of convection-circulation feedback, the zonal asymmetric SST mean state accounts for the zonal asymmetry of AIV in the subtropical northern hemisphere.

  1. Interpretation of the mesospheric and lower thermospheric mean winds observed with MF radar at about 30N with the 2D-SOCRATES model

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Hu, X.; Zhang, X.; Zhang, D.; Wu, X.; G, X.

    Data obtained from Japanese Yamagawa 31 2 0 N 130 6 0 W MF radar and Chinese Wuhan 30 5 0 N 114 4 0 W MF radar have been used to study the mean winds in the MLT at about 30 0 N The observed mean winds show obvious seasonal variations Westerly wind prevails in winter and decreases with the increasing heights even reverses near the 95km altitude sometimes During summer the mean zonal wind is westward in the mesosphere and eastward in the lower thermosphere with the reversing height about 79km From 70km to 95km the mean meridional wind blows northwards in winter and southwards in summer Northerly wind prevails above about 95km The winds in spring and autumn are the transitions between summer and winter winds structures These wind features are due to the atmospheric photochemistry radiation and dynamics The NCAR interactive chemical-dynamical-radiative 2-D model SOCRATES is used to investigate the effects of the radiation and dynamics on the MLT circulations and to interpret the above observations When both of the radiation and dynamics are considered in the model simulation the resulting zonal-mean winds are similar to the mean winds observed by MF radar When not considering the dynamics the results reveal that the radiative-balanced winds increase with the increasing heights which disagree with the observational winds Large climatological values of forcing are required to account for such discrepancies The gravity waves play a dominant role in contributing to the forcing which provide a drag of the order of

  2. Effects of Planetary Waves and Thermospheric winds on Equatorial Spread F/Plasma Bubble Irregularities

    NASA Astrophysics Data System (ADS)

    Abdu, M. A.; de Medeiros, R. T.; Batista, I. S.; Brum, C. G. M.; Carrasco, A. J.

    The development of the Spread F plasma bubble irregularities of the post sunset equatorial ionosphere ESF is determined by a variety of parameters that define and control the equatorial atmosphere ionosphere system and its large day-to-day variability The sunset electrodynamic processes lead to the generation of an enhanced prereversal zonal electric field PRE and the associated F layer rise that are primary requirement for the onset of the instabilities by the Rayleigh-Taylor R-T mechanism from density perturbations at the bottom side of a rising F layer Other factors that are known to control the ESF development are the thermospheric winds and integrated conductivity of the potentially unstable flux tubes While the evening zonal eastward wind contributes to the PRE development a meridional trans-equatorial wind tends to inhibit both the PRE and the ESF developments External forcing from magnetosphere-ionosphere coupling processes as well as from vertical coupling through upward propagating atmospheric waves planetary tidal and gravity waves also play important roles in the observed variability of the ESF on a day-to-day and shorter term basis Recent studies have shown that Planetary waves propagating through the mesosphere to the thermosphere ionosphere are important sources of variabilities in the PRE F layer heights and ESF This paper will present a brief review of ESF variability under the influences of upward propagating waves mainly planetary waves and thermospheric winds

  3. Wind turbine

    SciTech Connect

    Traudt, R.F.

    1986-12-30

    This patent describes a wind turbine device having a main rotatable driven shaft, elongated blades operatively mounted on the main shaft for unitary rotation with the main shaft. The blade extends substantially radially away from the main shaft and is adapted to fold downwind under naturally occurring forces and simultaneously feather in direct response to the folding movement. A means associated with the blades is included for increasing the rate of fold relative to the rate of feather as the speed of rotation increases.

  4. Wind Streaks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 12 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    Windstreaks are features caused by the interaction of wind and topographic landforms. The raised rims and bowls of impact craters causes a complex interaction such that the wind vortex in the lee of the crater can both scour away the surface dust and deposit it back in the center of the lee. If you look closely, you will see evidence of this in a darker 'rim' enclosing a brighter interior.

    Image information: VIS instrument. Latitude 6.9, Longitude 69.4 East (290.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon

  5. Wind Monitor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA needed a way to make high-resolution measurements of the wind profile before launching Saturn vehicles. The standard smooth-surface weather balloons zigzagged or spiraled as they ascended due to air vortices that shed off the surface at various positions, which made accurate radar-tracking measurement impossible. A Marshall Space Flight Center engineer modified the surface of the balloons with conical dixie cups, which stabilized them. Now produced by Orbital Sciences Corporation, the Jimsphere is the standard device at all U.S. missile/launch vehicle ranges.

  6. Prospecting for Wind

    ERIC Educational Resources Information Center

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…

  7. Careers in Wind Energy

    ERIC Educational Resources Information Center

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  8. Simultaneous mesospheric wind measurements near South Pole by optical and meteor radar methods

    NASA Astrophysics Data System (ADS)

    Hernandez, G.; Forbes, J. M.; Smith, R. W.; Portnyagin, Y.; Booth, J. F.; Makarov, N.

    Simultaneous and co-located measurements of mesospheric winds near South Pole, by high-resolution optical and meteor radar methods, show that these two methods determine very similar motions at slightly different heights of observation. The measured atmospheric motions by the two techniques show that a) The mean wind during 12 days in June, 1995 was found to have a 7 m/s amplitude flowing towards the 5°E longitude direction. The latter direction is different from the 30E° direction found earlier during August 1991 and 1992. b) The observed dominant oscillations in the wind at both heights of observation are those of zonal wavenumber one character. Westward phase propagation was determined for the observed short-period (∼0 hours) oscillations and eastward phase propagation for the longer-period (∼3 days) oscillations, respectively. Because of the neighboring heights of observation by the optical and meteor radar methods, the in situ vertical wavelengths of propagation of the observed waves have been determined to be greater than 100 km for the 10-hr oscillations and near 65 km for the longer period oscillations. With this new information we are able to independently establish the earlier assignment of the nearly 10-hr oscillations as the different meridional modes of a zonal wavenumber one Lamb wave. The determined vertical wavelength and eastward phase progression of the longer periodicity waves indicate these oscillations are likely to be the gravest inertio-gravity wave, which has the appropriate equivalent depths at these periods of oscillation. The simultaneous absence of statistically significant kinetic temperature and optical-tracer emission rate oscillations at the frequencies corresponding to the wind motions, provides independent support to the earlier deductions on the ability of the atmosphere near the rotational poles to support only certain zonal character oscillations.

  9. Thermospheric winds and temperatures above Mawson, Antarctica, observed with an all-sky imaging, Fabry-Perot spectrometer

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Conde, M.; Dyson, P.; Davies, T.; Kosch, M. J.

    2009-05-01

    A new all-sky imaging Fabry-Perot spectrometer has been installed at Mawson station (67°36' S, 62°52' E), Antarctica. This instrument is capable of recording independent spectra from many tens of locations across the sky simultaneously. Useful operation began in March 2007, with spectra recorded on a total of 186 nights. Initial analysis has focused on the large-scale daily and average behavior of winds and temperatures derived from observations of the 630.0 nm airglow line of atomic oxygen, originating from a broad layer centered around 240 km altitude, in the ionospheric F-region. The 1993 Horizontal Wind Model (HWM93), NRLMSISE-00 atmospheric model, and the Coupled Thermosphere/Ionosphere Plasmasphere (CTIP) model were used for comparison. During the geomagnetically quiet period studied, observed winds and temperatures were generally well modelled, although temperatures were consistently higher than NRLMSISE-00 predicted, by up to 100 K. CTIP temperatures better matched our data, particularly later in the night, but predicted zonal winds which were offset from those observed by 70-180 ms-1 westward. During periods of increased activity both winds and temperatures showed much greater variability over time-scales of less than an hour. For the active night presented here, a period of 45 min saw wind speeds decrease by around 180 ms-1, and temperatures increase by approximately 100 K. Active-period winds were poorly modelled by HWM93 and CTIP, although observed median temperatures were in better agreement with NRLMSISE-00 during such periods. Average behavior was found to be generally consistent with previous studies of thermospheric winds above Mawson. The collected data set was representative of quiet geomagnetic and solar conditions. Geographic eastward winds in the afternoon/evening generally continued until around local midnight, when winds turned equatorward. Geographic meridional and zonal winds in the afternoon were approximately 50 ms-1 weaker than

  10. 75 FR 23263 - Alta Wind I, LLC; Alta Wind II, LLC; Alta Wind III, LLC; Alta Wind IV, LLC; Alta Wind V, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ... Energy Regulatory Commission Alta Wind I, LLC; Alta Wind II, LLC; Alta Wind III, LLC; Alta Wind IV, LLC; Alta Wind V, LLC; Alta Wind VI, LLC; Alta Wind VII, LLC; Alta Wind VIII, LLC; Alta Windpower... Federal Energy Regulatory Commission (Commission), 18 CFR 285.207 (2009), Alta Wind I, LLC, Alta Wind...

