Science.gov

Sample records for 87sr 86sr ratio

  1. Origins of invasive piscivores determined from the strontium isotope ratio (87Sr/86Sr) of otoliths

    USGS Publications Warehouse

    Wolff, Brian A.; Johnson, Brett M.; Breton, Andre R.; Martinez, Patrick J.; Winkelman, Dana L.; Gillanders, Bronwyn

    2012-01-01

    We examined strontium isotope ratios (87Sr/86Sr) in fish otoliths to determine the origins of invasive piscivores in the Upper Colorado River Basin (UCRB, western USA). We examined 87Sr/86Sr from fishes in different reservoirs, as well as the temporal stability and interspecies variability of 87Sr/86Sr of fishes within reservoirs, determined if 87Sr/86Sr would be useful for "fingerprinting" reservoirs where invasive piscivores may have been escaping into riverine habitat of endangered fishes in the UCRB, and looked for evidence that such movement was occurring. Our results showed that in most cases 87Sr/86Sr was unique among reservoirs, overlapped among species in a given reservoir, and was temporally stable across years. We identified the likely reservoir of origin of river-caught fish in some cases, and we were also able to determine the year of possible escapement. The approach allowed us to precisely describe the 87Sr/86Sr fingerprint of reservoir fishes, trace likely origins of immigrant river fish, and exclude potential sources, enabling managers to focus control efforts more efficiently. Our results demonstrate the potential utility of 87Sr/86Sr as a site-specific and temporally stable marker for reservoir fish and its promise for tracking fish movements of invasive fishes in river-reservoir systems.

  2. Tracing the circulation of groundwater in volcanic systems using the 87Sr/86Sr ratio: Application to Mt. Etna

    NASA Astrophysics Data System (ADS)

    Liotta, Marcello; D'Alessandro, Walter; Arienzo, Ilenia; Longo, Manfredi

    2017-02-01

    The 87Sr/86Sr ratio was investigated in groundwater circulating in the volcanic edifice of Mt. Etna in order to estimate the possible contribution of deep brines circulating in the sedimentary basement. Samples from 14 sites were collected and analyzed for their chemical composition and Sr-isotope ratios. While the most common approach of coupling 87Sr/86Sr ratios with the concentration of dissolved Sr is not effective in distinguishing between the deep brine and seawater contributions, we suggest that the Sr/Cl ratio is a useful complementary parameter that needs to be considered when attempting to clearly identify the Sr sources. The obtained data indicate that the Sr-isotope signature of groundwater is determined by the volcanics hosting the aquifer. The volcanic isotopic signature is modified by very small amounts of brines (< 1%), characterized by a high concentration of Sr and a 87Sr/86Sr ratio typical of sedimentary environments, but only at sites where the groundwater circulates almost in contact with the sedimentary basement. Conversely, the contribution of seawater is completely ruled out since this should produce a higher concentration of chloride. The proposed approach is potentially very effective for tracing the circulation of groundwater not only at Mt. Etna but also at volcanic edifices that overlie a bedrock with different 87Sr/86Sr ratios as well as at volcanic islands where freshwater overlies seawater.

  3. The 87Sr/86Sr ratios of lacustrine carbonates and lake-level history of the Bonneville paleolake system

    USGS Publications Warehouse

    Hart, W.S.; Quade, Jay; Madsen, D.B.; Kaufman, D.S.; Oviatt, Charles G.

    2004-01-01

    Lakes in the Bonneville basin have fluctuated dramatically in response to changes in rainfall, temperature, and drainage diversion during the Quaternary. We analyzed tufas and shells from shorelines of known ages in order to develop a relation between 87Sr/86Sr ratio of carbonates and lake level, which then can be used as a basis for constraining lake level from similar analyses on carbonates in cores. Carbonates from the late Quaternary shorelines yield the following average 87Sr/86Sr ratios: 0.71173 for the Stansbury shoreline (22-20 14C ka; 1350 m), 0.71153 for the Bonneville shoreline (15.5-14.5 14C ka; 1550 m), 0.71175 for the Provo shoreline (14.4-14.0 14C ka; 1450 m), 0.71244 for the Gilbert shoreline (???10.3-10.9 14C ka; 1300 m), and 0.71469 for the modern Great Salt Lake (1280 m). These analyses show that the 87Sr/86Sr ratio of lacustrine carbonates changes substantially at low- to mid-lake levels but is invariant at mid- to high-lake levels. Sr-isotope mixing models of Great Salt Lake and the Bonneville paleolake system were constructed to explain these variations in 87Sr/86Sr ratios with change in lake level. Our model of the Bonneville system produced a 87Sr/86Sr ratio of 0.71193, very close to the observed ratios from high-shoreline tufa and shell. The model verifies that the integration of the southern Sevier and Beaver rivers with the Bear and others rivers in the north is responsible for the lower 87Sr/86Sr ratios in Lake Bonneville compared to the modern Great Salt Lake. We also modeled the 87Sr/86Sr ratio of Lake Bonneville with the upper Bear River diverted into the Snake River basin and obtained an 87Sr/86Sr ratio of 0.71414. Coincidentally, this ratio is close to the observed ratio for Great Salt Lake of 0.71469. This means that 87Sr/86Sr ratios of >0.714 for carbonate can be produced by climatically induced low-lake conditions or by diversion of the upper Bear River out of the Bonneville basin. This model result also demonstrates that the

  4. Observation of Isotope Ratios (δ2H, δ18O, 87Sr/86Sr) of Tap Water in Urban Environments

    NASA Astrophysics Data System (ADS)

    Mancuso, C. J.; Tipple, B. J.; Ehleringer, J. R.

    2014-12-01

    Urban environments are centers for rapidly growing populations. In order to meet the culinary water needs of these areas, municipal water departments use water from multiple locations and/or sources, often piped differentially to different locations within a municipality. This practice creates isotopically distinct locations within an urban area and therefore provides insight to urban water management practices. In our study we selected urban locations in the Salt Lake Valley, UT (SLV) and San Francisco Bay Area, CA (SFB) where we hypothesized geographically distinct water isotopic ratio differences existed. Within the SLV, municipal waters come from the same mountainous region, but are derived from different geologically distinct watersheds. In contrast, SFB waters are derived from regionally distinct water sources. We hypothesized that the isotope ratios of tap waters would differ based upon known municipal sources. To test this, tap water samples were collected throughout the urban regions in SLV and SFB and analyzed for δ2H, δ18O and 87Sr/86Sr isotope ratios. Seasonal collections were also made to assess if isotope ratios differed throughout the year. Within SLV and SFB, different regions were characterized by distinct paired δ18O and 87Sr/86Sr values. These different realms also agreed with known differences in municipal water supplies within the general geographic region. Waters from different cities within Marin County showed isotopic differences, consistent with water derived from different local reservoirs. Seasonal variation was observed in paired δ18O and 87Sr/86Sr values of tap water for some locations within SLV and SFB, indicating management decisions to shift from one water source to another depending on demand and available resources. Our study revealed that the δ18O and 87Sr/86Sr values of tap waters in an urban region can exhibit significant differences despite close spatial proximity if districts differ in their use of local versus

  5. 87Sr/ 86Sr ratios in modern and fossil food-webs of the Sterkfontein Valley: implications for early hominid habitat preference

    NASA Astrophysics Data System (ADS)

    Sillen, Andrew; Hall, Grant; Richardson, Stephen; Armstrong, Richard

    1998-07-01

    This research addresses the potential contribution of strontium isotopes to the reconstruction of early hominid behavior at the Swartkrans site in the Sterkfontein Valley of Gauteng Provence (formally known as the Transvaal), South Africa. We report that, while there is considerable variability in the 87Sr/ 86Sr of whole soils within a 15 km radius of this site, available soil and grassland plant 87Sr/ 86Sr is much less variable and generally above 0.730. This value is higher (more radiogenic) than the 87Sr/ 86Sr of plants growing within the greenbelt surrounding the Blaaubank stream adjacent to Swartkrans and streamwater itself (0.721). The difference between grassland and riparian strontium isotope composition suggests a method for determining habitat utilization by early hominids. In this study, a geological explanation for a natural difference between Blaaubank stream and grassland Sr is suggested, based on relatively less radiogenic Sr (having lower 87Sr/ 86Sr values) in the carbonate component of the local dolomite when compared to other nearby geological formations. The explanation was tested initially using a top-down approach in which the 87Sr/ 86Sr ratios of water, soil, and plants from the entire Blaaubank catchment were measured. Next, a bottom-up approach was used to examine Swartkrans Member I faunal species known to have obtained their Sr from well-defined habitats. The results are that (1) pollution is not the explanation for the relatively low 87Sr/ 86Sr ratios of the Blaaubank stream, (2) Swartkrans Member I carbonate has a similar 87Sr/ 86Sr to that of modern Blaaubank water, indicating that relationships seen today existed in the Pleistocene, and (3) Pleistocene riparian fauna have relatively low 87Sr/ 86Sr ratios when compared to fauna adapted to drier habitats. Together these results make it possible to interpret the strontium isotope composition of Pleistocene early hominids from Swartkrans in terms of habitat utilization.

  6. Quantifying sediment sources in a lowland agricultural catchment pond using (137)Cs activities and radiogenic (87)Sr/(86)Sr ratios.

    PubMed

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J Patrick; Salvador-Blanes, Sébastien; Thil, François; Dapoigny, Arnaud; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2016-10-01

    Soil erosion often supplies high sediment loads to rivers, degrading water quality and contributing to the siltation of reservoirs and lowland river channels. These impacts are exacerbated in agricultural catchments where modifications in land management and agricultural practices were shown to accelerate sediment supply. In this study, sediment sources were identified with a novel tracing approach combining cesium ((137)Cs) and strontium isotopes ((87)Sr/(86)Sr) in the Louroux pond, at the outlet of a lowland cultivated catchment (24km(2), Loire River basin, France) representative of drained agricultural areas of Northwestern Europe. Surface soil (n=36) and subsurface channel bank (n=17) samples were collected to characterize potential sources. Deposited sediment (n=41) was sampled across the entire surface of the pond to examine spatial variation in sediment deposits. In addition, a 1.10m sediment core was sampled in the middle of the pond to reconstruct source variations throughout time. (137)Cs was used to discriminate between surface and subsurface sources, whereas (87)Sr/(86)Sr ratios discriminated between lithological sources. A distribution modeling approach quantified the relative contribution of these sources to the sampled sediment. Results indicate that surface sources contributed to the majority of pond (μ 82%, σ 1%) and core (μ 88%, σ 2%) sediment with elevated subsurface contributions modeled near specific sites close to the banks of the Louroux pond. Contributions of the lithological sources were well mixed in surface sediment across the pond (i.e., carbonate sediment contribution, μ 48%, σ 1% and non-carbonate sediment contribution, μ 52%, σ 3%) although there were significant variations of these source contributions modeled for the sediment core between 1955 and 2013. These fluctuations reflect both the progressive implementation of land consolidation schemes in the catchment and the eutrophication of the pond. This original sediment

  7. Modelling the Phanerozoic carbon cycle and climate: constraints from the 87Sr/86Sr isotopic ratio of seawater

    NASA Technical Reports Server (NTRS)

    Francois, L. M.; Walker, J. C.

    1992-01-01

    A numerical model describing the coupled evolution of the biogeochemical cycles of carbon, sulfur, calcium, magnesium, phosphorus, and strontium has been developed to describe the long-term changes of atmospheric carbon dioxide and climate during the Phanerozoic. The emphasis is on the effects of coupling the cycles of carbon and strontium. Various interpretations of the observed Phanerozoic history of the seawater 87Sr/86Sr ratio are investigated with the model. More specifically, the abilities of continental weathering, volcanism, and surface lithology in generating that signal are tested and compared. It is suggested that the observed fluctuations are mostly due to a changing weatherability over time. It is shown that such a conclusion is very important for the modelling of the carbon cycle. Indeed, it implies that the conventional belief that the evolution of atmospheric carbon dioxide and climate on a long time scale is governed by the balance between the volcanic input of CO2 and the rate of silicate weathering is not true. Rather carbon exchanges between the mantle and the exogenic system are likely to have played a key role too. Further, the increase of the global weathering rates with increasing surface temperature and/or atmospheric CO2 pressure usually postulated in long-term carbon cycle and climate modelling is also inconsistent with the new model. Other factors appear to have modulated the weatherability of the continents through time, such as mountain building and the existence of glaciers and ice sheets. Based on these observations, a history of atmospheric carbon dioxide and climate during Phanerozoic time, consistent with the strontium isotopic data, is reconstructed with the model and is shown to be compatible with paleoclimatic indicators, such as the timing of glaciation and the estimates of Cretaceous paleotemperatures.

  8. Modelling the Phanerozoic carbon cycle and climate: constraints from the 87Sr/86Sr isotopic ratio of seawater.

    PubMed

    François, L M; Walker, J C

    1992-02-01

    A numerical model describing the coupled evolution of the biogeochemical cycles of carbon, sulfur, calcium, magnesium, phosphorus, and strontium has been developed to describe the long-term changes of atmospheric carbon dioxide and climate during the Phanerozoic. The emphasis is on the effects of coupling the cycles of carbon and strontium. Various interpretations of the observed Phanerozoic history of the seawater 87Sr/86Sr ratio are investigated with the model. More specifically, the abilities of continental weathering, volcanism, and surface lithology in generating that signal are tested and compared. It is suggested that the observed fluctuations are mostly due to a changing weatherability over time. It is shown that such a conclusion is very important for the modelling of the carbon cycle. Indeed, it implies that the conventional belief that the evolution of atmospheric carbon dioxide and climate on a long time scale is governed by the balance between the volcanic input of CO2 and the rate of silicate weathering is not true. Rather carbon exchanges between the mantle and the exogenic system are likely to have played a key role too. Further, the increase of the global weathering rates with increasing surface temperature and/or atmospheric CO2 pressure usually postulated in long-term carbon cycle and climate modelling is also inconsistent with the new model. Other factors appear to have modulated the weatherability of the continents through time, such as mountain building and the existence of glaciers and ice sheets. Based on these observations, a history of atmospheric carbon dioxide and climate during Phanerozoic time, consistent with the strontium isotopic data, is reconstructed with the model and is shown to be compatible with paleoclimatic indicators, such as the timing of glaciation and the estimates of Cretaceous paleotemperatures.

  9. Migration and mobility in the early medieval settlement in Thunau/Kamp using 87Sr/86Sr Isotope ratio measurements by MC-ICPMS

    NASA Astrophysics Data System (ADS)

    Gangl, Sophie; Irrgeher, Johanna; Teschler-Nicola, Maria; Prohaska, Thomas

    2013-04-01

    The use of Sr isotope ratios has been applied systematically for clarifying questions about migration patterns of humans and animals. In consequence of geologically induced differences in the isotopic composition, 87Sr/86Sr ratios are characteristic for a specific region. Humans and animals take up strontium primarily via drinking water and diet. Since strontium has similar chemical properties to calcium, it is mainly stored in teeth and bones. Tooth enamel is formed in the early childhood and is not subject to significant changes in later life. Therefore, the enclosed strontium has the same isotopic composition as the environment in which the individual was living during his early years, provided that the food came from the close proximity. Issue of this study was the early medieval (9th to 10th century AD) settlement in Thunau/Kamp. In order to assess the biogenic Sr isotopic signature of the Thunau settlement area, environmental samples including soil, rocks, water and plants were taken at the excavation site and in the immediate vicinity. They represent the local strontium signal to which the isotopic compositions of historic human tooth samples (enamel and dentine) were compared. The 87Sr/86Sr ratios in tooth enamel and dentine give insight about residential characteristics of the settlement of Thunau/Kamp in comparison to the fortified hilltop settlement located in close proximity.

  10. Sr and 87Sr/86Sr in estuaries of western India: Impact of submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Rahaman, Waliur; Singh, Sunil Kumar

    2012-05-01

    Dissolved Sr and 87Sr/86Sr are measured in the Narmada, Tapi and the Mandovi estuaries linked to the eastern Arabian Sea. The concentration of dissolved Sr and 87Sr/86Sr in the river water endmembers show significant differences reflecting the lithologies they drain. The distribution of Sr in all these estuaries shows a near perfect two endmember mixing between river water and seawater suggesting that there is no discernible net addition/removal of Sr from the estuarine waters. In contrast, 87Sr/86Sr shows non-conservative behaviour in all these estuaries, its distribution exhibits significant departure from the theoretical mixing lines. A likely mechanism for this difference in the behaviour between dissolved Sr and its 87Sr/86Sr is the discharge of submarine groundwater (SGD) which can modify the 87Sr/86Sr of the estuarine waters by exchange with sediments without causing measurable changes in Sr concentration. The impact of such an exchange process on the 87Sr/86Sr of the estuaries and therefore on the Sr isotope composition of dissolved Sr entering the Arabian Sea differs among the three estuaries and also between seasons in the Narmada. The non-conservative behaviour of 87Sr/86Sr provides a handle to estimate the quantum of SGD to these estuaries. The Sr concentration, 87Sr/86Sr ratio and salinity of the submarine groundwater and estimate of its fluxes to the Narmada estuary have been made using inverse model calculations. The model derived SGD flow rates are ˜5 and 280 cm/day during pre-monsoon and monsoon, respectively. The more radiogenic Sr isotope composition of SGD relative to the seawater suggests that SGD acts as an additional source of 87Sr to the Arabian Sea.

  11. 87Sr/86Sr ratios in some eugeosynclinal sedimentary rocks and their bearing on the origin of granitic magma in orogenic belts

    USGS Publications Warehouse

    Peterman, Z.E.; Hedge, C.E.; Coleman, R.G.; Snavely, P.D.

    1967-01-01

    Rb and Sr contents and 87Sr/86Sr values were determined for samples of eugeosynclinal sedimentary rocks, mostly graywackes, from Oregon and California. These data are compatible with the theory of anataxis of eugeosynclinal sedimentary rocks in orogenic belts to produce granitic magmas provided that the melting occurs within several hundreds of m.y. after sedimentation. The low (87Sr/86Sr)0 values of the eugeosynclinal sedimentary rocks are related to the significant amounts of volcanogenic detritus present which probably were originally derived from the mantle. ?? 1967.

  12. δ 18O values, 87Sr /86Sr and Sr/Mg ratios of Late Devonian abiotic marine calcite: Implications for the composition of ancient seawater

    NASA Astrophysics Data System (ADS)

    Carpenter, Scott J.; Lohmann, K. C.; Holden, Peter; Walter, Lynn M.; Huston, Ted J.; Halliday, Alex N.

    1991-07-01

    Late Devonian (Frasnian) abiotic marine calcite has been microsampled and analyzed for 87Sr /86Sr ratios, δ 18O and δ 13C values, and minor element concentrations. Portions of marine cement crystals from the Alberta and Canning Basins have escaped diagenetic alteration and preserve original marine δ 18O values (-4.8%. ± 0.5, PDB), δ 13C values (+2.0 to +3.0%., PDB), 87Sr /86Sr ratios (0.70805 ± 3), and Sr/Mg weight ratios (0.04 to 0.05). Marine 87Sr /86Sr ratios are globally consistent and can be correlated within the Alberta Basin, and among the Alberta, Canning, and Williston Basins. Correlation of isotopic and chemical data strengthen the conclusion that marine cements from the Leduc Formation preserve original marine δ 18O values which are 3 to 4%. lower than those of modern marine cements. These low δ 18O values are best explained by precipitation from 18O-depleted seawater and not by elevated seawater temperature or diagenetic alteration. For comparison with Devonian data, analogous data were collected from Holocene Mg-calcite and aragonite marine cements from Enewetak Atoll, Marshall Islands. Mg-calcite and aragonite marine cements are in isotopic equilibrium with ambient seawater, and Mg-calcite cements are homogeneous with respect to Sr and Mg contents. Empirically derived homogeneous distribution coefficients for Mg and Sr in modern, abiotic Mg-calcite from Enewetak Atoll are 0.034 and 0.15, respectively. An equation describing the dependence of DSr on Mg content was based on a compilation of Sr and Mg data from Holocene abiotic marine calcite ( DSr = 3.52 × 10 -6 (ppm Mg) + 6.20 × 10 -3). Unlike that derived from experimental data, this Sr-Mg relation is consistent over a range of 4 to 20 mol% MgCO 3 and may represent precipitation phenomena which are minimally controlled by kinetic effects. Comparison of Sr and Mg contents of analogous Devonian and Holocene marine cements suggests that the Mg/Ca ratio of Late Devonian seawater was

  13. 87Sr/86Sr isotope ratio measurements by laser ablation multicollector inductively coupled plasma mass spectrometry: Reconsidering matrix interferences in bioapatites and biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Irrgeher, Johanna; Galler, Patrick; Prohaska, Thomas

    2016-11-01

    This study is dedicated to the systematic investigation of the effect of interferences on Sr isotopic analyses in biological apatite and carbonate matrices using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC ICP-MS). Trends towards higher 87Sr/86Sr ratios for LA-MC ICP-MS compared to solution-nebulization based MC ICP-MS when analysing bioapatite matrices (e.g. human teeth) and lower ratios in case of calcium carbonates (e.g. fish ear stones) were observed. This effect can be related to the presence of significant matrix-related interferences such as molecular ions (e.g. (40Ca-31P-16O)+, (40Ar-31P-16O)+, (42Ca-44Ca)+, (46Ca40Ar)+) as well as in many cases concomitant atomic ions (e.g. 87Rb+, 174Hf2 +). Direct 87Sr/86Sr ratio measurements in Ca-rich samples are conducted without the possibility of prior sample separation, which can be accomplished routinely for solution-based analysis. The presence of Ca-Ar and Ca-Ca molecular ion interferences in the mass range of Sr isotopes is shown using the mass resolving capabilities of a single collector inductively coupled plasma sector field mass spectrometer operated in medium mass resolution when analysing bioapatites and calcium carbonate samples. The major focus was set on analysing human tooth samples, fish hard parts and geological carbonates. Potential sources of interferences were identified and corrected for. The combined corrections of interferences and adequate instrumental isotopic fractionation correction procedures lead to accurate data even though increased uncertainties have to be taken into account. The results are discussed along with approaches presented in literature for data correction in laser ablation analysis.

  14. Combination of the (87)Sr/(86)Sr ratio and light stable isotopic values (δ(13)C, δ(15)N and δD) for identifying the geographical origin of winter wheat in China.

    PubMed

    Liu, Hongyan; Wei, Yimin; Lu, Hai; Wei, Shuai; Jiang, Tao; Zhang, Yingquan; Guo, Boli

    2016-12-01

    This study aims to investigate whether isotopic signatures can be used to develop reliable fingerprints for discriminating the geographical origin of Chinese winter wheat, and to evaluate the discrimination effects of δ(13)C, δ(15)N and δD, alone or with (87)Sr/(86)Sr. In this study, the values of δ(13)C, δ(15)N and δD, and the (87)Sr/(86)Sr ratios of wheat and provenance soils from three regions were determined. Significant differences were found in all parameters of wheat and (87)Sr/(86)Sr in soil extract (reflecting the bioavailable fraction of soil) among different regions. A significantly positive correlation was observed between the (87)Sr/(86)Sr ratios of wheat and soil extracts. An overall correct classification rate of 77.8% was obtained for discriminating wheat from three regions based on light stable isotopes (δ(13)C, δ(15)N, and δD). The correct classification rate of 98.1% could be obtained with the combination of the (87)Sr/(86)Sr ratio and the light stable isotopic values.

  15. 87Sr/86Sr-ratios, foraminiferal data and sedimentology of the Latest Miocene - Pliocene cyclic carbonates of La Désirade (Guadeloupe, France)

    NASA Astrophysics Data System (ADS)

    Weber*, P. J. N.; Baumgartner-Mora*, C.; Baumgartner*, P. O.

    2012-04-01

    La Désirade is a small island located east of Grande Terre and Basse Terre, the main islands of the Guadeloupe Archipelago in the Lesser Antilles Arc. La Désirade is an "forearc outer high" located immediately west of the trench where Atlantic crust is presently subducted under the Caribbean Plate. The "Limestone Table" (LT) of La Désirade has been considered as a Plio-Quaternary reefal deposit. However, the prominent feature of this <140 m thick formation is its rhythmic bedding of alternating marly/tuffaceous/dolomitic, and winnowed bioclastic carbonate layers. To the west of the island the "detrital offshore limestones" represent alternating offshore marls, tuffs and channelled mass flow deposits, that accumulated below wave base beneath a steep fore-reef slope. They document the mobilisation of carbonate material on an adjacent platform by storms and their gravitational emplacement. The provenance of both the reefal carbonate debris and the tuffaceous components must be to the west, i. e. Marie Galante and Grande Terre. We have studied the biochronology of both benthic and planktonic foraminifera and measured 87Sr/86Sr ratios of selected biogenic shells such as aragonitic gastropods, corals, echinoderms and foraminifera. Recrystallisation and preservation has been controlled by SEM, cathodoluminescence, carbon/oxygen isotopes and XRF to avoid diagenetically altered samples. Planktonic foraminifera of the "detrital offshore limestones" give a latest Miocene/early Pliocene age (lower zone N19), while 87Sr/86Sr -ratios cluster in the latest Miocene-earliest Pliocene, depending on the calibration applied. For the LT 87Sr/86Sr ratios from the base of the section cluster in the earliest Pliocene, while the top gives a late middle to late Pliocene age. These ages constrain the Neogene vertical tectonic movements of the island. We have also dated Pleistocene terraces and fringing reefs that are in an unconformable contact along paleocliffs with the Mio

  16. Deriving the Marine Strontium Budget from Paired (87Sr/86Sr*-δ88/86Sr) Values of Marine Carbonates, Hydrothermal Fluids and River Waters

    NASA Astrophysics Data System (ADS)

    Krabbenhoeft, A.; Eisenhauer, A.; Boehm, F.; Vollstaedt, H.; Augustin, N.; Fietzke, J.; Liebetrau, V.; Peucker-Ehrenbrink, B.; Horn, C.; Nolte, N.; Hansen, B.

    2009-12-01

    With the normalization to a fixed 88Sr/86Sr=8.375209 ratio to correct for mass dependent fractionation during TIMS measurement any natural Strontium (Sr) isotopic fractionation in 88Sr/86Sr is ignored and important additional information are lost. A first study performed with a MC-ICP-MS (FIETZKE and EISENHAUER, 2006) showed significant fractionation between the IAPSO seawater standard and the SRM987 carbonate standard in the δ88/86Sr value. However, with the application of the Sr double spike TIMS technique (KRABBENHOEFT et al., 2009) we are now entering a new dimension in Sr isotope geochemistry by the simultaneous measurement of paired 87Sr/86Sr*-δ88/86Sr values of geological samples. The most important advantage of using paired 87Sr/86Sr*-δ88/86Sr values is that now a complete balance of the oceans Sr budget can be calculated including Sr input and output values. In order to provide a Sr isotope balance for the global ocean we collected paired 87Sr/86Sr*-δ88/86Sr values of a set of river waters samples, hydrothermal fluids, major marine carbonate producers and seawater. In a 3-isotope-plot the IAPSO seawater standard and the the paired 87Sr/86Sr*-δ88/86Sr values of marine carbonates are connected by a fractionation line, whereas the paired 87Sr/86Sr*-δ88/86Sr values of river waters and hydrothermal fluids are connected by a binary mixing line. The intercept of these lines provides the isotopic composition of the marine input (87Sr/86Sr*=0.709314(9) - δ88/86Sr=0.284(24)). The major Sr output corresponds to the Sr incorporated by the major marine calcifiers (87Sr/86Sr*=0.709312(9) - δ88/86Sr=0.240). The offset indicates that modern ocean is apparently not in steady state with respect to Sr. Weathering of young carbonates on the shelfes during sea level low stands can shift the δ88/86Sr of rivers from its recent value of 0.300(24) to 0.23‰ to equilibrate in- and output.

  17. Determination of 87Sr/86Sr*-δ88/86Sr Values of the Oceans Sr Sources and Sinks to Balance the Global Sr Cycle

    NASA Astrophysics Data System (ADS)

    Eisenhauer, A.; Krabbenhoeft, A.; Boehm, F.; Vollstaedt, H.; Augustin, N.; Fietzke, J.; Liebetrau, V.; Peucker-Ehrenbrink, B.; Horn, C.; Hansen, B.; Nolte, N.

    2009-12-01

    With the application of the Sr double spike TIMS technique (KRABBENHOEFT et al., 2009) we are now entering a new dimension in Sr isotope geochemistry by the simultaneous measurement of paired 87Sr/86Sr*-δ88/86Sr values of geological samples. The most important advantage of using paired 87Sr/86Sr*-δ88/86Sr values is that now a complete balance of the oceans Sr budget can be calculated including Sr input and output values. With the normalization to a fixed 88Sr/86Sr=8.375209 ratio to correct for mass dependent fractionation during TIMS measurement any natural Strontium (Sr) isotopic fractionation in 88Sr/86Sr is ignored and important additional information are lost. A first study performed with a MC-ICP-MS (FIETZKE and EISENHAUER, 2006) showed significant fractionation between the IAPSO seawater standard and the SRM987 carbonate standard in the δ88/86Sr value. In order to provide a Sr isotope balance for the global ocean we collected paired 87Sr/86Sr*-δ88/86Sr values of a set of river waters samples (87Sr/86Sr*=0.713902(9) - δ88/86Sr=0.300(13)), hydrothermal fluids (87Sr/86Sr*=0.704518(8) - δ88/86Sr=0.253(15) , major marine carbonate producers (foraminifera, coccolithophores, corals) and seawater and present it in a 3-isotope-plot. Rivers and mid ocean ridges represent the main Sr sources to the ocean while marine carbonates are representing the major Sr sink. The major Sr output corresponds to the Sr incorporated by the major marine calcifiers (87Sr/86Sr*=0.709312(9) - δ88/86Sr=0.240). The offset between the Sr input and the Sr output was determined to be ~ 0.50 ‰ in its δ88/86Sr indicates that modern ocean is apparently not in steady state with respect to Sr. Weathering of young carbonates on the shelfes during sea level low stands possibly can shift the δ88/86Sr of rivers from its recent value of 0.300(24) to 0.23‰ to equilibrate in- and output.

  18. High-precision direct determination of the 87Sr/ 86Sr isotope ratio of bottled Sr-rich natural mineral drinking water using multiple collector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yang, Yue-Heng; Wu, Fu-Yuan; Xie, Lie-Wen; Yang, Jin-Hui; Zhang, Yan-Bin

    2011-08-01

    We describe a precise and accurate method for the direct determination of the 87Sr/ 86Sr isotope ratio of bottled Sr-rich natural mineral drinking water using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The method is validated by the comparative analysis of the same water with and without cation-exchange resin purification. The work indicates that isobarically interfering elements can be corrected for when 87Rb/ 86Sr < 0.05 (Rb/Sr < 0.015), and that the matrix elements (Ca, Mg, K and Na) have no significant effect on the accuracy of the Sr isotope data. The method is simple, rapid, eliminates sample preparation time, and avoids potential contamination during complicated sample-preparation procedures. Therefore, the high sample throughput inherent to the MC-ICP-MS can be fully exploited.

  19. 87Sr/ 86Sr, 143Nd/ 144Nd and REEs in Silurian phosphatic fossils

    NASA Astrophysics Data System (ADS)

    Bertram, C. J.; Elderfield, H.; Aldridge, R. J.; Conway Morris, S.

    1992-09-01

    The feasibility of using the chemistry of phosphatic fossil material to trace palaeo-seawater composition for the Silurian has been evaluated. Contrary to Recent material, fossil fish are shown to be unreliable for Sr isotope stratigraphy. Conodonts, however, may be used by employing 0.2M HNO 3 dissolution, except for samples showing degrees of thermal maturation greater than colour alteration index (CAI) values of 2.5. Samples from the same stratigraphic levels from the U.K., Czechoslovakia, Gotland and the U.S.A. gave similar 87Sr/ 86Sr ratios, suggesting that they have recorded the original seawater value. Significant inter-specific differences occur in REE concentrations and Nd isotopic compositions of conodont elements, and Ce and Eu anomalies vary with REE content. This suggests that artefacts are introduced at the same time that large amounts of REEs are incorporated into the apatite. Preliminary results for the Sr isotopic composition of Silurian seawater are presented. Values are generally lower than previously suggested, showing an increase in 87Sr/ 86Sr from ˜ 0.70825 at 435 Ma rising to ˜ 0.70875 at 418 Ma and levelling off in the Late Silurian. The overall rate of increase in seawater ratio is about2-3 × 10 -5 Ma -1 and can be accounted for by the widespread decrease in volcanism compared with the Ordovician; a proportionally greater flux of Sr to the oceans from continental erosion of only ˜ 10% would account for the long-term increase in seawater 87Sr/ 86Sr ratio throughout the Silurian.

  20. Rare earth elements and (87)Sr/(86)Sr isotopic characterization of Indian Basmati rice as potential tool for its geographical authenticity.

    PubMed

    Lagad, Rupali A; Singh, Sunil K; Rai, Vinai K

    2017-02-15

    The increasing demand for premium priced Indian Basmati rice (Oryza sativa) in world commodity market causing fraudulent activities like adulteration, mislabelling. In order to develop authentication method for Indian Basmati rice, (87)Sr/(86)Sr ratios and REEs composition of Basmati rice, soil and water samples were determined and evaluated their ability as geographical tracer in the present study. In addition, the possible source of Sr in rice plant has also been examined. Basmati rice samples (n=82) showed (87)Sr/(86)Sr ratios in the range 0.71143-0.73448 and concentrations of 10 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Yb) in ppb levels. Statistical analysis showed strong correlation between (87)Sr/(86)Sr ratios of rice, silicate and carbonate fractions of soil. Good correlation and closeness of (87)Sr/(86)Sr of rice with water indicate its uptake in rice from water. Rice grown in southern Uttar Pradesh contains higher (87)Sr/(86)Sr compared to other region of Indo-Gangetic Plain due to higher (87)Sr/(86)Sr of the Ganga compared to other rivers. (87)Sr/(86)Sr ratios can be used as a tracer for differentiating Indian Basmati rice from the other country originated rice samples.

  1. Accuracy and precision of 88Sr/86Sr and 87Sr/86Sr measurements by MC-ICPMS compromised by high barium concentrations

    NASA Astrophysics Data System (ADS)

    Scher, Howie D.; Griffith, Elizabeth M.; Buckley, Wayne P.

    2014-02-01

    (BaSO4) is a widely distributed mineral that incorporates strontium (Sr) during formation. Mass-dependent fractionation of Sr isotopes occurs during abiotic precipitation of barite and formation of barite associated with biological processes (e.g., bacterial sulfide oxidation). Sr isotopes in barite can provide provenance information as well as potentially reconstruct sample formation conditions (e.g., saturation state, temperature, biotic versus abiotic). Incomplete separation of Ba from Sr has complicated measurements of Sr isotopes by MC-ICPMS. In this study, we tested the effects of Ba in Sr sample solutions and modified extraction chromatography of Sr using Eichrom Sr Spec (Eichrom Technologies LLC, USA) resin to enable rapid, accurate, and precise measurements of 88Sr/86Sr and 87Sr/86Sr ratios from Ba-rich matrices. Sr isotope ratios of sample solutions doped with Ba were statistically indistinguishable from Ba-free sample solutions below 1 ppm Ba. Deviations in both 87Sr/86Sr and δ88/86Sr occurred above 1 ppm Ba. An updated extraction chromatography method tested with barite and Ba-doped seawater produces Sr sample solutions containing 10-100 ppb levels of Ba. The practice of Zr spiking for external mass-discrimination correction of 88Sr/86Sr ratios was also evaluated, and it was confirmed that variable Zr levels do not have adverse effects on the accuracy and precision of 87Sr/86Sr ratios in the Zr concentration range required to produce accurate δ88/86Sr values.

  2. The evolution of the 87Sr/86Sr in the Dead Sea brine: from the Sedom lagoon to Sahara dusts

    NASA Astrophysics Data System (ADS)

    Stein, Mordechai

    2016-04-01

    The history of water-bodies in the Dead Sea brines commenced with the intrusion of the Sedom lagoon, possibly in the late Neogene and continued with the development of hypersaline and freshwater lakes (e.g. the modern Dead Sea and Sea of Galilee). 87Sr/86Sr ratios in these water-bodies decreased over the past ~ 5-6 Ma from 0.7087-0.7084 in salts deposited in the Sedom lagoon to ~ 0.7080 in modern Dead Sea brine. The 87Sr/86Sr ratios in the salts deposited from Sedom lagoon are significantly lower than those of the contemporaneous late Miocene seawater (~0.709). This difference was attributed to modification of the 87Sr/86Sr ratio in the Sedom lagoon solution by influx of Ca-chloride brines. The brines, in turn were formed by dolomitization of marine limestones of the DSR Cretaceous wall rocks (87Sr/86Sr ~ 0.7075) by the ingressing evaporated seawaters (Stein et al., 2000). After the disconnection of the Sedom lagoon from the open sea freshwater filled the lakes that occupied the Dead Sea basin. The freshwater influx modified the strontium isotope and chemical composition of the brine and provided bicarbonate and sulfate to the lake that led the precipitation of primary aragonite and gypsum. Freshwater that currently enter the lake are characterize by 87Sr/86Sr ~ 0.7081, significantly higher than the Cretaceous carbonates. Settled dust that deposits on the Judea Mountains is composed of calcite and quartz grains and is characterized by 87Sr/86Sr ratios ~ 0.7084. It appears that significant amounts of the strontium that entered the lakes with the freshwater originated from dissolution of the dust calcites. Large amounts of dust were transported from the Sahara desert to the Dead Sea watershed during glacial periods when the Sahara was dry and sea-level was low. The source of the detrital calcites however, is not known. They could be derived from dry paleo-lakes in the Sahara that were previously filled by waters that retained the required strontium isotope

  3. Bioavailable 87Sr/86Sr in different environmental samples--effects of anthropogenic contamination and implications for isoscapes in past migration studies.

    PubMed

    Maurer, Anne-France; Galer, Stephen J G; Knipper, Corina; Beierlein, Lars; Nunn, Elizabeth V; Peters, Daniel; Tütken, Thomas; Alt, Kurt W; Schöne, Bernd R

    2012-09-01

    (87)Sr/(86)Sr reference maps (isoscapes) are a key tool for investigating past human and animal migrations. However, there is little understanding of which biosphere samples are best proxies for local bioavailable Sr when dealing with movements of past populations. In this study, biological and geological samples (ground vegetation, tree leaves, rock leachates, water, soil extracts, as well as modern and archeological animal teeth and snail shells) were collected in the vicinity of two early medieval cemeteries ("Thuringians", 5-6th century AD) in central Germany, in order to characterize (87)Sr/(86)Sr of the local biosphere. Animal tooth enamel is not appropriate in this specific context to provide a reliable (87)Sr/(86)Sr baseline for investigating past human migration. Archeological faunal teeth data (pig, sheep/goat, and cattle) indicates a different feeding area compared to that of the human population and modern deer teeth (87)Sr/(86)Sr suggest the influence of chemical fertilizers. Soil leachates do not yield consistent (87)Sr/(86)Sr, and (87)Sr/(86)Sr of snail shells are biased towards values for soil carbonates. In contrast, water and vegetation samples seem to provide the most accurate estimates of bioavailable (87)Sr/(86)Sr to generate Sr isoscapes in the study area. Long-term environmental archives of bioavailable (87)Sr/(86)Sr such as freshwater bivalve shells and tree cores were examined in order to track potential historic anthropogenic contamination of the water and the vegetation. The data obtained from the archeological bivalve shells show that the modern rivers yield (87)Sr/(86)Sr ratios which are similar to those of the past. However, the tree cores registered decreasing (87)Sr/(86)Sr values over time towards present day likely mirroring anthropogenic activities such as forest liming, coal mining and/or soil acidification. The comparison of (87)Sr/(86)Sr of the Thuringian skeletons excavated in the same area also shows that the vegetation

  4. Structure in the secular variation of seawater sup 87 Sr/ sup 86 Sr for the Ivorian/Chadian (Osagean, Lower Carboniferous)

    SciTech Connect

    Douthit, T.L.; Hanson, G.N.; Meyers, W.J. )

    1990-05-01

    The secular variations of {sup 87}Sr/{sup 86}Sr in seawater for the Ivorian/Chadian, (equivalent to the Osagean, Lower Carboniferous) were determined through detailed analysis of well-preserved marine cements from the Waulsortian facies of Ireland. The results indicate that marine cements have utility in characterizing marine paleochemistries. Marine cements were judged pristine on the basis of nonluminescent character and stable isotopic composition comparable to previous estimates of Mississippian marine calcite. Analysis of the marine cements yielded {sup 87}Sr/{sup 86}Sr ratios lower than previously reported values for the Ivorian/Chadian. Error resulting from chronostratigraphic correlation between different geographic areas was avoided by restricting the sample set to a single 1,406-ft-long core (core P-1). The P-1 core is estimated to represent a minimum of 8.7 m.y. of continuous Waulsortian Limestone deposition. The {sup 87}Sr/{sup 86}Sr ratios of 11 nonluminescent cements document a non-monotonic variation in seawater {sup 87}Sr/{sup 86}Sr along the length of the core. {sup 87}Sr/{sup 86}Sr ranges from a high of 0.707908 in the early Ivorian to a low of about 0.707650 in the late Ivorian and middle Chadian with an early Chadian maximum at 0.707800 (all data are adjusted to a value of 0.710140 for SRM 987). The indicated maximum rate of change in seawater {sup 87}Sr/{sup 86}Sr is {minus}0.00011/Ma, comparable in magnitude to Tertiary values. The secular variation curve of seawater {sup 87}Sr/{sup 86}Sr for the Ivorian/Chadian has previously been thought to decrease monotonically with decreasing age. These data suggest that the seawater {sup 87}Sr/{sup 86}Sr variation over this interval may be sinusoidal in nature and emphasize the importance of well-characterized intraformational isotopic base lines.

  5. A revised 87Sr/86Sr curve for the Silurian: Implications for global ocean chemistry and the Silurian timescale

    USGS Publications Warehouse

    Cramer, Bradley D.; Munnecke, Axel; Schofield, D.I.; Haase, K.M.; Haase-Schramm, A.

    2011-01-01

    Recent recalibration of the Silurian timescale and improved global chronostratigraphic correlation of Silurian strata significantly altered the Silurian 87Sr/86Sr curve and the temporal extent of available data. Whereas previous Silurian 87Sr/86Sr composites showed a generally monotonic increase throughout the Silurian, revisions to the Silurian timescale now require a major increase in the rate of change in 87Sr/86Sr at or near the onset of the Gorstian Age of the Ludlow Epoch. Similarly, improved chronostratigraphic correlations between Silurian outcrops on Anticosti Island, Canada, and Gotland, Sweden, indicate that the middle part of the Telychian Age, which is roughly 10%-15% of the total duration of the Silurian period, is undersampled and underrepresented in Silurian 87Sr/86Sr composites. A revised Silurian 87Sr/86Sr curve based on 241 new and published analyses confirms the significant increase in the rate of change of 87Sr/86Sr toward more radiogenic values near the base of the Ludlow Series. On the basis of these data, we propose that the rapid trend toward more radiogenic 87Sr/86Sr values is indicative of increased weathering of old sialic crust exposed during the Silurian uplift of portions of Baltica, Laurentia, and Avalonia. Importantly, however, the actual rate of change of 87Sr/86Sr will remain equivocal until the durations of Silurian epochs and ages are better constrained. ?? 2011 by The University of Chicago. All rights reserved.

  6. 87Sr/86Sr sourcing of ponderosa pine used in Anasazi great house construction at Chaco Canyon, New Mexico

    USGS Publications Warehouse

    Reynolds, Amanda C.; Betancourt, Julio L.; Quade, Jay; Patchett, P. Jonathan; Dean, Jeffery S.; Stein, John

    2005-01-01

    Previous analysis of 87Sr/86Sr ratios shows that 10th through 12th century Chaco Canyon was provisioned with plant materials that came from more than 75 km away. This includes (1) corn (Zea mays) grown on the eastern flanks of the Chuska Mountains and floodplain of the San Juan River to the west and north, and (2) spruce (Picea sp.) and fir (Abies sp.) beams from the crest of the Chuska and San Mateo Mountains to the west and south. Here, we extend 87Sr/86Sr analysis to ponderosa pine (Pinus ponderosa) prevalent in the architectural timber at three of the Chacoan great houses (Pueblo Bonito, Chetro Ketl, Pueblo del Arroyo). Like the architectural spruce and fir, much of the ponderosa matches the 87Sr/86Sr ratios of living trees in the Chuska Mountains. Many of the architectural ponderosa, however, have similar ratios to living trees in the La Plata and San Juan Mountains to the north and Lobo Mesa/Hosta Butte to the south. There are no systematic patterns in spruce/fir or ponderosa provenance by great house or time, suggesting the use of stockpiles from a few preferred sources. The multiple and distant sources for food and timber, now based on hundreds of isotopic values from modern and archeological samples, confirm conventional wisdom about the geographic scope of the larger Chacoan system. The complexity of this procurement warns against simple generalizations based on just one species, a single class of botanical artifact, or a few isotopic values.

  7. Revisiting mid-Paleozoic ocean chemistry with the combined measurement of 87Sr/86Sr and δ88/86Sr on Silurian brachiopods

    NASA Astrophysics Data System (ADS)

    Vollstaedt, H.; Eisenhauer, A.; Krabbenhoeft, A.; Liebetrau, V.; Boehm, F.; Farkas, J.; Tomasovych, A.; Veizer, J.

    2010-12-01

    With the extension of the conventional radiogenic Sr isotope system (87Sr/86Sr) [1] by a simultaneous measurement of radiogenic and stable strontium (Sr) isotopes (δ88/86Sr[‰]=((88Sr/86Srsample)/(88Sr/86SrNBS987)-1)*1000) we are able to add new constraints to Strontium Isotope Stratigraphy (SIS) and the ocean chemistry of the past. By taking Sr isotope fractionation into account we open a new dimension to the Sr isotope system. This allows us to gain quantitative information about the Sr output of the ocean. Applying a 87Sr/84Sr-double spike (DS) we measured paired δ88/86Sr-87Sr/86Sr ratios of Silurian (444 - 416 Ma) and recent marine brachiopod samples which were screened for diagenesis prior to the measurement [1]. Data reduction and DS denormalization follows an iterative algorithm [2]. External δ88/86Sr reproducibility based on an international coral carbonate standard (JCp-1) is 0.03‰ (2SD, n=26). We found that modern brachiopods have similar values independent of habitat location, species and water temperature with a mean of 0.18‰ ± 0.02‰ (2SD, n=13). This provides further support that brachiopods are a reliable carbonate recording phase for δ88/86Srseawater. δ88/86Sr of Phanerozoic seawater is controlled by changes in the Sr fluxes in and out of the ocean. Our data reveal that Silurian brachiopods are isotopically light in stable Sr isotopes (δ88/86Srmean = 0.12‰, n=20) compared to other Phanerozoic brachiopod and belemnite samples (δ88/86Sr = 0.07 - 0.36‰). This follows the foregone mass extinction event and glaciation during late Ordovician period when numerous groups of calcifying organisms disappeared. During the Silurian period both 87Sr/86Sr and δ88/86Sr increase from 0.7081 and 0.07‰ to 0.7088 and 0.18‰, respectively. This might indicate changes in global tectonism (mid ocean spreading rates and continental weathering rates) as well as changes in the Sr fluxes in and out of the ocean. In terms of the Sr output flux of the

  8. Covariance of initial sup 87 Sr/ sup 86 Sr ratios,. delta. sup 18 O, and SiO sub 2 in continental flood basalt suites: The role of contamination and alteration

    SciTech Connect

    Harris, C. )

    1989-07-01

    When mutual positive correlations occur between {delta}{sup 18}O, {sup 87}Sr/{sup 86}Sr initial ratio (R{sub o}), and SiO{sub 2} in continental flood basalt suites, they are generally accepted as being due to crustal contamination. In continental flood basalt suites that have undergone coupled assimilation-fractional crystallization in which the contaminant is granitic continental crust, R{sub o} reflects the degree of contamination and will correlate positively with SiO{sub 2} which reflects the degree of differentiation. Posteruptive alteration of a suite having a range of SiO{sub 2} values should result in a positive correlation between SiO{sub 2} and {delta}{sup 18}O because the ability of a volcanic rock to concentrate {sup 18}O depends, in part, on silica content. Suites that have undergone assimilation-fractional crystallization followed by alteration after eruption may there for exhibit a positive correlation between {delta}{sup 18}O, SiO{sub 2}, and R{sub o}. The {delta}{sup 18}O data in such suites may consequently suggest erroneously high degrees of contamination.

  9. The Origin of 87Sr/86Sr in Cold Springs and Travertines of the Franciscan Complex near Cazadero, California

    NASA Astrophysics Data System (ADS)

    Marks, N.; Schiffman, P.; Yin, Q.; Zierenberg, R.

    2005-12-01

    Ultrabasic springs within the Franciscan Complex of the California Coast Range have been intensely investigated by geochemists and geobiologists. Springs located in Sonoma County in an area historically known as The Cedars are of particular interest to scientists exploring Martian analogues (Johnson et al. 2004) or investigating serpentinization processes (Barnes and O'Neil, 1969; Barnes et al. 1972). Laser ablation and solution phase multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) were used to obtain 87Sr/86Sr isotope ratios in fluid, travertine and serpentinite samples collected at the Cedars. 87Sr/86Sr isotopic ratios in the serpentinizing springs range from 0.70926 to 0.70955; the Mg2+-HCO3- type stream water has an isotopic ratio of 0.70848. The 87Sr/86Sr ratio in the travertines ranges from 0.70931 to 0.70966. The mean 87Sr/86Sr ratio of the travertine (0.7094) is far more radiogenic than typical mantle values of 0.703 to 0.705, indicating that the peridotite is an unlikely source of the radiogenic Sr. Similarly, the measured ratio is much higher than the expected Sr isotope ratio of seawater that might be trapped in Jurassic Franciscan Sediments or oceanic crust. Strontium leached from Franciscan sediments themselves should reflect a Sierran or Klamath source with expected values in the range of 0.705 to 0.706. Indeed the measured isotope ratios even exceed modern seawater values. The observed radiogenic values suggest the presence of older, potassium (and rubidium)-rich rocks within the fluid flow path. Alternatively, the presence of clay minerals that readily substitute Sr for Ca may well account for the radiogenic strontium signal. It is possible that the serpentinization observed at The Cedars initiated along a ridge flank and the Sr isotopic chemistry reflects the site of initiation. The radiogenic strontium in these springs may result from fluid interaction with seafloor sediments deposited along the flank of a slow spreading

  10. Lacustrine 87Sr/86Sr as a tracer to reconstruct Milankovitch forcing of the Eocene hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Baddouh, M'bark; Meyers, Stephen R.; Carroll, Alan R.; Beard, Brian L.; Johnson, Clark M.

    2016-08-01

    The Green River Formation (GRF) provides one of the premier paleoclimate archives of the Early Eocene Climatic Optimum (∼50 Ma), representing the apex of the early Cenozoic greenhouse climate. Rhythmic lake-level variability expressed in the GRF has inspired numerous hypotheses for the behavior of the Eocene hydrologic cycle, including its linkage to astronomical forcing, solar variability, and the El Niño Southern Oscillation (ENSO). However, the lack of sufficient proxy data to document atmospheric water-mass transport and the geographic pattern of evaporation/precipitation/runoff has made it difficult to discriminate between different models for astronomical forcing. Variable 87Sr/86Sr ratios of bedrock that encompass the GRF provide an opportunity to reconstruct the spatial expression of the Eocene hydrologic cycle and its linkage to lake level. Here Sr isotope data from the Wilkins Peak Member, a rhythmic succession that has been demonstrated to record Milankovitch forcing of lake levels, indicate that high lake levels reflect an increased proportion of runoff from less radiogenic rocks west of the basin, eliminating a number of the existing astronomical-forcing hypotheses. The 87Sr/86Sr variability is consistent with a change in mean ENSO state, which is predicted by climate models to be linked to orbital-insolation. Thus, the 87Sr/86Sr data reveal a coupling of high frequency (ENSO) and low frequency (astronomical) climate variability, and also predict the existence of sizable astronomically-forced alpine snowpack during the last greenhouse climate. More broadly, this study demonstrates the utility of 87Sr/86Sr as a powerful tool for reconstructing the deep-time hydrologic cycle.

  11. 87Sr/86Sr Ratios in Carbonate From the Red Lake and Steep Rock Groups in Canada Suggest Rb-enriched Continental Crust was Influencing Seawater Chemistry Prior to 3.0 Ga

    NASA Astrophysics Data System (ADS)

    Satkoski, A.; Fralick, P. W.; Beard, B. L.; Johnson, C.

    2015-12-01

    Previous work has suggested that prior to 2.5 Ga, Sr isotope compositions of seawater were essentially mantle buffered and the effects of continental weathering on seawater chemistry were negligible. To test this, we collected Sr isotope data from 2.93 and 2.80 Ga carbonates that are part of the Red Lake and Steep Rock groups (Canada), respectively. To better understand carbonate formation and any post-depositional alteration, Sr isotopes are considered with O isotopes and REEs, as well as Rb and Sr contents, including correction for decay of 87Rb. All samples have Y/Ho ratios higher than chondrite and have positive La anomalies, which, combined with low Rb contents suggests that clastic contamination is negligible. Samples we consider near pristine have δ18O (VSMOW) values >20‰. Samples with the highest Y/Ho ratios and largest La anomalies from Red Lake and Steep Rock have initial 87Sr/86Sr ratios of 0.7018-0.7020. This Sr isotope composition is significantly more radiogenic than contemporaneous mantle (0.7011-0.7012), especially at a time when the isotopic difference between the crust and mantle was much less than today. This implies that radiogenic continental crust was emergent and shed detritus into the world's oceans prior to 3.0 Ga, in contrast with proposals for submerged continental crust, but in line with new estimates that continental crust at 3.0 Ga was 60-70% of current volume. We contend that this large amount of crust combined with enhanced Archean weathering could account for the radiogenic Sr isotope compositions we report here, and suggests a significant impact from continental weathering on ocean chemistry during the Archean.

  12. Ge/Si and 87Sr/86Sr tracers of weathering reactions and hydrologic pathways in a tropical granitoid system

    USGS Publications Warehouse

    Derry, L.A.; Pett-Ridge, J. C.; Kurtz, A.C.; Troester, J.W.

    2006-01-01

    Ge/Si and 87Sr/86Sr data from primary and secondary minerals, soil waters, and stream waters in a tropical granitoid catchment quantitatively reflect mineral alteration reactions that occur at different levels within the bedrock-saprolite-soil zone. Near the bedrock-saprolite interface, plagioclase to kaolinite reaction yields low Ge/Si and 87Sr/86Sr. Higher in the regolith column, biotite weathering and kaolinite dissolution drive Ge/Si and 87Sr/86Sr to high values. Data from streams at base flow sample the bedrock-saprolite interface zone, while at high discharge solutes are derived from upper saprolite-soil zone. Coupled Ge/Si and 87Sr/86Sr can be effective tools for quantifying the importance of specific weathering reactions, and for geochemical hydrograph separation. ?? 2005 Elsevier B.V. All rights reserved.

  13. 87Sr/86Sr sourcing of ponderosa pine used in Anasazi great house construction at Chaco Canyon, New Mexico

    USGS Publications Warehouse

    Reynolds, A.C.; Betancourt, J.L.; Quade, Jay; Patchett, P.J.; Dean, J.S.; Stein, J.

    2005-01-01

    Previous analysis of 87Sr/86Sr ratios shows that 10th through 12th century Chaco Canyon was provisioned with plant materials that came from more than 75 km away. This includes (1) corn (Zea mays) grown on the eastern flanks of the Chuska Mountains and floodplain of the San Juan River to the west and north, and (2) spruce (Picea sp.) and fir (Abies sp.) beams from the crest of the Chuska and San Mateo Mountains to the west and south. Here, we extend 87Sr/86Sr analysis to ponderosa pine (Pinus ponderosa) prevalent in the architectural timber at three of the Chacoan great houses (Pueblo Bonito, Chetro Ketl, Pueblo del Arroyo). Like the architectural spruce and fir, much of the ponderosa matches the 87Sr/86Sr ratios of living trees in the Chuska Mountains. Many of the architectural ponderosa, however, have similar ratios to living trees in the La Plata and San Juan Mountains to the north and Lobo Mesa/Hosta Butte to the south. There are no systematic patterns in spruce/fir or ponderosa provenance by great house or time, suggesting the use of stockpiles from a few preferred sources. The multiple and distant sources for food and timber, now based on hundreds of isotopic values from modern and archeological samples, confirm conventional wisdom about the geographic scope of the larger Chacoan system. The complexity of this procurement warns against simple generalizations based on just one species, a single class of botanical artifact, or a few isotopic values. ?? 2005 Elsevier Ltd. All rights reserved.

  14. New Perspectives on the Marine Strontium Isotope Record of the last 27 Ma from delta 88/86Sr and 87Sr/86Sr Systematics Using the TIMS Sr-Double-Spike Technique

    NASA Astrophysics Data System (ADS)

    Liebetrau, V.; Eisenhauer, A.; Krabbenhoeft, A.; Fietzke, J.; Rueggeberg, A.; Guers, K.

    2008-12-01

    Applying a recently developed Sr-double spike the Sr-isotope fractionation for both 88Sr/86Sr and 87Sr/86Sr ratios in water and carbonates can now precisely be determined with the TIMS- technique. Repeated measurements of standard materials (NIST SRM 987, IAPSO seawater standard, JCp-1 carbonate standard) showed that δ 88Sr/86Sr (reported as δ 88/86Sr=((88Sr/86Sr)sample/(88Sr/86Sr)NBS987)-1)*1000) and 87Sr/86Sr ratios can be determined with an external reproducibility in the order of better than 20 ppm and about 6 ppm, respectively, for NIST SRM 987, IAPSO and JCp-1, respectively. Using the double spike TIMS technique the statistical error for determination of δ 88/86Sr is reaching a whole procedure reproducibility of about 15 ppm. All standard measurements are in general accord with previous observations (1,2) indicating that δ 88/86Srseawater and 87Sr/86Srseawater is about 0.39±0.02 ‰ and 0.709285(6) , (n=12), respectively, and that the marine carbonates being isotopically lighter than seawater (JCp-1, δ 88Sr/86Sr: 0.20±0.02; 87Sr/86Sr : 0.709219(6); n=3). Note, that also 87Sr/86Sr carbonate ratios is isotopically about 70 ppm lighter than seawater as expected from isotope fractionation during the precipitation of calcium carbonates (1). For a first application of our double spike on 13 bulk carbonate samples of aragonitic composition, representing marine shallow water mollusks (0 to 100m water depth), it has been shown that their bio- stratigraphic ages are in accordance with the classical Strontium isotope stratigraphy (SIS) after McArthur and Howarth (2004). The samples span an age range from the the Late Oligocene to Pleistocene (about 27 Ma). The δ 88Sr/86Sr-record shows variations in the order of about 0.2 ‰. The 87Sr/86Srseawater record tends to show higher values compared to the classical normalized 87Sr/86Sr record. The offset is not constant rather correlated to the 88Sr/86Sr ratios. Preliminary interpretation take seawater temperature

  15. The 87Sr/86Sr aquatic isoscape of the Danube catchment from the source to the mouth as tool for studying fish migrations

    NASA Astrophysics Data System (ADS)

    Zitek, Andreas; Tchaikovsky, Anastassiya; Irrgeher, Johanna; Waidbacher, Herwig; Prohaska, Thomas

    2014-05-01

    Isoscapes - spatially distributed isotope patterns across landscapes - are increasingly used as important basis for ecological studies. The natural variation of the isotopic abundances in a studied area bears the potential to be used as natural tracer for studying e.g. migrations of animals or prey-predator relations. The 87Sr/86Sr ratio is one important tracer, since it is known to provide a direct relation of biological samples to geologically distinct regions, as Sr isotopes are incorporated into living tissues as a proxy for calcium and taken up from the environment without any significant fractionation. Although until now the focus has been mainly set on terrestrial systems, maps for aquatic systems are increasingly being established. Here we present the first 87Sr/86Sr aquatic isoscape of the Danube catchment, the second largest river catchment in Europe, from near its source starting at river km 2581 in Germany down to its mouth to river km 107 in Romania. The total length of the river Danube is 2780 km draining a catchment area 801 463 km2 (10 % of the European continent). The major purpose of this study was to assess the potential of the 87Sr/86Sr isotope ratio to be used as tool for studying fish migrations at different scales in the entire Danube catchment. Within the Joint Danube Research 3 (JDS 3), the biggest scientific multi-disciplinary river expedition of the World in 2013 aiming at the assessment of the ecological status and degree of human alterations along the river Danube, water samples were taken at 68 pre-defined sites along the course of the river Danube including the major tributaries as a basis to create the so called 'Isoscape of the Danube catchment'. The determination of 87Sr/86Sr isotope ratio in river water was performed by multicollector-sector field-inductively coupled plasma-mass spectrometry (MC-SF-ICP-MS). The JDS 3 data were combined with existing data from prior studies conducted within the Austrian part of the Danube catchment

  16. 87Sr/86Sr in gypsic soils of hyperarid settings as an altitude proxy: results for northern Chile (19-22°S) and paleoaltimetry applications

    NASA Astrophysics Data System (ADS)

    Cosentino, N. J.; Jordan, T. E.; Derry, L. A.

    2012-12-01

    Quantification of uplift of a continental surface relative to sea level is still challenging. We have developed a new altimeter based on the 87Sr/86Sr ratio of modern accumulations of salts (incipient soils) in hyperarid settings like those present in northern Chile's Atacama Desert, which lies in the forearc of the Nazca-South America plate system. The proposed altimeter is based on the first order topographic control on the extent of coastal fog. Advective events bring offshore-generated stratocumulus clouds to the continent, generating fog between 400 and 1100 m.a.s.l.. In the hyperarid desert, thin layers of calcium sulfate, among other salts, accumulate on the surface. The main sources of the calcium sulfates are i) Pacific-sourced fog that transports aerosols and dissolved salts inland, which are precipitated upon evaporation, ii) wind that transports salts derived from the weathering of Andean magmatic arc rocks, which may be recycled through salars, and to a lesser extent, iii) salts derived from volcanic emissions. While the latter two have an average 87Sr/86Sr isotopic ratio of 0.70749, the fog source has a value corresponding to seawater (0.70917). Due to the high atomic weight of Sr and to the low relative mass difference of isotopes 87Sr and 86Sr, environmental isotopic fractionation is minimal. This makes 87Sr/86Sr an excellent proxy for the primary source of the calcium sulfates and the calcium sulfates' Sr. Samples from four E-W transects of the forearc between 19.75° to 23.75° S demonstrate variations in 87Sr/86Sr for altitudes between 200 and 2700 m.a.s.l.. There is a correlation between the modern salts' 87Sr/86Sr and its altitude of formation for altitudes between ~400 and ~800 m.a.s.l., above which the 87Sr/86Sr falls abruptly until reaching values similar to or lower than the Andean average. The fact that this correlation is observed for the whole dataset (including all four transects) suggests that the relationship is regional rather than

  17. The major ion, 87Sr/86Sr, and δ11B geochemistry of groundwater in the Wyodak-Anderson coal bed aquifer (Powder River Basin, Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Lemarchand, Damien; Jacobson, Andrew D.; Cividini, Damien; Chabaux, François

    2015-11-01

    We developed a multicomponent, 1D advective transport model that describes the downgradient evolution of solute concentrations, 87Sr/86Sr ratios, and δ11B values in the Wyodak-Anderson Coal Bed (WACB) aquifer located in the Powder River Basin, Wyoming, USA. The purpose of the study was to evaluate the chemical vulnerability of groundwater to potential environmental change stemming from the extraction of coal bed methane and shale gas. Model calculations demonstrate that coupling between microbial activity and the dissolved carbonate system controls major ion transport in the WACB aquifer. The analysis of 87Sr/86Sr ratios further reveals the importance of ion-exchange reactions. Similarly, δ11B data emphasize the significance of pH-dependent surface reactions and demonstrate the vulnerability of the aquifer to the long-term acidification of recharge water.

  18. The sup 87 Sr/ sup 86 Sr values of Canadian Shield brines and fracture minerals with applications to groundwater mixing, fracture history, and geochronology

    SciTech Connect

    McNutt, R.H. ); Frape, S.K.; Fritz, P.; Jones, M.G.; MacDonald, I.M. )

    1990-01-01

    Analyses of saline waters, fracture minerals, and host rocks from seven localities on the Canadian Shield demonstrate the utility of the {sup 87}Sr/{sup 86}Sr ratio in the study of groundwater systems in crystalline rocks. The ratios range from 0.704 to 0.753 and have obtained their signatures by mineral/rock interactions, primarily involving the feldspars. The authors have identified brines from isolated pockets in the same mines where extensive flow regimes exist. There is a mixing of different brines as well as mixing with meteoric waters. The isotopic results on calcites from fractures and shear zones show more than one generation of mineral growth in a given fracture. The {sup 87}Sr/{sup 86}Sr ratios of the calcites vary from values identical to the present-day brine in the fracture zone to ratios with Archean signatures. This implies that activity may occur in fault zones over a very long time. The brines are very rich in Sr (up to 2400 mg/l), very low in Rb, and have relatively radiogenic {sup 87}Sr/{sup 86}Sr ratios. They are ubiquitous in Shield rocks and, if they were present throughout geological time, they may be one reason why Rb/Sr ages of felsic plutons are commonly younger than associated U/Pb ages.

  19. Magmatic 87Sr/86Sr relicts in hydrothermally altered quartz diorites (Brabant Massif, Belgium) and the role of epidote as a Sr filter

    NASA Astrophysics Data System (ADS)

    André, Luc; Deutsch, Sarah

    1986-01-01

    The porphyritic quartz diorites of the Caledonian Brabant Massif have been totally altered. Ca, Rb, Sr, Zr, Ce, Y measurements and Sr-Nd isotopic analyses were performed on the Quenast plug and the Lessines sill, in an attempt to study the relative mobility of Sr and evaluate the extent, direction and magnitude of the 87Sr/86Sr alterations. Sr electron microprobe analyses of epidote were also carried out to assess its role in the Sr distribution. The initial 87Sr/86Sr ratio is shown to have had an unsteady behaviour during the studied water/rock interactions since it has been sometimes enhanced, sometimes depressed and occasionally not modified. The possibility and magnitude of the 87Sr contamination turn out to be strictly related to the degree of Sr accommodation in the secondary minerals. Epidote in particular has proved to be the main trap for the hydrothermal Sr and this mineral is thus regarded as the major controlling factor of 87Sr hydrothermal contamination. The epidote-poor rocks (albite+chlorite-rich rocks) seem to have been unaffected by any Sr interchange with the aqueous solutions. Therefore, as alteration quickly follows the crystallization of the magma, their initial 87Sr/ 86Sr ratio, which is deduced from an isochron, might be a primary petrogenetic feature enabling interpretation of the genesis of their parental magmas. On the other hand, in the epidote-rich rocks, this ratio has been readily altered; it could thus generally be used only to trace the origin of the hydrothermal solutions. As a consequence, these rocks should not be selected for dating an alteration event by the Rb-Sr method.

  20. Analysis of coupled Sr/Ca and 87Sr/ 86Sr variations in enamel using laser-ablation tandem quadrupole-multicollector ICPMS

    NASA Astrophysics Data System (ADS)

    Balter, Vincent; Telouk, Philippe; Reynard, Bruno; Braga, José; Thackeray, Francis; Albarède, Francis

    2008-08-01

    We present in this study results obtained with a laser-ablation coupled with both a quadrupole and a multi-collector ICPMS. The simultaneous in situ Sr/Ca and 87Sr/ 86Sr measurements along growth profiles in enamel allows the concomitant diet and migration patterns in mammals to be reconstructed. Aliquots of the powdered international standard NIST "SRM1400 Bone Ash" with certified Sr and Ca contents, was sintered at high pressure and temperature and was adopted as the reference material for external reproducibility and calibration of the results. A total of 145 coupled elemental and isotopic measurements of herbivores enamel from the Kruger National Park, South Africa, gives intra-tooth Sr/Ca and 87Sr/ 86Sr variations that are well larger than external reproducibility. Sr/Ca profiles systematically decrease from the dentine-enamel junction to the outer enamel whereas 87Sr/ 86Sr profiles exhibit variable patterns. Using a simple geometric model of hypsodont teeth growth, we demonstrate that a continuous recording of the 87Sr/ 86Sr variations can be reconstructed in the tooth length axis. This suggests that the mobility of a mammal can be reconstructed over a period of more than a year with a resolution of a ten of days, by sampling enamel along growth profiles. Our geometric model of hypsodont teeth growth predicts that an optimal distance between two successive profiles is equal to the enamel thickness. However, this model does not apply to the Sr/Ca signal which is likely to be altered during the enamel maturation stage due to differential maturation processes along enamel thickness. Here, the observed constant decreases of the Sr/Ca ratios in the ungulates of Kruger National Park suggests that they did not changed of diet, while some of them were migrating.

  1. Use of 87Sr/86Sr and δ11B to Identify Slag-Affected Sediment in Southern Lake Michigan

    USGS Publications Warehouse

    Bayless, E. Randall; Bullen, Thomas D.; Fitzpatrick, John A.

    2004-01-01

    Slag is a ubiquitous byproduct of the iron-smelting industry and influences geochemistry and water quality in adjacent geologic units, ground and surface water. Despite extensive slag deposition along the Indiana shoreline of Lake Michigan, definitive evidence that slag has affected lakebed sediments has not been established. Concerns for the protection of water and ecosystem resources in the Great Lakes motivated this study to determine if strontium and boron isotopes could be used to identify and delineate slag-affected bed sediment in Lake Michigan. Sixty-five samples of bed sediment were acquired from the southern lobe of Lake Michigan and analyzed for 87Sr/86Sr and ??11B. Samples immediately offshore from Indiana steel mills and slag-disposal sites contained higher median 87Sr/86Sr values (0.70881) than shoreline sediments collected elsewhere in the basin (0.70847) and uniquely decreased with increasing distance from the shoreline. The highest ??11B values occurred in sediments from the Indiana shoreline (+12.9 to 16.4???) but were also elevated in sediments collected offshore from three Lake Michigan cities (+11.7 to 12.7???). Contoured isotope data indicated that 82-154 km2 of bed sediment along the Indiana shoreline had elevated 87Sr/86Sr and ??11B values relative to shoreline sediments elsewhere in southern Lake Michigan.

  2. 87Sr/86Sr in recent accumulations of calcium sulfate on landscapes of hyperarid settings: A bimodal altitudinal dependence for northern Chile (19.5°S-21.5°S)

    NASA Astrophysics Data System (ADS)

    Cosentino, N. J.; Jordan, T. E.; Derry, L. A.; Morgan, J. P.

    2015-12-01

    An elevation-dependent relationship of the 87Sr/86Sr ratio of Holocene surface accumulations of sulfate salts is demonstrated for a continental margin hyperarid setting. In the Atacama Desert of northern Chile, gypsum and anhydrite of multiple origins exist widely on superficial materials that originated during the last 10,000 years. An important source of calcium sulfate is from offshore-generated stratocumulus clouds that are advected onto the continent, where they generate fog that transfers water droplets to the ground surface which, upon evaporation, leaves calcium sulfate crystals. Meteorological measurements of the cloud base and top altitudes average ˜400 m and ˜1100 m above sea level (masl), respectively. The seawater ratio of 87Sr/86Sr (0.70917) is distinctively higher than that reported for weathered mean Andean rock (less than 0.70750). Samples of 28 modern surface salt accumulations for locations between 200 and 2950 masl and between ˜19°30' and ˜21°30'S verify that 87Sr/86Sr varies as a function of site altitude. Sites below 1075 masl and above 225 masl display calcium sulfate 87Sr/86Sr of mean value 0.70807 ± 0.00004, while the ratio outside this altitudinal domain is 0.70746 ± 0.00010. Thus, the 87Sr/86Sr ratio of Holocene salt accumulations differentiates two altitudinal domains.

  3. Magnetic susceptibility and relation to initial 87Sr/86Sr for granitoids of the central Sierra Nevada, California

    USGS Publications Warehouse

    Bateman, P.C.; Dodge, F.C.W.; Kistler, R.W.

    1991-01-01

    Measurement of the magnetic susceptibility of more than 6000 samples of granitic rock from the Mariposa 1?? by 2?? quadrangle, which crosses the central part of the Sierra Nevada batholith between 37?? and 38??N latitude, shows that magnetic susceptibility values are above 10-2 SI units in the east and central parts of the batholith and drop abruptly to less than 10-3 SI units in the western foothills. In a narrow transitional zone, intermediate values (10-3 to 10-2) prevail. Magnetic susceptibility appears to decrease slightly westward within the zones of both high and low values. Magnetic susceptibility in plutonic rocks is chiefly a function of the abundance of magnetite, which depends, in turn, on the total iron content of the rocks and their oxidation ratio. Correlations of magnetic susceptibility with initial 87Sr/86Sr suggest that oxidation ratios have been inherited from the source regions for the magmas from which the rocks crystallized. Reduction of Fe3+ to Fe2+ by organic carbon or other reducing substances may also have affected magnetic susceptibility. -from Authors

  4. The combined use of 87Sr/86Sr and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst

    USGS Publications Warehouse

    Katz, B.G.; Bullen, T.D.

    1996-01-01

    The hydrochemical interaction between groundwater and lakewater influences the composition of water that percolates downward from the surficial aquifer system through the underlying intermediate confining unit and recharges the Upper Floridan aquifer along highlands in Florida. The 87Sr/86Sr ratio along with the stable isotopes, D, 18O, and 13C were used as tracers to study the interaction between groundwater, lakewater, and aquifer minerals near Lake Barco, a seepage lake in the mantled karst terrane of northern Florida. Upgradient from the lake, the 87Sr/86Sr ratio of groundwater decreases with depth (mean values of 0.71004, 0.70890, and 0.70852 for water from the surficial aquifer system, intermediate confining unit, and Upper Floridan aquifer, respectively), resulting from the interaction of dilute oxygenated recharge water with aquifer minerals that are less radiogenic with depth. The concentrations of Sr2+ generally increase with depth, and higher concentrations of Sr2+ in water from the Upper Floridan aquifer (20-35 ??g/L), relative to water from the surficial aquifer system and the intermediate confining unit, result from the dissolution of Sr-bearing calcite and dolomite in the Eocene limestone. Dissolution of calcite [??13C = -1.6 permil (???)] is also indicated by an enriched ??13CDIC (-8.8 to - 11.4???) in water from the Upper Floridan aquifer, relative to the overlying hydrogeologic units (??13CDIC < - 16???). Groundwater downgradient from Lake Barco was enriched in 18O and D relative to groundwater upgradient from the lake, indicating mixing of lakewater leakage and groundwater. Downgradient from the lake, the 87Sr/86Sr ratio of groundwater and aquifer material become less radiogenic and the Sr2+ concentrations generally increase with depth. However, Sr2+ concentrations are substantially less than in upgradient groundwaters at similar depths. The lower Sr2+ concentrations result from the influence of anoxic lakewater leakage on the mobility of Sr2

  5. 87Sr/86Sr and major ion composition of rainwater of Ahmedabad, India: Sources of base cations

    NASA Astrophysics Data System (ADS)

    Chatterjee, Jayati; Singh, Sunil Kumar

    2012-12-01

    Rainwater samples from Ahmedabad, an urban site in India are analysed for their chemical composition and Sr isotopic ratio. Dominance of Ca in the cation budget indicates its importance in the acid neutralization whereas SO4 and NO3 dominate the anion budget. The major ion concentrations measured in this study are on the lower side of the range reported in the previous study (Rastogi and Sarin, 2007) from the same site. Na and Cl show very good correlation with ratio similar to the seawater ratio, implying their marine origin. Na concentration in these samples has been used as a proxy to calculate the non sea salt fraction of other major ions. Non sea salt Ca and Mg vary from 99.0% to 99.6% and 24.6% to 89.1% of the measured Ca and Mg respectively whereas non sea salt component of SO4 and HCO3 contribute 84.3% to 98.9% and 99.1% to 99.9% respectively. Sr concentrations in these rainwaters vary from 32 to 191 nM and 87Sr/86Sr ranges from 0.70878 to 0.71027. Sr concentration shows a very good correlation (coefficient 0.93) with the non-sea salt component of Ca and Mg indicating their continental sources and having similar provenances. Carbonates and basalts seem to contribute significantly to dissolved base cations of the rainwaters. The basalts from Deccan region, which is isotopically indistinguishable from the African basalts and the silicate and carbonates from African region along with the sediments from the Ganga plain (which is originated from the Himalayan lithologies) could be potential dust sources for this particular site. The sources of dissolved base cations deduced from Sr isotope composition of the rainwaters are consistent with wind back trajectory data obtained from NOAA HYSPLIT model.