  11. Nimbus 7 SMMR derived seasonal variations in the water vapor, liquid water, and surface winds over the global oceans

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Short, D. A.

    1984-01-01

    A study based on monthly mean maps of atmospheric water vapor, liquid water, and surface wind derived from Nimbus-7 SMMR over the oceans for 13 months, is examined. A discussion of the retrieval technique used to derive the parameters is presented. The seasonal changes in the strength and position of several of the parameter features are revealed by the December 1978 and June 1979 maps. Zonal averages of the water vapor, liquid water, and surface wind for December and June are compared with information derived from conventional measurements and the results are presented in graphs.

  12. Wind energy program overview

    NASA Astrophysics Data System (ADS)

    1992-02-01

    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication.

  13. Wind resources of Somalia

    SciTech Connect

    Pallabazzer, R. ); Gabow, A.A. )

    1991-01-01

    The results of wind energy research in Somalia are presented. The wind resource appears to be suitable for power production on 85% of the country, very intense on 10% and uniform on 70%, being regular throughout. Two areas of different wind regimes have been identified and characterized; the wind-distribution characteristics of 11 sites are presented and discussed, together with the territorial maps of the wind intensity and of the wind energy.

  14. Proof-of-Concept Study for Ground-based Millimetre-wave Observations of Horizontal Winds in the Polar Stratosphere and Mesosphere

    NASA Astrophysics Data System (ADS)

    Ford, George; Newnham, David; Pumphrey, Hugh

    2015-04-01

    We demonstrate the feasibility of stratosphericmesospheric zonal and meridional wind observations using ground-based passive millimetrewave radiometry with lownoise receivers and high-resolution spectrometers. Detailed observations of winds in the Polar Regions are essential to understand chemical transport, atmospheric dynamics, waves and tides, and improve knowledge of polar and global climate systems. Measurements in the altitude range 2070 km would fill the 'radar gap' and address the current sparse wind observations for the upper stratosphere and mesosphere that limits our understanding of vertical wave propagation and its impact on planetaryscale circulation. The Atmospheric Radiative Transfer Simulator (ARTS) and Qpack retrieval code is used to retrieve vertical wind profiles from simulations of lineofsight Doppler-shifted atmospheric emission lines above Halley station (75° 37'S, 26° 14'W), Antarctica. The ozone lines centred at 231.28 GHz, 249.79 GHz, and 249.96 GHz and the 230.54 GHz carbon monoxide line are used. The effect of clearsky winter/summer conditions, zenith angle, system temperature (Tsys), and spectrometer frequency resolution on the altitude coverage, measurement uncertainty, and height and time resolution of the retrieved wind profiles is presented. For radiometric observations of Dopplershifted ozone emission lines arising from horizontal winds in the range 1040 m s-1, and with Tsys = 1400 K, we estimate that daily mean zonal and meridional wind profiles covering the altitude range 2575 km with typical measurement uncertainty of 5 m s-1 and vertical resolution of ~12 km could be achieved.

  15. Reductions in midlatitude upwelling-favorable winds implied by weaker large-scale Pliocene SST gradients

    NASA Astrophysics Data System (ADS)

    Arnold, Nathan P.; Tziperman, Eli

    2016-01-01

    The early-to-mid Pliocene (3-5.3 Ma) is the most recent geologic period of significant global warmth. Proxy records of Pliocene sea surface temperature (SST) indicate significant and still unexplained warm anomalies of 3°C-9°C in midlatitude eastern boundary currents, where present-day cool temperatures are maintained by wind-driven upwelling. Here we quantify the effect of large-scale Pliocene-like SST patterns on the surface wind stress around the California, Humboldt, Canary, and Benguela midlatitude coastal upwelling sites. A high-resolution atmosphere model forced with Pliocene SST simulates changes in surface winds that imply reductions of 10% to 50% in both coastal upwelling, driven by alongshore wind stress, and offshore upwelling driven by wind stress curl. These changes result primarily from a reduced meridional temperature gradient which weakens the subtropical highs, and a reduction in zonal land-sea temperature contrast which weakens geostrophic alongshore winds. These results suggest that Pliocene coastal warm anomalies may result in part from atmospheric circulation changes which reduce upwelling intensity. The coastal wind stress and offshore wind stress curl are shown to respond differently to incremental changes in SST, topography, and land surface anomalies. Significant decreases in simulated cloud fraction within the subtropical highs suggest that a weaker land-sea temperature contrast could be maintained by cloud radiative feedbacks.

  16. Wind for Schools (Poster)

    SciTech Connect

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  17. Wind energy bibliography

    SciTech Connect

    1995-05-01

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  18. A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing

    NASA Astrophysics Data System (ADS)

    De La Chevrotière, Michèle; Khouider, Boualem

    2016-09-01

    Idealized models of reduced complexity are important tools to understand key processes underlying a complex system. In climate science in particular, they are important for helping the community improve our ability to predict the effect of climate change on the earth system. Climate models are large computer codes based on the discretization of the fluid dynamics equations on grids of horizontal resolution in the order of 100 km, whereas unresolved processes are handled by subgrid models. For instance, simple models are routinely used to help understand the interactions between small-scale processes due to atmospheric moist convection and large-scale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented and solved numerically. The model is based on the Galerkin projection of the primitive equations of atmospheric synoptic dynamics onto the first modes of vertical structure to represent free tropospheric circulation and is coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor in both the free troposphere and the ABL, while the processes of convection and precipitation are represented through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical method for the solution of this system particularly difficult. Here, we develop a numerical scheme based on the operator time-splitting strategy, which decomposes the system into three pieces: a conservative part and two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative system is solved via a central scheme, which does not require hyperbolicity since it avoids the Riemann problem by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical methods for hyperbolic equations, while

  19. Zonal correlation and boundaries of the lower Carnian Substage in Northeastern Asia

    NASA Astrophysics Data System (ADS)

    Konstantinov, A. G.

    2014-03-01

    The stratigraphic distribution of ammonoids was analyzed in the Daxatina canadensis Subzone of the Trachyceras Zone distinguished in the Dolomites of Italy. It was established that ammonoids of the Daxatina and Trachyceras genera are confined to the lower and upper parts of the canadensis Subzone in the Stuores-Wiesen section, which was suggested as a global stratigraphic section of the lower boundary of the Carnian Stage. Owing to discreteness of the ammonoid complex and absence of the Trachyceras genus, the lower part of the canadensis Subzone was excluded from the Trachyceras generic zone and is considered as the independent Daxatina canadensis Zone, which overlies the Frankites regoledanus Zone. On the basis of the principle of priority and similar ammonoids of the canadensis and regoledanus zones, the lower boundary of the Carnian Stage was accepted in the basement of the Alpine Trachyceras aon Zone and coincides with appearance of the Trachyceras genus. The main problems of the Boreal-Tethyan correlation of the Lower Carnian and adjacent stratigraphic levels are reviewed. The composition and distribution of the Lower Carnian ammonoids of northeastern Asia are specified taking into account the results of the revision of the Early Carnian trachyceratids of this region. Being the traditional biomarkers of the basal beds of the Carnian Stage in the Tethys, the ammonoids of the Trachyceras genus, which were unknown before in the Boreal Realm, were identified for the first time in the Lower Carnian of northeastern Asia. The Lower Carnian rocks of northeastern Asia, British Columbia, and the Alps were zonally correlated and the Lower Carnian boundaries were substantiated in the Boreal Realm. The Boreotrachyceras omkutchanicum Zone correlates with the Alpine Trachyceras aon Zone by the presence of the Trachyceras genus and stratigraphic position over the Stolleyites tenuis Zone and its analogs in British Columbia. The ammonoid complex of the Neosirennites armiger

  20. A Zonal Climate Model for the 1-D Mars Evolution Code: Explaining Meridiani Planum.

    NASA Astrophysics Data System (ADS)

    Manning, C. V.; McKay, C. P.; Zahnle, K. J.