  6. Strontium isotope (87Sr/86Sr) variability in the Nile Valley: identifying residential mobility during ancient Egyptian and Nubian sociopolitical changes in the New Kingdom and Napatan periods.

    PubMed

    Buzon, Michele R; Simonetti, Antonio

    2013-05-01

    As a successful technique for identifying residential mobility in other areas, this study investigates the feasibility of using 87Sr/86Sr analysis to track the movements of the ancient peoples of Egypt and Nubia in the Nile Valley, who interacted via trade, warfare, and political occupations over millennia. Dental enamel from faunal remains is used to examine variability in strontium sources in seven regional sites; human enamel samples are analyzed from eight Nile Valley sites in order to trace human movements. The faunal samples show a wide range of 87Sr/86Sr values demonstrating that some animals were raised in a variety of locales. The results of the human samples reveal overlap in 87Sr/86Sr values between Egyptian and Nubian sites; however, Egyptian 87Sr/86Sr values (mean/median [0.70777], sd [0.00027]) are statistically higher than the Nubian 87Sr/86Sr values (mean [0.70762], median [0.70757], sd [0.00036], suggesting that it is possible to identify if immigrant Egyptians were present at Nubian sites. Samples examined from the site of Tombos provide important information regarding the sociopolitical activities during the New Kingdom and Napatan periods. Based on a newly established local 87Sr/86Sr range, human values, and bioarchaeological evidence, this study confirms the preliminary idea that immigrants, likely from Egypt, were present during the Egyptian New Kingdom occupation of Nubia. In the subsequent Napatan period when Nubia ruled Egypt as the 25th Dynasty, 87Sr/86Sr values are statistically different from the New Kingdom component and indicate that only locals were present at Tombos during this developmental time.

  7. Calibration of a conodont apatite-based Ordovician 87Sr/86Sr curve to biostratigraphy and geochronology: Implications for stratigraphic resolution

    USGS Publications Warehouse

    Saltzman, M. R.; Edwards, C. T.; Leslie, S. A.; Dwyer, G. S.; Bauer, J. A.; Repetski, John E.; Harris, A. G.; Bergstrom, S. M.

    2014-01-01

    The Ordovician 87Sr/86Sr isotope seawater curve is well established and shows a decreasing trend until the mid-Katian. However, uncertainties in calibration of this curve to biostratigraphy and geochronology have made it difficult to determine how the rates of 87Sr/86Sr decrease may have varied, which has implications for both the stratigraphic resolution possible using Sr isotope stratigraphy and efforts to model the effects of Ordovician geologic events. We measured 87Sr/86Sr in conodont apatite in North American Ordovician sections that are well studied for conodont biostratigraphy, primarily in Nevada, Oklahoma, the Appalachian region, and Ohio Valley. Our results indicate that conodont apatite may provide an accurate medium for Sr isotope stratigraphy and strengthen previous reports that point toward a significant increase in the rate of fall in seawater 87Sr/86Sr during the Middle Ordovician Darriwilian Stage. Our 87Sr/86Sr results suggest that Sr isotope stratigraphy will be most useful as a high-resolution tool for global correlation in the mid-Darriwilian to mid-Sandbian, when the maximum rate of fall in 87Sr/86Sr is estimated at ∼5.0–10.0 × 10–5 per m.y. Variable preservation of conodont elements limits the precision for individual stratigraphic horizons. Replicate conodont analyses from the same sample differ by an average of ∼4.0 × 10–5 (the 2σ standard deviation is 6.2 × 10–5), which in the best case scenario allows for subdivision of Ordovician time intervals characterized by the highest rates of fall in 87Sr/86Sr at a maximum resolution of ∼0.5–1.0 m.y. Links between the increased rate of fall in 87Sr/86Sr beginning in the mid-late Darriwilian (Phragmodus polonicus to Pygodus serra conodont zones) and geologic events continue to be investigated, but the coincidence with a long-term rise in sea level (Sauk-Tippecanoe megasequence boundary) and tectonic events (Taconic orogeny) in North America provides a plausible

  8. Experimental evidence shows no fractionation of strontium isotopes ((87)Sr/(86)Sr) among soil, plants, and herbivores: implications for tracking wildlife and forensic science.

    PubMed

    Flockhart, D T Tyler; Kyser, T Kurt; Chipley, Don; Miller, Nathan G; Norris, D Ryan

    2015-01-01

    Strontium isotopes ((87)Sr/(86)Sr) can be useful biological markers for a wide range of forensic science applications, including wildlife tracking. However, one of the main advantages of using (87)Sr/(86)Sr values, that there is no fractionation from geological bedrock sources through the food web, also happens to be a critical assumption that has never been tested experimentally. We test this assumption by measuring (87)Sr/(86)Sr values across three trophic levels in a controlled greenhouse experiment. Adult monarch butterflies were raised on obligate larval host milkweed plants that were, in turn, grown on seven different soil types collected across Canada. We found no significant differences between (87)Sr/(86)Sr values in leachable Sr from soil minerals, organic soil, milkweed leaves, and monarch butterfly wings. Our results suggest that strontium isoscapes developed from (87)Sr/(86)Sr values in bedrock or soil may serve as a reliable biological marker in forensic science for a range of taxa and across large geographic areas.

  9. Galapagos hot spot--spreading center system. 2. /sup 87/Sr//sup 86/Sr and large ion lithophile element variations (85 /sup 0/W--101 /sup 0/W)

    SciTech Connect

    Verma, S.P.; Schilling, J.

    1982-12-10

    Thirty eight samples of basalts dredged from the Galapagos spreading center (GSC) between 85 /sup 0/W and 101.5 /sup 0/W longitudes have been analyzed for K, Rb, Cs, Ba, and Sr contents as well as for /sup 87/Sr//sup 86/Sr ratios. Basalts between 85 /sup 0/W and 89 /sup 0/W segment of the GSC range from 0.7025 to 0.7028 in /sup 87/Sr//sup 86/Sr and those between 95.5 zW and 101.5 /sup 0/W range from 0.7026 to 0.7027. These basalts are characterized by LREE-depleted patterns. Basalts from 89 /sup 0/W to 95.5 /sup 0/W segment having slightly LREE-depleted to LREE-enriched patterns ((La/Sm)/sub E.F./ between 0.8 and 2.4) range from 0.7027 to 0.7031 in /sup 87/Sr//sup 86/Sr. The longitudinal /sup 87/Sr//sup 86/Sr variation shows a maximum at about 92 /sup 0/W, where the GSC is nearest to Darwin Island. The alkali and alkaline earth elements as well as several element ratios also show maxima in their longitudinal profiles, but these occur at about 91 /sup 0/W. The apparent shift of /sup 87/Sr//sup 86/Sr maximum with respect to that of the trace elements may be related to differences in the degree of partial melting. The highest /sup 87/Sr//sup 86/Sr from the GSC is only slightly lower than the highest /sup 87/Sr//sup 86/Sr for tholeiitic basalts from the Galapagos Archipel-ago. Several possible hypotheses have been examined to account for these geochemical and Sr iso-topic variations. In the light of the presently available data, the most promising explanation seems to be a binary mixing of hot spot (or plumetype) material with the source of 'normal' mid-ocean ridge basalts and resulting rift propagation. Both end-members seem to be heterogeneous, and therefore it is at present difficult to put severe constraints on this binary mixing. Nevertheless, the flow pattern of mantle material from the hot spot does not appear to be radial but is preferentially channeled along the 91 /sup 0/W and 92.5 /sup 0/W fracture zones toward the rift.

  10. Sr and 87Sr/ 86Sr in the Yamuna River System in the Himalaya: sources, fluxes, and controls on sr isotope composition

    NASA Astrophysics Data System (ADS)

    Dalai, Tarun K.; Krishnaswami, S.; Kumar, Anil

    2003-08-01

    Sr and 87Sr/ 86Sr have been measured in the Yamuna river headwaters and many of its tributaries (YRS) in the Himalaya. These results, with those available for major ions in YRS rivers and in various lithologies of their basin, have been used to determine their contributions to riverine Sr and its isotopic budget. Sr in the YRS ranges from 120 to 13,400 nM, and 87Sr/ 86Sr from 0.7142 to 0.7932. Streams in the upper reaches, draining predominantly silicates, have low Sr and high 87Sr/ 86Sr whereas those draining the lower reaches exhibit the opposite resulting from differences in drainage lithology. 87Sr/ 86Sr shows significant co-variation with SiO 2/TDS and (Na * + K)/TZ + (indices of silicate weathering) in YRS waters, suggesting the dominant role of silicate weathering in contributing to high radiogenic Sr. This is also consistent with the observation that streams draining largely silicate terrains have the highest 87Sr/ 86Sr, analogous to that reported for the Ganga headwaters. Evaluation of the significance of other sources such as calc-silicates and trace calcites in regulating Sr budget of these rivers and their high 87Sr/ 86Sr needs detailed work on their Sr and 87Sr/ 86Sr. Preliminary calculations, however, indicate that they can be a significant source to some of the rivers. It is estimated that on an average, ˜25% of Sr in the YRS is derived from silicate weathering. In the lower reaches, the streams receive ˜15% of their Sr from carbonate weathering whereas in the upper reaches, calc-silicates can contribute significantly (˜50%) to the Sr budget of rivers. These calculations reveal the need for additional sources for rivers in the lower reaches to balance their Sr budget. Evaporites and phosphorites are potential candidates as judged from their occurrence in the drainage basin. In general, Precambrian carbonates, evaporites, and phosphorites "dilute" the high 87Sr/ 86Sr supplied by silicates, thus making Sr isotope distribution in YRS an overall two

  11. Authentication potential of 87Sr/86Sr in water - reference of signatures in natural mineral water to regional geology in Europe

    NASA Astrophysics Data System (ADS)

    Lorenz, G. D.; Voerkelius, S.

    2009-04-01

    The study presents the investigation of strontium isotope ratios of about 650 different European natural mineral waters as part of the food traceability project "TRACE" funded by the EU. The 87Sr/86Sr analysis is part of a multi-element approach for authen-ticity which also includes 18O, 2H, 3H, main and trace elements as well as 34S. The analysed 87Sr/86Sr cover a wide range of values from 0.7035 to 0.7777 indicating that the natural mineral water samples cover the span from young mantle derived basal-tic rocks to very old silicic continental crust. The results of the large-scale investigation are used to elaborate a novel spatial predic-tion for strontium isotope ratios by combining the measured data with a GIS based geo-logical map of Europe. The resulting map can be used to predict the strontium isotopic composition of ground-water and as such the composition of bioavailable strontium, which can be taken up by plants and further transferred into the food chain. In this study we show, as an example, that the strontium isotopic composition of honey and wheat from specific sample region within the TRACE project correlates well with that of the natural mineral water as pre-dicted by our map. The proof of principle shown is highly relevant for geographical food authentication as it will allow an assessment of the origin of food products without the immediate need for geographically authenticated materials which may not always be available in the first instance. As such, our approach provides a cost effective first instance screening tool. There is an increasing demand for independent analytical methods which can control the geographical origin. The EU project TRACE was started with the aim to develop a gen-eral understanding of the relation between the geo-bio-climatic environment and the isotope and elemental signature in food commodities. As one part of the study detailed isotope maps (e.g. 18O, 87Sr/86Sr) for groundwater will be generated by the isotope re

  12. Constraining water balance in the Bonneville Basin during the last glacial period and deglaciation using 87Sr/86Sr and δ18O of lacustrine carbonates

    NASA Astrophysics Data System (ADS)

    Steponaitis, E.; McGee, D.; Quade, J.; Edwards, R.; Broecker, W. S.; Cheng, H.; Reiners, P. W.; Evenson, N. S.

    2012-12-01

    Geochemical records from closed basin lakes provide important constraints on past changes in regional precipitation - evaporation (P-E). This study refines our understanding of paleohydrology in the Bonneville Basin and explores the Basin's response to past abrupt changes, including Heinrich Event 2. We present Sr and O isotope records from lacustrine carbonates deposited in caves and other protected spaces during periods of higher lake levels (McGee et al., 2012). These records, anchored by precise U/Th and 14C dating, offer new insights into changes in lake level and water balance during the last glacial period and deglaciation. The Sr isotope composition of lake water is determined by the relative contributions of the two major fluvial inputs to the lake, the Bear River in the north and the Sevier River in the south, which have distinct 87Sr/86Sr ratios (Hart et al. 2004). Sr ratios of lake water, as recorded in lacustrine carbonates from different locations and elevations in the basin, offer insight into both lake mixing and changes in the position of the winter storm track, the primary source of precipitation to the Great Basin. High-resolution δ18O data from the carbonates trace changes in basin P-E and water column mixing. Trace element concentrations in the carbonates, especially those of Mg, Rb and Ba, are used to test interpretations of Sr and O isotope changes. Hart, W.S. et al., The 87Sr/86Sr ratios of lacustrine carbonates and lake-level history of the Bonneville paleolake system. GSA Bulletin 2004; 116: 1107-1119. McGee, D., et al. Lacustrine cave carbonates: Novel archives of paleohydrologic change in the Bonneville Basin (Utah, USA). EPSL 2012; In press.

  13. Constraining Open-System Processes in the Generation of Basaltic Magma Using 87Sr/86Sr of Individual Minerals and Melt Inclusions, Pisgah Crater, Ca

    NASA Astrophysics Data System (ADS)

    Ramos, F. C.; Wolff, J. A.

    2002-12-01

    Basaltic magmas have been extensively used to infer the geochemical nature of mantle sources. Studies which make such inferences typically focus on basalts that are characterized by assumed primary magma characteristics such as high MgO contents. Such characteristics are typically used as justification to discount or suggest only a minimal influence of open-system modifications, such as those resulting from crustal assimilation. Often, very little effort is made to more thoroughly eliminate this possibility because it is very difficult to identify and constrain such effects especially if the assimilated crust is mafic in character. Alkali basalts and hawaiities erupted at Pisgah Crater in the Mojave Desert of California result from open-system processes yet still retain high MgO (6-8%) contents. The specific processes responsible for extensive trace element and isotopic variations in these basalts, however, are in dispute. Glazner et al. (1991) suggest that Pisgah Crater trace element and isotopic variations originate from assimilation of mafic crust while Reiners (2002) suggests that such variations result from mixing of mantle-derived garnet peridotite and garnet pyroxenite magmas. Large 87Sr/86Sr variations among and within individual plagioclase, clinopyroxene, amphibole, groundmass, and melt inclusions in olivine attest to the effects of open-system processes and indicate a complex mixing process (i.e., not two-component mixing) that occurred up to the time of eruption (Ramos et al, in prep). 87Sr/86Sr of minerals indicate that early and intermediate erupted lavas retain relatively uncontaminated signatures while the latest erupted lavas reflect much higher 87Sr/86Sr, consistent with contamination at crustal pressures (i.e., within the plagioclase stability field). Major element compositions of melt inclusions hosted in olivine confirm the presence of highly evolved magmas (e.g., MgO: 0.5 to 3%, SiO2: 52-57%) in later erupted lavas. Whole grain olivine

  14. Permian Minimum and the Following Major Rise in Seawater 87Sr/86Sr Linked to the Glaciation/Deglaciation and Resultant Change in Weathering Rate

    NASA Astrophysics Data System (ADS)

    Kani, T.; Isozaki, Y.

    2014-12-01

    We report a detailed secular change of the middle Middle to early Late Permian seawater 87Sr/86Sr ratio for and Akasaka and Kamura carbonates (Japan) deposited on mid-Pansalassan seamounts and for Shizipo carbonates (South China) deposited on the shallow marine shelf. In these coeval sections, extremely low values (<0.7069; the lowest values of the Phanerozoic) continued from upper Wordian (middle Middle Permian) to the topmost Capitanian (upper Middle Permian) barren interval immediately below the Middle-Late Permian boundary characterized by the major crisis of large-tested fusulines and rugose corals. Immediately after ca. 5 m.y.-long minimum interval, the major rise in 87Sr/86Sr was started and the rate of the rise (0.00007/m.y.) continued in period of time containing 21 m.y. until early Triassic (~239 Ma), that is faster than the Cenozoic major rise (0.00003/m.y.). The most significant shift through Phanerozoic in Sr isotope trend can be explained by the remarkable changes in continental erosion/weathering rate; in particular, by the onset of glaciation and the following deglaciation, that is supported by global sea level change, in addition to the initial doming/rifting of Pangea. After the Capitanian cooling, the long-term climatic regime shifted to a warmer one during which inland ice sheet was removed to expose old crustal silicates for to erosion/weathering. A mantle plume impingiment might lead a domal uplift that accelerate weathering. Highly radiogenic continental Sr could enter the ocean along the new drainage systems developed with the rifting.

  15. Environmental isotopes (18O, 2H, and 87Sr/86Sr) as a tool in groundwater investigations in the Keta Basin, Ghana

    NASA Astrophysics Data System (ADS)

    Jørgensen, Niels; Banoeng-Yakubo, Bruce

    2001-03-01

    Analyses of environmental isotopes (18O, 2H, and 87Sr/86Sr) are applied to groundwater studies with emphasis on saline groundwater in aquifers in the Keta Basin, Ghana. The 87Sr/86Sr ratios of groundwater and surface water of the Keta Basin primarily reflect the geology and the mineralogical composition of the formations in the catchments and recharge areas. The isotopic compositions of 18O and 2H of deep groundwater have small variations and plot close to the global meteoric water line. Shallow groundwater and surface water have considerably larger variations in isotopic compositions, which reflect evaporation and preservation of seasonal fluctuations. A significant excess of chloride in shallow groundwater in comparison to the calculated evaporation loss is the result of a combination of evaporation and marine sources. Groundwaters from deep wells and dug wells in near-coastal aquifers are characterized by relatively high chloride contents, and the significance of marine influence is evidenced by well-defined mixing lines for strontium isotopes, and hydrogen and oxygen stable isotopes, with isotopic compositions of seawater as one end member. The results derived from environmental isotopes in this study demonstrate that a multi-isotope approach is a useful tool to identify the origin and sources of saline groundwater. Résumé. L'analyse des isotopes du milieu (18O, 2H, et 87Sr/86Sr) a été mise en œuvre pour des études hydrogéologiques portant sur des eaux souterraines salées des aquifères du bassin de Keta (Ghana). Les rapports isotopiques 87Sr/86Sr de l'eau souterraine et de l'eau de surface du bassin de Keta reflètent principalement la géologie et la composition minéralogique des formations des bassins d'alimentation et des zones de recharge. Les compositions isotopiques en 18O et en 2H des eaux souterraines profondes présentent de faibles variations et se placent près de la droite des eaux météoriques mondiales. Les eaux des nappes peu profondes

  16. Investigating human geographic origins using dual-isotope (87Sr/86Sr, δ18O) assignment approaches

    PubMed Central

    Sonnemann, Till F.; Shafie, Termeh; Hofman, Corinne L.; Brandes, Ulrik; Davies, Gareth R.

    2017-01-01

    Substantial progress in the application of multiple isotope analyses has greatly improved the ability to identify nonlocal individuals amongst archaeological populations over the past decades. More recently the development of large scale models of spatial isotopic variation (isoscapes) has contributed to improved geographic assignments of human and animal origins. Persistent challenges remain, however, in the accurate identification of individual geographic origins from skeletal isotope data in studies of human (and animal) migration and provenance. In an attempt to develop and test more standardized and quantitative approaches to geographic assignment of individual origins using isotopic data two methods, combining 87Sr/86Sr and δ18O isoscapes, are examined for the Circum-Caribbean region: 1) an Interval approach using a defined range of fixed isotopic variation per location; and 2) a Likelihood assignment approach using univariate and bivariate probability density functions. These two methods are tested with enamel isotope data from a modern sample of known origin from Caracas, Venezuela and further explored with two archaeological samples of unknown origin recovered from Cuba and Trinidad. The results emphasize both the potential and limitation of the different approaches. Validation tests on the known origin sample exclude most areas of the Circum-Caribbean region and correctly highlight Caracas as a possible place of origin with both approaches. The positive validation results clearly demonstrate the overall efficacy of a dual-isotope approach to geoprovenance. The accuracy and precision of geographic assignments may be further improved by better understanding of the relationships between environmental and biological isotope variation; continued development and refinement of relevant isoscapes; and the eventual incorporation of a broader array of isotope proxy data. PMID:28222163

  17. Assessing response of local moisture conditions in central Brazil to variability in regional monsoon intensity using speleothem 87Sr/86Sr values

    NASA Astrophysics Data System (ADS)

    Wortham, Barbara E.; Wong, Corinne I.; Silva, Lucas C. R.; McGee, David; Montañez, Isabel P.; Troy Rasbury, E.; Cooper, Kari M.; Sharp, Warren D.; Glessner, Justin J. G.; Santos, Roberto V.

    2017-04-01

    Delineating the controls on hydroclimate throughout Brazil is essential to assessing potential impact of global climate change on water resources and biogeography. An increasing number of monsoon reconstructions from δ18O records provide insight into variations in regional monsoon intensity over the last millennium. The strength, however, of δ18O as a proxy of regional climate limits its ability to reflect local conditions, highlighting the need for comparable reconstructions of local moisture conditions. Here, speleothem 87Sr/86Sr values are developed as a paleo-moisture proxy in central Brazil to complement existing δ18O-based reconstructions of regional monsoon intensity. Speleothem 87Sr/86Sr values are resolved using laser ablation and conventional solution mass spectrometry at high resolution relative to existing (non-δ18O-based) paleo-moisture reconstructions to allow comparisons of centennial variability in paleo-monsoon intensity and paleo-moisture conditions. Variations in speleothem 87Sr/86Sr values from Tamboril Cave are interpreted to reflect varying extents of water interaction with the carbonate host rock, with more interaction resulting in greater evolution of water isotope values from those initially acquired from the soil to those of the carbonate bedrock. Increasing speleothem 87Sr/86Sr values over the last millennium suggest progressively less interaction with the carbonate host rock likely resulting from higher infiltration rates, expected under wetter conditions. Increasingly wetter conditions over the last millennium are consistent with an overall trend of increasing monsoon intensity (decreasing δ18O values) preserved in many existing δ18O records from the region. Such a trend, however, is absent in δ18O records from our site (central Brazil) and Cristal Cave (southeast Brazil), suggesting the existence of divergent (relevant to δ18Oprecip) shifts in the climate patterns within and outside the core monsoon region.

  18. Geochemistry of Cambro-Ordovician Arbuckle limestone, Oklahoma: Implications for diagenetic. delta. sup 18 O alteration and secular. delta. sup 13 C and sup 87 Sr/ sup 86 Sr variation

    SciTech Connect

    Gao, Guoqiu; Land, L.S. )

    1991-10-01

    Isotopic analyses of 227 limestone samples from the Cambro-Ordovician Arbuckle Group, Oklahoma, document slow secular changes in the chemistry of the limestones. From late Cambrian to early Ordovician, the {delta}{sup 18}O values of the limestones increase from {minus}10{per thousand} to {minus}7{per thousand} (PDB); {delta}{sup 13}C values decrease from 0{per thousand} to {minus}2{per thousand} (PDB); and {sup 87}Sr/{sup 86}Sr ratios decrease from 0.7091 to 0.7088. The light {delta}{sup 18}O values suggest that all Arbuckle limestones underwent diagenetic alteration, probably caused by meteoric water recharged during the development of the overlying, pre-middle Ordovician unconformity. The gradual {delta}{sup 18}O increase from late Cambrian to early Ordovician reflects reduced {sup 18}O depletion with decreasing burial temperature during alteration, although the presence of additional primary secular {delta}{sup 18}O variation cannot be ruled out. The {delta}{sup 13}C and {sup 87}Sr/{sup 86}Sr variations, in accord with {delta}{sup 13}C and {sup 87}Sr/{sup 86}Sr variations in the literature, represent primary secular variations. The variations indicate that the {delta}{sup 13}C value and {sup 87}Sr/{sup 86}Sr ratio of early Paleozoic surface seawater decreased from late Cambrian to early Ordovician. The {delta}{sup 13}C variation during this time period seems to correlate with sea-level variation. Specifically, during sea-level fall, an increase in the rate of oxidation of organic matter caused {sup 13}C depletion of inorganic bicarbonate in seawater. As a result, early Ordovician carbonates, probably deposited during the regression stage of the latest Precambrian to latest early Ordovician cycle, became {sup 13}C depleted, relative to late Cambrian carbonates. The decrease of seawater {sup 87}Sr/{sup 86}Sr ratio from late Cambrian to early Ordovician may have resulted from decreased riverine Sr input caused by decreased rate of continental weathering.

  19. Reconstructing conditions during dolomite formation on a Carnian coastal sabkha/alluvial plain using 87Sr/86Sr isotopes - Travenanzes Formation, northern Italy

    NASA Astrophysics Data System (ADS)

    Rieder, Maximilian; Wegner, Wencke; Horschinegg, Monika; Preto, Nereo; Breda, Anna; Klötzli, Urs; Peckmann, Jörn; Meister, Patrick

    2016-04-01

    The study of large amounts of dolomite that formed in the Triassic Tethyan realm is hampered by late diagenetic or hydrothermal overprint. These dolomites are difficult to link to past environmental and early diagenetic conditions, and their correlation to models for dolomite formation in modern environments is problematic. Preto et al. (2015) suggested, based on evidence from nano-scale structure analysis by transmission electron microscopy and petrographic observations, that dolomites in the Carnian Travenanzes Formation of the Southern Alps (Dolomites area) represent a preserved primary phase. The Travenanzes Formation was deposited in an extended alluvial plain or coastal sabkha environment subject to a semi-arid climate. Beds and nodules of nearly stoichiometric dolomite are embedded in large amounts of clay, which shielded early formed dolomite from diagenetic fluids. This finding of penecontemporaneous dolomite provides an ideal model case for reconstructing past environmental conditions at the time of dolomite precipitation. While Preto et al. (2015) argued that dolomite formation was mediated by extracellular polymeric substances produced by sulphate-reducing bacteria, it remains unclear whether precipitation occurred from evaporating seawater or mainly from brine derived from evaporating continental groundwater. Both cases exist in modern environments of dolomite formation. In the coastal sabkhas of Abu Dhabi and Qatar, dolomite precipitates from concentrated brine derived from seawater, either through seepage and reflux or through evaporative pumping (the sabkha model). In the coastal ephemeral lakes of the Coorong Lagoon system (South Australia) dolomite precipitation occurs from evaporating groundwater. The goal of this study is to distinguish marine from continental influence during formation of Carnian dolomite using 87Sr/86Sr isotope ratios. Sr isotopes could reveal different origins of ionic solutions for dolomite precipitation, which is not

  20. Comparison of laser-ablation and solution-mode ICP-MS techniques for measuring speleothem 87Sr/86Sr values

    NASA Astrophysics Data System (ADS)

    Wortham, B. E.; Wong, C. I.; Montanez, I. P.; Silva, L. C. R.; Rasbury, T.; Glessner, J. J.

    2015-12-01

    Reconstructing past changes in precipitation amount is critical to delineating controls on paleovegetation dynamics in South America. Although speleothem, lake, and ice core δ18O records from the region serve as a proxy of monsoon intensity, δ18O values do not serve as a direct proxy of local precipitation amount. To address this, we are developing a reconstruction of past moisture conditions using 87Sr/86Sr values measured in a fast growing speleothem (~2 mm/yr) from the central Brazilian savanna for which a late Holocene (0-1.8 ka) δ18O record has previously been developed. Speleothem 87Sr/86Sr values reflect the degree of water-rock interaction, as dictated by water residence time, and are used to interpret relative moisture conditions. In this study, we explore the potential of developing a high-resolution speleothem 87Sr/86Sr record using laser-ablation multi-collector ICP-MS by comparing analyses generated using both laser- and solution-mode techniques. Laser-mode techniques allow for sampling of individual speleothem lamina, which provides a higher resolution record than solution-mode techniques and eliminates the potential of contamination from conventional drilling. Preliminary results from a younger portion of the speleothem yield a laser-mode (averaged) value of 0.72294 ± 0.00046 (reproduced with parallel scans) and a solution mode value of 0.72338 ± 0.00002 suggesting that these methods provide analogous 87Sr/86Sr values. However, the preliminary results on an older portion of this speleothem have solution- mode derived values of 0.72239 ± 0.00001 and 0.72166 ± 0.00001, with corresponding laser-mode values of 0.72188 ± 0.00029 and 0.72102 ± 0.00037, respectively. Suggesting that in the older portion of the speleothem, laser-mode techniques do not yield analogous solution-mode 87Sr/86Sr values. These differences in different areas of the speleothem highlight the need for method development and further testing.

  1. The Strontium Fingerprint and Footprint: Using 87Sr/86Sr to Find the Sources and Range of Architectural Timber Acquisition of Great House Construction at Chaco Canyon, New Mexico

    NASA Astrophysics Data System (ADS)

    English, N. B.; Reynolds, A. C.; Quade, J.; Betancourt, J. L.

    2006-12-01

    We describe the spatial and temporal patterns of timber acquisition by great house builders in Chaco Canyon, New Mexico. The 87Sr/86Sr ratios from annually-dated, architectural logs in 10^{th} to 12^{th} century structures are compared to the 87Sr/86Sr of modern tree stands from the surrounding mountains. Although not a stable isotope system, the long half-life of the 87Sr parent (87Rb, t1/2 = 48.8 Ga) yields a stable isotope system on the timescales used to determine the geographic origin of ecosystem resources. The small mass difference among strontium's isotopes eliminates measurable biologic or kinetic fractionation at earth surface conditions. Strontium tracer studies, however, do require distinct end-member ratios to be feasible. Strontium isotopes, alone or in combination with other isotopes, provide a simple way to study and trace the geographic origin of ecosystem resources. Over the 150 km-wide Chaco Basin, 87Sr/86Sr ratios of modern trees range from 0.7055 to 0.7192. 87Sr/86Sr ratios from this and other studies show that during great house construction Chaco Canyon was provisioned with plant materials that came from more than 75 km away in all directions. This includes (1) corn (Zea mays) grown on the eastern flanks of the Chuska Mountains and floodplain of the San Juan River to the west and north, (2) spruce (Picea sp.) and fir (Abies sp.) architectural beams from the high crests of the Chuska and San Mateo Mountains to the west and south, and (3) ponderosa pine (Pinus ponderosa) from the low slopes of the La Platas and San Juan Mountains to the north, the San Pedro Mountains to the east, the Chuska and San Mateo Mountains and nearby mesas. There are no systematic patterns in spruce/fir or ponderosa provenance by great house (Pueblo Bonito, Chetro Ketl, Pueblo del Arroyo) or by time, suggesting the use of stockpiles from a few preferred sources from the beginning of large scale construction in or around Chaco Canyon. This is contrary to the view that

  2. 87Sr/86Sr as a quantitative geochemical proxy for 14C reservoir age in dynamic, brackish waters: assessing applicability and quantifying uncertainties.

    NASA Astrophysics Data System (ADS)

    Lougheed, Bryan; van der Lubbe, Jeroen; Davies, Gareth

    2016-04-01

    Accurate geochronologies are crucial for reconstructing the sensitivity of brackish and estuarine environments to rapidly changing past external impacts. A common geochronological method used for such studies is radiocarbon (14C) dating, but its application in brackish environments is severely limited by an inability to quantify spatiotemporal variations in 14C reservoir age, or R(t), due to dynamic interplay between river runoff and marine water. Additionally, old carbon effects and species-specific behavioural processes also influence 14C ages. Using the world's largest brackish water body (the estuarine Baltic Sea) as a test-bed, combined with a comprehensive approach that objectively excludes both old carbon and species-specific effects, we demonstrate that it is possible to use 87Sr/86Sr ratios to quantify R(t) in ubiquitous mollusc shell material, leading to almost one order of magnitude increase in Baltic Sea 14C geochronological precision over the current state-of-the-art. We propose that this novel proxy method can be developed for other brackish water bodies worldwide, thereby improving geochronological control in these climate sensitive, near-coastal environments.

  3. 87Sr/86Sr as a quantitative geochemical proxy for 14C reservoir age in dynamic, brackish waters: Assessing applicability and quantifying uncertainties

    NASA Astrophysics Data System (ADS)

    Lougheed, Bryan C.; Lubbe, H. J. L.; Davies, Gareth R.

    2016-01-01

    Accurate geochronologies are crucial for reconstructing the sensitivity of brackish and estuarine environments to dynamic external impacts of the past. Radiocarbon (14C) dating is commonly used for palaeoclimate studies, but its application in brackish environments is severely limited by an inability to quantify spatiotemporal variations in 14C reservoir age, or R(t), due to dynamic interplay between river runoff and marine water. Additionally, old carbon effects and species-specific behavioral processes also influence 14C ages. Using the world's largest brackish water body (the estuarine Baltic Sea) as a test bed, combined with a comprehensive approach that objectively excludes both old carbon (using GIS) and species-specific 14C effects, we demonstrate the use of 87Sr/86Sr ratios for quantifying R(t) in ubiquitous mollusc shell material, leading to almost an order of magnitude increase in Baltic Sea 14C geochronological precision over the current state of the art. We propose that similar proxy methods can be developed for other brackish water bodies worldwide.

  4. Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA

    USGS Publications Warehouse

    Bullen, T.D.; Krabbenhoft, D.P.; Kendall, C.

    1996-01-01

    Substantial flowpath-related variability of 87Sr/86Sr is observed in groundwaters collected from the Trout Lake watershed of northern Wisconsin. In the extensive shallow aquifer composed of sandy glacial outwash, groundwater is recharged either by seepage from lakes or by precipitation that infiltrates the inter-lake uplands. 87Sr/86Sr of groundwater derived mainly as seepage from a precipitation-dominated lake near the head of the watershed decreases with progressive water chemical evolution along its flowpath due primarily to enhanced dissolution of relatively unradiogenic plagioclase. In contrast, 87Sr/86Sr of groundwater derived mainly from precipitation that infiltrates upland areas is substantially greater than that of precipitation collected from the watershed, due to suppression of plagioclase dissolution together with preferential leaching of Sr from radiogenic phases such as K-feldspar and biotite. The results of a column experiment that simulated the effects of changing residence time of water in the aquifer sand indicate that mobile waters obtain relatively unradiogenic Sr, whereas stagnant waters obtain relatively radiogenic Sr. Nearly the entire range of strontium-isotope composition observed in groundwaters from the watershed was measured in the experimental product waters. The constant mobility of water along groundwater recharge flowpaths emanating from the lakes promotes the dissolution of relatively unradiogenic plagioclase, perhaps due to effective dispersal of clay mineral nuclei resulting from dissolution reactions. In contrast, episodic stagnation in the unsaturated zone along the upland recharge flowpaths suppresses plagioclase dissolution, perhaps due to accumulation of clay mineral nuclei on its reactive surfaces. Differences in redox conditions along these contrasting flowpaths probably enhance the observed differences in strontium isotope behavior. This study demonstrates that factors other than the calculated state of mineral saturation

  5. 87Sr/86Sr in spinel peridotites from Borée, Massif Central, France: melt depletion and metasomatism in the sub-continental lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Barnett, Caroline; Harvey, Jason

    2016-04-01

    Radiogenic isotopes and elemental concentrations in peridotite xenoliths may be used to model the timing and degree of partial melting in the upper mantle, but this primary melt depletion signature may be overwritten by subsequent episodes of melt or fluid infiltration. Spinel peridotites from the Maar de Borée, Massif Central, France have mainly poikilitic protogranular textures and clear petrographic evidence of a melt phase apparently unrelated to host basalt infiltration. Bulk rock major and compatible trace element concentrations are consistent with varying degrees of partial melting but incompatible trace element concentrations indicate cryptic metasomatism in some samples. Lithophile trace element mass balance cannot always be reconciled by the inclusion of the chemically characterized melt phase and suggest a contribution from a trace abundance grain boundary phase1. 87Sr/86Sr values for unleached bulk rocks and clinopyroxene mineral separates are higher than those for their leached equivalents, consistent with the removal of a radiogenic grain boundary phase. While unleached bulk rock 87Sr/86Sr is sometimes indistinguishable (within error) from its constituent unleached clinopyroxene, in two samples they show distinct patterns, as do the REE trends in these two xenoliths. BO01-01 bulk-rock is LREE-enriched (La/YbN = 3.6)2, and constituent clinopyroxene shows a similar relative enrichment trend. Bulk-rock 87Sr/86Sr is 0.70342±1 while that of clinopyroxene is lower at 0.70332±2. Clinopyroxene modal abundance is 11%. BO01-03 bulk-rock is only slightly LREE-enriched (La/YbN = 1.2) and both bulk-rock and clinopyroxene show a generally flatter profile. Bulk-rock 87Sr/86Sr is 0.70285±1 while that of clinopyroxene is in this case higher at 0.70296±2. Clinopyroxene modal abundance is also higher at 15%, consistent with a greater contribution by clinopyroxene to the bulk-rock Sr-isotope budget. The results appear to be inconsistent with a simple model of single

  6. Isotopic evidence ( 87Sr/ 86Sr, δ 7Li) for alteration of the oceanic crust at deep-rooted mud volcanoes in the Gulf of Cadiz, NE Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Scholz, Florian; Hensen, Christian; Reitz, Anja; Romer, Rolf L.; Liebetrau, Volker; Meixner, Anette; Weise, Stephan M.; Haeckel, Matthias

    2009-09-01

    The chemical and isotopic composition of pore fluids is presented for five deep-rooted mud volcanoes aligned on a transect across the Gulf of Cadiz continental margin at water depths between 350 and 3860 m. Generally decreasing interstitial Li concentrations and 87Sr/ 86Sr ratios with increasing distance from shore are attributed to systematically changing fluid sources across the continental margin. Although highest Li concentrations at the near-shore mud volcanoes coincide with high salinities derived from dissolution of halite and late-stage evaporites, clayey, terrigenous sediments are identified as the ultimate Li source to all pore fluids investigated. Light δ 7Li values, partly close to those of hydrothermal vent fluids (δ 7Li: +11.9‰), indicate that Li has been mobilized during high-temperature fluid/sediment or fluid/rock interactions in the deep sub-surface. Intense leaching of terrigenous clay has led to radiogenic 87Sr/ 86Sr ratios (˜0.7106) in pore fluids of the near-shore mud volcanoes. In contrast, non-radiogenic 87Sr/ 86Sr ratios (˜0.7075) at the distal locations are attributed to admixing of a basement-derived fluid component, carrying an isotopic signature from interaction with the basaltic crust. This inference is substantiated by temperature constraints from Li isotope equilibrium calculations suggesting exchange processes at particularly high temperatures (>200 °C) for the least radiogenic pore fluids of the most distal location. Advective pore fluids in the off-shore reaches of the Gulf of Cadiz are influenced by successive exchange processes with both oceanic crust and terrigenous, fine-grained sediments, resulting in a chemical and isotopic signature similar to that of fluids in near-shore ridge flank hydrothermal systems. This suggests that deep-rooted mud volcanoes in the Gulf of Cadiz represent a fluid pathway intermediate between mid-ocean ridge hydrothermal vent and shallow, marginal cold seep. Due to the thicker sediment

  7. Ge/Si, Ca/Sr and 87Sr/86Sr tracers of biogeochemical sources and cycling of Si and Ca at the Shale Hills CZO

    NASA Astrophysics Data System (ADS)

    Derry, L. A.; Meek, K.; Sparks, J. P.

    2014-12-01

    Plant uptake and cycling of nutrients is commonly the largest flux of nutrients in terrestrial ecosystems. Hydrologic and other losses are offset by inputs from atmospheric deposition and weathering. We measured elemental and isotopic compositions from soil solution, soil exchange complex, leaves and sapwater from two canopy species, soil and rock samples, and stream and ground waters at the Shale Hills CZO. Xylem fluid and leaf samples have similar Ge/Si < 1 μmo/mol, consistent with fractionation at the root-soil water interface. Ge/Si in soil waters is higher Ge/Si near the surface and increases over the growing season, indicating preferential uptake of Si. Ca/Sr in leaves of Quercus are significantly higher (450±150) than for Acer (200±100), and Ca/Sr is generally higher in leaves than in xylem, consistent with Ca uptake during transpiration. 87Sr/86Sr in both are similar for a given site, implying that the trees access similar pools of Sr and Ca, although there are site-to-site differences. Data on litterfall rates and transpiration rates yield similar estimates of plant cycling of Ca and Si. 87Sr/86Sr in soil solutions from ridgtop and swale sites are well explained by mixing Sr derived from shale and atmospheric deposition. Valley bottom soil solutions and stream and groundwater samples include Sr and Ca derived from dissolution of diagenetic carbonates, found in drill cuttings. A preliminary estimate of the Sr and Ca stream fluxes and isotopic mass balances imply propagation of a carbonate weathering front of ca. 200 m/Ma, faster than previously reported regolith weathering advance rates based on on cosmogenic nuclides and U series (Jin et al., 2010; Ma et al., 2010). These rates are not strictly comparable and differences are at least in part consistent with the greater depth of the carbonate weathering front (Brantley et al, 2013). The data for Ca, Sr, Si and Ge in soil, soil solutions and stream waters reflects the interaction of slower weathering

  8. The Late Devonian Frasnian-Famennian (F/F) biotic crisis: Insights from δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics

    NASA Astrophysics Data System (ADS)

    Chen, Daizhao; Qing, Hairuo; Li, Renwei

    2005-06-01

    A severe biotic crisis occurred during the Late Devonian Frasnian-Famennian (F/F) transition (± 367 Myr). Here we present δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics, from identical samples of two sections across F/F boundary in South China, which directly demonstrate large and frequent climatic fluctuations (˜200 kyr) from warming to cooling during the F/F transition. These climate fluctuations are interpreted to have been induced initially by increased volcanic outgassing, and subsequent enhanced chemical weathering linked to the rapid expansion of vascular plants on land, which would have increased riverine delivery to oceans and primary bioproductivity, and subsequent burial of organic matter, thereby resulting in climate cooling. Such large and frequent climatic fluctuations, together with volcanic-induced increases in nutrient (e.g., biolimiting Fe), toxin (sulfide) and anoxic water supply, and subsequent enhanced riverine fluxes and microbial bloom, were likely responsible for the stepwise faunal demise of F/F biotic crisis.

  9. RESEARCH NOTE: Slow-ridge/hotspot interactions from global gravity, seismic tomography and 87Sr/86Sr isotope data

    NASA Astrophysics Data System (ADS)

    Goslin, Jean; Thirot, Jean-Louis; Noël, Olivier; Francheteau, Jean

    1998-11-01

    Among the mantle hotspots present under oceanic areas, a large number are located on-or close to-active oceanic ridges. This is especially true in the slow-spreading Atlantic and Indian oceans. The recent availability of worldwide gravity grids and the increasing coverage of geochemical data sets along active spreading centres allow a fruitful comparison of these data with global geoid and seismic tomography models, and allow one to study interactions between mantle plumes and active slow-spreading ridges. The observed correlations allow us to draw preliminary conclusions on the general links between surficial processes, which shape the detailed morphology of the ridge axes, and deeper processes, active in the upper mantle below the ridge axial domains as a whole. The interactions are first studied at the scale of the Atlantic (the Mid-Atlantic Ridge from Iceland to Bouvet Island) from the correlation between the zero-age free-air gravity anomaly, which reflects the zero-age depth of the ridge axis, and Sr isotopic ratios of ridge axis basalts. The study is then extended to a more global scale (the slow ridges from Iceland to the Gulf of Aden) by including geoid and upper-mantle tomography models. The interactions appear complex, ranging from the effect of large and very productive plumes, almost totally overprinting the long-wavelength segmentation pattern of the ridge, to that of weaker hotspots, barely marking some of the observables in the ridge axial domain. Intermediate cases are observed, in which hotspots of medium activity (or whose activity has gradually decreased) located at some distance from the ridge axis produce geophysical or geochemical signals whose variation along the axis can be correlated with the geometry of the plume head in the upper mantle. Such observations tend to preclude the use of a single hotspot/ridge interaction model and stress the need for additional observations in various plume/ridge configurations.

  10. Chemical dynamics of the "St. Lawrence" riverine system: δD H 2O, δ 18O H 2O, δ 13C DIC, δ 34S sulfate, and dissolved 87Sr/ 86Sr

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Telmer, Kevin; Veizer, Ján

    1996-03-01

    Chemical and stable isotope analyses of the St. Clair, Detroit, Niagara, and St. Lawrence rivers ("St. Lawrence" system) and their tributaries show that the chemical and isotopic compositions of the waters are strongly controlled by the geology of their drainage basins. Tributaries draining the Canadian Shield have very low TDS, HCO 3-, SO 42-, Ca 2+, Mg 2+, NO 3-, Sr 2+, higher Si and Fe total, and high 87Sr/ 86Sr ratios (0.710-0.713). The Grand and Thames rivers that drain Paleozoic limestones, dolostones, and evaporites are characterized by opposite attributes. The "St. Lawrence" and the tributaries draining the Canadian Appalachians fall between these two endmembers. The St. Clair, Detroit, and Niagara rivers do not show any pronounced seasonal variations in major component chemistry due to buffering by the Great Lakes. In contrast, pronounced seasonal variations characterize the lower St. Lawrence mainly because of significant tributary inputs into the overall water budget. The δD and δ18O in the "St. Lawrence" range from -60.9 to -44.5‰ and from -8.5 to -6.1‰ SMOW, respectively, much heavier than the comparative values measured for the tributaries (-92.8 to -58.3‰ and -13.1 to -8.5‰). This is a consequence of evaporative loss that, over the residence time of water of 10 2 years, equals about 7% of the water volume in the Great Lakes. The strontium and sulfur isotopic values for the "St. Lawrence" system are relatively uniform, with measured values from 0.70927 to 0.71112 for 87Sr/ 86Sr and from 4.3 to 5.6‰ for sulfate δ34S. Their seasonal variations are also minor. The strontium and sulfur fluxes of the St. Lawrence river are calculated to be 7.84 × 10 8 and 1.09 × 10 11 mol/a, respectively. The relative contributions of the Great Lakes, tributaries, and other sources to these fluxes are 73:16:11% for strontium and 64:13:23% for sulfur. Isotopic composition of dissolved inorganic carbon ( δ13C DIC) in the "St. Lawrence" system ranges from -4

  11. Calibration of amino acid racemization (AAR) kinetics in United States mid-Atlantic Coastal Plain Quaternary mollusks using 87Sr/ 86Sr analyses: Evaluation of kinetic models and estimation of regional Late Pleistocene temperature history

    USGS Publications Warehouse

    Wehmiller, J. F.; Harris, W.B.; Boutin, B.S.; Farrell, K.M.

    2012-01-01

    The use of amino acid racemization (AAR) for estimating ages of Quaternary fossils usually requires a combination of kinetic and effective temperature modeling or independent age calibration of analyzed samples. Because of limited availability of calibration samples, age estimates are often based on model extrapolations from single calibration points over wide ranges of D/L values. Here we present paired AAR and 87Sr/ 86Sr results for Pleistocene mollusks from the North Carolina Coastal Plain, USA. 87Sr/ 86Sr age estimates, derived from the lookup table of McArthur et al. [McArthur, J.M., Howarth, R.J., Bailey, T.R., 2001. Strontium isotopic stratigraphy: LOWESS version 3: best fit to the marine Sr-isotopic curve for 0-509 Ma and accompanying Look-up table for deriving numerical age. Journal of Geology 109, 155-169], provide independent age calibration over the full range of amino acid D/L values, thereby allowing comparisons of alternative kinetic models for seven amino acids. The often-used parabolic kinetic model is found to be insufficient to explain the pattern of racemization, although the kinetic pathways for valine racemization and isoleucine epimerization can be closely approximated with this function. Logarithmic and power law regressions more accurately represent the racemization pathways for all amino acids. The reliability of a non-linear model for leucine racemization, developed and refined over the past 20 years, is confirmed by the 87Sr/ 86Sr age results. This age model indicates that the subsurface record (up to 80m thick) of the North Carolina Coastal Plain spans the entire Quaternary, back to ???2.5Ma. The calibrated kinetics derived from this age model yield an estimate of the effective temperature for the study region of 11??2??C., from which we estimate full glacial (Last Glacial Maximum - LGM) temperatures for the region on the order of 7-10??C cooler than present. These temperatures compare favorably with independent paleoclimate information

  12. Platinum Group Elements, 187OS/188OS and 87SR/86SR Isotope Systematics in Depleted Fluid-Modified Mariana Fore-Arc Peridotites

    NASA Astrophysics Data System (ADS)

    Harvey, J.; Savov, I. P.; Shirey, S. B.; Horan, M. F.; Mock, T. D.

    2012-12-01

    The serpentine mud volcanoes of the Izu-Bonin-Mariana (IBM) fore-arc, collected during Ocean Drilling Program Leg 195 [1], contain hard-rock clasts of serpentine sampled from close to the décollement, which separates the down-going Pacific slab from the overlying mantle wedge. These clasts preserve evidence for melt depletion (>25 % melt extraction in many instances) in a sub-arc environment, and extensive (40 - 100%) serpentinization due to subsequent fluid / peridotite interaction, e.g. [2]. Platinum-group element (PGE) abundances are not consistent with melt-depletion alone [3]. Fractionation between I-PGE (Os, Ir, Ru) has resulted in groups of IBM serpentinites with either a high chondrite-normalized Os/Ir ratio (OsN/IrN) or a low OsN/IrN ratio. Similarly, fractionation of P-PGE (Pt, Pd) is marked, and distinguishes the IBM serpentinites from worldwide abyssal peridotites. Interaction with high-pH fluids [4] may have partially oxidized mantle sulphide, the major primary host for PGE in these rocks, leading to partial breakdown to sulphate and the selective redistribution of certain PGE (Os, Ru, Pt), a feature normally associated with sub-aerial weathering [5], but which likely prevails in other oxidizing environments. In particular, the Re-Os systematics of the high (OsN/IrN) IBM serpentinites have been disturbed by the addition of Os. Unlike peridotite xenoliths associated with magmatic regions of subduction zones where subduction-related Os-addition is unequivocally radiogenic and derived from crustal material [6][7], where Os has been added to the IBM serpentinites it is unradiogenic and was most likely derived from within the oceanic mantle. IBM serpentinites therefore preserve osmium isotope ratios that are exclusively sub-chondritic (187Os/188Os ≤ 0.127), as previously reported [8]. These serpentinized peridotites were produced by at least a three-step process: melt depletion, serpentinization, and the mobilization of Os, Ru and Pt to produce low Os

  13. The Sr-87/Sr-86 ratio as a powerful tool in forensic investigations

    NASA Astrophysics Data System (ADS)

    de Muynck, D.; Boyen, S.; Delporte, S.; de Winne, J.; Vanhaecke, F.; Degryse, P.

    2009-04-01

    As a result of the decay of the naturally occurring and long-lived radionuclide Rb-87 into Sr-87, the Sr-87/Sr-86 ratio of a geological material displays geographical variations according to the chemical/mineralogical composition of that material and its geological age. As most part of the strontium, ingested into the human body via the food, is transported to the skeletal tissue, the Sr-87/Sr-86 ratio of an individual's skeletal tissue is a reflection of the geological area in which that individual resided at the moment the skeletal tissue under investigation was formed. Distinct tissues in the human body display a different growth and Sr renewal rate, and hence reflect the place of residence in a distinct period of life (tooth enamel: childhood - tooth dentine and bone tissue: last years of life - nails: last months of life - hair: last weeks of life). Following these considerations, it was investigated if Sr isotope ratio analysis of human hair, nails, bone and dental tissue can be successfully applied in the context of forensic research. Hair, nails, bone and dental tissue of several unidentified persons, currently being investigated by the Disaster Victim Identification unit of the Belgian Federal Police, were available for research. After acid digestion and isolation of the Sr fraction using an extraction chromatographic separation, the Sr-87/Sr-86 ratio of these tissues was determined via multicollector ICP-MS. It was shown that Sr isotope ratio data match traceable facts or information obtained via independent evidence concerning the victim, e.g., by pinpointing his/her area of residence. In this way, it was demonstrated that Sr isotope ratio analysis delivers information that strengthens or weakens arguments concerning a person's identity.

  14. Variations spatio-temporelles de la composition chimique et des rapports 86Sr/ 86Sr des eaux minérales de la Limagne d'Allier

    NASA Astrophysics Data System (ADS)

    Négrel, Philippe; Fouillac, Christian; Brach, Michel

    1997-07-01

    Spatial differences in levels of major and trace elements and isotopes (O. D. 87Sr/86Sr ratio) in selected mineral springs near the River Allier are presented in this Note. The investigation area is the emergence zone of mineral waters of the Limagne d'Allier, between Clermont-Ferrand and Issoire. These mineral waters contain bicarbonate. chloride and sodium. A δ 2H versus δ 18O diagram situates them between the local and global meteoric lines. In the emergence field of the Limagne d'Allier springs the 87Sr/ 86Sr ratios are remarkably uniform; only at a spring at Coudes is this ratio high. Fluctuations with time were studied at one of the unexploited boreholes at Sainte-Marguerite. Some of the elements determined varied greatly between the observed maximum and minimum. At first. the 87Sr/ 86Sr ratios. taken monthly. varied little. but then increased significantly for 6 months before returning to initial values.

  15. Frequency Ratio of (199)Hg and (87)Sr Optical Lattice Clocks beyond the SI Limit.

    PubMed

    Yamanaka, Kazuhiro; Ohmae, Noriaki; Ushijima, Ichiro; Takamoto, Masao; Katori, Hidetoshi

    2015-06-12

    We report on a frequency ratio measurement of a (199)Hg-based optical lattice clock referencing a (87)Sr-based clock. Evaluations of lattice light shift, including atomic-motion-dependent shift, enable us to achieve a total systematic uncertainty of 7.2×10(-17) for the Hg clock. The frequency ratio is measured to be νHg/νSr=2.629 314 209 898 909 60(22) with a fractional uncertainty of 8.4×10(-17), which is smaller than the uncertainty of the realization of the International System of Units (SI) second, i.e., the SI limit.

  16. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks.

    PubMed

    Akamatsu, Daisuke; Yasuda, Masami; Inaba, Hajime; Hosaka, Kazumoto; Tanabe, Takehiko; Onae, Atsushi; Hong, Feng-Lei

    2014-04-07

    The frequency ratio of the (1)S(0)(F = 1/2)-(3)P(0)(F = 1/2) clock transition in (171)Yb and the (1)S(0)(F = 9/2)-(3)P(0)(F = 9/2) clock transition in (87)Sr is measured by an optical-optical direct frequency link between two optical lattice clocks. We determined the ratio (ν(Yb)/ν(Sr)) to be 1.207 507 039 343 341 2(17) fractional standard uncertainty of 1.4 × 10(-15) [corrected]. The measurement uncertainty of the frequency ratio is smaller than that obtained from absolute frequency measurements using the International Atomic Time (TAI) link. The measured ratio agrees well with that derived from the absolute frequency measurement results obtained at NIST and JILA, Boulder, CO using their Cs-fountain clock. Our measurement enables the first international comparison of the frequency ratios of optical clocks. The measured frequency ratio will be reported to the International Committee for Weights and Measures for a discussion related to the redefinition of the second.

  17. A new dimension to the Sr isotope system - (88/86)Sr record of marine carbonates in the Phanerozoic

    NASA Astrophysics Data System (ADS)

    Vollstaedt, H.; Eisenhauer, A.; Krabbenhoeft, A.; Farkas, J.; Veizer, J.

    2009-12-01

    For the first time we extend and complete the application of the radiogenic Sr isotope system (87Sr/86Sr) with a simultaneous measurement of radiogenic and stable strontium (Sr) isotopes (δ(88/86)Sr[‰]=(88Sr/86Srsample/88Sr/86Sr(NBS987)-1)*1000). Taking Sr isotope fractionation into account this opens a new dimension for the Sr isotope system allowing to gain quantitative information about the Sr output from the ocean. Applying a 87Sr/84Sr-double spike we measured paired δ(88/86)Sr-87Sr/86Sr* ratios of Phanerozoic marine carbonates samples which were screened for diagenesis prior to the measurement. The 87Sr/86Sr* ratios are renormalized to δ(88/86)Sr=0‰ (88Sr/86Sr=8.375209) in order to be compatible to the radiogenic Sr isotope system values. Data reduction and denormalization follows an iterative algorithm by Krabbenhöft et al. (2009). External δ(88/86)Sr reproducibility based on an internal coral carbonate standard (JCp-1) corresponds to 0.008‰ (2SEM). Our data reveal that the δ(88/86)Sr values of Phanerozoic brachiopods and belemnites samples are in the range of modern marine carbonates (JCp-1 coral standard value: 0.192±0.008‰) but isotopically lighter than modern seawater (δ(88/86)Sr(IAPSO)= 0.385±0.007‰) being in the range between ~0.080‰ and ~0.370‰ (mean of 0.168). We observe a decrease in δ(88/86)Sr from Ordovician (0.200‰) to Silurian period (0.080‰) with a consequent increase in δ(88/86)Sr towards the upper Permian period. Highest values (~0.370‰) of δ(88/86)Sr are reached close to the Permian/Triassic boundary. This study examines the main factors that control δ(88/86)Sr on Phanerozoic timescale. It was found that temperature is not the main factor that drives δ(88/86)Sr of marine carbonates. Rather we suggest that the δ(88/86)Sr of Phanerozoic seawater is controlled by changes in the Sr fluxes in and out of the ocean. Modeling of our data allows a quantification of the Phanerozoic imbalance between the Sr input and

  18. Modelling the Phanerozoic carbon cycle and climate - Constraints from the Sr-87/Sr-86 isotopic ratio of seawater

    NASA Technical Reports Server (NTRS)

    Francois, Louis M.; Walker, James C. G.

    1992-01-01

    A numerical model is developed for simulating the long-term changes of atmospheric CO2 and climate during the Phanerozoic. The model describes the coupled evolution of the biogeochemical cycles of C, S, Ca, Mg, P, and Sr, with the emphasis on the effect of coupling the cycles of carbon and strontium and on interpreting the observed seawater Sr-87/Sr-86 ratios. The abilities of continental weathering, volcanism, and surface lithology in generating that signal are tested and compared. The results obtained are used to reconstruct a history of atmospheric CO2 and climate during Phanerozoic time, consistent with the strontium isotopic data. It is shown that the predicted history is compatible with paleoclimatic indicators, such as the timing of glaciation and the estimates of Cretaceous paleotemperatures.

  19. A comparative study of results obtained in magnetotelluric deep soundings in Villarrica active volcano zone (Chile) with gravity investigations, distribution of earthquake foci, heat flow empirical relationships, isotopic geochemistry 87Sr/ 86Sr and SB systematics

    NASA Astrophysics Data System (ADS)

    Muñoz, M.; Fournier, H.; Mamani, M.; Febrer, J.; Borzotta, E.; Maidana, A.

    seismic activity from a depth of 100 km down to 160 km. Kaufman and Keller and Levi and Lysak empirical relationships between heat flow and thickness of the lithosphere are somewhat consistent when the parameters of the model structure are assumed. The strontium isotope ratios are indicative of minimal crustal contamination of mantle-derived magmas, thus allowing a relatively thin crust under the area. Furthermore, the SB index of partial melting of mantle peridotite may suggest the contribution of uprising material from the deep asthenosphere through fractures extending to depth.

  20. Mapping and defining sources of variability in bioavailable strontium isotope ratios in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Hartman, Gideon; Richards, Mike

    2014-02-01

    The relative contributions of bedrock and atmospheric sources to bioavailable strontium (Sr) pools in local soils was studied in Northern Israel and the Golan regions through intensive systematic sampling of modern plants and invertebrates, to produce a map of modern bioavailable strontium isotope ratios (87Sr/86Sr) for regional reconstructions of human and animal mobility patterns. The study investigates sources of variability in bioavailable 87Sr/86Sr ratios, in particular the intra-and inter-site range of variation in plant 87Sr/86Sr ratios, the range of 87Sr/86Sr ratios of plants growing on marine sedimentary versus volcanic geologies, the differences between ligneous and non-ligneous plants with varying growth and water utilization strategies, and the relative contribution of atmospheric Sr sources from different soil and vegetation types and climatic zones. Results indicate predictable variation in 87Sr/86Sr ratios. Inter- and intra-site differences in bioavailable 87Sr/86Sr ratios average of 0.00025, while the range of 87Sr/86Sr ratios measured regionally in plants and invertebrates is 0.7090 in Pleistocene calcareous sandstone and 0.7074 in mid-Pleistocene volcanic pyroclast. The 87Sr/86Sr ratios measured in plants growing on volcanic bedrock show time dependent increases in atmospheric deposition relative to bedrock weathering. The 87Sr/86Sr ratios measured in plants growing on renzina soils depends on precipitation. The spacing between bedrock 87Sr/86Sr ratios and plants is highest in wet conditions and decreases in dry conditions. The 87Sr/86Sr ratios measured in plants growing on terra rossa soils is relatively constant (0.7085) regardless of precipitation. Ligneous plants are typically closer to bedrock 87Sr/86Sr ratios than non-ligneous plants. Since the bioavailable 87Sr/86Sr ratios currently measured in the region reflect a mix of both exogenous and endogenous sources, changes in the relative contribution of exogenous sources can cause variation

  1. Determination of the decay-constant of 87Rb by laboratory accumulation of 87Sr

    NASA Astrophysics Data System (ADS)

    Rotenberg, Ethan; Davis, Donald W.; Amelin, Yuri; Ghosh, Sanghamitra; Bergquist, Bridget A.

    2012-05-01

    The decay-constant of the geochronometer 87Rb (λ87) has been measured numerous times over the course of nearly a century, yet consensus over an accurate determination has remained elusive. This has resulted in persistent uncertainty, with different laboratories using different values. We have re-determined λ87 by laboratory accumulation of 87Sr in a batch of purified RbClO4 over a ca. 30 year time span. Daughter 87Sr was extracted by RbClO4 precipitation and Sr-selective extraction chromatography and measured by isotope dilution thermal ionization mass spectrometry. Sr isotopic compositions are extremely radiogenic, making fractionation correction using a single spike highly imprecise. A double-spike enriched in 84Sr and 86Sr was prepared in conjunction with this experiment, and used to measure 87Sr as well as to correct for instrumental fractionation during mass spectrometer measurements. The isotopic ratios of the double-spike were calibrated against Sr standard SRM-987 using the NIST certified isotopic ratios of that standard: 84Sr/86Sr = 0.056 55 ± 0.000 14; 87Sr/86Sr = 0.710 34 ± 0.000 26; 88Sr/86Sr = 8.378 61 ± 0.003 25 (86Sr/88Sr ˜ 0.119 352). 87Rb/85Rb of SRM-984 was measured with the Sr double-spike by ICP-MS and determined to be = 0.386 353 ± 0.000 004, and this value was used to correct Sr measurements for 87Rb interference. Individual measurements of the decay-constant with the double-spike are very precise, but the measurements scatter asymmetrically outside of estimated analytical errors toward high values of λ87. Our best estimate for λ87 is 1.3968-0.0018+0.0027×10-11a-1(T:49624-95+65Ma), based on the median and absolute deviation of the median after rejection of two outliers (normalizing Sr ratios to 86Sr/88Sr = 0.119 4 yields a value for λ87 of 1.397 1 × 10-11a-1). The value measured here is more precise than other recent estimates based on radiometry and comparison with U-Pb ages and it is consistent with those values within the

  2. Determination of δ88/86Sr Using Matrix Correction by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Yang, T.; Bian, X. P.; Zhu, Z. Y.

    2014-12-01

    Stable Sr isotopic compositions (δ88/86Sr) in marine carbonates potentially provide key information on paleoseawater temperature (Rüggeberg et al. 2008). Traditional methods for δ88/86Sr determination by 87Sr-84Sr double-spike TIMS or MC-ICP-MS require chemical purification of Sr before spectrometric measurements because of matrix effects. Recent studies suggested that the matrix-matching method, in which matrix-matched standard solutions were used to bracket untreated water samples, gave precise and accurate results for sulfur isotopic ratios by MC-ICP-MS (Lin et al., 2014). The obvious advantage of this method is that there is no need for chemical purification, thus eliminating the possibility of isotope fractionation during the ion chromatography and expediting sample throughput. In this study, we applied the matrix-matching method to δ88/86Sr determination by MC-ICP-MS. NIST 987 Sr solution and a purified seawater sample (collected from the South China Sea) were selected for this study. Given that major matrices in carbonate come form Ca2+, NIST 987 and SW solutions containing 40 ppm Ca2+ were prepared by adding high-purity Ca solution. All solutions used contained 200 ppb Sr and the 88Sr/86Sr ratios were measured using a Neptune MC-ICP-MS. The purified SW was first determined using SSB method, in which pure NIST 987 was used as standard to bracket SW and yielded δ88/86Sr value of 0.366 ± 0.008‰ (2SE, n = 10). The δ88/86Sr values of Ca-bearing SW were then measured by using pure NIST 987 solution as the working standard to investigate matrix effects. The determined δ88/86Sr value (0.039 ± 0.021‰; 2SE, n = 10) deviated obviously from the reference value. Finally, the matrix-matched NIST 987 was applied as the working standard to bracket the Ca-bearing SW, and the measured δ88/86Sr value is 0.351 ± 0.009‰ (2SE, n = 10), consistent with the reference value within uncertainties. The consistent δ88/86Sr values and comparable external precision

  3. Do Strontium Isotope Ratios of Animal Bone and Teeth Really Reflect the Isotope Ratios of its birth- and growth-places?

    NASA Astrophysics Data System (ADS)

    Minami, M.; Goto, A.; Suzuki, K.; Kato, T.; Watanabe, K.; Hasegawa, T.

    2007-12-01

    Strontium enters the human body through the food chain as nutrients pass from bedrock through soil and water to plants and animals. Strontium substitutes for calcium in the hydroxyapatite mineral of skeletal tissue, and is stored there. 87Sr/86Sr ratios in an individual's bone and teeth could directly reflect the isotopic ratios found in the plants and animals that she or he consumed, which reflect the isotope ratios found in the soil and bedrock of that geologic region. Therefore, 87Sr/86Sr ratios of human skeletons could be useful tools for assessing human residential mobility in prehistory, and many studies on them have been often made. In this study, to evaluate whether the 87Sr/86Sr ratio of a bone or teeth really reflects the isotopic ratios of its birth and growth places, several bone and teeth samples were measured for 87Sr/86Sr ratios, compared with 87Sr/86Sr ratios of geological samples in their growth-places. Bone and teeth samples were leached with 5% acetic acid. After drying, samples were ashed in a muffle furnace at 825°C for 8h, and then digested in nitric acid, followed by cation exchange chromatography with 2.4M hydrochloric acid. 87Sr/86Sr ratios were measured using a thermal ionization mass Spectrometer (VG Sector 54) or an inductively coupled plasma mass spectrometer (Finnigan ELEMENT2). A modern boar bone collected at Asuke, Toyota City, Aichi prefecture, Japan showed a 87Sr/86Sr of 0.71001±0.00002 (2 σ), while stream sediments in the Asuke area showed around 0.710 (Asahara et al., 2006). The 87Sr/86Sr ratio of a modern black bass bone collected from Lake Biwa, Shiga prefecture, Japan was 0.71215±0.00002, while those of surface water in Lake Biwa was 0.71233±0.00002. The similar 87Sr/86Sr ratios between bone and its provenance geology could indicate that the 87Sr/86Sr ratios of bones reflect the isotopic ratios of the birth- and growth-places. The more results of modern and fossil skeletons will be shown in our presentation.

  4. Geographical origin of Amazonian freshwater fishes fingerprinted by ⁸⁷Sr/⁸⁶Sr ratios on fish otoliths and scales.

    PubMed

    Pouilly, Marc; Point, David; Sondag, Francis; Henry, Manuel; Santos, Roberto V

    2014-08-19

    Calcified structures such as otoliths and scales grow continuously throughout the lifetime of fishes. The geochemical variations present in these biogenic structures are particularly relevant for studying fish migration and origin. In order to investigate the potential of the (87)Sr/(86)Sr ratio as a precise biogeochemical tag in Amazonian fishes, we compared this ratio between the water and fish otoliths and scales of two commercial fish species, Hoplias malabaricus and Schizodon fasciatus, from three major drainage basins of the Amazon: the Madeira, Solimões, and Tapajós rivers, displaying contrasted (87)Sr/(86)Sr ratios. A comparison of the (87)Sr/(86)Sr ratios between the otoliths and scales of the same individuals revealed similar values and were very close to the Sr isotopic composition of the local river where they were captured. This indicates, first, the absence of Sr isotopic fractionation during biological uptake and incorporation into calcified structures and, second, that scales may represent an interesting nonlethal alternative for (87)Sr/(86)Sr ratio measurements in comparison to otoliths. Considering the wide range of (87)Sr/(86)Sr variations that exist across Amazonian rivers, we used variations of (87)Sr/(86)Sr to discriminate fish origin at the basin level, as well as at the sub-basin level between the river and savannah lakes of the Beni River (Madeira basin).

  5. Fine resolution chronology based on initial Sr-87/Sr-86

    NASA Technical Reports Server (NTRS)

    Stewart, B. W.; Papanastassiou, D. A.; Capo, R. C.; Wasserburg, G. J.

    1993-01-01

    It has been recognized that small variations in initial Sr-87/Sr-86 (Sr(sub I)), can provide a fine scale relative chronology for the chemical fractionation of materials with low Rb/Sr from parent reservoirs with high Rb/Sr. Similarly, Sr(sub I), as determined for low Rb/Sr phases in meteorites, may permit a fine resolution chronology of the recrystallization or metamorphism of planetary materials. For the establishment of a primitive Sr-87/Sr-86 chronology, it is important to search for samples with extremely low Rb/Sr for which the measured Sr-87/Sr-86 is below BABI, in which case the primitive nature of the Sr can be directly established. Using the measured Rb/Sr to calculate an initial Sr-87/Sr-86 can introduce substantial uncertainty if the Rb-Sr are disturbed. We report Sr-87/Sr-86 in plagioclase from silicate pebbles from the Vaca Muerta mesosiderite on which we have reported Sm-147-Nd-143 and Ne-142 correlations. For the purpose of cross-calibration with our previous work we have performed extensive new measurements on Angra dos Reis and on anorthite from Moore County, which have very low Rb/Sr and primitive Sr-87/Sr-86.

  6. Chondrite chronology by initial Sr-87/Sr-86 in phosphates?

    NASA Technical Reports Server (NTRS)

    Podosek, Frank A.; Brannon, Joyce C.

    1991-01-01

    New data are presented on Rb-Sr isotope analyses of phosphates from nine ordinary chondrites, including accurate identification of initial Sr-87/Sr-86. The initial Sr-87/Sr-86 ratios found in this study were generally significantly higher than the more primitive initial Sr-87/Sr-86 ratios inferred for carbonaceous chondrite refractory inclusions, basaltic achondrites, or bulk ordinary chondrites. Such elevation of initial Sr-87/Sr-86 is generally considered to reflect isotopic redistribution during metamorphism. However, in this study, no evident correlation was found between the phosphate initial Sr-87/Sr-86 compositions and the metamorphic grade. Two possible alternative hypotheses for high initial Sr-87/Sr-86 ratios are considered.

  7. Upper Cenozoic basalts with high Sr-87/Sr-86 and Sr/Rb ratios, southern Great Basin, western United States.

    NASA Technical Reports Server (NTRS)

    Hedge, C. E.; Noble, D. C.

    1971-01-01

    The initial strontium isotopic composition of 15 mafic volcanic rocks from the southern Great Basin has been determined. Results indicate that the basalts must have been derived from unusual mantle material in which an originally high Rb/Sr ratio was markedly lowered during an earlier phase of magmatic activity.

  8. The spatial patterns of water management practices are reflected in the strontium isotope ratios of human hair

    NASA Astrophysics Data System (ADS)

    Tipple, B. J.; Valenzuela, L. O.; Ehleringer, J.

    2012-12-01

    Element concentrations and isotopes of human tissues are commonly used to understand how emissions and processes within urban ecosystems affect health. Thus, it is important to understand how these elements are incorporated and flow through the urban environment and are ultimately incorporated into human tissues. Here, we designed an experiment to identify the relative importance of strontium (Sr) sources (bedrock, dust, food, and water) to hair Sr isotope ratios (87Sr/86Sr). To understand the contribution of Sr to human hair, we collected hair from individuals living in Salt Lake City, Utah. In addition to sample location, we compiled information regarding age, sex, ethnicity, and dietary habits. We found a significant association between 87Sr/86Sr value of hair and collection location. There were no significant relationships between 87Sr/86Sr value of hair and age, ethnicity, or sex. We had not predicted a relationship between 87Sr/86Sr values and collection location, because of the close proximities of sites to one another (all within an 8-km radius). We found that tap water 87Sr/86Sr values across the Salt Lake Valley varied with water management practice and this variation corresponded to hair 87Sr/86Sr value. These data suggest an additional geographically controlled source of Sr may be an important contributor to the 87Sr/86Sr value of hair. These findings suggest that local water is an important source of Sr in human hair and that hair is a sensitive temporal carrier of this environmental information. These observations have important implications to future studies of humans with regard to urban ecology, human health, forensic sciences, and anthropology.

  9. Groundwater “fast paths” in the Snake River Plain aquifer: Radiogenic isotope ratios as natural groundwater tracers

    USGS Publications Warehouse

    Johnson, Thomas M.; Roback, Robert C.; McLing, Travis L.; Bullen, Thomas D.; DePaolo, Donald J.; Doughty, Christine; Hunt, Randall J.; Smith, Robert W.; Cecil, L. DeWayne; Murrell, Michael T.

    2000-01-01

    Preferential flow paths are expected in many groundwater systems and must be located because they can greatly affect contaminant transport. The fundamental characteristics of radiogenic isotope ratios in chemically evolving waters make them highly effective as preferential flow path indicators. These ratios tend to be more easily interpreted than solute-concentration data because their response to water-rock interaction is less complex. We demonstrate this approach with groundwater 87Sr/86Sr ratios in the Snake River Plain aquifer within and near the Idaho National Engineering and Environmental Laboratory. These data reveal slow-flow zones as lower 87Sr/86Sr areas created by prolonged interaction with the host basalts and a relatively fast flowing zone as a high 87Sr/86Sr area.

  10. 87Sr/88Sr a useful tool for the identification of geographic origin of Styrian pumpkin seed oils?

    NASA Astrophysics Data System (ADS)

    Meisel, T.; Bandoniene, D.; Zettl, D.; Maneiko, M.; Horschinegg, M.

    2012-04-01

    The authenticity and the geographic origin of Styrian pumpkin seed oil (PGI) a regional specialty needs to be protected, but the current specification of this high priced product does not include the proof of origin through analytical tools. As it turns out, this and many other products within the Protected Geographical Status (PGS) framework of the European Union, cannot be protected from fraud without forensic tools. In previous studies we were able to demonstrate, that distribution and content of trace elements in particular the rare earth elements, are useful parameters to discriminate Austrian from non-Austrian pumpkin seed oils and seeds. Unlike stable isotopes ratios (C and H), the trace element patterns are not influenced by changes in weather conditions and temperature during growing and harvesting cycle. Though the study of the distribution of element traces can be used not only for the identification of the geographic origin with very useful PLS and PCA models but also can identify fraud through mixing with other oils, this method need to be validated by other means. Radiogenic isotopes, in particular the 87Sr/86Sr isotope amount ratio has been successfully applied to food and other products for forensic studies. In this study we determined the 87Sr/86Sr isotope amount ratio in pumpkin seed oils extracted from seeds of known geographic origin from Austria, Russia and China, as these are the largest producers, to see if significant differences occur and if they can be used as a forensic tool. Although the total area of the Russian and the Chinese crop fields are magnitudes larger than the ones from Austria, it turns out that the variance of the Austrian 87Sr/86Sr data is much larger than that from other sources. Reasons are the large diversity of the Austrian geology (pre-varsican, alpine to sub-recent ages of the underlying bedrock of the soils can be found), the small farm sizes and the small scale production. In Russia large farms are situated on

  11. Development of an on-line flow injection Sr/matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry.

    PubMed

    Galler, Patrick; Limbeck, Andreas; Boulyga, Sergei F; Stingeder, Gerhard; Hirata, Takafumi; Prohaska, Thomas

    2007-07-01

    This work introduces a newly developed on-line flow injection (FI) Sr/Rb separation method as an alternative to the common, manual Sr/matrix batch separation procedure, since total analysis time is often limited by sample preparation despite the fast rate of data acquisition possible by inductively coupled plasma-mass spectrometers (ICPMS). Separation columns containing approximately 100 muL of Sr-specific resin were used for on-line FI Sr/matrix separation with subsequent determination of (87)Sr/(86)Sr isotope ratios by multiple collector ICPMS. The occurrence of memory effects exhibited by the Sr-specific resin, a major restriction to the repetitive use of this costly material, could successfully be overcome. The method was fully validated by means of certified reference materials. A set of two biological and six geological Sr- and Rb-bearing samples was successfully characterized for its (87)Sr/(86)Sr isotope ratios with precisions of 0.01-0.04% 2 RSD (n = 5-10). Based on our measurements we suggest (87)Sr/(86)Sr isotope ratios of 0.713 15 +/- 0.000 16 (2 SD) and 0.709 31 +/- 0.000 06 (2 SD) for the NIST SRM 1400 bone ash and the NIST SRM 1486 bone meal, respectively. Measured (87)Sr/(86)Sr isotope ratios for five basalt samples are in excellent agreement with published data with deviations from the published value ranging from 0 to 0.03%. A mica sample with a Rb/Sr ratio of approximately 1 was successfully characterized for its (87)Sr/(86)Sr isotope signature to be 0.718 24 +/- 0.000 29 (2 SD) by the proposed method. Synthetic samples with Rb/Sr ratios of up to 10/1 could successfully be measured without significant interferences on mass 87, which would otherwise bias the accuracy and uncertainty of the obtained data.