    2005-12-01

    Recent MER Opportunity observations suggest there existed an extensive body of shallow water in the present Meridiani Planum during the late Noachian [1]. Observations of roughly contemporaneous valley networks show little net erosion [2]. Hypsometric analysis [3] finds that martian drainage basins are similar to terrestrial drainage basins in very arid regions. The immaturity of martian drainage basins suggests they were formed by infrequent fluvial action. If similar fluvial discharges are responsible for the laminations in the salt-bearing outcrops of Meridiani Planum, their explanation may require a climate model based on surface thermal equilibrium with diurnally averaged temperatures greater than freezing. In the context of Mars' chaotic obliquity, invoking a moderately thick atmosphere with seasonal insolation patterns may uncover the conditions under which the outcrops formed. We compounded a 1-D model of the evolution of Mars' inventories of CO2 over its lifetime called the Mars Evolution Code (MEC) [4]. We are assembling a zonal climate model that includes meridional heat transport, heat conduction to/from the regolith, latent heat deposition, and an albedo distribution based on the depositional patterns of ices. Since water vapor is an important greenhouse gas, and whose ice affects the albedo, we must install a full hydrological cycle. This requires a thermal model of the regolith to model diffusion of water vapor to/from a permafrost layer. Our model carries obliquity and eccentricity distributions consistent with Laskar et al. [5], so we will be able to model the movement of the ice cap with changes in obliquity. The climate model will be used to investigate the conditions under which ponded water could have occurred in the late Noachian, thus supplying a constraint on the free inventory of CO2 at that time. Our evolution code can then investigate Hesperian and Amazonian climates. The model could also be used to understand evidence of recent climate

  1. Size-fractionated major particle composition and concentrations from the US GEOTRACES North Atlantic Zonal Transect

    NASA Astrophysics Data System (ADS)

    Lam, Phoebe J.; Ohnemus, Daniel C.; Auro, Maureen E.

    2015-06-01

    The concentration and the major phase composition (particulate organic matter, CaCO3, opal, lithogenic matter, and iron and manganese oxyhydroxides) of marine particles is thought to determine the scavenging removal of particle-reactive TEIs. Particles are also the vector for transferring carbon from the atmosphere to the deep ocean via the biological carbon pump, and their composition may determine the efficiency and strength of this transfer. Here, we present the first full ocean depth section of size-fractionated (1-51 μm, >51 μm) suspended particulate matter (SPM) concentration and major phase composition from the US GEOTRACES North Atlantic Zonal Transect between Woods Hole, MA and Lisbon, Portugal conducted in 2010 and 2011. Several major particle features are notable in the section: intense benthic nepheloid layers were observed in the western North American margin with concentrations of SPM of up to 1648 μg/L, two to three orders of magnitude higher than surrounding waters, that were dominated by lithogenic material. A more moderate benthic nepheloid layer was also observed in the eastern Mauritanian margin (44 μg/L) that had a lower lithogenic content and, notably, significant concentrations of iron and manganese oxyhydroxides (2.5% each). An intermediate nepheloid layer reaching 102 μg/L, an order of magnitude above surrounding waters, was observed associated with the Mediterranean Outflow. Finally, there was a factor of two enhancement in SPM at the TAG hydrothermal plume due almost entirely to the addition of iron oxyhydroxides from the hydrothermal vent. We observe correlations between POC and CaCO3 in large (>51 μm) particles in the upper 2000 m, but not deeper than 2000 m, and no correlations between POC and CaCO3 at any depth in small (<51 μm) particles. There were also no correlations between POC and lithogenic material in large particles. Overall, there were very large uncertainties associated with all regression coefficients for mineral

  2. Characteristics and mechanism of sub-seasonal zonal oscillation of western Pacific subtropical high and South Asian high

    NASA Astrophysics Data System (ADS)

    Ren, Xuejuan

    2016-04-01

    The Asian monsoon circulations, like the western Pacific subtropical high (WPSH) at 500hPa and South Asian high (SAH) in the upper level, demonstrate sub-seasonal zonal oscillation. The WPSH is characterized by anomalously westward extension of its western edge with anomalous low-level anti-cyclonic circulation over the coastal region prior and eastward retreat with low-level cyclonic anomalies afterward, contributing persistent heavy rainfall over the Middle-lower reaches of the Yangtze River Valley. The coastal SST anomalies linked with zonal movement of WPSH shows cooling phase to warming phase variations. A local air-sea interaction on sub-seasonal time-scale in the western North Pacific region, which may be responsible for generating WPSH's sub-seasonal zonal oscillation. The SAH's eastward extension is featured by eastward propagation of wavetrain across the Eurasian continent. When the SAH extends to its easternmost position, a strong negative PV (positive geopotential height) center prevails to the east of the Tibetan Plateau at 200hPa. The causes of SAH's eastward extension are examined by performing potential vorticity (PV) diagnosis with emphasis on the joint role of diabatic heating feedback/rainfall and midlatitude wavetrain. The PV diagnosis indicates that the anomalous heating/rainfall and ascending motion generate negative PV anomalies at 200hPa directly over north China-east Mongolia. While anomalous cooling and descending motion produce positive PV anomalies over south China. Those south/north dipolar structure of PV generation indicates large value of meridional gradient of PV anomalies. As a consequence, the negative PV anomalies over the north lobe are transported southwardly by the advection of climatological northerly located to the east and southeast of the Tibetan Plateau.

  3. Six years of Venus winds at the upper cloud level from UV, visible and near infrared observations from VIRTIS on Venus Express

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Peralta, J.; Garate-Lopez, I.; Bandos, T. V.; Sánchez-Lavega, A.

    2015-08-01

    The Venus Express mission has provided a long-term monitoring of Venus atmosphere including the morphology and motions of its upper clouds. Several works have focused on the dynamics of the upper cloud visible on the day-side in ultraviolet images sensitive to the 65-70 km altitude and in the lower cloud level (50 km height) observable in the night-side of the planet in the 1.74 μm spectral window. Here we use VIRTIS-M spectral images in nearby wavelengths to study the upper cloud layer in three channels: ultraviolet (360-400 nm), visible (570-680 nm) and near infrared (900-955 nm) extending in time the previous analysis of VIRTIS-M data. The ultraviolet images show relatively well contrasted cloud features at the cloud top. Cloud features in the visible and near infrared images lie a few kilometers below the upper cloud top, have very low contrast and are distinct to the features observed in the ultraviolet. Wind measurements were obtained on 118 orbits covering the Southern hemisphere over a six-year period and using a semi-automatic cloud correlation algorithm. Results for the upper cloud from VIRTIS-M ultraviolet data confirm previous analysis based on images obtained by the Venus Monitoring Camera (Khatuntsev et al. (2013)). At the cloud top the mean zonal and meridional winds vary with local time accelerating towards the local afternoon. The upper branch of the Hadley cell circulation reaches maximum velocities at 45° latitude and local times of 14-16 h. The mean zonal winds in the ultraviolet cloud layer accelerated in the course of the 2006-2012 period at least 15 m s-1. The near infrared and visible images show a more constant circulation without significant time variability or longitudinal variations. The meridional circulation is absent or slightly reversed in near infrared and visible images indicating that, either the Hadley-cell circulation in Venus atmosphere is shallow, or the returning branch of the meridional circulation extends to levels below

  4. Cell wall glycoproteins at interaction sites between parasitic giant dodder (Cuscuta reflexa) and its host Pelargonium zonale.

    PubMed

    Striberny, Bernd; Krause, Kirsten

    2015-01-01

    The process of host plant penetration by parasitic dodder (genus Cuscuta) is accompanied by molecular and structural changes at the host/parasite interface. Recently, changes in pectin methyl esterification levels in the host cell walls abutting parasitic cells in established infection sites were reported. In addition to that, we show here that the composition of cell wall glycoproteins in Cuscuta-infected Pelargonium zonale undergoes substantial changes. While several arabinogalactan protein epitopes exhibit decreased abundances in the vicinity of the Cuscuta reflexa haustorium, extensins tend to increase in the infected areas.

  5. [Landscape and zonal distribution of bloodsucking mosquitoes and horse flies (Diptera: Culicidae, Tabanidae) in the northeastern Russian Plain].

    PubMed

    Pestov, S V; Paniukova, E V

    2013-01-01

    The data on the distribution of 34 species of bloodsucking mosquitoes and on 42 horsefly species of the fauna of the northeastern Russian Plain are given. The analysis of the landscape and zonal changes in species diversity and their abundance was performed. Species diversity of these families increased northwards. Two borders of the fauna's depletion were discovered: at the border between the middle and northern taiga subzones (mosquitoes and horseflies) and at the border between the northernmost taiga subzone and the forest-tundra zone (horseflies only). The northern and southern boundaries of species ranges in the region are identified.

  6. Cell wall glycoproteins at interaction sites between parasitic giant dodder (Cuscuta reflexa) and its host Pelargonium zonale.

    PubMed

    Striberny, Bernd; Krause, Kirsten

    2015-01-01

    The process of host plant penetration by parasitic dodder (genus Cuscuta) is accompanied by molecular and structural changes at the host/parasite interface. Recently, changes in pectin methyl esterification levels in the host cell walls abutting parasitic cells in established infection sites were reported. In addition to that, we show here that the composition of cell wall glycoproteins in Cuscuta-infected Pelargonium zonale undergoes substantial changes. While several arabinogalactan protein epitopes exhibit decreased abundances in the vicinity of the Cuscuta reflexa haustorium, extensins tend to increase in the infected areas. PMID:26367804

  7. Landscape and zonal features of the formation of producing economy in Russia

    NASA Astrophysics Data System (ADS)

    Nizovtsev, Vyacheslav; Natalia, Erman

    2016-04-01

    Based on analysis of the extensive source base, including complex landscape, component, paleogeographic and archeological published and scientific materials as well as the connected analysis of published paleogeographical, paleolandscape and historical and geographic maps of the territory of Russia landscape and zonal features of the transition from appropriating economy to producing economy were determined. All the specifics of historical changes in the landscape use of the vast areas of Russia is caused by the variety of its landscape zones and the specifics of their constituent landscapes. Human economic activities as a factor of differentiation and development of landscapes became apparent almost in all landscape zones together with the emergence of the producing type of economy from the Aeneolithic-Bronze Age (Atlantic period) in the southern steppe regions (in the northern areas of the main centers of the producing economy) and from the Bronze Age in the forest areas. The emergence of the producing economy in the forest-steppe and steppe landscape zones on the territory of Russia is dated IV (Aeneolithic) - III (Early Bronze Age) millennium BC. It is from this period that on the European part of Russia and in Siberia the so-called Neolithic revolution begins. The use of copper and bronze axes helped to develop new areas for planting crops in the forest-steppe zone. In the forest-steppe zone swidden and lea tillage cultivation develops. In the steppe and forest-steppe Eurasia depending on the local landscape conditions two ways of producing economy with a predominance of cattle-breeding developed: nomadic cattle breeding and house cattle breeding with a significant influence of agriculture in the economy and long-term settlements. The steppe areas were completely dominated by the mobile nomadic herding, breeding cattle and small cattle. Along with the valley landscapes the interfluvial landscapes were also actively explored. Almost in all the steppe areas

  8. Equatorial Winds on Saturn and the Stratospheric Oscillation

    NASA Technical Reports Server (NTRS)

    Li, Liming; Jian, Xun; Ingersoll, Andrew P.; DelGenio, Anthony D.; Porco, Carolyn C.; West, Robert A.; Vasavada, Ashwin R.; Ewald, Shawn P.; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Nixon, Conor A.; Achterberg, Richard K.; Orton, Glenn S.; Fletcher, Leigh N.; Baines, Kevin H.

    2011-01-01

    The zonal jets on the giant planets are generally thought to be stable with time. Recently, there are still some debates about the general thought. Here, we report a significant temporal variation of the equatorial jet at high-altitude on Saturn. Long-term (2004-2009) observations by Cassini reveal that wind speed at the 60-mbar level increased from 270 m/s in 2004 to 290 m/s in 2008, while the wind speed has been mostly constant over time at the 500-mbar level in the southern equatorial region. The Cassini observations further reveal that the equatorial jet intensified approximately 60 m/s in the stratosphere (1-5 mbar) from 2005 to 2008. The fact that the wind acceleration is weaker at the 60-mbar level (approximately 20 m/s) than at the 1-mbar level (approximately 60 m/s) demonstrates that the equatorial oscillation is damped when it propagates downwards to the tropopause around 60 mbar. The direct measurement of the varying equatorial jet around the tropopause also serves as a key boundary condition when deriving the thermal wind fields in the stratosphere.

  9. High precision Wind measurements in the upper Venus atmosphere

    NASA Astrophysics Data System (ADS)

    Schmuelling, F.; Goldstein, J.; Kostiuk, T.; Hewagama, T.; Zipoy, D.

    2000-10-01

    We will present high accuracy measurements of line-of-sight wind velocities in the upper Venus atmosphere and models of the implied global circulation. The measurements were performed using the NASA/GSFC Infrared Heterodyne Spectrometer at the NASA IRTF. Thermospheric altitudes between 100 and 120 km were probed using 12C16O2 solar-pumped, non-thermal emission. The observed signal-to-noise allowed determination of line center frequencies to a precision of 0.1 MHz (1 m/s at 10 μ m). Absolute frequency calibration was possible to better than 0.1 MHz due to the extremely high frequency stability of the Lamb-dip stabilized heterodyne system. The quality of the data together with the instrument stability allowed measurement of line-of-sight wind velocities across the illuminated crescent to 1 m/s. Data were acquired just before and after inferior conjunction in 1990 and 1991. In combination, these two data sets allowed modeling of the global wind field. Modeled horizontal wind velocities will be presented for a sub-solar to anti-solar flow and a zonal retrograde super-rotation.

  10. 77 FR 29633 - Alta Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind XI, LLC, Alta Wind XII, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... and Alta IX to interconnect the full planned capacity of Petitioners' wind and solar generation... Energy Regulatory Commission Alta Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind XI, LLC, Alta Wind XII, LLC, Alta Wind XIII, LLC, Alta Wind XIV, LLC, Alta Wind XV, LLC, Alta...