  12. 147,146Sm-143,142Nd, 176Lu-176Hf, and 87Rb-87Sr systematics in the angrites: Implications for chronology and processes on the angrite parent body

    NASA Astrophysics Data System (ADS)

    Sanborn, Matthew E.; Carlson, Richard W.; Wadhwa, Meenakshi

    2015-12-01

    Angrites are a group of basaltic achondrites with distinctive mineralogic and geochemical characteristics that have the potential to provide insights into processes occurring on planetesimals in the early Solar System. These achondrites have been used as anchors linking the relative age information obtained from short-lived, extinct chronometers (e.g., Al-Mg, Hf-W, and Mn-Cr) with absolute chronometers (e.g., U-Pb). Angrites provide excellent examples of early differentiation processes, such as core formation and silicate differentiation, on protoplanetary bodies. The significant increase in the number of known angrite samples in recent years has offered the opportunity to compare several short- and long-lived isotopic systems in samples with different petrogenetic histories that formed on the same parent body. To this end, the 147Sm-143Nd, 146Sm-142Nd, 176Lu-176Hf, and 87Rb-87Sr isotope systematics have been investigated in a suite of plutonic, coarse-grained (NWA 4590, NWA 4801, and NWA 2999) and quenched, fine-grained (D'Orbigny) angrites. The coupled 147,146Sm-143,142Nd systematics indicate possible isotopic disturbances in two angrites (D'Orbigny and NWA 2999) resulting from post-crystallization processes. The internal 146Sm-142Nd isochrons of two coarse-grained angrites (NWA 4590 and NWA 4801) provide an updated best estimate of the initial Solar System 146Sm/144Sm ratio (i.e., at 4568 Ma) of 0.0084 ± 0.0003. The 176Lu-176Hf isotope systematics in these angrites do not provide evidence of a previously proposed intense irradiation event in the early Solar System. The internal 176Lu-176Hf isochrons for the NWA 4590 and D'Orbigny angrites provide an estimate for the Solar System initial 176Hf/177Hf ratio of 0.279775 ± 0.000031 (2σ) that agrees within uncertainty with the value of average chondrites reported by Bouvier et al. (2008). Finally, the calculated initial 87Sr/86Sr ratios based on the measured Sr-isotopic composition of plagioclase in these angrites

  13. Study on strontium isotope abundance-ratio measurements by using a 13-MeV proton beam

    NASA Astrophysics Data System (ADS)

    Jeong, Cheol-Ki; Jang, Han; Lee, Goung-Jin

    2016-09-01

    The Rb-Sr dating method is used in dating Paleozoic and Precambrian rocks. This method measures the 87Rb and the 87Sr concentrations by using thermal ionization mass spectrometry (TIMS) [J. Hefne et al., Inter. J. Phys. Sci. 3(1), 28 (2008)]. In addition, it calculates the initial 87Sr/86Sr ratio to increase the reliability of Rb-Sr dating. In this study, the 87Sr/86Sr ratio was measured by using a 13-MeV proton accelerator. Proton kinetic energies are in the range of tens of megaelectronvolts, and protons have large absorption cross-sections for ( p, n) reactions with most substances. After absorbing a proton with such a high kinetic energy, an element is converted into a nuclide with its atomic number increased by one via nuclear transmutation. These nuclides usually have short half-lives and return to the original state through radioactive decay. When a strontium sample is irradiated with protons, nuclear transmutation occurs; thus, the strontium isotope present in the sample changes to a yttrium isotope, which is an activated radioisotope. Based on this, the 87Sr/86Sr ratio was calculated by analyzing the gamma-rays emitted by each yttrium isotope. The KIRAMS-13 cyclotron at the Cyclotron Center of Chosun University, where 13-MeV protons can be extracted, was utilized in our experiment. The 87Sr/86Sr isotope ratio was computed for samples irradiated with these protons, and the result was similar to the isotope ratio for the Standard Reference Material, i.e., 98.2 ± 3.4%. As part of the analysis, proton activation analyses were performed using 13-MeV protons, and the experimental results of this research suggest a possible approach for measuring the strontium-isotope abundance ratio of samples.

  14. High-resolution dating of Cenozoic sediments from northern North Sea using /sup 87/Sr//sup 86/Sr stratigraphy

    SciTech Connect

    Rundberg, Y.; Smalley, P.C.

    1989-03-01

    The authors demonstrate the potential of Sr isotope stratigraphy as a tool in basin analysis by dating bioclastic carbonate and phosphate fragments from eight seismic units in Cenozoic sedimentary rocks along two east-west profiles in the northern North Sea. The dates, which agree well with available Rb/Sr glauconite dates, have precisions in the range /+-/0.5 to 3 m.y., thereby providing important chronostratigraphic information for sediments that otherwise are difficult to date. Basinward (southwest) in this area, the most important seismic sequence boundaries are dated at approximately 53 Ma, 33 Ma, 22 Ma, 8 Ma, and 2 Ma. Northeastward toward the basin margin, these boundaries represent important periods of erosion or nondeposition. Deep-water sedimentation predominated from the Paleocene until the early Oligocene (33 Ma), a time of high global sea levels. Close to the basin margin, local tectonic activity contributed turbiditic clastic sediments. An important sequence boundary at 30 Ma involves erosion in the northern area and correlates with a sharp eustatic drop in sea level. Post-early Oligocene seismic sequence boundaries are controlled mainly by basin-margin tectonics related to uplift events in Fennoscandia and in the Shetland Platform area. 7 figures, 3 tables.

  15. New Limits on Coupling of Fundamental Constants to Gravity Using {sup 87}Sr Optical Lattice Clocks

    SciTech Connect

    Blatt, S.; Ludlow, A. D.; Campbell, G. K.; Thomsen, J. W.; Zelevinsky, T.; Boyd, M. M.; Ye, J.; Baillard, X.; Fouche, M.; Le Targat, R.; Brusch, A.; Lemonde, P.; Takamoto, M.; Hong, F.-L.; Katori, H.; Flambaum, V. V.

    2008-04-11

    The {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition frequency {nu}{sub Sr} in neutral {sup 87}Sr has been measured relative to the Cs standard by three independent laboratories in Boulder, Paris, and Tokyo over the last three years. The agreement on the 1x10{sup -15} level makes {nu}{sub Sr} the best agreed-upon optical atomic frequency. We combine periodic variations in the {sup 87}Sr clock frequency with {sup 199}Hg{sup +} and H-maser data to test local position invariance by obtaining the strongest limits to date on gravitational-coupling coefficients for the fine-structure constant {alpha}, electron-proton mass ratio {mu}, and light quark mass. Furthermore, after {sup 199}Hg{sup +}, {sup 171}Yb{sup +}, and H, we add {sup 87}Sr as the fourth optical atomic clock species to enhance constraints on yearly drifts of {alpha} and {mu}.

  16. New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks.

    PubMed

    Blatt, S; Ludlow, A D; Campbell, G K; Thomsen, J W; Zelevinsky, T; Boyd, M M; Ye, J; Baillard, X; Fouché, M; Le Targat, R; Brusch, A; Lemonde, P; Takamoto, M; Hong, F-L; Katori, H; Flambaum, V V

    2008-04-11

    The 1S0-3P0 clock transition frequency nuSr in neutral 87Sr has been measured relative to the Cs standard by three independent laboratories in Boulder, Paris, and Tokyo over the last three years. The agreement on the 1 x 10(-15) level makes nuSr the best agreed-upon optical atomic frequency. We combine periodic variations in the 87Sr clock frequency with 199Hg+ and H-maser data to test local position invariance by obtaining the strongest limits to date on gravitational-coupling coefficients for the fine-structure constant alpha, electron-proton mass ratio mu, and light quark mass. Furthermore, after 199Hg+, 171Yb+, and H, we add 87Sr as the fourth optical atomic clock species to enhance constraints on yearly drifts of alpha and mu.

  17. 88Sr/86Sr fractionation in inorganic aragonite and in corals

    NASA Astrophysics Data System (ADS)

    Fruchter, Noa; Eisenhauer, Anton; Dietzel, Martin; Fietzke, Jan; Böhm, Florian; Montagna, Paolo; Stein, Moti; Lazar, Boaz; Rodolfo-Metalpa, Riccardo; Erez, Jonathan

    2016-04-01

    Conflicting results have been reported for the stable Sr isotope fractionation, specifically with respect to the influence of temperature. In an experimental study we have investigated the stable Sr isotope systematics for inorganically precipitated and biogenic (coral) aragonite (natural and laboratory-cultured). Inorganic aragonite precipitation experiments were performed from natural seawater using the CO2 diffusion technique. The experiments were performed at different temperatures and different carbonate ion concentrations. 88Sr/86Sr of the inorganic aragonite precipitated in the experiments are 0.2‰ lighter than seawater, but showed no correlation to the water temperature or to CO32- concentration. Similar observations are made in different coral species (Cladocora caespitosa, Porites sp. and Acropora sp.), with identical fractionation from the bulk solution and no correlation to temperature or CO32- concentration. The lack of 88Sr/86Sr variability in corals at different environmental parameters and the similarity to the 88Sr/86Sr fractionation in inorganic aragonite may indicate a similar Sr incorporation mechanism in corals skeleton and inorganic aragonite, and therefore the previously proposed Rayleigh-based multi element model (Gaetani et al., 2011) cannot explain the process of Sr incorporation in the coral skeletal material. It is proposed that the relatively constant 88Sr/86Sr fractionation in aragonite can be used for paleo reconstruction of seawater 88Sr/86Sr composition. The seawater 88Sr/86Sr ratio reconstruction can be further used in calcite samples to reconstruct paleo precipitation rates.

  18. Laser system for secondary cooling of {sup 87}Sr atoms

    SciTech Connect

    Khabarova, K Yu; Slyusarev, S N; Strelkin, S A; Belotelov, G S; Kostin, A S; Pal'chikov, Vitaly G; Kolachevsky, Nikolai N

    2012-11-30

    A laser system with a narrow generation line for secondary laser cooling of {sup 87}Sr atoms has been developed and investigated. It is planned to use ultracold {sup 87}Sr atoms loaded in an optical lattice in an optical frequency standard. To this end, a 689-nm semiconductor laser has been stabilised using an external reference ultrastable cavity with vibrational and temperature compensation near the critical point. The lasing spectral width was 80 Hz (averaging time 40 ms), and the frequency drift was at a level of 0.3 Hz s{sup -1}. Comparison of two independent laser systems yielded a minimum Allan deviation: 2 Multiplication-Sign 10{sup -14} for 300-s averaging. It is shown that this system satisfies all requirements necessary for secondary cooling of 87Sr atoms using the spectrally narrow {sup 1}S{sub 0} - {sup 3}P{sub 1} transition ({lambda} = 689 nm). (cooling of atoms)

  19. An observed link between lithophile compositions and degassing of volatiles (He, Ar, CO2) in MORBs with implications for Re volatility and the mantle C/Nb ratio

    NASA Astrophysics Data System (ADS)

    Burnard, Pete; Reisberg, Laurie; Colin, Aurélia

    2014-06-01

    There are systematic variations between relative noble gas abundances and lithophile tracers such as 87Sr/86Sr, εNd and La/Sm in a suite of basaltic glasses from the South East Indian Ridge (SEIR). 4He/40Ar* (where 40Ar* is 40Ar corrected for atmospheric contamination) correlates positively with 87Sr/86Sr and La/Sm but anticorrelates with εNd. The large range in 4He/40Ar* observed in the glasses is due to fractionation during magmatic degassing caused by the very different solubilities of He and Ar in silicate liquids, whereas 87Sr/86Sr, εNd, La/Sm, etc. are insensitive to magmatic processes but rather reflect mantle heterogeneity. Thus, there is a curious situation in this suite of basalts where tracers of mantle heterogeneity (87Sr/86Sr, εNd, La/Sm, etc.) correlate with a tracer of magmatic volatile processes (4He/40Ar*). Here, we propose that “enriched” mantle (with high La/Sm and 87Sr/86Sr, low εNd) also has a higher C concentration than “depleted” mantle. Magmas derived from enriched mantle will therefore have higher initial C concentrations, leading to a greater fraction of CO2 degassed and thus a higher 4He/40Ar* ratio on eruption. Simple solubility-determined fractional degassing models show that the range in 4He/40Ar* observed in SEIR basaltic glasses can be generated if the mantle C concentration varies by a factor of 2 over the length of the ridge, consistent with independent estimates of C concentration heterogeneity in the MORB mantle. The correlations between lithophile tracers and 4He/40Ar* can be reproduced by mixing between a depleted endmember with 87Sr/86Sr = 0.70275, εNd = 8.2 and [C] = 12 ppm and an enriched endmember with 87Sr/86Sr = 0.70360, εNd = 5 and [C] = 24 ppm, followed by degassing. The proposed degassing model allows us to estimate the initial C concentration (i.e. prior to degassing) of each SEIR basalt (for which Sr or Nd isotopes are available); using independent Nb concentration data (Mahoney et al., 2002), we show

  20. 40K-40Ca and 87Rb-86Sr Dating by SIMS: The Double-Plus Advantage

    NASA Astrophysics Data System (ADS)

    Harrison, T. M.; McKeegan, K. D.; Schmitt, A. K.

    2009-12-01

    retentivity of 40Ca* relative to 40Ar* in white micas. This approach offers the potential to develop a branched-decay thermochronometer (K-Ca-Ar) permitting simultaneous solution of temperature-time history from μm-scale isotopic variations. A further advantage is that even low resolution SIMS instruments (e.g., ims7f) can utilize the double-plus method. Initial investigations using the same double-plus approach for Rb-Sr dating show promise. While resolving 87Rb+ from 87Sr+ requires an MRP of ~290k, unattainable using any current SIMS instrument, 87Rb++ is so strongly suppressed that determination of 87Sr++ is possible with minor peak stripping. 87Rb/86Sr can be determined either from 85Rb+/88Sr+ at MRP≈ 8k or by the use of energy filtering. In addition to micas, these approaches may be applicable to any mineral systems enriched in alkali metals relative to alkaline earths, such as alkali feldspars, feldspathoids, and alkaline halides.

  1. Accurate Optical Lattice Clock with {sup 87}Sr Atoms

    SciTech Connect

    Le Targat, Rodolphe; Baillard, Xavier; Fouche, Mathilde; Brusch, Anders; Tcherbakoff, Olivier; Rovera, Giovanni D.; Lemonde, Pierre

    2006-09-29

    We report a frequency measurement of the {sup 1}S{sub 0}-{sup 3}P{sub 0} transition of {sup 87}Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879(5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks with neutral atoms in free fall. The two previous measurements of this transition were found to disagree by about 2x10{sup -13}, i.e., almost 4 times the combined error bar and 4 to 5 orders of magnitude larger than the claimed ultimate accuracy of this new type of clocks. Our measurement is in agreement with one of these two values and essentially resolves this discrepancy.

  2. Strontium isotope ratio variations in plagioclase phenocrysts from the Imnaha basalt

    NASA Astrophysics Data System (ADS)

    Eckberg, A. E.; Wolff, J. A.; Ramos, F. C.; Hart, G. L.

    2006-12-01

    Of all the Columbia River flood basalt formations, the Imnaha Basalt best captures the isotopic signature of the mantle plume source (see abstract by Wolff, Ramos and Patterson). It is of interest, therefore, to understand the extent to which the plume signature is compromised by magma-lithosphere interaction during transport to the surface. Whole rock 87Sr/86Sr ratios of Imnaha lavas span a narrow range of 0.7038 - 0.7042, and convey a false impression of relative isotopic uniformity. Plagioclase phenocrysts analyzed by LA-MC- ICPMS exhibit much greater variations of 0.7038 - 0.7061 for the whole formation as represented by 8 flows that we have studied. Individual plagioclase phenocrysts in the Imnaha lavas typically fall into two Sr isotope ratio populations: 0.7038 - 0.7044, and 0.7045 - 0.7051. The former population, which encompasses the range of 87Sr/86Sr in whole rocks, is more abundant among a subgroup of flows that have long been recognized as more primitive (Hooper et al., 1984), and is dominated by tabular phenocrysts, some of which are zoned with less radiogenic cores and more radiogenic rims. The less radiogenic end of this range is considered to be representative of the mantle source for the Imnaha Basalt. The latter more radiogenic group of plagioclase grains is texturally more diverse, and is more abundant in flows with relatively evolved bulk compositions. Relatively radiogenic Sr (87Sr/86Sr >0.7044) among Columbia River basalts (whole rocks) is characteristic of post-Imnaha formations, including the very voluminous Grande Ronde flows, and is thought to reflect the involvement of lithospheric components derived from crust and/or mantle. Four of the 8 Imnaha flows so far investigated contain both populations of plagioclase. These results are consistent with a model where magmas residing in crustal magma chambers experience interaction with high- 87Sr/86Sr host rock before and/or during crystallization of plagioclase and are recharged by mantle

  3. Water-Rock Interactions in the Peridotite Aquifer of the Oman-UAE Ophiolite: Strontium Isotopic Ratio and Geochemical Evolution of Groundwater

    NASA Astrophysics Data System (ADS)

    Bompard, Nicolas; Matter, Juerg; Teagle, Damon

    2016-04-01

    The peridotite aquifer in Wadi Tayin, Sultanate of Oman, is a perfect example of natural carbonation of ultramafic rocks. In situ mineral carbonation is considered the most safest and permanent option of CO2 Capture and Sequestration (CCS). However, the process itself is yet to be characterised and a better understanding of the mechanisms involved in natural mineral carbonation is needed before geo-engineering it. We used the 87Sr/86Sr system to follow the water-rock interactions along the groundwater flowpath in the peridotite aquifer and to determine the sources of divalent cations (Mg2+, Ca2+) required for mineral carbonation. The Sr-isotope data of groundwater show that the aquifer rocks are the main source for divalent cations (Mg2+, Ca2+ and Sr2+) and secondary carbonates are their main sink. The groundwater 87Sr/86Sr ratio evolves with its pH: from 87Sr/86Sr = 0.7087 (n=3) to 0.7082 (n=8) between pH 7 and 8, and from 0.7086 (n=6) at pH 9 to 0.07075 (n=9) at pH 11. This evolution seems to support a two-step model for the water-rock interactions in the peridotite aquifer. From pH 7 to 8, secondary Ca-carbonate precipitation buffers the pH rise resulting from peridotite serpentinisation. From pH 9 to 11, peridotite serpentinisation drives the pH to alkaline condition. The change from a Mg-rich to a Ca-rich groundwater at pH 9 seems to confirm the two-step model.

  4. Determining the geographical origin of Chinese cabbages using multielement composition and strontium isotope ratio analyses

    NASA Astrophysics Data System (ADS)

    BONG, Y.; Shin, W.; Gautam, M. K.; Jeong, Y.; Lee, A.; Jang, C.; Lim, Y.; Chung, G.; Lee, K.

    2012-12-01

    Recently, the Korean market has seen many cases of Chinese cabbage (Brassica rapa ssp. pekinensis) that have been imported from China, yet are sold as a Korean product to illegally benefit from the price difference between the two products. This study aims to establish a method of distinguishing the geographical origin of Chinese cabbage. One hundred Chinese cabbage heads from Korea and 60 cabbage heads from China were subjected to multielement composition and strontium isotope ratio (87Sr/86Sr) analyses. The 87Sr/86Sr ratio differed, based on the geological characteristics of their district of production. In addition, the content of many elements differed between cabbages from Korea and China. In particular, the difference in the content of Sr and Ti alone and the combination of Sr, Ca, and Mg allowed us to distinguish relatively well between Korea and China as the country of origin. The present study demonstrates that the chemical and Sr isotopic analyses exactly reflect the geology of the production areas of Chinese cabbage. Also, multivariate statistical analyses of multiple elements were found to be very effective in distinguishing the geographical origin of Chinese cabbages.

  5. Strontium concentrations and isotope ratios in a forest-river system in the South Qinling Mts., China.

    PubMed

    Bu, Hongmei; Song, Xianfang; Zhang, Quanfa; Burford, Michele A

    2016-04-15

    The concentrations of dissolved strontium (Sr) and isotope ratios ((87)Sr/(86)Sr) in rainwater, river water, and water from forest soil are measured to investigate the contributions of these sources to a river during base flow conditions in the relatively pristine South Qinling Mountains, China. Dissolved Sr concentrations and (87)Sr/(86)Sr ratios vary significantly between different water types (p < 0.01) suggesting that it is suitable for differentiating sources. Dissolved Sr is also positively correlated with most ions and a range of physicochemical parameters (p < 0.01 and p < 0.05 respectively) in water samples including Ca(2+), Mg(2+), EC, and TDS (p < 0.001) indicating their similarities in the drivers of biogeochemical processes and common origins. The correlations between Sr isotopes and Ca/Na, Ca/K, and 1000/Sr ratios suggest that three end-members of atmospheric inputs, carbonate and silicate weathering control the Sr water chemistry in the river water. Using the three-source mixing model, atmospheric inputs, carbonate, and silicate weathering contribute 74%, 20%, and 6% respectively to the dissolved Sr in the river water. This research has provided new insights into the contribution of sources of Sr to a river system in a mountainous catchment.

  6. Controls on the 129I/I ratio of deep-seated marine interstitial fluids: ‘Old’ organic versus fissiogenic 129-iodine

    NASA Astrophysics Data System (ADS)

    Scholz, Florian; Hensen, Christian; Lu, Zunli; Fehn, Udo

    2010-05-01

    Iodine and its radioisotope 129I have been successfully used to trace the origin of pore waters in submarine fluid escape structures because of their close association with organic material in deeply buried sediments. We report here halogen concentrations and 129I/I ratios for fluids of five mud volcanoes sampled along an E-W transect across the Gulf of Cadiz in the NE Atlantic Ocean. Concentrations of iodide and bromide increase consistently seaward accompanied by a decrease in 129I/I ratios from 6490 × 10 - 15 to 663 × 10 - 15 . The exceptionally high 129I/I ratios at the near-shore locations reflect the presence of fissiogenic 129I, produced in situ by spontaneous fission of 238U within terrigenous sediments and released into pore water during clay mineral diagenetic processes. The observed 129I/I and halogen trends, together with similar changes in 87Sr/ 86Sr ratios, indicate a progressive seaward transition from inorganic-terrigenous to organic-marine fluid sources. Comparison of our results with literature data for varying geological settings reveals a general relationship between fissiogenic 129I, radiogenic 87Sr and the lithology or provenance of rocks and sediments, respectively. While 129I/I ratios in continental rock-hosted aquifers and terrigenous sedimentary systems are dominated by in situ production of fissiogenic 129I, iodine isotopes in oceanic settings or volcanogenic marine sediments reflect the release of 'old' iodine from deeply buried organic matter. The Gulf of Cadiz represents the full transition between these continental and oceanic 129I/I and 87Sr/ 86Sr end members. This is the first systematic investigation of fissiogenic 129I production in marine sedimentary environments.

  7. Boron and strontium isotope ratios and major/trace elements concentrations in tea leaves at four major tea growing gardens in Taiwan.

    PubMed

    Chang, Cheng-Ta; You, Chen-Feng; Aggarwal, Suresh Kumar; Chung, Chuan-Hsiung; Chao, Hung-Chun; Liu, Hou-Chun

    2016-06-01

    Isotopic compositions of B and Sr in rocks and sediments can be used as tracers for plant provincial sources. This study aims to test whether tea leaf origin can be discriminated using (10)B/(11)B and Sr isotopic composition data, along with concentrations of major/trace elements, in tea specimens collected from major plantation gardens in Taiwan. The tea leaves were digested by microwave and analyzed by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS). The data showed significant variations in (87)Sr/(86)Sr ratios (from 0.70482 to 0.71462), which reflect changes in soil, groundwater or irrigation conditions. The most radiogenic tea leaves were found at the Taitung garden and the least radiogenic ones were from the Hualien garden. The δ (11)B was found to change appreciably (δ (11)B = 0.38-23.73 ‰) which could be due to fertilizers. The maximum δ (11)B was also observed in tea samples from the Hualien garden. Principal component analysis combining (87)Sr/(86)Sr, δ (11)B and major/trace elements results successfully discriminated different sources of major tea gardens in Taiwan, except the Hualien gardens, and this may be due to rather complicated local geological settings.

  8. Internal Rb-Sr Age and Initial Sr-87/Sr-86 of a Silicate Inclusion from the Campo Del Cielo Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Nyquist, L.; Wiesmann, H.; Shih, C.; Schwandt, C.; Takeda, H.

    2003-01-01

    The largest group of iron meteorites, IAB, is distinguished by the presence of diverse silicate inclusions. In principle, Rb-Sr and Sm-Nd radiometric dating of these silicate inclusions by internal isochron techniques can determine both the times of melting and parent/daughter ratios in the precursor materials via initial Sr-87/Sr-86 and Nd-143/Nd-144 ratios. The Sr-87/Sr-86 and Nd-143/Nd-144 ratios could distinguish chondritic precursors from already differentiated silicates. We reported Rb-Sr and Sm-Nd internal ischron ages of 4.52+/-0.03 Ga and 4.50+/-0.04 Ga, respectively, for plagioclase-diopside-rich material in the Caddo County IAB iron meteorite. These results are essentially identical to literature values of its Ar-Ar age of 4.520+/-0.005 Ga and its Sm-Nd age of 4.53+/-0.02 Ga. The purpose of this study is to evaluate the formation and evolution of silicate inclusions in IAB iron meteorites by determination of their initial Sr-87/Sr-86 ratios combined with higher-resolution chronology and mineralogical and geochemical studies.

  9. Variation in strontium isotope ratios of archaeological fauna in the Midwestern United States: a preliminary study

    USGS Publications Warehouse

    Hedman, Kristin M.; Curry, B. Brandon; Johnson, Thomas M.; Fullagar, Paul D.; Emerson, Thomas E.

    2009-01-01

    Strontium isotope values (87Sr/86Sr) in bone and tooth enamel have been used increasingly to identify non-local individuals within prehistoric human populations worldwide. Archaeological research in the Midwestern United States has increasingly highlighted the role of population movement in affecting interregional cultural change. However, the comparatively low level of geologic variation in the Midwestern United States might suggest a corresponding low level of strontium variation, and calls into question the sensitivity of strontium isotopes to identify non-local individuals in this region. Using strontium isotopes of archaeological fauna, we explore the degree of variability in strontium ratios across this region. Our results demonstrate measurable variation in strontium ratios and indicate the potential of strontium analysis for addressing questions of origin and population movement in the Midwestern United States.

  10. Standardless determination of Nd and Sr isotope ratios in geological samples using LA-MC-ICP-MS with a low-oxide molecular yield interface setup

    NASA Astrophysics Data System (ADS)

    Kimura, J.; Chang, Q.; Takahashi, T.; Kawabata, H.

    2013-12-01

    We investigated an appropriate instrumental setup for a laser-ablation multiple-collector inductively coupled plasma mass spectrometer (LA-MC-ICP-MS) and found that a reduced oxide setting allowed accurate and precise analyses of Sr and Nd isotope ratios in geological samples with concomitant interfering elements (Kr and Rb on Sr and Sm on Nd). We used an Aridus II solution-excimer laser dual-intake system. The ICP interface used normal sample and skimmer cones with torch shield switched-OFF and an additional large interface rotary pump. The setting accomplished reduced oxide levels NdO+/Nd+ <0.01%, without significant sacrifice of the instrumental sensitivity (c.a. 70%). Oxide molecular ions for the lighter elements were negligible and accurate internal mass bias corrections were achieved for Sr, Sm, and Nd using isotopic ratios derived from thermal ionization mass spectrometry measurements. However, elemental fractionation between Rb and Sr and Nd and Sm still exists due perhaps to elemental fractionation in the ICP preventing standardless determination of parent-daughter ratios. For Sr isotope measurement, a new analytical protocol was developed for correcting Kr baseline-induced biases. Residual analytical biases of 84Sr/86Sr and 87Sr/86Sr were observed after applying on-peak background subtractions and mass-fractionation corrections using internal normalization. The residual biases occurred only for samples analysed with LA and not for solution analyses using Aridus II with the same instrumental setup. We concluded that this was due to suppression and enhancement of the Kr baseline by loading of the LA sample aerosols and by the introduction of Kr from the samples, respectively. We found that both the 84Sr/86Sr and 87Sr/86Sr isotope ratios were affected proportionally by the baseline biases of the LA analyses of an isotopically homogeneous anorthite plagioclase, and similar result were seen in theoretical calculations. A theoretical bias correction for the 87

  11. Evaluation of variation in ( m_p/m_e) from the frequency difference between the 15N2+ and 87Sr transitions

    NASA Astrophysics Data System (ADS)

    Kajita, Masatoshi

    2016-07-01

    The uncertainty of the 87Sr1 S0-3 P0 transition frequency (429 THz) has been reduced to the level of 10^{-18}. Also, the 15N2+ Q(0) vibrational transition frequency is expected to be measured with an uncertainty of 10^{-17} , and the v = 0-7 transition frequency (422 THz) is close to the 87Sr transition frequency. In this paper, we propose a test for the variation in the proton-to-electron mass ratio μ via precise measurement of the difference (f_d=7 THz) between these transition frequencies. By measuring f_d within the uncertainty of 10^{-16}, a variation in μ of 4 × 10^{-18} can be detected. The 15N2+ v =0 -7 Q(0) transition frequency is free from Zeeman and electric quadrupole shifts. The dc Stark coefficient is about 0.2 mHz/(V/cm)2, and the measurement of f_d with an uncertainty lower than 10^{-16} appears to be attainable using molecular ions in a string crystal. The 15N2+ transition frequency is observed via the two-photon excitation of a laser with a wavelength of 1422 nm (laser A). Another laser with a wavelength of 1396 nm (laser B) is used as a 87Sr clock laser after frequency doubling. The frequency difference between lasers A and B (3.5 THz) should be measured using a frequency comb. Lasers A and B can be transferred to another laboratory via an optical fiber. Therefore, a sensitive test of the variation in μ can be performed in cooperation between two distant laboratories.

  12. {sup 87}Sr Lattice Clock with Inaccuracy below 10{sup -15}

    SciTech Connect

    Boyd, Martin M.; Ludlow, Andrew D.; Blatt, Sebastian; Foreman, Seth M.; Ido, Tetsuya; Zelevinsky, Tanya; Ye Jun

    2007-02-23

    Aided by ultrahigh resolution spectroscopy, the overall systematic uncertainty of the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock resonance for lattice-confined {sup 87}Sr has been characterized to 9x10{sup -16}. This uncertainty is at a level similar to the Cs-fountain primary standard, while the potential stability for the lattice clocks exceeds that of Cs. The absolute frequency of the clock transition has been measured to be 429 228 004 229 874.0(1.1) Hz, where the 2.5x10{sup -15} fractional uncertainty represents the most accurate measurement of a neutral-atom-based optical transition frequency to date.

  13. Inelastic collisions and density-dependent excitation suppression in a {sup 87}Sr optical lattice clock

    SciTech Connect

    Bishof, M.; Martin, M. J.; Swallows, M. D.; Benko, C.; Lin, Y.; Quemener, G.; Rey, A. M.; Ye, J.

    2011-11-15

    We observe two-body loss of {sup 3} P{sub 0} {sup 87}Sr atoms trapped in a one-dimensional optical lattice. We measure loss rate coefficients for atomic samples between 1 and 6 {mu}K that are prepared either in a single nuclear-spin sublevel or with equal populations in two sublevels. The measured temperature and nuclear-spin preparation dependence of rate coefficients agree well with calculations and reveal that rate coefficients for distinguishable atoms are only slightly enhanced over those of indistinguishable atoms. We further observe a suppression of excitation and losses during interrogation of the {sup 1} S{sub 0}-{sup 3} P{sub 0} transition as density increases and Rabi frequency decreases, which suggests the presence of strong interactions in our dynamically driven many-body system.

  14. Determination of the source of bioavailable Sr using ⁸⁷Sr/⁸⁶Sr tracers: a case study of hot pepper and rice.

    PubMed

    Song, Byeong-Yeol; Ryu, Jong-Sik; Shin, Hyung Seon; Lee, Kwang-Sik

    2014-09-24

    The geographical origin of agricultural products has been intensively studied, but links between agricultural products and the environments are poorly established. Soils, water (streamwater and groundwater), and plants (hot pepper, Capsicum annuum; and rice, Oryza sativa) were collected from all regions of South Korea and measured Sr isotope ratios ((87)Sr/(86)Sr). Sequential leaching of soil showed that Sr in the exchangeable and carbonate fractions (bioavailable) had a lower (87)Sr/(86)Sr ratio than that in the silicate fraction, consistent with a low (87)Sr/(86)Sr ratio in the plant. Although the bedrock-soil-water-plant system is closely linked, statistical analysis indicated that (87)Sr/(86)Sr ratios of the plant showed the greatest agreement with those of water and the exchangeable fraction of soil. This study is the first report of (87)Sr/(86)Sr isoscapes in South Korea and first demonstrates that the agricultural product is strongly linked with the exchangeable fraction of soil and water.

  15. Observation of Spin Polarized Clock Transition in 87Sr Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Lin, Yi-Ge; Li, Ye; Lin, Bai-Ke; Meng, Fei; Zang, Er-Jun; Li, Tian-Chu; Fang, Zhan-Jun

    2014-12-01

    We report our observation of the spin polarized 1S0 → 3P0 clock transition spectrum in an optical lattice clock based on fermionic 87Sr. The atoms are trapped and pre-cooled to about 2 μK with two stages of laser cooling at 461 nm and 689 nm, respectively. Then the atoms are loaded into an optical lattice formed by the interference of counter-propagating laser beams at 813 nm. An external cavity diode laser at 698 nm, which is stabilized to a high finesse cavity with a linewidth of about 5 Hz and a drift rate of less than 0.2 Hz/s, is used to excite the atoms to the 3P0 state. The π-polarized clock transition spectrum of resolvable mF states is obtained by applying a small bias magnetic field along the polarization axis of the probe beam. A spin polarized clock transition spectrum as narrow as 10 Hz with an 80 ms probe pulse is obtained.

  16. Continental igneous rock composition: A major control of past global chemical weathering

    PubMed Central

    Bataille, Clément P.; Willis, Amy; Yang, Xiao; Liu, Xiao-Ming

    2017-01-01

    The composition of igneous rocks in the continental crust has changed throughout Earth’s history. However, the impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere evolution, is largely unknown. We use the strontium isotope ratio in seawater [(87Sr/86Sr)seawater] as a proxy for chemical weathering, and we test the sensitivity of (87Sr/86Sr)seawater variations to the strontium isotopic composition (87Sr/86Sr) in igneous rocks generated through time. We demonstrate that the 87Sr/86Sr ratio in igneous rocks is correlated to the epsilon hafnium (εHf) of their hosted zircon grains, and we use the detrital zircon record to reconstruct the evolution of the 87Sr/86Sr ratio in zircon-bearing igneous rocks. The reconstructed 87Sr/86Sr variations in igneous rocks are strongly correlated with the (87Sr/86Sr)seawater variations over the last 1000 million years, suggesting a direct control of the isotopic composition of silicic magmatism on (87Sr/86Sr)seawater variations. The correlation decreases during several time periods, likely reflecting changes in the chemical weathering rate associated with paleogeographic, climatic, or tectonic events. We argue that for most of the last 1000 million years, the (87Sr/86Sr)seawater variations are responding to changes in the isotopic composition of silicic magmatism rather than to changes in the global chemical weathering rate. We conclude that the (87Sr/86Sr)seawater variations are of limited utility to reconstruct changes in the global chemical weathering rate in deep times. PMID:28345044

  17. Continental igneous rock composition: A major control of past global chemical weathering.

    PubMed

    Bataille, Clément P; Willis, Amy; Yang, Xiao; Liu, Xiao-Ming

    2017-03-01

    The composition of igneous rocks in the continental crust has changed throughout Earth's history. However, the impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere evolution, is largely unknown. We use the strontium isotope ratio in seawater [((87)Sr/(86)Sr)seawater] as a proxy for chemical weathering, and we test the sensitivity of ((87)Sr/(86)Sr)seawater variations to the strontium isotopic composition ((87)Sr/(86)Sr) in igneous rocks generated through time. We demonstrate that the (87)Sr/(86)Sr ratio in igneous rocks is correlated to the epsilon hafnium (εHf) of their hosted zircon grains, and we use the detrital zircon record to reconstruct the evolution of the (87)Sr/(86)Sr ratio in zircon-bearing igneous rocks. The reconstructed (87)Sr/(86)Sr variations in igneous rocks are strongly correlated with the ((87)Sr/(86)Sr)seawater variations over the last 1000 million years, suggesting a direct control of the isotopic composition of silicic magmatism on ((87)Sr/(86)Sr)seawater variations. The correlation decreases during several time periods, likely reflecting changes in the chemical weathering rate associated with paleogeographic, climatic, or tectonic events. We argue that for most of the last 1000 million years, the ((87)Sr/(86)Sr)seawater variations are responding to changes in the isotopic composition of silicic magmatism rather than to changes in the global chemical weathering rate. We conclude that the ((87)Sr/(86)Sr)seawater variations are of limited utility to reconstruct changes in the global chemical weathering rate in deep times.

  18. Stable strontium isotopes ( δ88/86Sr) in cold-water corals — A new proxy for reconstruction of intermediate ocean water temperatures

    NASA Astrophysics Data System (ADS)

    Rüggeberg, Andres; Fietzke, Jan; Liebetrau, Volker; Eisenhauer, Anton; Dullo, Wolf-Christian; Freiwald, André

    2008-05-01

    Zooxanthellate scleractinian corals are known as archives for temporal variations of climate variables, such as sea surface temperature, salinity or productivity. The use of azooxanthellate cold-water corals as potential archives for intermediate water mass properties and climate variability was tested recently. However, the correlation of established proxies such as δ18O and δ13C with temperature is difficult since there is no direct temperature equation applicable as in shallow-water corals. Other temperature proxies such as Sr/Ca, Mg/Ca and U/Ca are influenced by the complex microstructure of the aragonite skeleton, the rate of calcification, and other vital effects observed for coral species. For the first time we show that the stable strontium isotope ratio δ88/86Sr incorporated in the skeletons of the cold-water coral species Lophelia pertusa portrays the ambient seawater temperature. The temperature sensitivity from live samples collected along the European continental margin covering a temperature range from 6° to 10 °C is 0.026 ± 0.003‰/°C (2 σ standard error) which is a sensitivity similar to the tropical shallow-water coral record of Pavona clavata. This indicates a similar fractionation process of strontium for both, zooxanthellate and azooxanthellate corals. For coral aragonite the δ88/86Sr ratio may serve as a new paleo-temperature proxy and introduces new perspectives in paleoceanography with respect to intermediate water dynamics.

  19. Carbonate deposition, Pyramid Lake subbasin, Nevada: 3. The use of87Sr values in carbonate deposits (tufas) to determine the hydrologic state of paleolake systems

    USGS Publications Warehouse

    Benson, L.; Peterman, Z.

    1996-01-01

    Sierran rivers that discharge to the Lahontan basin have much lower (???4.5%o) ??87Sr values than the Humboldt River which drains northeastern Nevada. The ??87Sr values of tufas deposited during the last lake cycle were used to determine when Humboldt derived Sr entered the Pyramid Lake subbasin. Prior to ~ 15,000 yr B.P., the Humboldt River flowed to the Smoke Creek-Black Rock Desert subbasin. During the recession of Lake Lahontan, the Humboldt River diverted to the Carson Desert subbasin. This study has demonstrated that 87Sr can be used to determine drainage histories of multi-basin lake systems if the ??87Sr values of rivers that discharge to the basins are sufficiently different. ?? 1995 Elsevier Science B.V. All rights reserved.

  20. Diffusion as a Rate Limiting Factor on the Evolution of Strontium Isotope Ratios in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Johnson, E. G.; Holt, R. M.; McLing, T. L.

    2002-12-01

    In recent years, several approaches have been developed to model the evolution of strontium isotope ratios (87Sr/86Sr) in porous media. In fractured rock, however, diffusion limits the rates of reaction between mobile water and mineral surfaces inside fracture-bounded blocks. Diffusion can limit transfer of fluids with differing isotopic ratios between the mobile and immobile zones leading to longer equilibration times. We develop a diffusion-based mathematical approach for modeling the evolution of ratios that includes sorption, ion exchange, and dissolution in fracture bounded blocks of multiple sizes. Traditional models employing isotopic ratios with the advection-dispersion equation are unable to incorporate diffusion because they are limited by the structure of their equation. Modeling the individual isotopic species separately accounts for the effects of diffusion. The general governing equation is robust in that it does not assume chemical equilibrium reactions. Special cases show the importance of diffusion-limited mass transfer on the evolution of isotopes ratios in fractured rock.

  1. Application of lead and strontium isotope ratio measurements for the origin assessment of uranium ore concentrates.

    PubMed

    Varga, Zsolt; Wallenius, Maria; Mayer, Klaus; Keegan, Elizabeth; Millet, Sylvain

    2009-10-15

    Lead and strontium isotope ratios were used for the origin assessment of uranium ore concentrates (yellow cakes) for nuclear forensic purposes. A simple and low-background sample preparation method was developed for the simultaneous separation of the analytes followed by the measurement of the isotope ratios by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). The lead isotopic composition of the ore concentrates suggests applicability for the verification of the source of the nuclear material and by the use of the radiogenic (207)Pb/(206)Pb ratio the age of the raw ore material can be calculated. However, during data interpretation, the relatively high variation of the lead isotopic composition within the mine site and the generally high contribution of natural lead as technological contamination have to be carefully taken into account. The (87)Sr/(86)Sr isotope ratio is less prone to the variation within one mine site and less affected by the production process, thus it was found to be a more purposeful indicator for the origin assessment and source verification than the lead. The lead and strontium isotope ratios measured and the methodology developed provide information on the initial raw uranium ore used, and thus they can be used for source attribution of the uranium ore concentrates.

  2. Astronomically-Forced Lake Expansion and Contraction Cycles: Sr Isotopic Evidence from the Eocene Green River Formation, Western USA

    NASA Astrophysics Data System (ADS)

    Baddouh, M.; Meyers, S. R.; Carroll, A.; Beard, B. L.; Johnson, C.

    2014-12-01

    87Sr/86Sr ratio from ancient lake deposits offer a unique insight into the astronomical forcing of lake expansion and contraction, by recording changes in runoff/groundwater provenance. We present new high-resolution 87Sr/86Sr data from the upper Wilkins Peak Member, to investigate linkages between astronomical forcing, water sources, and lake level in a classic rhythmic succession. Fifty-one 87Sr/86Sr ratios from White Mountain core #1 were acquired with a sampling interval of ~30 cm starting from the top of alluvial "I" bed to the lower Laney Member. The 87Sr/86Sr data show a strong and significant negative correlation with oil-yield, a traditional proxy for paleolake level and organic productivity. Application of a radioisotopic time scale, using previously dated ash beds, reveals that both 87Sr/86Sr and oil yield have a strong 20 kyr rhythm. The 87Sr/86Sr data more clearly express a longer period 100 kyr signal, similar to the Laskar 10D eccentricity solution. Using our nominal radioisotopic time scale, the Laskar 10D solution and 87Sr/86Sr data suggest that highest lake levels and greatest organic enrichment are attained during greatest precession and eccentricity. Regional geologic studies and modern river water analyses have shown that less radiogenic waters mostly originate west of the basin, where drainage is strongly influenced by thick Paleozoic and Mesozoic marine carbonate units. Decreased in 87Sr/86Sr therefore imply greater relative water contributions from the Sevier orogenic highlands, relative to lower relief, more radiogenic ranges lying to the east. We therefore propose that highstands of Lake Gosiute record increased penetration of Pacific moisture, related either to increased El Niño frequency or southward displacement of major storm tracks. We hypothesize that the occurrence of wetter winters caused expansion of Lake Gosiute, deposition of organic carbon rich facies, and decreased lake water 87Sr/86Sr.

  3. The IRHUM (Isotopic Reconstruction of Human Migration) database - bioavailable strontium isotope ratios for geochemical fingerprinting in France

    NASA Astrophysics Data System (ADS)

    Willmes, M.; McMorrow, L.; Kinsley, L.; Armstrong, R.; Aubert, M.; Eggins, S.; Falguères, C.; Maureille, B.; Moffat, I.; Grün, R.

    2014-03-01

    Strontium isotope ratios (87Sr / 86Sr) are a key geochemical tracer used in a wide range of fields including archaeology, ecology, food and forensic sciences. These applications are based on the principle that the Sr isotopic ratios of natural materials reflect the sources of strontium available during their formation. A major constraint for current studies is the lack of robust reference maps to evaluate the source of strontium isotope ratios measured in the samples. Here we provide a new data set of bioavailable Sr isotope ratios for the major geologic units of France, based on plant and soil samples (Pangaea data repository doi:10.1594/PANGAEA.819142). The IRHUM (Isotopic Reconstruction of Human Migration) database is a web platform to access, explore and map our data set. The database provides the spatial context and metadata for each sample, allowing the user to evaluate the suitability of the sample for their specific study. In addition, it allows users to upload and share their own data sets and data products, which will enhance collaboration across the different research fields. This article describes the sampling and analytical methods used to generate the data set and how to use and access the data set through the IRHUM database. Any interpretation of the isotope data set is outside the scope of this publication.

  4. The IRHUM (Isotopic Reconstruction of Human Migration) database - bioavailable strontium isotope ratios for geochemical fingerprinting in France

    NASA Astrophysics Data System (ADS)

    Willmes, M.; McMorrow, L.; Kinsley, L.; Armstrong, R.; Aubert, M.; Eggins, S.; Falguères, C.; Maureille, B.; Moffat, I.; Grün, R.

    2013-11-01

    Strontium isotope ratios (87Sr/86Sr) are a key geochemical tracer used in a wide range of fields including archaeology, ecology, food and forensic sciences. These applications are based on the principle that the Sr isotopic ratios of natural materials reflect the sources of strontium available during their formation. A major constraint for current studies is the lack of robust reference maps to evaluate the source of strontium isotope ratios measured in the samples. Here we provide a new dataset of bioavailable Sr isotope ratios for the major geologic units of France, based on plant and soil samples (Pangaea data repository doi:10.1594/PANGAEA.819142). The IRHUM (Isotopic Reconstruction of Human Migration) database is a web platform to access, explore and map our dataset. The database provides the spatial context and metadata for each sample, allowing the user to evaluate the suitability of the sample for their specific study. In addition, it allows users to upload and share their own datasets and data products, which will enhance collaboration across the different research fields. This article describes the sampling and analytical methods used to generate the dataset and how to use and access of the dataset through the IRHUM database. Any interpretation of the isotope dataset is outside the scope of this publication.

  5. Reconstructing the migration patterns of late Pleistocene mammals from northern Florida, USA

    NASA Astrophysics Data System (ADS)

    Hoppe, Kathryn A.; Koch, Paul L.

    2007-11-01

    We used analyses of the strontium isotope ( 87Sr/ 86Sr) ratios of tooth enamel to reconstruct the migration patterns of fossil mammals collected along the Aucilla River in northern Florida. Specimens date to the late-glacial period and before the last glacial maximum (pre-LGM). Deer and tapir displayed low 87Sr/ 86Sr ratios that were similar to the ratios of Florida environments, which suggest that these taxa did not migrate long distance outside of the Florida region. Mastodons, mammoths, and equids all displayed a wide range of 87Sr/ 86Sr ratios. Some individuals in each taxon displayed low 87Sr/ 86Sr ratios that suggest they ranged locally, while other animals had high 87Sr/ 86Sr ratios that suggest they migrated long distances (> 150 km) outside of the Florida region. Mastodons were the only taxa from this region that provided enough well-dated specimens to compare changes in migration patterns over time. Pre-LGM mastodons displayed significantly lower 87Sr/ 86Sr ratios than late-glacial mastodons, which suggests that late-glacial mastodons from Florida migrated longer distances than their earlier counterparts. This change in movement patterns reflects temporal changes in regional vegetation patterns.

  6. S Isotope Ratios of Central Italy Waters to Assess Their Origin

    NASA Astrophysics Data System (ADS)

    Castorina, Francesca; Masi, Umberto

    2010-05-01

    Sr isotopes have so far applied only occasionally to the study of the waters from central Italy. Therefore, we have analyzed more than 30 water samples from thermal and cold springs, and from the lakes located in the Quaternary K-alkaline volcanic districts of Latium, aimed at providing significant information on the sources of Sr and the hydrologic circulation. The 87Sr/86Sr composition of the waters shows a general correlation with the aquifer rocks, resulting in the waters from older carbonatic rocks having a less radiogenic signature than those from younger K-alkaline volcanic rocks. The Sr-isotope ratios of most thermal waters range narrowly by 0.708, indicating a common source of Sr, likely represented by the Upper Triassic Burano Anhydrites, i.e. the lowermost permeable formation in the study area. Moreover, the positive correlation between Sr and Ca suggests that bulk Ca was also supplied from that source. A minor number of thermal waters as well as all the waters from the lakes and cold springs display a larger Sr isotopic range (0.7085-0.7115), suggesting a relative large spectrum of sources for Sr. In particular, some waters derive their Sr from a singular source, but the most show isotopic signatures suggestive of mixed contributions from different aquifers. As a whole, the results from this study confirm that Sr isotopes are a useful tool contributing to explain the geochemical characteristics of surficial and groundwaters.

  7. 234U/238U and δ87Sr in peat as tracers of paleosalinity in the Sacramento-San Joaquin Delta of California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Paces, James B.; Alpers, Charles N.; Windham-Myers, Lisamarie; Neymark, Leonid; Bullen, Thomas D.; Taylor, Howard E.

    2013-01-01

    The purpose of this study was to determine the history of paleosalinity over the past 6000+ years in the Sacramento-San Joaquin Delta (the Delta), which is the innermost part of the San Francisco Estuary. We used a combination of Sr and U concentrations, d87Sr values, and 234U/238U activity ratios (AR) in peat as proxies for tracking paleosalinity. Peat cores were collected in marshes on Browns Island, Franks Wetland, and Bacon Channel Island in the Delta. Cores were dated using 137Cs, the onset of Pb and Hg contamination from hydraulic gold mining, and 14C. A proof of concept study showed that the dominant emergent macrophyte and major component of peat in the Delta, Schoenoplectus spp., incorporates Sr and U and that the isotopic composition of these elements tracks the ambient water salinity across the Estuary. Concentrations and isotopic compositions of Sr and U in the three main water sources contributing to the Delta (seawater, Sacramento River water, and San Joaquin River water) were used to construct a three-end-member mixing model. Delta paleosalinity was determined by examining variations in the distribution of peat samples through time within the area delineated by the mixing model. The Delta has long been considered a tidal freshwater marsh region, but only peat samples from Franks Wetland and Bacon Channel Island have shown a consistently fresh signal (<0.5 ppt) through time. Therefore, the eastern Delta, which occurs upstream from Bacon Channel Island along the San Joaquin River and its tributaries, has also been fresh for this time period. Over the past 6000+ years, the salinity regime at the western boundary of the Delta (Browns Island) has alternated between fresh and oligohaline (0.5-5 ppt).

  8. Stable Strontium (δ88/86Sr) and U-Th isotope systematics of cold-water corals: A combined proxy for Holocene changes of the Mediterranean outflow

    NASA Astrophysics Data System (ADS)

    Liebetrau, V.; Rüggeberg, A.; Fietzke, J.; Eisenhauer, A.; Flögel, S.; Linke, P.; Schönfeld, J.

    2007-12-01

    formation is supported by coincidence of its actual elevated position with the lack of living Lophelia pertusa at the sampling site. The stable strontium isotope ratio δ88/86Sr of biogenic carbonates may serve as a new paleo-temperature proxy for reef-building and solitary deep-sea corals and thus introduce new perspectives in paleoceanography, such as changes in intermediate and deep-sea temperature and ocean circulation. Fietzke J. and Eisenhauer A. (2006), G-cubed 7 Q08009, doi:10.1029/2006GC001243. Schönfeld J. and Zahn R. (2000), Palaeogeography Palaeoclimatology, Palaeoecology 159, 85 - 111.

  9. Sr-Isotope record of Quaternary marine terraces on the California coast and off Hawaii

    USGS Publications Warehouse

    Ludwig, K. R.; Muhs, D.R.; Simmons, K.R.; Moore, J.G.

    1992-01-01

    Strontium-isotopic ratios of dated corals have been obtained from submerged reefs formed during Quaternary glacial periods off the Hawaiian islands. These data, combined with data from deep-sea sediments, tightly constrain the secular variation of marine 87Sr 86Sr for the past 800,000 yr. Although long-term trends are apparent, no significant (>0.02???), rapid (<100,000 yr) excursions in 87Sr 86Sr were resolved nor did we observe any samples with 87Sr 86Sr greater than that of modern seawater. Strontium in mollusks from elevated marine terraces formed during interglacial periods on the southern California coast show resolvable and consistent variations in 87Sr 86Sr which, when compared to the trend of Quaternary marine 87Sr 86Sr, can be used to infer uplift rates and define approximate ages for the higher terraces. The Sr-isotope age estimates indicate that uplift rates vary among crustal blocks and were not necessarily constant with time. No contrast in Sr-isotopic ratios between similar-age Hawaiian and California fossils was observed, confirming that any change in marine 87Sr 86Sr from glacial to interglacial periods must be small. A realistic appraisal of the potential of Sr-isotope stratigraphy for chronometric applications in the Quaternary suggests that the technique will be limited to relatively coarse distinctions in age. ?? 1992.

  10. Strontium isotopes in otoliths of a non-migratory fish (slimy sculpin): Implications for provenance studies

    USGS Publications Warehouse

    Brennan, Sean R.; Fernandez, Diego P.; Zimmerman, Christian E.; Cerling, Thure E.; Brown, Randy J.; Wooller, Matthew J.

    2015-01-01

    Heterogeneity in 87Sr/86Sr ratios of river-dissolved strontium (Sr) across geologically diverse environments provides a useful tool for investigating provenance, connectivity and movement patterns of various organisms and materials. Evaluation of site-specific 87Sr/86Sr temporal variability throughout study regions is a prerequisite for provenance research, but the dynamics driving temporal variability are generally system-dependent and not accurately predictable. We used the time-keeping properties of otoliths from non-migratory slimy sculpin (Cottus cognatus) to evaluate multi-scale 87Sr/86Sr temporal variability of river waters throughout the Nushagak River, a large (34,700 km2) remote watershed in Alaska, USA. Slimy sculpin otoliths incorporated site-specific temporal variation at sub-annual resolution and were able to record on the order of 0.0001 changes in the 87Sr/86Sr ratio. 87Sr/86Sr profiles of slimy sculpin collected in tributaries and main-stem channels of the upper watershed indicated that these regions were temporally stable, whereas the Lower Nushagak River exhibited some spatio-teporal variability. This study illustrates how the behavioral ecology of a non-migratory organism can be used to evaluate sub-annual 87Sr/86Sr temporal variability and has broad implications for provenance studies employing this tracer.

  11. Sr isotopic characteristics in two small watersheds draining typical silicate and carbonate rocks: implication for the studies on seawater Sr isotopic evolution

    NASA Astrophysics Data System (ADS)

    Wu, W. H.; Zheng, H. B.; Yang, J. D.

    2013-06-01

    We systematically investigated Sr isotopic characteristics of small silicate watershed - the tributary Xishui River of the Yangtze River, and small carbonate watershed - the tributary Guijiang River of the Pearl River. The results show that the Xishui River has relatively high Sr concentrations (0.468-1.70 μmol L-1 in summer and 1.30-3.17 μmol L-1 in winter, respectively) and low 87Sr/86Sr ratios (0.708686-0.709148 in summer and 0.708515-0.709305 in winter), which is similar to the characteristics of carbonate weathering. The Guijiang River has low Sr concentrations (0.124-1.098 μmol L-1) and high 87Sr/86Sr ratios (0.710558-0.724605), being characterized by silicate weathering. In the Xishui River catchment, chemical weathering rates in summer are far higher than those in winter, indicating significant influence of climate regime. However, slight differences of 87Sr/86Sr ratios between summer and winter show that influence of climate on Sr isotope is uncertainty owing to very similar Sr isotope values in silicate and carbonate bedrocks. As 87Sr/86Sr ratios in the Xishui River are lower than those in seawater, they will decrease 87Sr/86Sr ratio of seawater after transported into oceans. Previous studies also showed that some basaltic watersheds with extremely high chemical weathering rates reduced the seawater Sr isotope ratios. In other words, river catchments with high silicate weathering rates do not certainly transport highly radiogenic Sr into oceans. Therefore, it may be questionable that using the variations of seawater 87Sr/86Sr ratio to indicate the continental silicate weathering intensity. In the Guijiang River catchment, 87Sr/86Sr ratios of carbonate rocks and other sources (rainwater, domestic and industrial waste water, and agricultural fertilizer) are lower than 0.71. In comparison, some non-carbonate components, such as, sand rocks, mud rocks, shales, have relatively high Sr isotopic compositions. Moreover, granites accounted for only 5% of the

  12. Rb/Sr isotopic and compositional retentivity of muscovite during deformation

    NASA Astrophysics Data System (ADS)

    Eberlei, T.; Habler, G.; Wegner, W.; Schuster, R.; Körner, W.; Thöni, M.; Abart, R.

    2015-06-01

    Permian metapegmatite muscovite from the Upper-Austroalpine Matsch Unit in Southern Tyrol (Italy) was investigated regarding its Rb/Sr and compositional retentivity during Cretaceous Upper-greenschist facies deformation. The data imply that microstructurally relic Permian magmatic muscovite largely maintained its major and trace element compositions during deformation, whereas the Rb/Sr geochronometer is strongly affected by a net loss of Sr. Lower Sr concentrations of muscovite correlate with higher 87Rb/86Sr and 87Sr/86Sr ratios. In most samples, the muscovite grain size- and magnetic-fractions with the lowest 87Rb/86Sr and 87Sr/86Sr ratios preserve a Permo-Triassic muscovite-whole rock Rb/Sr apparent age interpreted as to reflect formation during or cooling after pegmatite emplacement. Contrastingly, muscovite fractions with higher 87Rb/86Sr and 87Sr/86Sr ratios are arranged along a roughly linear array with a positive correlation of the 87Rb/86Sr and 87Sr/86Sr ratios in the 87Rb/86Sr vs 87Sr/86Sr space. They yield successively lower muscovite-whole rock Rb/Sr apparent ages. We explain the variations in the Rb/Sr isotopic character of microstructurally relic muscovite by a, presumably deformation-related, loss of Sr during the Cretaceous event. Contemporaneously, only very limited amounts of isotopically different Sr from the matrix reservoir might possibly have entered the muscovite. Consequently, the Rb/Sr of the relic muscovite is affected by a net loss of Sr. The results imply that at temperatures of < 500 °C, deformation is supposed to be the predominant factor in controlling the Rb/Sr geochronometer of relic muscovite, by significantly reducing the characteristic length scale for volume diffusion. However, variations of the major and trace element compositions within Permian relic muscovite are interpreted to rather reflect primary compositional instead of deformation-related variations.

  13. Migration and rearing histories of chinook salmon (Oncorhynchus tshawytscha) determined by ion microprobe Sr isotope and Sr/Ca transects of otoliths

    USGS Publications Warehouse

    Bacon, C.R.; Weber, P.K.; Larsen, K.A.; Reisenbichler, R.; Fitzpatrick, J.A.; Wooden, J.L.

    2004-01-01

    Strontium isotope and Sr/Ca ratios measured in situ by ion microprobe along radial transects of otoliths of juvenile chinook salmon (Oncorhynchus tshawytscha) vary between watersheds with contrasting geology. Otoliths from ocean-type chinook from Skagit River estuary, Washington, had prehatch regions with 87Sr/86Sr ratios of ???0.709, suggesting a maternally inherited marine signature, extensive fresh water growth zones with 87Sr/86Sr ratios similar to those of the Skagit River at ???0.705, and marine-like 87Sr/86Sr ratios near their edges. Otoliths from stream-type chinook from central Idaho had prehatch 87Sr/86Sr ratios ???0.711, indicating that a maternal marine Sr isotopic signature is not preserved after the ???1000- to 1400-km migration from the Pacific Ocean. 87Sr/86Sr ratios in the outer portions of otoliths from these Idaho juveniles were similar to those of their respective streams (???0.708-0.722). For Skagit juveniles, fresh water growth was marked by small decreases in otolith Sr/Ca, with increases in Sr/Ca corresponding to increases in 87Sr/86Sr with migration into salt water. Otoliths of Idaho fish had Sr/Ca radial variation patterns that record seasonal fluctuation in ambient water Sr/Ca ratios. The ion microprobe's ability to measure both 87Sr/86Sr and Sr/Ca ratios of otoliths at high spatial resolution in situ provides a new tool for studies of fish rearing and migration. ?? 2004 NRC Canada.

  14. Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichon Volcano, Mexico

    USGS Publications Warehouse

    Tepley, F. J.; Davidson, J.P.; Tilling, R.I.; Arth, Joseph G.

    2000-01-01

    Consistent core-to-rim decreases of 87Sr/86Sr ratios and coincident increases in Sr concentrations in plagioclase phenocrysts of varying size (~ 1 cm to 2 mm) are reported from samples of the 1982 and pre-1982 (~ 200 ka) eruptions of El Chichon Volcano. Maximum 87Sr/86Sr ratios of ~ 0.7054, significantly higher than the whole-rock isotopic ratios (~ 0.7040-0.7045), are found in the cores of plagioclase phenocrysts, and minimum 87Sr/86Sr ratios of ~ 0.7039 are found near some of the rims. Plagioclase phenocrysts commonly display abrupt fluctuations in An content (up to 25 mol %) that correspond to well-developed dissolution surfaces The isotopic, textural and compositional characteristics suggest that these plagioclase phenocrysts grew in a system that was periodically recharged by higher-temperature magma with a lower 87Sr/86Sr ratio and a higher Sr concentration. Rim 87Sr/86Sr ratios in plagioclase phenocrysts of rocks from the 200 ka eruption indicate that, at that time, the magma had already attained the lowest recorded 87Sr/86Sr value of the system (~ 0.7039). In contrast, cores from plagioclase phenocrysts of the 1982 eruption, inferred to have grown in the past few thousand years, have the highest recorded 87Sr/86Sr ratios of the system. Collectively, the Sr isotopic data (for plagioclase and whole rock), disequilibrium textural features of the phenocrysts, known eruption frequencies, and inferred crystal-residence times of the plagioclases are best interpreted in terms of an intermittent magma chamber model. Similar processes, including crustal contamination, magma mixing, periodic recharge by addition of more mafic magma to induce plagioclase disequilibrium (possibly triggering eruption) and subsequent re-equilibration, apparently were operative throughout the 200 ky history of the El Chichon magma system.

  15. Variations in Sr and Nd isotopic ratios of mineral particles in cryoconite in western Greenland

    NASA Astrophysics Data System (ADS)

    Nagatsuka, Naoko; Takeuchi, Nozomu; Uetake, Jun; Shimada, Rigen; Onuma, Yukihiko; Tanaka, Sota; Nakano, Takanori

    2016-11-01

    In order to better understand the source of minerals on the dark-colored ice, located in the Greenland ice sheet ablation zone, we analyzed the Sr and Nd isotopic ratios of minerals in cryoconite, which were collected from glaciers in northwest and southwest Greenland. We focused on the following: (i) comparison of the isotopes of minerals in cyroconite with those in sediments from local and distant areas, (ii) regional variations in western Greenland, and (iii) spatial variations across an individual a glacier. The mineral components of the cryoconite showed variable Sr and Nd isotopic ratios (87Sr/86Sr: 0.711335 to 0.742406, ɛNd (0): -33.1 to -22.9), which corresponded to those of the englacial dust and moraine on and around the glaciers but were significantly different from those of the distant deserts that have been considered to be primary sources of mineral dust on the Greenland Ice Sheet. This suggests that the minerals within the cryoconites were mainly derived from local sediments, rather than from distant areas. The Sr ratios in the northwestern region were significantly higher than those in the southwestern region. This is probably due to geological differences in the source areas, such as the surrounding glaciers in each region. The isotopic ratios further varied spatially within a glacier (Qaanaaq and Kangerlussuaq areas), indicating that the silicate minerals on the glaciers were derived not from a single source but from multiple sources, such as englacial dust and wind-blown minerals from the moraine surrounding the glaciers.

  16. Dating the Martian meteorite Zagami by the 87Rb-87Sr isochron method with a prototype in situ resonance ionization mass spectrometer

    PubMed Central

    Scott Anderson, F; Levine, Jonathan; Whitaker, Tom J

    2015-01-01

    RATIONALE The geologic history of the Solar System builds on an extensive record of impact flux models, crater counts, and ∼270 kg of lunar samples analyzed in terrestrial laboratories. However, estimates of impactor flux may be biased by the fact that most of the dated Apollo samples were only tenuously connected to an assumed geologic context. Moreover, uncertainties in the modeled cratering rates are significant enough to lead to estimated errors for dates on Mars and the Moon of ∼1 Ga. Given the great cost of sample return missions, combined with the need to sample multiple terrains on multiple planets, we have developed a prototype instrument that can be used for in situ dating to better constrain the age of planetary samples. METHODS We demonstrate the first use of laser ablation resonance ionization mass spectrometry for 87Rb-87Sr isochron dating of geological specimens. The demands of accuracy and precision have required us to meet challenges including regulation of the ambient temperature, measurement of appropriate backgrounds, sufficient ablation laser intensity, avoidance of the defocusing effect of the plasma created by ablation pulses, and shielding of our detector from atoms and ions of other elements. RESULTS To test whether we could meaningfully date planetary materials, we have analyzed a piece of the Martian meteorite Zagami. In each of four separate measurements we obtained 87Rb-87Sr isochron ages for Zagami consistent with its published age, and, in both of two measurements that reached completion, we obtained better than 200 Ma precision. Combining all our data into a single isochron with 581 spot analyses gives an 87Rb-87Sr age for this specimen of 360 ±90 Ma. CONCLUSIONS Our analyses of the Zagami meteorite represent the first successful application of resonance ionization mass spectrometry to isochron geochronology. Furthermore, the technique is miniaturizable for spaceflight and in situ dating on other planetary bodies. © 2014 The

  17. Improved Frequency Measurement of the 1S0-3P0 Clock Transition in 87Sr Using a Cs Fountain Clock as a Transfer Oscillator

    NASA Astrophysics Data System (ADS)

    Tanabe, Takehiko; Akamatsu, Daisuke; Kobayashi, Takumi; Takamizawa, Akifumi; Yanagimachi, Shinya; Ikegami, Takeshi; Suzuyama, Tomonari; Inaba, Hajime; Okubo, Sho; Yasuda, Masami; Hong, Feng-Lei; Onae, Atsushi; Hosaka, Kazumoto

    2015-11-01

    We performed an absolute frequency measurement of the 1S0-3P0 transition in 87Sr with a fractional uncertainty of 1.2 × 10-15, which is less than one-third that of our previous measurement. A caesium fountain atomic clock was used as a transfer oscillator to reduce the uncertainty of the link between a strontium optical lattice clock and the SI second. The absolute value of the transition frequency is 429 228 004 229 873.56(49) Hz.

  18. Strontium alteration in the Troodos ophiolite: implications for fluid fluxes and geochemical transport in mid-ocean ridge hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Bickle, Mike J.; Teagle, Damon A. H.

    1992-09-01

    New and published strontium isotope analyses from the Troodos ophiolite constrain fluid-solid exchange processes, and the magnitude and circulation paths of the hydrothermal fluids. The 87Sr/ 86Sr profile reflects alteration in the recharge zone of an evolving hydrothermal system. Fluid-rock strontium isotope exchange in the upper ˜ 1.5 km of extrusive lavas was kinetically limited and seawater-derived fluids emitted from the base of this zone were buffered to 87Sr/ 86Sr ratios between ˜ 0.7047 and 0.7059. In contrast, over the next ˜ 1 km depth interval of sheeted dykes and the uppermost plutonics, 87Sr/ 86Sr values cluster about0.7054 ± 7 (2σ) and fluid flow is inferred to have been pervasive with near-equilibrium fluid-rock exchange. Quartz-chlorite and epidosite zones, the probable pathways of the concentrated, high-temperature upwelling fluids, have identical 87Sr/ 86Sr ratios to adjacent diabase dykes. On Troodos a time-integrated fluid flux in excess of2.9 × 10 7 kg m -2 is required to transport the strontium isotope composition of ˜ 0.7054, set in the kinetically controlled exchange zone, through the ˜ 1 km of sheeted dykes and into the zones of concentrated upwelling. The uniformity of the 87Sr/ 86Sr ratios in the diabase sheeted dykes and high-temperature epidosite and quartz-chlorite rocks indicate that the strontium isotopic alteration took place during the high temperature phase of hydrothermal circulation. The inferred minimum time-integrated fluid flux of2.9 × 10 7 kg m -2 substantially exceeds that of˜ 5 × 10 6 kg m -2 inferred from thermal models of high temperature circulation, but is comparable with estimates of the hydrothermal flux from oceanic budgets of 3He, Mg and 87Sr. The high flux estimate for Troodos is consistent with the ophiolite venting fluids, with 87Sr/ 86Sr elevated significantly above rock values, which contrasts with the near-MORB 87Sr/ 86Sr ratios of fluids from active high-temperature vents at mid-ocean ridges and

  19. Tracing Solute Sources in a Small Tropical Granitoid Watershed

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.; Kurtz, A. C.; Derry, L. A.; Troester, J.

    2005-12-01

    We studied strontium isotope systematics in the Rio Icacos watershed in Puerto Rico in order to trace the relative contributions of individual minerals to weathering fluxes. This study compliments work done with 234U/238U disequilibria and Ge/Si ratios in the same system, providing critical information about the mechanisms of biotite weathering in particular, and allowing us to trace changing sources of Sr to streamwater during storm events. We analyzed 87Sr/86Sr ratios in primary plagioclase, biotite, and hornblende from the Tertiary quartz diorite bedrock, as well as secondary kaolinite and altered biotite mineral separates from the soil and saprolite profile. We also measured 87Sr/86Sr ratios of 10 porewater samples taken from tension lysimeters at a range of depths, from 853 cm near the bedrock-saprolite interface to 15 cm near the soil surface. Streamwater samples from the catchment were also analyzed, under both baseflow and stormflow conditions. Streamwaters and the deepest porewaters have low 87Sr/86Sr ratios (0.7052 to 0.7063) and high [Sr], primarily reflecting plagioclase (0.7042, 560 ppm Sr) and hornblende (0.7058, 80 ppm Sr) weathering at the bedrock-saprolite interface. Soil porewater 87Sr/86Sr ratios steadily become increasingly radiogenic (higher value) with decreasing depth, reaching a value of 0.712 near the surface. This reflects a combination of the increasing contribution of biotite weathering, and the contribution of sea salt aerosol Sr, which is assumed to have the seawater 87Sr/86Sr ratio of 0.7092. The possible impact of atmospheric dust inputs on the Sr budget is investigated using Nd isotopes as a tracer of African dust. Primary bedrock biotite has a highly radiogenic 87Sr/86Sr ratio of 0.7827, altered biotite from the saprolite (505 cm) has an intermediate value 0.7307, and the altered biotite present in the soil (66 cm) has a 87Sr/86Sr ratio of 0.7055, although substantial heterogeneity was observed among altered biotite samples. We

  20. Rb-Sr isotope systematics of granitic soil chronosequence: The importance of biotite weathering

    SciTech Connect

    Blum, J.D.; Erel, Y.

    1997-08-01

    The Rb-Sr isotope systematics of bedrock, soil digests, and the cation exchange fraction of soils from a granitic glacial soil chronosequence in the Wind River Mountains, Wyoming, USA, were investigated. Six soil profiles ranging in age from 0.4 to {approximately}300 kyr were studied and revealed that the {sup 87}Sr/{sup 86}Sr ratio of exchangeable strontium in the B-horizons decreased from 0.7947 to 0.7114 with increasing soil age. Soil digests of the same samples showed much smaller variation in {sup 87}Sr/{sup 86}Sr from 0.7272 to 0.7103 and also generally decreased with increasing soil age. Elevation of the {sup 87}Sr/{sup 86}Sr ratios of Sr released by weathering over the soil digest and bedrock values results from the rapid weathering of biotite to form hydrobiotite and vermiculite in the younger soils. Biotite is estimated to weather at approximately eight times the rate of plagioclase (per gram of mineral) in the youngest soil profile and decreases to a rate of only {approximately}20% of that of plagioclase in the oldest soil. {sup 87}Rb/{sup 86}Sr ratios of the soil cation exchange fraction are estimated to be depleted by factors of up to 11 over the {sup 87}Sr/{sup 86}Sr ratios released by weathering, due to ion exchange partitioning. This study demonstrates that the {sup 87}Sr/{sup 86}Sr ratio released by weathering of crystalline rocks can deviate significantly from bedrock values, and that in soils less than {approximately}20 kyr in age which contain biotite in the soil parent material, weathering-derived {sup 87}Sr/{sup 86}Sr values can be elevated so dramatically that this factor must be considered in estimations of weathering rates based on strontium isotopes. 54 refs., 3 figs., 4 tabs.

  1. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic

    NASA Astrophysics Data System (ADS)

    Song, Haijun; Wignall, Paul B.; Tong, Jinnan; Song, Huyue; Chen, Jing; Chu, Daoliang; Tian, Li; Luo, Mao; Zong, Keqing; Chen, Yanlong; Lai, Xulong; Zhang, Kexin; Wang, Hongmei

    2015-08-01

    New 87Sr/86Sr data based on 127 well-preserved and well-dated conodont samples from South China were measured using a new technique (LA-MC-ICPMS) based on single conodont albid crown analysis. These reveal a spectacular climb in seawater 87Sr/86Sr ratios during the Early Triassic that was the most rapid of the Phanerozoic. The rapid increase began in Bed 25 of the Meishan section (GSSP of the Permian-Triassic boundary, PTB), and coincided closely with the latest Permian extinction. Modeling results indicate that the accelerated rise of 87Sr/86Sr ratios can be ascribed to a rapid increase (>2.8×) of riverine flux of Sr caused by intensified weathering. This phenomenon could in turn be related to an intensification of warming-driven runoff and vegetation die-off. Continued rise of 87Sr/86Sr ratios in the Early Triassic indicates that continental weathering rates were enhanced >1.9 times compared to those of the Late Permian. Continental weathering rates began to decline in the middle-late Spathian, which may have played a role in the decrease of oceanic anoxia and recovery of marine benthos. The 87Sr/86Sr values decline gradually into the Middle Triassic to an equilibrium values around 1.2 times those of the Late Permian level, suggesting that vegetation coverage did not attain pre-extinction levels thereby allowing higher runoff.

  2. Integrating 40Ar-39Ar, 87Rb-87Sr and 147Sm-143Nd geochronology of authigenic illite to evaluate tectonic reactivation in an intraplate setting, central Australia

    NASA Astrophysics Data System (ADS)

    Middleton, Alexander W.; Uysal, I. Tonguç; Bryan, Scott E.; Hall, Chris M.; Golding, Suzanne D.

    2014-06-01

    The Warburton-Cooper basins, central Australia, include a multitude of reactivated fracture-fault networks related to a complex, and poorly understood, tectonic evolution. We investigated authigenic illites from a granitic intrusion and sedimentary rocks associated with prominent structural features (Gidgealpa-Merrimelia-Innamincka Ridge and the Nappamerri Trough). These were analysed by 40Ar-39Ar, 87Rb-87Sr and 147Sm-143Nd geochronology to explore the thermal and tectonic histories of central Australian basins. The combined age data provide evidence for three major periods of fault reactivation throughout the Phanerozoic. While Carboniferous (323.3 ± 9.4 Ma) and Late Triassic ages (201.7 ± 9.3 Ma) derive from basin-wide hydrothermal circulation, Cretaceous ages (∼128 to ∼86 Ma) reflect episodic fluid flow events restricted to the synclinal Nappamerri Trough. Such events result from regional extensional tectonism derived from the transferral of far-field stresses to mechanically and thermally weakened regions of the Australian continent. Specifically, Cretaceous ages reflect continent-wide transmission of tensional stress from a >2500 km long rifting event on the eastern (and southern) Australian margin associated with break-up of Gondwana and opening of the Tasman Sea. By integrating 40Ar-39Ar, 87Rb-87Sr and 147Sm-143Nd dating, this study highlights the use of authigenic illite in temporally constraining the tectonic evolution of intracontinental basins that would otherwise remain unknown. Furthermore, combining Sr- and Ar-isotopic systems enables more accurate dating of authigenesis whilst significantly reducing geochemical pitfalls commonly associated with these radioisotopic dating methods.