  11. Quasi-Biennial Oscillation signatures in the diurnal tidal winds over Cachoeira Paulista

    NASA Astrophysics Data System (ADS)

    Rodrigues de Araujo, Luciana; Jacobi, Christoph; Batista, Paulo; Lima, Lourivaldo

    2016-07-01

    The solar diurnal tidal plays an important role in the Mesosphere and Lower Thermosphere (MLT) region at low latitudes, in which its amplitude for horizontal winds maximizes around 20 degrees. The tides are excited in the lower atmosphere and stratosphere and can be affected by short and long-term local variations during their upward propagation. In this work, the meteor winds obtained over Cachoeira Paulista (22.7° S, 45.0° W), Brazil, have been used to investigate interannual variability in the amplitude of the diurnal tidal winds. The monthly diurnal tidal displays year to year variations. Amplitudes are strongest when the equatorial quasi-biennial oscillation (QBO) at the 30 mb level is eastward. This behavior can be observed in all seasons in the meridional component, whilst it is more clearly expressed during austral autumn in the zonal component, just when the diurnal tidal is strongest at this latitude.

  12. Thermospheric meridional wind control of equatorial spread F and evening prereversal electric field

    NASA Astrophysics Data System (ADS)

    Abdu, M. A.; Iyer, K. N.; de Medeiros, R. T.; Batista, I. S.; Sobral, J. H. A.

    2006-04-01

    The role of the evening prereversal zonal electric field enhancement (PRE) as conducive to equatorial spread F (ESF)/plasma bubble development versus that of the magnetic meridional wind as a suppressing factor is examined using digital ionosonde data from an equatorial site, Sao Luis (SL), and a low latitude site, Cachoeira Paulista (CP) in Brazil. The evening vertical plasma drift (Vz) over SL is used, together with the F layer peak height (hmF2) over CP, to compute the magnetic meridional wind. The analysis performed for two epochs, that is, March-April of 1999 and 2001, provide consistent evidence that the magnetic meridional wind can negatively influence the ESF development in two ways: (a) by reduced development of the PRE and. (b) by direct suppression of the bubble growth

  13. Rubidium Ultra-Stable Oscillators at Titan: The Huygens Doppler Wind Experiment

    NASA Technical Reports Server (NTRS)

    Bird, M. K.; Allison, M.; Asmar, S. W.; Atkinson, D. H.; Dutta-Roy, R.; Edenhofer, P.; Folkner, W. M.; Heyl, M.; Iess, L.; Plettemeier, D.; Preston, R. A.; Tyler, G. L.; Wohlmuth, R.

    1997-01-01

    The Doppler Wind Experiment (DWE) is one of six investigations to be performed during the Titan atmospheric descent of the ESA Huygens Probe. The primary scientific objective is to measure the direction and strength of Titan's zonal winds with an accuracy better than 1 m/s. The Probe's wind-induced horizontal motion will be derived from the residual Doppler shift of its S-band radio link to the Cassini Orbiter, corrected for all known orbit and propagation effects, from the beginning of the mission (altitude: approx. 160 km) down to impact on the surface. The DWE Instrumentation consists of Rb-based Ultra-Stable Oscillators used to: (1) generate the transmitted signal from the Probe and (2) extract the frequency of the received signal on the Orbiter. The capabilities of these USOs under the rugged experimental conditions on Titan and some results from the DWE pre-launch test program are described.

  14. Gill's model of the Antarctic Circumpolar Current, revisited: The role of latitudinal variations in wind stress

    NASA Astrophysics Data System (ADS)

    Marshall, David P.; Munday, David R.; Allison, Lesley C.; Hay, Russell J.; Johnson, Helen L.

    2016-01-01

    Gill's (1968) model of the Antarctic Circumpolar Current (ACC) is reinterpreted for a stratified, reduced-gravity ocean, where the barotropic streamfunction is replaced by the pycnocline depth, and the bottom drag coefficient by the Gent and McWilliams eddy diffusivity. The resultant model gives a simple description of the lateral structure of the ACC that is consistent with contemporary descriptions of ACC dynamics. The model is used to investigate and interpret the sensitivity of the ACC to the latitudinal profile of the surface wind stress. A substantial ACC remains when the wind jet is shifted north of the model Drake Passage, even by several thousand kilometers. The integral of the wind stress over the circumpolar streamlines is found to be a useful predictor of the magnitude of the volume transport through the model Drake Passage, although it is necessary to correct for basin-wide zonal pressure gradients in order to obtain good quantitative agreement.

  15. Emergency wind erosion control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    February through May is the critical time for wind erosion in Kansas, but wind erosion can happen any time when high winds occur on smooth, wide fields with low vegetation and poor soil structure. The most effective wind erosion control is to ensure a protective cover of residue or growing crop thro...

  16. Global Wind Map

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 2005

    2005-01-01

    This brief article describes a new global wind-power map that has quantified global wind power and may help planners place turbines in locations that can maximize power from the winds and provide widely available low-cost energy. The researchers report that their study can assist in locating wind farms in regions known for strong and consistent…

  17. Effects of the geomagnetic asymmetry of flux-tube integrated neutral winds to the Rayleigh-Taylor instability in equatorial ionosphere

    NASA Astrophysics Data System (ADS)

    Luo, Weihua; Xu, Jisheng; Tian, Mao

    Neutral winds play an important role in the develop-ment of Rayleigh-Taylor instability which is very associated with the occurrence of irregularities in the equatorial and low-latitude regions. For example, eastward winds would make for the development of R-T instability and meridional winds suppress the development of R-T insta-bility. In this work, we investigate effects of the geomagnetic asymmetry of neutral winds to the flux-tube integrated R-T instability in equatorial ionosphere. The flux-tube integrated lin-ear growth rate of R-T instability were estimated and considering the ambient electric fields and asymmetry of neutral winds between North-South hemispheres, and the integrated growth rates were compared which were get with and without the neutral wind, including the zonal and meridional wind. Effects of the longitudinal distribution of the meridional winds on the inte-grated growth rate are investigated also. It is shown that the zonal and meridional wind could significantly affect the growth rates and the meridional winds could decrease the integrated growth rate, respectively. The longitudinal variation of occurrence of irregularities would be related with the global distribution of meridional wind. Reference: Sultan, P.J., Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F, J. Geophys. Res., 1996, 101(A12), 26875-26891 Basu, B., On the linear theory of equato-rial plasma instability: Comparison of different descriptions, J. Geophys. Res., 2002, 107(A8), 1199, doi: 10.1029/2001JA000317

  18. Mesosphere/lower thermosphere prevailing winds at northern midlatitudes - long-term tendencies derived from radar observations and modeling

    NASA Astrophysics Data System (ADS)

    Jacobi, Christoph; Geißler, Christoph; Manson, Alan; Meek, Chris; Merzlyakov, Eugeny; Portnyagin, Yuri; Lilienthal, Friederike; Krug, Amelie; Qian, Liying; Berger, Uwe

    2015-04-01

    Radar observations of mesosphere/lower thermosphere (MLT) monthly mean winds as observed by different radars at Saskatoon (Canada), Collm (Germany), and Obninsk (Russia) show corresponding long-term trends and changes of these around the middle 1990s. Zonal prevailing winds are generally increasing with time, but there is a tendency for a change in trend in the 1990s. This is also visible in the meridional wind, which increases in the 1980s but decreases in more recent years. Numerical experiments with WACCM-x and LIMA circulation models give a similar tendency. We show some experiments to analyze whether the changes of MLT winds can be attributed to the combined effect of continuous CO2 increase and stratospheric ozone decrease, and the turnaround of ozone changes in the 1990s.

  19. Ion-neutral coupling effects on low-latitude thermospheric evening winds

    NASA Astrophysics Data System (ADS)

    Evonosky, W.; Richmond, A. D.; Fang, T.-W.; Maute, A.