  3. Chondrites - Initial strontium-87/strontium-86 ratios and the early history of the solar system.

    NASA Technical Reports Server (NTRS)

    Wetherill, G. W.; Mark, R.; Lee-Hu, C.

    1973-01-01

    A sodium-poor, calcium-rich inclusion in the carbonaceous chondrite Allende had a Sr-87/Sr-86 ratio at the time of its formation of 0.69880, as low a value as that found in any other meteorite. The higher Sr-87/Sr-86 ratios found in ordinary chondrites indicate that their formation or isotopic equilibration occurred tens of millions of years later.

  4. Hyperfine structure and Zeeman tuning of the A {sup 2}PI-X {sup 2}SIGMA{sup +}(0,0) band system of the odd isotopologue of strontium monofluoride {sup 87}SrF

    SciTech Connect

    Le, Anh T.; Wang Hailing; Steimle, Timothy C.

    2009-12-15

    The low-rotational lines of the A {sup 2}PI-X {sup 2}SIGMA{sup +}(0,0) band system of the odd isotopologue of strontium monofluoride, {sup 87}SrF, were recorded and analyzed. The {sup 87}Sr(I=9/2) magnetic hyperfine interaction is significant only in the |OMEGA|=1/2 spin-orbit component of the A {sup 2}PI state. Optical transitions appropriate for monitoring ultracold samples of {sup 87}SrF are identified. The determined fine-structure parameters were used to predict the anisotropic magnetic g factor, g{sub l}, for the X {sup 2}SIGMA{sup +}(v=0) state. The g factors were used to predict the magnetic tuning of the N=0 (+parity) and N=1 (-parity) levels of the X {sup 2}SIGMA{sup +}(v=0) state. A comparison to spectroscopic parameters for the {sup 88}SrF isotopologue is given.

  5. High initial Sr isotopic ratios and evidence for magma mixing in the Pioneer batholith of southwest Montana

    SciTech Connect

    Arth, J.G.; Zen, E.; Sellers, G.; Hammarstrom, J.

    1986-05-01

    The northeast part of the composite Pioneer batholith of southwest Montana consists of Late Cretaceous calc-alkaline plutons that vary in composition as a function of age, changing from minor hornblende-biotite quartz diorite at about 76 m.y., to a small pluton of hornblende-biotite tonalite at about 74 m.y., to abundant biotite-hornblende granodiorite and biotite granite at about 72 m.y., to some biotite granodiorite and 2-mica granite at 67 to 65 m.y. Initial /sup 87/Sr//sup 86/Sr ratios (SIRs) for the plutons range from 0.7112 to 0.7160. Magmas having a SIR near 0.7112 appear in most episodes of emplacement, whereas those having higher values are restricted to individual episodes. Two granodiorite plutons of 72 m.y. age show a mutual gradational contact, across which the SIR varies over a distance of 7 km from 0.711 to 0.714. The variation is ascribed to mixing between contemporaneous but isotopically distinct granodiorite magmas. The high SIRs of the batholith are interpreted as reflecting partial melting of portions of Precambrian lower crustal lithosphere to produce mafic to intermediate magma. The source may be similar to parts of Proterozoic gneisses now exposed at the surface. Mafic to intermediate magma may have fractionally crystallized at depth and released residual magma episodically to the upper crust over approximately 11 m.y. The high SIR of the Pioneer batholith is broadly similar to that of large parts of the Idaho batholith to the west, but is distinct from the SIR of the Boulder batholith to the northeast. A significant crustal discontinuity may separate the Pioneer-Idaho region from the Boulder region.

  6. Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206

    USGS Publications Warehouse

    Tatsumoto, M.; Knight, R.J.; Allegre, C.J.

    1973-01-01

    Measurements of the lead isotopic composition and the uranium, thorium, and lead concentrations in meteorites were made in order to obtain more precise radiometric ages of these members of the solar system. The newly determined value of the lead isotopic composition of Canyon Diablo troilite is as follows: 206Pb/204Pb = 9.307, 207Pb/204Pb = 10.294, and 208Pb/204Pb = 29.476. The leads of Angra dos Reis, Sioux County, and Nuevo Laredo achondrites are very radiogenic, the 206Pb/204Pb values are about 200, and the uranium-thorium-lead systems are nearly concordant. The ages of the meteorites as calculated from a single-stage 207Pb/206Pb isochron based on the newly determined primordial lead value and the newly reported 235U and 238U decay constants, are 4.528 ?? 10 9 years for Sioux County and Nuevo Laredo and 4.555 ?? 10 9 years for Angra dos Reis. When calculated with the uranium decay constants used by Patterson, these ages are 4.593 ?? 109 years and 4.620 ?? 109 years, respectively, and are therefore 40 to 70 ?? 106 years older than the 4.55 ?? 109 years age Patterson reported. The age difference of 27 ?? 106 years between Angra dos Reis and the other two meteorites is compatible with the difference between the initial 87Sr/86Sr ratio of Angra dos Reis and that of seven basaltic achondrites observed by Papanastassiou and Wasserburg. The time difference is also comparable to that determined by 129I-129Xe chronology. The ages of ordinary chondrites (H5 and L6) range from 4.52 to 4.57 ?? 109 years, and, here too, time differences in the formation of the parent bodies or later metamorphic events are indicated. Carbonaceous chondrites (C2 and C3) appear to contain younger lead components.

  7. RbSr isotope systematics of a granitic soil chronosequence: The importance of biotite weathering

    NASA Astrophysics Data System (ADS)

    Blum, Joel D.; Erel, Yigal

    1997-08-01

    The RbSr isotope systematics of bedrock, soil digests, and the cation exchange fraction of soils from a granitic glacial soil chronosequence in the Wind River Mountains, Wyoming, USA, were investigated. Six soil profiles ranging in age from 0.4 to ˜300 kyr were studied and revealed that the 87Sr /86Sr ratio of exchangeable strontium in the B-horizons decreased from 0.7947 to 0.7114 with increasing soil age. Soil digests of the same samples showed much smaller variation in 87Sr/86Sr from 0.7272 to 0.7103 and also generally decreased with increasing soil age. Elevation of the 87Sr/86Sr ratios of Sr released by weathering over the soil digest and bedrock values results from the rapid weathering of biotite to form hydrobiotite and vermiculite in the younger soils. Biotite is estimated to weather at aaproximately eight times the rate of plagioclase (per gram of mineral) in the youngest soil profile and decreases to a rate of only ˜20% of that of plagioclase in the oldest soil. 87Rb/86Sr ratios of the soil cation exchange fraction are estimated to be depleted by factors of up to 11 over the 87Rb/86Sr ratios released by weathering, due to ion exchange partitioning. This study demonstrates that the 87Sr/86Sr ratio released by weathering of crystalline rocks can deviate significantly from bedrock values, and that in soils less than ˜20 kyr in age which contain biotite in the soil parent material, weathering-derived 87Sr/86Sr values can be elevated so dramatically that this factor must be considered in estimations of weathering rates based on strontium isotopes.

  8. Simultaneous extension of both basic microstructural components in scleractinian coral skeleton during night and daytime, visualized by in situ 86Sr pulse labeling.

    PubMed

    Domart-Coulon, I; Stolarski, J; Brahmi, C; Gutner-Hoch, E; Janiszewska, K; Shemesh, A; Meibom, A

    2014-01-01

    Using in situ (12 h) pulse-labeling of scleractinian coral aragonitic skeleton with stable 86Sr isotope, the diel pattern of skeletal extension was investigated in the massive Porites lobata species, grown at 5 m depth in the Gulf of Eilat. Several microstructural aspects of coral biomineralization were elucidated, among which the most significant is simultaneous extension of the two basic microstructural components Rapid Accretion Deposits (RAD; also called Centers of Calcification) and Thickening Deposits (TD; also called fibers), both at night and during daytime. Increased thickness of the 86Sr-labeled growth-front in the RADs compared to the adjacent TDs revealed that in this species RADs extend on average twice as fast as TDs. At the level of the individual corallite, skeletal extension is spatially highly heterogeneous, with sporadic slowing or cessation depending on growth directions and skeletal structure morphology. Daytime photosynthesis by symbiotic dinoflagellates is widely acknowledged to substantially increase calcification rates at the colony and the corallite level in reef-building corals. However, in our study, the average night-time extension rate (visualized in three successive 12 h pulses) was similar to the average daytime extension (visualized in the initial 12 h pulse), in all growth directions and skeletal structures. This research provides a platform for further investigations into the temporal calibration of coral skeletal extension via cyclic growth increment deposition, which is a hallmark of coral biomineralization.

  9. Age determinations and growth rates of Pacific ferromanganese deposits using strontium isotopes

    USGS Publications Warehouse

    Ingram, B.L.; Hein, J.R.; Farmer, G.L.

    1990-01-01

    87Sr 86Sr ratios, trace element and REE compositions, and textural characteristics were determined for three hydrogenetic Fe-Mn crusts, one hydrothermal deposit, and two mixed hydrothermalhydrogenetic crusts from the Pacific. The Sr isotope data are compared to the Sr seawater curve for the Cenozoic to determine the ages and growth rates of the crusts. The 87Sr 86Sr in the crusts does not increase monotonically with depth as expected if the Sr were solely derived from seawater and perfectly preserved since deposition. This indicates post-depositional exchange of Sr or heterogeneous sources for the Sr originally contained in the crusts. Textures of hydrogenetic crusts generally correlate with Sr isotopic variations. The highest porosity intervals commonly exhibit the highest 87Sr 86Sr ratios, indicating exchange with younger seawater. Intervals with the lowest porosity commonly have lower 87Sr 86Sr and may preserve the original Sr isotopic ratios. Minimum ages of crust growth inception were calculated from dense, low porosity intervals. Growth of the hydrogenetic crusts began at or after 23 Ma, although their substrates are Cretaceous. Estimated average growth rates of the three hydrogenetic crusts vary between 0.9 and 2.7 mm/Ma, consistent with published rates determined by other techniques. Within the Marshall Islands crust, growth rates for individual layers varied greatly between 1.0 and 5.4 mm/Ma. For one crust, very low 87Sr 86Sr ratios occurred in detrital-rich intervals. Hydrothermal Fe-Mn oxide from the active Lau Basin back-arc spreading axis (Valu Fa Ridge) has an 87Sr 86Sr ratio with a predominantly seawater signature ( 87Sr 86Sr 0.709196), indicating a maximum age of 0.9 Ma. One crust from an off-axis seamount west of Gorda Ridge may have begun precipitating hydrogenetically at 0.5 Ma (0.709211), and had increasing hydrothermal or volcanic input in the top half of the crust, indicated by a significantly lower 87Sr 86Sr ratio (0.709052). ?? 1990.

  10. Isotopic and chemical constraints on the petrogenesis of Blackburn Hills volcanic field, western Alaska

    NASA Astrophysics Data System (ADS)

    Moll-Stalcup, Elizabeth J.; Arth, Joseph G.

    1991-12-01

    The Blackburn Hills volcanic field is one of several Late Cretaceous and early Tertiary (75-50 Ma) volcanic fields in western Alaska that comprise a vast magmatic province extending from the Arctic Circle to Bristol Bay. It consists of andesite flows, rhyolite domes, a central granodiorite to quartz monzonite pluton, and small intrusive rhyolite porphyries, overlain by basalt and alkali-rhyolites. Most of the field consists of andesite flows which can be divided into two groups on the basis of elemental and isotopic composition: a group having lower ( 87Sr /86Sr ) i, higher ( 143Nd /144Nd ) i, and moderate LREE and HREE contents (group 1), and a group having higher ( 87Sr /86Sr ) i, lower ( 143Sr /144Sr ) i, and lower HREE contents. Basalts are restricted to the top of the stratigraphic section, comprise the most primitive part of group 1 [( 87Sr /86Sr ) i = 0.7033; ( 143Nd /144Nd ) i = 0.5129] , and have trace-element ratios that are similar to those of oceanic island basalts (OIBs). In contrast to the basalts, group 1 andesites have higher ( 87Sr /86Sr ) i and lower ( 143Nd /144Nd ) i, and represent interaction of mantle-derived magmas with the lower crust of Koyukuk terrane. Group 2 andesites have ( 87Sr /86Sr ) i and ( 143Nd /144Nd ) i that are near bulk-earth values and probably formed by partial melting of the lower crust of Koyukuk terrane. The central pluton and rhyolite porphyries are isotopically uniform ( 87Sr /86Sr ) i ≈ 0.704, ( 143Nd /144Nd ) i ≈ 0.51275, and are interpreted to have formed by melting of young mafic to intermediate crustal rocks or by fractionation of group 1 andesites. The rhyolite domes have an isotopic range similar to that of the basalts and andesites [( 87Sr /86Sr ) i = 0.70355-0.70499; ( 143Nd /144Nd ) i = 0.51263-0.51292] , which suggests they formed by fractionation of the and site and basalt magmas. Although some workers have suggested that the volcanic field is underlain by old continental crust, none of the data require

  11. Acidification processes and soil leaching influenced by agricultural practices revealed by strontium isotopic ratios

    NASA Astrophysics Data System (ADS)

    Pierson-Wickmann, Anne-Catherine; Aquilina, Luc; Weyer, Christina; Molénat, Jérôme; Lischeid, Gunnar

    2009-08-01

    In natural river systems, the chemical and isotopic composition of stream- and ground waters are mainly controlled by the geology and water-rock interactions. The leaching of major cations from soils has been recognized as a possible consequence of acidic deposition from atmosphere for over 30 years. Moreover, in agricultural areas, the application of physiological acid fertilizers and nitrogen fertilizers in the ammonia form may enhance the cation leaching through the soil profile into ground- and surface waters. This origin of leached cations has been studied on two small and adjacent agricultural catchments in Brittany, western France. The study catchments are drained by two first-order streams, and mainly covered with cambisoils, issued from the alteration and weathering of a granodiorite basement. Precipitations, soil water- and NH 4 acetate-leachates, separated minerals, and stream waters have been investigated. Chemical element ratios, such as Ba/Sr, Na/Sr and Ca/Sr ratios, as well as Sr isotopic ratios are used to constrain the relative contribution from potential sources of stream water elements. Based on Sr isotopic ratio and element concentration, soil water- and NH 4 acetate leaching indicates (1) a dominant manure/slurry contribution in the top soil, representing a cation concentrated pool, with low 87Sr/ 86Sr ratios; (2) in subsoils, mineral dissolution is enhanced by fertilizer application, becoming the unique source of cations in the saprolite. The relatively high weathering rates encountered implies significant sources of cations which are not accessory minerals, but rather plagioclase and biotite dissolution. Stream water has a very different isotopic and chemical composition compared to soil water leaching suggesting that stream water chemistry is dominated by elements issued from mineral and rock weathering. Agriculture, by applications of chemical and organic fertilizers, can influence the export of major base cations, such as Na +. Plagioclase

  12. The IRHUM database - bioavailable strontium isotope ratios of France for geochemical fingerprinting

    NASA Astrophysics Data System (ADS)

    Willmes, Malte; Moffat, Ian; Grün, Rainer; Armstrong, Richard; Kinsley, Les; McMorrow, Linda

    2013-04-01

    Strontium isotope ratios (87Sr/86Sr) are used as a geochemical tracer in a wide range of fields including archaeology, ecology, soil, food and forensic sciences. These applications are based on the principle that strontium isotopic ratios of materials reflect the geological sources of the strontium, which were available during its formation. Geologic regions with distinct strontium isotope ranges, which depend on their age and composition, can be differentiated. A major constraint for current studies is the lack of robust reference maps to evaluate the strontium isotope ratios measured in the samples. The aim of the IRHUM (isotopic reconstruction of human migration) database is to provide a reference map of bioavailable strontium isotope ratios for continental France. The current dataset contains 400 sample locations covering the major geologic units of the Paris and Aquitaine Basin, the Massif Central, and the Pyrenees. At each site soil and plant samples have been collected to cover the whole range of strontium ratios at a specific location. The database is available online at www.rses.anu.edu.au/research-areas/archaeogeochemistry and contains the bioavailable strontium isotope data as well as major and trace element concentrations for soil and plant samples. Strontium isotopes were analysed using a Neptune multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) and elemental concentrations with a Varian Vista Pro Axial ICP-AES (inductively-coupled plasma atomic emission spectrometer). In addition, IRHUM provides spatial context for each sample, including background geology, field observations and soil descriptions. This metadata allows users to evaluate the suitability of a specific data point for their study. The IRHUM database fills an important gap between high resolution studies from specific sites (e.g. archaeological sites), to the very broad geochemical mapping of Europe. Thus it provides an excellent tool to evaluate the regional context

  13. From soil to grape and wine: Variation of light and heavy elements isotope ratios.

    PubMed

    Durante, Caterina; Bertacchini, Lucia; Bontempo, Luana; Camin, Federica; Manzini, Daniela; Lambertini, Paolo; Marchetti, Andrea; Paolini, Mauro

    2016-11-01

    In the development of a geographical traceability model, it is necessary to understand if the value of the monitored indicators in a food is correlated to its origin or if it is also influenced by 'external factors' such as those coming from its production. In this study, a deeper investigation of the trend of direct geographical traceability indicators along the winemaking process of two traditional oenological products was carried out. Different processes were monitored, sampling each step of their production (grape juice, intermediate products and wine). The results related to the determinations of δ(18)O, (D/H)I, (D/H)II, δ(13)C, δ(15)N and (87)Sr/(86)Sr have been reported. Furthermore, correspondence with the isotopic values coming from the respective soil and vine-branch samples have been investigated as well, showing the optimal traceability power of the monitored geographical tracers.

  14. Species and life-history affects the utility of otolith chemical composition to determine natal stream-of-origin in Pacific salmon

    USGS Publications Warehouse

    Zimmerman, Christian E.; Swanson, Heidi K.; Volk, Eric C.; Kent, Adam J.R.

    2013-01-01

    To test the utility of otolith chemical composition as a tool for determining the natal stream of origin for salmon, we examined water chemistry and otoliths of juvenile and adult Chum Salmon Oncorhynchus keta and Coho Salmon O. kisutch from three watersheds (five rivers) in the Norton Sound region of Alaska. The two species are characterized by different life histories: Coho Salmon rear in freshwater for up to 3 years, whereas Chum Salmon emigrate from freshwater shortly after emergence. We used laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) to quantify element: Ca ratios for Mg, Mn, Zn, Sr, and Ba, and we used multicollector LA-ICP-MS to determine 87Sr:86Sr ratios in otolith regions corresponding to the period of freshwater residence. Significant differences existed in both water and otolith elemental composition, suggesting that otolith composition could be used to discriminate the natal origin of Coho Salmon and Chum Salmon but only when 87Sr:86Sr ratios were included in the discriminant function analyses. The best discriminant model included 87Sr:86Sr ratios, and without 87Sr:86Sr ratios it was difficult to discriminate among watersheds and rivers. Classification accuracy was 80% for Coho Salmon and 68% for Chum Salmon, indicating that this method does not provide sufficient sensitivity to estimate straying rates of Pacific salmon at the scale we studied.

  15. Sr and Nd isotopic variations in ferromanganese crusts from the Central Pacific: Implications for age and source provenance

    USGS Publications Warehouse

    Futa, K.; Peterman, Z.E.; Hein, J.R.

    1988-01-01

    Isotopic analyses of two hydrogenetic ferromanganese (Fe-Mn) crusts from volcanic edifices in the central Pacific Ocean reveal systematic variations in 87Sr 86Sr and 143Nd 144Nd, with both ratios decreasing as a function of depth into the Fe-Mn crusts. Leaching experiments suggest that Sr in the crusts is contained in at least two discrete sites. A loosely bound Sr, dominated by modern marine Sr, is removed by leaching with a 10 percent acetic acid solution. The 87Sr 86Sr ratio of the residue is significantly less than the 87Sr 86Sr ratio of the unleached material. The Sr-isotope ratios of leached samples are compared with the temporal variation in seawater to provide ages for layers within the Fe-Mn crusts. These data suggest that the oldest crust layers began to accrete in the early to middle Miocene. Correlated to the 87Sr 86Sr variations, 143Nd 144Nd ratios suggest that the Nd-isotope composition of central Pacific Ocean seawater also changed systematically over this time interval, or that the Fe-Mn crusts simply incorporated Nd from various parts of an isotopieally heterogeneous ocean as the crusts were carried along with the oceanic plate. In contrast to the layered ferromanganese crust, the phosphatized volcaniclastic substrates have Sr and Nd isotope compositions that are consistent with their volcanic origin. ?? 1988.

  16. Sr-Nd-Hf-Pb Isotope Ratios in Recent NE Lau Lavas

    NASA Astrophysics Data System (ADS)

    Todd, E.; Gill, J. B.; Freymuth, H.

    2009-12-01

    Sr-Nd-Hf-Pb isotope ratios in recently erupted NE Lau lavas are being measured and results will be presented. The recent W. Mata boninites lie slightly west of the northern termination of the Tongan volcanic front in an area where previously dredged boninites are enriched in LREE and HFSE. They are interpreted as containing an OIB-type mantle source component fluxed by slab-derived fluids (Falloon et al., 2007; Pearce et al., 2007). However, their Sr-Nd-Pb isotope ratios do not match any known component from the Samoan plume, pelagic sediment, or Louisville Ridge-derived volcaniclastic sediment. Their most distinctive isotopic characteristics are low 87Sr/86Sr and high 206Pb/204Pb relative to Nd-Hf isotope ratios. They are displaced toward HIMU-type basalts from the Cook-Austral islands (e.g., Tubuai) and have been interpreted as derived from diverse HIMU, EMI, and EMII mantle source components that are carried southward from beneath the Pacific Plate into the NE Lau Basin. Basalts from the NE Lau Spreading Center have more of a Indian-MORB source than do the boninites, and are similar to the <3 Ma OIB-type basalts from Fiji (Gill, 1984 and unpub.). If so, then some diverse enriched “plums” melt out of southward-advecting MORB-source “pudding” over as little as 100 km, whereas others persist for ~500 km to Fiji. Data for the recently erupted samples will test these interpretations, and will be compared to characteristics of the earliest (7.4 Ma) boninitic lavas in the region that have less of the OIB component. References: T. J. Falloon, L. Danyushevsky, A. J. Crawford, R. Maas, J. D. Woodhead, S. Eggins, S. Bloomer, D. J. Wright, S. K. Zlobin, and A. R. Stacey. Multiple mantle plume components involved in the petrogenesis of subduction-related lavas from the northern termination of the Tonga Arc and northern Lau Basin: Evidence from the geochemistry of arc and backarc submarine volcanics. Geochemistry, Geophysics, Geosystems, 8(Q09003):45, 2007. J. B. Gill

  17. Rb-Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited

    NASA Astrophysics Data System (ADS)

    Hans, Ulrik; Kleine, Thorsten; Bourdon, Bernard

    2013-07-01

    A strong depletion in moderately volatile elements is a characteristic feature of many planetary bodies in the inner solar system and either reflects the rapid accretion of planetesimals from an incompletely condensed solar nebula, or is the result of energetic collisions during planetary accretion. To better constrain the origin and timescales of this volatile depletion, we have precisely measured Sr isotope compositions in angrites, eucrites and Ca-Al-rich inclusions (CAI). Angrites have an initial (87Sr/86Sr)ADOR=0.698978±0.000004, which is indistinguishable from (87Sr/86Sr)BABI=0.698970±0.000028 obtained for eucrites. In agreement with earlier studies we find that angrites and eucrites have higher initial 87Sr/86Sr ratios than CAI, at face value corresponding to model timescales for volatile loss of several millions of years. However, all the investigated CAI are characterized by elevated 84Sr/86Sr ratios compared to angrites and eucrites, which we interpret to reflect an excess of r-process Sr in the CAI. If this is correct, then the nucleosynthetic Sr isotope anomalies in the CAI require an upward correction of their measured 87Sr/86Sr. After this correction CAI have an initial (87Sr/86Sr)CAI=0.698975±0.000008, which is indistinguishable from ADOR and BABI. This implies volatile loss from the angrite and eucrite parent bodies within less than ~1 Ma after formation of CAI. The volatile-depleted nature of these differentiated protoplanets thus most likely reflects their rapid accretion from volatile-poor dust in an incompletely condensed solar nebula.

  18. Human mobility on the Brazilian coast: an analysis of strontium isotopes in archaeological human remains from Forte Marechal Luz Sambaqui.

    PubMed

    Bastos, Murilo Q R; Souza, Sheila M F Mendonça de; Santos, Roberto V; Lima, Bárbara A F; Santos, Ricardo V; Rodrigues-Carvalho, Claudia

    2011-06-01

    This study investigated strontium isotopes in the dental enamel of 32 human skeletons from Forte Marechal Luz sambaqui (shellmound), Santa Catarina, Brazil, aiming at identifying local and non-local individuals. The archeological site presents pot sherds in the uppermost archeological layers. Dental enamel was also examined from specimens of terrestrial fauna ((87)Sr/(86)Sr = 0.71046 to 0.71273) and marine fauna ((87)Sr/(86)Sr = 0.70917). The (87)Sr/(86)Sr isotope ratio for individuals classified as locals ranged from 0. 70905 to 0. 71064 and was closer to the isotope ratio of the seawater than to the ratio of the terrestrial fauna, indicating a strong influence of marine strontium on the inhabitants of this sambaqui. The results indicate the existence of three non-local individuals ((87)Sr/(86)Sr = 0.70761 to 0.70835), buried in both the level without pottery and the layer with pottery, possibly originated from the Santa Catarina Plateau, close to the municipality of Lages, or from the Curitiba Plateau. The occurrence of a slight difference between the isotope ratios of local individuals buried in the archeological layer without pottery, when compared to those in the layer with pottery, suggests a possible change in dietary patterns between these two moments in the site's occupation.

  19. Late Cretaceous base level lowering in Campanian and Maastrichtian depositional sequences, Kure Beach, North Carolina

    USGS Publications Warehouse

    Harris, W.B.; ,

    2006-01-01

    Campanian through Maastrichtian mixed carbonate and siliciclastic sediments in a 422 m continuous core drilled at Kure Beach, NC provide a record of sea-level change. Based on lithology and stratigraphy, depositional sequences are defined, and calcareous nannofossil zones and 87Sr/86Sr ratios and corresponding ages using the LOWESS Table determined. Campanian and Maastrichtian sediments comprise six depositional sequences. The oldest is Tar Heel 1 and contains calcareous nannofossils that indicate assignment to the upper part of Zones CC18a, CC18c and the lower part of CC19. 87Sr/86 Sr ratios indicate ages from 83.2 to 80.0 Ma or lower Campanian. Tar Heel II contains calcareous nannofossils that indicate assignment to the upper part of Zone CC 19 and CC20. 87Sr/86Sr ratios indicate ages from 78.0 to 76.3 Ma or middle Campanian. Donoho Creek I and II are thin and contain calcareous nannofossils referable to upper Zone CC21 and Zone CC22, and to CC23, respectively. The top of Donoho Creek II marks the Campanian-Maastrichtian boundary. Donoho Creek I 87Sr/86Sr ratios cluster into two groups, and provide ages from 78.0 to 76.2 Ma and 73.7 to 72.3 Ma, respectively. 87Sr/86Sr ratios in Donoho Creek II indicate ages from 71.4 to 69.6 Ma. Two Maastrichtian sequences are present; the lowermost Peedee I contains calcareous nannofossils that place it in Zones CC25a and CC25b. 87Sr/86Sr r ratios indicate an age from 69.3 to 66.9 Ma or late Maastrichtian. Peedee II is assigned to calcareous nannofossil Zone CC26a. 87Sr/86Sr ratios indicate ages from 66.4 to 65.2 Ma or late Maastrichtian. The four Campanian sequences correlate to three depositional sequences in New Jersey; the sequence boundary between upper Campanian Donoho Creek I and Donoho Creek II is not recognized in New Jersey. This boundary is interpreted to result from Gulf Stream impingement and subsequent erosion on the outer shelf. The two Maastrichtian sequences recognized in the Kure Beach core correlate to the two

  20. Orphan Strontium-87 in Abyssal Peridotites: Daddy Was a Granite

    NASA Astrophysics Data System (ADS)

    Snow, Jonathan E.; Hart, Stanley R.; Dick, Henry J. B.

    1993-12-01

    The 87Sr/86Sr ratios in some bulk abyssal and alpine peridotites are too high to be binary mixtures of depleted mantle and seawater components. The apparent excess, or "orphan," 87Sr appears to be separated from its radioactive parent. Such observations were widely held to be analytical artifacts. Study of several occurrences of orphan 87Sr shows that the orphan component in abyssal peridotite is located in the alteration products of olivine and enstatite in the peridotite. The orphan 87Sr is most likely introduced by infiltration of low-temperature (<200^circC) seawater bearing suspended detrital particulates. These particulates include grains of detrital clay that are partly derived from continental (that is, granitic) sources and thus are highly radiogenic. Orphan 87Sr and other radiogenic isotopes may provide a tracer for low-temperature seawater penetrating into the oceanic crust.

  1. Orphan strontium-87 in abyssal peridotites: daddy was a granite.

    PubMed

    Snow, J E; Hart, S R; Dick, H J

    1993-12-17

    The (87)Sr/(86)Sr ratios in some bulk abyssal and alpine peridotites are too high to be binary mixtures of depleted mantle and seawater components. The apparent excess, or "orphan," (87)Sr appears to be separated from its radioactive parent. Such observations were widely held to be analytical artifacts. Study of several occurrences of orphan (87)Sr shows that the orphan component in abyssal peridotite is located in the alteration products of olivine and enstatite in the peridotite. The orphan (87)Sr is most likely introduced by infiltration of low-temperature (<200 degrees C) seawater bearing suspended detrital particulates. These particulates include grains of detrital clay that are partly derived from continental (that is, granitic) sources and thus are highly radiogenic. Orphan (87)Sr and other radiogenic isotopes may provide a tracer for low-temperature seawater penetrating into the oceanic crust.

  2. Assessing the role of submarine groundwater discharge as a source of Sr to the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Trezzi, Giada; Garcia-Orellana, Jordi; Rodellas, Valentí; Masqué, Pere; Garcia-Solsona, Ester; Andersson, Per S.

    2017-03-01

    Submarine groundwater discharge (SGD) has been identified as an important source of Sr to the ocean and the SGD-driven Sr flux to the global ocean has been recently re-evaluated (Beck et al., 2013). However, the uncertainty of this value is still high because of the uncertainties related to the determination of SGD flow rates and the paucity of 87Sr/86Sr data in SGD end-members. As carbonates have high Sr concentrations and are subjected to intense heightened weathering, they might significantly influence the SGD input of Sr to the ocean. Here we present data on Sr concentrations and 87Sr/86Sr ratios in three carbonate dominated sites of the western area of the Mediterranean Sea, a semi-enclosed basin characterized by abundant coastal carbonates. The 87Sr/86Sr ratios in groundwater were lower compared to modern seawater (∼0.70916), as expected for areas dominated by carbonate lithologies. Concentrations of Sr and 87Sr/86Sr ratios in groundwater showed conservative mixing in the studied subterranean estuaries. By using SGD flow rates reported in the literature for the study areas, a flow-weighted fresh SGD end-member characterized by a Sr concentration of 27-30 μM and a 87Sr/86Sr ratio of 0.707834-0.708020 was calculated for the eastern coast of the Iberian Peninsula. Integrating these Sr data with literature data (i.e. values of Sr concentration and 87Sr/86Sr ratio from other lithologies as well as SGD flow rates), we also calculated the fresh SGD-driven Sr flux to the entire Mediterranean Sea, obtaining a value of (0.34-0.83)·109 mol y-1, with a 87Sr/86Sr of 0.7081-0.7086. Thus, for the entire Mediterranean basin, SGD is globally a source of Sr less radiogenic compared to seawater. The SGD Sr flux to the Mediterranean Sea represents 5-6% of the SGD Sr flux to the global ocean and the Mediterranean SGD end-member has higher Sr concentration (5-12 μM) than the global SGD end-member (2.9 μM). This confirms the significant role of carbonate lithologies on SGD

  3. A novel method to develop an otolith microchemistry model to determine striped bass habitat use in the San Francisco Estuary

    SciTech Connect

    Phillis, C C; Ostrach, D J; Gras, M; Yin, Q; Ingram, B L; Zinkl, J G; Weber, P K

    2006-06-14

    Otolith Sr/Ca has become a popular tool for hind casting habitat utilization and migration histories of euryhaline fish. It can readily identify habitat shifts of diadromous fish in most systems. Inferring movements of fish within estuarine habitat, however, requires a model of that accounts of the local water chemistry and the response of individual species to that water chemistry, which is poorly understood. Modeling is further complicated by the fact that high marine Sr and Ca concentrations results in a rapid, nonlinear increase in water Sr/Ca and {sup 87}Sr/{sup 86}Sr between fresh and marine waters. Here we demonstrate a novel method for developing a salinity-otolith Sr/Ca model for the purpose of reconstructing striped bass (Morone saxatilis) habitat use in the San Francisco Bay estuary. We used correlated Sr/Ca and {sup 87}Sr/{sup 86}Sr ratios measurements from adult otoliths from striped bass that experienced a range of salinities to infer striped bass otolith Sr/Ca response to changes in salinity and water Sr/Ca ratio. Otolith {sup 87}Sr/{sup 86}Sr can be assumed to accurately record water {sup 87}Sr/{sup 86}Sr because there is no biological fractionation of Sr isotopes. Water {sup 87}Sr/{sup 86}Sr can in turn be used to estimate water salinity based on the mixing of fresh and marine water with known {sup 87}Sr/{sup 86}Sr ratios. The relationship between adjacent analyses on otoliths of Sr/Ca and {sup 87}Sr/{sup 86}Sr by LA-ICP-MS and MC-ICP-MS (r{sup 2} = 0.65, n = 66) is used to predict water salinity from a measured Sr/Ca ratio. The nature of this non-linear model lends itself well to identifying residence in the Delta and to a lesser extent Suisun Bay, but does not do well locating residence within the more saline bays west of Carquinez Strait. An increase in the number of analyses would improve model confidence, but ultimately the precision of the model is limited by the variability in the response of individual fish to water Sr/Ca.

  4. Observation of the hyperfine structure of the {sup 2}S{sub 1/2}-{sup 2}D{sub 5/2} transition in {sup 87}Sr{sup +}

    SciTech Connect

    Barwood, G.P.; Gao, K.; Gill, P.; Huang, G.; Klein, H.A.

    2003-01-01

    The hyperfine structure of the {sup 2}S{sub 1/2}-{sup 2}D{sub 5/2} quadrupole transition at 674 nm in {sup 87}Sr{sup +} has been observed. The ion was confined in a Paul trap and cooled using laser radiation at 422 and 1092 nm. The quadrupole transition was observed by monitoring quantum jumps in the 422-nm fluorescence. The odd isotope of strontium has 'clock' transitions independent of the first-order Zeeman shift and the {sup 2}D{sub 5/2} state hyperfine structure constants have been determined as A{sub D{sub 5/2}}=2.1743(14) MHz and B{sub D{sub 5/2}}=49.11(6) MHz. Standard uncertainties have been added in parentheses. These values allow the second-order Zeeman shifts to be calculated. The {sup 88}Sr{sup +}-{sup 87}Sr{sup +} isotope shift for the 674-nm quadrupole transition has been measured to be 247.99(4) MHz.

  5. Contrasting Sr isotope ratios in plagioclase from different formations of the mid-Miocene Columbia River Basalt Group

    NASA Astrophysics Data System (ADS)

    Starkel, W. A.; Wolff, J.; Eckberg, A.; Ramos, F.

    2008-12-01

    Many early Columbia River Basalt flows of the Steens and Imnaha Formations are characterized by abundant, texturally complex, coarse plagioclase phenocrysts. In Imnaha lavas, the feldspars typically have more radiogenic 87Sr/86Sr than whole rock and matrix, and may exhibit complex isotopic zoning that is not correlated with An content. Imnaha plagioclase grains are interpreted as variably-contaminated crystals produced when high-crystallinity mid-crustal basaltic intrusions exchanged interstitial melt with adjacent partly-melted crustal rock; this isotopically variable debris was then remobilized by subsequent intrusion of mantle-derived basalt and brought to the surface as an isotopically heterogeneous mixture. In contrast, plagioclase grains in the texturally very similar Steens lavas are isotopically near-homogeneous and 87Sr/86Sr is not significantly displaced from that of the bulk rock. This is consistent with magma- crust interaction at low degrees of crustal melting during the early stages of the Columbia River flood basalt episode, where Steens and Imnaha lavas were erupted from distinct magma systems hosted by different types of crust that exerted different degrees of isotopic leverage on the mantle-derived magmas [1]. Thermal input to the Steens system declined at the same time as the Imnaha magmatic flux increased to ultimately produce the huge outpouring of Grande Ronde lavas, which are mixtures of mantle- and crust-derived liquids, the latter produced during high degrees of crustal melting during the time of peak magmatic flux. [1] Wolff et al. (2008) Nature Geoscience 1, 177-180.

  6. Marine vs. local control on seawater Nd-isotope ratios at the northwest coast of Africa during the late Cretaceous-early Eocene

    NASA Astrophysics Data System (ADS)

    Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Ulianov, A.; Chiaradia, M.

    2013-12-01

    At the northwest corner of Africa excellent conditions existed for phosphate formation (i.e., stable upwelling system) during the late Cretaceous-early Eocene. This is probably in relation to stable tectonic evolution of shallow epicontinental basins at a passive continental margin and to their paleogeographic situation between the Atlantic and Tethys marine realms. To better comprehend paleoceanic conditions in this area, radiogenic isotope ratios (87Sr/86Sr and 143Nd/144Nd) and trace element compositions of fossil biogenic apatite are investigated from Maastrichtian to Ypresian shallow marine phosphorite deposits in Morocco (Ouled Abdoun and Ganntour Basins). Rare earth elements (REE) distributions in the fossils are compatible with early diagenetic marine pore fluid represented by negative Ce-anomaly and heavy REE enrichment. An overall shift in Ce-anomaly is apparent with gradually lower values in younger fossils along three distinct assemblages that correspond to Maastrichtian, Danian-Thanetian and Ypresian periods. The temporal change can be interpreted as presence of gradually more oxygenated seawater in the basins. Strontium isotopic ratios of the fossils follow the global Sr-evolution curve. However, the latest Cretaceous and the oldest Paleocene fossils yielded slightly higher ratios than the global ocean, which could reflect minor diagenetic alteration. Neodymium isotopic ratios are quite even along the phosphate series with ɛNd(t) values ranges from -6.8 to -5.8. These values are higher than those reported for average North Atlantic deep water and Tethyan seawater (e.g., Stille et al., 1996; Thomas et al., 2003). For the origin of the stable, high 143Nd/144Nd we propose three main hypotheses: (1) contribution of continental Nd-source, (2) locally controlled deep water Nd-isotope ratios near the coast from where upwelling originated in the area and (3) possible surface marine water contribution from the Pacific across the Atlantic. Stille, P., Steinmann

  7. Stratigraphic correlation of Pleistocene California borderland marine carbonate using strontium isotopes

    SciTech Connect

    Capo, R.C. ); Depaolo, D.J. )

    1990-05-01

    High-precision measurements on carbonate sediments have refined the history of the {sup 87}Sr/{sup 86}Sr ratio in Pleistocene seawater and allowed them to construct a standard {sup 87}Sr/{sup 86}Sr vs. age curve, which the authors have applied to stratigraphic correlations in the California Borderland basins. Foraminifera-nannofossil ooze samples from DSDP (Deep Sea Drilling Project) Site 590 in the Tasman Sea (31{degree}S) were analyzed for {sup 87}Sr/{sup 86}Sr to determine the Sr isotopic ratio of ocean water over the past 2.5 m.y. Modeling suggests that changes in river input associated with large variations in global chemical weathering rates are responsible for the observed variations in the {sup 87}Sr/{sup 86}Sr record during the Pliocene-Pleistocene. From 2.4 m.y. to 0.3 m.y., the {sup 87}Sr/{sup 86}Sr ratio of seawater increased rapidly by 14 {times} 10{sup {minus}5}, which makes this period ideal for high-resolution correlations using the Sr isotope method. Based on their standard seawater curve, strontium isotope analyses of macrofossils and foraminifera from carbonate sections from the Santa Barbara-Ventura and Los Angeles basins indicate that the Bathhouse Beach section of the Santa Barbara Formation was deposited between 0.9 and 0.4 m.y. ago, and in part is syndepositional with western portions of the nearly Pliocene-Middle Pleistocene Pico Formation of the Ventura basin, and with the lithologically similar Lomita Marl of the San Pedro Formation at Palos Verdes.

  8. Lower crustal xenoliths, Chinese Peak lava flow, central Sierra Nevada.

    USGS Publications Warehouse

    Dodge, F.C.W.; Calk, L.C.; Kistler, R.W.

    1986-01-01

    This assemblage of pyroxenite, peridotite and mafic granulite xenoliths in the toe of a 10 m.y. trachybasalt flow remnant overlying late Cretaceous granitic rocks, indicates the presence of a mafic-ultramafic complex beneath this part of central California; orthopyroxenites, websterites and clinopyroxenites are dominant. A few of the xenoliths contain ovoid opaque patches that are apparently pseudomorphs after garnet and have pyralspite garnet compositions; using a garnet-orthopyroxene geobarometer, they indicate a lower crustal depth of approx 40 km. Abundant mafic granulites can be subdivided into those with Al2O3 = or 15% and showing considerable scatter on oxide variation diagrams. The high-alumina granulite xenoliths have relatively low 87Rb/86Sr but high 87Sr/86Sr, whereas the low-alumina and ultramafic xenoliths have a wide range of 87Rb/86Sr, but lower 87Sr/86Sr; the isotopic data indicate roughly the same age as that of overlying granitic plutons (approx 100 m.y.). However, the granitic rocks have initial 87Sr/86Sr ratios intermediate between those of the high-alumina and ultramafic xenoliths, suggesting that they result from the mixing of basaltic magma (represented by the ultramafic rocks) and crustal materials, with subsequent crystal fractionation.-R.A.H.

  9. The New England Batholith of eastern Australia: Evidence of silicic magma mixing from zircon 176 Hf/ 177 Hf ratios

    NASA Astrophysics Data System (ADS)

    Shaw, S. E.; Flood, R. H.; Pearson, N. J.

    2011-09-01

    Zircon Hf isotopic data from six granite supersuites recognised in the New England Batholith of eastern Australia indicate that magma mixing is present in all plutons. Apart from the S-type supersuites, inherited zircons are rare to absent, suggesting that initial melt temperatures were above zircon saturation for the M-, I- and A-type granites. In all supersuites, the range of zircon Hf model ages calculated relative to arc mantle varies greatly, with younger model ages somewhat less than the Permian and Triassic age of crystallisation, and older model ages indicating derivation from source rocks that may be as old as Neoproterozoic. The older model ages are consistent with late Precambrian rocks in the lower crust that may be elements of the Lachlan Fold Belt underlying the New England Fold Belt. Whole-rock δ 18O and ɛNd values, 87Sr/ 86Sr initial ratios (Sr i) and oxidation state (Fe 2O 3/FeO) are summarised for the five named supersuites, and for a previously unnamed group of Triassic plutons situated east of the main Batholith for which we propose the name Carrai supersuite. Supersuites with higher δ 18O, higher Sr i, lower δ 7Li and lower Fe 2O 3/FeO ratios indicate a metasedimentary component input. The pattern of zircon Hf isotopic variation reflects the other isotopic and geochemical indicators closely, the additional value being that it preserves a magmatic crystallisation record of Hf isotopic variation, that is, a measure of magma mixing from magma generation to final crystallisation. Using the above criteria, at least three distinct crustal components are considered necessary to explain the compositional and isotopic diversity within the Batholith. The crustal components indicated are: 1) a metasedimentary component of Carboniferous and Devonian age for the Hillgrove, Bundarra and Uralla supersuites; 2) a lower crustal K-rich (and Sr-rich) I-type component for the Moonbi, Carrai and possibly Uralla supersuites that could be as old as Proterozoic

  10. S- and Sr-isotopic compositions in barite-silica chimney from the Franklin Seamount, Woodlark Basin, Papua New Guinea: constraints on genesis and temporal variability of hydrothermal fluid

    NASA Astrophysics Data System (ADS)

    Ray, Durbar; Banerjee, Ranadip; Balakrishnan, S.; Paropkari, Anil L.; Mukhopadhyay, Subir

    2016-08-01

    Isotopic ratios of strontium and sulfur in six layers across a horizontal section of a hydrothermal barite-silica chimney from Franklin Seamount of western Woodlark Basin have been investigated. Sr-isotopic ratios in barite samples (87Sr/86Sr = 0.70478-0.70493) are less radiogenic than seawater (87Sr/86Sr = 0.70917) indicating that substantial leaching of sub-seafloor magma was involved in the genesis of hydrothermal fluid. The SO2 of magma likely contributed a considerable amount of lighter S-isotope in fluid and responsible for the formation of barite, which is isotopically lighter (δ34S = 19.4-20.5 ‰) than modern seawater (δ34S ~ 21 ‰). The systematic changes in isotopic compositions across the chimney wall suggest temporal changes in the mode of mineral formation during the growth of the chimney. Enrichment of heavy S- and Sr-isotopes (δ34S = 20.58 ‰; 87Sr/86Sr = 0.70493) in the outermost periphery of the chimney indicates that, at the initial stage of chimney development, there was a significant contribution of seawater sulfate during barite mineralization. Thereafter, thickening of chimney wall occurred due to precipitation of fluid carrying more magmatic components relative to seawater. This led to a gradual enrichment of lighter isotopes (δ34S = 20.42-19.48 ‰; 87Sr/86Sr = 0.70491-0.704787) toward the inner portion of the chimney wall. In contrast, the innermost layer surrounding the fluid conduit is characterized by heavier and more radiogenic isotopes (δ34S = 20.3 ‰; 87Sr/86Sr = 0.7049). This suggests there was increasing influence of percolating seawater on the mineral paragenesis at the waning phase of the chimney development.

  11. Sr-Nd isotopes constrain on the deposit history of the basins in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Li, Y.; Jiang, S.

    2015-12-01

    The Brazos-Trinity Basin IV and Ursa Basin are situated on the northern slope of the Gulf of Mexico. The Ursa basin lies in the center of late Pleistocene Mississippi River deposition, received the sediment deposition during Marine Isotope Stage (MIS) 2- 4. The Brazos-Trinity Basin IV belongs to a part of the Brazos-Trinity fan, it recorded the turbidite deposition and hemiplegic deposition during MIS1- 5. The Sr and Nd isotopic composition of the detrital composition of the sediment in both basins indicates the change of the sediment provenance during the basin-filled process. In the Ursa basin, The difference of 87Sr/86Sr ratio and ɛNd of the detrital component between MIS1,2 (87Sr/86Sr ~ 0.7219 - 0.7321, ɛNd ~ -12 - -13.4) and MIS3,4(87Sr/86Sr ~ 0.7310 - 0.7354, ɛNd ~ -16 - -17.9) is suggested to be related with the provenance change of the detrital particles since LGM. The addition of detrital particle from Appalachians with less radiogenic 87Sr/86Sr and positive ɛNd altered the character of the sediment of the Mississippi River during the last glaciation and deglaciation. In the Brazos-Trinity Basin IV, the narrow range of 87Sr/86Sr and ɛNd indicate that the sediment source of Brazos-Trinity Basin IV had not changed obviously during MIS5e to MIS2, mostly from coastal rivers such as Brazos River, Trinity River and Sabine River. The pre-fan with 87Sr/86Sr ~0.735 and ɛNd ~ -14.5 to -16.9, which is very similar to the deep sediment in the Ursa Basin with 87Sr/86Sr ~0.733 to 0.735 and ɛNd ~ -16 to -18. It is suggested that sediments of the pre-fan of the Brazos-Trinity Basin IV were supplied from the ancestral Mississippi River Delta during the low sea level (MIS 6). During the MIS5, the discharge of Mississippi River is thought switched to its present course, ~300 km to the east.

  12. Radiogenic and stable isotopes of mid-Miocene silicic volcanism in eastern Oregon: Evidence for variable and high Sr / low δ18O domains west of the terrane-cratonic lithosphere transition

    NASA Astrophysics Data System (ADS)

    Jenkins, E. N.; Streck, M. J.; Ramos, F. C.; Bindeman, I. N.

    2013-12-01

    Widespread mid-Miocene rhyolite volcanism of eastern Oregon mostly coeval with flood basalts of the Columbia River Basalt Province allows for mapping crustal domains using radiogenic and stable isotopes. Rhyolites are thought to be derived in large part by partial melting of the crust and thus yield direct information on the composition of the crust. Silicic volcanism is expressed in the form of numerous domes and tuffs exposed over a wide area (~300 km in N-S dimension and ~100 km in E-W dimension) west of the craton boundary, which runs parallel but mostly east of the Oregon-Idaho state border as delineated by geophysical characteristics and isotopic transitions. Here, we mainly focus on initial 87Sr/86Sr ratios and δ18O obtained from mid-Miocene silicic volcanic centers in eastern Oregon. Our data, in combination with data from the literature, indicate variable 87Sr/86Sr mostly along longitudinal sections, yet more similar ratios in latitudinal directions. Except for rare examples on the west side, dispersion of 87Sr/86Sr ratios among both silicic and basaltic rocks occurs eastward of 118.6°W. For example, rhyolites in the Owyhee region between 117.10°W and 117.25°W retain 87Sr/86Sr ratios ranging from 0.70413 to 0.70566. The most radiogenic Sri ratio of 0.70787 in our study is obtained on a plagioclase separate from Buchanan Dome complex located near the western boundary of our study area. Feldspar separates and fresh groundmass of samples from adjacent centers yield similar 87Sr/86Sr ratios. δ18O values for feldspars range from below 2‰ to above 9‰. In addition, there is a crude trend of rhyolites having lower δ18O and more radiogenic 87Sr/86Sr ratios. With one exception, all samples with 87Sr/86Sr above 0.7050 are depleted in 18O (δ18O <5.5‰), while rhyolites with 87Sr/86Sr below 0.7045 are enriched in 18O (δ18O >6‰). The most depleted oxygen ratios (<2‰) come from rhyolites ~80 km west of the cratonic margin reflecting remelting or

  13. Strontium isotopic geochemistry of the volcanic rocks and associated megacrysts and inclusions from Ross Island and vicinity, Antarctica

    USGS Publications Warehouse

    Stuckless, J.S.; Ericksen, R.L.

    1976-01-01

    Twelve whole-rock samples of volcanic rocks and a composite of 11 basanitoid samples from Ross Island and vicinity, Antarctica show a narrow range of 87Sr/86Sr ratios from 0.70305 to 0.70339. This range is consistent with a model of differentiation from a single parent magma, but the data allow a 30% variation in the 87Rb/86Sr ratio in the source region if the average ratio is less than 0.057 and if the source region has existed as a closed system for 1.5 b.y. Megacrysts of titaniferous augite, kaersutite, and anorthoclase are isotopically indistinguishable from the host volcanic rocks and therefore are probably cogenetic with the volcanic sequence. A single trachyte sample is isotopically distinct from the rest of the volcanic rocks and probably was contaminated with crustal strontium. Ultramafic and mafic nodules found in association with basanitoids and trachybasalts have 87Sr/86Sr ratios ranging from 0.70275 to 0.70575. Several of these nodules exhibit evidence of reaction with the melt and are isotopically indistinguishable from their hosts, but data for seven granulite-facies nodules show an apparent isochronal relationship. Although this isochron may be fortuitous, the resulting age of 158??22 m.y. is similar to ages reported for the voluminous Ferrar Dolerites, and suggests isotopic re-equilibration within the lower crust and upper mantle. These nodules are not genetically related to the Ferrar Dolerites, as evidenced by their lower initial 87Sr/86Sr ratios. Three ultramafic nodules are texturally and isotopically distinct from the rest of the analyzed nodules. These are friable, have larger 87Sr/86Sr ratios, and may represent a deeper sampling of mantle rock than the granulite-facies nodules. They were, however, derived at a shallower depth than the alkalic magma. Thus they are not genetically related to either the magma or the granulite-facies nodules. ?? 1976 Springer-Verlag.

  14. Strontium isotope variation in the dissolved load and suspended sediments of Northern Hemisphere land terminating glaciers

    NASA Astrophysics Data System (ADS)

    Stevenson, E. I.; Aciego, S.; Arendt, C. A.; Sheik, C.; Das, S. B.

    2014-12-01

    Bedrock, hydrology and microbial communities are primary contributors to sub-glacial chemical weathering and therefore mediate the chemical composition of bulk glacial outflow. Chemical weathering associated with glaciers has attracted attention due to the possible link between increased chemical weathering during glacial retreat and control of the marine radiogenic strontium (87Sr/86Sr) ratios [1-3]. Here we contrast the differences in strontium isotope (87Sr/86Sr) compositions of the dissolved load (DL) and suspended sediments (SS) from bulk subglacial outflows from three, northern hemisphere ice masses. We sampled from sub-glacial outflows draining geographically and geologically distinct glacial termini from the (1) the South, East and West of the Greenland Ice sheet (GIS), (2) the Juneau Icefield and (3) the Columbia Icefield. The diversity in regional outlet facilitates the comparison of glaciers with differing climate, size, hydrology and bedrock. The magnitude of offset in 87Sr/86Sr ratios between the SS and DL (Δ87/86Sr, ‰, = (87Sr/86SrSS - 87Sr/86SrDL)*1000) varies between -62 to +7 ‰ and shows a positive correlation with pH, regardless of differences in glacier size and bedrock lithology. Here we believe the magnitude of the offset between the DL and SS is due to variations in subglacial weathering environments driven primarily by residence times of both water and sediment within the glacial system, and secondarily by bedrock lithology. The most radiogenic Sr compositions (both DL and SS) are found draining the GIS (up to 87Sr/86Sr = 0.80716) indicating the GIS may have provided a significant source of radiogenic Sr to the oceans during times of deglaciation. [1] Armstrong, R.L., (1971) Nature, v. 230, p. 132-133 [2] Capo, R.C., De Paolo, D.J., (1990) Science, v. 249, no. 4964, p. 51-55. [3] Vance, D., Teagle, D.A.H., Foster, G.L. (2009), Nature, v. 458 p. 493-496.

  15. Strontium isotopic variations of Neoproterozoic seawater: Implications for crustal evolution

    SciTech Connect

    Asmerom, Y.; Jacobsen, S.B.; Knoll, A.H.; Butterfield, N.J. ); Swett, K. )

    1991-10-01

    The authors report high precision Sr isotopic data on carbonates from the Neoproterozoic Shaler Group, Victoria Island, Northwest Territories, Canada. Samples with low {sup 87}Rb/{sup 86}Sr ratios (<0.01) were selected for Sr isotopic analysis. {delta}{sup 18}O, Mn, Ca, Mg, and Sr data were used to recognize altered samples. The altered samples are characterized by high Mn/Sr ({ge}2) and variable {delta}{sup 18}O; most are dolomites. The data indicate that between ca. 790-850 Ma the {sup 87}Sr/{sup 86}Sr ratio of seawater varied between 0.70676 and 0.70561. The samples show smooth and systematic variation, with the lowest {sup 87}Sr/{sup 86}Sr value of 0.70561 at ca. 830 Ma. The low {sup 87}Sr/{sup 86}Sr ratio of carbonates from the lower parts of the section is similar to a value reported for one sample from the Adrar of Mauritania ({approx}900 Ma), West African Craton. Isotopic ratios from the upper part of the Shaler section are identical to values from the lower part of the Neoproterozoic Akademikerbreen Group, Spitsbergen. Although a paucity of absolute age determinations hinders attempts at the precise correlation of Neoproterozoic successions, it is possible to draw a broad outline of the Sr isotopic composition of seawater for this period. Data from this study and the literature are used to construct a curve of the {sup 87}Sr/{sup 86}Sr ratio of Neoproterozoic seawater. The Sr isotope composition of seawater reflects primarily the balance between continental Sr input through river input and mantle input via hydrothermal circulation of seawater through mid-ocean ridges. Coupling of Nd and Sr isotopic systems allows the authors to model changes in seafloor spreading rates (or hydrothermal flux) and continental erosion. The Sr hydrothermal flux and the erosion rate (relative to present-day value) are modeled for the period 500-900 Ma.

  16. Paleo-Asian oceanic subduction-related modification of the lithospheric mantle under the North China Craton: evidence from peridotite xenoliths in the Datong basalts

    NASA Astrophysics Data System (ADS)

    Wang, C.; Liu, Y.; Min, N.; Zong, K.; Hu, Z.; Gao, S.

    2015-12-01

    In-situ major and trace elements and Sr isotopic compositions of peridotite xenoliths carried by the Datong Quaternary alkaline basalt were analyzed. These peridotite xenoliths were classified into three groups. The type 1 peridotites preserve depleted trace element and Sr isotopic signatures and record the lowest temperature (930 - 980 °C). Clinopyroxenes in these peridotites exhibit LREE-depleted REE patterns, and have the lowest 87Sr/86Sr ratios of 0.70243 - 0.70411. The types 2 and 3 peridotites are featured by enriched trace element and Sr isotopic signatures and record a higher temperature (1003 - 1032 °C). Clinopyroxenes in the type 2 peridotite have U-shaped REE patterns and relatively higher 87Sr/86Sr ratios of 0.70418 - 0.70465. Clinopyroxenes in the type 3 peridotite have concave-downward REE patterns and unusually high 87Sr/86Sr ratios of 0.70769 - 0.70929. Carbonatitic veinlets are found in the type 1 peridotites. They show steep LREE-enriched REE patterns with enrichments in LILE and depletions in HFSE, and have the highest 87Sr/86Sr ratios of 0.71147 - 0.71285. The types 2 and 3 peridotites suffered latter cryptic carbonatitic metasomatism, as indicated by the decreased Ti/Eu and increased Zr/Hf and CaO/Al2O3 ratios of clinopyroxenes. The carbonatitic veinlets have generally consistent trace element patterns and Sr isotopic ratios with the calculated melts being equilibrated with the clinopyroxenes in the type 3 peridotite, and may represent the metasoamtic agent solidified in the relatively cold and shallow mantle. The negative Eu anomalies (0.37 - 0.61) and high 87Sr/86Sr ratios of the calculated melts indicate a crustal sedimentary origin. It is speculated that the REE-rich and high-87Sr/86Sr metasoamtic agent should be carbonatitic melt derived from the carbonated pelite carried by the subducted PAOP, which could have contributed to the transformation of the lithospheric mantle beneath the NCC.

  17. Application of strontium isotope measurements to trace sediment sources in an upstream agricultural catchment (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Le Gall, Marion; Evrard, Olivier; Thil, François; Foucher, Anthony; Salvador-Blanes, Sébastien; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. It accelerates the supply of sediment to the rivers and degrades water quality. To limit those impacts and optimize management programs in such areas, sources of sediment need to be identified and sediment transport to be controlled. Here, we determined the sources of suspended sediment in the Louroux (24 km², French Loire River basin), a small catchment representative of lowland cultivated environments of Northwestern Europe. In this catchment, channels have been reshaped and 220 tile drain outlets have been installed over the last several decades. As a result, soil erosion and sediment fluxes have increased drastically. The variation of 87Sr/86Sr ratios, driven by the weathering of rocks with different ages and chemical composition, may reflect the mixing of different sediment sources. Strontium isotopic ratios (87Sr/86Sr) were therefore determined in potential soil sources, suspended particulate matter (SPM) and a sediment core sampled in the Louroux Pond at the catchment outlet. Soil, SPM and core samples displayed significantly different isotopic signatures. 87Sr/86Sr ratios in soil samples varied from 0.712763 to 0.724631 ± 0.000017 (2σ, n=20). Highest values were observed in silicic parts of the catchment whereas the lower values were identified in a calcareous area close to the Louroux Pond. 87Sr/86Sr ratios in SPM (0.713660 to 0.725749 ± 0.000017, 2σ, n=20) plotted between the soil and sediment core (0.712255 to 0.716415 ± 0.000017, 2σ, n=12), suggesting the presence of particles originating from at least two different lithological sources, i.e. silicic rocks and carbonate material. Variations in 87Sr/86Sr ratios in the outlet core sample were used to reconstruct the sedimentary dynamics in the catchment during the last decades. These results will guide the future implementation of appropriate management practices aiming to reduce erosion in upstream

  18. New frequency ratios with a PHz-scale atomic clock

    NASA Astrophysics Data System (ADS)

    McFerran, J. J.

    2016-11-01

    Atomic clocks are a tour de force when it comes to rigorous tests of measurement. The ultimate validation of one’s careful assessments is to find agreement on a given parameter with a completely independent laboratory. Frequency ratios between clock transitions of different atomic species make for quintessential tests of measurement precision. Tyumenev et al (2016 New J. Phys. 18 113002) report on frequency ratio measurements between a 199Hg optical lattice clock and three other atomic frequency standards: 133Cs, 87Rb and 87Sr, two of which are unprecedented in accuracy. Most notable is the level of agreement for the 199Hg/87Sr frequency ratio found between two independent laboratories at 1.7× {10}-16; further indication that optical lattice clocks are fulfilling their early expectations.

  19. Strontium isotope detection of brine contamination in the East Poplar oil field, Montana

    USGS Publications Warehouse

    Peterman, Zell E.; Thamke, Joanna N.; Futa, Kiyoto; Oliver, Thomas A.

    2010-01-01

    Brine contamination of groundwater in the East Poplar oil field was first documented in the mid-1980s by the U.S. Geological Survey by using hydrochemistry, with an emphasis on chloride (Cl) and total dissolved solids concentrations. Supply wells for the City of Poplar are located downgradient from the oil field, are completed in the same shallow aquifers that are documented as contaminated, and therefore are potentially at risk of being contaminated. In cooperation with the Office of Environmental Protection of the Fort Peck Tribes, groundwater samples were collected in 2009 and 2010 from supply wells, monitor wells, and the Poplar River for analyses of major and trace elements, including strontium (Sr) concentrations and isotopic compositions. The ratio of strontium-87 to strontium-86 (87Sr/86Sr) is used extensively as a natural tracer in groundwater to detect mixing among waters from different sources and to study the effects of water/rock interaction. On a plot of the reciprocal strontium concentration against the 87Sr/86Sr ratio, mixtures of two end members will produce a linear array. Using this plotting method, data for samples from most of the wells, including the City of Poplar wells, define an array with reciprocal strontium values ranging from 0.08 to 4.15 and 87Sr/86Sr ratios ranging from 0.70811 to 0.70828. This array is composed of a brine end member with an average 87Sr/86Sr of 0.70822, strontium concentrations in excess of 12.5 milligrams per liter (mg/L), and chloride concentrations exceeding 8,000 mg/L mixing with uncontaminated water similar to that in USGS06-08 with 18.0 mg/L chloride, 0.24 mg/L strontium, and a 87Sr/86Sr ratio of 0.70811. The position of samples from the City of Poplar public-water supply wells within this array indicates that brine contamination has reached all three wells. Outliers from this array are EPU-4G (groundwater from the Cretaceous Judith River Formation), brine samples from disposal wells (Huber 5-D and EPU 1-D

  20. Ratio

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Studer, Andrew J.; Manuel, James R.; Kimpton, Justin A.

    2014-12-01

    Effects of basicity, B (CaO:SiO2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B = 2.48 to 25 wt pct for the B = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.

  1. The stepwise increase of continental weathering in the Ediacaran and early Cambrian: evidenced from radiogenic Sr isotope excursion in the strata at Three Gorges, South China.

    NASA Astrophysics Data System (ADS)

    Sawaki, Y.; Maruyama, S.

    2014-12-01

    The Ediacaran to Cambrian period records one of the most dramatic biological episodes in Earth's history. The weathering influx from continents is thought to be a major influence on the change in composition of ancient seawater and on biological evolution. Its flux can be constrained from the 87Sr/86Sr ratio of ancient carbonate rocks. However, the scarcity of well-preserved outcrops of Ediacaran rocks still leaves ambiguity in decoding ambient surface environmental changes and biological evolution. The Ediacaran strata in South China are almost continuously exposed, comprise mainly carbonate rocks with subordinate black shales, and contain many fossils. Therefore, they are suitable for study of a link between environmental and biological changes in the Ediacaran. We conducted on-land drilling from Liantuo, via Nantuo, Doushantuo, Dengying and Yanjiahe to Shuijingtuo formations at four sites in the Three Gorges area to obtain continuous, fresh samples. We analyzed radiogenic Sr isotope of the fresh carbonate rocks with a MC-ICP-MS at Kyoto University. The 87Sr/86Sr excursion preserved in the drilled samples displays a smooth curve and three large positive shifts in the Ediacaran. The first large positive excursion occurred together with negative δ13C and positive δ18O excursions. We interpret that global regression due to global cooling enhanced the oxidative decay of exposed marine organic sediments and continental weathering. The second large positive shift of 87Sr/86Sr firstly accompanied a positive δ13C excursion, and continued through the Shuram negative δ13C excursion. The higher 87Sr/86Sr values are the first compelling evidence for enhanced continental weathering in the Ediacaran, which was responsible for the large δ13C anomaly through the re-mineralization of the dissolved organic carbon (DOC) reservoir by more active sulfate reduction due to a higher sulfate influx. The 87Sr/86Sr ratios display a large positive anomaly just below the PC/C boundary

  2. A 7500-year strontium isotope record from the northwestern Nile delta (Maryut lagoon, Egypt)

    NASA Astrophysics Data System (ADS)

    Flaux, Clément; Claude, Christelle; Marriner, Nick; Morhange, Christophe

    2013-10-01

    During the Holocene, delta evolution has been collectively mediated by relative sea-level changes, continental hydrology and human impacts. In this paper, we present a strontium isotope record from the Maryut lagoon (northwestern Nile delta) to quantify the interplay between relative sea-level variations and Nile flow changes during the past 7500 years. 87Sr/86Sr stratigraphy allows five hydrological stages to be defined. (1) The marine transgression of the area is dated to ˜7.5 ka cal. BP, with a clear marine 87Sr/86Sr signature (0.70905-0.7091). (2) Between ˜7 and ˜5.5 ka, in the context of the so-called African Humid Period (AHP), freshwater inputs became progressively predominant in the Maryut's hydrology. Deceleration of sea-level rise coupled with high Nile discharge induced coastal progradation which led to the progressive closure of the Maryut lagoon. (3) Between ˜5.5 and ˜3.8 ka, the end of the AHP is translated by a progressive hydrological shift from a Nile-dominated to a marine-dominated lagoon (87Sr/86Sr shifts from 0.70865 to 0.7088 to 0.70905-0.70915). (4) From ˜2.8 to ˜1.7 ka, 87Sr/86Sr ratios shift towards lower values (0.7084). Although this change is not precisely resolved because of a hiatus in the Maryut's sedimentary record, the 87Sr/86Sr transition from sea-like to Nile-dominated values is attributed to irrigation practices since the early Ptolemaic period (i.e. since ˜2.3 ka), including the Alexandria canal which played a key role in isolating the Maryut from the Mediterranean sea. (5) The final phase of the record covers the period between ˜1.7 and ˜0.2 ka. 87Sr/86Sr ratios indicate high freshwater inputs (from 0.7080 to 0.7085), except between 1.2 and 1.1 to ˜0.7 ka, when a Maryut lowstand and seawater intrusion are attested. In modern times, the Nile's coastal lagoons have been increasingly supplied by freshwater linked to the diversion of waters from the two Nile branches into the irrigation system. It is suggested that this

  3. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands: Strontium, neodymium, lead, and oxygen isotopic evidence

    SciTech Connect

    Cousens, B.L. ); Spera, F.J. ); Dobson, P.F. )

    1993-02-01

    Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from Gran Canaria, Canary Islands, provide evidence for posteruptive mobility of Rb, Sr, and O. Calculated initial [sup 87]Sr/[sup 86]Sr ratios in whole-rock samples from basaltic lavas and feldspar mineral separates from ignimbrites define a magmatic trend in the stratigraphic section, from ratios of 0.70340 at the base of the Mogan Formation to 0.70305 in the lower Fataga Formation. However, calculated apparent initial [sup 87]Sr/[sup 86]Sr ratios in hydrated vitrophyre and devitrified matrix separates range from 0.7035 to 0.7090. [delta][sup 18]O ratios in basalts and feldspars vary little, from +5.7 to +6.1, yet range from +6.5 to +15.0 in the ignimbrite matrices. In contrast to the Sr and O isotope ratios, Pb and Nd isotope ratios are identical within analytical error in feldspars and their silicic ignimbrite matrices. Sequential leaching experiments and the oxygen data suggest that low-temperature, posteruptive interaction with meteoric water, perhaps containing a small seawater component, has modified Rb and Sr concentrations in the matrices, such that calculated apparent initial [sup 87]Sr/[sup 86]Sr ratios are not those of the magmas when they were erupted. Mobilization of Rb and Sr must occur significantly after eurption. Nd and Pb isotope systems appear to be unaffected by this process. Therefore, [sup 87]Sr/[sup 86]Sr ratios determined by whole rock analysis of silicic rocks from hotspot-type oceanic islands are suspect and should not be incorporated into mantle tracer studies, although analysis of phenocrysts may produce useful data. 40 refs., 5 figs., 3 tabs.

  4. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands - Strontium, neodymium, lead, and oxygen isotopic evidence

    NASA Technical Reports Server (NTRS)

    Cousens, Brian L.; Spera, Frank J.; Dobson, Patrick F.

    1993-01-01

    The isotopic composition of lavas from oceanic islands provides important information about the composition and evolution of the earth's mantle. Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from the Canary islands were performed. Results provide evidence for posteruptive mobility of Rb and Sr during low temperature postemplacement interaction with circulating ground water. Calculated Sr isotope ratios define a magmatic trend in the stratigraph section. 87Sr/86Sr ratios in hydrated vitrophyte and devitrified matrix separates indicate significant posteruptive interaction with meteoric water starting soon after deposition. This process extends patchily through the entire pyroclastic flow and may be ongoing. 87Sr/86Sr ratios determined by whole rock analysis of silicic rocks from oceanic islands are suspect and should not be incorporated into mantle tracer studies. Anorthoclase phenocrysts are resistant to these processes and may produce useful data.

  5. Source area and seasonal variation of dissolved Sr isotope composition in rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Santos, Roberto V.; Sondag, Francis; Cochonneau, Gerard; Lagane, Christelle; Brunet, Pierre; Hattingh, Karina; Chaves, Jeane G. S.

    2014-05-01

    We present dissolved Sr isotope data collected over 8 years from three main river systems from the Amazon Basin: Beni-Madeira, Solimões, Amazon, and Negro. The data show large 87Sr/86Sr ratio variations that were correlated with the water discharge and geology of the source areas of the suspended sediments. The Beni-Madeira system displays a high average 87Sr/86Sr ratio and large 87Sr/86Sr fluctuations during the hydrological cycle. This large average value and fluctuations were related to the presence of Precambrian rocks and Ordovician sediments in the source area of the suspended sediment of the river. In contrast, the Solimões system displays a narrow range of Sr isotope ratio variations and an average value close to 0.709. This river drains mostly Phanerozoic rocks of northern Peru and Ecuador that are characterized by low Sr isotope ratios. Despite draining areas underlain by Precambrian rocks and having high 87Sr/86Sr ratios, such rivers as the Negro and Tapajós play a minor role in the total Sr budget of the Amazon Basin. The isotopic fluctuations in the Beni-Madeira River were observed to propagate downstream at least as far as Óbidos, in the Amazon River. This signal is characterized by an inverse relationship between the concentration of elemental Sr and its isotopic ratios. During the raining season there is an increase in Sr isotopic ratio accompanied by a decrease in elemental Sr concentration. During the dry season, the Sr isotopic ration decreases and the elemental Sr concentration increases.

  6. Non-traditional stable Ca, Sr isotopic composition in rainwater from Guiyang city, southwest China

    NASA Astrophysics Data System (ADS)

    Han, G.; Tang, Y.

    2013-12-01

    The major ions, strontium concentrations, δ[44/40]Ca, [87]Sr/^[86]Sr and δ[88/86]Sr ratios were measured in rainwater samples collected at an urban site in Guiyang, southwest China, over a period of one year. The pH values ranged between 4.2 and 8.6, with a volume-weighted mean (VWM) of 6.2. About 30% of the rainwater studied were acidic rain with pH values less than 5.6. Ca[2+] was the most dominant cation in rainwater samples and the VWM value was175μmol/L (21-1631 μmol/L). SO[4][2-] was the predominant anion with VWM value of 137 μmol/L (5-2019 μmol/L), next was NO3- with VWM value of 26 μmol/L(1.4-444 μmol/L).Using Na as an indicator of marine origin, and Al for the terrestrial inputs, the proportions of sea salt and terrestrial elements were estimated from elemental ratios. More than 99% of Ca[2+] and 98% of SO[4][2-] in rainwater samples are non-sea-salt origin. The δ[44/40]Ca values of rainwater samples from Guiyang city, ranged from 0.51×0.18‰to 1.09×0.14‰, are very similar to the range of δ[44/40]Ca values in natural rivers. The [87]Sr/^[86]Sr ratios spanned a range of 0.70800 to 0.72742, with a mean value of 0.71080. The δ[88/86]Sr of rainwater samples ranged from 0.215×0.004‰ to 0.333×0.004‰, with a mean δ88/86Sr of rainwater is 0.296×0.01‰. The radiogenic strontium isotope data ([87]Sr/^[86]Sr) can infer the sources of Sr of the rainwater samples. The [87]Sr/^[86]Sr vs. Cl/Na suggests that the sources of rainwater samples come from dissolved carbonate minerals and anthropogenic inputs. The δ[44/40]Ca values and the stable Sr isotope (δ[88/86]Sr) may be affected by biological processes.

  7. Strontium isotope study, Pine Barrens, Long Island, NY

    SciTech Connect

    Xin, Geng; Hanson, G.N. . Dept. of Earth and Space Sciences)

    1993-03-01

    Twenty-four samples representing precipitation, through-fall, soil water, ground water, vegetation and soil were analyzed for strontium concentration and the [sup 87]Sr/[sup 86]Sr ratio. The Pine Barrens, which consists of forests and dense vegetation, covers approximately 300 square miles of the coastal plain of Long Island, New York. This study estimates the relative importance of atmospheric and weathering inputs of Sr to vegetation in this ecosystem. The values of the [sup 87]Sr/[sup 86]Sr ratios and Sr concentration in the Pine Barrens are shown in the attached figure. Precipitation has Sr isotopic ratios that are close to that of sea water (0.7092). The Sr in through-fall is dominated by the Sr from the canopy foliage. The [sup 87]Sr/[sup 86]Sr ratios of soil water and ground water increase with depth. The Sr isotopic ratio for a composite sample of pine (0.71181) is a mixture of atmosphere Sr and soil or ground waters. The Sr isotopic ratios and concentrations in pine suggest that plants are a major reservoir of Sr in the system.

  8. Geochemistry, strontium isotope data, and potassium-argon ages of the andesite-rhyolite association in the Padang area, West Sumatra

    USGS Publications Warehouse

    Leo, G.W.; Hedge, C.E.; Marvin, R.F.

    1980-01-01

    Quaternary volcanoes in the Padang area on the west coast of Sumatra have produced two-pyroxene, calc-alkaline andesite and volumetrically subordinate rhyolitic and andesitic ash-flow tuffs. A sequence of andesite (pre-caldera), rhyolitic tuff and andesitic tuff, in decreasing order of age, is related to Maninjau caldera. Andesite compositions range from 55.0 to 61.2% SiO2 and from 1.13 to 2.05% K2O. Six K-Ar whole-rock age determinations on andesites show a range of 0.27 ?? 0.12 to 0.83 ?? 0.42 m.y.; a single determination on the rhyolitic ashflow tuff gave 0.28 ?? 0.12 m.y. Eight 57Sr/26Sr ratios on andesites and rhyolite tuff west of the Semangko fault zone are in the range 0.7056 - 0.7066. These ratios are higher than those elsewhere in the Sunda arc but are comparable to the Taupo volcanic zone of New Zealand and calc-alkaline volcanics of continental margins. An 87Sr/86Sr ratio of 0.7048 on G. Sirabungan east of the Semangko fault is similar to an earlier determination on nearby G. Marapi (0.7047), and agrees with 87Sr/86Sr ratios in the rest of the Sunda arc. The reason for this distribution of 87Sr/86Sr ratios is unknown. The high 87Sr/86Sr ratios are tentatively regarded to reflect a crustal source for the andesites, while moderately fractionated REE patterns with pronounced negative Eu anomalies suggest a residue enriched in plagioclase with hornblende and/or pyroxenes. Generation of associated andesite and rhyolite could have been caused by hydrous fractional melting of andesite or volcanogenic sediments under adiabatic decompression. ?? 1980.

  9. Reactivity of evaporites during burial: An example from the Jurassic of Alabama

    SciTech Connect

    Land, L.S.; Eustice, R.A.; Mack, L.E.

    1995-09-01

    The Jurassic Louann salt was the first significant sedimentary unit to accumulate in the Gulf of Mexico sedimentary basin. Br/Cl and {sup 87}Sr/{sup 86}Sr ratios of halite from a single core into the top of the formation record the evaporation of normal seawater to bittern stage. The bittern zone today consists of intergrown halite and sylvite. The Br and Rb contents of the solid phases, along with {sup 87}Sr/{sup 86}Sr ratios and Rb/Sr systematics, are inconsistent with precipitation of the existing phases from seawater evaporated in Jurassic time. Rather, petrography and fluid inclusion and solid phase chemistry from the bittern zone is consistent with postdepositional water/rock interaction which diagenetically modified a marine bittern assemblage to halite + sylvite. The chemistry of the Br- and Rb-rich saline formation waters characteristic of this area today, likewise, may reflect water/evaporite interaction during burial.

  10. Multiple isotopic components in Quaternary volcanic rocks of the Cascade Arc near Crater lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Gunn, S.H.; Lanphere, M.A.; Wooden, J.L.

    1994-01-01

    Quaternary lavas and pyroclastic rocks of Mount Mazama, Crater lake caldera, and the surrounding area have variable Sr, Nd, and Pb isotopic compositions. High-alumina olivine tholeiites have 87Ar/86Ar ratios of 0.70346-0.70364; basaltic andesite, 0.70349-0.70372; shoshonitic basaltic andesite, 0.70374-0.70388; and andesite, 0.70324-0.70383. Dacites of Mount Mazama have 87Sr/ 86Sr ratios of 0.70348-0.70373. Most rhyodacites converge on 0.7037. Andesitic to mafic-cumulate scoriae of the climatic eruption, and enclaves in pre-climactic rhyodacites, cluster in two groups but show nearly the entire 87Sr/86Sr range of the data set, confirming previously suggested introduction of diverse parental magmas into the growing climactic chamber. Magma evolution is described. -from Authors

  11. U-Sr isotopic speedometer: Fluid flow and chemical weatheringrates inaquifers

    SciTech Connect

    Maher, Kate; DePaolo, Donald J.; Christensen, John N.

    2005-12-27

    Both chemical weathering rates and fluid flow are difficultto measure in natural systems. However, these parameters are critical forunderstanding the hydrochemical evolution of aquifers, predicting thefate and transport of contaminants, and for water resources/water qualityconsiderations. 87Sr/86Sr and (234U/238U) activity ratios are sensitiveindicators of water-rock interaction, and thus provide a means ofquantifying both flow and reactivity. The 87Sr/86Sr values in groundwaters are controlled by the ratio of the dissolution rate to the flowrate. Similarly, the (234U/238U) ratio of natural ground waters is abalance between the flow rate and the dissolution of solids, andalpha-recoil loss of 234U from the solids. By coupling these two isotopesystems it is possible to constrain both the long-term (ca. 100's to1000's of years) flow rate and bulk dissolution rate along the flow path.Previous estimates of the ratio of the dissolution rate to theinfiltration flux from Sr isotopes (87Sr/86Sr) are combined with a modelfor (234U/238U) to constrain the infiltration flux and dissolution ratefor a 70-m deep vadose zone core from Hanford, Washington. The coupledmodel for both (234U/238U) ratios and the 87Sr/86Sr data suggests aninfiltration flux of 5+-2 mm/yr, and bulk silicate dissolution ratesbetween 10-15.7 and 10-16.5 mol/m2/s. The process of alpha-recoilenrichment, while primarily responsible for the observed variation in(234U/238U) of natural systems, is difficult to quantify. However, therate of this process in natural systems affects the interpretation ofmost U-series data. Models for quantifying the alpha-recoil loss fractionbased on geometric predictions, surface area constraints, and chemicalmethods are also presented. The agreement between the chemical andtheoretical methods, such as direct measurement of (234U/238U) of thesmall grain size fraction and geometric calculations for that sizefraction, is quite good.

  12. Mineral dissolution in the Cape Cod aquifer, Massachusetts, USA: I . Reaction stoichiometry and impact of accessory feldspar and glauconite on strontium isotopes, solute concentrations, and REY distribution

    NASA Astrophysics Data System (ADS)

    Bau, Michael; Alexander, Brian; Chesley, John T.; Dulski, Peter; Brantley, Susan L.

    2004-03-01

    To compare relative reaction rates of mineral dissolution in a mineralogically simple groundwater aquifer, we studied the controls on solute concentrations, Sr isotopes, and rare earth element and yttrium (REY) systematics in the Cape Cod aquifer. This aquifer comprises mostly carbonate-free Pleistocene sediments that are about 90% quartz with minor K-feldspar, plagioclase, glauconite, and Fe-oxides. Silica concentrations and pH in the groundwater increase systematically with increasing depth, while Sr isotopic ratios decrease. No clear relationship between 87Sr/ 86Sr and Sr concentration is observed. At all depths, the 87Sr/ 86Sr ratio of the groundwater is considerably lower than the Sr isotopic ratio of the bulk sediment or its K-feldspar component, but similar to that of a plagioclase-rich accessory separate obtained from the sediment. The Si- 87Sr/ 86Sr-depth relationships are consistent with dissolution of accessory plagioclase. In addition, solutes such as Sr, Ca, and particularly K show concentration spikes superimposed on their respective general trends. The K-Sr- 87Sr/ 86Sr systematics suggests that accessory glauconite is another major solute source to Cape Cod groundwater. Although the authigenic glauconite in the Cape Cod sediment is rich in Rb, it is low in in-grown radiogenic 87Sr because of its young Pleistocene age. The low 87Sr/ 86Sr ratios are consistent with equilibration of glauconite with seawater. The impact of glauconite is inferred to vary due to its variable abundance in the sediments. In the Cape Cod groundwater, the variation of REY concentrations with sampling depth resembles that of K and Rb, but differs from that of Ca and Sr. Shale-normalized REY patterns are light REY depleted, show negative Ce anomalies and super-chondritic Y/Ho ratios, but no Eu anomalies. REY input from feldspar, therefore, is insignificant compared to input from a K-Rb-bearing phase, inferred to be glauconite. These results emphasize that interpretation of

  13. Mineral dissolution in the Cape Cod aquifer, Massachusetts, USA: I . Reaction stoichiometry and impact of accessory feldspar and glauconite on strontium isotopes, solute concentrations, and REY distribution

    USGS Publications Warehouse

    Bau, Michael; Alexander, Brian; Chesley, John T.; Dulski, Peter; Brantley, Susan L.

    2004-01-01

    To compare relative reaction rates of mineral dissolution in a mineralogically simple groundwater aquifer, we studied the controls on solute concentrations, Sr isotopes, and rare earth element and yttrium (REY) systematics in the Cape Cod aquifer. This aquifer comprises mostly carbonate-free Pleistocene sediments that are about 90% quartz with minor K-feldspar, plagioclase, glauconite, and Fe-oxides. Silica concentrations and pH in the groundwater increase systematically with increasing depth, while Sr isotopic ratios decrease. No clear relationship between 87Sr/86Sr and Sr concentration is observed. At all depths, the 87Sr/86Sr ratio of the groundwater is considerably lower than the Sr isotopic ratio of the bulk sediment or its K-feldspar component, but similar to that of a plagioclase-rich accessory separate obtained from the sediment. The Si-87Sr/86Sr-depth relationships are consistent with dissolution of accessory plagioclase. In addition, solutes such as Sr, Ca, and particularly K show concentration spikes superimposed on their respective general trends. The K-Sr-87Sr/86Sr systematics suggests that accessory glauconite is another major solute source to Cape Cod groundwater. Although the authigenic glauconite in the Cape Cod sediment is rich in Rb, it is low in in-grown radiogenic 87Sr because of its young Pleistocene age. The low 87Sr/86Sr ratios are consistent with equilibration of glauconite with seawater. The impact of glauconite is inferred to vary due to its variable abundance in the sediments. In the Cape Cod groundwater, the variation of REY concentrations with sampling depth resembles that of K and Rb, but differs from that of Ca and Sr. Shale-normalized REY patterns are light REY depleted, show negative Ce anomalies and super-chondritic Y/Ho ratios, but no Eu anomalies. REY input from feldspar, therefore, is insignificant compared to input from a K-Rb-bearing phase, inferred to be glauconite. These results emphasize that interpretation of groundwater

  14. The Sr isotope composition of the world ocean, marginal and inland seas: Implications for the Sr isotope stratigraphy

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. B.; Semikhatov, M. A.; Gorokhov, I. M.

    2012-11-01

    We studied the Sr isotope composition of shells of modern shallow-water mollusks and coral fragments. Twenty five of the studied samples were collected in beach zones of open oceans and marginal seas; twelve and eight additional samples are from saline and freshened inland seas respectively. The 87Sr/86Sr ratio in samples from the Atlantic, Indian, and Pacific oceans and their marginal seas corresponds on average to 0.709202 ± 0.000003 and coincides with the average ratio in the standard USGS EN-1 sample. The average 87Sr/86Sr ratio in inner parts of evaporite subbasins of the Mediterranean and Red seas is identical to that of the oceanic water. In shells of shallow-water mollusks from the Black Sea and Sea of Azov, where the degree of seawater dilution by riverine runoff is as high as 50 to 70%, the 87Sr/86Sr ratio is lower than that in the oceans by only a value of 0.00002 on average. As oceanic waters penetrated into these freshwater basins no earlier than in the Holocene, we conclude that the Sr isotopic equilibration with the oceanic water is realized very rapidly in the epicontinental seas even under conditions of restricted water exchange with the World Ocean. The established uniformity of the Sr isotope composition in all geographic types of currently existing sea basins open to the World Ocean proves the efficiency of the Sr isotope stratigraphy in correlation of contemporaneous chemogenic sediments.

  15. Exploring the temporal change in provenance encoded in the late Quaternary deposits of the Ganga Plain

    NASA Astrophysics Data System (ADS)

    Agrawal, Shailesh; Sanyal, Prasanta; Balakrishnan, Srinivasan; Dash, Jitendra K.

    2013-07-01

    Temporal analysis of Sr isotopes in soil carbonates and Sr and Nd isotopes in silicate fractions has been carried out in a sedimentary core (Kalpi core; 50 m long) raised from the southern bank of the Yamuna river, Ganga Plain, India. The aim of the study is to constrain sediment provenance through comparison with the modern Himalayan and peninsular river systems' water and bank sediments. Sr isotopic data in soil carbonates (0.71874 to 0.71410) and Srsbnd Nd isotopic data in silicate (0.72865 to 0.74544 and - 13.9 to - 17.2, respectively) vary significantly with depth and are indicative of both Himalayan and peninsular sources for sediments in the southern Ganga Plain. The positive correlation between 87Sr/86Sr ratio and 1/Sr in soil carbonate and the negative correlation between 87Sr/86Sr and ɛNd in silicate confirm mixing of sediments from these sources. Variations of 87Sr/86Sr ratios in soil carbonates show that at ~ 80 and 45 ka the Himalaya acted as the major source of sediments in the southern part of the Ganga Plain. The gradual decrease in 87Sr/86Sr ratios after 80 and 45 ka indicates change in source to peninsular India which is also supported by limited Sr and Nd isotope data in silicates. The change in sediment provenance corresponds well with the available climatic record and is suggestive of strong climatic control in sediment supply with high supply from the Himalaya during the interglacial period and peninsular sediments during glacial period.

  16. Helium-strontium isotope constraints on mantle evolution beneath the Roman Comagmatic Province, Italy

    NASA Astrophysics Data System (ADS)

    Martelli, M.; Nuccio, P. M.; Stuart, F. M.; Burgess, R.; Ellam, R. M.; Italiano, F.

    2004-08-01

    A study of the He isotopic ratios of fluid inclusions in olivine and pyroxene from the Roman Comagmatic Province (RCP), Italy, is presented together with 87Sr/ 86Sr isotope compositions of the whole rock or pyroxene phenocrysts. A clear covariation in He and Sr isotopes is apparent, with a strong northward increase in radiogenic He and Sr being evident. He and Sr isotopes ratios range from 3He/ 4He=5.2 Ra and 87Sr/ 86Sr=0.7056 in south Campania, to 3He/ 4He=0.44 Ra and 87Sr/ 86Sr=0.715905 in the northernmost Latium. Helium isotope ratios are significantly lower than MORB values and are among the lowest yet measured in subduction zone volcanism. The 3He/ 4He of olivine and pyroxene phenocryst-hosted volatiles appear to be little influenced by posteruptive processes and magma-crust interaction. The 3He/ 4He- 87Sr/ 86Sr covariation is consistent with binary mixing between an asthenospheric mantle similar to HIMU ocean island basalts, and an enriched (radiogenic) mantle end member generated from subduction of the Ionian/Adriatic plate. The contribution of radiogenic He from metasomatic fluids and postmetasomatism radiogenic ingrowth in the wedge is strongly dependent on the initial He concentration of the mantle. Only when asthenosphere He concentrations are substantially lower than the MORB source mantle, and metasomatism occurred at the beginning of the subduction (˜30 Ma), can ingrowth in the mantle wedge account for the 3He/ 4He of the most radiogenic basalts.

  17. Estimating groundwater mixing and origin in an overexploited aquifer in Guanajuato, Mexico, using stable isotopes (strontium-87, carbon-13, deuterium and oxygen-18).

    PubMed

    Horst, Axel; Mahlknecht, Jürgen; Merkel, Broder J

    2007-12-01

    Stable Isotopes (strontium-87, deuterium and oxygen-18, carbon-13) have been used to reveal different sources of groundwater and mixing processes in the aquifer of the Silao-Romita Valley in the state of Guanajuato, Mexico. Calcite dissolution appeared to be the main process of strontium release leading to relatively equal (87)Sr/(86)Sr ratios of 0.7042-0.7062 throughout the study area which could be confirmed by samples of carbonate rocks having similar Sr ratios (0.7041-0.7073). delta(13)C values (-11.91- -6.87 per thousand VPDB) of groundwaters confirmed the solution of carbonates but indicated furthermore influences of soil-CO(2). Deuterium and (18)O contents showed a relatively narrow range of-80.1- -70.0 per thousand VSMOW and -10.2- -8.8 per thousand, VSMOW, respectively but are affected by evaporation and mixing processes. The use of delta(13)C together with (87)Sr/(86)Sr revealed three possible sources: (i) carbonate-controlled waters showing generally higher Sr-concentrations, (ii) fissure waters with low-strontium contents and (iii) infiltrating water which is characterized by low delta(13)C and (87)Sr/(86)Sr ratios. The third component is affected by evaporation processes taking place before and during infiltration which might be increased by extraction and reinfiltration (irrigation return flow).

  18. Sr isotopic tracer study of the Samail ophiolite, Oman

    SciTech Connect

    Lanphere, M.A.; Coleman, R.G.; Hopson, C.A.

    1981-04-10

    We have measured Rb and Sr concentrations and Sr isotopic compositions in 41 whole-rock samples and 12 mineral separates from units of the Samail ophiolite, including peridotite, gabbro, plagiogranite diabase dikes, and gabbro and websterite dikes within the metamorphic peridotite. Ten samples of cummulate gabbro from the Wadir Kadir section and nine samples from the Wadi Khafifah section have mean /sup 87/Sr//sup 86/Sr ratios and standard deviations of 0.70314 +- 0.00030 and 0.70306 +- 0.00034, respectively. The dispersion in Sr isotopic composition may reflect real heterogeneities in the magma source region. The average Sr isotopic composition of cumulate gabbro falls in the range of isotopic compositions of modern midocean ridge basalt. The /sup 87/Sr//sup 86/Sr ratios of noncumulate gabbro, plagiogranite, and diabase dikes range from 0.7034 to 0.7047, 0.7038 to 0.7046, and 0.7037 to 0.7061, respectively. These higher /sup 87/Sr//sup 86/Sr ratios are due to alteration of initial magmatic compositions by hydrothermal exchange with seawater. Mineral separates from dikes that cut harzburgite tectonite have Sr isotopic compositions which agree with that of cumulate gabbro. These data indicate that the cumulate gabbro and the different dikes were derived from partial melting of source regions that had similar long-term histories and chemical compositions.

  19. Sr isotopic tracer study of the Samail ophiolite, Oman.

    USGS Publications Warehouse

    Lanphere, M.A.; Coleman, R.G.; Hopson, C.A.

    1981-01-01

    Rb and Sr concentrations and Sr-isotopic compositions were measured in 41 whole-rock samples and 12 mineral separates from units of the Samail ophiolite, including peridotite, gabbro, plagiogranite, diabase dykes, and gabbro and websterite dykes within the metamorphic peridotite. Ten samples of cumulate gabbro from the Wadir Kadir section and nine samples from the Wadi Khafifah section have 87Sr/86Sr ratios of 0.70314 + or - 0.00030 and 0.70306 + or - 0.00034, respectively. The dispersion in Sr- isotopic composition may reflect real heterogeneities in the magma source region. The average Sr-isotopic composition of cumulate gabbro falls in the range of isotopic compositions of modern MORB. The 87Sr/86Sr ratios of noncumulate gabbro, plagiogranite, and diabase dykes range 0.7034-0.7047, 0.7038-0.7046 and 0.7037- 0.7061, respectively. These higher 87Sr/86Sr ratios are due to alteration of initial magmatic compositions by hydrothermal exchange with sea-water. Mineral separates from dykes that cut harzburgite tectonite have Sr-isotopic compositions which agree with that of cumulate gabbro. These data indicate that the cumulate gabbro and the different dykes were derived from partial melting of source regions that had similar long-term histories and chemical compositions.-T.R.

  20. Strontium isotope systematics of scheelite and apatite from the Felbertal tungsten deposit, Austria - results of in-situ LA-MC-ICP-MS analysis

    NASA Astrophysics Data System (ADS)

    Kozlik, Michael; Gerdes, Axel; Raith, Johann G.

    2016-02-01

    The in-situ Sr isotopic systematics of scheelite and apatite from the Felbertal W deposit and a few regional Variscan orthogneisses ("Zentralgneise") have been determined by LA-MC-ICP-MS. The 87Sr/86Sr ratios of scheelite and apatite from the deposit are highly radiogenic and remarkably scattering. In the early magmatic-hydrothermal scheelite generations (Scheelite 1 and 2) the 87Sr/86Sr ratios range from 0.72078 to 0.76417 and from 0.70724 to 0.76832, respectively. Metamorphic Scheelite 3, formed by recrystallisation and local mobilisation of older scheelite, is characterised by even higher 87Sr/86Sr values between 0.74331 and 0.80689. Statistics allows discriminating the three scheelite generations although there is considerable overlap between Scheelite 1 and 2; they could be mixtures of the same isotopic reservoirs. The heterogeneous and scattering 87Sr/86Sr ratios of the two primary scheelite generations suggest modification of the Sr isotope system due to fluid-rock interaction and isotopic disequilibrium. Incongruent release of 87Sr from micas in the Early Palaeozoic host rocks of the Habach Complex contributed to the solute budget of the hydrothermal fluids and may explain the radiogenic Sr isotope signature of scheelite. Spatially resolved analyses revealed isotopic disequilibrium even on a sub-mm scale within zoned Scheelite 2 crystals indicating scheelite growth in an isotopic dynamical hydrothermal system. Zoned apatite from the W mineralised Early Carboniferous K1-K3 orthogneiss in the western ore field yielded 87Sr/86Sr of 0.72044-0.74514 for the cores and 0.74535-0.77937 for the rims. Values of magmatic apatite cores from the K1-K3 orthogneiss are comparable to those of primary Scheelite 1; they are too radiogenic to be magmatic. The Sr isotopic composition of apatite cores was therefore equally modified during the hydrothermal mineralisation processes, therefore supporting the single-stage genetic model in which W mineralisation is associated with

  1. Isotopic and chemical constraints on the petrogenesis of Blackburn Hills volcanic field, western Alaska

    SciTech Connect

    Moll-Stalcup, E.J.; Arth, J.G. )

    1991-12-01

    The Blackburn Hills volcanic field is one of several Late Cretaceous and early Tertiary (75-50 Ma) volcanic fields in western Alaska that comprise a vast magmatic province extending from the Arctic Circle to Bristol Bay. It consists of andesite flows, rhyolite domes, a central granodiorite to quartz monzonite pluton, and small intrusive rhyolite porphyries, overlain by basalt and alkali-rhyolites. Most of the field consists of andesite flows which can be divided into two groups on the basis of elemental and isotopic composition: a group having lower ({sup 87}Sr/{sup 86}Sr){sub i}, higher ({sup 143}Nd/{sup 144}Nd){sub i}, and moderate LREE and HREE contents (group 1), and a group having higher ({sup 87}Sr/{sup 86}Sr){sub i}, lower ({sup 143}Nd/{sup 144}Nd){sub i}, and lower HREE contents. Basalts are restricted to the top of the stratigraphic section, comprise the most primitive part of group 1 (({sup 87}Sr/{sup 86}Sr){sub i} = 0.7033; ({sup 143}Nd/{sup 144}Nd){sub i} = 0.5129), and have trace-element ratios that are similar to those of oceanic island basalts (OIBs). Although some workers have suggested that the volcanic field is underlain by old continental crust, none of the data require the presence of Paleozoic or Precambrian continental middle or upper crust under this part of the volcanic field. However, the ultimate source of some of the rocks in the Yukon-Koyukuk province that have high {sup 87}Sr/{sup 86}Sr and low {sup 143}Nd/{sup 144}Nd ratios may be old sub-continental mantle and/or lower crust, which was previously subducted beneath the Yukon-Koyukuk province during Early Cretaceous arc-continent collision.

  2. Strontium isotope geochemistry of groundwaters and streams affected by agriculture, Locust Grove, MD

    USGS Publications Warehouse

    Böhlke, J.K.; Horan, M.

    2000-01-01

    The effects of agriculture on the isotope geochemistry of Sr were investigated in two small watersheds in the Atlantic coastal plain of Maryland. Stratified shallow oxic groundwaters in both watersheds contained a retrievable record of increasing recharge rates of chemicals including NO3/-, Cl, Mg, Ca and Sr that were correlated with increasing fertilizer use between about 1940 and 1990. The component of Sr associated with recent agricultural recharge was relatively radiogenic (87Sr/86Sr = 0.715) and it was overwhelming with respect to Sr acquired naturally by water-rock interactions in the oxidized, non-calcareous portion of the saturated zone. Agricultural groundwaters that penetrated relatively unoxidized calcareous glauconitic sediments at depth acquired an additional component of Sr from dissolution of early tertiary marine CaCO3 (87Sr/86Sr=0.708) while undergoing O2 reduction and denitrification. Ground-water discharge contained mixtures of waters of various ages and redox states. Two streams draining the area are considered to have higher 87Sr/86Sr ratios and NO3/- concentrations than they would in the absence of agriculture; however, the streams have consistently different 87Sr/86Sr ratios and NO3/- concentrations because the average depth to calcareous reducing (denitrifying) sediments in the local groundwater flow system was different in the two watersheds. The results of this study indicate that agriculture can alter significantly the isotope geochemistry of Sr in aquifers and streams and that the effects could vary depending on the types, sources and amounts of fertilizers added, the history of fertilizer use and groundwater residence times. (C) 2000 Elsevier Science Ltd.

  3. Petrochemical and isotopic studies of Transhimalayan granites in Ladakh, NW India

    SciTech Connect

    Srimal, N.; Basu, A.R.; Sinha, A.K.

    1985-01-01

    The India-Asia collision zone in the Transhimalayan Indus and Shyok Tectonic Belts (STB) of Ladakh, NW India is characterized by two major granitic batholiths. The northern, Karakoram Granitic batholith and the southern, Ladakh Granitic batholith are separated by thrust-bound belts of ophiolite, flysch and calc-alkaline volcanics of Mesozoic to Tertiary age. The KGC can be divided into three zones: a northern zone of metaluminous to mildly peraluminous granodiorite, diorite and tonalite with normative corundum, a southern zone of peraluminous two-mica and garnet bearing granites with normative corundum 1.8-3.3%, K/Rb=200-310, Rb/Sr > 0.3 and initial /sup 87/Sr/ /sup 86/Sr > 0.7113, and a central zone with variable K/Rb, Rb/Sr and initial /sup 87/Sr//sup 86/Sr ratios showing characteristics of both the northern and the southern zones. Field and characteristics of both the northern and the southern zones. Field and geochemical data indicate that: 1) the northern granites of the KGC represent an older magmatic arc derived largely from igneous sources with a small admixture of evolved crustal components and 2) the southern granites of the KGC are derived by partial melting of mature crustal material. Preliminary work in the LGC indicate varying source contamination reflected in variable initial /sup 87/Sr//sup 86/Sr ratios (.7041-.7072) and in correlated /sup 87/Sr//sup 86/Sr vs. delta /sup 18/O plot. The authors data suggest: 1) multiple accretion of Gondwanic fragments in the Mesozoic and Tertiary along the southern margin of Asia, 2) absence of extensive crustal anatexis in the source region of the Ladakh batholith, and 3) remobilization of old sutures and crustal anatexis as a result of India-Asia collision.

  4. Sr and Nd isotopic compositions of mafic xenoliths and volcanic rocks from the Oga Peninsula, Northeast Japan Arc: Genetic relationship between lower crust and arc magmas

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masatsugu; Kagami, Hiroo; Narita, Akiyuki; Maruyama, Takahiko; Kondo, Azusa; Abe, Shiho; Takeda, Rika

    2013-03-01

    Whole-rock and constituent hornblende and plagioclase geochemical and isotopic compositions of 52 mafic xenoliths from the Ichinomegata maar in the Oga Peninsula, located on the backarc side of Northeastern Japan, were investigated to further understand the nature of lower crustal materials beneath the Oga Peninsula. The inter-rock variations in isotopic compositions (87Sr/86Sr ratios of 0.703245-0.705246 and 143Nd/144Nd ratios of 0.512910-0.512608) correlate negatively with 87Rb/86Sr and 147Sm/144Nd ratios. A continuous and arcuate trend in a Sr-Nd isotope diagram suggests a two-component mixing curve is present; at lower 87Sr/86Sr and higher 143Nd/144Nd ratios, this trend extends towards and partly overlaps Quaternary volcanic rock compositions from the Toga, Ichinomegata (xenolith-hosting pumice), and Kampu volcanoes on the Oga Peninsula (herein, Oga volcanic rocks). This overlapping suggests a common control on the isotopic variations within both xenoliths and volcanic rocks. This common control is most likely to be the metasomatism of intact original lower crustal material by parental magmas of the Oga volcanic rocks, herein termed the Oga parental magma, in addition to the contamination of the Oga parental magma by the crustal material after contact between the two. This metasomatism also caused isotopic re-homogenization of these constituent minerals, meaning hornblende and plagioclase within individual xenoliths have the same Sr-Nd isotopic compositions; i.e., they show no intra-rock variations, suggesting thermal re-setting. However, inter-rock variations imply that full metasomatism and destruction of the original isotopic and geochemical characteristics of the lower crust did not occur. These inter-rock variations are consistently present as changes in the geochemistry of constituent minerals, with K2O, Rb, Sr, Sm, and Nd concentrations varying in hornblende, and anorthite contents (An %) varying in plagioclase. The original lower crustal material, as

  5. Isotopic and chemical constraints on the petrogenesis of Blackburn Hills volcanic field, western Alaska

    USGS Publications Warehouse

    Moll-Stalcup, E. J.; Arth, Joseph G.

    1991-01-01

    The Blackburn Hills volcanic field is one of several Late Cretaceous and early Tertiary (75-50 Ma) volcanic fields in western Alaska that comprise a vast magmatic province extending from the Arctic Circle to Bristol Bay. It consists of andesite flows, rhyolite domes, a central granodiorite to quartz monzonite pluton, and small intrusive rhyolite porphyries, overlain by basalt and alkali-rhyolites. Most of the field consists of andesite flows which can be divided into two groups on the basis of elemental and isotopic composition: a group having lower ( 87Sr 86Sr)i, higher ( 143Nd 144Nd)i, and moderate LREE and HREE contents (group 1), and a group having higher ( 87Sr 86Sr)i, lower ( 143Sr 144Sr)i, and lower HREE contents. Basalts are restricted to the top of the stratigraphic section, comprise the most primitive part of group 1 [( 87Sr 86Sr)i = 0.7033; ( 143Nd 144Nd)i = 0.5129], and have trace-element ratios that are similar to those of oceanic island basalts (OIBs). In contrast to the basalts, group 1 andesites have higher ( 87Sr 86Sr)i and lower ( 143Nd 144Nd)i, and represent interaction of mantle-derived magmas with the lower crust of Koyukuk terrane. Group 2 andesites have ( 87Sr 86Sr)i and ( 143Nd 144Nd)i that are near bulk-earth values and probably formed by partial melting of the lower crust of Koyukuk terrane. The central pluton and rhyolite porphyries are isotopically uniform ( 87Sr 86Sr)i ??? 0.704, ( 143Nd 144Nd)i ??? 0.51275, and are interpreted to have formed by melting of young mafic to intermediate crustal rocks or by fractionation of group 1 andesites. The rhyolite domes have an isotopic range similar to that of the basalts and andesites [( 87Sr 86Sr)i = 0.70355-0.70499; ( 143Nd 144Nd)i = 0.51263-0.51292], which suggests they formed by fractionation of the and site and basalt magmas. Although some workers have suggested that the volcanic field is underlain by old continental crust, none of the data require the presence of Paleozoic or Precambrian

  6. Ion microprobe measurement of strontium isotopes in calcium carbonate with application to salmon otoliths

    USGS Publications Warehouse

    Weber, P.K.; Bacon, C.R.; Hutcheon, I.D.; Ingram, B.L.; Wooden, J.L.

    2005-01-01

    The ion microprobe has the capability to generate high resolution, high precision isotopic measurements, but analysis of the isotopic composition of strontium, as measured by the 87Sr/ 86Sr ratio, has been hindered by isobaric interferences. Here we report the first high precision measurements of 87Sr/ 86Sr by ion microprobe in calcium carbonate samples with moderate Sr concentrations. We use the high mass resolving power (7000 to 9000 M.R.P.) of the SHRIMP-RG ion microprobe in combination with its high transmission to reduce the number of interfering species while maintaining sufficiently high count rates for precise isotopic measurements. The isobaric interferences are characterized by peak modeling and repeated analyses of standards. We demonstrate that by sample-standard bracketing, 87Sr/86Sr ratios can be measured in inorganic and biogenic carbonates with Sr concentrations between 400 and 1500 ppm with ???2??? external precision (2??) for a single analysis, and subpermil external precision with repeated analyses. Explicit correction for isobaric interferences (peak-stripping) is found to be less accurate and precise than sample-standard bracketing. Spatial resolution is ???25 ??m laterally and 2 ??m deep for a single analysis, consuming on the order of 2 ng of material. The method is tested on otoliths from salmon to demonstrate its accuracy and utility. In these growth-banded aragonitic structures, one-week temporal resolution can be achieved. The analytical method should be applicable to other calcium carbonate samples with similar Sr concentrations. Copyright ?? 2005 Elsevier Ltd.

  7. Isotope geochemistry reveals ontogeny of dispersal and exchange between main-river and tributary habitats in smallmouth bass Micropterus dolomieu.

    PubMed

    Humston, R; Doss, S S; Wass, C; Hollenbeck, C; Thorrold, S R; Smith, S; Bataille, C P

    2017-02-01

    Radiogenic strontium isotope ratios ((87) Sr:(86) Sr) in otoliths were compared with isotope ratios predicted from models and observed in water sampling to reconstruct the movement histories of smallmouth bass Micropterus dolomieu between main-river and adjacent tributary habitats. A mechanistic model incorporating isotope geochemistry, weathering processes and basin accumulation reasonably predicted observed river (87) Sr:(86) Sr across the study area and provided the foundations for experimental design and inferring fish provenance. Exchange between rivers occurred frequently, with nearly half (48%) of the 209 individuals displaying changes in otolith (87) Sr:(86) Sr reflecting movement between isotopically distinct rivers. The majority of between-river movements occurred in the first year and often within the first few months of life. Although more individuals were observed moving from the main river into tributaries, this pattern did not necessarily reflect asymmetry in exchange. Several individuals made multiple movements between rivers over their lifetimes; no patterns were found, however, that suggest seasonal or migratory movement. The main-river sport fishery is strongly supported by recruitment from tributary spawning, as 26% of stock size individuals in the main river were spawned in tributaries. The prevailing pattern of early juvenile dispersal documented in this study has not been observed previously for this species and suggests that the process of establishing seasonal home-range areas occurs up to 2 years earlier than originally hypothesized. Extensive exchange between rivers would have substantial implications for management of M. dolomieu populations in river-tributary networks.

  8. Geochemical signatures in fin rays provide a nonlethal method to distinguish the natal rearing streams of endangered juvenile Chinook Salmon Oncorhynchus tshawytscha in the Wenatchee River, Washington

    SciTech Connect

    Linley, Timothy J.; Krogstad, Eirik J.; Nims, Megan K.; Langshaw, Russell B.

    2016-09-01

    Rebuilding fish populations that have undergone a major decline is a challenging task that can be made more complicated when estimates of abundance obtained from physical tags are biased or imprecise. Abundance estimates based on natural tags where each fish in the population is marked can help address these problems, but generally requires that the samples be obtained in a nonlethal manner. We evaluated the potential of using geochemical signatures in fin rays as a nonlethal method to determine the natal tributaries of endangered juvenile spring Chinook Salmon in the Wenatchee River, Washington. Archived samples of anal fin clips collected from yearling smolt in 2009, 2010 and 2011 were analyzed for Ba/Ca, Mn/Ba, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr by inductively coupled plasma mass spectrometry. Water samples collected from these same streams in 2012 were also quantified for geochemical composition. Fin ray and water Ba/Ca, Sr/Ca, and 87Sr/86Sr were highly correlated despite the samples having been collected in different years. Fin ray Ba/Ca, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr ratios differed significantly among the natal streams, but also among years within streams. A linear discriminant model that included Ba/Ca, Mg/Ca, Sr/Ca, and 87Sr/86Sr correctly classified 95% of the salmon to their natal stream. Our results suggest that fin ray geochemistry may provide an effective, nonlethal method to identify mixtures of Wenatchee River spring Chinook Salmon for recovery efforts when these involve the capture of juvenile fish to estimate population abundance.

  9. Strontium-isotope stratigraphy of Enewetak Atoll

    USGS Publications Warehouse

    Ludwig, K. R.; Halley, Robert B.; Simmons, Kathleen R.; Peterman, Zell E.

    1988-01-01

    87Sr/86Sr ratios determined for samples from a 350 m core of Neogene lagoonal, shallow-water limestones from Enewetak Atoll display a remarkably informative trend. Like the recently published data for Deep Sea Drilling Project (DSDP) carbonates, 87Sr/86Sr at Enewetak increases monotonically but not smoothly from the early Miocene to the Pleistocene. The data show intervals of little or no change in 87Sr/86Sr, punctuated by sharp transitions to lower values toward greater core depths. The sharp transitions correlate with observed solution disconformities caused by periods of subaerial erosion, whereas the intervals of little or no change in 87Sr/86Sr correspond to intervals of rapid accumulation of shallow-water carbonate sediments. When converted to numerical ages using the published DSDP 590B trend, the best-resolved time breaks are at 282 m (12.3 to 18.2 Ma missing) and 121.6 m (3.0 to 5.3 Ma missing) below the lagoon floor. At Enewetak, Sr isotopes offer a stratigraphic resolution for these shallow-marine Neogene carbonates comparable to that of nannofossil zonation in deep-sea carbonates (0.3-3 m.y.). In addition, the correlation of times of Sr-isotope breaks at Enewetak with times of rapid Sr-isotope change in the DSDP 590B samples confirms the importance off sea-level changes in the evolution of global-marine Sr isotopes and shows that the Sr-isotope response to sea-level falls is rapid.

  10. Strontium-isotope stratigraphy of Enewetak Atoll

    NASA Astrophysics Data System (ADS)

    Ludwig, K. R.; Halley, R. B.; Simmons, K. R.; Peterman, Z. E.

    1988-02-01

    87Sr/86Sr ratios determined for samples from a 350 m core of Neogene lagoonal, shallow-water limestones from Enewetak Atoll display a remarkably informative trend. Like the recently published data for Deep Sea Drilling Project (DSDP) carbonates, 87Sr/86Sr at Enewetak increases monotonically but not smoothly from the early Miocene to the Pleistocene. The data show intervals of little or no change in 87Sr/86Sr, punctuated by sharp transitions to lower values toward greater core depths. The sharp transitions correlate with observed solution disconformities caused by periods of subaerial erosion, whereas the intervals of little or no change in 87Sr/86Sr correspond to intervals of rapid accumulation of shallow-water carbonate sediments. When converted to numerical ages using the published DSDP 590B trend, the best-resolved time breaks are at 282 m (12.3 to 18.2 Ma missing) and 121.6 m (3.0 to 5.3 Ma missing) below the lagoon floor. At Enewetak, Sr isotopes offer a stratigraphic resolution for these shallow-marine Neogene carbonates comparable to that of nannofossil zonation in deep-sea carbonates (0.3-3 m.y.). In addition, the correlation of times of Sr-isotope breaks at Enewetak with times of rapid Sr-isotope change in the DSDP 590B samples confirms the importance off sea-level changes in the evolution of global-marine Sr isotopes and shows that the Sr-isotope response to sea-level falls is rapid.

  11. Geochemically distinct sources for interstratified lavas from the Nejapa cinder cone alignment, Nicaragua

    SciTech Connect

    Feigenson, M.D.; Carr, J.J.; Walker, J.A.

    1985-01-01

    The Nejapa cinder cone alignment, near Managua, Nicaragua, produces mafic subalkaline basalts that are similar to mid-ocean ridge basalts (MORB). The Nejapa basalts can be divided into high- and low-titanium suites that are interstratified. Although major element compositions are similar to MORB, concentrations of Ba and Sr in the Nejapa basalts are higher, ranging from 2 x MORB in the high-titanium suite to 10 X MORB for the low-titanium lavas. Recently determined Nd and Sr isotopic and rare earth element (REE) concentrations for Nejapa basalts show that the high and low titanium suites have distinct sources and cannot be related by simple crystallization trends. For example, although the high-Ti lavas are light REE depleted and have overall MORB-like REE concentrations, they are systematically lower in /sup 143/Nd//sup 144/Nd and higher in /sup 87/Sr//sup 86/Sr. Low-Ti lavas, on the other hand, are LREE-enriched but have Nd isotopes identical to MORB (/sup 87/Sr//sup 86/Sr is distinctly higher). The contradictory geochemical characteristics displayed by the Nejapa lavas can be explained in a general sense by a mixing model that involves upper mantle peridotite and a fluid derived from hydrothermally-altered subducted oceanic crust. This fluid may enrich overlying mantle in Ba, Sr, and /sup 87/Sr//sup 86/Sr, and may supply enough water to stabilize an accessory phase such as rutile at high pressure. Melts generated from this source will be low in Ti, but high in Ba, Sr, /sup 87/Sr//sup 86/Sr and /sup 143/Nd//sup 144/Nd. Subjacent peridotite melting with less of the hydrous flux will generate lavas with higher Ti, lower Sr and Ba, and isotopic ratios of the peridotite.

  12. The origin and migration of mud volcano fluids in Taiwan: Evidence from hydrogen, oxygen, and strontium isotopic compositions

    NASA Astrophysics Data System (ADS)

    Chao, Hung-Chun; You, Chen-Feng; Liu, Hou-Chun; Chung, Chuan-Hsiung

    2013-08-01

    Mud volcanoes are important gateways for deep fluids to migrate upward and provide windows for studying fluid/sediment interaction at depth. Fluids emitted from 40 terrestrial mud volcanoes were collected in southern and eastern Taiwan to study their chemical compositions, including H, O and Sr isotopes (87Sr/86Sr and δ88/86Sr). Relative to seawater, the mud volcano fluids are depleted in Cl, Mg, SO42-, and δD and are elevated in B, Ba, Li, and δ18O, possibly due to water-rock interaction and clay dehydration (mainly smectite to illite transformation) in the source region. The distribution of Sr in mud volcano fluids shows patterns associated with their localities and geological settings. Most fluids have higher 87Sr/86S than seawater, indicating water-rock interaction at depth. The low Na, 87Sr/86S, and high Ca fluids emitted from eastern Taiwan imply intense interaction with igneous basement. Most fluids have higher Sr/Cl and lower δ88Sr than seawater except mud volcanoes in the northern Chu-kou Fault, which emit low Sr/Cl and extremely high δ88Sr (up to 0.82‰) fluids. We performed laboratory carbonate precipitation experiments that indicate that these high Sr isotope ratios are caused by co-precipitation of carbonates from high alkalinity fluids. Mud volcano fluids in Taiwan originate at depth and their chemical compositions are controlled by the host rock, degrees of water-rock interaction, and clay dehydration, but also are masked by retrograde progresses, such as carbonate precipitation during migration. Our results show that an approach combining water isotopes (δD and δ18O) and strontium isotopes (87Sr/86Sr and δ88/86Sr) provides a robust tool for tracing fluid sources and migration pathways in accretionary prisms.

  13. Dolomite from reflux of moderate salinity brine, Enewetak Atoll

    SciTech Connect

    Goldstein, R.H.

    1996-12-31

    Dolomite from the Eocene of Enewetak Atoll provides a model for prediction of dolomite reservoirs. Others have noted dolomite below about 1200 meters at the base of permeable slope strata, and that dolomite postdates compaction, formed from fluids with {sup 87}Sr/{sup 86}Sr higher than the host strata, and that dolomite stable isotope values argue for precipitation from cool seawater or warm evaporated seawater. Dolomite contains cloudy cores, rich in primary fluid inclusions. Fluid inclusion ice melting ranges from -2.4 to -4.4{degrees}C (higher salinity than seawater; 44 to 85 ppt). Ratios of clear rim/cloudy core compared to new {sup 87}Sr/{sup 86}Sr and stable isotope data yield no correlation indicative of differences between clear rims and cloudy cores. Dolomite {sup 87}Sr/{sup 86}Sr are 0.70750 to 0.70873, but fluid inclusion {sup 87}Sr/{sup 86}Sr are 0.70957 to 0.71198, indicating inclusions best preserve end-member compositions for the dolomitizing fluid. Thus, dolomite precipitated from a young fluid that, surprisingly, may have interacted with some unknown source of radiogenic Sr. For fluid inclusions, Na/K is similar to seawater indicating components were derived from seawater evaporation and not from dissolution of an evaporate, Na/Sr and Ca/Mg are similar to seawater modified by rock/water interaction, and Cl/SO{sub 4} suggests removal of SO{sub 4} from pore fluids. The only viable explanation for the Enewetak dolomite is that young fluids evaporated to salinities slightly above seawater in Enewetak lagoon. The density contrast allowed for reflux deep into the atoll, discharging through permeable slope strata. This model could predict distributions of dolomite in any platform with slight restriction and appropriate climate.

  14. Dolomite from reflux of moderate salinity brine, Enewetak Atoll

    SciTech Connect

    Goldstein, R.H. )

    1996-01-01

    Dolomite from the Eocene of Enewetak Atoll provides a model for prediction of dolomite reservoirs. Others have noted dolomite below about 1200 meters at the base of permeable slope strata, and that dolomite postdates compaction, formed from fluids with [sup 87]Sr/[sup 86]Sr higher than the host strata, and that dolomite stable isotope values argue for precipitation from cool seawater or warm evaporated seawater. Dolomite contains cloudy cores, rich in primary fluid inclusions. Fluid inclusion ice melting ranges from -2.4 to -4.4[degrees]C (higher salinity than seawater; 44 to 85 ppt). Ratios of clear rim/cloudy core compared to new [sup 87]Sr/[sup 86]Sr and stable isotope data yield no correlation indicative of differences between clear rims and cloudy cores. Dolomite [sup 87]Sr/[sup 86]Sr are 0.70750 to 0.70873, but fluid inclusion [sup 87]Sr/[sup 86]Sr are 0.70957 to 0.71198, indicating inclusions best preserve end-member compositions for the dolomitizing fluid. Thus, dolomite precipitated from a young fluid that, surprisingly, may have interacted with some unknown source of radiogenic Sr. For fluid inclusions, Na/K is similar to seawater indicating components were derived from seawater evaporation and not from dissolution of an evaporate, Na/Sr and Ca/Mg are similar to seawater modified by rock/water interaction, and Cl/SO[sub 4] suggests removal of SO[sub 4] from pore fluids. The only viable explanation for the Enewetak dolomite is that young fluids evaporated to salinities slightly above seawater in Enewetak lagoon. The density contrast allowed for reflux deep into the atoll, discharging through permeable slope strata. This model could predict distributions of dolomite in any platform with slight restriction and appropriate climate.

  15. Effect of sea water interaction on strontium isotope composition of deep-sea basalts

    USGS Publications Warehouse

    Julius, Dasch E.; Hedge, C.E.; Dymond, J.

    1973-01-01

    Analyses of rim-to-interior samples of fresh tholeiitic pillow basalts, deuterically altered holocrystalline basalts, and older, weathered tholeiitic basalts from the deep sea indicate that 87Sr 86Sr ratios of the older basalts are raised by low temperature interaction with strontium dissolved in sea water. 87Sr 86Sr correlates positively with H2O in these basalts; however, there is little detectable modification of the strontium isotope composition in rocks with H2O contents less than 1%. The isotope changes appear to be a function of relatively long-term, low-temperature weathering, rather than high-temperature or deuteric alteration. Strontium abundance and isotopic data for these rocks suggest that strontium content is only slightly modified by interaction with sea water, and it is a relatively insensitive indicator of marine alteration. Average Rb-Sr parameters for samples of apparently unaltered basalt are: Rb = 1.11 ppm; Sr = 132 ppm; 87Sr 86Sr = 0.70247. ?? 1973.

  16. Tracing ground-water evolution in a limestone aquifer using Sr isotopes: Effects of multiple sources of dissolved ions and mineral-solution reactions

    NASA Astrophysics Data System (ADS)

    Banner, Jay L.; Musgrove, Marylynn; Capo, R. C.

    1994-08-01

    Uplifted Pleistocene coral-reef terraces on Barbados, West Indies, constitute an aquifer that is built on low-permeability Tertiary pelagic rocks that overlie the Barbados accretionary prism. The downdip segments of the aquifer are composed of younger reef limestones that contain more aragonite and have higher 87Sr/86Sr and Sr/Ca ratios than the updip parts of the aquifer. Ground waters and host limestones display similar stratigraphic trends in 87Sr/86Sr and Sr/Ca. The ground waters have lower 87Sr/86Sr values, however, indicating that they acquire a significant fraction of their dissolved Sr through interaction with components of Tertiary rocks, which compose the underlying aquitard and parts of overlying soils. Geochemical modeling results indicate that ground-water evolution is controlled by (1) variations in the age and composition of the aquifer and aquitard rocks and (2) the relative roles of calcite dissolution, calcite recrystallization, and the transformation of aragonite to calcite. Sr isotopes can provide unique information for tracing ground-water evolution, which requires consideration of the multiple components and processes that make up even relatively simple limestone aquifer systems.

  17. Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale, Appalachian Basin

    USGS Publications Warehouse

    Phan, Thai T.; Capo, Rosemary C; Stewart, Brian W.; Macpherson, Gwen; Rowan, Elisabeth L.; Hammack, Richard W.

    2015-01-01

    In Greene Co., southwest Pennsylvania, the Upper Devonian sandstone formation waters have δ7Li values of + 14.6 ± 1.2 (2SD, n = 25), and are distinct from Marcellus Shale formation waters which have δ7Li of + 10.0 ± 0.8 (2SD, n = 12). These two formation waters also maintain distinctive 87Sr/86Sr ratios suggesting hydrologic separation between these units. Applying temperature-dependent illitilization model to Marcellus Shale, we found that Li concentration in clay minerals increased with Li concentration in pore fluid during diagenetic illite-smectite transition. Samples from north central PA show a much smaller range in both δ7Li and 87Sr/86Sr than in southwest Pennsylvania. Spatial variations in Li and δ7Li values show that Marcellus formation waters are not homogeneous across the Appalachian Basin. Marcellus formation waters in the northeastern Pennsylvania portion of the basin show a much smaller range in both δ7Li and 87Sr/86Sr, suggesting long term, cross-formational fluid migration in this region. Assessing the impact of potential mixing of fresh water with deep formation water requires establishment of a geochemical and isotopic baseline in the shallow, fresh water aquifers, and site specific characterization of formation water, followed by long-term monitoring, particularly in regions of future shale gas development.

  18. Tracking natural and anthropogenic origins of dissolved arsenic during surface and groundwater interaction in a post-closure mining context: Isotopic constraints.

    PubMed

    Khaska, Mahmoud; Le Gal La Salle, Corinne; Verdoux, Patrick; Boutin, René

    2015-01-01

    Arsenic contamination of stream waters and groundwater is a real issue in Au-As mine environments. At the Salsigne Au-As mine, southern France, arsenic contamination persists after closure and remediation of the site. In this study, natural and anthropogenic arsenic inputs in surface water and groundwater are identified based on (87)Sr/(86)Sr, and δ(18)O and δ(2)H isotopic composition of water. In the wet season, downstream of the remediated zone, the arsenic contents in stream water and alluvial aquifer groundwater are high, with values in the order of 36 μg/L and 40 μg/L respectively, while upstream natural background average concentrations are around 4 μg/L. Locally down-gradient of the reclaimed area, arsenic concentrations in stream water showed 2 peaks, one during an important rainy event (101 mm) in the wet season in May, and a longer one over the dry period, reaching 120 and 110 μg/L respectively. The temporal variations in arsenic content in stream water can be explained i) during the dry season, by release of arsenic stored in the alluvial sediments through increased contribution from base flow and decreased stream flow and ii) during major rainy events, by mobilization of arsenic associated with important surface runoff. The (87)Sr/(86)Sr ratios associated with increasing arsenic content in stream waters downstream of the reclaimed area are significantly lower than that of the natural Sr inherited from Variscan formations. These low (87)Sr/(86)Sr ratios are likely to be associated with the decontaminating water treatment processes, used in the past and still at present, where CaO, produced from marine limestone and therefore showing a low (87)Sr/(86)Sr ratios, is used to precipitate Ca3(AsO4)2. The low Sr isotope signatures will then impact on the Sr isotope ratio of (1) the Ca-arsenate stored in tailing dams, (2) effluent currently produced by water treatment process and (3) groundwater draining from the overall site. Furthermore, Δ(2)H shows

  19. In-situ Strontium Isotopes Analysis on Single Conodont Apatite by LA-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Zhang, L.; Chen, Z. Q.; Ma, D.; Qiu, H.; Lv, Z.; Hu, Z.; Wang, F.

    2014-12-01

    Strontium isotope played an important role in stratigraphic chronology and sedimentary geochemistry research (McArthur et al., 2001). Conodonts is a kind of extinct species of marine animals and widely distributed in marine sediments all over the world. Rich in radiogenic Sr contents and difficulty to be affected during diagenesis alteration makes conodonts a good choice in seawater Sr isotope composition studies (John et al., 2008). Conodont samples were collected from 24th to 39th layer across Permian-Triassic boundary at Meishan D section (GSSP), Zhejiang Province, South China (Yin et al., 2001). Conodonts was originated from fresh limestone and only conodont elements with CAI<2 were chosen for in-situ strontium isotope analysis using laser-ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Conodont samples are from totally 25 layers in seven conodont zones making it possible for a high resolution 87Sr/ 86Sr curve reconstruction during the Permian-Triassic transition. 87Sr/ 86Sr ratio kept a relatively high value (0.70752) in the middle part of the Clarkina yini zone and a lower value (0.70634) in the upperpart of Clarkina taylorae zone. Of which, 87Sr/ 86Sr ratio emerged a rapid decrease within the Clarkina taylorae zone. After a subsequent increase, 87Sr/ 86Sr ratio dropped to 0.70777 in the Isarcicella staeschei zone. These results helps providing reference data for the biological mass extinction events during the Permian-Triassic transition. Our study also makes is possible for high resolution 87Sr/ 86Sr ratio testing on the single conodont apatite and riched the in-situ studies on the conodont apatite, which of great significance for the future conodont Sr isotope research (Zhao et al., 2009; Zhao et al., 2013). Keywords: Conodonts, Strontium isotope, LA-MC-ICP-MS, Permian-Triassic transition, Meishan D section [1] John et al., 2008 3P[2] McArthur et al., 2001 J. of Geology [3] Yin et al., 2001 Episodes [4] Zhao et al

  20. Variability of sulphur isotope ratios in pyrite and dissolved sulphate in granitoid fractures down to 1 km depth - Evidence for widespread activity of sulphur reducing bacteria

    NASA Astrophysics Data System (ADS)

    Drake, Henrik; Åström, Mats E.; Tullborg, Eva-Lena; Whitehouse, Martin; Fallick, Anthony E.

    2013-02-01

    Euhedral pyrite crystals in 46 open bedrock (granitoid) fractures at depths down to nearly 1 km were analysed for sulphur isotope ratios (δ34S) by the in situ secondary ion mass spectrometry (SIMS) technique and by conventional bulk-grain analysis, and were compared with groundwater data. Twenty nine of the fractures sampled for pyrite had corresponding data for groundwater, including chemistry and isotopic ratios of sulphate, which provided a unique opportunity to compare the sulphur-isotopic ratios of pyrite and dissolved sulphate both at site and fracture-specific scales. Assessment of pyrite age and formation conditions were based on the geological evolution of the area (Laxemar, SE Sweden), and on data on co-genetic calcite as follows: (1) the isotopic ratios of the calcite crystals (δ18O, δ13C, 87Sr/86Sr) were compared with previously defined isotopic features of fracture mineral assemblages precipitated during various geological periods, and (2) the δ18O of the calcites were compared with the δ18O of groundwater in fractures corresponding to those where the calcite/pyrite assemblages were sampled. Taken together, the data show that all the sampled fractures carried pyrite/calcite that are low-temperature and precipitated from the current groundwater or similar pre-existing groundwater, except at depths of -300 to -600 m where water with a glacial component dominates and the crystals are from pre-modern fluids. An age of <10 Ma are anticipated for the pre-modern fluids. The δ34Spyr showed huge variations across individual crystals (such as -32 to +73‰) and extreme minimum (-50‰) and maximum (+91‰) values. For this kind of extreme S-isotopic variation at earth-surface conditions there is no other explanation than activity of sulphur reducing bacteria coupled with sulphate-limited conditions. Indeed, the most common subgrain feature was an increase in δ34Spyr values from interior to rim of the crystal, which we interpret are related to successively

  1. Nd, Sr, Pb, Ar, and O isotopic systematics of Sturgeon Lake kimberlite, Saskatchewan, Canada: constraints on emplacement age, alteration, and source composition

    NASA Astrophysics Data System (ADS)

    Hegner, E.; Roddick, J. C.; Fortier, S. M.; Hulbert, L.

    1995-06-01

    Rb-Sr isotopic dating of phlogopite megacryst samples separated from Sturgeon Lake kimberlite, Saskatchewan, yields a crystallization age of 98±1 Ma (2 σ, MSWD=1.2; 87Sr/86Sr( t)=0.7059). The 40Ar/39Ar analyses of a phlogopite megacryst sample indicate the presence of large amounts of excess 40Ar and yield an excessively old age of ˜410 Ma. Assessment of the Ar data using isotope correlation plots indicates clustering of the data points about a mixing line between the radiogenic 40Ar component at 98 Ma and a trapped component with uniform 36Ar/40Ar and Cl/40Ar. Values of δ 18O as high as +20‰ (VSMOW) for calcite from the groundmass and a whole-rock sample indicate pervasive low-temperature alteration. The δ 13C of matrix carbonate is -11.3‰ (PDB), slightly lighter than typical values from the literature. The δ 18O values of about +5‰ (VSMOW) for brown phlogopite megacrysts may be primary, green phlogopites are interpreted to be an alteration product of the brown variety and are 2‰ heavier. Initial Nd-Sr-Pb isotopic ratios for a whole-rock sample ( ɛ Nd=+0.8; 87Sr/86Sr=0.7063, 206Pb/204Pb=18.67, 207Pb/204Pb=15.54, 208Pb/204Pb=38.97) suggest an affinity with group I kimberlites. Initial ɛ Nd values of +1.7 and +0.5 (87Sr/86Sr( t)=0.7053 and 0.7050) for eclogitic and lherzolitic garnet megacryst samples, and values of 0.0 for two phlogopite megacryst samples reflect an origin from an isotopically evolving melt due to assimilation of heterogeneous mantle. Lilac high-Cr lherzolitic garnet megacrysts give an unusually high ɛ Nd(98. Ma) of +28.6 (87Sr/86Sr=0.7046) indicating a xenocrystic origin probably from the lithospheric mantle. The very radiogenic 87Sr/86Sr and 206Pb/204Pb ratios of the kimberlite are consistent with melting of EM II (enriched) mantle components.

  2. Final report of the key comparison CCQM-K98: Pb isotope amount ratios in bronze

    NASA Astrophysics Data System (ADS)

    Vogl, Jochen; Yim, Yong-Hyeon; Lee, Kyoung-Seok; Goenaga-Infante, Heidi; Malinowskiy, Dmitriy; Ren, Tongxiang; Wang, Jun; Vocke, Robert D., Jr.; Murphy, Karen; Nonose, Naoko; Rienitz, Olaf; Noordmann, Janine; Näykki, Teemu; Sara-Aho, Timo; Ari, Betül; Cankur, Oktay

    2014-01-01

    ) were selected such that they correspond with those commonly reported in Pb isotopic studies and fully describe the isotopic composition of Pb in the sample. Additionally, the isotope amount ratio n(208Pb)/n(206Pb) was added, as this isotope ratio is typically measured when performing Pb quantitation by IDMS involving a 206Pb spike. Each participant was free to use any method they deemed suitable for measuring the individual isotope ratios. However, the majority of the results were obtained by using muIti-collector ICPMS or TIMS. The key requirements for all analytical procedures were a traceability statement for all results and the establishment of an uncertainty budget meeting a target uncertainty for all ratios of 0.2 %, relative (k=1). Additionally, the use of a Pb-matrix separation procedure was encouraged. The obtained overall result was excellent, demonstrating that the individual results reported by the NMIs/DIs were comparable and compatible for the determination of Pb isotope ratios. MC-ICPMS and MC-TIMS data were consistent with each other and agree to within 0.05 %. The corresponding uncertainties can be considered as realistic uncertainties and mainly range from 0.02 % to 0.08 % (k=1). As stated above isotope ratios are being increasingly used in different fields. Despite the availability and ease of use of new mass spectrometers, the metrology of unbiased isotope ratio measurements remains very challenging. Therefore, further comparisons are urgently needed, and should be designed to also engage scientists outside the NMI/DI community. Possible follow-up studies should focus on isotope ratio and delta measurements important for environmental and technical applications (e.g. B), food traceability and forensics (e.g. H, C, N, O, S and 87Sr/86Sr) or climate change issues (e.g. Li, B, Mg, Ca, Si). Main text. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM.

  3. Lower crustal assimilation in oceanic arcs: Insights from an osmium isotopic study of the Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Bezard, Rachel; Schaefer, Bruce F.; Turner, Simon; Davidson, Jon P.; Selby, David

    2015-02-01

    We present whole rock 187Os/188Os data for the most mafic lavas along the Lesser Antilles arc (MgO = 5-17 wt.%) and for the subducting basalt and sediments. 187Os/188Os ratios vary from 0.127 to 0.202 in the arc lavas. Inverse correlations between 187Os/188Os and Os concentrations and between 187Os/188Os and indices of differentiation such as MgO suggests that assimilation, rather than source variation, is responsible for the range of Os isotopic variation observed. 87Sr/86Sr, La/Sm and Sr/Th are also modified by assimilation since they all correlate with 187Os/188Os. The assimilant is inferred to have a MORB-like 87Sr/86Sr with high Sr (>700 ppm), low light on middle and heavy rare earth elements (L/M-HREE; La/Sm ∼2.5) and 187Os/188Os > 0.2. Such compositional features are likely to correspond to a plagioclase-rich early-arc cumulate. Given that assimilation affects lavas that were last stored at more than 5 kbar, assimilation must occur in the middle-lower crust. Only a high MgO picrite from Grenada escaped obvious assimilation (MgO = 17% wt.%) and could reflect mantle source composition. It has a very radiogenic 87Sr/86Sr (0.705) but a 187Os/188Os ratio that overlaps the mantle range (0.127). 187Os/188Os and 87Sr/88Sr ratios of the sediments and an altered basalt from the subducting slab vary from 0.18 to 3.52 and 0.708 to 0.714. We therefore suggest that, unlike Sr, no Os from the slab was transferred to the parental magmas. Os may be either retained in the mantle wedge or even returned to the deep mantle in the subducting slab.

  4. A late Miocene-early Pliocene chain of lakes fed by the Colorado River: Evidence from Sr, C, and O isotopes of the Bouse Formation and related units between Grand Canyon and the Gulf of California

    USGS Publications Warehouse

    Roskowski, J.A.; Patchett, P.J.; Spencer, J.E.; Pearthree, P.A.; Dettman, D.L.; Faulds, J.E.; Reynolds, A.C.

    2010-01-01

    We report strontium isotopic results for the late Miocene Hualapai Limestone of the Lake Mead area (Arizona-Nevada) and the latest Miocene to early Pliocene Bouse Formation and related units of the lower Colorado River trough (Arizona-California-Nevada), together with parallel oxygen and carbon isotopic analyses of Bouse samples, to constrain the lake-overflow model for integration of the Colorado River. Sr iso topic analyses on the basal 1-5 cm of marl, in particular along a transect over a range of altitude in the lowest-altitude basin that contains freshwater, brackish, and marine fossils, document the 87Sr/86Sr of first-arriving Bouse waters. Results reinforce the similarity between the 87Sr/86Sr of Bouse Formation carbonates and present-day Colorado River water, and the systematic distinction of these values from Neogene marine Sr. Basal Bouse samples show that 87Sr/86Sr decreased from 0.7111 to values in the range 0.7107-0.7109 during early basin filling. 87Sr/86Sr values from a recently identified marl in the Las Vegas area are within the range of Bouse Sr ratios. 87Sr/86Sr values from the Hualapai Limestone decrease upsection from 0.7195 to 0.7137, in the approach to a time soon after 6 Ma when Hualapai deposition ceased and the Colorado River became established through the Lake Mead area. Bouse Formation ??18O values range from -12.9??? to +1.0??? Vienna Pee Dee belemnite (VPDB), and ??13C between -6.5??? and +3.4??? VPDB. Negative ??18O values appear to require a continental origin for waters, and the trend to higher ??18O suggests evaporation in lake waters. Sr and stable isotopic results for sectioned barnacle shells and from bedding planes of the marine fish fossil Colpichthys regis demonstrate that these animals lived in saline freshwater, and that there is no evidence for incursions of marine water, either long-lived or brief in duration. Lack of correlation of Sr and O isotopic variations in the same samples also argue strongly against systematic

  5. Unravelling the complex interaction between mantle and crustal magmas encoded in the lavas of San Vincenzo (Tuscany, Italy). Part II: Geochemical overview and modelling

    NASA Astrophysics Data System (ADS)

    Ridolfi, Filippo; Renzulli, Alberto; Perugini, Diego; Cesare, Bernardo; Braga, Roberto; Del Moro, Stefano

    2016-02-01

    This work reports a geochemical overview and modelling of the lavas erupted ~ 4.4 Ma ago at San Vincenzo (Tuscan Magmatic Province, TMP). Although these lavas cover a relatively small area (~ 10 km2), they show very large geochemical variations caused by the interaction of mantle-derived and crustal-anatectic magmas. The lavas consist of peraluminous rhyolites (87Sr/86Sr(i) up to 0.726) hosting primarily variably sized magmatic enclaves with shoshonite/latite compositions (87Sr/86Sr(i) down to 0.708). New whole-rock data for a large shoshonite enclave show high concentrations of LREE, LILE, and tetravalent HFSE, coupled with pentavalent HFSE depletions and enrichments in compatible elements such as Cr and Co. The chondrite-normalised REE pattern is strongly fractionated and characterised by a negative Eu anomaly (Eu/Eu* = 0.79). Hybridisation and AFC models suggest that the shoshonite enclave is the result of 12% rhyolite contamination of a mantle-derived magma akin to the potassic trachybasalt/shoshonite lavas of Capraia Island (~ 4.6 Ma; TMP), following an 18.5% assimilation of Late Triassic metasediments (13% evaporite and 5.5% carbonate) and 56% fractionation of clinopyroxene (39%), plagioclase (10%), and biotite (7%). Each rhyolite sample is characterised by mineral-scale isotopic disequilibria (e.g., 87Sr/86Sr(i) = 0.711-0.726), glass inclusions with large K2O/Na2O variations (1.1-3.4) and a poli-thermobarometric history of crustal melt production at eutectic conditions. A multi-parametric approach accounting for K2O/Na2O (1.3-2.2), 87Sr/86Sr(i) (0.713-0.725), Sr (104-311 ppm) and Rb (294-403 ppm) whole-rock variations, allowed us to divide the anatectic (A) rhyolites into five groups (A1, A2.1, A2.2, A2.3, A3). Group A1 shows the highest 87Sr/86Sr(i) ratios and the lowest values of Sr, K2O/Na2O and Rb. It is related to A2.1 and A3 rhyolites by positive K2O/Na2O-Rb and K2O/Na2O-FeO correlations. These three rhyolite groups crop out in the south of San

  6. Environmental controls on the boron and strontium isotopic composition of aragonite shell material of cultured Arctica islandica

    NASA Astrophysics Data System (ADS)

    Liu, Y.-W.; Aciego, S. M.; Wanamaker, A. D., Jr.

    2015-02-01

    Ocean acidification, the decrease in ocean pH associated with increasing atmospheric CO2, is likely to impact marine organisms, particularly those that produce carbonate skeletons or shells. Therefore it is important to investigate how environmental factors (seawater pH, temperature and salinity) influence the chemical compositions in biogenic carbonates. In this study we report the first high-resolution strontium (87Sr / 86Sr and δ88 / 86Sr) and boron (δ11B) isotopic values in the aragonite shell of cultured Arctica islandica (A. islandica). The 87Sr / 86Sr ratios from both tank water and shell samples show ratios nearly identical to the open ocean, which suggests that the shell material reflects ambient ocean chemistry without terrestrial influence. The 84Sr-87Sr double spike resolved shell δ 88 / 86Sr and Sr concentration data show no resolvable change throughout the culture period and reflect no theoretical kinetic mass fractionation throughout the experiment despite a temperature change of more than 15 °C. The δ11B records from the experiment show at least a 5‰ increase through the culture season (January 2010-August 2010), with low values from beginning to week 19 and higher values hereafter. The larger range in δ11B in this experiment compared to predictions based on other carbonate organisms (2-3‰) suggests that a species-specific fractionation factor may be required. A relatively strong correlation between the Δ pH (pHshell-pHsw) and seawater pH (pHsw) was observed (R2 = 0.34), which suggests that A. islandica partly regulates the pH of the extrapallial fluid. However, this proposed mechanism only explains approximately 34% of the variance in the δ11B data. Instead, a rapid rise in δ11B after week 19 suggests that the boron uptake of the shell changes when a temperature threshold of 13 °C is reached.

  7. Detailed record of the Neogene Sr isotopic evolution of seawater from DSDP Site 590B. [Deep Sea Drilling Project

    SciTech Connect

    DePaolo, D.J.

    1986-02-01

    A detailed study of strontium isotope variations in Neogene marine carbonate sediments from Deep Sea Drilling Project Site 590B, using techniques that allow the /sup 87/Sr//sup 86/Sr ratio to be determined to better than +/- 0.000 01, gives a high-resolution record of the Sr isotopic evolution of seawater. The data show that the rate of change of the marine /sup 87/Sr//sup 86/Sr ratio has varied significantly even on time scales as short as 1 m.y. Periods of particularly rapid growth appear to follow major marine regressions and probably reflect an increase in the delivery of radiogenic Sr from the continents coupled with a decreased submarine carbonate dissolution rate (greater carbonate compensation depth). Periods of relatively slowly changing /sup 97/Sr//sup 86/Sr follow major marine transgressions. On the basis of correlations with the marine oxygen isotope record and the times of major continental glacier growth, it is inferred that the effects of sea-level variations are modified by climatic factors that affect the intensity of continental weathering and runoff. The effects of sea-floor generation rate variations are not discernible for the Neogene. The maximum attainable stratigraphic resolution using Sr isotopes is between 0.1 and 2 m.y. for this time period. 24 references.

  8. Rb-Sr isotopic composition of granites in the Western Krušné hory/Erzgebirge pluton, Central Europe: record of variations in source lithologies, mafic magma input and postmagmatic hydrothermal events

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Bendl, Jiří; Štemprok, Miroslav

    2016-10-01

    The late Variscan (327-318 Ma) Western Krušné hory/Erzgebirge pluton (Czech Republic and Germany) represents a multiply emplaced intrusive sequence ranging from low-F biotite monzogranites (with rare minor bodies of gabbrodiorites and granodiorites) to high-F topaz-zinnwaldite alkali-feldspar granites. This granite suite is characterized by progressively increasing concentrations of incompatible elements (Li, Rb, F), monotonous decrease in mafic components and compatible elements (FeOtot, MgO, TiO2, CaO, Sr) with increasing silica. Consequently, this leads to extreme variations in the Rb/Sr ratios (0.52 to 59), which impose highly variable 87Rb/86Sr and 87Sr/86Sr signatures. The low-F biotite monzogranites represent isotopically heterogeneous mixture with (87Sr/86Sr)323 = 0.707-0.709 between partial melts from the Saxothuringian metasediments and mantle-derived mafic precursors. The medium-F two-mica microgranites show variable (87Sr/86Sr)323 = 0.708-0.714, indicating involvement of multiple precursors and more mature crustal protoliths. The evolved high-F topaz-zinnwaldite alkali-feldspar granites were derived from a precursor with (87Sr/86Sr)320 = 0.707-0.708 at 324-317 Ma by differentiation, which produced the extreme Rb/Sr enrichment and variations. The Li/Rb ratios remain nearly constant (~0.5), thus insensitive to the degree of geochemical differentiation. In comparison to terrestrial variations, the high Li/Rb values indicate derivation of granitic magmas from predominantly sedimentary precursors, in accord with 7Li-6Li and 143Nd-144Nd isotope composition reported previously. The Rb-Sr element variations in each granite unit are sligthly different and indicate ascent and emplacement of separate magma batches, which do not form a single liquid line of descent. We consider the enrichment of granites in incompatible elements (Li, Rb, F) and compatible depletion of ferromagnesian components, CaO and Sr as a combined effect of multiple precursors, changes in

  9. Strontium Isotopes as Tracers for Contamination from Potential Marcellus Shale Waters

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Li, L.; Hakala, A.

    2014-12-01

    Mineralogical and geochemical conditions vary significantly in natural water systems, including groundwater aquifers and rivers. In addition, contamination events are often elusive. As a result, it is often challenging to pinpoint the contamination of natural waters by specific types of water sources. The strontium isotope ratio R87Sr, defined as 87Sr/86Sr, has shown promise in discerning contamination from different types of wastewaters related to Marcellus Shale development. The R87Sr of potential end members, including Marcellus shale produced water (0.710-0.712) and Upper Devonian/Lower Mississippian formation brine (0.720-0.721), have been shown to be distinct from those in natural waters. Here we use reactive transport modeling (CrunchFlow) to understand key process and factors that govern the evolution of R87Sr, and the conditions under which we can discern contamination sources in natural water systems. Simulation results show that ion exchange reaction plays an important role in the evolution of R87Sr while release rate has a relatively minor impact on R87Sr evolution. Even with large dilution factor where the volumetric flow rate of natural waters is orders of magnitude higher than the release rates of contamination source water, the R87Sr is still sensitive to different types of source contamination waters. Insights gained here suggest that strontium isotopes can potentially be used as a tracers for different type of water contamination. The modeling tool developed can offer a powerful tool for understanding, predicting, monitoring of natural water contamination.

  10. Evaluating the Timing of Volcanism at Baitoushan Volcano (North Korea/China) in the Context of Open-system Effects: Insights from Sr, Nd, and Pb Isotopes at the Single Grain Scale

    NASA Astrophysics Data System (ADS)

    Ramos, F. C.; Gill, J. B.; Rodgers, S. L.

    2007-12-01

    Baitoushan volcano, located along the North Korean-China border, is responsible for one of the largest caldera- forming rhyolitic eruptions in the northern hemisphere in the last 2000 years. In addition to an ~1000AD eruption, additional activity occurred at ~0AD and ~2000BC. These eruptions ejected large volumes of comenditic airfall and pyroclastic materials in addition to a small pantelleritic airfall deposit. We are at the initial stage of evaluating the sources of isotope variations, including whether these systems are open or closed, in order to evaluate the timing and residence of highly alkaline rhyolitic magma systems. Initial whole-rock isotope ratios suggest that young (<10ka) Baitoushan satellite basalts generally have slightly lower 87Sr/86Sr and higher 143Nd/144Nd than similarly young comendites, while the pantellerite has 143Nd/144Nd ratios similar to basalts. Sr isotopes in basalt hosted plagioclase crystals are generally higher than both whole rock hosts and accompanying clinopyroxene crystals, suggesting isotopic modification of basalts at crustal depths. These plagioclase 87Sr/86Sr ratios are similar to those in comendites and are consistent with early crustal inputs of either a limited amount of regional Archean basement or more extensive assimilation of Baitoushan "root" rocks with similar isotopic ratios. If limited, elevated Rb/Sr ratios in these rocks and resulting 87Sr/86Sr ratios in the comendites should be able to date magmatic residence while Nd and Pb isotopes remain constant. Such evaluations will be undertaken at the single grain scale where any potential of "open-ness" of the system can be constrained. Results will aid in determining the extent to which chronometric information is degraded by open-system processes leading up to large volume rhyolite eruptions.

  11. Trace element and Sr isotope records of multi-episode carbonatite metasomatism on the eastern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Deng, Lixu; Liu, Yongsheng; Zong, Keqing; Zhu, Lüyun; Xu, Rong; Hu, Zhaochu; Gao, Shan

    2017-01-01

    Lherzolite xenoliths entrained in the Changle Cenozoic basalts were analyzed to infer mantle process beneath the eastern block of the North China Craton. These xenoliths were classified into two types. Clinopyroxenes (Cpx) in the type-1 xenoliths are strongly enriched in large ion lithophile elements and light rare earth elements (LREE) but depleted in high field-strength elements and heavy rare earth elements, and show high Ca/Al, Zr/Hf, and (La/Yb)N ratios but low Ti/Eu ratios. These features indicate that they were crystallized from a carbonatitic melt. Cpx in the type-2 xenoliths are mostly characterized by a chemical zonation, that is, LREE and Sr contents and (La/Yb)N and Eu/Ti ratios gradually increase from the cores to the rims. Some fresh cores preserve the original signatures of the depleted mantle. These observations indicate partial modification of pre-existing Cpx by carbonatite metasomatism. Two episodes of metasomatism were identified based on Sr isotopic compositions of Cpx and carbonate inclusions within olivines. Both the carbonate inclusions and Cpx cores in the type-2 xenoliths have relatively high 87Sr/86Sr ratios (>0.7033), suggesting metasomatism due to CO2-rich silicate melt derived from the recycled oceanic crust. However, low 87Sr/86Sr ratios of Cpx rims in the type-2 xenoliths suggest a late stage of metasomatism by a low-87Sr/86Sr carbonatitic melt (<0.7024), which might have been caused by upwelling of the asthenosphere mantle. Such multiple metasomatism could have played an important role in changing the chemical composition of mantle from refractory and depleted to fertile and enriched.

  12. Sr isotopic variations along the Juan de Fuca Ridge.

    USGS Publications Warehouse

    Eaby, J.; Clague, D.A.; Delaney, J.R.

    1984-01-01

    The Sr isotopic ratios of 39 glass and microcrystalline basalt samples along the Juan de Fuca Ridge and one glass sample from Brown Bear Seamount are at the lower end of the range for normal MORB; the average 87Sr/86Sr ratio is 0.70249 + or - 0.00014 (2sigma ). Although subtle variations exist along the strike of the ridge, the Sr isotopic data do not show systematic variation relative to the proposed Cobb hotspot. The isotopic data are inconsistent with an enriched mantle-plume origin for the Cobb-Eikelberg Seamount chain.-W.H.B.