    2016-05-01

    We examine the forces that determine zonal wind structure in the low-latitude evening thermosphere and its relation with ion-neutral coupling. These winds drive the evening F region dynamo that affects the equatorial ionization anomaly (EIA) and the generation of plasma irregularities. Forces are calculated using the Thermosphere-Ionosphere-Electrodynamics General Circulation Model coupled with the Global Ionosphere-Plasmasphere model. At 19 LT, the horizontal pressure gradient dominates the net acceleration of neutral winds below ˜220 km, while it tends to be offset by ion drag and viscosity higher up. The eastward pressure-gradient acceleration above 200 km increases approximately linearly with height and tends to be similar for different latitudes and different levels of solar activity. The pressure-gradient and ion-drag forces in the central F region approximately balance for field lines that pass through the EIA. Viscosity is an important additional force at non-EIA latitudes and in the bottomside and topside EIA ionosphere. An increase in E region drag on plasma convection due to increased nighttime ionization causes both the ion and neutral velocities in the F region to decrease, while the velocity difference tends to be maintained. The presence of a low-latitude evening time vertical shear in the zonal wind is associated primarily with a strong eastward pressure-gradient acceleration at high altitude that reverses the daytime westward wind and a weak low-altitude pressure-gradient acceleration of either eastward or westward direction that fails to reverse the low-altitude westward wind present in the afternoon.

  20. Touchdown on Venus: Analytic wind models and a heuristic approach to estimating landing dispersions

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2015-04-01

    The 'landing ellipse' or region of uncertainty within which an unguided probe to Venus may be expected to land is calculated. The region can be usefully seen as the convolution of three different factors: an initial circular delivery uncertainty which is smeared at a grazing entry angle onto the planetary sphere, an along-track uncertainty due to atmospheric density and vehicle aerodynamic variations during hypersonic entry, and a descent dispersion due to uncertain and/or variable zonal and meridional winds. This decomposition allows the various contributions to be instructively exposed and conveniently traded-off, without conducting explicit entry and descent dynamics simulations. It is seen that for descent durations and delivery errors typical of past Venus missions, the zonal wind contribution (determined with an analytic fit to Pioneer Venus tracking data) generally dominates, causing a ~200 km E-W (99%) dispersion, with meridional dispersions being about 4 times smaller. However, when entry angles become shallower than about 8°, the along-track dispersions may dominate, with the resulting ellipse becoming longer or wider depending on the entry azimuth. The analytic wind descriptions presented here may be applied to scientific problems, such as the dispersal of volcanic plumes or impact ejecta.

  1. Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.; Beebe, R. F.; Mitchell, J. L.; Garneau, G. W.; Yagi, G. M.; Muller, J.-P.

    1981-01-01

    Voyagers 1 and 2 narrow angle frames are used to obtain displacements of features at resolutions of 130 km over time intervals of 1 Jovian rotation. It is shown that the mean zonal velocity profile does not change by a measurable amount between Voyagers 1 and 2, which is consistent with previous observations. It is also shown that the curvature of the velocity profile vanes varies with latitudes in the range from -3 beta to +2 beta. The barotropic stability criterion is violated at 10 latitudes between + and - 60 deg, and the rate of conversion of eddy kinetic energy into zonal mean kinetic energy is in the range from 1.5 to 3.0 per sq Wm for a layer 2.5 bar deep. The rate of energy conversion is more than 10% of the total infrared heat flux for Jupiter, as compared to the earth where it is only 0.1% of the infrared, which suggests that the two planets possess fundamentally different thermomechanical energy cycles.

  2. Effect of ion mass on transition to drift-zonal flow turbulence in the Controlled Shear Decorrelation eXperiment

    NASA Astrophysics Data System (ADS)

    Hong, Rongjie; Thakur, Saikat; Tynan, George

    2015-11-01

    The Controlled Shear De-correlation eXperiment (CSDX) is a helicon plasma device dedicated to studies of drift wave turbulence, zonal flow interaction and generation of intrinsic rotation in a cylindrical plasma configuration. Previous studies in argon plasma demonstrated existence of a weak turbulence driven azimuthally symmetric, radially sheared plasma flow. More recent studies at higher B field with larger plasma size have shown the coexistence of radially separated multiple instabilities during the transition to strongly developed plasma turbulence. To better understand the underlying mechanism and the role of the drift wave turbulence in the formation of the zonal shear layer and of the spatially separated multiple instabilities, we study the effects of the ion mass to further vary the effective system size via the parameter (Ln /ρs). Using an upgraded RF power source, we have achieved high-density helicon plasmas in gases such as argon, neon, helium, deut erium and hydrogen in CSDX. Therefore, the impact of the ρs and isotope effect on turbulent transport, including the energy transfers and self-organization mechanisms between turbulence and sheared flows, will be addressed. CMTFO - # DE-SC0008378, MIT - #DE-SC0010593.

  3. Modulating gradients in regulatory signals within mesenchymal stem cell seeded hydrogels: a novel strategy to engineer zonal articular cartilage.

    PubMed

    Thorpe, Stephen D; Nagel, Thomas; Carroll, Simon F; Kelly, Daniel J

    2013-01-01

    Engineering organs and tissues with the spatial composition and organisation of their native equivalents remains a major challenge. One approach to engineer such spatial complexity is to recapitulate the gradients in regulatory signals that during development and maturation are believed to drive spatial changes in stem cell differentiation. Mesenchymal stem cell (MSC) differentiation is known to be influenced by both soluble factors and mechanical cues present in the local microenvironment. The objective of this study was to engineer a cartilaginous tissue with a native zonal composition by modulating both the oxygen tension and mechanical environment thorough the depth of MSC seeded hydrogels. To this end, constructs were radially confined to half their thickness and subjected to dynamic compression (DC). Confinement reduced oxygen levels in the bottom of the construct and with the application of DC, increased strains across the top of the construct. These spatial changes correlated with increased glycosaminoglycan accumulation in the bottom of constructs, increased collagen accumulation in the top of constructs, and a suppression of hypertrophy and calcification throughout the construct. Matrix accumulation increased for higher hydrogel cell seeding densities; with DC further enhancing both glycosaminoglycan accumulation and construct stiffness. The combination of spatial confinement and DC was also found to increase proteoglycan-4 (lubricin) deposition toward the top surface of these tissues. In conclusion, by modulating the environment through the depth of developing constructs, it is possible to suppress MSC endochondral progression and to engineer tissues with zonal gradients mimicking certain aspects of articular cartilage.

  4. Comparison between SAGE II and ISCCP high-level clouds. 1: Global and zonal mean cloud amounts

    NASA Technical Reports Server (NTRS)

    Liao, Xiaohan; Rossow, William B.; Rind, David

    1995-01-01

    Global high-level clouds identified in Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation measurements for January and July in the period 1985 to 1990 are compared with near-nadir-looking observations from the International Satellite Cloud Climatology Project (ISCCP). Global and zonal mean high-level cloud amounts from the two data sets agree very well, if clouds with layer extinction coefficients of less than 0.008/km at 1.02 micrometers wavelength are removed from the SAGE II results and all detected clouds are interpreted to have an average horizontal size of about 75 km along the 200 km transimission path length of the SAGE II observations. The SAGE II results are much more sensitive to variations of assumed cloud size than to variations of detection threshold. The geographical distribution of cloud fractions shows good agreement, but systematic regional differences also indicate that the average cloud size varies somewhat among different climate regimes. The more sensitive SAGE II results show that about one third of all high-level clouds are missed by ISCCP but that these clouds have very low optical thicknesses (less than 0.1 at 0.6 micrometers wavelength). SAGE II sampling error in monthly zonal cloud fraction is shown to produce no bias, to be less than the intraseasonal natural variability, but to be comparable with the natural variability at longer time scales.

  5. Is the Leeuwin Current driven by Pacific heating and winds?

    NASA Astrophysics Data System (ADS)

    Stuart Godfrey, J.; Weaver, Andrew J.