  13. Groundwater levels and water-quality observations pertaining to the Austin Group, Bexar County, Texas, 2009-11

    USGS Publications Warehouse

    Banta, J.R.; Clark, Allan K.

    2012-01-01

    In general, the water-quality data indicated that the samples were representative of a calcium carbonate dominated system. The major ion chemistry and relations between magnesium to calcium molar ratios and 87Sr/86Sr isotopic ratios of samples collected from sites H and I indicated that the groundwater from these sites was most geochemically similar to groundwater collected from site B (State well AY-68-36-134), which is representative of groundwater in the Edwards aquifer. Of the sites sampled in this study, there appears to be varying hydrologic connectivity between groundwater from wells completed in the Austin Group and the Edwards aquifer.

  14. Implications for post-comminution processes in subglacial suspended sediment using coupled radiogenic strontium and neodymium isotopes

    NASA Astrophysics Data System (ADS)

    Clinger, Anna E.; Aciego, Sarah M.; Stevenson, Emily I.; Arendt, Carli A.; Robbins, Mark J.

    2016-04-01

    Enhanced physical weathering rates in subglacial systems promote high levels of comminution, transport, and deposition of fine-grained sediment within the subglacial drainage network. The impact of shifts in sediment loads from variations in meltwater flux, and their effects on downstream ecosystems, remains poorly quantified and places a fundamental importance on our ability to characterize subglacial depositional environments. Here, for the first time, we assess the seasonal evolution of the subglacial suspended sediment using coupled radiogenic strontium (87Sr/86Sr) and neodymium (143Nd/144Nd) isotopic ratios with elemental ratios and in situ measurements. Weathering rates in fluvial and riverine systems have been traditionally assessed using radiogenic isotopic tracers: 143Nd/144Nd ratios relate to the crustal age whereas 87Sr/86Sr ratios relate to age and preferential mineral dissolution. Thus relative shifts in these ratios will allow us to characterize distinct sediment transport networks. We apply this technique to the Lemon Creek Glacier (LCG), Alaska, USA, and to the Athabasca Glacier (AG), Alberta, CA. At the LCG, the 143Nd/144Nd values range from εNd of - 4.6 (0.9) to - 8.7 (0.2), which suggests a poorly mixed sediment flux. However, the greatest period of variability may correlate with the drainage of a supraglacial lake and suggests caution should be exerted in time-scale 143Nd/144Nd provenance studies that may be affected by climatic disturbances. In contrast, limited variation is observed within the AG 143Nd/144Nd seasonal record. A consistent, direct relation between the Rb/Sr elemental ratio and the 87Sr/86Sr ratio proves interesting as it enables us to unravel incongruent weathering trends in the radiogenic Sr record. Correlation between the 87Sr/86Sr and total discharge suggests that the process is partially controlled by mantling of the bedrock, which can be detected using post-comminution ages. While the subglacial structure may be enabled by

  15. Strontium isotopes as tracers of water-rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal aquifer of Bonifacio (Corsica, France).

    PubMed

    Santoni, S; Huneau, F; Garel, E; Aquilina, L; Vergnaud-Ayraud, V; Labasque, T; Celle-Jeanton, H

    2016-12-15

    This study aims at identifying the water-rock interactions and mixing rates within a complex granite-carbonate coastal aquifer under high touristic pressure. Investigations have been carried out within the coastal aquifer of Bonifacio (southern Corsica, France) mainly composed of continental granitic weathering products and marine calcarenite sediments filling a granitic depression. A multi-tracer approach combining physico-chemical parameters, major ions, selected trace elements, stable isotopes of the water molecule and (87)Sr/(86)Sr ratios measurements is undertaken for 20 groundwater samples during the low water period in November 2014. 5 rock samples of the sedimentary deposits and surrounding granites are also analysed. First, the water-rock interactions processes governing the groundwater mineralization are described in order to fix the hydrogeochemical background. Secondly, the flow conditions are refined through the quantification of inter aquifer levels mixing, and thirdly, the kinetics of water-rock interaction based on groundwater residence time from a previous study using CFCs and SF6 are quantified for the two main flow lines. A regional contrast in the groundwater recharge altitude allowed the oxygene-18 to be useful combined with the (87)Sr/(86)Sr ratios to differentiate the groundwater origins and to compute the mixing rates, revealing the real extension of the watershed and the availability of the resource. The results also highlight a very good correlation between the groundwater residence time and the spatial evolution of (87)Sr/(86)Sr ratios, allowing water-rock interaction kinetics to be defined empirically for the two main flow lines through the calcarenites. These results demonstrate the efficiency of strontium isotopes as tracers of water-rock interaction kinetics and by extension their relevance as a proxy of groundwater residence time, fundamental parameter documenting the long term sustainability of the hydrosystem.

  16. Boron and strontium isotope compositions of groundwater from the La Paz arid coastal aquifer, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Mahlknecht, Jürgen; Rosner, Martin; Meixner, Anette

    2016-04-01

    In groundwater studies boron and strontium isotopic compositions can be used to identify natural and anthropogenic sources as well as processes related to groundwater recharge, flow and mixing. The La Paz arid costal aquifer in Baja California Sur, Mexico, is the most important source of drinking and irrigation water for La Paz area and suffers from anthropogenic contamination and intensive exploitation of the aquifer causing seawater intrusion and general groundwater abatement. The relatively un-radiogenic 87Sr/86Sr isotope ratios of the La Paz groundwater range in a narrow field between 0.7054 and 0.7062. In contrast to strontium the boron isotope composition displays a large variability between +27 and +55 permil d11B. The relatively low 87Sr/86Sr ratios of the La Paz groundwater highlight a significant contribution of strontium derived from local terrestrial sediments and igneous rocks with known 87Sr/86Sr ratios between 0.705 and 0.7035. The large variability of d11B values indicate that multiple sources and processes determine the boron isotope composition of La Paz groundwater. Rainwater (high d11B), seawater (~+40 permil) due to seawater intrusions, wastewater (low to medium d11B) and boron derived from the local geology (low to medium d11B) explain most of the observed groundwater d11B variability. However, d11B values higher than modern seawater point to significant boron isotope fractionation by preferential absorption of 10B onto clay minerals during the evolution of some groundwater samples. Due to low boron concentrations in rainwater a significant contribution of 11B-rich rainwater (>+40 permil) on the La Paz groundwater is unlikely.

  17. Chemical and isotopic studies of granitic Archean rocks, Owl Creek Mountains, Wyoming: Geochronology of an Archean granite, Owl Creek Mountains, Wyoming

    SciTech Connect

    Hedge, C.E.; Simmons, K.R.; Stuckless, J.S.

    1986-01-01

    Rubidium-strontium analyses of whole-rock samples of an Archean granite from the Owl Creek Mountains, Wyo., indicate an intrusive age of 2640 {plus minus} 125 Ma. Muscovite-bearing samples give results suggesting that these samples were altered about 2300 Ma. This event may have caused extensive strontium loss from the rocks as potassium feldspar was altered to muscovite. Alteration was highly localized in nature as evidence by unaffected rubidium-strontium mineral ages in the Owl Creek Mountains area. Furthermore, the event probably involved a small volume of fluid relative to the volume of rock because whole-rock {delta}{sup 18}O values of altered rocks are not distinct from those of unaltered rocks. In contrast to the rubidium-strontium whole-rock system, zircons from the granite have been so severely affected by the alteration event, and possibly by a late-Precambrian uplift event, that the zircon system yields little usable age information. The average initial {sup 87}Sr/{sup 86}Sr (0.7033 {plus minus} 0.0042) calculated from the isochron intercept varies significantly. Calculated initial {sup 87}Sr/{sup 86}Sr ratios for nine apparently unaltered samples yield a range of 0.7025 to 0.7047. These calculated initial ratios correlate positively with whole-rock {delta}{sup 18}O values; and, therefore, the granite was probably derived from an isotopically heterogeneous source. The highest initial {sup 87}Sr/{sup 86}Sr ratio is lower than the lowest reported for the metamorphic rocks intruded by the granite as it would have existed at 2640 Ma. Thus, the metamorphic sequence, at its current level of exposure, can represent no more than a part of the protolith for the granite.

  18. Formation waters from Mississippian-Pennsylvanian reservoirs, Illinois basin, USA: Chemical and isotopic constraints on evolution and migration

    SciTech Connect

    Stueber, A.M. ); Walter, L.M.; Huston, T.J. ); Pushkar, P. )

    1993-02-01

    We have analyzed a suite of seventy-four formation-water samples from Mississippian and Pennsylvanian carbonate and siliciclastic strata in the Illinois basin for major, minor, and trace element concentrations and for strontium isotopic composition. A subset of these samples was also analyzed for boron isotopic composition. Data are used to interpret origin of salinity and chemical and Sr isotopic evolution of the brines and in comparison with a similar data set from an earlier study of basin formation waters from Silurian-Devonian reservoirs. Systematics of Cl-Br-Na show that present Mississippian-Pennsylvanian brine salinity can be explained by a combination of subaerial seawater evaporation short of halite saturation and subsurface dissolution of halite from an evaporite zone in the middle Mississippian St. Louis Limestone, along with extensive dilution by mixing with meteoric waters. Additional diagenetic modifications in the subsurface interpreted from cation/Br ratios include K depletion through interaction with clay minerals, Ca enrichment, and Mg depletion by dolomitization, and Sr enrichment through CaCO[sub 3] recrystallization and dolomitization. Ste. Genevieve Limestone (middle Mississippian) formation waters show [sup 87]Sr/[sup 86]Sr ratios in the range 0.70782-0.70900, whereas waters from the siliciclastic reservoirs are in the rante 0.70900-0.71052. Inverse correlations between [sup 87]Sr/[sup 86]Sr and B,Li, and Mg concentrations suggest that the brines acquired radiogenic [sup 87]Sr through interaction with siliciclastic minerals. Completely unsystematic relations between [sup 87]Fr/[sup 86]Sr and 1/Sr are observed; Sr concentrations in Ste. Genevieve and Aux Vases (middle Mississippian) waters appear to be buffered by equilibrium with respect to SrSo[sub 4]. These formation waters are distinguished from Silurian-Devonian brines in the basin by elevated Cl/Br and Na/Br ratios and by unsystematic Sr isotope relationships.

  19. Isotope studies of carbonate rocks of La Luna Formation (Venezuela) to constrain the oceanic anoxic event 3 (OAE3)

    NASA Astrophysics Data System (ADS)

    Machado, M. C.; Chemale, F., Jr.; Kawashita, K.; Rey, O.; Moura, C. A. V.

    2016-12-01

    87Sr/86Sr ratios, δ13C, and δ18O determinations performed on 30 bulk carbonate rocks are presented to constrain the isotope characteristics regarding Oceanic Anoxic Event 3 in the La Luna Formation, Maracaibo Basin. The samples were collected along a 22 m profile in San Miguel region (Merida State, Venezuela). The exhibited 87Sr/86Sr ratios are between 0.707659, at the base, and 0.707733 at the top of studied section, corresponding estimated younger numerical ages than the inferred ages dated as Santonian (85.8-83.5 Ma) based on occurrence of Dicarinella asymetrica. The obtained 87Sr/86Sr ratios are certainly higher than expected for Santonian sea Sr and they are attributed to regular riverine strontium fluxes in the restricted (gulf-like) Maracaibo Basin. The values of δ18O data between -3.76‰ and -11.76‰ are distributed in two distinct clusters in a same way and coherent as for δ13C data which are in a range between -1.75‰ and -13.87‰. One of the clusters δ13C = -2.5 ± 1.0‰ and δ18O = -10.0 ± 1.5‰), illustrate the homogeneous marine deposition under tropical conditions, while the other, more variable, probably could reflect the cyclicity of temporally changes in Pacific versus Atlantic Ocean circulation with cooling water or cooling trend climate. These δ13C values around -2.5 ± 1.0‰ do not fit with the significant carbon isotope excursion as expected for the oceanic anoxic event (OAE) and support the work hypothesis that Coniacian-Santonian anoxic event (denominate as OAE3) is not a global one.

  20. Chemical and strontium isotope characterization of rainwater in Beijing, China

    NASA Astrophysics Data System (ADS)

    Xu, Zhifang; Han, Guilin

    Major ion concentrations and Sr isotope ratios ( 87Sr/ 86Sr) were measured in rainwater samples collected at an urban site in Beijing over a period of one year. The pH value and major ion concentrations of samples varied considerably, and about 50% of the rainwater studied here were acidic rain with pH values less than 5.0. Ca 2+ and NH 4+ were the dominant cations in rainwaters and their volume weighted mean (VWM) values were 608 μeq l -1 (14-1781 μeq l -1) and 186 μeq l -1 (48-672 μeq l -1), respectively. SO 42- was the predominant anion with VWM value of 316 μeq l -1 (65-987 μeq l -1), next was NO 3- with VWM value of 109 μeq l -1 (30-382 μeq l -1). Using Na as an indicator of marine origin, and Al for the terrestrial inputs, the proportions of sea salt and terrestrial elements were estimated from elemental ratios. More than 99% of Ca 2+ and 98% of SO 42- in rainwater samples are non-sea-salt origin. The 87Sr/ 86Sr ratios were used to characterize the different sources based on the data sets of this study and those from literatures. Such sources include sea salts ( 87Sr/ 86Sr˜0.90917), soluble soil dust minerals originating from either local or the desert and loess areas (˜0.7111), and anthropogenic sources (fertilizers, coal combustion and automobile exhausts). The high concentrations of alkaline ions (mainly Ca 2+) in Beijing atmosphere have played an important role to neutralize the acidity of rainwater. However, it is worth noting that there is a remarkable acidification trend of rainwater in Beijing recent years.

  1. Mg Isotope variations of Marinoan Cap Carbonates: implications for the chemical evolution of Neoproterozoic Ocean after snowball earth

    NASA Astrophysics Data System (ADS)

    Liu, C.; Macdonald, F. A.; Raub, T.; Wang, Z.; Evans, D. A.

    2012-12-01

    We report Mg isotope profiles of two cap-carbonates: Nuccaleena formation from south Australia (mostly dolostones) and Tsagaan Oloom Formation from southwest Mongolia (including dolostones, aragonite crystal fans, and lime-mudstones). These data provide additional constraints on the chemical evolution of Neoproterozoic Oceans after the Marinoan deglaciation. An incremental leaching technique using ammonium acetate and various concentrations of acetic acid and hydrochloric acid was applied to separate metals in various forms from cap-carbonates (including surface adsorbed phases, calcite, dolomite and clay minerals). The leachates were then passed through chromatographic columns to extract pure Mg and Sr, which were then analyzed for their isotopic compositions by MC-ICP-MS (Neptune) at Yale University. Elemental ratios (Mg/Ca and Sr/Ca) in each leaching steps were also measured. Our results show that small variations of δ26MgDSM3 with leaching steps were observed in most dolostone samples when secondary calcite is absent. In contrast, large Mg isotope variations (up to 1.5 per mil) were shown in the leaching steps of limestone and crystal fans. The primary δ26MgDSM3 value of each sample was chosen from the leachate that has the lowest 87Sr/86Sr ratios. The δ26MgDSM3 value of Nuccaleena dolostone increases from -2.2‰ at the basal part of the section to -1.7‰ in the middle, and then turns back to -2.0‰ on the top, with a positive correlation between 26Mg/24Mg and 87Sr/86Sr ratios, implying that the high δ26MgDSM3 values may be caused by alteration or inherit from continental-derived fluids. In contrast, small δ26MgDSM3 variations in Tsagaan Oloom dolostones were exhibited in different leaching steps or cross the section (~-1.7‰), with high 87Sr/86Sr ratios (~0.7090), resembling cap dolostones from middle part of Nuccaleena dolostone, implying that they are formed in a similar environment. However, the δ26MgDSM3 value of upper lime-mudstones and crystal

  2. Mineral-Scale Sr and Pb Isotopic Variations as Recorders of Magma Differentiation Processes in the Fish Canyon Magmatic System, San Juan Volcanic Field, U.S.A.

    NASA Astrophysics Data System (ADS)

    Charlier, B. L.; Davidson, J. P.; Bachmann, O.; Dungan, M. A.

    2003-12-01

    The use of crystal isotope microstratigraphy, through microanalysis for Sr and more recently Pb isotopes, shows that inter- and intra-crystalline isotopic and compositional heterogeneities exist within many volcanic rocks. Here we report preliminary Sr and Pb isotope data for sanidine, plagioclase and biotite (Sr only) crystals separated from representative samples of the 5000km3, 28Ma Fish Canyon Tuff and the pre-caldera Pagosa Peak Dacite, from the La Garita Caldera, San Juan Volcanic Field, U.S.A. Age-corrected whole-rock 87Sr/86Sr values define a small range (0.7063 to 0.7065), whereas plagioclase values range from 0.7063 to 0.7072 and sanidines define a more limited range 0.7063 to 0.7067. These ranges in 87Sr/86Sr cannot be solely attributed to radiogenic ingrowth during residence in the Fish Canyon magma reservoir, as the 87Rb/86Sr values (plagioclase; 0.003 to 0.011, sanidine; 0.30 to 0.73) are too low to significantly affect 87Sr/86Sr over magmatic timescales. Biotites exhibit a much greater range in initial Sr isotope ratios (0.7202 to 0.7295), but with even higher 87Rb/86Sr ratios of 8 to 12, more than 50 Myrs would be needed to evolve such ratios from the whole-rock ratio. Similarly, large ranges of Pb isotope ratios in sanidines and plagioclase, cannot be produced given the U/Pb ratios of these phases on any geologically reasonable timescale. We interpret the isotopic variations to represent open system processes in the generation of the Fish Canyon magma either by 1) crystallisation from heterogeneous isotopically modified (ultimately mantle-derived) magmas during interaction with old, heterogeneous crust, and/or 2) the direct incorporation of xenocrystic phases from the crust to produce an isotopically heterogeneous magma (and rock) at the mineral scale. Small but significant variations in 39Ar/40Ar total fusion ages for each of the studied phases, are consistent with the latter interpretation, suggesting that the crystal population is a mixture of

  3. Origin of fluids and the evolution of the Atlantis II deep hydrothermal system, Red Sea: Strontium isotope study

    NASA Astrophysics Data System (ADS)

    Anschutz, Pierre; Blanc, Gérard; Stille, Peter

    1995-12-01

    Atlantis II is the largest and most mineralized of the deeps along the axis of the Red Sea spreading center. Its basaltic substratum is covered by recent layered metalliferous sediments, which precipitated from an overlying brine pool. The 87Sr /86Sr ratio and the strontium concentration of interstitial waters within these sediments range between 0.70708 and 0.70725 and between 43 and 53 ppm, respectively. They are close to what is found for the present-day deep brine pool (0.707105, 45.10 ppm). The strontium concentration and the 87Sr /86Sr ratio of the Atlantis II Deep brines can be derived from those of the interstitial waters of the surrounding Miocene evaporite by hydrothermal interaction with oceanic basaltic rocks at a maximal water/rock ratio of 2-3. This water/rock ratio is similar to that calculated for oceanic hydrothermal systems on sediment-free ridges. Interstitial waters show a linear trend on a plot of 87Sr /86Sr vs. 1/Sr. The highest strontium concentration and the most radiogenic interstitial waters correspond to sediment samples enriched in iron and manganese oxide minerals. These waters reflect the diagenetic release of strontium by oxide minerals that initially precipitated at the interface between the brine pool and more radiogenic seawater. The solid fraction of the sediment has 87Sr /86Sr isotopic compositions intermediate to those of the brines and seawater. The most radiogenic strontium values were observed in samples strongly enriched in marine microbiota. The gradual isotopic evolution in the lowest part of the western basin sediments testifies to the gradual influence of the hydrothermal activity in the deep in the beginning of the Atlantis II Deep sedimentary history. The strontium isotopic composition of solid samples from younger metalliferous facies is fairly uniform and close to that of the present-day brine. This isotopic homogeneity indicates that the isotopic composition of mineralizing fluids did not change during the time of

  4. Strontium isotope tracking of groundwater-CO2 interactions in Chimayo, New Mexico, and implications for carbon storage in geologic formations

    NASA Astrophysics Data System (ADS)

    Gardiner, J.; Stewart, B. W.; Capo, R.; Hakala, J.

    2009-12-01

    James Gardiner1, Brian Stewart1, Rosemary Capo1, J. Alexandra Hakala2 1Department of Geology and Planetary Sciences, University of Pittsburgh 2National Energy Technology Laboratory, Pittsburgh, PA The storage of carbon dioxide in geologic formations requires sensitive monitors of the geochemical and mineralogical interactions of storage units, their formation waters, and associated aquifers potentially affected by subsurface CO2. High CO2 subsurface environments can serve as natural analogues for conditions following CO2 injection and provide sites to develop and optimize geochemical tools that can characterize subsurface reactions and identify and track brine and groundwater interactions. Wells in Chimayó, NM tap groundwater from the Tesuque sandstone aquifer, which is crosscut by faults that act as conduits for naturally occurring, deeply sourced CO2. This provides an opportunity for geochemical and isotopic characterization of groundwaters potentially influenced by interaction with CO2. Well waters in the region have 87Sr/86Sr ratios ranging from 0.7176 for CO2-charged brackish water to 0.7098 for a low-TDS groundwater, making the Sr isotope system a potentially sensitive tracer for groundwater-rock interactions. Preliminary strontium isotopic and geochemical data lead to the following observations: (1) Strontium isotope ratios and Sr concentrations in groundwaters sampled within the basin suggest a complex mixing between deep- and shallow-sourced waters, possibly combined with reactions of aquifer carbonate cement or local limestone. (2) Adjacent wells with identical 87Sr/86Sr but significantly different CO2 and alkaline earth concentrations imply CO2 migration from depth into a shallow aquifer, followed by dissolution of carbonate cement. (3) Sr isotope mixing models, when used in conjunction with other geochemical data, can be a strong indicator of decoupling between CO2 and its carrier fluid. Conservative isotope tracers such as 87Sr/86Sr could be an

  5. Forearc uplift in northern Chile: New paleoaltimetric methods, constraints, and numerical experiments on the role of subduction channel flow

    NASA Astrophysics Data System (ADS)

    Cosentino, Nicolas Juan

    The lithosphere-scale geodynamic mechanisms that control forearc topography are still contentious. In northern Chile, this is in part due to a lack of paleoelevation constraints. In order to rectify this lack of data, this thesis carries out a series of studies. First, a new paleoaltimetry proxy for the hyperarid Atacama Desert was developed, based on the elevation-dependent relationship of the 87Sr/86Sr ratio of Holocene surface accumulations of salts. Here, an important source of calcium sulfate comes from stratocumulus clouds that generate fog on the continent, transferring water droplets to the ground surface which, upon evaporation, precipitate calcium sulfate. The seawater ratio of 87Sr/86Sr (0.70917) is distinctly higher than that of weathered mean Andean rock (<0.70750). Sites below 1075 m.a.s.l. and above 225 m.a.s.l. display Holocene calcium sulfate 87Sr/86Sr of mean value 0.70807 ± 0.00004, while the ratio outside this altitudinal domain is 0.70746 ± 0.00010. Based on these results for Holocene materials, Pliocene-Pleistocene paleoelevations of the forearc surface were inferred. We measured 87Sr/86Sr of dated ancient gypsic soils and applied appropriate corrections to the paleo-fog zone top and bottom. The results show that the magnitudes of paleo-elevation changes are small compared to the elevation of the study area: more than 45% of the 1000 m.a.s.l. average elevation of the Central Depression and more than 70% of the 900 m.a.s.l. average elevation of the westernmost Coastal Cordillera were achieved by pre-early Pliocene regional scale tectonic processes. Finally, the response of the forearc surface to 2D viscoelastic flow in a subduction channel was characterized numerically. 800-1100-m-thick subduction channels with viscosities of 5-10 x1018 Pa s best fit the elevations of the Central Depression after steady-state topography is reached in less than 6 myr. The onset of hyperaridity at 25 Ma starved the trench and subduction channel of sediments

  6. Sr-Nd-Pb isotope systematics of mantle xenoliths from Somerset Island kimberlites: Evidence for lithosphere stratification beneath Arctic Canada

    NASA Astrophysics Data System (ADS)

    Schmidberger, S. S.; Simonetti, A.; Francis, D.

    2001-11-01

    Sr, Nd, and Pb isotopic compositions were determined for a suite of Archean garnet peridotite and garnet pyroxenite xenoliths and their host Nikos kimberlite (100 Ma) from Somerset Island to constrain the isotopic character of the mantle root beneath the northern Canadian craton. The Nikos peridotites are enriched in highly incompatible trace elements (La/Sm N = 4-6), and show 143Nd/ 144Nd (t) (0.51249-0.51276) and a large range in 87Sr/ 86Sr (t) (0.7047-0.7085) and Pb ( 206Pb/ 204Pb (t) = 17.18 to 19.03) isotope ratios that are distinct from those estimated for "depleted mantle" compositions at the time of kimberlite emplacement. The Nd isotopic compositions of the peridotites overlap those of the Nikos kimberlite, suggesting that the xenoliths were contaminated with kimberlite or a kimberlite-related accessory phase (i.e., apatite). The highly variable Sr and Pb isotopic compositions of the peridotites, however, indicate that kimberlite contribution was restricted to very small amounts (˜1 wt % or less). The high-temperature peridotites (>1100°C) that sample the deep Somerset lithosphere trend toward more radiogenic 87Sr/ 86Sr (t) (0.7085) and unradiogenic 206Pb/ 204Pb (t) (17.18) isotopic ratios than those of the low-temperature peridotites (<1100°C). This is in agreement with Sr isotopic compositions of clinopyroxene from the low-temperature peridotites ( 87Sr/ 86Sr (t) = 0.7038-0.7046) that are significantly less radiogenic than those of clinopyroxene from the high-temperature peridotites ( 87Sr/ 86Sr (t) = 0.7052-0.7091). The depth correlation of Sr isotopes for clinopyroxene and Sr and Pb isotopic compositions for the Nikos whole-rocks indicate that the deep Somerset lithosphere (>160 km) is isotopically distinct from the shallow lithospheric mantle. The isotopic stratification with depth suggests that the lower lithosphere is probably younger and may have been added to the existing Archean shallow mantle in a Phanerozoic magmatic event. The radiogenic Sr

  7. The Island Arcs as a Major Source of Mantellic Sr to the Ocean: Tectonic Control over Seawater Chemistry and Climate

    NASA Astrophysics Data System (ADS)

    Louvat, P.; Allegre, C. J.; Meynadier, L.

    2005-12-01

    The evolution of 87Sr/86Sr in the Cenozoic ocean has been the subject of famous and vivid controversies between the BLAG model1 and Raymo's one2. No clear winner! Recently the question has been worsened because recent estimates of the hydrothermal flux at ridge crest3, 4, 5 and of the low-temperature oceanic crust weathering flux6 have shown that these fluxes are not enough to balance the continental radiogenic input to give 0.70917 (present-day seawater 87Sr/86Sr). We have re-examined this problem using both Sr and Nd isotopic budgets. Seawater 143Nd/144Nd isotopic ratio varies from one ocean to another as a consequence of its short residence time. For each ocean we can calculate the Nd contributions from continental (rivers) and mantellic sources. Since ridge crests cannot be the mantle-like source for Nd, this source is identified as the island arc and OIB weathering, in agreement with the observation by Goldstein and Hemming7. This approach leads us to examine the possibility of the same island arc origin for the missing mantle-like seawater Sr. The classical approach to the budget of water entering the ocean is to consider the river water fluxes as established by hydrological survey statistics. But these fluxes are too small, as they do not include the underground water flows, which are particularly important for volcanic terrains8. A budget calculation based on mean surface area, mean water fluxes and mean Sr concentrations in rivers and springs demonstrates island arc and OIB weathering is a sufficient source of mantellic Sr to the ocean to match the seawater 87Sr/86Sr budget. This result has a fundamental consequence on the explanation of the seawater 87Sr/86Sr evolution during the Cenozoic. Indeed, when a continental collision occurs a large portion of island arcs is eliminated. Thus the increase in the contribution of radiogenic 87Sr/86Sr from continental weathering and the decrease of the mantle contribution via island arc weathering are tectonically and

  8. The origin and mechanisms of salinization of the Lower Jordan River

    USGS Publications Warehouse

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, A.; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.

    2004-01-01

    The chemical and isotopic (87Sr/86Sr, ??11B, ??34Ssulfate, ??18Owater, ??15Nnitrate) compositions of water from the Lower Jordan River and its major tributaries between the Sea of Galilee and the Dead Sea were determined in order to reveal the origin of the salinity of the Jordan River. We identified three separate hydrological zones along the flow of the river: (1) A northern section (20 km downstream of its source) where the base flow composed of diverted saline and wastewaters is modified due to discharge of shallow sulfate-rich groundwater, characterized by low 87Sr/86Sr (0.7072), ??34Ssulfate (-2???), high ??11B (???36???), ??15Nnitrate (???15???) and high ??18Owater (-2 to-3???) values. The shallow groundwater is derived from agricultural drainage water mixed with natural saline groundwater and discharges to both the Jordan and Yarmouk rivers. The contribution of the groundwater component in the Jordan River flow, deduced from mixing relationships of solutes and strontium isotopes, varies from 20 to 50% of the total flow. (2) A central zone (20-50 km downstream from its source) where salt variations are minimal and the rise of 87Sr/86Sr and SO4/Cl ratios reflects predominance of eastern surface water flows. (3) A southern section (50-100 km downstream of its source) where the total dissolved solids of the Jordan River increase, particularly during the spring (70-80 km) and summer (80-100 km) to values as high as 11.1 g/L. Variations in the chemical and isotopic compositions of river water along the southern section suggest that the Zarqa River (87Sr/86Sr???0.70865; ??11B???25???) has a negligible affect on the Jordan River. Instead, the river quality is influenced primarily by groundwater discharge composed of sulfate-rich saline groundwater (Cl-=31-180 mM; SO4/Cl???0.2-0.5; Br/Cl???2-3??10-3; 87Sr/86Sr???0.70805; ??11B???30???; ??15Nnitrate ???17???, ??34Ssulfate=4-10???), and Ca-chloride Rift valley brines (Cl-=846-1500 mM; Br/Cl???6-8??10-3; 87Sr/86Sr???0

  9. Isotopic and geochemical constraints on the origin and evolution of postcollapse rhyolites in the Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Spell, Terry L.; Kyle, Philip R.; Thirlwall, Matthew F.; Campbell, Andrew R.

    1993-11-01

    Ring-fracture rhyolites of the Valles Caldera (VC) were examined to determine the evolution of the magma system following eruption of the upper Bandelier Tuff (UBT) and subsequent caldera collapse. Volcanism began with eruption of Deer Canyon (DC), Redondo Creek, and Del Medio (DM) rhyolites during the interval 1140-1133 ka. Quartz delta O-18 for the UBT, (average +8.3 %), DC (+7.9 %), and DM (+8.7 %) rhyolites indicate no significant lowering of delta O-18 following caldera collapse. In contrast, DM rhyolites record low epsilon(sub Nd) of -3.6 to -3.8 relative to the UBT (-2.7) and variable initial 87-Sr/86-Sr (0.70923-0.71307). Del Abrigo (DA) and Santa Rosa I rhyolites (973-915 ka) exhibit lower epsilon(Sub Nd) (-4.4 to -4.6) and initial 87-Sr/86-Sr (0.70707-0.71009), as well as shifts in compatible and incompatible trace element ratios. Seco, San Luis, and Santa Rosa II rhyolites (800-787 ka) have epsilon(Sub Nd) (-4.0 to -4.3) similar to the 973 to 915 ka rhyolites but lower initial 87-Sr/86-Sr (0.70616-0.70747). After a hiatus of 230 ka, San Antonio (SA), South Mountain (SM), and La Jara (LJ) rhyolites (557-521 ka) were erupted with epsilon(Sub Nd) of -3.7 to 4.3, distinctly lower initial 87-Sr/86-Sr of 0.70513-0.70553 and less evolved trace element compositions. The youngest rhyolites, the El Cajete-Banco Bonito group (EC-BB) (300-170 ka) are petrographically and geochemically distinct with the highest epsilon(Sub Nd) (-2.7 to -3.0) and the lowest initial 87-Sr/86-Sr (0.70464-0.70478) of postcollapse rhyolites. The isotopic data indicate that Valles rhyolites are not direct melts of Proterozoic basement (epsilon(Sub Nd) of -10 to -15) and indicate a significant mantle-derived (basaltic) component. Elevated initial 87-Sr/86-Sr is restricted to rhyolites depleted in Sr (less than 10 ppm) and probably reflects minor upper crustal assimilation. Calculated magma delta 0-18 values (+6.6 to +7.0 %) indicate no substantial supracrustal sediment in the source region

  10. Pb isotope variations among Bandelier Tuff feldspars: No evidence for a long-lived silicic magma chamber

    NASA Astrophysics Data System (ADS)

    Wolff, J. A.; Ramos, F. C.

    2003-06-01

    We report, for the first time, high-precision Pb isotope data from a high-silica rhyolite. Prior work on Sr isotopes in the 1.6 Ma Otowi Member of the Bandelier Tuff (Valles caldera, New Mexico) established that large 87Sr/86Sr variations exist among Otowi glasses and sanidine phenocrysts. While the glasses display unequivocal evidence for wall-rock contamination of the Otowi magma following sanidine growth, a positive correlation between 87Sr/86Sri and 87Rb/86Sr among the feldspars could be interpreted as either a mixing line or an in situ magmatic isochron dating a differentiation event ˜270 k.y. prior to eruption. The 206Pb/204Pb and 87Sr/86Sr ranges for Otowi sanidines are 17.790 ± 0.002 to 17.831 ± 0.002 and 0.7074 0.7052, respectively. This Pb isotope range cannot be produced by radiogenic ingrowth at the U/Pb ratios of the host magma on any geologically reasonable time scale, and hence is unequivocal evidence for open-system behavior of the Otowi magma prior to and/or concurrent with feldspar growth. Open-system behavior is predicted to control Sr isotope variations due to much higher concentrations of Sr, relative to Pb, in the country rock than in the magma. These observations therefore undermine any age significance of the Rb-Sr isotope variations. In the absence of supporting data, Rb-Sr relations alone do not impart any information about residence times of high-silica rhyolite magmas with subchondritic concentrations of Sr.

  11. The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering, solute evolution, and petrogenesis

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Lowenstern, J. B.; Vivit, D.V.; Bullen, T.D.

    2005-01-01

    Calcite is frequently cited as a source of excess Ca, Sr and alkalinity in solutes discharging from silicate terrains yet, no previous effort has been made to assess systematically the overall abundance, composition and petrogenesis of accessory calcite in granitoid rocks. This study addresses this issue by analyzing a worldwide distribution of more than 100 granitoid rocks. Calcite is found to be universally present in a concentration range between 0.028 to 18.8 g kg-1 (mean = 2.52 g kg-1). Calcite occurrences include small to large isolated anhedral grains, fracture and cavity infillings, and sericitized cores of plagioclase. No correlation exists between the amount of calcite present and major rock oxide compositions, including CaO. Ion microprobe analyses of in situ calcite grains indicate relatively low Sr (120 to 660 ppm), negligible Rb and 87Sr/86Sr ratios equal to or higher than those of coexisting plagioclase. Solutes, including Ca and alkalinity produced by batch leaching of the granitoid rocks (5% CO2 in DI water for 75 d at 25??C), are dominated by the dissolution of calcite relative to silicate minerals. The correlation of these parameters with higher calcite concentrations decreases as leachates approach thermodynamic saturation. In longer term column experiments (1.5 yr), reactive calcite becomes exhausted, solute Ca and Sr become controlled by feldspar dissolution and 87Sr/ 86Sr by biotite oxidation. Some accessory calcite in granitoid rocks is related to intrusion into carbonate wall rock or produced by later hydrothermal alteration. However, the ubiquitous occurrence of calcite also suggests formation during late stage (subsolidus) magmatic processes. This conclusion is supported by petrographic observations and 87Sr/86Sr analyses. A review of thermodynamic data indicates that at moderate pressures and reasonable CO2 fugacities, calcite is a stable phase at temperatures of 400 to 700??C. Copyright ?? 2005 Elsevier Ltd.

  12. Sulfur and strontium isotope geochemistry of tributary rivers of Lake Biwa: implications for human impact on the decadal change of lake water quality.

    PubMed

    Nakano, Takanori; Tayasu, Ichiro; Wada, Eitaro; Igeta, Akitake; Hyodo, Fujio; Miura, Yuuta

    2005-06-01

    To study the deterioration of the water quality in Lake Biwa, Japan, over the last 40 years, we measured the concentrations and isotopic ratios of sulfur and strontium of water in 41 inflowing rivers and one discharging river. The concentrations of SO4 and Sr of inflowing rivers at downstream sites were generally high in the southern urban area and in the eastern area, where a large agricultural plain is situated, but low in the northern and western areas, whose watersheds are mountainous and with low population density. SO4 and Sr concentrations are also lower at upstream sites, which are closer to mountainous areas. Thus, the inflowing river receives large amounts of SO4 and Sr as it flows across the plain, where human activity levels are high. The delta34S or 87Sr/86Sr values of most eastern rivers at downstream sites are lower than those of water in Lake Biwa, and values become more uniform as the proportion of the plain area in the watershed increases. River water in other areas has higher values of delta34S or 87Sr/86Sr than the lake water. This result indicates that the decadal decrease of delta34S and 87Sr/86Sr in the lake water has been caused mainly by the increased flux of SO4 and Sr from rivers in the eastern plain. We assume that in the plain, sulfur, nitrogen, and organic compounds induced by human activities generate sulfuric, nitric, and organic acids in the water, which accelerate the extraction of Sr from bedrocks, leading to the generation of Sr in the river water in the area.

  13. Late Miocene climate variability and surface elevation in the central Andes

    NASA Astrophysics Data System (ADS)

    Mulch, Andreas; Uba, Cornelius E.; Strecker, Manfred R.; Schoenberg, R.; Chamberlain, C. Page

    2010-02-01

    Temporal and spatial variations in topography and oxygen stable isotope ratios in precipitation in the central Andes have stimulated widespread discussion about the competing roles of mantle and crustal processes and their feedbacks with global-scale climatic change in uplifting and shaping the central Andes. In general, one of the major obstacles in assessing the relative contributions of long-term (10 5-10 6a) tectonic processes and precipitation (as a proxy for climate) to the uplift history of the Andean orogen is the lack of integrated data sets that record late Miocene patterns of uplift and climate. Radiogenic ( 87Sr/ 86Sr), sedimentologic, and stable isotope ( δ18O) data from Subandean foreland deposits of the Chaco Basin (Bolivia) show a rapid (< 200 ka) transition towards higher δ18O and 87Sr/ 86Sr values at ˜ 8.5 Ma that we interpret to reflect a change in precipitation patterns along the Eastern Cordillera and the Subandean fold-thrust belt. In agreement with δ13C studies on paleosol carbonates we attribute this change to a southward deflection of the South American low-level jet (LLJ) that currently exerts the dominant control over the seasonality and amount of precipitation along the Eastern flanks of the Andes. Deflection of the LLJ occurred most likely as the combined effects of readjustment of relief and topography within the Eastern Cordillera at 20-22°S and possibly associated surface uplift of the Altiplano. Contemporaneous rapid positive shifts in δ18O and 87Sr/ 86Sr of pedogenic carbonate in fluvial foreland deposits are consistent with a transition to more seasonal precipitation conditions and critical threshold elevations being attained that affected South American atmospheric circulation patterns. A four-fold increase in sedimentation rates in the foreland together with a shift to strongly radiogenic 87Sr/ 86Sr ratios in paleo-river water and sediment load as well as river incision into the well preserved San Juán del Oro paleo

  14. Isotopic constraints on open system evolution of the Laacher See magma chamber (Eifel, West Germany)

    NASA Astrophysics Data System (ADS)

    Wörner, G.; Staudigel, H.; Zindler, A.

    1985-09-01

    The Laacher See phonolite tephra sequence (11,000 years B.P.) of the Quaternary East Eifel volcanic field (West Germany) represents an inverted, chemically zoned magma column. Mafic and differentiated phonolites, respectively, represent the lowermost and uppermost erupted portion of the Laacher See magma chamber. Sr and Nd isotopic compositions of whole rocks, matrices and phenocrysts have been analyzed in order to provide constraints for open versus closed system evolution of the Laacher See magma chamber. 87Sr/ 86Sr isotope ratios of mafic phonolites and their phenocrysts are slightly more radiogenic than parental East Eifel basanite magmas. Bulk rock samples show a drastic increase in 87Sr/ 86Sr from mafic towards the most differentiated compositions that were erupted from the top of the magma chamber. Glass matrix separates show a parallel, but less pronounced, increase in 87Sr/ 86Sr . Phenocrysts, in contrast, show a narrow range in 87Sr/ 86Sr with a slight, but significant, increase towards the top of the magma chamber. Phenocrysts from the uppermost portion of the magma column were not in isotopic (or chemical) equilibrium with their host matrices. 143Nd/ 144Nd isotope ratios for whole rocks, matrices, and phenocrysts fall within a restricted range similar to that of East Eifel mafic magmas. A representative suite of crustal rocks (lower crustal granulites, quartzo-feldspathic gneisses, mica schists, Devonian slates and graywacke) was also analyzed in order to permit an evaluation of possible assimilation models. Our results are consistent with chemical evolution of the zoned Laacher See magma chamber mainly through crystal fractionation accompanied by minor amounts of assimilation. Slight contamination of the magma system may have involved (a) the assimilation of gneisses (?) and mica schists during the initial stage of magma chamber evolution (basanite-mafic phonolite), (b) combined assimilation-fractional crystallization (AFC) concurrent with the second

  15. Dated eclogitic diamond growth zones reveal variable recycling of crustal carbon through time

    NASA Astrophysics Data System (ADS)

    Timmerman, S.; Koornneef, J. M.; Chinn, I. L.; Davies, G. R.

    2017-04-01

    Monocrystalline diamonds commonly record complex internal structures reflecting episodic growth linked to changing carbon-bearing fluids in the mantle. Using diamonds to trace the evolution of the deep carbon cycle therefore requires dating of individual diamond growth zones. To this end Rb-Sr and Sm-Nd isotope data are presented from individual eclogitic silicate inclusions from the Orapa and Letlhakane diamond mines, Botswana. δ13 C values are reported from the host diamond growth zones. Heterogeneous 87Sr/86Sr ratios (0.7033-0.7097) suggest inclusion formation in multiple and distinct tectono-magmatic environments. Sm-Nd isochron ages were determined based on groups of inclusions with similar trace element chemistry, Sr isotope ratios, and nitrogen aggregation of the host diamond growth zone. Diamond growth events at 0.14 ± 0.09, 0.25 ± 0.04, 1.1 ± 0.09, 1.70 ± 0.34 and 2.33 ± 0.02 Ga can be directly related to regional tectono-magmatic events. Individual diamonds record episodic growth with age differences of up to 2 Ga. Dated diamond zones have variable δ13 C values (-5.0 to -33.6‰ vs PDB) and appear to imply changes in subducted material over time. The studied Botswanan diamonds are interpreted to have formed in different tectono-magmatic environments that involve mixing of carbon from three sources that represent: i) subducted biogenic sediments (lightest δ13 C, low 87Sr/86Sr); ii) subducted carbonate-rich sediments (heavy δ13 C, high 87Sr/86Sr) and iii) depleted upper mantle (heavy δ13 C, low 87Sr/86Sr). We infer that older diamonds from these two localities are more likely to have light δ13 C due to greater subduction of biogenic sediments that may be related to hotter and more reduced conditions in the Archaean before the Great Oxidation Event at 2.3 Ga. These findings imply a marked temporal change in the nature of subducted carbon beneath Botswana and warrant further study to establish if this is a global phenomenon.

  16. Geochemical fluxes related to alteration of a subaerially exposed seamount: Nintoku seamount, ODP Leg 197, Site 1205

    NASA Astrophysics Data System (ADS)

    RéVillon, Sidonie; Teagle, Damon A. H.; Boulvais, Philippe; Shafer, John; Neal, Clive R.

    2007-02-01

    Hole 1205A was drilled on Nintoku Seamount, which lies in the midportion of the Emperor Seamount Chain. This seamount was emergent ˜56 Myr ago but was submerged by 54 Ma, so the lavas have endured weathering in both subaerial and submarine environments. We have studied the petrology, mineralogy, and geochemistry of intercalated altered basalts, breccias, and soil samples recovered at Hole 1205A to quantify the chemical exchanges between the seamount and seawater and/or meteoric fluids. The secondary mineralogy is relatively uniform throughout the section and comprises smectite, Fe-oxyhydroxides, iddingsite, and Ca-carbonates. Soils are composed of variably altered basaltic clasts in a matrix of kaolinite, smectite, and vermiculite with minor goethite, hematite, and magnetite. Throughout the basement section, altered basalts, breccias, and soils are depleted in Si, Mg, Ca, Na, Sr, Rb, and Ba and enriched in Fe. Fe3+/FeT (up to ˜1), δ18O (up to ˜+20‰), and 87Sr/86Sr ratios are strongly elevated relative to primary igneous values. Differences in the 87Sr/86Sr ratios define an Upper Alteration Zone with 87Sr/86Sr close to 56 Ma seawater (˜0.7077) from a Lower Alteration Zone where 87Sr/86Sr are less elevated (˜0.704). The Lower Alteration Zone likely reflects interaction with a subaerial oxidizing fluid at low temperature. This zone probably retained most of the original subaerial weathering signature. The Upper Alteration Zone was altered through circulation of large quantities of cold oxidizing seawater that partially overprinted the subaerial weathering chemical characteristics. Altered samples were compared to estimated protolith compositions to calculate chemical gains and losses. Global chemical fluxes are calculated for the entire basement section using different lithological proportions models and different rates of oceanic island emplacement. Although the global construction rate of ocean islands is small compared to igneous accretion at mid

  17. Geochemistry and zircon ages of mafic dikes in the South Qinling, central China: evidence for late Neoproterozoic continental rifting in the northern Yangtze block

    NASA Astrophysics Data System (ADS)

    Zhu, Xiyan; Chen, Fukun; Liu, Bingxiang; Zhang, He; Zhai, Mingguo

    2015-01-01

    Neoproterozoic volcanic-sedimentary sequences of the southern Qinling belt, central China, were intruded by voluminous mafic dikes. secondary ion mass spectrometry zircon U-Pb dating indicates that these dikes were emplaced at 650.8 ± 5.2 Ma, coeval with mafic rocks occurring at the northern margin of the Yangtze block. The dikes are characterized by enrichment of large ion lithophile elements, high Ti contents (up to 3.73 wt%) and Nb/Ta ratios between 14.5 and 19.6, suggesting a mantle source of oceanic island basalt affinity. Initial 87Sr/86Sr ratios show positive correlation with SiO2 contents and negative correlation with Zr/Nb ratios, implying that these rocks were affected by crustal contamination during the magma ascend and emplacement process. The dikes have initial ɛ Nd values of +0.2 to +3.3, low 206Pb/204Pb ratios of 16.96-17.45, and moderate 87Sr/86Sr ratios of 0.7043-0.7076, likely pointing to the involvement of an enriched mantle source. The mafic dikes and coeval mafic volcanic equivalents in the South Qinling and the northern Yangtze are hypothesized to be related with the prolonged breakup of the supercontinent Rodinia, suggesting that continental rifting lasted until ca. 650 Ma.

  18. Multi-isotopes constraints on the origins and processes of groundwater salinization in coastal aquifers. Example of Recife, Northeast of Brazil

    NASA Astrophysics Data System (ADS)

    Cary, Lise; Petelet-Giraud, Emmanuelle; Bertrand, Guillaume; Kloppmann, Wolfram; Aquilina, Luc; Pauwels, Helène; Martins, Veridiana; Hirata, Ricardo; Montenegro, Suzana

    2015-04-01

    The Recife Metropolitan Region (PE, Brazil) is a typical "hot spot" illustrating the problems of southern countries on water issues inducing high pressures on water resources both on quantity and quality in the context of global social and environmental changes. This study focuses on the groundwater geochemistry in a costal multilayer aquifer and aims at investigating the sources and processes of salinization. The RMR basement is constituted by two different Precambrian blocks separated by a large lineament area. The sedimentary fillings of the two basins present different origins that can be distinguished by the Sr isotope composition. The northern deep Beberibe aquifer displays very high strontium isotope ratios with a large range of values (87Sr/86Sr = 0.7102 to 0.7233) illustrating the main continental origin of sediments whereas the southern deep Cabo aquifer showed lower 87Sr/86Sr values (87Sr/86Sr = 0.7097 to 0.7141) indicating the contribution of the marine sedimentation dating from the Atlantic opening. Although sulfate isotopes, Electric Conductivity and Cl contents indicate a clear mixing with seawater for some samples of the deep Cabo and Beberibe aquifers, all 87Sr/86Sr values are above the present-day seawater composition. This can be related to the complex local history of transgression/regression phases that induced alternatively salinisation and freshening with gains and losses of cations and Sr, together with water-rock interactions. Stable isotopes of the water molecule clearly evidence the local present day recharge especially within the surficial aquifer, whereas some samples are affected by in situ evaporation processes and/or recharge with evaporated water originating from dam used for water supply. The two deep aquifers display a high range of B concentrations (~20 to 600 µg.L-1) and B isotope composition (δ11B = 6.7 to 68.5 ‰), with the highest values known to date (63-68.5‰). This suggests multiple sources and processes affecting B

  19. Sr and Mg Isotopes of post-glacial limestones: implications for the chemical evolution of the Neoproterozoic Ocean after snowball earth

    NASA Astrophysics Data System (ADS)

    Liu, C.; Wang, Z.; Macdonald, F. A.

    2013-12-01

    The variation of ocean chemistry after the Marinoan (~635Ma) glaciation reflects the integrated effect of changes in continental weathering, carbonate precipitation and hydrothermal process in response to the extreme climatic event. To reconstruct the contemporary seawater chemistry, we analyzed Sr and Mg isotopes of the post-glacial carbonate overlying cap dolostones in the basal Ediacaran Ol Formation of the Tsagaan Olom Group in southwestern Mongolia. We employed an incremental leaching technique by dissolving carbonates sequentially with ammonium acetate and increasing concentrations of acetic acid to separate metals from various mineral phases in the carbonate (including surface adsorbed phases, calcite and dolomite). The leachates from each step and the dissolved bulk samples passed through chromatographic columns to extract pure Mg and Sr, which were then analyzed for their isotopic compositions by MC-ICP-MS (Neptune) at Yale University. Elemental ratios (Mg/Ca and Sr/(Mg+Ca)) in each leaching steps were measured as well. The following observations were noted from these experiments. First, the Mg/Ca ratio of the leachate decreased in the first few steps, reached a plateau in the middle steps and increased in the last few steps, implying a leaching sequence of surface-adsorbed phases, calcite and dolomite. Second, the Sr/(Mg+Ca) ratios remain almost constant except in the first two steps, suggesting similar Sr concentrations in different carbonates but elevated values in surface-adsorbed phases. Third, variations of both δ26MgDSM3 and 87Sr/86Sr values of the leachates with leaching steps exhibit similar trends to Mg/Ca, indicating enrichment of 26Mg and 87Sr in dolomite. Fourth, 87Sr/86Sr values of the leachates exhibit a wider plateau than δ26MgDSM3, denoting a binary mixing of dissolved calcite and dolomite in the last few steps. Finally, higher 87Sr/86Sr ratios and δ26MgDSM3 values were observed for bulk samples than their calcite components. The 87Sr

  20. Strontium isotope characterization of wines from Quebec, Canada.

    PubMed

    Vinciguerra, Victor; Stevenson, Ross; Pedneault, Karine; Poirier, André; Hélie, Jean-François; Widory, David

    2016-11-01

    The (87)Sr/(86)Sr isotope ratios were measured on grape, wine and soil samples collected in 13 commercial vineyards located in three major wine producing areas of Quebec (Canada). The soils yield Sr isotope ratios that are intimately related to the local geology and unambiguously discriminate the different producing areas. A strong relationship exists between the (87)Sr/(86)Sr isotope ratios of the wine and the grapes. This suggests that the vinification process does not alter the overall Sr budget. Although the Sr isotope ratios of the grapes do not show a strong correlation with the bulk Sr isotope composition of the soil, they do correlate strongly with the Sr isotope composition contained in the labile fraction of the soil. This indicates that the labile fraction of the soil represents the Sr reservoir available to the plant during its growth. This study demonstrates that the Sr isotope approach can be used as a viable tool in forensic science for investigating the provenance of commercial wines.

  1. Isotope geochemistry of recent magmatism in the Aegean arc: Sr, Nd, Hf, and O isotopic ratios in the lavas of Milos and Santorini-geodynamic implications

    USGS Publications Warehouse

    Briqueu, L.; Javoy, M.; Lancelot, J.R.; Tatsumoto, M.

    1986-01-01

    In this comparative study of variations in the isotopic compositions (Sr, Nd, O and Hf) of the calc-alkaline magmas of the largest two volcanoes, Milos and Santorini, of the Aegean arc (eastern Mediterranean) we demonstrate the complexity of the processes governing the evolution of the magmas on the scale both of the arc and of each volcano. On Santorini, the crustal contamination processes have been limited, effecting the magma gradually during its differentiation. The most differentiated lavas (rhyodacite and pumice) are also the most contaminated. On Milos, by contrast, these processes are very extensive. They are expressed in the 143Nd/144Nd vs. 87Sr/86Sr diagram as a continuous mixing curve between a mantle and a crustal end member pole defined by schists and metavolcanic rocks outcropping on these volcanoes. In contrast with Santorini, the least differentiated lavas on Milos are the most contaminated. These isotopic singularities can be correlated with the geodynamic evolution of the Aegean subduction zone, consisting of alternating tectonic phases of distension and compression. The genesis of rhyolitic magmas can be linked to the two phases of distension, and the contamination of the calc-alkaline mantle-derived magmas with the intermediate compressive phase. The isotopic characteristics of uncontaminated calc-alkaline primitive magmas of Milos and Santorini are directly comparable to those of magmas generated in subduction zones for which a contribution of subducted sediments to partial melts from the mantle is suggested, such as in the Aleutian, Sunda, and lesser Antilles island arcs. However, in spite of the importance of the sediment pile in the eastern Mediterranen oceanic crust (6-10 km), the contribution of the subducted terrigenous materials remains of limited amplitude. ?? 1986.

  2. Boron and strontium isotopic characterization of coal combustion residuals: validation of new environmental tracers.

    PubMed

    Ruhl, Laura S; Dwyer, Gary S; Hsu-Kim, Heileen; Hower, James C; Vengosh, Avner

    2014-12-16

    In the U.S., coal fired power plants produce over 136 million tons of coal combustion residuals (CCRs) annually. CCRs are enriched in toxic elements, and their leachates can have significant impacts on water quality. Here we report the boron and strontium isotopic ratios of leaching experiments on CCRs from a variety of coal sources (Appalachian, Illinois, and Powder River Basins). CCR leachates had a mostly negative δ(11)B, ranging from -17.6 to +6.3‰, and (87)Sr/(86)Sr ranging from 0.70975 to 0.71251. Additionally, we utilized these isotopic ratios for tracing CCR contaminants in different environments: (1) the 2008 Tennessee Valley Authority (TVA) coal ash spill affected waters; (2) CCR effluents from power plants in Tennessee and North Carolina; (3) lakes and rivers affected by CCR effluents in North Carolina; and (4) porewater extracted from sediments in lakes affected by CCRs. The boron isotopes measured in these environments had a distinctive negative δ(11)B signature relative to background waters. In contrast (87)Sr/(86)Sr ratios in CCRs were not always exclusively different from background, limiting their use as a CCR tracer. This investigation demonstrates the validity of the combined geochemical and isotopic approach as a unique and practical identification method for delineating and evaluating the environmental impact of CCRs.

  3. Hafnium isotope results from mid-ocean ridges and Kerguelen.

    USGS Publications Warehouse

    Patchett, P.J.

    1983-01-01

    176Hf/177Hf ratios are presented for oceanic volcanic rocks representing both extremes of the range of mantle Hf-Nd-Sr isotopic variation. Hf from critical mid-ocean ridge basalts shows that 176Hf/177Hf does indeed have a greater variability than 143Nd/144Nd and 87Sr/86Sr in the depleted mantle. This extra variation is essentially of a random nature, and can perhaps be understood in terms of known Rb/Sr-Sm/Nd-Lu/Hf fractionation relationships. At the other extreme of mantle isotopic compositions, 176Hf/177Hf ratios for igneous rocks from the Indian Ocean island of Kerguelen show a closely similar variation to published 143Nd/144Nd ratios for the same samples. Comparison of Hf-Nd-Sr isotopic relatonships for Tristan da Cunha, Kerguelen and Samoa reveals divergences in the mantle array for ocean-island magma sources, and perhaps suggests that these irregularities are largely the result of an extra component of 87Sr/86Sr variation.-G.R.

  4. Hafnium isotope results from mid-ocean ridges and Kerguelen

    USGS Publications Warehouse

    Jonathan, Patchett P.

    1983-01-01

    176Hf/177Hf ratios are presented for oceanic volcanics representing both extremes of the range of mantle HfNdSr isotopic variation. Hf from critical mid-ocean ridgebasalts shows that 176Hf/177Hf does indeed have a greater variability than 143Nd/144Nd and 87Sr/86Sr in the depleted mantle. This extra variation is essentially of a random nature, and can perhaps be understood in terms of known Rb/SrSm/NdLu/Hf fractionation relationships. At the other extreme of mantle isotopic composition, 176Hf/177Hf ratios for igneous rocks from the Indian Ocean island of Kerguelen show a closely similar variation to published 143Nd/144Nd ratios for the same samples. Comparison of HfNdSr c relationships for Tristan da Cunha, Kerguelen and Samoa reveals divergences in the mantle array for ocean island magma sources, and perhaps suggests that these irregularities are largely the result of an extra component of 87Sr/86Sr variation. ?? 1983.

  5. Strontium isotopes reveal distant sources of architectural timber in Chaco Canyon, New Mexico

    USGS Publications Warehouse

    English, N.B.; Betancourt, J.L.; Dean, J.S.; Quade, Jay

    2001-01-01

    Between A.D. 900 and 1150, more than 200,000 conifer trees were used to build the prehistoric great houses of Chaco Canyon, New Mexico, in what is now a treeless landscape. More than one-fifth of these timbers were spruce (Picea) or fir (Abies) that were hand-carried from isolated mountaintops 75-100 km away. Because strontium from local dust, water, and underlying bedrock is incorporated by trees, specific logging sites can be identified by comparing 87Sr/86Sr ratios in construction beams from different ruins and building periods to ratios in living trees from the surrounding mountains. 87Sr/86Sr ratios show that the beams came from both the Chuska and San Mateo (Mount Taylor) mountains, but not from the San Pedro Mountains, which are equally close. Incorporation of logs from two sources in the same room, great house, and year suggest stockpiling and intercommunity collaboration at Chaco Canyon. The use of trees from both the Chuska and San Mateo mountains, but not from the San Pedro Mountains, as early as A.D. 974 suggests that selection of timber sources was driven more by regional socioeconomic ties than by a simple model of resource depletion with distance and time.

  6. Strontium isotopes reveal distant sources of architectural timber in Chaco Canyon, New Mexico

    PubMed Central

    English, Nathan B.; Betancourt, Julio L.; Dean, Jeffrey S.; Quade, Jay

    2001-01-01

    Between A.D. 900 and 1150, more than 200,000 conifer trees were used to build the prehistoric great houses of Chaco Canyon, New Mexico, in what is now a treeless landscape. More than one-fifth of these timbers were spruce (Picea) or fir (Abies) that were hand-carried from isolated mountaintops 75–100 km away. Because strontium from local dust, water, and underlying bedrock is incorporated by trees, specific logging sites can be identified by comparing 87Sr/86Sr ratios in construction beams from different ruins and building periods to ratios in living trees from the surrounding mountains. 87Sr/86Sr ratios show that the beams came from both the Chuska and San Mateo (Mount Taylor) mountains, but not from the San Pedro Mountains, which are equally close. Incorporation of logs from two sources in the same room, great house, and year suggest stockpiling and intercommunity collaboration at Chaco Canyon. The use of trees from both the Chuska and San Mateo mountains, but not from the San Pedro Mountains, as early as A.D. 974 suggests that selection of timber sources was driven more by regional socioeconomic ties than by a simple model of resource depletion with distance and time. PMID:11572943

  7. Glacial recharge and paleohydrologic flow systems in the Illinois basin: Evidence from chemistry of Ordovician carbonate (Galena) formation waters

    SciTech Connect

    Stueber, A.M. ); Walter, L.M. )

    1994-11-01

    The Illinois basin provides an opportune setting for elucidating the roles of remnant evaporite brines and meteoric waters in the evolution of formation waters in an intracratonic sedimentary basin. Formation waters from carbonate reservoirs in the Upper Ordovician Galena Group have been analyzed geochemically to study the origin of their salinity, their chemical and isotopic evolution, and their relationship to paleohydrologic flow systems. Chloride/bromide ratios and Cl/Br-Na/Br relations indicate that initial brine salinity resulted from subaerial evaporation of seawater rather than from halite dissolution. Subsequent subsurface dilution of the brines by meteoric waters is disclosed by [delta]D-[delta][sup 18]O covariance; however, the remnant evaporite brine has not been completely expelled from these Ordovician strata. Galena formation waters have [sup 87]Sr/[sup 86]Sr ratios that range from 0.708 17 (a value nearly equal to that of coeval seawater) to 0.710 43. This is the greatest range of Sr isotopic ratios found in waters from any stratigraphic unit in the basin. Two fluid mixing events are revealed in plots of [sup 87]Sr/[sup 86]Sr vs. 1/Sr. 41 refs., 11 figs., 1 tab.

  8. Reduced population variance in strontium isotope values informs domesticated turkey use at Chaco Canyon, New Mexico, USA

    USGS Publications Warehouse

    Grimstead, Deanna N; Reynolds, Amanda C; Hudson, Adam M; Akins, Nancy J; Betancourt, Julio L.

    2016-01-01

    Traditionally strontium isotopes (87Sr/86Sr) have been used as a sourcing tool in numerous archaeological artifact classes. The research presented here demonstrates that 87Sr/86Srbioapatite ratios also can be used at a population level to investigate the presence of domesticated animals and methods of management. The proposed methodology combines ecology, isotope geochemistry, and behavioral ecology to assess the presence and nature of turkey (Meleagris gallopavo) domestication. This case study utilizes 87Sr/86Srbioapatite ratios from teeth and bones of archaeological turkey, deer (Odocoileus sp.), lagomorph (Lepus sp. and Sylvilagus sp.), and prairie-dog (Cynomys sp.) from Chaco Canyon, New Mexico, U.S.A. (ca. A.D. 800 – 1250). Wild deer and turkey from the southwestern U.S.A. have much larger home ranges and dispersal behaviors (measured in kilometers) when compared to lagomorphs and prairie dogs (measured in meters). Hunted deer and wild turkey from archaeological contexts at Chaco Canyon are expected to have a higher variance in their 87Sr/86Srbioapatite ratios, when compared to small range taxa (lagomorphs and prairie dogs). Contrary to this expectation, 87Sr/86Srbioapatite values of turkey bones from Chacoan assemblages have a much lower variance than deer and are similar to that of smaller mammals. The sampled turkey values show variability most similar to lagomorphs and prairie dogs, suggesting the turkeys from Chaco Canyon were consuming a uniform diet and/or were constrained within a limited home range, indicating at least proto-domestication. The population approach has wide applicability for evaluating the presence and nature of domestication when combined with paleoecology and behavioral ecology in a variety of animals and environments.

  9. Asteriscus v. lapillus: comparing the chemistry of two otolith types and their ability to delineate riverine populations of common carp Cyprinus carpio.

    PubMed

    Macdonald, J I; McNeil, D G; Crook, D A

    2012-10-01

    The chemical composition of common carp Cyprinus carpio asteriscus (vaterite) and lapillus (aragonite) otoliths from the same individual and reflecting the same growth period was measured to (1) determine whether there are differences in the uptake of trace metals (Mg:Ca, Mn:Ca, Sr:Ca and Ba:Ca ) and Sr isotope ratios ((87)Sr:(86)Sr) in co-precipitating lapilli and asterisci and (2) compare the ability of multi-element and isotopic signatures from lapilli, asterisci and both otolith types combined to discriminate C. carpio populations over a large spatial scale within a river basin. Depth profile analyses at the otolith edge using laser-ablation inductively coupled plasma mass spectrometry showed that asterisci were enriched in Mg and Mn and depleted in Sr and Ba relative to lapilli, whilst (87)Sr:(86)Sr values were nearly identical in both otolith types. Significant spatial differences among capture locations were found when all trace element and Sr isotope ratio data were aggregated into a multi-element and isotopic signature, regardless of which otolith type was used or if they were used in combination. Discriminatory power was enhanced, however, when data for both otolith types were combined, suggesting that analysis of multiple otolith types may be useful for studies attempting to delineate C. carpio populations at finer spatial or temporal scales.

  10. High-resolution records of Bonneville Basin paleohydrology offer new insights into changing atmospheric circulation patterns over North America from 26 ka through the Holocene

    NASA Astrophysics Data System (ADS)

    Steponaitis, E.; McGee, D.; Quade, J.; Andrews, A.; Edwards, R.; Hsieh, Y.; Broecker, W. S.; Cheng, H.

    2013-12-01

    The tremendous lateral extent of the Bonneville Basin, which covers much of western Utah, makes paleoclimate records from this region highly sensitive to global-scale changes in atmospheric circulation and hydrology. New paleoclimate records from speleothems and lacustrine carbonates offer insight into the hydrology the Bonneville Basin spanning from 26 ka through the Holocene. Anchored by high-precision U-Th dates, Sr records from crystalline lacustrine carbonates from throughout the basin provide a mechanism for constraining zonal variations in precipitation over time. To accomplish this, we exploit spatial variations in the 87Sr/86Sr ratios of fluvial inputs to Lake Bonneville (Hart et al. 2004). Paired with stable isotope records, these Sr records give a spatially detailed view of the response of Great Basin to global climate change, and by extension, insight into atmospheric circulation patterns over North America during abrupt climate changes. Stable isotope and trace metal records from Lehman Cave speleothems provide a high-resolution extension of these Great Basin hydrological records into the Holocene. Here we provide an overview of these unique paired records, focusing particular attention on the region's response to the Younger Dryas and Heinrich events 1 and 2. Hart, W.S. et al., The 87Sr/86Sr ratios of lacustrine carbonates and lake-level history of the Bonneville paleolake system. GSA Bulletin. 2004; 116: 1107-1119.

  11. Strontium isotope record of seasonal scale variations in sediment sources and accumulation in low-energy, subtidal areas of the lower Hudson River estuary

    USGS Publications Warehouse

    Smith, J.P.; Bullen, T.D.; Brabander, D.J.; Olsen, C.R.

    2009-01-01

    Strontium isotope (87Sr/86Sr) profiles in sediment cores collected from two subtidal harbor slips in the lower Hudson River estuary in October 2001 exhibit regular patterns of variability with depth. Using additional evidence from sediment Ca/Sr ratios, 137Cs activity and Al, carbonate (CaCO3), and organic carbon (OCsed) concentration profiles, it can be shown that the observed variability reflects differences in the relative input and trapping of fine-grained sediment from seaward sources vs. landward sources linked to seasonal-scale changes in freshwater flow. During high flow conditions, the geochemical data indicate that most of the fine-grained sediments trapped in the estuary are newly eroded basin materials. During lower (base) flow conditions, a higher fraction of mature materials from seaward sources with higher carbonate content is trapped in the lower estuary. Results show that high-resolution, multi-geochemical tracer approaches utilizing strontium isotope ratios (87Sr/86Sr) can distinguish sediment sources and constrain seasonal scale variations in sediment trapping and accumulation in dynamic estuarine environments. Low-energy, subtidal areas such as those in this study are important sinks for metastable, short-to-medium time scale sediment accumulation. These results also show that these same areas can serve as natural recorders of physical, chemical, and biological processes that affect particle and particle-associated material dynamics over seasonal-to-yearly time scales. ?? 2009.

  12. Geochemistry of late Cretaceous granitoids from northeastern Washington: implication for genesis of two-mica Cordilleran granites

    SciTech Connect

    Asmerom, Y.; Ikramuddin, M.; Kinart, K.

    1988-05-01

    Mesozoic two-mica granites and I-type granodiorites from northeastern Washington have initial /sup 87/Sr//sup 86/Sr ratios around 0.7100, similar to many other Cordilleran granitoids. Metapelite and calcsilicate country rocks, equivalent to the Belt Supergroup, have measured /sup 87/Sr//sup 86/Sr ratios in the range of 0.91 to 0.98. Unlike many of their Cordilleran counterparts, the northeastern Washington two-mica granites are enriched in U, Rb, and other incompatible elements, and therefore cannot have been derived from depleted lower crust sedimentary sources. Both the two-mica granites and the I-type granodiorites have similar rare-earth-element and trace-element enrichment patterns. Trace-elements modeling shows that it is feasible to derive the two-mica granites by 60% partial melting of a granodiorite-like source. The close association of Cordilleran metamorphic core complexes and older I-type granodiorites with two-mica granites supports this model.

  13. Reworked old crust-derived shoshonitic magma: The Guarany pluton, Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Ferreira, Valderez P.; Sial, Alcides N.; Pimentel, Marcio M.; Armstrong, Richard; Guimarães, Ignez P.; da Silva Filho, Adejardo F.; de Lima, Mariucha Maria C.; da Silva, Thyego R.

    2015-09-01

    The 572 Ma Guarany stock consists of magmatic epidote-bearing hornblende monzodiorite to biotite granite that intruded Paleoproterozoic orthogneisses about 10 km inland from the coast in northeastern Brazil. Co-magmatic diorite enclaves and dikes are abundant throughout the pluton. The monzodiorite-granite pluton and diorite enclaves are shoshonitic and display continuous trends in variation diagrams. They display chemical and isotopic characteristics of crustal melts, such as enrichment in incompatible elements, high back-calculated initial 87Sr/86Sr ratios (avg. 0.71253), negative εNd (0.57Ga) values (avg. - 14.58), as well as high and variable (+ 9.1 to + 11.1‰VSMOW) δ18O (zircon) values. Correlations between O-isotope and whole-rock silica contents, as well as initial 87Sr/86Sr ratios with 1/Sr concentrations, suggest hybridization of a lower continental crustal melt with more felsic crustal rocks, concomitant with fractional crystallization. Amphibole chemistry and whole rock Zr, TiO2 and P2O5 contents suggest magma solidification at a pressure 7 kbar and near liquidus temperature 900 °C. The parental magma was likely formed by partial melting of old (tDM = 2.0 Ga) amphibolitic lower continental crustal rocks, in a post-collisional setting, probably triggered by underplating of mantle-derived mafic magma during the period of relaxation after collision.

  14. Geochemistry of core samples of the Tiva Canyon Tuff from drill hole UE-25 NRG{number_sign}3, Yucca Mountain, Nevada

    SciTech Connect

    Peterman, Z.E.; Futa, K.

    1996-07-01

    The Tiva Canyon Tuff of Miocene age is composed of crystal-poor, high-silica rhyolite overlain by a crystal-rich zone that is gradational in composition from high-silica rhyolite to quartz latite. Each of these zones is divided into subzones that have distinctive physical, mineralogical, and geochemical features.Accurate identification of these subzones and their contacts is essential for detailed mapping and correlation both at the surface and in the subsurface in drill holes and in the exploratory studies facility (ESF). This report presents analyses of potassium (K), calcium (Ca), titanium (Ti), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), barium (Ba), lanthanum (La), and cerium (Ce) in core samples of the Tiva Canyon Tuff from drill hole UE-25 NRG {number_sign}3. The concentrations of most of these elements are remarkably constant throughout the high-silica rhyolite, but at its upper contact with the crystal-rich zone, Ti, Zr, Ba, Ca, Sr, La, Ce, and K begin to increase progressively through the crystal-rich zone. In contrast, Rb and Nb decrease, and Y remains essentially constant. Initial {sup 87}Sr/{sup 86}Sr ratios are relatively uniform in the high-silica rhyolite with a mean value of 0.7117, whereas initial {sup 87}Sr/{sup 86}Sr ratios decrease upward in the quartz latite to values as low as 0.7090.

  15. Linking soil, water, and honey composition to assess the geographical origin of argentinean honey by multielemental and isotopic analyses.

    PubMed

    Baroni, María V; Podio, Natalia S; Badini, Raúl G; Inga, Marcela; Ostera, Héctor A; Cagnoni, Mariana; Gautier, Eduardo A; García, Pilar Peral; Hoogewerff, Jurian; Wunderlin, Daniel A

    2015-05-13

    The objective of this research was to investigate the development of a reliable fingerprint from elemental and isotopic signatures of Argentinean honey to assess its geographical provenance. Honey, soil, and water from three regions (Córdoba, Buenos Aires, and Entre Rı́os) were collected. The multielemental composition was determined by ICP-MS. δ(13)C was measured by isotopic ratio mass spectrometry, whereas the (87)Sr/(86)Sr ratio was determined using thermal ionization mass spectrometry. The data were analyzed by chemometrics looking for the association between the elements, stable isotopes, and honey samples from the three studied areas. Honey samples were differentiated by classification trees and discriminant analysis using a combination of eight key variables (Rb, K/Rb, B, U, (87)Sr/(86)Sr, Na, La, and Zn) presenting differences among the studied regions. The application of canonical correlation analysis and generalized procrustes analysis showed 91.5% consensus between soil, water, and honey samples, in addition to clear differences between studied areas. To the authors' knowledge, this is the first report demonstrating the correspondence between soil, water, and honey samples using different statistical methods, showing that elemental and isotopic honey compositions are related to soil and water characteristics of the site of origin.

  16. Geochemical constraints on the origin of dolomite in the Ordovician Trenton and Black River limestones, Albion-Scipio area, Michigan

    SciTech Connect

    Granath, V.C. )

    1991-03-01

    The Albion-Scipio and Stoney Point oil fields in south-central Michigan produce from porous, vuggy dolomite in long linear trends associated with faulting in otherwise tight limestones. {sup 87}Sr/{sup 86}Sr ratios for undolomitized limestones (0.70796-0.70824) fall within the range for Middle Ordovician seawater given by the Burke curve and indicate they have undergone little alteration since deposition. {sup 87}Sr/{sup 86}Sr ratios for the matrix and dolomite cements in the reservoir horizons (0.70834-0.70898) are more radiogenic and overlap the range in composition for Late Silurian seawater. Thus, dolomitization might have resulted from brines dominated by Silurian seawater components. Fluid inclusion geothermometry and oxygen isotope compositions of the dolomite indicate formation under maximum burial conditions. Average freezing temperatures are {minus}29C (n = 72) and {minus}36C (n=19), respectively, indicating fluids are calcium- and magnesium-rich brines. {delta}{sup 18}O and {delta}{sup 2}H compositions of fluids in fluid inclusions are similar to data for Michigan basin brines and suggest some interaction with heavy oxygen probably from siliciclastics. These data indicate dolomitization in the Albion-Scipio area occurred under burial conditions from hot brines dominated by a Late Silurian seawater component. The brine may have been slightly modified either through mixture with another basinal fluid or interactions with siliciclastics during its circulation in the basin.

  17. Multiple episodes of dolomitization in the Arbuckle Group, Arbuckle Mountains, south-central Oklahoma: Field, petrographic, and geochemical evidence

    SciTech Connect

    Gao, G.; Land, L.S.; Elmore, R.D.

    1995-04-03

    The Cambro-Ordovician Arbuckle Group in the Arbuckle Mountains, south-central Oklahoma, had a complex history of dolomitization that resulted in two different geometries of dolomite bodies: stratal dolomite, of stratigraphically consistent, widespread distribution, and non-stratal dolomite, of stratigraphically inconsistent, local occurrence. Stratal dolomite includes the Royer and Butterly units in the lower Arbuckle Group. Most stratal dolomite samples are coarsely crystalline and have {sup 87}Sr/{sup 86}Sr ratios similar to Late Cambrian limestone and coeval seawater. All stratal dolomite and Arbuckle limestone samples have low {Delta}{sup 18}O values. Nonstratal dolomite is present in two areas: the Tishomingo Anticline and the Arbuckle Anticline. In the Tishomingo Anticline area, massive bodies (> 10 km{sup 2}) of nonstratal dolomite are present in a paleokarst system of pre-Middle Ordovician age. The petrographic and isotopic characteristics suggest that the nonstratal dolomite probably resulted from dolomitization of recrystallized limestone by post-Early Ordovician seawater. In the Arbuckle Anticline area, nonstratal dolomite is present as small irregular bodies that are related to Pennsylvanian faults and are associated with the margins of stratal Butterly dolomite. The nonstratal dolomite, medium to coarsely crystalline and brightly luminescent, is characterized by high {sup 87}Sr/{sup 86}Sr ratios values, and Fe and Mn concentrations, relative to all Arbuckle carbonates. Such compositions suggest that this type of dolomite probably originated from fluids that were derived from the adjacent basin(s) during late Paleozoic time.