    Warm west Pacific water can flow through the Indonesian channels to create a basin-scale buoyancy-driven circulation in the Indian Ocean, even in the absence of winds. The driving force for this circulation is the generation of meridional steric height gradients (and associated zonal geostrophic flows) by the cooling of Pacific inflow water towards the latitude-dependent Haney equilibrium temperature. Mass continuity requires that eastern and western boundary currents develop to feed or remove this zonal flow; in particular, a Leeuwin Current-like flow develops at the eastern boundary. To illustrate these ideas, we have run a numerical model of a rectangular “Indian Ocean”, connected via a near-equatorial channel to the “Pacific” - which is treated simply as a reservoir of water with fixed vertical profiles of temperature and salinity. No wind stress curl is applied, so no Sverdrup circulation is produced; an equatorward patch of winds at midlatitudes is introduced in some experiments to allow the possibility of wind-driven upwelling near the eastern boundary. The total mass flux from the Pacific to the Indian Ocean is identically zero in our model, but up to 18.6 × 10 6m 3s -1 flow in each direction between the basins. When our “Pacific” temperature and salinity profiles are as observed in the Indonesian region, cooling to the Haney equilibrium temperature produces a strong eastward flow at midlatitudes, fed by a western boundary current which is in turn fed by inflow from the Pacific. At the eastern boundary a Leeuwin Current develops, with deep mixed layers near Cape Leeuwin; the mixed water feeds a Leeuwin Undercurrent which eventually flows back to the “Pacific” through the western boundary current. A “typical” water flow path in this experiment is thus: out of the Pacific in the top 100m, in a westward zonal jet; poleward along the western boundary current, with upwelling close inshore and heat loss to the atmosphere; broad, slow eastward

  6. Soil Dust Aerosols and Wind as Predictors of Seasonal Meningitis Incidence in Niger

    PubMed Central

    Stanton, Michelle C.; Diggle, Peter J.; Trzaska, Sylwia; Miller, Ron L.; Perlwitz, Jan P.; Baldasano, José M.; Cuevas, Emilio; Ceccato, Pietro; Yaka, Pascal; Thomson, Madeleine C.

    2014-01-01

    Background: Epidemics of meningococcal meningitis are concentrated in sub-Saharan Africa during the dry season, a period when the region is affected by the Harmattan, a dry and dusty northeasterly trade wind blowing from the Sahara into the Gulf of Guinea. Objectives: We examined the potential of climate-based statistical forecasting models to predict seasonal incidence of meningitis in Niger at both the national and district levels. Data and methods: We used time series of meningitis incidence from 1986 through 2006 for 38 districts in Niger. We tested models based on data that would be readily available in an operational framework, such as climate and dust, population, and the incidence of early cases before the onset of the meningitis season in January–May. Incidence was used as a proxy for immunological state, susceptibility, and carriage in the population. We compared a range of negative binomial generalized linear models fitted to the meningitis data. Results: At the national level, a model using early incidence in December and averaged November–December zonal wind provided the best fit (pseudo-R2 = 0.57), with zonal wind having the greatest impact. A model with surface dust concentration as a predictive variable performed indistinguishably well. At the district level, the best spatiotemporal model included zonal wind, dust concentration, early incidence in December, and population density (pseudo-R2 = 0.41). Conclusions: We showed that wind and dust information and incidence in the early dry season predict part of the year-to-year variability of the seasonal incidence of meningitis at both national and district levels in Niger. Models of this form could provide an early-season alert that wind, dust, and other conditions are potentially conducive to an epidemic. Citation: Pérez García-Pando C, Stanton MC, Diggle PJ, Trzaska S, Miller RL, Perlwitz JP, Baldasano JM, Cuevas E, Ceccato P, Yaka P, Thomson MC. 2014. Soil dust aerosols and wind as predictors

  7. Wind Power Outlook 2004

    SciTech Connect

    anon.

    2004-01-01

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  8. Wind power. [electricity generation

    NASA Technical Reports Server (NTRS)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  9. Wind Resource Maps (Postcard)

    SciTech Connect

    Not Available

    2011-07-01

    The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

  10. Accuracy of analyzed temperatures, winds and trajectories in the Southern Hemisphere tropical and midlatitude stratosphere as compared to long-duration balloon flights

    NASA Astrophysics Data System (ADS)

    Knudsen, B. M.; Christensen, T.; Hertzog, A.; Deme, A.; Vial, F.; Pommereau, J.-P.

    2006-12-01

    Eight super-pressure balloons floating at constant level between 50 and 80 hPa and three Infra-Red Montgolfier balloons of variable altitude (15 hPa daytime, 40-80 hPa night time) have been launched at 22° S from Brazil in February-May 2004 in the frame of the HIBISCUS project. The flights lasted for 7 to 79 days residing mainly in the tropics, but some of them passed the tropical barrier and went to southern midlatitudes. Compared to the balloon measurements just above the tropical tropopause the ECMWF operational temperatures show a systematic cold bias of 0.9 K and the easterly zonal winds are too strong by 0.7 m/s. This bias in the zonal wind adds to the ECMWF trajectory errors, but they still are relatively small with e.g. about an error of 700 km after 5 days. The NCEP/NCAR reanalysis trajectory errors are substantially larger (1300 km after 5 days). In the southern midlatitudes the cold bias is the same, but the zonal wind bias is almost zero. The trajectories are generally more accurate than in the tropics, but for one balloon a lot of the calculated trajectories end up on the wrong side of the tropical barrier and this leads to large trajectory errors.

  11. An Icelandic wind atlas

    NASA Astrophysics Data System (ADS)

    Nawri, Nikolai; Nína Petersen, Gudrun; Bjornsson, Halldór; Arason, Þórður; Jónasson, Kristján

    2013-04-01

    While Iceland has ample wind, its use for energy production has been limited. Electricity in Iceland is generated from renewable hydro- and geothermal source and adding wind energy has not be considered practical or even necessary. However, adding wind into the energy mix is becoming a more viable options as opportunities for new hydro or geothermal power installation become limited. In order to obtain an estimate of the wind energy potential of Iceland a wind atlas has been developed as a part of the Nordic project "Improved Forecast of Wind, Waves and Icing" (IceWind). The atlas is based on mesoscale model runs produced with the Weather Research and Forecasting (WRF) Model and high-resolution regional analyses obtained through the Wind Atlas Analysis and Application Program (WAsP). The wind atlas shows that the wind energy potential is considerable. The regions with the strongest average wind are nevertheless impractical for wind farms, due to distance from road infrastructure and power grid as well as harsh winter climate. However, even in easily accessible regions wind energy potential in Iceland, as measured by annual average power density, is among the highest in Western Europe. There is a strong seasonal cycle, with wintertime power densities throughout the island being at least a factor of two higher than during summer. Calculations show that a modest wind farm of ten medium size turbines would produce more energy throughout the year than a small hydro power plants making wind energy a viable additional option.

  12. Long-term variabilities and tendencies in zonal mean TIMED-SABER ozone and temperature in the middle atmosphere at 10-15°N

    NASA Astrophysics Data System (ADS)

    Nath, Oindrila; Sridharan, S.

    2014-12-01

    Long-term variabilities and trends of middle atmospheric (20-100 km) ozone volume mixing ratio (OVMR) and temperature and their responses towards quasi-biennial oscillation (QBO), solar cycle (SC) and El Niño-southern oscillation (ENSO) have been investigated using monthly averaged zonal mean Sounding of Atmosphere by Broadband Emission Radiometry (SABER) observations at 10-15°N for the years 2002-2012. Composite monthly mean of OVMR shows semi-annual oscillation (SAO) predominantly in the lower stratosphere (20-30 km) and in the upper mesosphere (above 90 km), whereas that of temperature shows SAO in the upper stratosphere (45-55 km) and lower mesosphere (60-75 km). Amplitudes of SAO and annual oscillation (AO) in OVMR show enhancement above 80 km and 90 km respectively in the mesosphere and both show maximum around 30 km in the stratosphere. The amplitudes of SAO and AO in temperature show maxima just below and above 80 km in the mesosphere, whereas in the stratosphere, they show maxima around 40 km and 20 km respectively. The phase profiles of SAO and AO in temperature show downward progressions below 80 km, whereas the phase profile of SAO in OVMR shows downward progression only below 40 km and the phase remains constant above 80 km. Regression analysis of OVMR shows increasing trend at 23 km, and small decreasing trend at 30 km, 34 km and above 80 km. Above 92 km, the trend sharply decreases. OVMR response to QBO winds at 30 hPa shows negative maxima at 30 km and 91 km, positive maximum at 26 km and is insignificant at other heights. The OVMR response to SC is positive in the middle stratosphere peaking at 31 km and in the upper mesosphere peaking at 95 km. The OVMR response to ENSO shows mixed behavior in stratosphere and positive in the upper mesosphere. It is positive in the lower height region 20-27 km with maximum at 25 km. The response to ENSO is insignificant up to 70 km and it is positive above 80 km with two maxima at 87 km and 97 km. Regression

  13. A zonal-averaged model of the ocean's response to climatic change

    SciTech Connect

    Rahmstorf, S. )

    1991-04-15

    A new vertical mixing model is described. It combines a box-advection-diffusion model with a bulk mixed layer model, which simulates wind mixing and penetrative convection. It is shown that mixed layer models can have steady periodic solutions if either the mixing decays to zero at depth or vertical advection is included. The latter approach is adopted. This mixing model is applied to a series of latitude bands between 50{degree}N and 50{degree}S. It successfully simulates present-day seasonal cycles of temperature and mixed layer depth. It is then subjected to an additional heat flux resulting from an increase in greenhouse gases. For an equilibrium warming of 3C for CO{sub 2} doubling, the model predicts the following transient response: a 0.5-0.8C temperature rise from 1850 to 1990, and a 1.5-2.0C rise from 1850 to 2050. The ocean acts as a thermal buffer, so that the actual warming lags the equilibrium warming by 25-50 years. Mixed layer and deep ocean contribute about equally to this lag. The seasonal cycle of mixed layer depth pumps more heat down to deeper waters, compared to a fixed mixed layer depth model. The heat uptake depends strongly on possible changes in the global thermohaline circulation, which could therefore affect sea level predictions. The climatic warming also leads to a reduction in winter mixing depth in the higher latitudes, whereas the mixing depth in other seasons and latitudes would be mainly affected by wind changes. A scenario for reduced CO{sub 2} emissions shows that the surface warming can be slowed dramatically but that a long-term sea level rise from thermal expansion may be inevitable.

  14. Wind speed forecasting for wind energy applications

    NASA Astrophysics Data System (ADS)

    Liu, Hong

    With more wind energy being integrated into our grid systems, forecasting wind energy has become a necessity for all market participants. Recognizing the market demands, a physical approach to site-specific hub-height wind speed forecasting system has been developed. This system is driven by the outputs from the Canadian Global Environmental Multiscale (GEM) model. A simple interpolation approach benchmarks the forecasting accuracy inherited from GEM. Local, site specific winds are affected on a local scale by a variety of factors including representation of the land surface and local boundary-layer process over heterogeneous terrain which have been a continuing challenge in NWP models like GEM with typical horizontal resolution of order 15-km. In order to resolve these small scale effects, a wind energy industry standard model, WAsP, is coupled with GEM to improve the forecast. Coupling the WAsP model with GEM improves the overall forecasts, but remains unsatisfactory for forecasting winds with abrupt surface condition changes. Subsequently in this study, a new coupler that uses a 2-D RANS model of boundary-layer flow over surface condition changes with improved physics has been developed to further improve the forecasts when winds coming from a water surface to land experience abrupt changes in surface conditions. It has been demonstrated that using vertically averaged wind speeds to represent geostrophic winds for input into the micro-scale models could reduce forecast errors. The hub-height wind speed forecasts could be further improved using a linear MOS approach. The forecasting system has been evaluated, using a wind energy standard evaluation matrix, against data from an 80-m mast located near the north shore of Lake Erie. Coupling with GEM-LAM and a power conversion model using a theoretical power curve have also been investigated. For hub-height wind speeds GEM appears to perform better with a 15-Ian grid than the high resolution GEM-2.5Ian version at the

  15. First observation of a new zonal-flow cycle state in the H-mode transport barrier of the experimental advanced superconducting Tokamak

    SciTech Connect

    Xu, G. S.; Wang, H. Q.; Wan, B. N.; Guo, H. Y.; Zhang, W.; Chang, J. F.; Wang, L.; Chen, R.; Liu, S. C.; Ding, S. Y.; Shao, L. M.; Xiong, H.; Naulin, V.; Diamond, P. H.; Tynan, G. R.; Xu, M.; Yan, N.; Zhao, H. L.

    2012-12-15

    A new turbulence-flow cycle state has been discovered after the formation of a transport barrier in the H-mode plasma edge during a quiescent phase on the EAST superconducting tokamak. Zonal-flow modulation of high-frequency-broadband (0.05-1 MHz) turbulence was observed in the steep-gradient region leading to intermittent transport events across the edge transport barrier. Good confinement (H{sub 98y,2} {approx} 1) has been achieved in this state, even with input heating power near the L-H transition threshold. A novel model based on predator-prey interaction between turbulence and zonal flows reproduced this state well.

  16. Long-distance correlation and zonal flow structures induced by mean ExB shear flows in the biasing H-mode at TEXTOR

    SciTech Connect

    Xu, Y.; Jachmich, S.; Weynants, R. R.; Schoor, M. van; Vergote, M.; Kraemer-Flecken, A.; Schmitz, O.; Unterberg, B.

    2009-11-15

    Long-distance toroidal correlations of potential and density fluctuations have been investigated at the TEXTOR tokamak [H. Soltwisch et al., Plasma Phys. Controlled Fusion 26, 23 (1984)] in edge electrode-biasing experiments. During the biasing-induced H-mode, the dc ExB shear flow triggers a zonal flow structure and hence long-distance correlation in potential fluctuations, whereas for density fluctuations there is nearly no correlation. These results indicate an intimate interaction between the mean and zonal flows, and the significance of long range correlations in improved-confinement regimes.

  17. Low latitude ionospheric scintillation and zonal plasma irregularity drifts climatology around the equatorial anomaly crest over Kenya

    NASA Astrophysics Data System (ADS)

    Olwendo, O. J.; Baki, P.; Cilliers, P. J.; Doherty, P.; Radicella, S.

    2016-02-01

    In this study we have used a VHF and GPS-SCINDA receiver located at Nairobi (36.8°E, 1.3°S, dip -24.1°) in Kenya to investigate the climatology of ionospheric L-band scintillation occurrences for the period 2009 to 2012; and seasonal variation of the zonal plasma drift irregularities derived from a VHF receiver for the period 2011. The annual and diurnal variations of L-band scintillation indicate occurrence at post sunset hours and peaks in the equinoctial months. However VHF scintillation occurs at all seasons around the year and is characterized by longer duration of activity and a slow fading that continues till early morning hours unlike in the L-band where they cease after midnight hours. A directional analysis has shown that the spatial distribution of scintillation events is mainly on the Southern and Western part of the sky over Nairobi station closer to the edges of the crest of the Equatorial Ionization Anomaly. The distribution of zonal drift velocities of the VHF related scintillation structures indicates that they move at velocities in the range of 20-160 m/s and their dimension in the East-West direction is in the range of 100-00 km. The December solstice is associated with the largest plasma bubbles in the range of 600-900 km. The most significant observation from this study is the occurrence of post-midnight scintillation without pre-midnight scintillations during magnetically quiet periods. The mechanism leading to the formation of the plasma density irregularity causing scintillation is believed to be via the Rayleigh Tailor Instability; it is however not clear whether we can also attribute the post-midnight plasma bubbles during magnetic quiet times to the same mechanism. From our observations in this study, we suggest that a more likely cause of the east ward zonal electric fields at post-midnight hours is the coupling of the ionosphere with the lower atmosphere during nighttime. This however needs a further investigation based on relevant

  18. Wind power today

    SciTech Connect

    1998-04-01

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  19. Wind Power Career Chat

    SciTech Connect

    Not Available

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  20. Wind energy information guide

    SciTech Connect

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.