  18. Strontium Isotopic Variations in the Koolau Volcanic Series, Oahu, Hawaii: Results from KSDP Drill Core

    NASA Astrophysics Data System (ADS)

    Smith, M. M.; Depaolo, D. J.

    2005-12-01

    Surface samples of the Koolau tholeiite series, from the eastern side of the island of Oahu, Hawaii, have long been noted for their unusually high 87Sr/86Sr ratios (up to 0.7042) and other extreme geochemical parameters, as compared to both earlier and later Oahu lavas, values from other Hawaiian islands, and lavas from the Waianae volcano on west Oahu. It has been assumed that the geochemistry of the surface samples of Koolau applied to most of the volcano and that the extreme features were a relatively long-lived characteristic of the Hawaiian mantle plume at the time that the Koolau lavas were being erupted about 3 million years ago. The Koolau Scientific Drilling Project, which returned nearly continuous core from depths of 350 to 670 meters below sea level, provided an opportunity to probe deeper into the Koolau edifice (Haskins and Garcia, CMP, 147, 2004). We present new Sr isotope data on thirty whole rock samples from KSDP, which complement other isotopic data that have been reported recently (Salters and Blichert-Toft, submitted). The KSDP samples have variable, but generally significant, amounts of post-eruption weathering and hence the samples were strongly acid-leached before TIMS isotopic analysis in order to remove any seawater-derived strontium. The 87Sr/86Sr values in the core samples vary from values near 0.7040 at the top of the core to 0.7035 near the bottom. There is a general trend of increasing 87Sr/86Sr upsection as well as oscillations with peak-to-peak amplitude of 0.0003. The Sr isotope ratios correlate reasonably well with Nd and Hf isotope ratios. The data show that the Koolau surface samples are not representative of the volcano as a whole, and that the extreme geochemistry of the surface samples may represent only a minor component of the Hawaiian plume. The normal trend of Sr isotope ratios in the waning stages of shield building is from high values to low (as in Mauna Kea, Kohala, East Molokai and Haleakala). A trend toward higher

  19. A multi-isotope (B, Sr, O, H, and C) and age dating (3H-3He and 14C) study of groundwater from Salinas Valley, California: Hydrochemistry, dynamics, and contamination processes

    NASA Astrophysics Data System (ADS)

    Vengosh, Avner; Gill, Jim; Lee Davisson, M.; Bryant Hudson, G.

    2002-01-01

    The chemical and isotope (11B/10B, 87Sr/86Sr, 18O/16O, 2H/H, 13C/12C, 14C, and 3He/3H) compositions of groundwater from the upper aquifer system of the Salinas Valley in coastal central California were investigated in order to delineate the origin and processes of groundwater contamination in this complex system. The Salinas Valley has a relatively deep, confined ``400-foot'' aquifer, overlain by a ``180-foot'' aquifer and a shallower perched aquifer, all made up of alluvial sand, gravel and clay deposits. Groundwater from the aquifers have different 14C ages: fossil (14C = 21.3 percent modern carbon (pmc) for the 400-foot aquifer and modern (14C = 72.2-98.2 pmc) for the 180-foot aquifer. Fresh groundwater in all aquifers is recharged naturally and artificially through the Salinas River. The two modes of recharge can be distinguished chemically. We identified several different saline components with distinguishable chemical and isotopic fingerprints. (1) Saltwater intrusion in the northern basin has C1 concentrations up to 1700 mg/L, a Na/Cl ratio less than seawater, a marine Br/Cl ratio, a Ca/Cl ratio greater than seawater, δ11B between +17 and +38‰ and 87Sr/86Sr between 0.7088 and 0.7096. Excess dissolved Ca, relative to the expected concentration for simple dilution of seawater, correlates with 87Sr/86Sr ratios, suggesting base exchange reaction with clay materials. (2) Agriculture return flow is high in NO3 and SO4, with a 87Sr/86Sr = 0.7082,δ11B =19‰and δ13C between -23 and -17‰. The 3H-3He ages (5-17 years) and 14C data suggest vertical infiltration rates of irrigation water of 3-10 m/yr. (3) Nonmarine saline water in the southern part of the valley has high total dissolved solids up to 3800 mg/L, high SO4, Na/Cl ratio >1, δ11B between +24 and +30‰, and 87Sr/86Sr = 0.70852. This groundwater may have acquired its geochemical signature from leaching of sedimentary rocks associated with the Coast Range marine deposits of Mesozoic to early Cenozoic

  20. A Multi-Isotope (B, Sr, O, H, C) and Age Dating (3H-3He, 14C) Study of Ground Water From Salinas Valley, California: Hydrochemistry, Dynamics, and Contamination Processes

    SciTech Connect

    Vengosh, A; Gill, J; Davisson, M L; Hudson, B G

    2001-08-01

    The chemical and isotopic ({sup 11}B/{sup 10}B, {sup 87}Sr/{sup 86}Sr, {sup 18}O/{sup 16}O, {sup 2}H/H, {sup 13}C/{sup 12}C, {sup 14}C, {sup 3}He/{sup 3}H) compositions of groundwater from the upper aquifer system of the Salinas Valley in coastal central California were investigated in order to delineate the origin and processes of groundwater contamination in this complex system. The Salinas Valley has a relatively deep, confined ''400-foot'' aquifer, overlain by a ''180-foot'' aquifer, and a shallower perched aquifer, all made up of alluvial sand, gravel, and clay deposits. Groundwater from the aquifers have different {sup 14}C ages; fossil ({sup 14}C = 21.3 pmc) for the 400-foot, and modern ({sup 14}C = 72.2 to 98.2 pmc) for the 180-foot. Fresh groundwater in all aquifers is recharged naturally and artificially and through the Salinas River. The two modes of recharge can be distinguished chemically. We identified several different saline components with distinguishable chemical and isotopic fingerprints. (1) Salt-water intrusion in the northern basin has Cl concentrations up to 1700 mg/l, a Na/Cl ratio ratio, a Ca/Cl ratio >seawater, {delta}{sup 11}B between +17 and +38 per mil, and {sup 87}Sr/{sup 86}Sr between 0.7088 and 0.7096. Excess dissolved Ca, relative to the expected concentration for simple dilution of seawater, correlates with {sup 87}Sr/{sup 86}Sr ratios, suggesting base exchange reaction with clay minerals. (2) Agriculture return flow is high in NO{sub 3} and SO{sub 4}, with a {sup 87}Sr/{sup 86}Sr = 0.7082, {delta}{sup 11}B = 19 per mil; and {delta}{sup 13}C between -23 and -17 per mil. The {sup 3}H-{sup 3}He ages (5-17 years) and {sup 14}C data suggest vertical infiltration rates of irrigation water of 3 to 10 m/yr. (3) Non-marine saline water in the southern part of the valley has high TDS up to 3800 mg/l, high SO{sub 4}, Na/Cl ratio >1, {delta}{sup 11}B between +24 and +30 per mil, and {sup 87}Sr/{sup 86}Sr = 0

  1. Formation waters from Mississippian-Pennsylvanian reservoirs, Illinois basin, USA: Chemical and isotopic constraints on evolution and migration

    NASA Astrophysics Data System (ADS)

    Stueber, Alan M.; Walter, Lynn M.; Huston, Ted J.; Pushkar, Paul

    1993-02-01

    We have analyzed a suite of seventy-four formation-water samples from Mississippian and Pennsylvanian carbonate and siliciclastic strata in the Illinois basin for major, minor, and trace element concentrations and for strontium isotopic composition. A subset of these samples was also analyzed for boron isotopic composition. Data are used to interpret origin of salinity and chemical and Sr isotopic evolution of the brines and in comparison with a similar data set from an earlier study of basin formation waters from Silurian-Devonian reservoirs. Systematics of Cl-Br-Na show that present Mississippian-Pennsylvanian brine salinity can be explained by a combination of subaerial seawater evaporation short of halite saturation and subsurface dissolution of halite from an evaporite zone in the middle Mississippian St. Louis Limestone, along with extensive dilution by mixing with meteoric waters. Additional diagenetic modifications in the subsurface interpreted from cation/Br ratios include K depletion through interaction with clay minerals, Ca enrichment, and Mg depletion by dolomitization, and Sr enrichment through CaCO 3 recrystallization and dolomitization. Ste. Genevieve Limestone (middle Mississippian) formation waters show 87Sr /86Sr ratios in the range 0.70782-0.70900, whereas waters from the siliciclastic reservoirs are in the range 0.70900-0.71052. Inverse correlations between 87Sr /86Sr and B, Li, and Mg concentrations suggest that the brines acquired radiogenic 87Sr through interaction with siliciclastic minerals. Completely unsystematic relations between 87Sr /86Sr and 1/Sr are observed; Sr concentrations in Ste. Genevieve and Aux Vases (middle Mississippian) waters appear to be buffered by equilibrium with respect to SrSO 4. Although there are many similarities in their origin and evolution, these formation waters are distinguished from Silurian-Devonian brines in the basin by elevated Cl/Br and Na/Br ratios and by unsystematic Sr isotope relationships. Thus

  2. Magma Genesis of Sakurajima, the Quaternary post- Aira caldera volcano, southern Kyushu Island, Japan

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Suzuki, J.; Yoshikawa, M.; Kobayashi, T.; Miki, D.; Takemura, K.

    2012-12-01

    from the mixing curve to the direction of being more radiogenic when we observe in more detail. This observation supports our conclusion that the crustal materials contribute the magma genesis of Sakurajima volcano emphasized from Zr/Nb ratios. Low-P and high-P groups show different trends of SiO2, P2O5, TiO2 concentrations and 87Sr/86Sr ratios relative to plagioclase modal abundances. The high-P group samples show continuous trends, and their 87Sr/86Sr ratios increase with decreasing plagioclase, representing simple AFC process. The SiO2 content of low-P group rapidly increases from 63 to 66 wt. % at the modal abundance of pl is nearly 20 vol. %. The Sr isotope ratios of low-P group with < 20 vol. % of pl are obviously high (87Sr/86Sr = 0.70556 to 0.70569) compared to those of high-P group (87Sr/86Sr = 0.705136 to 0.705285). From these observations, we conclude that the rapid increase of SiO2 with high 87Sr/87Sr ratio infer involvement of crustal materials to the magma chamber, in which the ACF process is proceeding.

  3. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.

    1984-01-01

    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  4. Source and magmatic evolution inferred from geochemical and Sr-O-isotope data on hybrid lavas of Arso, the last eruption at Ischia island (Italy; 1302 AD)

    NASA Astrophysics Data System (ADS)

    Iovine, Raffaella Silvia; Mazzeo, Fabio Carmine; Arienzo, Ilenia; D'Antonio, Massimo; Wörner, Gerhard; Civetta, Lucia; Pastore, Zeudia; Orsi, Giovanni

    2017-02-01

    Geochemical and isotopic (87Sr/86Sr and 18O/16O) data have been acquired on whole rock and separated mineral samples from volcanic products of the 1302 AD Arso eruption, Ischia volcanic island (Gulf of Naples, Southern Italy), to investigate magmatic processes. Our results highlight petrographic and isotopic disequilibria between phenocrysts and their host rocks. Similar disequilibria are observed also for more mafic volcanic rocks from Ischia and in the Phlegraean Volcanic District in general. Moreover, 87Sr/86Sr and 18O/16O values suggest mixing between chemically and isotopically distinct batches of magma, and crystals cargo from an earlier magmatic phase. The radiogenic Sr isotope composition suggests that the mantle source was enriched by subduction-derived sediments. Furthermore, magmas extruded during the Arso eruption were affected by crustal contamination as suggested by high oxygen isotope ratios. Assimilation and fractional crystallization modelling of the Sr-O isotope compositions indicates that not more than 7% of granodioritic rocks from the continental crust have been assimilated by a mantle-derived mafic magma. Hence the recent volcanic activity of Ischia has been fed by distinct batches of magma, variably contaminated by continental crust, that mixed during their ascent towards the surface and remobilized phenocrysts left from earlier magmatic phases.

  5. Geochemistry and geochronology of late Mesozoic volcanic rocks in the northern part of the Eastern Pontide Orogenic Belt (NE Turkey): Implications for the closure of the Neo-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Özdamar, Şenel

    2016-04-01

    This paper presents 40Ar/39Ar and U-Pb age data, Sr-Nd isotopes, whole-rock and mineral compositions of Upper Cretaceous volcanic rocks from the Ordu area of the Eastern Pontide Orogenic Belt (EPOB) in northeastern Turkey. The volcanic rocks exhibit a wide compositional range: basalt, basaltic-andesites, andesites and a rhyodacite suite; they are characterized by subparallel light rare earth element (LREE)-enrichment, relatively flat heavy rare earth element (HREE) patterns with Eu anomalies and moderate fractionation [average (La/Yb)N = 8.55]. The geochemical results show that the volcanic rocks have calc-alkaline affinity consistent with arc volcanic rocks erupted in an active continental margin. Initial 87Sr/86Sr values vary between 0.70569 and 0.70606, while initial 143Nd/144Nd values lie between 0.51244 and 0.51249. Crustal contamination affected the mantle-originated primary magma, as indicated by increased 87Sr/86Sr and decreased 143Nd/144Nd ratios with increasing SiO2. New precise laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) 206Pb-238U age analyses of zircon and 40Ar/39Ar age data of plagioclase from the volcanics enable a more precise reconstruction of the EBOP. The ages provide insight into the timing of arc formation in this region, constrain the volcanic activity between 86 My (Coniacian) and 75 My (Campanian) and constrain the timing of closure of the Neo-Tethys.

  6. Biochronostratigraphy and paleoenvironment analysis of Neogene deposits from the Pelotas Basin (well 2-TG-96-RS), Southernmost Brazil.

    PubMed

    Silva, Wagner G; Zerfass, Geise S A; Souza, Paulo A; Helenes, Javier

    2015-09-01

    This paper presents the integration of micropaleontological (palynology and foraminifera) and isotopic (87Sr/86Sr) analysis of a selected interval from the well 2-TG-96-RS, drilled on the onshore portion of the Pelotas Basin, Rio Grande do Sul, Brazil. A total of eight samples of the section between 140.20 and 73.50 m in depth was selected for palynological analysis, revealing diversified and abundant palynomorph associations. Species of spores, pollen grains and dinoflagellate cysts are the most common palynomorphs found. Planktic and benthic calcareous foraminifera were recovered from the lowest two levels of the section (140.20 and 134.30 m). Based on the stratigraphic range of the species of dinoflagellate cysts and sporomorphs, a span age from Late Miocene to Early Pliocene is assigned. The relative age obtained from the 87Sr/86Sr ratio in shells of calcareous foraminifers indicates a Late Miocene (Messinian) correspondence, corroborating the biostratigraphic positioning performed with palynomorphs. Paleoenvironmental interpretations based on the quantitative distribution of organic components (palynomorphs, phytoclasts and amorphous organic matter) throughout the section and on foraminiferal associations indicate a shallow marine depositional environment for the section. Two palynologicals intervals were recognized based on palynofacies analysis, related to middle to outer shelf (140.20 to 128.90 m) and inner shelf (115.75 to 73.50 m) conditions.

  7. Fish Remains from Homestead Cave and Lake Levels of the Past 13,000 Years in the Bonneville Basin

    NASA Astrophysics Data System (ADS)

    Broughton, Jack M.; Madsen, David B.; Quade, Jay

    2000-05-01

    A late Quaternary ichthyofauna from Homestead Cave, Utah, provides a new source of information on lake history in the Bonneville basin. The fish, represented by 11 freshwater species, were accumulated between ˜11,200 and ˜1000 14C yr B.P. by scavenging owls. The 87Sr/ 86Sr ratio of Lake Bonneville varied with its elevation; 87Sr/ 86Sr values of fish from the lowest stratum of the cave suggest they grew in a lake near the terminal Pleistocene Gilbert shoreline. In the lowest deposits, a decrease in fish size and an increase in species tolerant of higher salinities or temperatures suggest multiple die-offs associated with declining lake levels. An initial, catastrophic, post-Provo die-off occurred at 11,300-11,200 14C yr B.P. and was followed by at least one rebound or recolonization of fish populations, but fish were gone from Lake Bonneville sometime before ˜10,400 14C yr B.P. This evidence is inconsistent with previous inferences of a near desiccation of Lake Bonneville between 13,000 and 12,000 14C yr B.P. Peaks in Gila atraria frequencies in the upper strata suggest the Great Salt Lake had highstands at ˜3400 and ˜1000 14C yr B.P.

  8. A Nd, Sr and O isotopic investigation into the causes of chemical and isotopic zonation in the Bishop Tuff, California

    USGS Publications Warehouse

    Halliday, A.N.; Fallick, A.E.; Hutchinson, J.; Hildreth, W.

    1984-01-01

    The Bishop Tuff represents a single eruption of chemically zoned rhyolitic magma. Six whole rock samples spanning the compositional and temperature range yield initial 87Sr 86Sr of 0.7060-0.7092 and ??18O of 5.9-10.3???. Six constituent sanidines yield smaller ranges of initial 87Sr 86Sr of 0.7061-0.7069 and ??18O of 6.7-7.9. In contrast 143Nd 144Nd ratios for the six whole rocks and two constituent magnetites exhibit negligible variation with a mean of 0.51258 ?? 1. These data are used to show that the phenocrysts were precipitated from an already chemically zoned liquid, that the zoning process involved negligible assimilation of, or exchange with, country rocks and that the extreme Sr and O isotopic disequilibria are probably the result of post-eruptive interaction with meteoric water. The parent magma had ??Nd = -0.9, ??Sr = +23 and ??18O = 7??? and was formed from mantle-derived magmas and/or melts of lower crustal rocks isotopically similar to parts of the Sierra Nevada Batholith. ?? 1984.

  9. Who provided maize to Chaco Canyon after the mid-12th-century drought?

    USGS Publications Warehouse

    Benson, L.V.

    2010-01-01

    Between A.D. 1181 and 1200, in the early part of a climatically wet period, corn was imported to Chaco Canyon from a region outside the Chaco Halo (defined in this paper as the region between the base of the Chuska Mountains and Raton Wells). Strontium-isotope (87Sr/86Sr) analyses of 12 corn cobs dating to this period match 87Sr/86Sr ratios from five potential source areas, including: the Zuni region, the Mesa Verde-McElmo Dome area, the Totah, the Defiance Plateau, and Lobo Mesa. The latter two areas were eliminated from consideration as possible sources of corn in that they appear to have been unpopulated during the time period of interest. Therefore, it appears that the corn cobs were imported from the Zuni region, the Mesa Verde-McElmo Dome area, or the Totah area during a time when the climate was relatively wet and when a surplus of corn was produced in regions outside Chaco Canyon. Based on proximity to and cultural affiliation with Chaco Canyon, it is hypothesized that the corn probably was imported from the Totah.

  10. Petrogenesis of peralkaline rhyolites in an intra-plate setting: Glass House Mountains, southeast Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Shao, Fengli; Niu, Yaoling; Regelous, Marcel; Zhu, Di-Cheng

    2015-02-01

    We report petrological and geochemical data on coeval trachybasalts, syenites with enclaves, trachytes, peralkaline rhyolites and peraluminous rhyolites from the Glass House Mountains-Maleny-Noosa area, southeast Queensland, Australia. This rock association and the unique characteristics of the peralkaline rhyolites offer convincing lines of evidence that the petrogenesis of the peralkaline rhyolites is a straightforward consequence of protracted fractional crystallization from basaltic melts of alkali-rich composition. Compared to the common peraluminous rhyolites elsewhere, the peralkaline rhyolites here are characterized by elevated abundances of most incompatible elements, especially the very high Nb (vs. Th) and Ta (vs. U), the very low Ba, Sr and Eu and the extremely high 87Sr/86Sr ratio. The high Nb and Ta are inherited from the parental alkali basaltic melts. The low Ba, Sr and Eu result from removal of plagioclase during the protracted fractional crystallization. These rocks altogether define a Rb-Sr isochron of ~ 28 Ma, which is similar to Ar-Ar age data on these rocks in the literature. The extremely high 87Sr/86Sr ratio of the peralkaline rhyolites (up to 1.88) is actually characteristic of peralkaline rhyolites because of extreme Sr (also Eu and Ba) depletion and thus the very high Rb/Sr ratio. That is, the Sr in these rocks is essentially radiogenic 87Sr accumulated from the 87Rb decay since the volcanism. We suggest that the petrogenesis of the peralkaline rhyolites from the Glass House Mountain area may be of general significance globally. The coeval peraluminous rhyolites apparently result from crustal anatexis in response to the basaltic magma underplating. The small "Daly Gap" exhibited in this rock association is anticipated during the protracted fractional crystallization from basaltic parent to the more evolved felsic varieties.

  11. Environmental controls on the boron and strontium isotopic composition of aragonite shell material of cultured Arctica islandica

    NASA Astrophysics Data System (ADS)

    Liu, Y.-W.; Aciego, S. M.; Wanamaker, A. D., Jr.

    2015-06-01

    Ocean acidification, the decrease in ocean pH associated with increasing atmospheric CO2, is likely to impact marine organisms, particularly those that produce carbonate skeletons or shells. Therefore, it is important to investigate how environmental factors (seawater pH, temperature and salinity) influence the chemical compositions in biogenic carbonates. In this study we report the first high-resolution strontium (87Sr / 86Sr and δ88 / 86Sr) and boron (δ11B) isotopic values in the aragonite shell of cultured Arctica islandica (A. islandica). The 87Sr / 86Sr ratios from both tank water and shell samples show ratios nearly identical to the open ocean, which suggests that the shell material reflects ambient ocean chemistry without terrestrial influence. The 84Sr-87Sr double-spike-resolved shell δ88 / 86Sr and Sr concentration data show no resolvable change throughout the culture period and reflect no theoretical kinetic mass fractionation throughout the experiment despite a temperature change of more than 15 °C. The δ11B records from the experiment show at least a 5‰ increase through the 29-week culture season (January 2010-August 2010), with low values from the beginning to week 19 and higher values thereafter. The larger range in δ11B in this experiment compared to predictions based on other carbonate organisms (2-3‰) suggests that a species-specific fractionation factor may be required. A significant correlation between the ΔpH (pHshell - pHsw) and seawater pH (pHsw) was observed (R2 = 0.35), where the pHshell is the calcification pH of the shell calculated from boron isotopic composition. This negative correlation suggests that A. islandica partly regulates the pH of the extrapallial fluid. However, this proposed mechanism only explains approximately 35% of the variance in the δ11B data. Instead, a rapid rise in δ11B of the shell material after week 19, during the summer, suggests that the boron uptake changes when a thermal threshold of > 13 °C is

  12. Helium isotope ratios in Easter microplate basalts

    NASA Astrophysics Data System (ADS)

    Poreda, R. J.; Schilling, J. G.; Craig, H.

    1993-09-01

    He-3/He-4 ratios in Easter Microplate basalt glasses show clear evidence of the effects of a mantle plume. The East Rift of the microplate between 26 and 28 deg S, identified by La/Sm, Sr and Pb isotopes and ridge crest elevation as the region of maximum plume influence, has He-3/He-4 ratios spanning the entire range from 7.5 to 11.7 R(sub A). The Easter Microplate is the only section of the entire East Pacific Rise that is associated with a known `hotspot' track (mantle plume) and has elevated He-3/He-4 ratios. Although most of the West Rift basalts contain MORB helium (8.0 - 8.7 (R sub A)), the basalt closest to the East Rift has an elevated He-3/He-4 ratio (11.3 R(sub A)), consistent with a significant plume component. The diversity in isotopic signatures also indicates that homogenization of isotopic anomalies does not occur, even in this region of `super-fast' spreading. The overall He-3/He-4-Pb-206/Pb-204 and He-3/He-4-Sr-87/Sr-86 trends have positive correlations, although the high between the He and Sr isotope distribution is modeled in the context of a plume source-migrating ridge sink. During channeling of the plume toward the ridge, helium if preferentially lost from the center of the channeled plume, resulting in lower He/Pb and He/Sr concentration ratios in the high He-3/He-4 component. Mixing trajectories in He-Sr isotopic space between a LILE depleted asthenosphere and a variably degassed plume component provide a reasonably good fit to the data and may explain the isotope systematics of plume-ridge interactions in the context of modern theories of plume dynamics.

  13. Strontium Isotopes in Pore Water as an Indicator of Water Flux at the Proposed High-Level Radioactive Waste Repository, Yucca Mountain, Nevada

    SciTech Connect

    B. Marshall; K. Futa

    2004-02-19

    The proposed high-level radioactive waste repository at Yucca Mountain, Nevada, would be constructed in the high-silica rhyolite (Tptp) member of the Miocene-age Topopah Spring Tuff, a mostly welded ash-flow tuff in the {approx}500-m-thick unsaturated zone. Strontium isotope compositions have been measured in pore water centrifuged from preserved core samples and in leachates of pore-water salts from dried core samples, both from boreholes in the Tptp. Strontium isotope ratios ({sup 87}Sr/{sup 86}Sr) vary systematically with depth in the surface-based boreholes. Ratios in pore water near the surface (0.7114 to 0.7124) reflect the range of ratios in soil carbonate (0.7112 to 0.7125) collected near the boreholes, but ratios in the Tptp (0.7122 to 0.7127) at depths of 150 to 370 m have a narrower range and are more radiogenic due to interaction with the volcanic rocks (primarily non-welded tuffs) above the Tptp. An advection-reaction model relates the rate of strontium dissolution from the rocks with flow velocity. The model results agree with the low transport velocity ({approx}2 cm per year) calculated from carbon-14 data by I.C. Yang (2002, App. Geochem., v. 17, no. 6, p. 807-817). Strontium isotope ratios in pore water from Tptp samples from horizontal boreholes collared in tunnels at the proposed repository horizon have a similar range (0.7121 to 0.7127), also indicating a low transport velocity. Strontium isotope compositions of pore water below the proposed repository in core samples from boreholes drilled vertically downward from tunnel floors are more varied, ranging from 0.7112 to 0.7127. The lower ratios (<0.7121) indicate that some of the pore water in these boreholes was replaced by tunnel construction water, which had an {sup 87}Sr/{sup 86}Sr of 0.7115. Ratios lower than 0.7115 likely reflect interaction of construction water with concrete in the tunnel inverts, which had an {sup 87}Sr/{sup 86}Sr < 0.709. These low Sr ratios indicate penetration of

  14. Mid-Miocene two-mica granites in the Malashan gneiss dome, south Tibet: Geochemical characteristics and formation mechanism

    NASA Astrophysics Data System (ADS)

    Gao, L.; Zeng, L.

    2011-12-01

    Knowledge of the timing of formation and geochemical nature of the Cenozoic granites along the High Himalaya as well as the Tethyan Himalaya is essential to test or formulate models that link high-grade metamorphism, crustal anatexis, and tectonic transition during the evolution of the Himalayan orogen. The Malashan gneiss dome, one of the prominent domes within the Tethyan Himalaya, consists of pelitic schists, calc-silicate metamorphic rocks, and at least two generations of granites. Two mica granites(TMG) occur as large plutons in Cuobu and Malashan, whereas a small leucogranite pluton occurs at the western side of the Paiku Lake. Two-mica granites from the Cuobu and the Malashan share similar characteristics in mineral composition, major and trace element geochemistry and isotope(Sr and Nd) compositions. New LA-ICP-MS zircon U/Pb analyses yielded that the Cuobu and the Malashan TMG formed at 17.6±0.1 Ma and 16.9±0.1 Ma, respectively. Both suits of granites are characterized by:(1)high SiO2(>71.3wt%), Al2O3(>14.8wt%), and relatively high CaO(>1.5wt%); (2)high A/CNK(>1.0) and K/Na ratios; (3)relatively high Sr(>146ppm), low Rb(<228ppm) and Rb/Sr ratios(<1.3); (4) enriched in LREE, depleted in HREE, as well as no or weakly negative Eu anomalies(Eu*=0.7~0.9); (5) as compared to leucogranites of similar ages in other Northern Himalayan Gneiss Domes, lower initial 87Sr/86Sr ratios (0.7390~0.7484) and similarly unradiogenic Nd isotope compositions (ɛNd(t)=-13.7~-14.4). Correlations between Ba and Rb/Sr ratios and between Rb/Sr and initial 87Sr/86Sr ratios imply that these two-mica granites were derived from muscovite H2O-fluxed melting of metasedimentary rocks at T=700-780oC. Such a reaction could be represented by 9Muscovite + 15Plagioclase + 7Quartz + xH2O = 31Melt, in which enhances the involvement of plagioclase, but suppresses the biotite due to relatively low temperature and the presence of water. This reaction not only produces granitic melts with low Rb

  15. Petrogenesis and geodynamic implications of the early Paleozoic potassic and ultrapotassic rocks in the South China Block

    NASA Astrophysics Data System (ADS)

    Jia, Xiaohui; Wang, Xiaodi; Yang, Wenqiang

    2017-03-01

    In this paper, some potassic and ultrapotassic rocks in the South China Block (SCB) have been recognized, according to a set of new geochronological, geochemical and Sr-Nd isotopic data. Zircon U-Pb dating from six plutons yield consistent crystallization ages of 445-424 Ma. These potassic and ultrapotassic rocks can be geochemically subdivided into three groups. Group 1, represented by the Longchuan gabbro, longmu diabase, Tangshang and Danqian diorite (445-433 Ma), have low silica contents (SiO2 = 47.38-54.16 wt.%), and high MgO (4.21-9.51 wt.%) and total alkalis (Na2O + K2O = 3.08-5.57 wt.%), with K2O/Na2O ratios of 0.62-1.82. They are enriched in LREE and depleted in Ba, Sr and Ta-Nb-Ti, and exhibit relatively high initial 87Sr/86Sr ratios (0.70561-0.71128), low εNd(430 Ma) values (-8.4 to -3.2), suggesting that they were most plausibly generated by the partial metling of enriched mantle source (EMI). Group 2, from the Huwei diorite (424 Ma), have 45.68-52.87 wt.% of SiO2, 5.79-9.25 wt.% of MgO and 52-65 of mg-number. They have significantly higher Th (9.92 ppm), Ce (88.0-115 ppm) concentration and Ce/Yb (27.6-46.8), Th/Yb ratios (2.58-7.99), and relatively low initial 87Sr/86Sr ratios (0.70501-0.70599), and high εNd(430 Ma) values (-2.1 to -1.5). We propose that they originated from the partial melting of the depleted mantle source with subsequent contamination by crustal materials. Group 3, represented by the Daning lamprophyre (∼445 Ma), has SiO2 contents ranging from 41.73 wt.% to 45.22 wt.%, MgO from 13.74 wt.% to 15.16 wt.%, and mg-muber from 73 to 77, with high K2O/Na2O ratios (>2.0). They have 87Sr/86Sr ratios of 0.62912-0.70384 and εNd(t = 430 Ma) values of -6.4 to -6.3, indicating that the source components are close to the EMI source, with significant sediments involved. These Silurian potassic and ultrapotassic rocks in the SCB can be responsible for post-orogenic delamination and intra-plate extension. And the delamination had a small size and

  16. Geochemical variability of the Yucatan basement: Constraints from crystalline clasts in Chicxulub impactites

    NASA Astrophysics Data System (ADS)

    Kettrup, B.; Deutsch, A.

    2003-07-01

    The 65 Ma old Chicxulub impact structure with a diameter of about 180 km is again in the focus of the geosciences because of the recently commenced drilling of the scientific well Yaxcopoil- 1. Chicxulub is buried beneath thick post-impact sediments, yet samples of basement lithologies in the drill cores provide a unique insight into age and composition of the crust beneath Yucatan. This study presents major element, Sr, and Nd isotope data for Chicxulub impact melt lithologies and clasts of basement lithologies in impact breccias from the PEMEX drill cores C-1 and Y-6, as well as data for ejecta material from the K/T boundaries at La Lajilla, Mexico, and Furlo, Italy. The impact melt lithologies have an andesitic composition with significantly varying contents of Al, Ca, and alkali elements. Their present day 87Sr/86Sr ratios cluster at about 0.7085, and 143Nd/144Nd ratios range from 0.5123 to 0.5125. Compared to the melt lithologies that stayed inside the crater, data for ejecta material show larger variations. The 87Sr/86Sr ratios range from 0.7081 for chloritized spherules from La Lajilla to 0.7151 for sanidine spherules from Furlo. The 143Nd/144Nd ratio is 0.5126 for La Lajilla and 0.5120 for the Furlo spherules. In an tCHUR(Nd)-tUR(Sr) diagram, the melt lithologies plot in a field delimited by Cretaceous platform sediments, various felsic lithic clasts and a newly found mafic fragment from a suevite. Granite, gneiss, and amphibolite have been identified among the fragments from crystalline basement gneiss. Their 87Sr/86Sr ratios range from 0.7084 to 0.7141, and their 143Nd/144Nd ratios range from 0.5121 to 0.5126. The TNdDM model ages vary from 0.7 to 1.4 Ga, pointing to different source terranes for these rocks. This leads us to believe that the geological evolution and the lithological composition of the Yucatàn basement is probably more complex than generally assumed, and Gondwanan as well as Laurentian crust may be present in the Yucatàn basement.

  17. Magmatic Degassing in the Crust Is Mantle Source Dependent

    NASA Astrophysics Data System (ADS)

    Burnard, P.

    2014-12-01

    The 4He/40Ar* ratio (where 40Ar* is 40Ar corrected for atmospheric contamination) is known to be sensitive to magmatic degassing due to the different solubilities of He and Ar in silicate melts: 4He/40Ar* increases in the residual liquids because Ar is less soluble than He and therefore degasses more rapidly. Conversely, lithophile isotope ratios and incompatible trace element ratios (87Sr/86Sr, 143Nd/144Nd, La/Sm etc) are specifically chosen as these are largely insensitive to magmatic processes, including degassing (as far as mid-ocean ridges are concerned) but rather trace mantle heterogeneities. It is astonishing therefore that correlations between 4He/40Ar* and lithophile isotope ratios (such as 87Sr/86Sr or 143Nd/144Nd) exist in South East Indian Ridge basalts and basaltic glasses [1]. These correlations appear to be the result of enhanced degassing of magmas produced from enriched mantle: enriched mantle probably has higher C contents relative to depleted mantle, therefore degassing of 'enriched' compositions will start at higher pressure and the proportion of volatiles lost will be greater than for 'depleted' lavas. The 4He/40Ar* ratio of the erupted products depends on the proportion of volatiles lost, therefore 4He/40Ar* is higher in lavas derived from enriched as opposed to depleted magmas. Naturally, enriched lavas are also distinct from depleted lavas in their lithophile isotopic composition (high 87Sr/86Sr, low 143Nd/144Nd) and thus the observed correlations between lithophile isotopes and degassing (4He/40Ar*) is created. A simple degassing model suggests that, in order to generate the correlated variability in Sr and Nd isotopes and 4He/40Ar*, the mantle C concentration likely varies by factor ~2 [1]. Thus it is possible to link mantle C variability - which is difficult to asses due to shallow level degassing - with Sr isotopic composition, which is very commonly measured in mid-ocean ridge basalts: Sr isotopes can be used as a proxy for mantle C

  18. Strontium isotopic variations of Neoproterozoic seawater: implications for crustal evolution.

    PubMed

    Asmerom, Y; Jacobsen, S B; Knoll, A H; Butterfield, N J; Swett, K

    1991-01-01

    We report high precision Sr isotopic data on carbonates from the Neoproterozoic Shaler Group, Victoria Island, Northwest Territories, Canada. Lithostratigraphic correlations with the relatively well-dated Mackenzie Mountains Supergroup constrain Shaler deposition to approximately 770-880 Ma, a range corroborated by 723 +/- 3 Ma lavas that disconformably overlie Shaler carbonates and by Late Riphean microfossils within the section. Samples with low 87Rb/86Sr ratios (<0.01) were selected for Sr isotopic analysis. Delta 18O, Mn, Ca, Mg, and Sr data were used to recognize altered samples. The altered samples are characterized by high Mn/Sr (> or = 2) and variable delta 18O; most are dolomites. The data indicate that between ca. 790-850 Ma the 87Sr/86Sr ratio of seawater varied between 0.70676 and 0.70561. The samples show smooth and systematic variation, with the lowest 87Sr/86Sr value of 0.70561 at ca. 830 Ma. The low 87Sr/86Sr ratio of carbonates from the lower parts of our section is similar to a value reported for one sample from the Adrar of Mauritania (approximately 900 Ma), West African Craton. Isotopic ratios from the upper part of the Shaler section are identical to values from the lower part of the Neoproterozoic Akademikerbreen Group, Spitsbergen. Although a paucity of absolute age determinations hinders attempts at the precise correlation of Neoproterozoic successions, it is possible to draw a broad outline of the Sr isotopic composition of seawater for this period. Indeed, the Sr isotope data themselves provide a stratigraphic tool of considerable potential. Data from this study and the literature are used to construct a curve of the 87Sr/86Sr ratio of Neoproterozoic seawater. The new data reported in this study substantially improve the isotopic record of Sr in seawater for the period 790-850 Ma. The Sr isotope composition of seawater reflects primarily the balance between continental Sr input through river input and mantle input via hydrothermal

  19. Minor-element and Sr-isotope geochemistry of tertiary stocks, Colorado mineral belt

    USGS Publications Warehouse

    Simmons, E.C.; Hedge, C.E.

    1978-01-01

    Rocks of the northeast portion of the Colorado mineral belt form two petrographically, chemically and geographically distinct rock suites: (1) a silica oversaturated granodiorite suite; and (2) a silica saturated, high alkali monzonite suite. Rocks of the granodiorite suite generally have Sr contents less than 1000 ppm, subparallel REE patterns and initial 87Sr/ 86Sr ratios greater than 0.707. Rocks of the monzonite suite are restricted to the northeast part of the mineral belt, where few rocks of the granodiorite suite occur, and generally have Sr contents greater than 1000 ppm, highly variable REE patterns and 87Sr/86Sr initial ratios less than 0.706. Despite forming simple, smooth trends on major element variation diagrams, trace element data for rocks of the granodiorite suite indicate that they were not derived from a single magma. These rocks were derived from magmas having similar REE patterns, but variable Rb and Sr contents, and Rb/Sr ratios. The preferred explanation for these rocks is that they were derived by partial melting of a mixed source, which yielded pyroxene granulite or pyroxenite residues. The monzonite suite is chemically and petrographically more complex than the granodiorite suite. It is subdivided here into alkalic and mafic monzonites, and quartz syenites, based on the textural relations of their ferromagnesian phases and quartz. The geochemistry of these three rock types require derivation from separate and chemically distinct magma types. The preferred explanation for the alkalic monzonites is derivation from a heterogeneous mafic source, leaving a residue dominated by garnet and clinopyroxene. Early crystallization of sphene from these magmas was responsible for the severe depletion of the REE observed in the residual magmas. The lower Sr content and higher Rb/Sr ratios of the mafic monzonites requires a plagioclase-bearing source. The Sr-isotope systematics of the majority of these rocks are interpreted to be largely primary, and not

  20. Pbsbnd Srsbnd Nd isotopic tracing of the influence of the Amazon River on the bottom sediments in the lower Tapajós River

    NASA Astrophysics Data System (ADS)

    Medeiros Filho, Lucio C.; Lafon, Jean-Michel; Souza Filho, Pedro Walfir M.

    2016-10-01

    The isotopic signatures of Pbsbnd Srsbnd Nd in recent bottom sediments were used to investigate the hydrodynamics of the lower stream of the Tapajós River and its interaction with the Amazon River. Samples from the Tapajós River have Pb isotopic ratios (19.67 < 206Pb/204Pb < 20.02; 15.87 < 207Pb/204Pb < 15.91) different from those of the bottom sediments found downstream in the Amazon River (18.84 < 206Pb/204Pb < 18.94; 207Pb/204Pb ≈ 15.67). In the confluence zone, the ratios have intermediate values (18.69 < 206Pb/204Pb < 19.53; 15.65 < 207Pb/204Pb < 15.83). The sediments in the Tapajós River have lower ɛNd(0) (-21 < ɛNd(0) < -19) values and more radiogenic isotopic Sr ratios (87Sr/86Sr ≈ 0.792) than those of the sediments from the Amazon River (ɛNd(0) ≈ -9 and 0.712 < 87Sr/86Sr < 0.716). The isotopic data suggest that the Amazon River influences the sediments in the Tapajós River, but this influence is restricted to the confluence zone. Additionally, the concentrations of major and trace elements and the mineralogy of the sediments are in agreement with the isotopic data. We conclude that the accumulation of muddy sediments in the lower stream of the Tapajós River is a result of the influence of the Amazon River, which retains this discharge from its affluent thus generating favorable conditions for depositing the finer sediments coming from the Tapajós River without any significant contribution of sediments from the Amazon River itself. The values of ɛNd(0) and TDM and of 87Sr/86Sr ratio of the Tapajós River bottom sediments indicate that the source of the sediments is essentially the erosion of the Paleoproterozoic felsic units from the Tapajós (2.03-1.88 Ga) and Juruena (1.82-1.54 Ga) geotectonic provinces.

  1. Middle Jurassic MORB-type gabbro, high-Mg diorite, calc-alkaline diorite and granodiorite in the Ando area, central Tibet: Evidence for a slab roll-back of the Bangong-Nujiang Ocean

    NASA Astrophysics Data System (ADS)

    Yan, Haoyu; Long, Xiaoping; Wang, Xuan-Ce; Li, Jie; Wang, Qiang; Yuan, Chao; Sun, Min

    2016-11-01

    Mesozoic intrusions, including MORB-type gabbros, high-Mg diorites, calc-alkaline diorites and granodiorites, were exposed in the Ando microcontinent that is bounded between the Qiangtang and Lhasa terranes. Discoveries of these Mesozoic intrusions have provided new petrogenetic constraints on our understanding of Bangong-Nujiang ocean evolution. Zircon U-Pb dating shows that these intrusions formed in the early-middle Jurassic (174-177 Ma). The gabbros have relatively flat REE distribution patterns, which is analogous to the geochemical features of MORB. Their positive εNd(t) values (εNd(t) = 4.4-5.5) are consistent with those of ophiolites along the Bangong-Nujiang suture zone. These gabbros are also characterized by enrichments of fluid-sensitive elements and negative to positive Nb anomalies, indicative of the influence of subduction-related compositions in their mantle source. These features suggest that the gabbros were most likely originated from asthenosphere-derived melts metasomatized by enriched lithospheric mantle during the upwelling. The high-Mg diorites are characterized by typical features of high compatible elements (MgO = 8.3-10.24 wt%, Cr = 400-547 ppm, Ni = 120-152 ppm), high Mg# (70-74) and low Sr/Y ratios. Their high initial 87Sr/86Sr isotopic ratios and negative εNd(t) values (- 10.5 to - 10.8), together with their sanukitic characteristics, imply that the high-Mg diorites were probably produced by partial melting of mantle peridotites metasomatized by slab-derived melts and aqueous fluids. The calc-alkaline diorites have relatively high MgO (4.04-5.50 wt%), Cr, Ni contents and Mg# (56-59), as well as high (86Sr/87Sr)i ratios and negative εNd(t) values (- 7.5 to - 7.3), suggesting that they were most likely formed by partial melting of the Ando basement rocks with significant input of mantle components. The granodiorites are peraluminous and have higher (86Sr/87Sr)i ratios and more negative εNd(t) values (- 10.6 to - 10.8), similar to

  2. Identifying calcium sources at an acid deposition-impacted spruce forest: A strontium isotope, alkaline earth element multi-tracer approach

    USGS Publications Warehouse

    Bullen, T.D.; Bailey, S.W.

    2005-01-01

    Depletion of calcium from forest soils has important implications for forest productivity and health. Ca is available to fine feeder roots from a number of soil organic and mineral sources, but identifying the primary source or changes of sources in response to environmental change is problematic. We used strontium isotope and alkaline earth element concentration ratios of trees and soils to discern the record of Ca sources for red spruce at a base-poor, acid deposition-impacted watershed. We measured 87Sr/86Sr and chemical compositions of cross-sectional stemwood cores of red spruce, other spruce tissues and sequential extracts of co-located soil samples. 87Sr/86Sr and Sr/Ba ratios together provide a tracer of alkaline earth element sources that distinguishes the plant-available fraction of the shallow organic soils from those of deeper organic and mineral soils. Ca/Sr ratios proved less diagnostic, due to within-tree processes that fractionate these elements from each other. Over the growth period from 1870 to 1960, 87Sr/86Sr and Sr/Ba ratios of stemwood samples became progressively more variable and on average trended toward values that considered together are characteristic of the uppermost forest floor. In detail the stemwood chemistry revealed an episode of simultaneous enhanced uptake of all alkaline earth elements during the growth period from 1930 to 1960, coincident with reported local and regional increases in atmospheric inputs of inorganic acidity. We attribute the temporal trends in stemwood chemistry to progressive shallowing of the effective depth of alkaline earth element uptake by fine roots over this growth period, due to preferential concentration of fine roots in the upper forest floor coupled with reduced nutrient uptake by roots in the lower organic and upper mineral soils in response to acid-induced aluminum toxicity. Although both increased atmospheric deposition and selective weathering of Ca-rich minerals such as apatite provide possible

  3. Recognizing subtle evidence for silicic magma derivation from petrochemically-similar arc crust: Isotopic and chemical evidence for the bimodal volcanic series of Gorely Volcanic Center, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Seligman, A. N.; Bindeman, I. N.; Ellis, B. S.; Ponomareva, V.; Leonov, V.

    2012-12-01

    The Kamchatka Peninsula is home to some of the most prolific subduction related volcanic activity in the world. Gorely caldera and its central volcano are located in the rear of its currently active Eastern Volcanic Front. Recent work determined the presence of explosive ignimbrite eruptions sourced from Gorely volcano during the Pleistocene. We studied 32 eruptive units, including tephrochronologically-dated Holocene tephra, stratigraphically-arranged ignimbrites, as well as pre- and post-caldera lavas. We analyzed oxygen isotope ratios of pyroxene and plagioclase grains by laser fluorination, and major and trace element compositions of whole rocks. In addition, we determined 87Sr/86Sr and 143Nd/144Nd ratios of caldera-forming ignimbrite eruptions. Chemical compositions show that Gorely eruptive units range from basalt to basaltic andesite in the "Pra-Gorely" stages prior to caldera formation and the modern Gorely stages forming its current edifice. In contrast, eruptive material from earlier ignimbrites exposed at Opasny Ravine consists primarily of dacite. Whole rock analyses for Gorely indicate that silicic rocks and ignimbrites volumetrically dominate all other products, forming separate bimodal peaks in our SiO2-frequency diagram. In addition, trace element concentrations and ratios define two trends, one for more silicic and another for more mafic material. δ18Omelt values range from a low of 4.85 up to 6.22‰, where the lowest value was found in the last caldera forming eruption, suggesting incorporation of hydrothermally-altered material from earlier eruptions. 87Sr/86Sr and 143Nd/144Nd ratios range from 0.70328 to 0.70351 and from 0.51303 to 0.51309 respectively, with higher and more diverse values being characteristic of earlier ignimbrite units; again suggesting incorporation of surrounding crustal material. In contrast to these results, MELTS modeling using a variety of likely primitive basalts from Gorely shows it is possible to obtain silicic

  4. Pyroxenite and peridotite xenoliths from Hexigten, Inner Mongolia: Insights into the Paleo-Asian Ocean subduction-related melt/fluid-peridotite interaction

    NASA Astrophysics Data System (ADS)

    Zou, Dongya; Liu, Yongsheng; Hu, Zhaochu; Gao, Shan; Zong, Keqing; Xu, Rong; Deng, Lixu; He, Detao; Gao, Changgui

    2014-09-01

    The in situ major, trace-element and Sr-isotopic compositions of the peridotite and pyroxenite xenoliths from the Hexigten region in the Xing-Meng orogenic belt (XMOB) were examined to evaluate the influences and contributions of the Paleo-Asian Oceanic slab subduction on the lithospheric mantle transformation. Pyroxenes in the Type 1 pyroxenite exhibit low and variable Mg# (67-85) and relatively high 87Sr/86Sr ratios (0.7036-0.7053), indicating that they were formed by assimilation and fractional crystallization processes during a basaltic underplating event. The peridotite and Type 2 pyroxenite xenoliths sampled the lithospheric mantle and recorded subduction-related metasomatism. The mineral chemistries of the Type 1 peridotite suggest that the lithospheric mantle beneath this area suffered 1-15% melt extraction. Clinopyroxene (Cpx) in some Type 1 peridotites are characterized by high (La/Yb)N coupled with marked depletions in high field strength elements (HFSE) (Nb, Ta, Zr, Hf and Ti) and negative correlations between the low Ti/Eu (Nb/La) and 87Sr/86Sr ratios (0.7037-0.7055), suggesting metasomatism by subduction-related CO2-rich fluids. Olivine (Ol) and orthopyroxene (Opx) in the Type 2 peridotite are characterized by a relatively low Mg# but high Ni contents. In addition to the normal incompatible element-depleted Opx, Opx with enrichments in Rb, Ba, Th, U, Nb, Ta and LREE were observed, as well. The Mg# of incompatible element-depleted Opx exhibits weak zonations (i.e., decreasing from the cores to the rims). Cpx and Opx of the Type 2 pyroxenite exhibit similarly high Mg# and Ni contents. Rb, Ba, Th, U, Nb, Ta and LREE contents and 87Sr/86Sr ratios of the Cpx increase from the cores to the rims. Moreover, Opx in the Type 2 peridotite and Cpx in the Type 2 pyroxenite exhibit increased Nb/Ta ratios and Ni contents relative to those in the Type 1 peridotites. These observations collectively suggest a rutile-bearing eclogite-derived silicic melt

  5. Geochronology and geochemistry of eclogites from the Mariánské Lázně Complex, Czech Republic: Implications for Variscan orogenesis

    NASA Astrophysics Data System (ADS)

    Beard, Brian L.; Medaris-Jr, L. Gordon; Johnson, Clark M.; Jelínek, Emil; Tonika, J.; Riciputi, Lee R.

    The Mariánské Lázně complex (MLC) is located in the Bohemian Massif along the north-western margin of the Teplá-Barrandian microplate and consists of metagabbro, amphibolite and eclogite, with subordinate amounts of serpentinite, felsic gneiss and calc-silicate rocks. The MLC is interpreted as a metaophiolite complex that marks the suture zone between the Saxothuringian rocks to the north-west and the Teplá-Barrandian microplate to the south-east. Sm-Nd geochronology of garnet-omphacite pairs from two eclogite samples yields ages of 377+/-7, and 367+/-4Ma. Samples of eclogite and amphibolite do not define a whole rock Sm-Nd isochron, even though there is a large range in Sm/Nd ratio, implying that the suite of samples may not be cogenetic. Eclogites do not have correlated ɛNd values and initial 87Sr/86Sr ratios. Five of the eight eclogite samples have high ɛNd values (+10.2 to +7.1) consistent with derivation from a MORB-like source, but variable 87Sr/86Sr ratios (0.7033 to 0.7059) which probably reflect hydrothermal seawater alteration. Three other eclogite samples have lower ɛNd values (+5.4 to -0.8) and widely variable 87Sr/86Sr ratios (0.7033 to 0.7096). Such low ɛNd values are inconsistent with derivation from a MORB source and may reflect a subduction or oceanic island basalt component in their source. The MLC is an important petrotectonic element in the Bohemian Massif, providing evidence for Cambro-Ordovician formation of oceanic crust and interaction with seawater, Late Devonian (Frasnian-Famennian) high- and medium-pressure metamorphism related to closure of a Saxothuringian ocean basin, Early Carboniferous (Viséan) thrusting of the Teplá terrane over Saxothuringian rocks and Late Viséan extension.

  6. Enrichment of 88Sr in continental waters due to calcium carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Shalev, Netta; Gavrieli, Ittai; Halicz, Ludwik; Sandler, Amir; Stein, Mordechai; Lazar, Boaz

    2017-02-01

    δ88/86Sr data published over the last few years suggest that continental waters are enriched with 88Sr as compared to the rocks in their drainage basins. In an attempt to understand this phenomenon, this study established the fractionation in the 88Sr/86Sr ratio during precipitation of continental carbonates (i.e., carbonates precipitated on land from surface, pedogenic, or ground waters), and evaluated the contribution of this process to the 88Sr-enrichment in rivers. For this, stable and radiogenic Sr isotopes (88Sr, 87Sr and 86Sr) were measured in calcite samples and their precipitating waters collected in various continental environments, such as soil, cave, streams and groundwater. The results indicate that continental carbonates are 88Sr-depleted relative to their precipitating waters, placing them as one of the most 88Sr-depleted reservoirs on earth. The average difference in δ88/86Sr values between waters and solid CaCO3 (tufas or speleothems) that they precipitate is Δcarb-water = - 0.218 ± 0.014 ‰ (1SD). An even larger fractionation (εcarb-water = - 0.285 ± 0.02 ‰) was measured in groundwater with particularly high carbonate-alkalinity and high carbonate precipitation rate that depleted ∼65% of the Sr in the groundwater, resulting in substantial 88Sr-enrichment in the residual dissolved Sr (δ88/86Sr = 0.656 ‰). Results also suggest that pedogenic carbonate precipitation in soil profile removes 50-85% of the Sr from the recharging soil-water, thereby increasing the δ88/86Sr value of the soil-water from ∼ 0.18 ‰ to 0.3 ‰- 0.6 ‰. Similar 88Sr-enrichment was observed in drip water from a karst cave. A maximum removal flux of Sr into continental carbonates of about 20 Gmol(Sr)ṡy-1 is required to yield the reported 88Sr-enrichment in global rivers (δ88/86Sr = 0.32 ‰) relative to their rock sources when using the fractionation factor derived in this study, Δcarb-water = - 0.218 ‰, and the published δ88/86Sr composition of marine

  7. Geochemical and Sr Nd Pb isotopic evidence for a combined assimilation and fractional crystallisation process for volcanic rocks from the Huichapan caldera, Hidalgo, Mexico

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.

    2001-03-01

    This study reports new geochemical and Sr-Nd-Pb isotopic data for Miocene to Quaternary basaltic to andesitic, dacitic, and rhyolitic volcanic rocks from the Huichapan caldera, located in the central part of the Mexican Volcanic Belt (MVB). The initial Sr and Nd isotopic ratios, except for one rhyolite, range as follows: 87Sr/ 86Sr 0.70357-0.70498 and 143Nd/ 144Nd 0.51265-0.51282. The Sr-Nd-Pb isotopic ratios are generally similar to those for volcanic rocks from other areas of the central and eastern parts of the MVB. The isotopic ratios of one older pre-caldera rhyolite (HP30) from the Huichapan area, particularly its high 87Sr/ 86Sr, are significantly different from rhyolitic rocks from this and other areas of the MVB, but are isotopically similar to some felsic rocks from the neighbouring geological province of Sierra Madre Occidental (SMO), implying an origin as a partial melt of the underlying crust. The evolved andesitic to rhyolitic magmas could have originated from a basaltic magma through a combined assimilation and fractional crystallisation (AFC) process. Different compositions, representing lower crust (LC) and upper crust (UC) as well as a hypothetical crust similar to the source of high 87Sr/ 86Sr rhyolite HP30, were tested as plausible assimilants for the AFC process. The results show that the UC represented by granitic rocks from a nearby Los Humeros area or by Cretaceous limestone (L) rocks outcropping in the northern part of the study area, and the LC represented by granulitic xenoliths from a nearby San Luis Potosı´ (SLP) area are not possible assimilants for Huichapan magmas, whereas a hypothetical crust (HA) similar in isotopic compositions to rhyolite HP30 could be considered a possible assimilant for the AFC process. Chemical composition of assimilant HA, although not well constrained at present, was inferred under the assumption that HP30 type partial melts could be generated from its partial melting. These data were then used to evaluate

  8. Petrochemistry of a xenolith-bearing Neogene alkali olivine basalt from northeastern Iran

    NASA Astrophysics Data System (ADS)

    Saadat, Saeed; Stern, Charles R.

    2012-05-01

    A small isolated Neogene, possibly Quaternary, monogenetic alkali olivine basalt cone in northeastern Iran contains both mantle peridotite and crustal gabbroic xenoliths, as well as plagioclase megacrysts. The basaltic magma rose to the surface along pathways associated with local extension at the junction between the N-S right-lateral and E-W left-lateral strike slip faults that form the northeastern boundary of the Lut microcontinental block. This basalt is enriched in LREE relative to HREE, and has trace-element ratios similar to that of oceanic island basalts (OIB). Its 87Sr/86Sr (0.705013 to 0.705252), 143Nd/144Nd (0.512735 to 0.512738), and Pb isotopic compositions all fall in the field of OIB derived from enriched (EM-2) mantle. It formed by mixing of small melt fractions from both garnet-bearing asthenospheric and spinel-facies lithospheric mantle. Plagioclase (An26-32) megacrysts, up to 4 cm in length, have euhedral crystal faces and show no evidence of reaction with the host basalt. Their trace-element concentrations suggest that these megacrysts are co-genetic with the basalt host, although their 87Sr/86Sr (0.704796) and 143Nd/144Nd (0.512687) ratios are different than this basalt. Round to angular, medium-grained granoblastic meta-igneous gabbroic xenoliths, ranging from ~ 1 to 6 cm in dimension, are derived from the lower continental crust. Spinel-peridotite xenoliths equilibrated in the subcontinental lithosphere at depths of 30 to 60 km and temperatures of 965 °C to 1065 °C. These xenoliths do not preserve evidence of extensive metasomatic enrichment as has been inferred for the mantle below the Damavand volcano further to the west in north-central Iran, and clinopyroxenes separated from two different mantle xenoliths have 87Sr/86Sr (0.704309 and 0.704593) and 143Nd/144Nd (0.512798) ratios which are less radiogenic than either their host alkali basalt or Damavand basalts, implying significant regional variations in the composition and extent of

  9. Zircon U-Pb age, Hf isotopic compositions and geochemistry of the Silurian Fengdingshan I-type granite Pluton and Taoyuan mafic-felsic Complex at the southeastern margin of the Yangtze Block

    NASA Astrophysics Data System (ADS)

    Zhong, Yufang; Ma, Changqian; Zhang, Chao; Wang, Shiming; She, Zhenbing; Liu, Lei; Xu, Haijin

    2013-09-01

    This work presents an integrated study of zircon U-Pb ages and Hf isotope along with whole-rock geochemistry on Silurian Fengdingshan I-type granites and Taoyuan mafic-felsic intrusive Complex located at the southeastern margin of the Yangtze Block, filling in a gap in understanding of Paleozoic I-type granites and mafic-intermediate igneous rocks in the eastern South China Craton (SCC). The Fengdingshan granite and Taoyuan hornblende gabbro are dated at 436 ± 5 Ma and 409 ± 2 Ma, respectively. The Fengdingshan granites display characteristics of calc-alkaline I-type granite with high initial 87Sr/86Sr ratios of 0.7093-0.7127, low ɛNd(t) values ranging from -5.6 to -5.4 and corresponding Nd model ages (T2DM) of 1.6 Ga. Their zircon grains have ɛHf(t) values ranging from -2.7 to 2.6 and model ages of 951-1164 Ma. The Taoyuan mafic rocks exhibit typical arc-like geochemistry, with enrichment in Rb, Th, U and Pb and depletion in Nb, Ta. They have initial 87Sr/86Sr ratios of 0.7053-0.7058, ɛNd(t) values of 0.2-1.6 and corresponding T2DM of 1.0-1.1 Ga. Their zircon grains have ɛHf(t) values ranging from 3.2 to 6.1 and model ages of 774-911 Ma. Diorite and granodiorite from the Taoyuan Complex have initial 87Sr/86Sr ratios of 0.7065-0.7117, ɛNd(t) values from -5.7 to -1.9 and Nd model ages of 1.3-1.6 Ga. The petrographic and geochemical characteristics indicate that the Fengdingshan granites probably formed by reworking of Neoproterozoic basalts with very little of juvenile mantle-derived magma. The Taoyuan Complex formed by magma mixing and mingling, in which the mafic member originated from a metasomatized lithospheric mantle. Both the Fengdingshan and Taoyuan Plutons formed in a post-orogenic collapse stage in an intracontinental tectonic regime. Besides the Paleozoic Fengdingshan granites and Taoyuan hornblende gabbro, other Neoproterozoic and Indosinian igneous rocks located along the southeastern and western margin of the Yangtze Block also exhibit decoupled

  10. Complex metasomatism of lithospheric mantle by asthenosphere-derived melts: Evidence from peridotite xenoliths in Weichang at the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Zou, Dongya; Zhang, Hongfu; Hu, Zhaochu; Santosh, M.

    2016-11-01

    The petrology, in situ analyses of major and trace elements as well as Sr isotopic compositions of spinel-facies lherzolite and harzburgite xenoliths from Weichang within the northern margin of the North China Craton (NCC) are reported for the first time in this study to evaluate the nature and evolution of the lithospheric mantle. These peridotite xenoliths display porphyroclastic texture and can be subdivided into two groups. Group I peridotites have slightly higher forsterite contents (Fo) (90.6-91.2) and 87Sr/86Sr ratios (0.7025-0.7043) in the cores than those in the rims (89.8-90.8; 0.7025-0.7038) of olivines and clinopyroxenes, respectively. The clinopyroxenes in these rocks exhibit uniform LREE-depleted patterns. These geochemical features suggest that the Group I peridotites were weakly metasomatized by recent asthenospheric melts. In contrast, Group II peridotites show sieve-texture and clear compositional zoning in minerals. The olivines and clinopyroxenes from these rocks have higher Fo (86.9-91.3) and 87Sr/86Sr ratios (0.7035-0.7049) in the cores than those in the rims (76.9-90.6; 0.7021-0.7046). The clinopyroxenes show three types of REE patterns: LREE-enriched, convex-upward and spoon-shaped. The LREE-enriched clinopyroxenes have the highest (La/Yb)N and lowest Ti/Eu and those with spoon-shaped REE patterns show an increase in LREE, Ba, Th and U contents from the cores to the rims. These features indicate that the Group II peridotites witnessed a high degree of refertilization by recent asthenosphere-derived silicate and carbonatite melts or their mixture. Compared with the data of the Mesozoic NCC lithospheric mantle, the heterogeneous and low 87Sr/86Sr ratios (0.7025-0.7049) in the LREE-depleted clinopyroxenes reveal that the ancient lithospheric mantle could have been modified by asthenospheric melts before the recent metasomatism event. We conclude that the lithospheric mantle beneath Weichang underwent multiple modifications through asthenosphere

  11. Petrology and geochemistry of ultrapotassic rocks from the Montefiascone Volcanic Complex (Central Italy): magmatic evolution and petrogenesis

    NASA Astrophysics Data System (ADS)

    Di Battistini, G.; Montanini, A.; Vernia, L.; Bargossi, G. M.; Castorina, F.

    1998-07-01

    The Montefiascone Volcanic Complex belongs to the Roman Magmatic Province of Central Italy; the volcanic activity took place in an extensional, post-collisional setting during Late Pleistocene, giving rise to lava flows and pyroclastic deposits. The extrusive products consist of moderately to strongly undersaturated K-rich lavas ranging in composition from trachybasalts through leucite basanites and leucititic tephrites to tephritic leucitites. They show the typical geochemical and isotopic characters of the Roman potassic magmas, i.e., low TiO 2, low K 2O/Al 2O 3, strong enrichment in LILE, high LILE/HFSE ratios, highly radiogenic 87Sr/ 86Sr ratios (0.71005-0.71112) and unradiogenic 143Nd/ 144Nd (0.51209-0.51229, corresponding to ɛNd=-10.7 to -6.8). Large chemical variations have been recognized within the Montefiascone volcanics, resulting both from the occurrence of different primary magmas and shallow-level fractionation processes. The differentiation mainly took place by means of closed-system fractional crystallisation with local influence of crustal assimilation. The leucite basanites represent primary mantle magmas which did not yield derivative products, whereas the leucititic tephrites, tephritic leucitites and trachybasalts comprise highly differentiated rocks strongly depleted in compatible elements and enriched in LILE. Fractional crystallisation dominated respectively by clinopyroxene+leucite and clinopyroxene+plagioclase yielded the most evolved tephritic leucitites and trachybasalts. In contrast, assimilation of metamorphic basement rocks characterized by highly radiogenic 87Sr/ 86Sr is needed to explain the moderate increase of the 87Sr/ 86Sr ratio within the leucititic tephrites. The geochemical and isotopic signatures shown by the Montefiascone primary magmas require a clinopyroxene- and phlogopite-rich mantle source; in particular, partial melting of a veined lithospheric mantle can account for the occurrence of different primary magmas

  12. Sr Isotopes and human skeletal remains, improving a methodological approach in migration studies

    NASA Astrophysics Data System (ADS)

    Solis Pichardo, G.; Schaaf, P. E.; Hernandez, T.; Horn, P.; Manzanilla, L. R.

    2013-12-01

    Asserting mobility of ancient humans is a major issue for anthropologists. Sr isotopes are widely used in anthropological sciences to trace human migration histories from ancient burials. Sr in bone approximately reflects the isotopic composition of the geological region where the person lived before death; whereas the Sr isotopic system in tooth enamel is thought to remain as a closed system and thus conserves the isotope ratio acquired during childhood. A comparison of the 87Sr/86Sr ratios found in tooth enamel and in bone is performed to determine if the human skeletal remains belonged to a local or a migrant. Until now, tooth enamel was considered to be less sensitive to secondary Sr contamination due to its higher crystallinity and larger sizes of the biogenic apatites in comparison to that in bone and dentine. In the past, enamel as well as bone material was powdered, dissolved and analyzed by thermal ionization mass spectrometry (TIMS). In this contribution we show, however, that simple dissolution of enamel frequently yields erroneous results. Tooth enamel is often affected by secondary strontium contamination processes such as caries or diagenetic and environmental input, which can change the original isotopic composition. To avoid these problems we introduced a pre-treatment and three-step leaching procedure in enamel samples. Leaching is carried out with acetic acid of different concentrations, yielding two leachates and one residue of each sample. Frequently the 87Sr/86Sr results of the three leachates display different values confirming that secondary contamination did occur. Several examples from Teotihuacan, central Mexico demonstrate that enamel 87Sr/86Sr without leaching can show correct biogenic values, but there is also a considerable probability for these values to represent a mixture of original and secondary Sr without significance for migration reconstructions. Only the residue value is interpreted by us as the representative ratio for

  13. Oxygen and strontium isotopic studies of basaltic lavas from the Snake River plain, Idaho

    USGS Publications Warehouse

    Leeman, William P.; Whelan, Joseph F.

    1983-01-01

    The Snake Creek-Williams Canyon pluton of the southern Snake Range crops out over an area of about 30 km2, about 60 km southeast of Ely, Nev. This Jurassic intrusion displays large and systematic chemical and mineralogical zonation over a horizontal distance of 5 km. Major-element variations compare closely with Dalyls average andesite-dacite-rhyolite over an SiO2 range of 63 to 76 percent. For various reasons it was originally thought that assimilation played a dominant role in development of the Snake Creek-Williams Canyon pluton. However, based on modeling of more recently obtained trace element and isotopic data, we have concluded that the zonation is the result of in-situ fractional crystallization, with little assimilation at the level of crystallization. This report summarizes data available for each of the mineral species present in the zoned intrusion. Special attention has been paid to trends We present oxygen and strontium isotopic data for olivine tholeiites, evolved (that is, differentiated and (or) contaminated) lavas, rhyolites, and crustal- derived xenoliths from the Snake River Plain. These data show that the olivine tholeiites are fairly uniform in d80 (5.1 to 6.2) and 87Sr/86Sr (0.7056 to 0.7076) and reveal no correlation between these ratios. The tholeiites are considered representative of mantle-derived magmas that have not interacted significantly with crustal material or meteoric water. The evolved lavas display a wider range in d 80 (5.6 to 7.6) and 87Sr/86Sr (0.708 to 0.717) with positive correlations between these ratios in some suites but not in others. Crustal xenoliths have high and variable 8?Sr/86Sr (0.715 to 0.830) and d80 values that vary widely (6.7 to 9.2) and are a few permil greater than d80 values of the Snake River basalts. Thus, isotopic data for the evolved lavas are permissive of small degrees of contamination by crustal rocks similar to the most d80-depleted xenoliths. The d80 enrichments in some evolved lavas also are

  14. Evaluation of the Impacts of Marine Salts and Asian Dust on the Forested Yakushima Island Ecosystem, a World Natural Heritage Site in Japan.

    PubMed

    Nakano, Takanori; Yokoo, Yoriko; Okumura, Masao; Jean, Seo-Ryong; Satake, Kenichi

    2012-11-01

    To elucidate the influence of airborne materials on the ecosystem of Japan's Yakushima Island, we determined the elemental compositions and Sr and Nd isotope ratios in streamwater, soils, vegetation, and rocks. Streamwater had high Na and Cl contents, low Ca and HCO(3) contents, and Na/Cl and Mg/Cl ratios close to those of seawater, but it had low pH (5.4 to 7.1), a higher Ca/Cl ratio than seawater, and distinct (87)Sr/(86)Sr ratios that depended on the bedrock type. The proportions of rain-derived cations in streamwater, estimated by assuming that Cl was derived from sea salt aerosols, averaged 81 % for Na, 83 % for Mg, 36 % for K, 32 % for Ca, and 33 % for Sr. The Sr value was comparable to the 28 % estimated by comparing Sr isotope ratios between rain and granite bedrock. The soils are depleted in Ca, Na, P, and Sr compared with the parent materials. At Yotsuse in the northwestern side, plants and the soil pool have (87)Sr/(86)Sr ratios similar to that of rainwater with a high sea salt component. In contrast, the Sr and Nd isotope ratios of soil minerals in the A and B horizons approach those of silicate minerals in northern China's loess soils. The soil Ca and P depletion results largely from chemical weathering of plagioclase and of small amounts of apatite and calcite in granitic rocks. This suggests that Yakushima's ecosystem is affected by large amounts of acidic precipitation with a high sea salt component, which leaches Ca and its proxy (Sr) from bedrock into streams, and by Asian dust-derived apatite, which is an important source of P in base cation-depleted soils.

  15. He and Sr isotopic constraints on subduction contributions to Woodlark Basin volcanism, Solomon Islands

    SciTech Connect

    Trull, T.W.; Kurz, M.D. ); Perfit, M.R. )

    1990-02-01

    In order to assess the nature and spatial extent of subduction contributions to arc volcanism, Sr and He isotopic compositions are measured for dredged volcanic rocks from the Woodlark Basin in the western Pacific. {sup 87}Sr/{sup 86}Sr ratios increase geographically, from ocean ridge values (.7025-.7029) at the Woodlark Spreading Center to island arc ratios (.7035-.7039) in the Solomon Islands forearc, with intermediate values near the triple junction where the Woodlark Spreading Center subducts beneath the Solomon Islands. {sup 3}He/{sup 4}He ratios are also more radiogenic in the forearc (6.9 {plus minus} .2 R{sub a} at active Kavachi volcano) than along the spreading center, where values typical of major ocean ridges were found (8.2 - 9.3 R{sub a}). Very low {sup 3}He/{sup 4}He ratios occur in many triple junction rocks (.1 to 5 R{sub a}), but consideration of He isotopic differences between crushing and melting analyses suggests that the low ratios were caused by atmospheric (1 R{sub a}) and radiogenic ({approx} 0.2 R{sub a}) helium addition after eruption. Variations in unaltered, magnetic {sup 3}He/{sup 4}He, and {sup 87}Sr/{sup 86}Sr ratios are best explained by subduction-related fluid or silicate melt contributions to the magma source region, perhaps from ancient Pacific lithosphere. However, mantle volatiles dominate the generation of Woodlark Basin rocks despite extensive subduction in the region.

  16. Age and origin of peridotitic diamonds from Venetia, Limpopo Belt, Kaapvaal-Zimbabwe craton

    NASA Astrophysics Data System (ADS)

    Richardson, S. H.; Pöml, P. F.; Shirey, S. B.; Harris, J. W.

    2009-11-01

    The 520 Ma old Venetia kimberlite cluster is located in the Central Zone of the Limpopo Belt where Archean crust has experienced at least two major tectonothermal events at ca. 2.6 and 2.0 Ga, the second of which closely follows the 2.054 Ga emplacement of the Bushveld Complex. Peridotitic garnet inclusions in Venetia diamonds are harzburgitic to lherzolitic in composition with low Ca and high Cr contents spanning the entire G10 garnet field. The related garnet macrocrysts generally have less extreme Ca and Cr contents and represent the re-equilibrated mantle host rocks of at least some of the diamonds. The garnets encapsulated in diamonds have low Sm/Nd and 143Nd/ 144Nd directly correlated with Ca and moderate 87Sr/ 86Sr (0.704-0.706) inversely correlated with Ca. The garnet macrocrysts also show low though more scattered Sm/Nd and 143Nd/ 144Nd but much higher 87Sr/ 86Sr (up to 0.720). Three of four inclusion groups give a nominal Sm-Nd isochron age of 2.30 ± 0.04 Ga with an unradiogenic initial (ɛNd = - 8). However, 143Nd/ 144Nd and 87Sr/ 86Sr are also correlated with reciprocal Nd and Sr concentration, consistent with mixing between a low Ca, low Sm/Nd, harzburgitic end member with radiogenic Sr (≤ 0.707) and a higher Ca, higher Sm/Nd, 'basaltic' end member with unradiogenic Sr (≤ 0.702), which raised the initial Nd isotope ratios of the inclusions in proportion to the degree of mixing. Therefore, 2.3 Ga is a maximum age for the diamonds. The initial Nd composition and characteristics of the mixing array indicate a > 3 Ga continental mantle harzburgite precursor to which a basaltic component was added at ca. 2 Ga, as suggested by the Re-Os isotope systematics of single sulfide inclusions in Venetia diamonds. In particular, four Venetia eclogitic sulfide inclusions describe a ca. 2.05 Ga Re-Os array with elevated initial 187Os/ 188Os ratio even more radiogenic than that of Bushveld PGE mineralization. Combined silicate Sm-Nd and Rb-Sr and sulfide Re

  17. IODP Expedition 345: Characterizing Hydrothermal Alteration of Fast-Spreading EPR Lower Crust using O, Sr and Nd isotopics

    NASA Astrophysics Data System (ADS)

    Marks, N.; Gillis, K. M.; Lindvall, R. E.; Schorzman, K.

    2014-12-01

    The Integrated Ocean Drilling Program (IODP) Expedition 345 sampled lower crustal primitive gabbroic rocks that formed at the fast-spreading East Pacific Rise (EPR) and are exposed at the Hess Deep Rift. The metamorphic mineral assemblages in the rocks recovered at Site U1415 record the cooling of primitive gabbroic lithologies from magmatic (>1000°C) to zeolite facies conditions (<200°C) associated with EPR spreading, Cocos-Nazca rifting and exposure onto the seafloor. The dominant alteration assemblage is characterized by lower grade greenschist (<400°C) and subgreenschist facies (<200°C) alteration of olivine to talc, serpentine, or clay minerals, and is commonly accompanied by prehnite microveins in plagioclase. The intensity of alteration varies with igneous lithology, in particular, the modal abundance of olivine, as well as proximity to zones of brittle fracturing and cataclasis. We have attempted to characterize the nature and extent of isotopic exchange associated alteration and cooling and present a record of variations in O, Sr, and Nd isotopic compositions in altered rocks from the lower plutonic crust at Hess Deep. The Rb-Sr and 18O/16O systems exhibit sensitivity to hydrothermal interactions with seawater; whereas the Sm-Nd system appears essentially undisturbed by the minimal alteration experienced by the rocks drilled at Site U1415. The 87Sr/86Sr isotopic compositions of olivine gabbros (Mg# 0.81-0.89) range from 0.702536-0.703950 (±0.000008). Higher 87Sr/86Sr ratios are strongly correlated with percentage of hydrous minerals, and are higher in samples with a greater modal abundance of olivine. These rocks have somewhat higher 87Sr/86Sr ratios than upper plutonic rocks from the Northern Escarpment at Hess Deep (Kirchner and Gillis, 2012), although their percentage of hydrous phases is apparently similar. The d18O in these rocks ranges from 0.23‰ to 4.65‰ (±0.67); troctolites have systematically lower d18O than the gabbro and gabbronorites

  18. Nutrient Sourcing of Ten Plant Species in the Southwest U.S. using Strontium Isotopes: Effects of Rooting Depth, Bedrock Type, and Landscape Age

    NASA Astrophysics Data System (ADS)

    Reynolds, A. C.; Quade, J.; Betancourt, J. L.

    2007-12-01

    For decades, researchers have been examining chronosequences in Hawaii to quantify mineral weathering rates and tropical plant nutrient pools. Within El Malpais National Park, New Mexico, well-dated basalt flows allow for comparison of the Hawaiian data to a semi-arid ecosystem. We measured 87Sr/86Sr ratios in cellulose and bedrock to gauge tree, shrub, & grass (Pinus ponderosa, Pinus edulis, Juniperus monosperma, Juniperus scopulorum, Populus tremuloides, Chrysothamus nauseosus, Fallugia paradoxa, Rhus trilobata, Bouteloua gracilis, and Xanthoparmelia lineola (Berry) Hale) dependence on atmospheric dust as a nutrient source. Sampling sites varied by bedrock type (limestone, sandstone, granite, cinder and basalt) and by age (Quaternary to Precambrian) providing a wide and discrete range of 87Sr/86Sr ratios. Thus, we can pinpoint the roles landscape age (3 ka to greater than 200 ka) and bedrock recalcitrance play in mineral weathering versus eolian dust influence. This study suggests that dust dominates the nutrient cycle on younger landscapes (3 ka), shows a mixture of mineral weathering-dust inputs by 9 ka, and is rock-dominated by 120 ka. Rates of soil nutrient depletion vary in older, non-basalt landscapes (>250 ka), depending on the type the parent bedrock. For example, landscapes on Precambrian gneiss and Paleozoic limestone still show significant mineral contributions while the quartz-rich, carbonate-cemented Zuni Sandstone is almost completely eolian-dominated. Cellulose 87Sr/86Sr variation by plant species at a single site allows us to monitor plant rooting depths and interspecies competition for vital nutrients. Within semiarid ecosystems, nutrient concentrations exhibit both vertical and lateral heterogeneity. The reasons for this variation include vertical and lateral heterogeneity in soil moisture and foliar trapping of nutrient-rich dust followed by incorporation of the throughfall into the underlying soil. This study shows that throughfall does play a

  19. Petrology and geochemistry of Cenozoic intra-plate basalts in east-central China: Constraints on recycling of an oceanic slab in the source region

    NASA Astrophysics Data System (ADS)

    Li, Yan-Qing; Ma, Chang-Qian; Robinson, Paul T.

    2016-10-01

    Cenozoic mafic rocks in Jiangsu and Anhui Provinces, east-central China are chiefly basanites and alkali olivine basalts with subordinate tholeiites, which were erupted in three stages; Paleogene, Neogene and Quaternary. The rocks become increasingly alkaline as they become younger. On a primitive mantle-normalized multi-element plot, these lavas exhibit typical OIB-like trace element patterns, including enrichment in most incompatible elements (LILE and HFSE) and negative K and Pb anomalies. The compositions of the mafic rocks indicate that they were derived from a mantle source mainly containing clinopyroxene and garnet, most probably a mixture of pyroxenite/eclogite and peridotite. A mineral equilibrium projection shows that all the mafic magmas were produced at pressures of 3-4 GPa, implying an asthenospheric origin. Their positive Ba and Sr anomalies and relatively high 87Sr/86Sr ratios suggest derivation from an EM1-type mantle source. However, poor correlations between 87Sr/86Sr and 143Nd/144Nd indicate an isotopically heterogeneous source for the magmas, including DMM, EM1 and EM2, representing mantle peridotite, recycled ancient oceanic crust and seafloor sedimentary rocks, respectively. Variable correlations between 87Sr/86Sr and 143Nd/144Nd ratios, CaO-MgO contents and Eu/Eu* and Ce/Ce* anomalies with rock type imply that marine sediments (plus variable amounts of oceanic crust) and peridotites were the dominant source lithologies of the basanites, whereas recycled oceanic crust (pyroxenite/eclogite) was the main source of the weakly alkaline basalts. This hypothesis is supported by seismic tomographic images of the mantle beneath the region, which show the presence of a stagnant subducted slab in the mantle transition zone. Thus, we propose a petrological model in which a hybrid magma column originated from the mantle transition zone and assimilated some of the overlying peridotite during upwelling, to become the parental magmas of these mafic rocks

  20. Rare earth elements, S and Sr isotopes and origin of barite from Bahariya Oasis, Egypt: Implication for the origin of host iron ores

    NASA Astrophysics Data System (ADS)

    Baioumy, Hassan M.

    2015-06-01

    Based on their occurrences and relation to the host iron ores, barites are classified into: (1) fragmented barite occurs as pebble to sand-size white to yellowish white barite along the unconformity between the Bahariya Formation and iron ores, (2) interstitial barite is present as pockets and lenses of large and pure crystals inside the iron ores interstitial barite inside the iron ores, and (3) disseminated barite occurs at the top of the iron ores of relatively large crystals of barite embedded in hematite and goethite matrix. In the current study, these barites have been analyzed for their rare earth elements (REE) as well as strontium and sulfur isotopes to assess their source and origin as well as the origin of host iron ores. Barite samples from the three types are characterized by low ΣREE contents ranging between 12 and 21 ppm. Disseminated barite shows relatively lower ΣREE contents (12 ppm) compared to the fragmented (19 ppm) and interstitial (21 ppm) barites. This is probably due to the relatively higher Fe2O3 in the disseminated barite that might dilute its ΣREE content. Chondrite-normalized REE patterns for the three barite mineralizations exhibit enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE) as shown by the high (La/Yb)N ratios that range between 14 and 45 as well as pronounced negative Ce anomalies varying between 0.03 and 0.18. The 87Sr/86Sr ratios in the analyzed samples vary between 0.707422 and 0.712237. These 87Sr/86Sr values are higher than the 87Sr/86Sr ratios of the seawater at the time of barite formation (Middle Eocene with 87Sr/86Sr ratios of 0.70773 to 0.70778) suggesting a contribution of hydrothermal fluid of high Sr isotope ratios. The δ34S values in the analyzed barites range between 14.39‰ and 18.92‰. The lower δ34S ratios in the studied barites compared with those of the seawater at the time of barite formation (Middle Eocene with δ34S ratios of 20-22‰) is attributed to a

  1. Uranium from German Nuclear Power Projects of the 1940s— A Nuclear Forensic Investigation

    PubMed Central

    Mayer, Klaus; Wallenius, Maria; Lützenkirchen, Klaus; Horta, Joan; Nicholl, Adrian; Rasmussen, Gert; van Belle, Pieter; Varga, Zsolt; Buda, Razvan; Erdmann, Nicole; Kratz, Jens-Volker; Trautmann, Norbert; Fifield, L Keith; Tims, Stephen G; Fröhlich, Michaela B; Steier, Peter

    2015-01-01

    Here we present a nuclear forensic study of uranium from German nuclear projects which used different geometries of metallic uranium fuel.3b,d, 4 Through measurement of the 230Th/234U ratio, we could determine that the material had been produced in the period from 1940 to 1943. To determine the geographical origin of the uranium, the rare-earth-element content and the 87Sr/86Sr ratio were measured. The results provide evidence that the uranium was mined in the Czech Republic. Trace amounts of 236U and 239Pu were detected at the level of their natural abundance, which indicates that the uranium fuel was not exposed to any major neutron fluence. PMID:26501922

  2. Use of strontium isotopes to constrain the timing and mode of dolomitization of upper Cenozoic sediments in a core from San Salvador, Bahamas

    USGS Publications Warehouse

    Swart, Peter K.; Ruiz, Joaquin; Holmes, Charles W.

    1985-01-01

    The 87Sr/86Sr ratios and the activity ratios of 234U/238U and 230Th/238U have been measured in dolomites from a 168-m-deep core taken on the island of San Salvador, Bahamas. These data suggest two periods of dolomitization. The first episode dolomitized Miocene age sediments during the latest Miocene, and the second dolomitized the Pliocene portion of the core and was still active as recently as 150 ka. The late timing of the second episode argues against penecontemporaneous models of dolomitization for the Pliocene sediments. Instead, dolomitization is favored either as a result of mixing-zone development during the large Pleistocene sea-level changes or by movement of seawater through the platform.

  3. Redox heterogeneity in mid-ocean ridge basalts as a function of mantle source.

    PubMed

    Cottrell, Elizabeth; Kelley, Katherine A

    2013-06-14

    The oxidation state of Earth's upper mantle both influences and records mantle evolution, but systematic fine-scale variations in upper mantle oxidation state have not previously been recognized in mantle-derived lavas from mid-ocean ridges. Through a global survey of mid-ocean ridge basalt glasses, we show that mantle oxidation state varies systematically as a function of mantle source composition. Negative correlations between Fe(3+)/ΣFe ratios and indices of mantle enrichment--such as (87)Sr/(86)Sr, (208)Pb/(204)Pb, Ba/La, and Nb/Zr ratios--reveal that enriched mantle is more reduced than depleted mantle. Because carbon may act to simultaneously reduce iron and generate melts that share geochemical traits with our reduced samples, we propose that carbon creates magmas at ridges that are reduced and enriched.

  4. Origin of silicic magma in Iceland revealed by Th isotopes

    SciTech Connect

    Sigmarsson, O.; Condomines, M. ); Hemond, C. ); Fourcade, S. ); Oskarsson, N. )

    1991-06-01

    Th, Sr, Nd, and O isotopes have been determined in a suite of volcanic rocks from Hekla and in a few samples from Askja and Krafla volcanic centers in Iceland. Although {sup 87}Sr/{sup 86}Sr and {sup 143}Nd/{sup 144}Nd ratios are nearly the same for all compositions at Hekla, the ({sup 230}Th/{sup 232}Th) ratios differ and thus clearly show that the silicic rocks cannot be derived from fractional crystallization of a more primitive magma. Similar results are obtained for the Krafla and Askja volcanic centers, where the {delta}{sup 18}O values are much lower in the silicic magma than in the mafic magma. These data suggest that large volumes of silicic rocks in central volcanoes of the neovolcanic zones in Iceland are produced by partial melting of the underlying crust.

  5. Rb-Sr isotopic studies of postorogenic granites from the eastern Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Stuckless, J.S.; Futa, Kiyoto

    1987-01-01

    Available data indicate that postorogenic granites tend to be older in the southern part of the Arabian Shield. This suggests that plutonism started in the south and progressed to the north. Initial 87Sr/86Sr values also form a regional pattern. These ratios tend to be higher in the eastern part of the Arabian Shield, and suggest one source of continental affinity to the east and one of oceanic affinity to the west. The distribution of initial strontium isotope ratios does not clearly discriminate between the various models for Shield evolution; however, a sedimentary source region of mixed end members seems more compatible with the data pattern than models based on discrete boundaries between unrelated accreted blocks.

  6. Recycled oceanic crust and marine sediment in the source of alkali basalts in Shandong, eastern China: Evidence from magma water content and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Xia, Qun-Ke; Deloule, Etienne; Chen, Huan; Feng, Min

    2015-12-01

    The magma water contents and cpx δ18O values in alkali basalts from the Fuyanyshan (FYS) volcano in Shandong, eastern China, were investigated by an inverse calculation based on the water content of clinopyroxene (cpx) phenocrysts, the ivAlcpx-dependent water partitioning coefficient Dwatercpx>/melt, and secondary ion mass spectrometer, respectively. The calculated water content (H2O wt.) of magma ranges from 0.58% to 3.89%. It positively correlates with heavy rare earth element concentrations and bulk rock 87Sr/86Sr ratios, and it negatively correlates with Nb/U ratios. However, it is not correlated with bulk Mg# (Mg# = 100 × Mg / (Mg + Fe)) and (La/Yb)n (n represents primitive mantle normalization). Combined with the rather homogenous distribution of water content within cpx grains, these correlations indicate that the water variations among different samples represent the original magma signature, rather than results of a shallow process, such as degassing and diffusion. The δ18O of cpx phenocrysts varies from 3.6‰ to 6.3‰ (±0.5‰, 2SD), which may be best explained by the involvement of components from the lower and upper oceanic crust with marine sediments within the mantle source. The H2O/Ce ratios of the calculated melts range from 113 to 696 and form a positive trend with bulk rock 87Sr/86Sr, which cannot be explained by the recycled Sulu eclogite or by the metasomatized lithospheric mantle. Our modeling calculation shows that the decoupling of ɛHf and ɛNd could be caused by the involvement of marine sediments. Combing the high Ba/Th ratios, positive Sr spikes, and low Ce/Pb ratios for the Fuyanshan basalts, we suggest that the hydrous nature of the FYS basalts was derived from the hydrous mantle transition zone with ancient sediments.

  7. H, O, Sr, Nd, and Pb isotope geochemistry of the Latir volcanic field and cogenetic intrusions, New Mexico, and relations between evolution of a continental magmatic center and modifications of the lithosphere

    USGS Publications Warehouse

    Johnson, C.M.; Lipman, P.W.; Czamanske, G.K.

    1990-01-01

    Over 200 H, O, Sr, Nd, and Pb isotope analyses, in addition to geologic and petrologic constraints, document the magmatic evolution of the 28.5-19 Ma Latir volcanic field and associated intrusive rocks, which includes multiple stages of crustal assimilation, magma mixing, protracted crystallization, and open- and closed-system evolution in the upper crust. In contrast to data from younger volcanic centers in northern New Mexico, relatively low and restricted primary ??18O values (+6.4 to +7.4) rule out assimilation of supracrustal rocks enriched in 18O. Initial 87Sr/86Sr ratios (0.705 to 0.708), ??18O values (-2 to-7), and 206Pb/204Pb ratios (17.5 to 18.4) of metaluminous precaldera volcanic rocks and postcaldera plutonic rocks suggest that most Latir rocks were generated by fractional crystallization of substantial volumes of mantle-derived basaltic magma that had near-chondritic Nd isotope ratios, accompanied by assimilation of crustal material in two main stages: 1) assimilation of non-radiogenic lower crust, followed by 2) assimilation of middle and upper crust by inter-mediate-composition magmas that had been contaminated during the first stage. Magmatic evolution in the upper crust peaked with eruption of the peralkaline Amalia Tuff (???26 Ma), which evolved from metaluminous parental magmas. A third stage of late, roofward assimilation of Proterozoic rocks in the Amalia Tuff magma is indicated by trends in initial 87Sr/86Sr and 206Pb/204Pb ratios from 0.7057 to 0.7098 and 19.5 to 18.8, respectively, toward the top of the pre-eruptive magma chamber. Highly evolved postcaldera plutons are generally fine grained and are zoned in initial 87Sr/86Sr and 206Pb/204Pb ratios, varying from 0.705 to 0.709 and 17.8 to 18.6, respectively. In contrast, the coarser-grained Cabresto Lake (???25 Ma) and Rio Hondo (???21 Ma) plutons have relatively homogeneous initial 87Sr/86Sr and 206Pb/204Pb ratios of approximately 0.7053 and 17.94 and 17.55, respectively. ??18O values for

  8. Isotopic reconstruction of ancient human migrations: A comprehensive Sr isotope reference database for France and the first case study at Tumulus de Sables, south-western France

    NASA Astrophysics Data System (ADS)

    Willmes, M.; Boel, C.; Grün, R.; Armstrong, R.; Chancerel, A.; Maureille, B.; Courtaud, P.

    2012-04-01

    Strontium isotope ratios (87Sr/86Sr) can be used for the reconstruction of human and animal migrations across geologically different terrains. Sr isotope ratios in rocks are a product of age and composition and thus vary between geologic units. From the eroding environment Sr is transported into the soils, plants and rivers of a region. Humans and animals incorporate Sr from their diet into their bones and teeth, where it substitutes for calcium. Tooth enamel contains Sr isotope signatures acquired during childhood and is most resistant to weathering and overprinting, while the dentine is often diagenetically altered towards the local Sr signature. For the reconstruction of human and animal migrations the tooth enamel 87Sr/86Sr ratio is compared to the Sr isotope signature in the vicinity of the burial site and the surrounding area. This study focuses on the establishment of a comprehensive reference map of bioavailable 87Sr/86Sr ratios for France. In a next step we will compare human and animal teeth from key archaeological sites to this reference map to investigate mobility. So far, we have analysed plant and soil samples from ~200 locations across France including the Aquitaine basin, the western and northern parts of the Paris basin, as well as three transects through the Pyrenees Mountains. The isotope data, geologic background information (BRGM 1:1M), field images, and detailed method descriptions are available through our online database iRhum (http://rses.anu.edu.au/research/ee). This database can also be used in forensic studies and food sciences. As an archaeological case study teeth from 16 adult and 8 juvenile individuals were investigated from an early Bell Beaker (2500-2000 BC) site at Le Tumulus des Sables, south-west France (Gironde). The teeth were analysed for Sr isotope ratios using laser ablation ICP-MS. Four teeth were also analysed using solution ICP-MS, which showed a significant offset to the laser ablation results. This requires further

  9. Petrology of Karoo volcanic rocks in the southern Lebombo monocline, Mozambique

    NASA Astrophysics Data System (ADS)

    Melluso, Leone; Cucciniello, Ciro; Petrone, Chiara M.; Lustrino, Michele; Morra, Vincenzo; Tiepolo, Massimo; Vasconcelos, Lopo

    2008-11-01

    The Karoo volcanic sequence in the southern Lebombo monocline in Mozambique contains different silicic units in the form of pyroclastic rocks, and two different basalt types. The silicic units in the lower part of the Lebombo sequence are formed by a lower unit of dacites and rhyolites (67-80 wt.% SiO 2) with high Ba (990-2500 ppm), Zr (800-1100 ppm) and Y (130-240 ppm), which are part of the Jozini-Mbuluzi Formation, followed by a second unit, interlayered with the Movene basalts, of high-SiO 2 rhyolites (76-78 wt.%; the Sica Beds Formation), with low Sr (19-54 ppm), Zr (340-480 ppm) and Ba (330-850 ppm) plus rare quartz-trachytes (64-66 wt.% SiO 2), with high Nb and Rb contents (240-250 and 370-381 ppm, respectively), and relatively low Zr (450-460 ppm). The mafic rocks found at the top of the sequence are basalts and ferrobasalts belonging to the Movene Formation. The basalts have roughly flat mantle-normalized incompatible element patterns, with abundances of the most incompatible elements not higher than 25 times primitive mantle. The ferrobasalt has TiO 2 ˜ 4.7 wt.%, Fe 2O 3t = 16 wt.%, and high Y (100 ppm), Zr (420 ppm) and Ba (1000 ppm). The Movene basalts have initial (at 180 Ma) 87Sr/ 86Sr = 0.7052-0.7054 and 143Nd/ 144Nd = 0.51232, and the Movene ferrobasalt has even lower 87Sr/ 86Sr (0.70377) and higher 143Nd/ 144Nd (0.51259). The silicic rocks show a modest range of initial Sr-( 87Sr/ 86Sr = 0.70470-0.70648) and Nd-( 143Nd/ 144Nd = 0.51223-0.51243) isotope ratios. The less evolved dacites could have been formed after crystal fractionation of oxide-rich gabbroic cumulates from mafic parental magmas, whereas the most silica-rich rhyolites could have been formed after fractional crystallization of feldspars, pyroxenes, oxides, zircon and apatite from a parental dacite magma. The composition of the Movene basalts imply different feeding systems from those of the underlying Sabie River basalts.

  10. Uranium and Strontium Isotopic Study of the Hydrology of the Alluvial Aquifer at the Rifle Former U Mine Tailings Site, Colorado

    NASA Astrophysics Data System (ADS)

    Christensen, J. N.; Shiel, A. E.; Conrad, M. E.; Williams, K. H.; Dong, W.; Tokunaga, T. K.; Wan, J.; Long, P. E.; Hubbard, S. S.

    2014-12-01

    The Rifle Site consists of a floodplain along the Colorado River that was remediated through the removal of surface material underlying former uranium-vanadium mill tailings. The semi-arid (precip. = ~30 cm/year) catchment for the site has an area of ~1km2. The Rifle Site provides an excellent field laboratory for the study of the fluxes of water and carbon from the vadose zone to groundwater (LBNL SFA2.0, http://esd.lbl.gov/research/projects/sssfa2/). A network of monitoring wells, particularly a set instrumented in the vadose zone, provide the opportunity to closely sample groundwater and vadose zone porewater both in space and time. In order to better understand the spatial and temporal variation of vadose zone interaction with groundwater within the Rifle floodplain and provide constraints for a Rifle hydrological model, we have analyzed the Sr isotopic compositions, 234U/238U activity ratios, and d238U of groundwater, vadose zone porewater (sampled through depth-distributed lysimeters) and surface water including the Colorado River. Significant contrasts in 87Sr/86Sr and 234U/238U allow the identification of different sources contributing to Rifle groundwater, while d238U provides an additional tracer and insights into redox processes. Vadose zone porewater is characterized by high 87Sr/86Sr and Sr concentrations and falls at one end of a mixing line with Rifle groundwater, while upgradient groundwater with lower 87Sr/86Sr and Sr concentrations falls at the other end. A mixing model using vadose zone porewater and upgradient groundwater as endmembers suggests that the contribution of vertical recharge through the floodplain increases to ~20% systematically across the floodplain towards the Colorado River. An exception to this pattern is a well located 150m from the river with recent high U concentrations (>300 ppb) and U and Sr isotopic compositions consistent with a 38% vadose zone contribution. U and Sr isotopes show that an irrigation-return ditch that cuts

  11. Geochronology and geochemistry of the Triassic bimodal volcanic rocks and coeval A-type granites of the Olzit area, Middle Mongolia: Implications for the tectonic evolution of Mongol-Okhotsk Ocean

    NASA Astrophysics Data System (ADS)

    Zhu, Mingshuai; Zhang, Fochin; Miao, Laicheng; Baatar, Munkhtsengel; Anaad, Chimedtseren; Yang, Shunhu; Li, Xingbo

    2016-05-01

    The Olzit volcanism in Middle Mongolia comprises a bimodal suite of basalts and peralkaline rhyolites adjacent to the Main Mongolia Lineament. The basalts are characterized by enrichment in LILE and LREE, and depletion in HFSE with typical Sr-Nd isotopic signatures (εNd(t) = -2.50 to -0.38 and (87Sr/86Sr)i = 0.7058-0.7063), indicating they were likely derived from partial melting of an enriched lithospheric mantle, modified by subducted slab-derived fluids. The rhyolites show a close affinity to A-type granites with enrichment in LILE and LREE, and depletion in Nb, Ta and Ti. They also show a significant negative Eu anomaly, and have εNd(t) values ranging from 0.50 to 1.38 and initial 87Sr/86Sr ratios ranging from 0.7022 to 0.7200, suggesting the rhyolites stem from partial melting of crustal rocks rather than fractional crystallization of the basaltic melt. The rhyolite porphyry yields a SHRIMP zircon U-Pb age of 207 ± 2 Ma (MSWD = 1.42), indicating the bimodal volcanic suite formed in the Late Triassic. The miarolitic per-alkaline granite and biotite-bearing granite, which are associated with the bimodal volcanic rocks, show typical A-type granitic geochemical affinity with εNd(t) = 0.89-0.91 and (87Sr/86Sr)i = 0.7021-0.7043, indicating they are likely generated by partial melting of crustal rocks similar to the rhyolitic end-member of bimodal suite. The miarolitic per-alkaline granite and biotite-bearing granite yielded SHRIMP zircon U-Pb ages of 209 ± 2 Ma (MSWD = 0.91) and 213 ± 3 Ma (MSWD = 1.65) respectively, which are nearly coeval with the age of the bimodal volcanic suites. In view of the new geochemical and chronological data in this study, we suggest the Olzit Late Triassic bimodal volcanic rocks together with the coeval A-type granites represent a back-arc basin extensional environment, which probably related to the roll-back of Mongol-Okhotsk oceanic plate during the southward subduction under the Central Mongolia microcontinent.

  12. Andesites/Dacites of the Oceanic Narcondam Volcano, Andaman Sea: Modification of Tholeiitic Arc Basalts by Crustal Contamination and Amphibole-Dominated Fractionation

    NASA Astrophysics Data System (ADS)

    Gillam, A. N.; Streck, M. J.; Ramos, F. C.; Bindeman, I. N.; Hart, G. L.

    2008-12-01

    The active Barren Island volcano and its 140 km distant northern neighbor, the Pleistocene Narcondam volcano, are the only two subaerially exposed arc volcanoes, which rise from the 1000-2300 m deep seafloor of the Andaman Sea, that result of the subduction of the Indian plate beneath the Burma plate. Lavas of Barren Island volcano range from basalt to andesite while lavas from Narcondam volcano range from andesite to silicic andesite/dacite. Similarities in the geochemistry of both lava suites include strong and comparable depletion in Nb and Ta (K2O/Nb ~0.7; Ba/Nb 130-250); low, MORB-like Nb/Zr (0.01- 0.03); and nearly constant U/Th (0.15-0.22). These characteristics suggest a genetic link between both magma suites. Distinct geochemical differences, however, include isotopic ratios which for Barren Island are: 87Sr/86Sr ~0.7039-0.7041, 143Nd/144Nd 0.51285-0.51296, and δ18O plagioclase 5.81-5.89, and for Narcondam are: 87Sr/86Sr 0.7049-0.7053, 143Nd/144Nd ~0.51270, and δ18O plagioclase 6.78-7.44. Other geochemical parameters (e.g. Sr/Y, Th/La, U/La, Ba/La) of Narcondam lavas positively correlate with increasing SiO2 but are anchored at the mafic end within compositions observed at Barren Island volcano. Narcondam magmas evolved through a multi-stage evolution characterized by fractional crystallization, contamination, and magma mixing. Prior to eruption, the latest event was marked by mixing of a silicic lava with a Barren Island-type basaltic magma that lowered the 87Sr/86Sr from values of 0.7053-0.7054 as observed in single plagioclase and amphibole phenocrysts to values of bulk rock and caused juxtaposition of mineral populations. The generally more-incompatible trace element enriched silicic Narcondam magmas are best explained by amphibole-dominated fractionation of a Barren Island-type basalt; being consistent with an increase of Sr/Y with increased silica of samples containing abundant amphibole. The shift in isotopic values from Barren Island to Narcondam

  13. Tracking seasonal subglacial drainage evolution of alpine glaciers using radiogenic Nd and Sr isotope systematics: Lemon Creek Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Clinger, A. E.; Aciego, S.; Stevenson, E. I.; Arendt, C. A.

    2014-12-01

    The transport pathways of water beneath a glacier are subject to change as melt seasons progress due to variability in the balance between basal water pressure and water flux. Subglacial hydrology has been well studied, but the understanding of spatial distribution is less well constrained. Whereas radiogenic isotopic tracers have been traditionally used as proxies to track spatial variability and weathering rates in fluvial and riverine systems, these techniques have yet to be applied extensively to the subglacial environment and may help resolve ambiguity in subglacial hydrology. Research has shown the 143Nd/144Nd values can reflect variation in source provenance processes due to variations in the age of the continental crust. Correlating the 143Nd/144Nd with other radiogenic isotope systematics such as strontium (87Sr/86Sr) provides important constraints on the role of congruent and incongruent weathering processes. Our study presents the application of Nd and Sr systematics using isotopic ratios to the suspended load of subglacial meltwater collected over a single melt season at Lemon Creek Glacier, USA (LCG). The time-series data show an average ɛNd ~ -6.83, indicating a young bedrock (~60 MYA). Isotopic variation helps track the seasonal expansion of the subglacial meltwater channels and subsequent return to early season conditions due to the parabolic trend towards less radiogenic Nd in June and towards more radiogenic Nd beginning in mid-August. However, the high variability in July and early August may reflect a mixture of source as the channels diverge and derive sediment from differently aged lithologies. We find a poor correlation between 143Nd/144Nd and 87Sr/86Sr (R2= 0.38) along with a slight trend towards more radiogenic 87Sr/86Sr values with time ((R2= 0.49). This may indicate that, even as the residence time decreases over the melt season, the LCG subglacial system is relatively stable and that the bedrock is congruently weathered. Our study

  14. Was Late Cretaceous Magmatism in the Northern Rocky Mountains Really Arc-Related?

    NASA Astrophysics Data System (ADS)

    Farmer, G.

    2011-12-01

    Calc-alkaline, Cretaceous magmatism affected much of the northern Rocky Mountain region in the western U.S. and is generally interpreted as continental arc magmatism despite the fact that it occurred as far east into the continental interior as the Late Cretaceous (75 Ma to 78 Ma) Sliderock Mountain volcanoplutonic complex in south-central Montana. Magmatism may have migrated so far inboard as a response to shallowing of the dip angle of underthrust oceanic lithosphere, but the exact sources, tectonic setting and trigger mechanisms for the Late Cretaceous igneous activity remain unclear. In this study, new trace element and Nd and Sr isotopic data, combined with existing age and major element data (duBray et al., 1998, USGS Prof. Paper 1602), from the most mafic lavas present at the Sliderock Mountain Volcano were used to further define the source regions of the Late Cretaceous magmatism. The most mafic lava flows are high K (~2-3 wt. % K2O), low Ti (< 1 wt. % TiO2), low Ni (< 20 ppm) basaltic andesites. Major element oxide contents for these rocks are only weakly correlated with increasing wt. % SiO2 on conventional Harker diagrams. All of the rocks are characterized by high LILE/HFSE ratios and high Pb contents (17-20 ppm), as expected for arc-related magmatism. The rocks also have high (La/Yb)N (7-20) but show decreasing (Dy/Yb)N with increasing wt.% SiO2, suggesting a cryptic role for amphibole fractionation during evolution of their parental magmas. Initial ɛNd values range from -19 to -29 but do not covary with rock bulk composition and as a result are unlikely to represent the result of interaction with local Archean continental crust. Initial 87Sr/86Sr, in contrast, vary over a restricted range from 0.7045 to 0.7065. The lowest 87Sr/86Sr correspond to samples with the highest Sr/Y (120-190). The low ɛNd values for the basaltic andesites suggest that if these volcanic rocks were ultimately derived from ultramafic mantle sources, melting must have occurred

  15. Stable isotope systematics in mesozoic granites of Central and Northern California and Southwestern Oregon

    USGS Publications Warehouse

    Masi, U.; O'Neil, J.R.; Kistler, R.W.

    1981-01-01

    18O, D, and H2O+ contents were measured for whole-rock specimens of granitoid rocks from 131 localitics in California and southwestern Oregon. With 41 new determinations in the Klamath Mountains and Sierra Nevada, initial strontium isotope ratios are known for 104 of these samples. Large variations in ??18O (5.5 to 12.4), ??D (-130 to -31), water contents (0.14 to 2.23 weight percent) and initial strontium isotope ratios (0.7028 to 0.7095) suggest a variety of source materials and identify rocks modified by secondary processes. Regular patterns of variation in each isotopic ratio exist over large geographical regions, but correlations between the ratios are generally absent except in restricted areas. For example, the regular decrease in ??D values from west to east in the Sierra Nevada batholith is not correlative with a quite complex pattern of ??18O values, implying that different processes were responsible for the isotopic variations in these two elements. In marked contrast to a good correlation between (87Sr/86Sr)o and ??18O observed in the Peninsular Ranges batholith to the south, such correlations are lacking except in a few areas. ??D values, on the other hand, correlate well with rock types, chemistry, and (87Sr/86Sr)o except in the Coast Ranges where few of the isotopic signatures are primary. The uniformly low ??D values of samples from the Mojave Desert indicate that meteoric water contributed much of the hydrogen to the rocks in that area. Even so, the ??18O values and 18O fractionations between quartz and feldspar are normal in these same rocks. This reconnaissance study has identified regularities in geochemical parameters over enormous geographical regions. These patterns are not well understood but merit more detailed examination because they contain information critical to our understanding of the development of granitoid batholiths. ?? 1981 Springer-Verlag.

  16. Strontium Isotope Study of Coal Untilization By-products Interacting with Environmental Waters

    SciTech Connect

    Spivak-Birndorf, Lev J; Stewart, Brian W; Capo, Rosemary C; Chapman, Elizabeth C; Schroeder, Karl T; Brubaker, Tonya M

    2011-09-01

    Sequential leaching experiments on coal utilization by-products (CUB) were coupled with chemical and strontium (Sr) isotopic analyses to better understand the influence of coal type and combustion processes on CUB properties and the release of elements during interaction with environmental waters during disposal. Class C fly ash tended to release the highest quantity of minor and trace elements—including alkaline earth elements, sodium, chromium, copper, manganese, lead, titanium, and zinc—during sequential extraction, with bottom ash yielding the lowest. Strontium isotope ratios ({sup 87}Sr/{sup 86}Sr) in bulk-CUB samples (total dissolution of CUB) are generally higher in class F ash than in class C ash. Bulk-CUB ratios appear to be controlled by the geologic source of the mineral matter in the feed coal, and by Sr added during desulfurization treatments. Leachates of the CUB generally have Sr isotope ratios that are different than the bulk value, demonstrating that Sr was not isotopically homogenized during combustion. Variations in the Sr isotopic composition of CUB leachates were correlated with mobility of several major and trace elements; the data suggest that arsenic and lead are held in phases that contain the more radiogenic (high-{sup 87}Sr/{sup 86}Sr) component. A changing Sr isotope ratio of CUB-interacting waters in a disposal environment could forecast the release of certain strongly bound elements of environmental concern. This study lays the groundwork for the application of Sr isotopes as an environmental tracer for CUB–water interaction.

  17. Sr Isotopes and Migration of Prairie Mammoths (Mammuthus columbi) from Laguna de las Cruces, San Luis Potosi, Mexico

    NASA Astrophysics Data System (ADS)

    Solis-Pichardo, G.; Perez-Crespo, V.; Schaaf, P. E.; Arroyo-Cabrales, J.

    2011-12-01

    Asserting mobility of ancient humans is a major issue for anthropologists. For more than 25 years, Sr isotopes have been used as a resourceful tracer tool in this context. A comparison of the 87Sr/86Sr ratios found in tooth enamel and in bone is performed to determine if the human skeletal remains belonged to a local or a migrant. Sr in bone approximately reflects the isotopic composition of the geological region where the person lived before death; whereas the Sr isotopic system in tooth enamel is thought to remain as a closed system and thus conserves the isotope ratio acquired during childhood. Sr isotope ratios are obtained through the geologic substrate and its overlying soil, from where an individual got hold of food and water; these ratios are in turn incorporated into the dentition and skeleton during tissue formation. In previous studies from Teotihuacan, Mexico we have shown that a three-step leaching procedure on tooth enamel samples is important to assure that only the biogenic Sr isotope contribution is analyzed. The same Sr isotopic tools can function concerning ancient animal migration patterns. To determine or to discard the mobility of prairie mammoths (Mammuthus columbi) found at Laguna de las Cruces, San Luis Potosi, México the leaching procedure was applied on six molar samples from several fossil remains. The initial hypothesis was to use 87Sr/86Sr values to verify if the mammoth population was a mixture of individuals from various herds and further by comparing their Sr isotopic composition with that of plants and soils, to confirm their geographic origin. The dissimilar Sr results point to two distinct mammoth groups. The mammoth population from Laguna de Cruces was then not a family unit because it was composed by individuals originated from different localities. Only one individual was identified as local. Others could have walked as much as 100 km to find food and water sources.

  18. Triple junction magmatism: a geochemical study of Neogene volcanic rocks in western California

    USGS Publications Warehouse

    Johnson, C.M.; O'Neil, J.R.

    1984-01-01

    Inception of volcanism at late Oligocene to Recent centers in the eastern Coast Ranges of California (ECR suite) regularly decreases in age northward and is correlated with the northward migration of the transform-transform-trench Mendocino triple junction (MTJ). Miocene volcanism in the southern California basin (SCB suite) is spatially and temporally associated with the transform-ridge-trench Rivera triple junction (RTJ). The tholeiitic to calc-alkaline rocks in both suites were erupted through older trench melange while arc magmatism was occurring several hundred kilometers to the east. Therefore they are not related to subduction zone magmatism, but instead to interactions of the MTJ and RTJ with the continental margin. The ECR rocks, dominantly intermediate to silicic in composition, have relatively high ??18O values up to 11.3, 87Sr 86Sr ratios up to 0.7055, as well as relatively high Th contents, suggesting that crustal anatexis played a dominant role in their generation. Coupled crystal fractionation and crustal assimilation by an initially basaltic magma cannot explain the high ??18O values and 87Sr 86Sr ratios because greater than 95% of the basalt would need to crystallize. In contrast, the SCB rocks, dominantly mafic to intermediate in composition, have relatively low ??18O values down to 5.2 and 87Sr 86Sr ratios down to 0.7025 suggesting that these rocks were derived dominantly from a mantle source. Whether crustal anatexis occurs is determined largely by the type of stress a triple junction imposes upon the continental margin. Both the MTJ and RTJ are associated with high heat flow and magma fluxes from the mantle. The transform-transform-trench MTJ is associated with locally variable mild extension to compression and therefore allows pooling of basaltic magma in the crust to initiate crustal melting. The high rates of continental extension associated with the transform-ridge-trench RTJ prevents such pooling of magma. The space created by decoupling

  19. Authentication of bell peppers using boron and strontium isotope compositions

    NASA Astrophysics Data System (ADS)

    Rosner, Martin; Pritzkow, Wolfgang; Vogl, Jochen; Voerkelius, Susanne

    2010-05-01

    The wrong declaration of food in terms of geographical origin and production method is a major problem for the individual consumer and public regulatory authorities. The authentication of food matrices using H-C-N-O-S isotopic compositions is already well established. However, specific questions require additional isotopic systems, which are more diagonstic for the source reservoires involved or production methods used. Here we present B and Sr isotopic compositions of bell peppers from Europe (Germany, Austria, Netherlands, Spain) and Israel to verfiy their origin. The bell peppers' B isotopic compositions between different locations are highly variable (d11BNISTSRM951 -8 to +35 ‰), whereas the 87Sr/86Sr ratios are all close to modern seawater Sr isotopic composition of about 0.7092 (0.7078 to 0.7107), but still can reliably be distinguished. Distinct isotopically heavy and light B isotopic fingerprints are obtained for bell peppers from Israel and the Netherlands. Samples from Germany, Austria, and Spain display overlapping d11B values between 0 and +12 ‰. Bell peppers from Israel show high d11B values (+28 to +35 ‰) combined with 87Sr/86Sr ratios slightly more unradiogenic than modern seawater (ca 0.7079). Bell peppers from the Netherlands, however, show low d11B values (-8 ‰) combinded with 87Sr/86Sr ratios of modern seawater (approx. 0.7085). Mainly based on diagnostic B isotopic compositions bell peppers from Israel and the Netherlands can be related to a specific geographical growing environment (Israel) or production method (Netherlands). The isotope fingerprints of bell peppers from the Netherlands are consistent with growing conditions in greenhouses typical for the Netherlands vegetable farming. Using optimized production methods crops in greenhouses were supplied with nutritients by liquid fertilizers on artificial substrates. As most fertilizers derive from non-marine salt deposits, fertilization typically imprints invariant d11B values close

  20. The New England Batholith, eastern Australia: Geochemical variations in time and space

    NASA Astrophysics Data System (ADS)

    Shaw, S. E.; Flood, R. H.

    1981-11-01

    The New England Batholith, Australia, is part of the Upper Paleozoic New England Fold Belt, with most plutons intruded into the deformed trench-complex metasedimetary rocks in the southeast part of the Fold Belt. The Batholith was emplaced in two major periods of plutonism, the first during the Upper Carboniferous and the second during the Upper Permian and Triassic, with a major phase of metamorphism and deformation including westward overthrusting of the trench-complex sedimentary rocks between the two periods. On the basis of petrography, geochemistry and isotopic characteristics, the granitoids of the Batholith are subdivided into five named intrusive suites and a group of leucoadamellites. The differences between the six groups are considered to reflect differences in their source-rock types. The Carboniferous granitoids are peraluminous S-type and are divided into the Bundarra Plutonic Suite, a belt of very coarse-grained adamellites with cordierite ± garnet, and the Hillgrove Plutonic Suite, a belt of biotite-rich ± garnet deformed adamellites and granodiorites. Both suites have δ 18O greater than 10, negative δ34S, 87Sr/86Sr initial ratios about 0.706, are ilmenite-bearing and have low FeO3 ratios. The Bundarra Plutonic Suite, however, is consistently SiO2-rich (greater than 70%), contains cordierite and has higher δ18O than the Hillgrove Plutonic Suite. The two S-type suites are inferred to have formed by partial melting of the deepest parts of a wedge of trench-complex sedimentary rocks oceanwards of an `Andean' volcanic chain to the west, analagous to the lower Tertiary S-type plutons of the Sanak-Baranof plutonic belt of southern Alaska. Of the remaining four groups of plutons emplaced during the Upper Permian and Triassic, two are metaluminous I-type granitoids, one the Clarence River Plutonic Suite (new name), a group of K-poor granodiorites and tonalites with low 87Sr/86Sr initial ratios (average 0.7035), and the other the Moonbi Plutonic Suite

  1. Reconstruction of crustal blocks of California on the basis of initial strontium isotopic compositions of Mesozoic granitic rocks

    USGS Publications Warehouse

    Kistler, Ronald Wayne; Peterman, Zell E.

    1978-01-01

    Initial 87Sr/ 86 Sr was determined for samples of Mesozoic granitic rocks in the vicinity of the Garlock fault zone in California. These data along with similar data from the Sierra Nevada and along the San Andreas fault system permit a reconstruction of basement rocks offset by the Cenozoic lateral faulting along both the San Andreas and Garlock fault systems. The location of the line of initial 87Sr/ 86 Sr = 0.7060 can be related to the edge of the Precambrian continental crust in the western United States. Our model explains the present configuration of the edge of Precambrian continental crust as the result of two stages of rifting that occurred about 1,250 to 800 m.y. ago, during Belt sedimentation, and about 600 to 350 m.y. ago, prior to and during the development of the Cordilleran geosyncline and to left-lateral translation along a locus of disturbance identified in the central Mojave Desert. The variations in Rb, Sr, and initial 87Sr/ 86 Sr of the Mesozoic granitic rocks are interpreted as due to variations in composition and age of the source materials of the granitic rocks. The variations of Rb, Sr, and initial 87Sr/ 86 Sr in Mesozoic granitic rocks, the sedimentation history during the late Precambrian and Paleozoic, and the geographic position of loci of Mesozoic magmatism in the western United States are related to the development of the continental margin and different types of lithosphere during rifting.

  2. New Isotopic Tracers for Shale Gas and Hydraulic Fracturing Fluids

    EPA Pesticide Factsheets

    The combined application of geochemistry, stable isotopes (δ18O, δ2H), strontium isotopes (87Sr/86Sr), boron isotopes (δ11B), and radium isotopes (228Ra/226Ra) provides a unique methodology for tracing and monitoring shale gas and fracking fluids in the environment.

  3. Strontium isotope systematics of mixing groundwater and oil-field brine at Goose Lake in northeastern Montana, USA

    USGS Publications Warehouse

    Peterman, Zell E.; Thamke, Joanna N.; Futa, Kiyoto; Preston, Todd

    2012-01-01

    Groundwater, surface water, and soil in the Goose Lake oil field in northeastern Montana have been affected by Cl−-rich oil-field brines during long-term petroleum production. Ongoing multidisciplinary geochemical and geophysical studies have identified the degree and local extent of interaction between brine and groundwater. Fourteen samples representing groundwater, surface water, and brine were collected for Sr isotope analyses to evaluate the usefulness of 87Sr/86Sr in detecting small amounts of brine. Differences in Sr concentrations and 87Sr/86Sr are optimal at this site for the experiment. Strontium concentrations range from 0.13 to 36.9 mg/L, and corresponding 87Sr/86Sr values range from 0.71097 to 0.70828. The local brine has 168 mg/L Sr and a 87Sr/86Sr value of 0.70802. Mixing relationships are evident in the data set and illustrate the sensitivity of Sr in detecting small amounts of brine in groundwater. The location of data points on a Sr isotope-concentration plot is readily explained by an evaporation-mixing model. The model is supported by the variation in concentrations of most of the other solutes.

  4. Combining metal and nonmetal isotopic measurements in barite to identify mode of formation

    NASA Astrophysics Data System (ADS)

    Griffith, E. M.; Paytan, A.; Eisenhauer, A.; Scher, H. D.; Wortmann, U.

    2014-12-01

    Barite (BaSO4) is a highly stable and widely-distributed mineral found in magmatic, metamorphic, and sedimentary rocks (of all ages), as well as in soils, aerosol dust, and extraterrestrial material. Today, barite can form in a variety of settings in the oceans (hydrothermal, cold seeps, water column, sediments) and on the continents - where supersaturation and precipitation of barite typically occurs from the mixing of fluids - one containing Ba and another containing sulfate. Sulfur (δ34S) and oxygen (δ18O) isotopes together with 87Sr/86Sr and stable Sr-isotopic signatures (δ88/86Sr) of modern authigenic continental barite are compared to modern pelagic marine barite and marine hydrothermal and cold seep barite to investigate the potential for their combined use to indicate mode of barite formation. The 87Sr/86Sr in barite cleary identifies the source of fluid for any particular type of barite (as previously noted, see Paytan et al., 2002). The highest (most radiogenic) 87Sr/86Sr values are measured in continental barite samples. There is no unique δ88/86Sr signature for any particular type of barite, but coretop marine (pelagic) barite has a consistent value measured from samples collected in different ocean basins. The highest and lowest δ88/86Sr values were measured in continental barite samples. The combination of isotopic systems result in unique δ88/86Sr and δ18O relationships and distinct δ88/86Sr and δ34S relationships for different types of barites investigated. Data suggest that the combined use of these metal and nonmetal isotopic measurements in barite could be useful as a new geochemical proxy to identify mode of barite mineralization for use in earth science applications including understanding ancient barite deposits.

  5. Hf isotope systematics of seamounts near the East Pacific Rise (EPR) and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Meng, Fanxue; Niu, Yaoling

    2016-10-01

    We report new Hf isotopic data for basaltic glasses from seamounts flanking the East Pacific Rise (EPR) between 5° and 15°N that have been previously analyzed for Sr-Nd-Pb isotopes as well as major and trace elements. The Hf isotopic data offer new perspectives on the petrogenesis of these samples in a broader context on mantle dynamics. The Hf isotope compositions show significant correlations with Sr-Nd-Pb isotopes and with both abundances and ratios of incompatible elements. The seamount lavas are thus best interpreted as products of melting-induced mixing in a two-component mantle. The range in composition of EPR seamount lavas cannot be generated by simple mixing of melt and melting of variably heterogeneous mantle in which enriched and depleted materials contribute equally to melting (source mixing). Instead, the trace element and isotope compositions of seamount lavas can be reproduced by melting models in which more enriched, fertile mantle component are preferentially melted during mantle upwelling. At progressively lower degrees of melting, erupted lavas are thus more enriched in incompatible trace elements, have higher 87Sr/86Sr, 208Pb/204Pb ratios and lower 143Nd/144Nd, 176Hf/177Hf ratios. The "EM1" and "pyroxenite" endmember might be the suitable enriched component. The Hf-Nd isotopic variations on global scale might result from the variations in amounts of residual continental lithospheric mantle that detached into upper mantle during continental rifting. The significant correlations of Rb/Sr vs 87Sr/86Sr, Sm/Nd vs 143Nd/144Nd and Lu/Hf vs 176Hf/177Hf give pseudochron ages of 182 ± 33 Ma, 276 ± 50 Ma and 387 ± 93 Ma, respectively. These different "ages" have no significance, but result from melting-induced mixing with the pseudochron slopes controlled by the compositions of enriched component and depleted end-member.

  6. Behaviour of Mg isotopes during chemical weathering in the Han River, South Korea

    NASA Astrophysics Data System (ADS)

    Ryu, Jong-Sik; Lee, Sin-Woo; Lee, Kwang-Sik

    2014-05-01

    Magnesium (Mg) isotopes can be useful for directly constraining the sources of riverine Mg, but the dominant controls on riverine Mg isotope ratios are still uncertain. Here, we report Mg isotope ratios for river waters, experimental leachates and digestions, bulk rocks, and fertilizers in the Han River (HR), South Korea. The HR is composed of two lithologically distinct tributaries: the North Han River (NHR) that flows over only silicate rocks, and the South Han River (SHR) that flows over carbonate rocks in the upper part. The lithological differences between the NHR and SHR are reflected in major ion, 87Sr/86Sr, and δ26Mg geochemistry. In particular, the NHR has lower major ion concentrations but higher 87Sr/86Sr ratios and δ26Mg values than the SHR. Simple mass balances and mixing equations indicate that if the riverine δ26Mg values in the HR system are mainly controlled by conservative mixing between silicate and carbonate weathering, the average carbonate end-member δ26Mg value should be unlikely lower than what are measured in this study. Although multiple process-related fractionations occur in the HR system, the enrichment of 24Mg in the NHR could be mostly controlled by either fractionation or mixing between isotopically distinct reservoirs, such as minerals or fractions (labile and structural Mg), during dissolution, while the little depletion of 24Mg in the SHR could be likely due to the input of groundwater with lower δ26Mg value rather than fractionation. However, it is difficult to identify the contribution of anthropogenic inputs to riverine δ26Mg because their effects are little. This study suggests that the potential of Mg isotopes for constraining Mg sources in a lithologically varied river basin can be enhanced with a better understanding of process-related fractionation.

  7. Tracing Anthropogenic Salinity Inputs to the Semi-arid Rio Grande River: A Multi-isotope Tracer (U, S, B and Sr) Approach

    NASA Astrophysics Data System (ADS)

    Garcia, S.; Nyachoti, S. K.; Ma, L.; Szynkiewicz, A.; McIntosh, J. C.

    2015-12-01

    High salinity in the Rio Grande has led to severe reductions in crop productivity and accumulation of salts in soils. These pressing issues exist for other arid rivers worldwide. Salinity contributions to the Rio Grande have not been adequately quantified, especially from agriculture, urban activities, and geological sources. Here, we use major element concentrations and U, S, B, Sr isotopic signatures to fingerprint the salinity sources. Our study area focuses on a 200 km long stretch of the Rio Grande from Elephant Butte Reservoir, NM to El Paso, TX. River samples were collected monthly from 2014 to 2015. Irrigation drains, groundwater wells, city drains and wastewater effluents were sampled as possible anthropogenic salinity end-members. Major element chemistry, U, S and Sr isotope ratios in the Rio Grande waters suggest multiple salinity inputs from geological, agricultural, and urban sources. Natural upwelling of groundwater is significant for the Rio Grande near Elephant Butte, as suggested by high TDS values and high (234U/238U), 87Sr/86Sr, δ34S ratios. Agricultural activities (e.g. flood irrigation, groundwater pumping, fertilizer use) are extensive in the Mesilla Valley. Rio Grande waters from this region have characteristic lower (234U/238U), 87Sr/86Sr, and δ34S ratios, with possible agricultural sources from use of fertilizers and gypsum. Agricultural practices during flood irrigation also intensify evaporation of Rio Grande surface water and considerably increase water salinity. Shallow groundwater signatures were also identified at several river locations, possibly due to the artificial pumping of local groundwater for irrigation. Impacts of urban activities to river chemistry (high NO3 and B concentrations) were evident for locations downstream to Las Cruces and El Paso wastewater treatment plants, supporting the use of the B isotope as an urban salinity tracer. This study improves our understanding of human impacts on water quality and elemental

  8. Geochemical and isotopic profile of Pico de Orizaba (Citlaltépetl) volcano, Mexico: Insights for magma generation processes

    NASA Astrophysics Data System (ADS)

    Schaaf, Peter; Carrasco-Núñez, Gerardo

    2010-11-01

    Pico de Orizaba or Citlaltépetl volcano is the easternmost and highest stratovolcano of the subduction-related Mexican Volcanic Belt (MVB) located > 400 km NNE of the Middle America Trench. This active volcano comprises four evolutionary stages, ranging in age from 0.65 Ma to the Holocene, and is surrounded by Quaternary monogenetic scoria cones and maar volcanoes. Magmatic products of the stratocone range from basaltic andesites to rhyolites and the cinder cones erupted basalts and basaltic andesites. All rock compositions form a continuous calc-alkaline suite. Petrogenetic processes involved in magma generation and evolution include fractional crystallization and mid-crustal assimilation. Trace element patterns with elevated Ba/Nb, positive Pb spikes, and Th enrichments indicate contributions from subducted sediment. Low Ba/Th ratios suggest melting of hydrous sediment without significant loss of fluid-mobile elements prior to melting. Sr-Nd isotopic ratios of Pico de Orizaba and cinder cones are nearly chondritic and are located on a mixing curve between Pacific MORB and Paleozoic crust of SE Mexico. However, vertical Nd distributions in an 87Sr/ 86Sr vs. ɛNd diagram cannot be explained by crustal assimilation and indicate contributions of a sedimentary component with unradiogenic Nd. In contrast to other eastern MVB volcanic centres, Pico de Orizaba magmas are derived almost exclusively from a depleted mantle source. Compared to other MVB stratocones, Pico de Orizaba shows the least radiogenic Nd isotope ratios at nearly identical 87Sr/ 86Sr. Steep trends in a 206Pb/ 204Pb vs. 207Pb/ 204Pb diagram favour the involvement of young, 207Pb-enriched oceanic sediments in magma generation processes of Pico de Orizaba volcano. The Pb isotope data do not support any assimilation of lower crustal Grenvillian basement.

  9. Petrogenesis of the magmatic complex at Mount Ascutney, Vermont, USA - I. Assimilation of crust by mafic magmas based on Sr and O isotopic and major element relationships

    USGS Publications Warehouse

    Foland, K.A.; Henderson, C.M.B.; Gleason, J.

    1985-01-01

    The Ascutney Mountain igneous complex in eastern Vermont, USA, is composed of three principal units with compositions ranging from gabbro to granite. Sr and O isotopic and major element relationships for mafic rocks, granites, and nearby gneissic and schistose country rock have been investigated in order to describe the petrogenesis of the mafic suite which ranges from gabbro to diorite. The entire complex appears to have been formed within a short interval 122.2??1.2 m.y. ago. The granites with ??18O near +7.8??? had an initial 87Sr/86Sr of 0.70395(??6) which is indistinguishable from the initial ratio of the most primitive gabbro. Initial 87Sr/86Sr ratios and ??18O values for the mafic rocks range from 0.7039 to 0.7057 and +6.1 to +8.6???, respectively. The isotopic ratios are highly correlated with major element trends and reflect considerable crustal contamination of a mantle-derived basaltic parent magma. The likely contaminant was Precambrian gneiss similar to exposed bedrock into which the basic rocks were emplaced. A new approach to modelling of assimilation during the formation of a cogenetic igneous rock suite is illustrated. Chemical and isotopic modelling indicate that the mafic rocks were produced by simultaneous assimilation and fractional crystallization. The relative amounts of fractionation and assimilation varied considerably. The mafic suite was not produced by a single batch of magma undergoing progressive contamination; rather, the various rocks probably were derived from separate batches of magma each of which followed a separate course of evolution. The late stage granite was apparently derived from basaltic magma by fractionation with little or no crustal assimilation. The early intrusive phases are much more highly contaminated than the final one. The observed relationships have important implications for the formation of comagmatic complexes and for isotopic modelling of crustal contamination. ?? 1985 Springer-Verlag.

  10. Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A

    USGS Publications Warehouse

    Doe, B.R.; Lipman, P.W.; Hedge, C.E.; Kurasawa, H.

    1969-01-01

    Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, K2O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. K2O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% K2O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts. Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5-10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks. Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar

  11. Early African Diaspora in colonial Campeche, Mexico: strontium isotopic evidence.

    PubMed

    Price, T Douglas; Tiesler, Vera; Burton, James H

    2006-08-01

    Construction activities around Campeche's central park led to the discovery of an early colonial church and an associated burial ground, in use from the mid-16th century AD to the late 17th century. Remains of some individuals revealed dental mutilations characteristic of West Africa. Analyses of strontium isotopes of dental enamel from these individuals yielded unusually high (87)Sr/(86)Sr ratios, inconsistent with an origin in Mesoamerica, but consistent with an origin in West Africa in terrain underlain by the West Africa Craton, perhaps near the port of Elmina, a principal source of slaves for the New World during the 16th century. These individuals likely represent some of the earliest representatives of the African Diaspora in the Americas.

  12. Trace-element and Sr, Nd, Pb, and O isotopic composition of Pliocene and Quaternary alkali basalts of the Patagonian Plateau lavas of southernmost South America

    USGS Publications Warehouse

    Stern, C.R.; Frey, F.A.; Futa, K.; Zartman, R.E.; Peng, Z.; Kurtis, Kyser T.

    1990-01-01

    The Pliocene and Quaternary Patagonian alkali basalts of southernmost South America can be divided into two groups. The "cratonic" basalts erupted in areas of Cenozoic plateau volcanism and continental sedimentation and show considerable variation in 87Sr/86Sr (0.70316 to 0.70512), 143Nd/144Nd (e{open}Nd) and 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios (18.26 to 19.38, 15.53 to 15.68, and 38.30 to 39.23, respectively). These isotopic values are within the range of oceanic island basalts, as are the Ba/La, Ba/Nb, La/Nb, K/Rb, and Cs/Rb ratios of the "cratonic" basalts. In contrast, the "transitional" basalts, erupted along the western edge of the outcrop belt of the Pliocene and Quaternary plateau lavas in areas that were the locus of earlier Cenozoic Andean orogenic arc colcanism, have a much more restricted range of isotopic composition which can be approximated by 87Sr/86Sr=0.7039??0.0004, e{open}Nd, 206Pb/204Pb=18.60??0.08, 207Pb/204Pb=15.60??0.01, and 208Pb/204Pb=38.50??0.10. These isotopic values are similar to those of Andean orogenic are basalts and, compared to the "cratonic" basalts, are displaced to higher 87Sr/86Sr at a given 143Nd/144Nd and to higher 207Pb/204Pb at a given 208Pb/204Pb. The "transitional" basalts also have Ba/La, Ba/Nb, La/Nb, and Cs/Rb ratios higher than the "cratonic" and oceanic island basalts, although not as high as Andean orogenic are basalts. In contrast to the radiogenic isotopes, ??18O values for both groups of the Patagonian alkali basalts are indistinguishable and are more restricted than the range reported for Andean orogenic are basalts. Whole rock ??18O values calculated from mineral separates for both groups range from 5.3 to 6.5, while measured whole rock ??18O values range from 5.1 to 7.8. The trace element and isotopic data suggest that decreasing degrees of partial melting in association with lessened significance of subducted slabderived components are fundamental factors in the west to east transition from arc

  13. U-Pb zircon dates of morin anorthosite suite rocks, Grenville Province, Quebec

    SciTech Connect

    Doig, R. )

    1991-09-01

    U-Pb zircon ages of samples of anorthosite, pyroxene monzodiorite (jotunite), and pyroxene quartz monzonite (quartz mangerite) of the Morin anorthosite complex, Grenville Province, Quebec, are 1155 {plus minus} 3, 1146 {plus minus} 4 and 1135 {plus minus} 3 Ma, respectively. These dates are very similar to available dates for equivalent units of the Lac St-Jean and Adirondack anorthosite suite occurrences and slightly predate estimates of 1075-1100 Ma for peak metamorphic conditions during the Grenville orogeny in this region. {sup 87}Sr/{sup 86}Sr initial ratios of 0.7048-0.7051 for the three Morin units sampled permit a comagmatic origin if the different emplacement or cooling times can be reconciled. The mangerite sampled cannot have been formed by fusion of the upper crust, but may have been derived from a relatively juvenile crust at depth. All three units have interacted with continental crust, given the likely depleted nature of the mantle in this region.

  14. Isotopes as Tracers of the Hawaiian Coffee-Producing Regions

    PubMed Central

    2011-01-01

    Green coffee bean isotopes have been used to trace the effects of different climatic and geological characteristics associated with the Hawaii islands. Isotope ratio mass spectrometry (IRMS) and inductively coupled plasma mass spectrometry ((MC)-ICP-SFMS and ICP-QMS) were applied to determine the isotopic composition of carbon (δ13C), nitrogen (δ15N), sulfur (δ34S), and oxygen (δ18O), the isotope abundance of strontium (87Sr/86Sr), and the concentrations of 30 different elements in 47 green coffees. The coffees were produced in five Hawaii regions: Hawaii, Kauai, Maui, Molokai, and Oahu. Results indicate that coffee plant seed isotopes reflect interactions between the coffee plant and the local environment. Accordingly, the obtained analytical fingerprinting could be used to discriminate between the different Hawaii regions studied. PMID:21838232

  15. Isotopic Composition of the Neolithic Alpine Iceman's Tooth Enamel and Clues to his Origin

    NASA Astrophysics Data System (ADS)

    Muller, W.; Muller, W.; Halliday, A. N.

    2001-12-01

    -related disturbance. Enamel fragments from three teeth are characterized by virtually similar and high 87Sr/^{86}Sr ratios of 0.7203-0.7206, consistent with the compositions of crystalline gneisses and schists close to the finding site. Sites overlying bedrock built up by limestone from further south or north can clearly be excluded as the Iceman's childhood area. Among the three teeth, enamel mineralized approximately during a 2-3 year interval starting with the canine at the age of ~2 years. Hence, during this period, the food source for the Iceman must have remained essentially constant. Two compact bone samples from the damaged hip region have 87Sr/^{86}Sr ratios of 0.7175 and 0.7181, significantly lower than that of the enamel. The internal variation in the Iceman's bone Sr isotopic composition argues for somewhat different Sr turnover times within the skeleton, but it is evident that during the last 1-3 decades of his life, food from a different region was utilized. The 87Sr/^{86}Sr ratios of the initial bone leachates point towards post-mortem alteration with water having 87Sr/^{86}Sr ratios higher than ~0.718, consistent with that measured for contemporaneous ice samples (0.720-0.723). These Sr isotopic variations among ice samples may have implications for the post depositional (climate) history of the Iceman's finding site, since it appears unlikely that substantial compositional differences among adjacent ice samples would be preserved if the site had thawed near completely during e.g. the Roman warm period.

  16. The δ18O record of phanerozoic abiotic marine calcite cements

    NASA Astrophysics Data System (ADS)

    Lohmann, Kyger C.; Walker, James C. G.

    Monomineralic, abiotic marine cements formed in low-latitude Phanerozoic reefs provide the direction and amplitude of secular variation of δ13C and δ18O in marine calcite and defines two end member compositions — 580 to 360 my (-7 to -5‰ δ18OPDB) and 360 to present (-3 to 0‰ δ18OPDB). Sampling of the Devono-Carboniferous transition (375-320 my) at several global sites reveals a rapid change in carbonate isotopic compositions. Bracketed within Fammenian to Early Visean-aged strata, a 7 to 15 my time interval, this shift corresponds to a 2‰ offset in mean δ13C and 3-4‰ offset in δ18O. The abruptness of such change, and its overall correlation with variations in 87Sr/86Sr, δ34S, δ13C, and Li/Al ratios in marine sediments suggests a primary offset in marine water composition.

  17. Isotope sourcing of prehistoric willow and tule textiles recovered from western Great Basin rock shelters and caves - proof of concept

    USGS Publications Warehouse

    Benson, L.V.; Hattori, E.M.; Taylor, H.E.; Poulson, S.R.; Jolie, E.A.

    2006-01-01

    Isotope and trace-metal analyses were used to determine the origin of plants used to manufacture prehistoric textiles (basketry and matting) from archaeological sites in the western Great Basin. Research focused on strontium (87Sr/86Sr) and oxygen (18O/16O) isotope ratios of willow (Salix sp.) and tule (Schoenoplectus sp.), the dominant raw materials in Great Basin textiles. The oxygen-isotope data indicated that the willow and tule used to produce the textiles were harvested from the banks of rivers or in marshes characterized by flowing water and not from lakes or sinks. The strontium-isotope data were useful in showing which plants came from the Humboldt River and which came from rivers headed in the Sierra Nevada.

  18. Mixing of mantle melts recorded in Icelandic phenocrysts: The significance of clinopyroxene stability in depleted compositions

    NASA Astrophysics Data System (ADS)

    Winpenny, B.; Maclennan, J.

    2009-12-01

    . Modeling crystallization of primitive Icelandic basalt compositions using MELTS supports this explanation. Bulk crystal Sr isotopic ratios complement the trace element data. Borgarhraun clinopyroxenes have lower 87Sr/86Sr (0.703054±7) than the later-crystallising plagioclase (0.703106±11). The plagioclase 87Sr/86Sr value is close to the highest published whole-rock value for this flow (0.703099±8). This is consistent with clinopyroxene crystallization predominantly from a depleted, low 87Sr/86Sr melt, with most plagioclase formed later, after mixing-in of enriched melts. The results have implications for the provenance of crystals hosted in basalts. Non-equilibrium textures, major and trace element compositions, or isotopic ratios differing from whole-rock values may not always be used to infer a simple xenocrystic origin. Instead, these features may be vestiges of the chemically and isotopically (Jackson et al, 2009) diverse mantle melts from which phases crystallized before melt mixing and eruption. Reference: Jackson MG, SR Hart, N Shimizu, JS Blusztajn (2009): The 87Sr/86Sr and 143Nd/144Nd disequilibrium between Polynesian hot spot lavas and the clinopyroxenes they host: Evidence complementing isotopic disequilibrium in melt inclusions. G-Cubed, 10, Q03006

  19. Grain-scale Sr isotope heterogeneity in amphibolite (retrograded UHP eclogite, Dabie terrane): Implications for the origin and flow behavior of retrograde fluids during slab exhumation

    NASA Astrophysics Data System (ADS)

    Guo, Shun; Yang, Yueheng; Chen, Yi; Su, Bin; Gao, Yijie; Zhang, Lingmin; Liu, Jingbo; Mao, Qian

    2016-12-01

    To constrain the origin and flow behavior of amphibolite-facies retrograde fluids during slab exhumation, we investigate the textures, trace element contents, and in situ strontium (Sr) isotopic compositions (using LA-MC-ICP-MS) of multiple types of epidote and apatite in the UHP eclogite and amphibolites from the Hualiangting area (Dabie terrane, China). The UHP epidote porphyroblasts in the eclogite (Ep-E), which formed at 28-30 kbar and 660-720 °C, contain high amounts of Sr, Pb, Th, Ba, and light rare earth elements (LREEs) and have a narrow range of initial 87Sr/86Sr ratios (0.70431 ± 0.00012 to 0.70454 ± 0.00010). Two types of amphibolite-facies epidote were recognized in the amphibolites. The first type of epidote (Ep-AI) developed in all the amphibolites and has slightly lower trace element contents than Ep-E. The Ep-AI has a same initial 87Sr/86Sr ratio range as the Ep-E and represents the primary amphibolite-facies retrograde product that is associated with an internally buffered fluid at 8.0-10.3 kbar and 646-674 °C. The other type of epidote (Ep-AII) occurs as irregular fragments, veins/veinlets, or reaction rims on the Ep-AI in certain amphibolites. Elemental X-ray maps reveal the presence of Ep-AI relics in the Ep-AII domains (appearing as a patchy texture), which indicates that Ep-AII most likely formed by the partial replacement of the Ep-AI in the presence of an infiltrating fluid. The distinctly lower trace element contents of Ep-AII are ascribed to element scavenging by a mechanism of dissolution-transport-precipitation during replacement. The Ep-AII in an individual amphibolite exhibits large intra- and inter-grain variations in the initial 87Sr/86Sr ratios (0.70493 ± 0.00030 to 0.70907 ± 0.00022), which are between those of the Ep-AI and granitic gneisses (wall rock of the amphibolites, 0.7097-0.7108). These results verify that the infiltrating fluid was externally derived from granitic gneisses. The matrix apatite in the amphibolites has

  20. Integrated stratigraphy and isotopic ages at the Berriasian-Valanginian boundary at Tlatlauquitepec (Puebla, Mexico)

    NASA Astrophysics Data System (ADS)

    López-Martínez, Rafael; Barragán, Ricardo; Bernal, Juan Pablo; Reháková, Daniela; Gómez-Tuena, Arturo; Martini, Michelangelo; Ortega, Carlos

    2017-04-01

    The integration of calpionellid biostratigraphy, microfacies analysis, Usbnd Pb geochronology, and strontium chemostratigraphy improves the definition of the Berriasian-Valanginian boundary in the Tlatlauquitepec area and validates the age of calpionellid zones from eastern Mexico in this interval. An age of 139.85 Ma derived from 87Sr/86Sr ratio within the base of Calpionellites Zone defines the Berriasian-Valanginian boundary. Additionally, the 134.0 ± 0.5 Ma Usbnd Pb age returned by zircon grains from a tuff level exposed at the top of the succession confirms the Valanginian age of the whole analyzed section. Microfacies analysis reveals sea level variations that can be coincident with the KVa1-KVa4 eustatic cycles. These new data suggest that calpionellid biostratigraphy represents the most useful tool for the definition of the Berriasian-Valanginian time boundary in central Mexico and its correlation with the rest of the Tethyan domain.

  1. Effects of urbanization on groundwater evolution in an urbanizing watershed

    NASA Astrophysics Data System (ADS)

    Reyes, D.; Banner, J. L.; Bendik, N.

    2011-12-01

    The Jollyville Plateau Salamander (Eurycea tonkawae), a candidate species for listing under the Endangered Species Act, is endemic to springs and caves within the Bull Creek Watershed of Austin, Texas. Rapid urbanization endangers known populations of this salamander. Conservation strategies lack information on the extent of groundwater contamination from anthropogenic sources in this karst watershed. Spring water was analyzed for strontium (Sr) isotopes and major ions from sites classified as "urban" or "rural" based on impervious cover estimates. Previous studies have shown that the 87Sr/86Sr value of municipal water is significantly higher than values for natural streamwater, which are similar to those for the Cretaceous limestone bedrock of the region's watersheds. We investigate the application of this relationship to understanding the effects of urbanization on groundwater quality. The use of Sr isotopes as hydrochemical tracers is complemented by major ion concentrations, specifically the dominant ions in natural groundwater (Ca and HCO3) and the ions associated with the addition of wastewater (Na and Cl). To identify high priority salamander-inhabited springs for water quality remediation, we explore the processes controlling the chemical evolution of groundwater such as municipal water inputs, groundwater-soil interactions, and solution/dissolution reactions. 87Sr/86Sr values for water samples from within the watershed range from 0.70760 to 0.70875, the highest values corresponding to sites located in the urbanized areas of the watershed. Analyses of the covariation of Sr isotopes with major ion concentrations help elucidate controls on spring water evolution. Springs located in rural portions of the watershed have low 87Sr/86Sr, high concentrations of Ca and HCO3, and low concentrations of Na and Cl. This is consistent with small inputs of municipal water. Three springs located in urban portions of the watershed have high 87Sr/86Sr, low Ca and HCO3, and

  2. Chemical weathering of a soil chronosequence on granitoid alluvium: II. Mineralogic and isotopic constraints on the behavior of strontium

    USGS Publications Warehouse

    Bullen, T.; White, A.; Blum, A.; Harden, J.; Schulz, M.

    1997-01-01

    The use of strontium isotopes to evaluate mineral weathering and identify sources of base cations in catchment waters requires an understanding of the behavior of Sr in the soil environment as a function of time. Our approach is to model the temporal evolution of 87Sr/86Sr of the cation exchange pool in a soil chronosequence developed on alluvium derived from central Sierra Nevada granitoids during the past 3 Ma. With increasing soil age, 87Sr/86Sr of ammonium-acetate extractable Sr initially decreases from values typical of K-feldspar to those of plagioclase and hornblende and then remains constant, even though plagioclase and hornblende are absent from the soils after approximately 1 Ma of weathering. The temporal variation of 87Sr/86Sr of exchangeable Sr is modeled by progressively equilibrating Sr derived from mineral weathering and atmospheric deposition with Sr on exchange sites as waters infiltrate a soil column. Observed decreases in quartz-normalized modal abundances of plagioclase, hornblende, and K-feldspar with time, and the distinct 87Sr/86Sr values of these minerals can be used to calculate Sr flux from weathering reactions. Hydrobiotites in the soils have nearly constant modal abundances, chemistry, and 87Sr/86Sr over the chronosequence and provide negligible Sr input to weathering solutions. The model requires time and soil horizon-dependent changes in the amount of exchangeable Sr and the efficiency of Sr exchange, as well as a biologic cycling term. The model predicts that exchangeable Sr initially has 87Sr/86Sr identical to that of K-feldspar, and thus could be dominated by Sr leached from K-feldspar following deposition of the alluvium. The maximum value of 87Sr/86Sr observed in dilute stream waters associated with granitoids of the Yosemite region is likewise similar to that of the K-feldspars, suggesting that K-feldspar and not biotite may be the dominant source of radiogenic Sr in the streams. This study reveals that, when attempting to use

  3. High-Precision Marine Sr Isotope Geochronology in Deep Time: Permian Tuffs and Conodonts

    NASA Astrophysics Data System (ADS)

    Schmitz, M. D.; Davydov, V. I.; Snyder, W. S.

    2007-12-01

    Stratigraphic sections of the Southern Urals containing abundant and well-preserved fauna for precise biostratigraphic correlation and common instratified volcanic ash beds dated by U-Pb zircon geochronology offer a unique opportunity to constrain a temporally accurate Late Pennsylvanian-Early Permian seawater Sr curve. The 87Sr/86Sr compositions of conodonts (biogenic apatite) were measured by high-precision thermal ionization mass spectrometry following rigorous pretreatment protocols, and plotted within an age model calibrated by 13 high-precision U-Pb zircon ash bed ages. The resulting seawater Sr curve shows a significant reduction in data scatter by comparison to earlier curves (Denison et al., 1994; Veizer et al., 1999; Bruckschen et al., 1999; Korte et al., 2006), suggesting that our conodont pre-dissolution treatment was highly effective for retrieving the original seawater Sr signal. The relatively flat Late Moscovian through mid-Ghzelian seawater Sr curve of this study is generally consistent with that of Bruckschen et al. (1999). Beginning in the mid-Ghzelian, our data define a decreasing trend in 87Sr/86Sr through the mid-Sakmarian, consistent with the data of Korte et al. (2006). By combining our high precision 87Sr/86Sr measurements and U-Pb age calibration, the resolution of Sr isotope geochronology approaches 0.5 Ma in this interval. This highly resolved seawater 87Sr/86Sr record obtained for the Late Moscovian through mid-Sakmarian will aid in global carbonate chemostratigraphic correlation and contribute to our understanding of the timing of Late Paleozoic glacial and tectonic events. References: Bruckschen, P., Oesmann, S., Veizer, J., 1999. Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics. Chemical Geology 161, p. 127-163. Denison, R.E., Koepnick, R.B., Burke, W.H., Hetherington, E.A., Fletcher, A., 1994. Construction of the Mississippian, Pennsylvanian and Permian seawater 87Sr/86Sr

  4. The strontium isotopic budget of Himalayan rivers in Nepal and Bangladesh

    SciTech Connect

    Galy, A.; France-Lanord, C. |; Derry, L.A.

    1999-07-01

    Himalayan rivers have very unusual Sr characteristics and their budget cannot be achieved by simple mixing between silicate and carbonate even if carbonates are radiogenic. The authors present Sr, O, and C isotopic data from river and rain water, bedload, and bedrock samples for the western and central Nepal Himalaya and Bangladesh, including the monsoon season. Central Himalayan rivers receive Sr from several sources: carbonate and clastic Tethyan sediments, High Himalayan Crystalline (HHC) gneisses and granitoids with minor marbles, carbonates and metasediments of the Lesser Himalaya (LH), and Miocene-Recent foreland basin sediment from the Siwaliks group and the modern flood plain. In the Tethyan Himalaya rivers have dissolved [Sr] {approx} 6 {micro}mol/l and {sup 87}Sr/{sup 86}Sr {approx} 0.717, with a large contribution from moderately radiogenic carbonate. Rivers draining HHC gneisses are very dilute with [Sr] {approx} 0.2 {micro}mol/l and {sup 87}Sr/{sup 86}Sr {approx} 0.74. Lesser Himalayan streams also have low [Sr] {approx} 0.4 {micro}mol/l and are highly radiogenic ({sup 87}Sr/{sup 86}Sr {ge} 0.78). Highly radiogenic carbonates of the LH do not contribute significantly to the Sr budget because they are sparse and have very low [Sr]. In large rivers exiting the Himalaya, Sr systematics can be modeled as a mixture between Tethyan rivers, where slightly radiogenic carbonates (mean {sup 87}Sr/{sup 86}Sr {approx} 0.715) are the main source of Sr, and Lesser Himalaya waters, where extremely radiogenic silicates (> 0.8) are the main source of Sr. HHC waters are less important because of their low [Sr]. Rivers draining the Siwaliks foreland basin sediments have [Sr] {approx} 4 {micro}mol/l and {sup 87}Sr/{sup 86}Sr {approx} 0.725. Weathering of silicates in the Siwaliks and the flood plain results in a probably significant radiogenic (0.72--0.74) input to the Ganges and Brahamputra (G-B), but quantification of this flux is limited by uncertainties in the

  5. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    SciTech Connect

    James B. Paces; Zell E. Peterman; Kiyoto Futa; Thomas A. Oliver; and Brian D. Marshall.

    2007-08-07

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values

  6. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Paces, James B.; Peterman, Zell E.; Futo, Kiyoto; Oliver, Thomas A.; Marshall, Brian D.

    2007-01-01

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada