Science.gov

Sample records for 88-3 urethane adhesive

  1. Urethane/Silicone Adhesives for Bonding Flexing Metal Parts

    NASA Technical Reports Server (NTRS)

    Edwards, Paul D.

    2004-01-01

    Adhesives that are blends of commercially available urethane and silicone adhesives have been found to be useful for bonding metal parts that flex somewhat during use. These urethane/silicone adhesives are formulated for the specific metal parts to be bonded. The bonds formed by these adhesives have peel and shear strengths greater than those of bonds formed by double-sided tapes and by other adhesives, including epoxies and neat silicones. In addition, unlike the bonds formed by epoxies, the bonds formed by these adhesives retain flexibility. In the initial application for which the urethane/silicone adhesives were devised, there was a need to bond spring rings, which provide longitudinal rigidity for inflatable satellite booms, with the blades that provide the booms axial strength. The problem was to make the bonds withstand the stresses, associated with differences in curvature between the bonded parts, that arose when the booms were deflated and the springs were compressed. In experiments using single adhesives (that is, not the urethane/ silicone blends), the bonds were broken and, in each experiment, it was found that the adhesive bonded well with either the ring or with the blade, but not both. After numerous experiments, the adhesive that bonded best with the rings and the adhesive that bonded best with the blades were identified. These adhesives were then blended and, as expected, the blend bonded well with both the rings and the blades. The two adhesives are Kalex (or equivalent) high-shear-strength urethane and Dow Corning 732 (or equivalent) silicone. The nominal mixture ratio is 5 volume parts of the urethane per 1 volume part of the silicone. Increasing the proportion of silicone makes the bond weaker but more flexible, and decreasing the proportion of silicone makes the bond stronger but more brittle. The urethane/silicone blend must be prepared and used quickly because of the limited working time of the urethane: The precursor of the urethane

  2. Solvent for urethane adhesives and coatings and method of use

    DOEpatents

    Simandl, Ronald F.; Brown, John D.; Holt, Jerrid S.

    2010-08-03

    A solvent for urethane adhesives and coatings, the solvent having a carbaldehyde and a cyclic amide as constituents. In some embodiments the solvent consists only of miscible constituents. In some embodiments the carbaldehyde is benzaldehyde and in some embodiments the cyclic amide is N-methylpyrrolidone (M-pyrole). An extender may be added to the solvent. In some embodiments the extender is miscible with the other ingredients, and in some embodiments the extender is non-aqueous. For example, the extender may include isopropanol, ethanol, tetrahydro furfuryl alcohol, benzyl alcohol, Gamma-butyrolactone or a caprolactone. In some embodiments a carbaldehyde and a cyclic amide are heated and used to separate a urethane bonded to a component.

  3. Enzyme-catalyzed hydrolysis of dentin adhesives containing a new urethane-based trimethacrylate monomer

    PubMed Central

    Park, Jong-Gu; Ye, Qiang; Topp, Elizabeth M.; Spencer, Paulette

    2009-01-01

    A new trimethacrylate monomer with urethane-linked groups, 1,1,1-tri-[4-(methacryloxyethylamino-carbonyloxy)-phenyl]ethane (MPE), was synthesized, characterized, and used as a co-monomer in dentin adhesives. Dentin adhesives containing 2-hydroxyethyl methacrylate (HEMA, 45% w/w) and 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane (BisGMA, 30% w/w) in addition to MPE (25% w/w) were formulated with H2O at 0 (MPE0), 8 (MPE8) and 16 wt % water (MPE16) to simulate the wet demineralized dentin matrix and compared with controls [HEMA/BisGMA, 45/55 w/w, at 0 (C0), 8 (C8) and 16 wt% water (C16)]. The new adhesive showed a degree of double bond conversion and mechanical properties comparable with control, with good penetration into the dentin surface and a uniform adhesive/dentin interface. On exposure to porcine liver esterase, the net cumulative methacrylic acid (MAA) release from the new adhesives was dramatically (P < 0.05) decreased relative to the control, suggesting that the new monomer improves esterase resistance. PMID:19582843

  4. Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion.

    PubMed

    Gao, Bin; Feng, Yakai; Lu, Jian; Zhang, Li; Zhao, Miao; Shi, Changcan; Khan, Musammir; Guo, Jintang

    2013-07-01

    In order to improve the resistance of platelet adhesion on material surface, 2-methacryloyloxyethyl phosphorylcholine (MPC) was grafted onto polycarbonate urethane (PCU) surface via Michael reaction to create biomimetic structure. After introducing primary amine groups via coupling tris(2-aminoethyl)amine (TAEA) onto the polymer surface, the double bond of MPC reacted with the amino group to obtain MPC modified PCU. The modified surface was characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results verified that MPC was grafted onto PCU surface by Michael reaction method. The MPC grafted PCU surface had a low water contact angle and a high water uptake. This means that the hydrophilic PC functional groups improved the surface hydrophilicity significantly. In addition, surface morphology of MPC grafted PCU film was imaged by atomic force microscope (AFM). The results showed that the grafted surface was rougher than the blank PCU surface. In addition, platelet adhesion study was evaluated by scanning electron microscopy (SEM) observation. The PCU films after treated with platelet-rich plasma demonstrated that much fewer platelets adhered to the MPC-grafted PCU surface than to the blank PCU surface. The antithrombogenicity of the MPC-grafted PCU surface was determined by the activated partial thromboplastin time (APTT). The result suggested that the MPC modified PCU may have potential application as biomaterials in blood-contacting and some subcutaneously implanted devices. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Water sorption and dynamic mechanical properties of dentin adhesives with a urethane-based multifunctional methacrylate monomer.

    PubMed

    Park, Jong-Gu; Ye, Qiang; Topp, Elizabeth M; Misra, Anil; Spencer, Paulette

    2009-12-01

    Our previous study showed the synthesis and characterization of a novel urethane-linked trimethacrylate monomer for use as a co-monomer in dentin adhesives. The objective of this work was to further investigate the performance of dentin adhesives containing a new monomer, with particular emphasis on the water sorption and viscoelastic behavior of the crosslinked networks. Dentin adhesives contained 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]-propane (BisGMA), 2-hydroxyethyl methacrylate (HEMA), and a new multifunctional methacrylate with urethane-linked groups-1,1,1-tri-[4-(methacryloxyethylaminocarbonyloxy)-phenyl]ethane (MPE) and were photo-polymerized in the presence or absence of water. Adhesives were characterized with regard to degree of conversion (DC), viscosity, water sorption/solubility, and dynamic mechanical analysis (DMA) and compared with BisGMA/HEMA controls. The experimental adhesives exhibited DC and solubility comparable to that of the control, regardless of the presence or absence of water. All the experimental adhesives tested showed less water sorption, lower tandelta peak heights, and higher rubbery modulus than the control. Dentin adhesives containing a new multifunctional methacrylate showed better dynamic thermomechanical properties and water sorption relative to controls, without compromising DC and solubility. Thus, MPE, when included as a component of methacrylate dentin adhesives, may provide enhanced durability in the moist environment of the mouth.

  6. A new fluorinated urethane dimethacrylate with carboxylic groups for use in dental adhesive compositions.

    PubMed

    Buruiana, Tinca; Melinte, Violeta; Aldea, Horia; Pelin, Irina M; Buruiana, Emil C

    2016-05-01

    A urethane macromer containing hexafluoroisopropylidene, poly(ethylene oxide) and carboxylic moieties (UF-DMA) was synthesized and used in proportions varying between 15 and 35 wt.% (F1-F3) in dental adhesive formulations besides BisGMA, triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The FTIR and (1)H ((13)C) NMR spectra confirmed the chemical structure of the UF-DMA. The experimental adhesives were characterized with regard to the degree of conversion, water sorption/solubility, contact angle, diffusion coefficient, Vickers hardness, and morphology of the crosslinked networks and compared with the specimens containing 10 wt.% hydroxyapatite (HAP) or calcium phosphate (CaP). The conversion degree (after 180 s of irradiation with visible light) ranged from 59.5% (F1) to 74.8% (F3), whereas the water sorption was between 23.15 μg mm(-3) (F1) and 40.52 μg mm(-3) (F3). Upon the addition of HAP or CaP this parameter attained values of 37.82-49.14 μg mm(-3) (F1-F3-HAP) and 34.58-45.56 μg mm(-3), respectively. Also, the formation of resin tags through the infiltration of a dental composition (F3) was visualized by SEM analysis. The results suggest that UF-DMA taken as co-monomer in dental adhesives of acrylic type may provide improved properties in the moist environment of the mouth. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Micro-structuring of polycarbonate-urethane surfaces in order to reduce platelet activation and adhesion.

    PubMed

    Clauser, Johanna; Gester, Kathrin; Roggenkamp, Jan; Mager, Ilona; Maas, Judith; Jansen, Sebastian V; Steinseifer, Ulrich

    2014-01-01

    In the development of new hemocompatible biomaterials, surface modification appears to be a suitable method in order to reduce the thrombogenetic potential of such materials. In this study, polycarbonate-urethane (PCU) tubes with different surface microstructures to be used for aortic heart valve models were investigated with regard to the thrombogenicity. The surface structures were produced by using a centrifugal casting process for manufacturing PCU tubes with defined casting mold surfaces which are conferred to the PCU surface during the process. Tubes with different structures defined by altering groove widths were cut into films and investigated under dynamic flow conditions in contact with porcine blood. The analysis was carried out by laser scanning microscopy which allowed for counting various morphological types of platelets with regard to the grade of activation. The comparison between plain and shaped PCU samples showed that the surface topography led to a decline of the activation of the coagulation cascade and thus to the reduction of the fibrin synthesis. Comparing different types of structures revealed that smooth structures with a small groove width (d ~ 3 μm) showed less platelet activation as well as less adhesion in contrast to a distinct wave structure (d ~ 90 μm). These results prove surface modification of polymer biomaterials to be a suitable method for reducing thrombogenicity and hence give reason for further alterations and improvements.

  8. The Effect of 3-Isocyanato-1-Propene on Adhesive Properties of UV-Curing Urethane/Siloxane Acrylate Resin.

    PubMed

    Chun, J H; Cheon, J M; Jeong, B Y; Jo, N J

    2016-03-01

    We synthesized the urethane/siloxane acrylate oligomer from isophorone diisocyanate (IPDI), hydroxyl alkyl terminated polydimethylsiloxane and 2-hydroxyethyl acrylate (2-HEA). UV-curable resins were formulated from the synthesized oligomer, ethylene glycol phenyl ether acrylate (PHEA), 1,6-hexanediol diacrylate (HDDA), trimethylolpropane triacrylate (TMPTA) as a reactive diluent, 3-isocyanato-1-propene as an adhesion promoter and photoinitiators. The PET film was treated with plasma in order to introduce the functional group on the PET surface and the functional group was observed through X-ray photoelectron spectroscopy (XPS) and the Fourier transform infrared (FT-IR). The adhesion strength between the PET film and the UV-cured resin were increased by using the adhesion promoter. Also, the thermal stability, the modulus and surface hardness were increased, as the adhesion promoter was added.

  9. Recent advances in liquid urethane

    SciTech Connect

    Russell, D. )

    1991-09-01

    Urethane polymer systems are extremely diverse. The urethane systems in the market include durometer hardness from sub Shore A to + Shore D. One particular attraction of urethanes is their ease of processing on low capital cost machinery. Urethane polymer systems are processed by pouring, casting, spraying, troweling, injecting, brushing and other means. Urethanes are selected because of their excellent toughness, abrasion resistance, broad service temperature range, environmental and fluid resistance, and excellent gloss and colorability. Applications for urethane liquid polymers are extremely diverse. Many areas appear to be maturing, especially industrial rolls, wheels, bushings and bearings. Other areas such as urethane coatings have seen high growth but in select areas such as window laminates and abrasion resistant coatings for hoppers, hopper cars, pumps and piping. RIM had rapid growth in the early 1980s but growth rate has begun to level off. Urethane adhesives have seen slow, steady growth, whereas urethane sealants have grown rapidly in several areas such as automotive and architectural glazing. Numerous forces, both internal and external, have acted on the urethane industry resulting in slow and steady change over the past 10 to 15 years. Changes have occurred in materials, processing methods and in the markets served. This article examines current applications and opportunities and strategies for increasing the market for urethanes.

  10. Silicone-urethane adhesive for improved coverslip mounting and leak-free preparation of living cell observation chambers.

    PubMed

    Matsunaga, Shigeru; Xie, Qiuhong; Kumano-Kuramochi, Miyuki; Komba, Shiro; Machida, Sachiko

    2009-03-01

    Using a combination of silicone and urethane resin, we established a rapid technique for preparing living specimens for microscopy. One major advantage of this technique is that the coverslip is rigidly attached and does not detach during handling. As a result, it is possible to continuously observe living cells at high magnification and resolution using an oil immersion objective. Another advantage is that living cells are quickly confined to the space between the glass slide and coverslip, protecting them from environmental changes, which can cause serious effects on cell function and morphology. Moreover, high-resolution observations of real-time responses of cells are possible, using the combination of the mounting technique and a simple flow chamber.

  11. 32 CFR 88.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 102-484; continued use of military family housing as described in section 502 (a)(1) of Public Law 101... Department of Defense OFFICE OF THE SECRETARY OF DEFENSE PERSONNEL, MILITARY AND CIVILIAN TRANSITION ASSISTANCE FOR MILITARY PERSONNEL § 88.3 Definitions. (a) Involuntary separation. A member of the...

  12. 32 CFR 88.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 102-484; continued use of military family housing as described in section 502 (a)(1) of Public Law 101... Department of Defense OFFICE OF THE SECRETARY OF DEFENSE PERSONNEL, MILITARY AND CIVILIAN TRANSITION ASSISTANCE FOR MILITARY PERSONNEL § 88.3 Definitions. (a) Involuntary separation. A member of the...

  13. 32 CFR 88.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 102-484; continued use of military family housing as described in section 502 (a)(1) of Public Law 101... Department of Defense OFFICE OF THE SECRETARY OF DEFENSE PERSONNEL, MILITARY AND CIVILIAN TRANSITION ASSISTANCE FOR MILITARY PERSONNEL § 88.3 Definitions. (a) Involuntary separation. A member of the...

  14. 32 CFR 88.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 102-484; continued use of military family housing as described in section 502 (a)(1) of Public Law 101... Department of Defense OFFICE OF THE SECRETARY OF DEFENSE PERSONNEL, MILITARY AND CIVILIAN TRANSITION ASSISTANCE FOR MILITARY PERSONNEL § 88.3 Definitions. (a) Involuntary separation. A member of the...

  15. 32 CFR 88.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 102-484; continued use of military family housing as described in section 502 (a)(1) of Public Law 101... Department of Defense OFFICE OF THE SECRETARY OF DEFENSE PERSONNEL, MILITARY AND CIVILIAN TRANSITION ASSISTANCE FOR MILITARY PERSONNEL § 88.3 Definitions. (a) Involuntary separation. A member of the...

  16. Exploratory study on the effects of novel diamine curing agents and isocyanate precursors on the properties of new epoxy and urethane adhesives

    NASA Technical Reports Server (NTRS)

    Glasgow, D. G.

    1976-01-01

    The effects of novel aromatic diamine structures on the adhesive properties of epoxy and polyurethane adhesives were studied. Aromatic diamines based on benzophenone and diphenyl-methane isomers were evaluated as curing agents for epoxy resins and benzophenone and diphenyl-methane based diamine isomers were evaluated as curing agents for polyurethane adhesives. Polyurethane adhesives were prepared based on m, m prime-diisocyanato-diphenyl-methane and m, m prime-diisocyanato-benzophenone. The m, m prime-diisocayanato-diphenyl-methane based adhesive had properties comparable to state-of-the-art adhesives. The m, m prime-diisocyanato-benzophenone based adhesive was extremely reactive.

  17. Exploratory study on the effects of novel diamine curing agents and isocyanate precursors on the properties on new epoxy and urethane adhesives

    NASA Technical Reports Server (NTRS)

    Glasgow, D. G.; Garthwait, C.

    1977-01-01

    Aromatic diamines based on diphenyl sulfone and benzophenone were studied as epoxy adhesive curing agents. Previously found differences in adhesive strengths for meta vs para orientation were not found in these series. The use of aluminum and alumina as fillers in a m,m prime-methylene dianiline-cured epoxy adhesive was not found to be beneficial to adhesive strength. Alumina filled adhesives had much lower strength than unfilled adhesives. The unfilled m,m prime-methylene dianiline-based epoxy adhesive had excellent resistance to moisture relative to a p,p prime-methylene dianiline-based adhesive and maintained good strengths up to 250 F. A glass fiber composite based on a m,m prime-methylene dianiline-cured epoxy appeared to be equivalent to the p,p prime-methylene dianiline-cured epoxy as judged by short beam shear tests.

  18. Exploratory Study on the Effects of Novel Diamine Curing Agents and Isocyanate Precursors on the Properties of New Epoxy and Urethane Adhesives

    NASA Technical Reports Server (NTRS)

    Glasgow, D. Gerald; Garthwait, Clayborn

    1977-01-01

    This report covers the results of investigations directed toward studying the effects of novel aromatic diamine structures on epoxy adhesive properties and includes work done under a modification to the original contract. Three aromatic diamines based on diphenylsulfone and benzophenone were studied as epoxy adhesive curing agents. Previously found differences in adhesive strengths for meta vs para orientation were not found in these series. The use of aluminum and alumina as fillers in a m,m'-methylene dianiline-cured epoxy adhesive was not found to be beneficial to adhesive strength. Alumina filled adhesives had much lower strength than unfilled adhesives. The unfilled m,m'-methylene dianiline-based epoxy adhesive had excellent resistance to moisture relative to a p,p'-methylene dianiline-based adhesive and maintained good strengths up to 250 F. A glass fiber composite based on a m,m'-methylene dianiline-cured epoxy appeared to be equivalent to the p,p'-methylene dianiline-cured epoxy as judged by short beam shear tests.

  19. 9 CFR 88.3 - Standards for conveyances.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION OF EQUINES FOR SLAUGHTER § 88.3 Standards for conveyances. (a) The animal cargo space of... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Standards for conveyances. 88.3 Section 88.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT...

  20. 9 CFR 88.3 - Standards for conveyances.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION OF EQUINES FOR SLAUGHTER § 88.3 Standards for conveyances. (a) The animal cargo space of conveyances used for the commercial transportation of equines to slaughtering facilities must: (1) Be designed, constructed, and maintained in a manner that at all times protects the health and well-being of the equines...

  1. 9 CFR 88.3 - Standards for conveyances.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION OF EQUINES FOR SLAUGHTER § 88.3 Standards for conveyances. (a) The animal cargo space of conveyances used for the commercial transportation of equines to slaughtering facilities must: (1) Be designed, constructed, and maintained in a manner that at all times protects the health and well-being of the equines...

  2. Alkane-Based Urethane Potting Compounds

    NASA Technical Reports Server (NTRS)

    Morris, D. E.

    1986-01-01

    New low viscosity urethanes easily mixed, molded, and outgassed. Alkane-based urethanes resist hydrolysis and oxidation and have excellent dielectric properties. Low-viscosity alkane-based urethane prepolymer prepared by one-step reaction of either isophorone diisocyanate or methyl-bis (4-cyclohexyl isocyanate) with hydrogenated, hydroxy-terminated polybutadiene (HTPBD).

  3. Adhesion

    MedlinePlus

    ... the intestines, adhesions can cause partial or complete bowel obstruction . Adhesions inside the uterine cavity, called Asherman syndrome , ... 1. Read More Appendicitis Asherman syndrome Glaucoma Infertility Intestinal obstruction Review Date 4/5/2016 Updated by: Irina ...

  4. Adhesions

    MedlinePlus

    Adhesions are bands of scar-like tissue. Normally, internal tissues and organs have slippery surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They ...

  5. Thermally-responsive poly(ester urethane)s

    NASA Astrophysics Data System (ADS)

    Pierce, Benjamin Franklin

    Thermally-responsive materials are quite useful in the biomedical field, but their full potential has yet to be realized. For example, polyurethanes are capable of exhibiting shape-memory properties, or the ability to change shape upon the application of a stimulus, but only a few practical thermally responsive polyurethanes have been reported due to the lack of novel starting materials and optimized systems. This work describes the synthesis of several degradable polymers and the characterization of their thermally responsive behavior. First, several amorphous polyester prepolymers are synthesized and incorporated in thermoplastic poly(ester urethane)s, which are highly elastic but display impractical thermal properties. Their potential as degradable implants is investigated, as well as their bulk and surface properties. These systems are then optimized and tailored for more practical purposes, resulting in the synthesis of thermoset elastomers based on poly(1,4-cyclohexanedimethanol 1,4-cyclohexanedicarboxylate) (PCCD) prepolymers that display a broad range of useful mechanical properties, thermal properties, and shape-memory properties. A novel method for controlling a microscopic and nanoscopic topographical shape-memory phenomenon is presented. Finally, the synthesis of amine-functionalized polyesters is presented. All materials are characterized by 1H and 13C NMR, GPC, DSC, TGA, and Instron.

  6. Thermodynamic properties of dimethylene urethane

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, V. N.; Turovtsev, V. V.; Orlov, Yu. D.

    2015-07-01

    Enthalpies of the combustion and formation of crystalline dimethylene urethane (oxazolidin-2-one) are determined via combustion calorimetry. The enthalpy of sublimation is determined via the transpiration method, and the enthalpy of fusion is found by means of differential scanning calorimetry. The temperature dependence of the saturated vapor pressure is measured in the range of 323-353 K. Thermodynamic functions in the ideal gas state are calculated using the rigid rotator-anharmonic oscillator model in the range of T = 298.15-1500 K.

  7. Poly(hydroxyl urethane) compositions and methods of making and using the same

    DOEpatents

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2014-12-16

    Methods and compositions relating to poly(hydroxyl urethane) compounds are described herein that are useful as, among other things, binders and adhesives. The cross-linked composition is achieved through the reaction of a cyclic carbonate, a compound having two or more thiol groups, and a compound having two or more amine functional groups. In addition, a method of adhesively binding two or more substrates using the cross-linked composition is provided.

  8. Poly(hydroxyl urethane) compositions and methods of making and using the same

    SciTech Connect

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2016-01-26

    Methods and compositions relating to poly(hydroxyl urethane) compounds are described herein that are useful as, among other things, binders and adhesives. The cross-linked composition is achieved through the reaction of a cyclic carbonate, a compound having two or more thiol groups, and a compound having two or more amine functional groups. In addition, a method of adhesively binding two or more substrates using the cross-linked composition is provided.

  9. Synthesis of urethane acrylates modified by linseed oil and study on EBC coatings

    NASA Astrophysics Data System (ADS)

    Xuecheng, Ju; Hongfei, Ha; Bo, Jiang; Yong, Zhou

    1999-11-01

    In this paper, five different structural urethane acrylates modified by linseed oil were synthesized and then properties of their electron beam cured (EBC) coatings, i.e., adhesion, gloss, flexibility, impact resistance, hardness, tensile strength and elongation were studied. It was shown that these synthesizing conditions of urethane acrylates modified by linseed oil were temperate. Effect of structure of urethane acrylates modified by linseed oil on these properties of their EBC coatings was obvious, except gloss. According to synthetical properties of EBC coatings, the optimum oligomer among these was No. A, whose main chains were formed by hexane diacid, average functionality was 2, and oil content was 25.5%. With increasing of absorbed doses, these properties of EBC coatings, except gloss, changed correspondingly. It was advisable that absorbed dose wasn't greater than 180 kGy. At higher absorbed doses, cobaltous naphthenate had obvious effect on these properties of EBC coatings, whose oil content of linseed oil was rather high.

  10. Enzymatic synthesis and chemical recycling of poly(carbonate-urethane).

    PubMed

    Soeda, Yasuyuki; Toshima, Kazunobu; Matsumura, Shuichi

    2004-08-09

    Novel enzymatically recyclable poly(carbonate-urethane) consisting of a diurethane moiety as a hard segment and a carbonate linkage as an enzymatically cleavable unit was prepared by the polycondensation of biodegradable diurethanediol and diethyl carbonate using lipase. The produced poly(carbonate-urethane) was readily transformed by lipase into the corresponding cyclic oligomers which were more easily repolymerized by lipase to produce a higher molecular weight poly(carbonate-urethane) than that of the parent poly(carbonate-urethane).

  11. A Miniature Urethane Molded Acoustic Transducer.

    DTIC Science & Technology

    1984-08-01

    Acknowled Semen ts a The development engineering was performed under contract with the Office of Naval Research and with grant money from the National...A-12- Appendix III Components and Suppliers 1. Parts and.Suppliers 1) Urethane CONAP Incorporated 1405 Buffalo Street Olson, NY 14760 *Conap

  12. Reactive Fluorescent Dyes For Urethane Coatings

    NASA Technical Reports Server (NTRS)

    Willis, Paul B.; Cuddihy, Edward F.

    1991-01-01

    Molecules of fluorescent dyes chemically bound in urethane conformal-coating materials to enable nondestructive detection of flaws in coats through inspection under ultraviolet light, according to proposal. Dye-bonding technique prevents outgassing of dyes, making coating materials suitable for use where flaw-free coats must be assured in instrumentation or other applications in which contamination by outgassing must be minimized.

  13. Reactive Fluorescent Dyes For Urethane Coatings

    NASA Technical Reports Server (NTRS)

    Willis, Paul B.; Cuddihy, Edward F.

    1991-01-01

    Molecules of fluorescent dyes chemically bound in urethane conformal-coating materials to enable nondestructive detection of flaws in coats through inspection under ultraviolet light, according to proposal. Dye-bonding technique prevents outgassing of dyes, making coating materials suitable for use where flaw-free coats must be assured in instrumentation or other applications in which contamination by outgassing must be minimized.

  14. 40 CFR 721.9930 - Urethane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9930 Urethane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical...

  15. Synthesis of poly(methyl urethane) acrylate oligomer using 2-isocyanatoethyl methacrylate for UV curable coating.

    PubMed

    Park, M N; Oh, S W; Ahn, B H; Moon, M J; Kang, Y S

    2009-02-01

    The poly(methyl urethane) acrylate oligomer was obtained by the reaction of methyl acrylate oligomer and 2-isocyanatoethyl methacrylate. Synthesis of poly(methyl urethane) acrylate oligomer was done with 2-mercaptoethanol (2-MEOH), methyl acrylate, 2,2'-azobisisobutyronitrile (AIBN, initiator) and dibutyltin dilaurate as a catalyst. Then 2-MEOH was used for functional chain transfer agent. The structure and property of the synthesized oligomers were characterized by FT-IR, FT-NMR, rheometer, and DSC. In this study, by synthetic method including the addition of 2-isocyanatoethyl methacrylate, thermal behavior of synthesized material was improved more than that reported in the previous study. Poly(methyl urethane) oligomer can be used for UV curable coatings, inks and adhesives. UV curable coating have high resistance against weather, ozone, aging, frictional wear, and heat. Besides they can absorb the shock and resist rust according to the thickness of film. It is used as an adhesive, paint, optical fiber coating agent, and waterproof agent because of these advantages at the present time.

  16. Urethane anesthesia blocks the development and expression of kindled seizures

    SciTech Connect

    Cain, D.P.; Raithby, A.; Corcoran, M.E.

    1989-01-01

    The effect of anesthetic and subanesthetic doses of urethane on the development of amygdala kindled seizures and on the expression of previously kindled seizures was studied in hooded rats. An anesthetic dose of urethane almost completely eliminated evoked after discharge and completely eliminated convulsive behavior in both groups. It also eliminated the seizure response to pentylenetetrazol. Subanesthetic doses of urethane strongly attenuated the expression of previously kindled seizures. These results suggest that urethane may not be an appropriate anesthetic for the study of epileptiform phenomena.

  17. Urethane as an inhibitor of the firefly light reaction

    SciTech Connect

    Nehls, S.M.; Bittar, E.E. )

    1989-01-01

    A study has been made to test the hypothesis that general anesthetics such as urethane are able to inhibit light from a firefly reaction mixture. Urethane was found to reduce light emission in a dose-dependent manner, the minimal effective concentration being about 20 mM. Dixon plots gave a Ki value in the range of 175 to 215 mM. Lineweaver-Burk plots showed that urethane increases the apparent Km for ATP and reduces V{sub max} for the reaction. This is taken to mean that urethane acts as both a competitive and noncompetitive inhibitor of the firefly light reaction (mixed-type inhibition).

  18. Modification of poly(ether urethane) with fluorinated phosphorylcholine polyurethane for improvement of the blood compatibility.

    PubMed

    Tan, Dongsheng; Zhang, Xiaoqing; Li, Jiehua; Tan, Hong; Fu, Qiang

    2012-02-01

    In order to improve the blood compatibility, poly(ether urethane) (PEU) and fluorinated phosphorylcholine polyurethane (P-HFPC) were used to prepare PU/P-HFPC blends by solution mixing. The hemocompatibility in vitro was evaluated with protein adsorption and platelet-rich plasma (PRP) contact tests. It was found that the amount of adsorbed protein on surface was decreased by 87%, and almost no platelet adhesion and activation was observed on the surface of blends when P-HFPC content was above 5 wt %. After adding P-HFPC, the blends basically kept favorable mechanical properties of PEU though the content of P-HFPC rises to 20 wt %. To better understand the relationship between structure and properties, the phase structure and surface property of the blend films were further investigated via differential scanning calorimetry, dynamic mechanical analysis, atomic force microscopy, X-ray photoelectron spectroscopy, and contact angle measurements. The results indicated that the fluorinated phosphorylcholine units could be easily enriched on the surface of blend films due to the phase separation between the PEU and P-HFPC. Therefore, ordinary poly(ether urethane)s can obtain both satisfactory blood compatibility and good mechanical properties just by blending with small amount of P-HFPC.

  19. The Effects of Urethane on Rat Outer Hair Cells

    PubMed Central

    Fu, Mingyu; Chen, Mengzi; Yang, Xueying

    2016-01-01

    The cochlea converts sound vibration into electrical impulses and amplifies the low-level sound signal. Urethane, a widely used anesthetic in animal research, has been shown to reduce the neural responses to auditory stimuli. However, the effects of urethane on cochlea, especially on the function of outer hair cells, remain largely unknown. In the present study, we compared the cochlear microphonic responses between awake and urethane-anesthetized rats. The results revealed that the amplitude of the cochlear microphonic was decreased by urethane, resulting in an increase in the threshold at all of the sound frequencies examined. To deduce the possible mechanism underlying the urethane-induced decrease in cochlear sensitivity, we examined the electrical response properties of isolated outer hair cells using whole-cell patch-clamp recording. We found that urethane hyperpolarizes the outer hair cell membrane potential in a dose-dependent manner and elicits larger outward current. This urethane-induced outward current was blocked by strychnine, an antagonist of the α9 subunit of the nicotinic acetylcholine receptor. Meanwhile, the function of the outer hair cell motor protein, prestin, was not affected. These results suggest that urethane anesthesia is expected to decrease the responses of outer hair cells, whereas the frequency selectivity of cochlea remains unchanged. PMID:28050287

  20. 40 CFR 721.10524 - Fluorinated alkylsulfonamidol urethane polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer (generic). 721.10524 Section 721.10524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10524 Fluorinated alkylsulfonamidol urethane polymer (generic). (a... generically as fluorinated alkylsulfonamidol urethane polymer (PMN P-11-384) is subject to reporting under...

  1. 40 CFR 721.10524 - Fluorinated alkylsulfonamidol urethane polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer (generic). 721.10524 Section 721.10524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10524 Fluorinated alkylsulfonamidol urethane polymer (generic). (a... generically as fluorinated alkylsulfonamidol urethane polymer (PMN P-11-384) is subject to reporting under...

  2. Lipid-derived Thermoplastic Poly(ester urethane)s: Effect of Structure on Physical Properties

    NASA Astrophysics Data System (ADS)

    Shetranjiwalla, Shegufta

    Thermoplastic poly(ester urethane)s (TPEU)s derived from vegetable oils possess inferior physical properties compared to their entirely petroleum-based counterparts due to the structural limitations and lower reactivity of the precursor lipid-derived monomers. The present work shows that high molecular weight of TPEUs with enhanced performance can be obtained from lipid-derived monomers via (i) the synthesis of polyester diols with controlled molecular weights, (ii) the tuning of the functional group stoichiometry of the polyester diols and the diisocyanate during polymerization, (iii) the degree of polymerization (iv) the control of the hard segment hydrogen bond density and distribution via the use of a chain extender and (v) different polymerization protocols. Solvent-resistant TPEUs with high molecular weight displaying polyethylene-like behavior and controlled polyester and urethane segment phase separation were obtained. Structure-property investigations revealed that the thermal transition temperatures and tensile properties increased and eventually plateaued with increasing molecular weight. Novel segmented TPEUs possessed high phase separation and showed elastomeric properties such as low modulus and high elongation analogous to rubber. The response of the structurally optimized TPEUs to environmental degradation was also established by subjecting the TPEUs to hydrothermal ageing. TPEUs exhibited thermal and mechanical properties that were comparable to commercially available entirely petroleum-based counterparts, and that could be tuned in order to achieve enhanced physical properties and controlled degradability.

  3. Development of High Temperature, Improved Performance Polythioether Sealants, Coatings and Adhesives

    DTIC Science & Technology

    1986-06-30

    REPORT NO. NADC-87071-6 -0= Ifl1C FILE COPY in DEVELOPMENT OF HIGH TEMPERATURE, IMPROVED PERFORMANCE POLYTHIOETHER SEALANTS, COATINGS AND ADHESIVES ...Polythioether Sealants, Coatings, and Adhesives (UNCLASSIFIED) 12. PERSONAL AUTHOR(S) Lester Morris, David A. Jordan, Melvin B. Young 13a. TYPE OF REPORT...those of polyether urethanes providing th catalyst used in the polymerization is removed. Polythioether urethanes have significantly improved water and

  4. Metal-Filled Adhesives Amenable To X-Ray Inspection

    NASA Technical Reports Server (NTRS)

    Hermansen, Ralph D.; Sutherland, Thomas H.; Predmore, Roamer

    1994-01-01

    Adhesive joints between metal parts made amenable to nondestructive radiographic inspection by incorporating radiopaque fillers that increase x-ray contrasts of joints. Adhesives can be epoxies, urethanes, acrylics, phenolics, or silicones, with appropriate curing agents and with such modifiers as polysulfides, polyamides, or butadiene rubbers.

  5. Diethyl pyrocarbonate: formation of urethan in treated beverages.

    PubMed

    Löfroth, G; Gejvall, T

    1971-12-17

    Isotope dilution analyses with tritium-labeled diethyl pyrocarbonate show that the carcinogen urethan is formed in orange juice, white wine, and beer. Commercial use of the antimicrobial food additive diethyl pyrocarbonate can result in urethan concentrations of 0.1 to 0.2 milligram per liter in orange juice and of the order of 1 milligram per liter in white wine and beer.

  6. Development of Castor Oil Resistant Urethane Sonar Encapsulants.

    DTIC Science & Technology

    1983-03-01

    materials The systems of choice were found to be commercially ava| aI’ le polyether urethane polymers based upon toluene diisocyanate /polyoxytetramethylene... polymers based upon toluene diisocyanate / polyoxytetramethylene glycol (TDI/PTMG) proved to be the systems of choice. Urethane polymers having... diisocyanate (MDI) analogues of TDI/PTMG based polymers were rejected due to poor container stability and short application lives with the various liquid

  7. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering.

    PubMed

    Boissard, C I R; Bourban, P-E; Tami, A E; Alini, M; Eglin, D

    2009-11-01

    Biodegradable viscoelastic poly(ester urethane)-based scaffolds show great promise for tissue engineering. In this study, the preparation of hydroxyapatite nanoparticles (nHA)/poly(ester urethane) composite scaffolds using a salt-leaching-phase inverse process is reported. The dispersion of nHA microaggregates in the polymer matrix were imaged by microcomputed X-ray tomography, allowing a study of the effect of the nHA mass fraction and process parameters on the inorganic phase dispersion, and ultimately the optimization of the preparation method. How the composite scaffold's geometry and mechanical properties change with the nHA mass fraction and the process parameters were assessed. Increasing the amount of nHA particles in the composite scaffold decreased the porosity, increased the wall thickness and consequently decreased the pore size. The Young's modulus of the poly(ester urethane) scaffold was improved by 50% by addition of 10 wt.% nHA (from 0.95+/-0.5 to 1.26+/-0.4 MPa), while conserving poly(ester urethane) viscoelastic properties and without significant changes in the scaffold macrostructure. Moreover, the process permitted the inclusion of nHA particles not only in the poly(ester urethane) matrix, but also at the surface of the scaffold pores, as shown by scanning electron microscopy. nHA/poly(ester urethane) composite scaffolds have great potential as osteoconductive constructs for bone tissue engineering.

  8. Shuttle active thermal control system development testing. Volume 7: Improved radiator coating adhesive tests

    NASA Technical Reports Server (NTRS)

    Reed, M. W.

    1973-01-01

    Silver/Teflon thermal control coatings have been tested on a modular radiator system projected for use on the space shuttle. Seven candidate adhesives have been evaluated in a thermal vacuum test on radiator panels similar to the anticipated flight hardware configuration. Several classes of adhesives based on polyester, silicone, and urethane resin systems were tested. These included contact adhesives, heat cured adhesives, heat and pressure cured adhesives, pressure sensitive adhesives, and two part paint on or spray on adhesives. The coatings attached with four of the adhesives, two silicones and two urethanes, had no changes develop during the thermal vacuum test. The two silicone adhesives, both of which were applied to the silver/Teflon as transfer laminates to form a tape, offered the most promise based on application process and thermal performance. Each of the successful silicone adhesives required a heat and pressure cure to adhere during the cryogenic temperature excursion of the thermal-vacuum test.

  9. Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy.

    PubMed

    Khang, Dongwoo; Kim, Sung Yeol; Liu-Snyder, Peishan; Palmore, G Tayhas R; Durbin, Stephen M; Webster, Thomas J

    2007-11-01

    The contribution of nanoscale surface roughness on the adsorption of one key cell adhesive protein, fibronectin, on carbon nanotube/poly(carbonate) urethane composites of different surface energies was evaluated. Systematic control of various surface energies by creating different nanosurface roughness features was performed by mixing two promising biomaterials: multi-wall carbon nanotubes and poly(carbonate) urethane. High ratios of carbon nanotubes coated with poly(carbonate) urethane provided for greater hydrophilic surfaces because of higher nanosurface roughness although pure carbon nanotube surfaces were extremely hydrophobic. Fabrication methods followed in this study generated various homogenous nanosurface roughness values (ranging from 2 to 20nm root mean square (RMS) AFM roughness). With the aid of such nanosurface roughness values in composites, a model was developed that linearly correlated nanosurface roughness and associated nanosurface energy to fibronectin adsorption. Specifically, independent contributions of surface chemistry (70%) and surface nano-roughness (30%) were found to mediate fibronectin adsorption. The results of the present study showed why carbon nanotube/poly(carbonate) urethane composites enhance cellular functions and tissue growth by delineating the importance of their physical nano-roughness on promoting the adsorption of a protein well known to be critical for mediating the adhesion of anchorage-dependent cells.

  10. Continuous uroflow cystometry in the urethane-anesthetized mouse.

    PubMed

    Smith, Phillip P; Kuchel, George A

    2010-09-01

    In vivo animal cystometry represents an accepted methodology for the study of lower urinary tract physiology. A particular advantage of the mouse model is the availability of genetically modified strains, offering the possibility of linking individual genes to relevant physiological events. However, small voided volumes complicate the ability to obtain reliable pressure-flow data by gravimetric methods, due to non-continuous drop formation and release during voiding. We investigated the feasibility of a simple non-gravimetric continuous urine collection system during cystometry under urethane anesthesia, and compared urethane-anesthetized with awake cystometry. Cystometry was performed in awake and urethane-anesthetized female mice using a suprapubic tube. A simple, novel non-gravimetric method of urine collection was used in urethane-anesthetized animals to assess voided volume and permit flow rate calculations. Pressure and time-related variables were compared between groups. Voided urine collection appears to be complete and continuous in this model. Mean voided volume was 0.09 ± 0.020 ml, with an average flow rate of 0.029 ± 0.007 ml/sec. Urethane anesthesia delayed cystometric pressure/volume responses. However, micturition reflexes were intact and otherwise comparable between groups. Female mice void with pulsatile pressurization previously described in rats. Suprapubic voiding cystometry using a simple and reliable urine collection method under urethane anesthesia is feasible in mice, permitting the integration of voided volumes with pressure and time data. The inclusion of volume and flow data enhances the usefulness of the mouse model for in vivo assessment of detrusor and potentially sphincteric performance. © 2010 Wiley-Liss, Inc.

  11. Lung Tumors in Mice Receiving Different Schedules of Urethane

    DTIC Science & Technology

    1967-01-01

    tumors, but this phenotypic expression did become markedly segregated. Thus, there are strains such as A, in which almost all animals develop pulmonary...urethane," Khanolkar Felicitation Volume, Bombay , Indian Cancer Research Center, 1963, pp. 158-181. [11] P. S. HENSHAW and H. L. MEYER, "Further

  12. Chemoenzymatic Synthesis and Chemical Recycling of Poly(ester-urethane)s

    PubMed Central

    Hayashi, Hiroto; Yanagishita, Yoshio; Matsumura, Shuichi

    2011-01-01

    Novel poly(ester-urethane)s were prepared by a synthetic route using a lipase that avoids the use of hazardous diisocyanate. The urethane linkage was formed by the reaction of phenyl carbonate with amino acids and amino alcohols that produced urethane-containing diacids and hydroxy acids, respectively. The urethane diacid underwent polymerization with polyethylene glycol and α,ω-alkanediols and also the urethane-containing hydroxy acid monomer was polymerized by the lipase to produce high-molecular-weight poly(ester-urethane)s. The periodic introduction of ester linkages into the polyurethane chain by the lipase-catalyzed polymerization afforded chemically recyclable points. They were readily depolymerized in the presence of lipase into cyclic oligomers, which were readily repolymerized in the presence of the same enzyme. Due to the symmetrical structure of the polymers, poly(ester-urethane)s synthesized in this study showed higher Tm, Young’s modulus and tensile strength values. PMID:22016604

  13. Wood : adhesives

    Treesearch

    A.H. Conner

    2001-01-01

    This chapter on wood adhesives includes: 1) Classification of wood adhesives 2) Thermosetting wood adhesives 3) Thermoplastic adhesives, 4) Wood adhesives based on natural sources 5) Nonconventional bonding of wood 6) Wood bonding.

  14. Tailoring the degradation kinetics of poly(ester-carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds

    PubMed Central

    Hong, Yi; Guan, Jianjun; Fujimoto, Kazuro L.; Hashizume, Ryotaro; Pelinescu, Anca L.; Wagner, William R.

    2010-01-01

    Biodegradable elastomeric scaffolds are of increasing interest for applications in soft tissue repair and regeneration, particularly in mechanically active settings. The rate at which such a scaffold should degrade for optimal outcomes, however, is not generally known and the ability to select from similar scaffolds that vary in degradation behavior to allow such optimization is limited. Our objective was to synthesize a family of biodegradable polyurethane elastomers where partial substitution of polyester segments with polycarbonate segments in the polymer backbone would lead to slower degradation behavior. Specifically, we synthesized poly(ester carbonate)urethane ureas (PECUUs) using a blended soft segment of poly(caprolactone) (PCL) and poly(1,6-hexamethylene carbonate) (PHC), a 1,4-diisocyanatobutane hard segment and chain extension with putrescine. Soft segment PCL/PHC molar ratios of 100/0, 75/25, 50/50, 25/75, and 0/100 were investigated. Polymer tensile strengths varied from 14-34 MPa with breaking strains of 660-875%, initial moduli of 8-24 MPa and 100% recovery after 10% strain. Increased PHC content was associated with softer, more distensible films. Scaffolds produced by salt leaching supported smooth muscle cell adhesion and growth in vitro. PECUU in aqueous buffer in vitro and subcutaneous implants in rats of PECUU scaffolds showed degradation slower than comparable poly(ester urethane)urea and faster than poly(carbonate urethane)urea. These slower degrading thermoplastic polyurethanes provide opportunities to investigate the role of relative degradation rates for mechanically supportive scaffolds in a variety of soft tissue repair and reconstructive procedures. PMID:20188411

  15. Sex-related differences of urethane and sodium valproate effects on Ki-67 expression in urethane-induced lung tumors of mice.

    PubMed

    Stakišaitis, Donatas; Mozūraitė, Raminta; Kavaliauskaitė, Dovilė; Šlekienė, Lina; Balnytė, Ingrida; Juodžiukynienė, Nomeda; Valančiūtė, Angelija

    2017-06-01

    The aim of the present study was to evaluate sex differences in tumorigenesis by assessing the number of Ki-67-positive cells [Ki-67(+)] in urethane-induced mice lung tumors and the effect of sodium valproate (NaVP) in BALB/c mice. Gonad-intact and gonadectomized female and male mice were divided into the following groups: i) Treated with urethane, ii) treated with urethane and NaVP and iii) gonad-intact or gonadectomized control. Urethane (total 50 mg/mouse) was injected intraperitoneally. The NaVP 0.4% solution was administered orally for 6 months. Histologically, lung tumors were divided into adenomas and adenocarcinomas and assessed immunohistochemically using antibodies against Ki-67. The Ki-67(+) was calculated per one mm(2) of a tumor. In adenomas, Ki-67(+) in the urethane-treated gonad-intact males was significantly higher than in females (P=0.001) and in castrated males (P<0.01); Ki-67(+) in adenomas of the urethane-treated gonad-intact males was significantly higher than in urethane-NaVP-treated ones (P<0.04). No significant differences were found in analogous female groups. In adenocarcinomas, Ki-67(+) in urethane-treated gonad-intact males was significantly higher than in females and gonadectomized mice of both sexes (P<0.001), and in ovariectomized females was significantly higher than in ovary-intact group (P=0.01). A significantly higher number of Ki-67(+) cells were observed in gonad-intact adenocarcinomas of the urethane-NaVP-treated females compared with the urethane-treated ones (P<0.001). Comparing between urethane-NaVP-treated gonadectomized males and females in adenocarcinomas, determined that Ki-67(+) was significantly lower in females (P=0.005). In adenocarcinomas, Ki-67(+) in urethane-NaVP-treated gonadectomized males and females was significantly lower than in gonad-intact mice of the same sex (P<0.001). In summary, gonadectomy with NaVP treatment decreased Ki-67(+) in adenocarcinomas for mice of both sexes. The results of the present

  16. Development of urethane coating and potting material with improved hydrolytic and oxidative stability

    NASA Technical Reports Server (NTRS)

    Morris, D. E.

    1981-01-01

    A series of saturated hydrocarbon based urethanes was prepared and characterized for hydrolytic and oxidative stability. A series of ether based urethanes was used as a basis for comparison. The alkane base urethanes were found to be hydrolytically and oxidatively stable and had excellent electrical properties. The alkane based materials absorbed little or no water and were reversion resistant. There was little loss in hardness or weight when exposed to high temperature and humidity. Dielectric properties were excellent and suffered little adverse effects from the high temperature/humidity conditions. The alkane based urethanes were not degraded by ozone exposure.

  17. Characterization, biodegradability and blood compatibility of poly[(R)-3-hydroxybutyrate] based poly(ester-urethane)s.

    PubMed

    Liu, Qiaoyan; Cheng, Shaoting; Li, Zibiao; Xu, Kaitian; Chen, Guo-Qiang

    2009-09-15

    Poly(ester-urethane)s (PUs) were synthesized using hexamethylene diisocyanate (HDI) or toluene diisocyanate (TDI) to join short chains (M(n) = 2000) of poly(R-3-hydroxybutyrate) (PHB) diols and poly(epsilon-caprolactone) (PCL) diols with different feed ratios under different reaction conditions. The multiblock copolymers were characterized by nuclear magnetic resonance spectrometer (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), X-ray diffraction (XRD), and scanning electron microscope (SEM). XRD spectra and second DSC heat thermograms of the multiblock copolymers revealed that the crystallization of both PHB and PCL segments was mutually restricted, and, especially, the PCL segment limited the cold crystallization of the PHB segment. The SEM of platelet adhesion experiments showed that the hemocompatibility was affected to some extent by the chain flexibility of the polymers. Hydrolysis studies demonstrated that the hydrolytic degradation of PUs was generated from the scission of their ester bonds or/and urethane bonds. Simultaneously, the rate of ester bond scission was determined to some extent by the crystallization degree, which was further affected by the configuration of polymer chains. These highly elastic multiblock copolymers combining hemocompatibility and biodegradability may be developed into blood contact implant materials for biomedical applications. Copyright 2008 Wiley Periodicals, Inc.

  18. Deletion of virulence associated genes from attenuated African swine fever virus isolate OUR T88/3 decreases its ability to protect against challenge with virulent virus.

    PubMed

    Abrams, Charles C; Goatley, Lynnette; Fishbourne, Emma; Chapman, David; Cooke, Lyndsay; Oura, Christopher A; Netherton, Christopher L; Takamatsu, Haru-Hisa; Dixon, Linda K

    2013-08-15

    African swine fever virus (ASFV) causes an acute haemorrhagic disease of domestic pigs against which there is no effective vaccine. The attenuated ASFV strain OUR T88/3 has been shown previously to protect vaccinated pigs against challenge with some virulent strains including OUR T88/1. Two genes, DP71L and DP96R were deleted from the OUR T88/3 genome to create recombinant virus OUR T88/3ΔDP2. Deletion of these genes from virulent viruses has previously been shown to reduce ASFV virulence in domestic pigs. Groups of 6 pigs were immunised with deletion virus OUR T88/3ΔDP2 or parental virus OUR T88/3 and challenged with virulent OUR T88/1 virus. Four pigs (66%) were protected by inoculation with the deletion virus OUR T88/3ΔDP2 compared to 100% protection with the parental virus OUR T88/3. Thus the deletion of the two genes DP71L and DP96R from OUR T88/3 strain reduced its ability to protect pigs against challenge with virulent virus.

  19. Inhibition of bacterial and leukocyte adhesion under shear stress conditions by material surface chemistry.

    PubMed

    Patel, Jasmine D; Ebert, Michael; Stokes, Ken; Ward, Robert; Anderson, James M

    2003-01-01

    Biomaterial-centered infections, initiated by bacterial adhesion, persist due to a compromised host immune response. Altering implant materials with surface modifying endgroups (SMEs) may enhance their biocompatibility by reducing bacterial and inflammatory cell adhesion. A rotating disc model, which generates shear stress within physiological ranges, was used to characterize adhesion of leukocytes and Staphylococcus epidermidis on polycarbonate-urethanes and polyetherurethanes modified with SMEs (polyethylene oxide, fluorocarbon and dimethylsiloxane) under dynamic flow conditions. Bacterial adhesion in the absence of serum was found to be mediated by shear stress and surface chemistry, with reduced adhesion exhibited on materials modified with polydimethylsiloxane and polyethylene oxide SMEs. In contrast, bacterial adhesion was enhanced on materials modified with fluorocarbon SMEs. In the presence of serum, bacterial adhesion was primarily neither material nor shear dependent. However, bacterial adhesion in serum was significantly reduced to < or = 10% compared to adhesion in serum-free media. Leukocyte adhesion in serum exhibited a shear dependency with increased adhesion occurring in regions exposed to lower shear-stress levels of < or = 7 dyne/cm2. Additionally, polydimethylsiloxane and polyethylene oxide SMEs reduced leukocyte adhesion on polyether-urethanes. In conclusion, these results suggest that surface chemistry and shear stress can mediate bacterial and cellular adhesion. Furthermore, materials modified with polyethylene oxide SMEs are capable of inhibiting bacterial adhesion, consequently minimizing the probability of biomaterial-centered infections.

  20. Block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate).

    PubMed

    Chen, Zhifei; Cheng, Shaoting; Xu, Kaitian

    2009-04-01

    A series of block poly(ester-urethane) poly(3/4HB-HHxHO) urethanes (abbreviated as PUHO) based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB-diol) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate) (PHHxHO-diol) segments were synthesized by a facile way of melting polymerization using 1,6-hexamethylene diisocyanate (HDI) as the coupling agent, with different 3HB, 4HB, HHxHO compositions and segment lengths. The chemical structure, molecular weight and distribution were systematically characterized by (1)H, (13)C nuclear magnetic resonance spectrum (NMR), two-dimensional correlation spectroscopy (COSY ((1)H, (13)C) NMR), Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The thermal property was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The hydrophilicity was investigated by static contact angle of water and CH(2)I(2). DSC revealed that the poly(3/4HB-HHxHO) urethanes are almost amorphous with a little crystallinity (less than 6%) and T(g) from -23 degrees C to -3 degrees C. The polyurethanes are more hydrophobic (water contact angle 88 degrees -117 degrees ) than the P3/4HB and PHHxHO raw materials. The lactate dehydrogenase (LDH) assay and platelet adhesion determination showed that the obtained polyurethanes have much higher platelet adhesion property than raw materials and common biodegradable polymers polylactic acid (PLA) and poly(3-hydroxybutyrate) (PHB). Hydrophobicity and crystallinity degree are important factors to affect the platelet adhesion. All the properties can be tailored by changing the composition and segment length of prepolymers P3/4HB-diol and PHHxHO-diol.

  1. Abdominal Adhesions

    MedlinePlus

    ... Syndrome The Digestive System & How it Works Abdominal Adhesions What are abdominal adhesions? Abdominal adhesions are bands of fibrous tissue that ... or stool through the intestines. What causes abdominal adhesions? Abdominal surgery is the most frequent cause of ...

  2. Development of Photocrosslinkable Urethane-Doped Polyester Elastomers for Soft Tissue Engineering

    PubMed Central

    Zhang, Yi; Tran, Richard T.; Gyawali, Dipendra; Yang, Jian

    2012-01-01

    Finding an ideal biomaterial with the proper mechanical properties and biocompatibility has been of intense focus in the field of soft tissue engineering. This paper reports on the synthesis and characterization of a novel crosslinked urethane-doped polyester elastomer (CUPOMC), which was synthesized by reacting a previously developed photocrosslinkable poly (octamethylene maleate citrate) (POMC) prepolymers (pre-POMC) with 1,6-hexamethylene diisocyanate (HDI) followed by thermo- or photo-crosslinking polymerization. The mechanical properties of the CUPOMCs can be tuned by controlling the molar ratios of pre-POMC monomers, and the ratio between the prepolymer and HDI. CUPOMCs can be crosslinked into a 3D network through polycondensation or free radical polymerization reactions. The tensile strength and elongation at break of CUPOMC synthesized under the known conditions range from 0.73±0.12MPa to 10.91±0.64MPa and from 72.91±9.09% to 300.41±21.99% respectively. Preliminary biocompatibility tests demonstrated that CUPOMCs support cell adhesion and proliferation. Unlike the pre-polymers of other crosslinked elastomers, CUPOMC pre-polymers possess great processability demonstrated by scaffold fabrication via a thermally induced phase separation method. The dual crosslinking methods for CUPOMC pre-polymers should enhance the versatile processability of the CUPOMC used in various conditions. Development of CUPOMC should expand the choices of available biodegradable elastomers for various biomedical applications such as soft tissue engineering. PMID:23565318

  3. Development of Photocrosslinkable Urethane-Doped Polyester Elastomers for Soft Tissue Engineering.

    PubMed

    Zhang, Yi; Tran, Richard T; Gyawali, Dipendra; Yang, Jian

    2011-01-01

    Finding an ideal biomaterial with the proper mechanical properties and biocompatibility has been of intense focus in the field of soft tissue engineering. This paper reports on the synthesis and characterization of a novel crosslinked urethane-doped polyester elastomer (CUPOMC), which was synthesized by reacting a previously developed photocrosslinkable poly (octamethylene maleate citrate) (POMC) prepolymers (pre-POMC) with 1,6-hexamethylene diisocyanate (HDI) followed by thermo- or photo-crosslinking polymerization. The mechanical properties of the CUPOMCs can be tuned by controlling the molar ratios of pre-POMC monomers, and the ratio between the prepolymer and HDI. CUPOMCs can be crosslinked into a 3D network through polycondensation or free radical polymerization reactions. The tensile strength and elongation at break of CUPOMC synthesized under the known conditions range from 0.73±0.12MPa to 10.91±0.64MPa and from 72.91±9.09% to 300.41±21.99% respectively. Preliminary biocompatibility tests demonstrated that CUPOMCs support cell adhesion and proliferation. Unlike the pre-polymers of other crosslinked elastomers, CUPOMC pre-polymers possess great processability demonstrated by scaffold fabrication via a thermally induced phase separation method. The dual crosslinking methods for CUPOMC pre-polymers should enhance the versatile processability of the CUPOMC used in various conditions. Development of CUPOMC should expand the choices of available biodegradable elastomers for various biomedical applications such as soft tissue engineering.

  4. Comparison of surface modification of poly(ether urethanes) on physical properties and blood compatibility

    SciTech Connect

    Wrobleski, D.A.; Cash, D.L.; Hermes, R.E.

    1988-01-01

    Because of their good elastomeric properties including the ability to undergo repeated flexing without failure, polyurethanes are used in a number of biomedical applications including flexing diaphragms or coatings on surfaces in artificial hearts and heart assist devices. In particular, the poly(ether urethanes), are preferred for use in biomedical applications because of their greater hydrolytic stability as compared to poly(ester urethanes). However, poly(ether urethanes), as other polymeric materials in contact with blood, cause formation of thrombus and bacterial infections. These problems might be overcome by incorporation of antithrombogenic substances and/or antibacterial agents in the surface of the polymer. We have explored both of these methods by examining the infusion of polyvinylpyrrolidone (PVP) and poly(ethylene glycol) (PEG) into commercially available poly(ether urethanes) and the graft polymerization of N-vinyl pyrrolidone onto poly(ether urethanes). Preliminary results are presented here. 7 refs., 1 fig.

  5. Evaluation of urethane for feasibility of use in wind turbine blade design

    NASA Technical Reports Server (NTRS)

    Lieblein, S.; Ross, R. S.; Fertis, D. G.

    1979-01-01

    A preliminary evaluation was conducted of the use of cast urethane as a possible material for low-cost blades for wind turbines. Specimen test data are presented for ultimate tensile strength, elastic modulus, flexural strain, creep, and fatigue properties of a number of urethane formulations. Data are also included for a large-scale urethane blade section composed of cast symmetrical half-profiles tested as a cantilever beam. Based on these results, an analysis was conducted of a full-scale blade design of cast urethane that meets the design specifications of the rotor blades for the NASA/DOE experimental 100-kW MOD-0 wind turbine. Because of the low value of elastic modulus for urethane (around 457 000 psi), the design loads would have to be carried by metal reinforcement. Considerations for further evaluation are noted.

  6. Development of biodegradable crosslinked urethane-doped polyester elastomers

    PubMed Central

    Dey, Jagannath; Xu, Hao; Shen, Jinhui; Thevenot, Paul; Gondi, Sudershan R.; Nguyen, Kytai T.; Sumerlin, Brent S.; Tang, Liping; Yang, Jian

    2009-01-01

    Traditional crosslinked polyester elastomers are inherently weak, and the strategy of increasing crosslink density to improve their mechanical properties makes them brittle materials. Biodegradable polyurethanes, although strong and elastic, do not fare well in dynamic environments due to the onset of permanent deformation. The design and development of a soft, strong and completely elastic (100% recovery from deformation) material for tissue engineering still remains a challenge. Herein, we report the synthesis and evaluation of a new class of biodegradable elastomers, crosslinked urethane-doped polyesters (CUPEs), which is able to satisfy the need for soft, strong, and elastic biomaterials. Tensile strength of CUPE was as high as 41.07 ± 6.85 MPa with corresponding elongation at break of 222.66 ± 27.84%. The initial modulus ranged from 4.14 ± 1.71 MPa to 38.35 ± 4.5 MPa. Mechanical properties and degradation rates of CUPE could be controlled by varying the choice of diol used for synthesis, the polymerization conditions, as well as the concentration of urethane bonds in the polymer. The polymers demonstrated good in vitro and in vivo biocompatibilities. Preliminary hemocompatibility evaluation indicated that CUPE adhered and activated lesser number of platelets compared to PLLA. Good mechanical properties and easy processability make these materials well suited for soft tissue engineering applications. The introduction of CUPEs provides new avenues to meet the versatile requirements of tissue engineering and other biomedical applications. PMID:18801566

  7. Nanoscale Structure of Urethane/Urea Elastomeric Films

    NASA Astrophysics Data System (ADS)

    Reis, Dennys; Trindade, Ana C.; Godinho, Maria Helena; Silva, Laura C.; do Carmo Gonçalves, Maria; Neto, Antônio M. Figueiredo

    2017-02-01

    The nanostructure of urethane/urea elastomeric membranes was investigated by small-angle X-ray scattering (SAXS) in order to establish relationships between their structure and mechanical properties. The networks were made up of polypropylene oxide (PPO) and polybutadiene (PB) segments. The structural differences were investigated in two types of membranes with the same composition but with different thermal treatment after casting. Type I was cured at 70-80 °C and type II at 20 °C. Both membranes showed similar phase separation by TEM, with nanodomains rich in PB or PPO and 25 nm dimensions. The main difference between type I and type II membranes was found by SAXS. The type I membrane spectra showed, besides a broad band at a 27-nm q value (modulus of the scattering vector), an extra band at 6 nm, which was not observed in the type II membrane. The SAXS spectra were interpreted in terms of PPO, PB soft segments, and urethane/urea links, as well as hard moiety segregation in the reaction medium. This additional segregation ( q = 7 nm), although subtle, results in diverse mechanical behavior of in both membranes.

  8. Wood adhesion and adhesives

    Treesearch

    Charles R. Frihart

    2005-01-01

    An appreciation of rheology, material science, organic chemistry, polymer science, and mechanics leads to better understanding of the factors controlling the performance of the bonded assemblies. Given the complexity of wood as a substrate, it is hard to understand why some wood adhesives work better than other wood adhesives, especially when under the more severe...

  9. Biodegradable block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers.

    PubMed

    Ou, Wenfeng; Qiu, Handi; Chen, Zhifei; Xu, Kaitian

    2011-04-01

    A series of block poly(ester-urethane)s (abbreviated as PU3/4HB) based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) segments were synthesized by a facile way of melting polymerization using 1,6-hexamethylene diisocyanate (HDI) as the coupling agent and stannous octanoate (Sn(Oct)(2)) as catalyst, with different 4HB contents and segment lengths. The chemical structure, molecular weight and distribution were systematically characterized by (1)H nuclear magnetic resonance spectrum (NMR), Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The thermal property was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The hydrophilicity was investigated by static contact angle of deionized water and CH(2)I(2). DSC curves revealed that the PU3/4HB polyurethanes have their T(g) from -25.6 °C to -4.3 °C, and crystallinity from 2.5% to 25.3%, being almost amorphous to semi-crystalline. The obtained PU3/4HBs are hydrophobic (water contact angle 77.4°-95.9°), and their surface free energy (SFE) were studied. The morphology of platelets adhered on the polyurethane film observed by scanning electron microscope (SEM) showed that platelets were activated on the PU3/4HB films which would lead to blood coagulation. The lactate dehydrogenase (LDH) assay revealed that the PU3/4HBs displayed higher platelet adhesion property than raw materials and biodegradable polymer polylactic acid (PLA) and would be potential hemostatic materials. Crystallinity degree, hydrophobicity, surface free energy and urethane linkage content play important roles in affecting the LDH activity and hence the platelet adhesion. CCK-8 assay showed that the PU3/4HB is non-toxic and well for cell growth and proliferation of mouse fibroblast L929. It showed that the hydrophobicity is an important factor for cell growth while 3HB content of the PU3/4HB is important for the cell proliferation. Through changing the

  10. Development of modified poly(perfluoropropyleneoxide) urethane systems for use in liquid oxygen and in enriched 100 percent oxygen atmosphere

    NASA Technical Reports Server (NTRS)

    Harrison, E. S.

    1973-01-01

    This program consisted of two separate though related phases. The initial phase was directed toward improving the mechanical and adhesive properties of the very highly fluorinated-polyurethane resin system derived from the hydroxyl-terminated polyperfluoropropylene oxide and 6-chloro-2,4,5-trifluoro-m-phenylene diisocyanate. Various new curing agents for this system were investigated, with the goal of providing a more thermally stable crosslink (cure) mechanism to provide wider applicability and fuller utilization of the outstanding oxygen resistance of the PFPO system. Complete resistance to liquid- and gaseous-oxygen impact at presures as high as 1035 N/sq cm were attained with the use of the PFPO resin castings. The second corollary phase was directed toward investigating the feasibility and optimization of the allophanate cured, urethane extended polymer derived from hydroxyl-terminated polyperfluoropropyleneoxide and 6-chloro-2,4,5-trifluoro-m-phenylene diisocyanate, as the adhesive system for use in a weld-bond configuration for liquid oxygen tankage. The synthesis and application procedures of the adhesive system to insure liquid oxygen compatibility (under 10 kg-m loading), and the development of procedures and techniques to provide high quality weld-bonded joint configurations were studied.

  11. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers

    NASA Astrophysics Data System (ADS)

    Denissen, Wim; Droesbeke, Martijn; Nicolaÿ, Renaud; Leibler, Ludwik; Winne, Johan M.; Du Prez, Filip E.

    2017-03-01

    Vinylogous urethane based vitrimers are polymer networks that have the intrinsic property to undergo network rearrangements, stress relaxation and viscoelastic flow, mediated by rapid addition/elimination reactions of free chain end amines. Here we show that the covalent exchange kinetics significantly can be influenced by combination with various simple additives. As anticipated, the exchange reactions on network level can be further accelerated using either Brønsted or Lewis acid additives. Remarkably, however, a strong inhibitory effect is observed when a base is added to the polymer matrix. These effects have been mechanistically rationalized, guided by low-molecular weight kinetic model experiments. Thus, vitrimer elastomer materials can be rationally designed to display a wide range of viscoelastic properties.

  12. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers

    PubMed Central

    Denissen, Wim; Droesbeke, Martijn; Nicolaÿ, Renaud; Leibler, Ludwik; Winne, Johan M.; Du Prez, Filip E.

    2017-01-01

    Vinylogous urethane based vitrimers are polymer networks that have the intrinsic property to undergo network rearrangements, stress relaxation and viscoelastic flow, mediated by rapid addition/elimination reactions of free chain end amines. Here we show that the covalent exchange kinetics significantly can be influenced by combination with various simple additives. As anticipated, the exchange reactions on network level can be further accelerated using either Brønsted or Lewis acid additives. Remarkably, however, a strong inhibitory effect is observed when a base is added to the polymer matrix. These effects have been mechanistically rationalized, guided by low-molecular weight kinetic model experiments. Thus, vitrimer elastomer materials can be rationally designed to display a wide range of viscoelastic properties. PMID:28317893

  13. Preparation and properties of an internal mold release for rigid urethane foam

    SciTech Connect

    Parker, B.G.

    1980-08-01

    Internal mold releases which can be added to urethane foam resin were synthesized and evaluated. The use of this type of release agent eliminates the repeated cleaning and recoating of molds, a procedure required with surface-applied mold releases. The internal mold releases investigated are the reaction products of a fatty acid ester, containing an active hydrogen, and a monoisocycanate. The use of an internal mold release resulted in urethane foam with good releasability and excellent surface bondability. Several properties of rigid urethane foam formulated with the use of an internal mold release are presented.

  14. Biocompatible Adhesives

    DTIC Science & Technology

    1991-03-01

    pressure sensitive elastomer, polyisobutylene. with water soluble adhesives such as carboxy methyl ceiiulose, pectin and gelatin for adhesion to... cellulose and nylon films, were most often used in 180 peel adhesion tests on the adhesives. Films were cast on one substrate and the other was moistened...irritation. 4. Peel adhesion to hydrated cellulose , nylon and cotton cloth substrates was satisfactory. So too was the peel adhesion as a function of

  15. Structure and relaxation dynamics of poly(amide urethane)s with bioactive transition metal acetyl acetonates in hard blocks.

    PubMed

    Kalogeras, I M; Roussos, M; Vassilikou-Dova, A; Spanoudaki, A; Pissis, P; Savelyev, Y V; Shtompel, V I; Robota, L P

    2005-12-01

    Structural characteristics, thermal transitions and molecular dynamics of selected poly(amide urethane)s with transition metal acetyl acetonates Me(AcAc)(2) (Me = Sn(4+), Zn(2+), Cu(2+), Pb(2+)) as chain extenders, were comparatively investigated using small- and wide-angle X-ray scattering (SAXS, WAXS), differential scanning calorimetry (DSC), and dielectric techniques (dielectric relaxation spectroscopy, DRS; thermally stimulated currents, TSC). We studied the influence of metal chelates on the mixing of the soft-segment (SS) and hard-segment (HS) domains and the related degree of microphase separation (DMS). The reactivity of Me(AcAc)(2) with macrodiisocyanate was found to decrease in the order Sn(AcAc)(2)Cl(2) > Cu(AcAc)(2) > Zn(AcAc)(2) > Pb(AcAc)(2). While Pb(AcAc)(2) shows a higher tendency for crystallisation, both the dielectric and calorimetric results suggest that the corresponding polyurethane has comparatively low DMS. The type of the transition metal has moderate effect on the glass transition temperature and no influence on the shape of the dielectric alpha relaxation signal, indicating weak interactions between metal ions and SS domains. In contrast, structural parameters and the dielectric behaviour of the beta relaxation suggest preference for hydrogen-bonding interactions between Sn(4+) and Cu(2+) metal-chelates and HS domains. The temperature dependence of dc conductivity sigma(dc) is described by the Vogel-Tammann-Fulcher equation and signifies the coupling between the mobility of polymeric chains and charges' motion. It may be expected that the present combination of techniques and particular results with respect to DMS will contribute to the development and testing of novel biodegradation-resistant and antibacterial metal-polyurethanes for biotechnological and industrial applications.

  16. Structure and relaxation dynamics of poly(amide urethane)s with bioactive transition metal acetyl acetonates in hard blocks

    NASA Astrophysics Data System (ADS)

    Kalogeras, I. M.; Roussos, M.; Vassilikou-Dova, A.; Spanoudaki, A.; Pissis, P.; Savelyev, Y. V.; Shtompel, V. I.; Robota, L. P.

    2005-12-01

    Structural characteristics, thermal transitions and molecular dynamics of selected poly(amide urethane)s with transition metal acetyl acetonates Me(AcAc){2} (Me = Sn4+, Zn2+, Cu2+, Pb2+) as chain extenders, were comparatively investigated using small- and wide-angle X-ray scattering (SAXS, WAXS), differential scanning calorimetry (DSC), and dielectric techniques (dielectric relaxation spectroscopy, DRS; thermally stimulated currents, TSC). We studied the influence of metal chelates on the mixing of the soft-segment (SS) and hard-segment (HS) domains and the related degree of microphase separation (DMS). The reactivity of Me(AcAc){2} with macrodiisocyanate was found to decrease in the order Sn(AcAc){2}Cl{2} > Cu(AcAc){2} > Zn(AcAc){2} > Pb(AcAc){2}. While Pb(AcAc){2} shows a higher tendency for crystallisation, both the dielectric and calorimetric results suggest that the corresponding polyurethane has comparatively low DMS. The type of the transition metal has moderate effect on the glass transition temperature and no influence on the shape of the dielectric α relaxation signal, indicating weak interactions between metal ions and SS domains. In contrast, structural parameters and the dielectric behaviour of the β relaxation suggest preference for hydrogen-bonding interactions between Sn4+ and Cu2+ metal-chelates and HS domains. The temperature dependence of dc conductivity σ dc is described by the Vogel-Tammann-Fulcher equation and signifies the coupling between the mobility of polymeric chains and charges' motion. It may be expected that the present combination of techniques and particular results with respect to DMS will contribute to the development and testing of novel biodegradation-resistant and antibacterial metal-polyurethanes for biotechnological and industrial applications.

  17. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    NASA Astrophysics Data System (ADS)

    Tajau, Rida; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik

    2014-02-01

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  18. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    SciTech Connect

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd

    2014-02-12

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  19. Experimental urethane anaesthesia prevents digoxin intoxication: electrocardiographic and histological study in rabbit.

    PubMed

    Princi, T; Delbello, G; Grill, V

    2000-10-01

    An electrocardiographic and histological study was performed in rabbit to detect the effects of urethane (ethyl carbamate) intraperitoneal (i.p.) anaesthesia in digoxin intoxication, since it has been previously shown that this anaesthetic and digitalis glycosides exert specific peripheral effects on the cardiovascular system involving central structures of the autonomic nervous system. We observed that i.p. urethane anaesthesia prevented the onset of the electrocardiographic signs of digitalis intoxication, as well as inhibiting the appearance of histological myocardial alterations after treatment with toxic digoxin doses. On the other hand, lethal arrhythmias and severe myocardial damage were observed in animals that had not undergone preliminary urethane anaesthesia. These results indicate that the effect exerted by urethane in preventing the toxic action of digoxin is probably due to a decrease of sympathetic activity in anaesthetized animals by centrally mediated sympathetic inhibition. Copyright 2000 Academic Press.

  20. The effect of arsenic on urethan-induced adenoma formation in Swiss mice.

    PubMed Central

    Blakley, B R

    1987-01-01

    Female Swiss mice were exposed to sodium arsenite or sodium aresenate in the drinking water for 15 weeks at concentrations ranging from 0 to 100 micrograms/mL arsenic content. After three weeks of the 15 week exposure period, the mice were administered urethan (1.5 mg/g) intraperitoneally. Pulmonary adenoma formation was evaluated 12 weeks later. Arsenic exposure produced a protective effect with respect to tumor development. Both forms of arsenic reduced the size and number of pulmonary adenomas observed per mouse. In addition, urethan-induced sleeping times which reflect the rate of urethan metabolism or excretion remained unchanged. This suggests that arsenic exposure does not alter urethan excretion and is not a factor influencing subsequent adenoma formation of these levels of exposure. PMID:3607654

  1. Malleable and Recyclable Poly(urea-urethane) Thermosets bearing Hindered Urea Bonds.

    PubMed

    Zhang, Yanfeng; Ying, Hanze; Hart, Kevin R; Wu, Yuxiao; Hsu, Aaron J; Coppola, Anthony M; Kim, Tae Ann; Yang, Ke; Sottos, Nancy R; White, Scott R; Cheng, Jianjun

    2016-09-01

    Poly(urea-urethane) thermosets containing the 1-tert-butylethylurea (TBEU) structure feature a reversible dissociation/association process of their covalent linkages under mild conditions. Unlike conventional thermosets, TBEU-based poly(urea-urethane) thermosets maintain their malleability after curing. Under high temperature (100 °C) and applied pressure (300 kPa), ground TBEU thermoset powder can be remolded to bulk after 20 min.

  2. Development of low viscosity alkane-based urethane for connector potting applications

    NASA Technical Reports Server (NTRS)

    Morris, D. E.

    1983-01-01

    Two series of saturated hydrocarbon-based urethanes were prepared with isophorone diisocyanate and one series with methyl bis (4-cyclohexyl isocyanate). The urethanes with molecular weights as great as 2500 had viscosities low enough and a working life long enough to be used in potting, molding, and coating applications. Specimens were prepared and mechanical properties such as hardness, tensile strength elongation, and tear strength were determined. Thermomechanical properties (glass transition and expansion coefficient) and thermogravimetric properties were determined.

  3. Use of urethane foam in the decontamination and decommissioning of nuclear facilities

    SciTech Connect

    Hermetz, R.E.

    1986-01-01

    Urethane foam is being used in decontamination and decommissioning work in radioactively contaminated areas at Monsanto Research Corporation's Mound facility. Used in a two-step method, the foam is first sprayed onto the interior surfaces of contaminated gloveboxes, fixing residual contamination beneath the urethane. The foam is then used to package and stabilize gloveboxes inside standard transuranic shipping containers. The procedure reduces health and safety risks, and has proven cost effective.

  4. The Use of Thermal Spraying to Enhance the Bonding Characteristics of a Urethane Coated Propeller

    DTIC Science & Technology

    2007-11-02

    A TRIDENT SCHOLAR PROJECT REPORT NO. 265 The Use of Thermal Spraying to Enhance the Bonding Characteristics of a Urethane Coated Propeller UNITED...Use of Thermal Spraying to Enhance the Bonding Characteristics of a Urethane Coated Propeller 6. AUTHOR(S) Poorman, Corey A. 7. PERFORMING ORGANIZATION...chosen was thermal spraying , specifically arc wire spraying , which created a rough, porous surface. This type of surface promoted mechanical bonding, as

  5. NTP technical report on toxicity studies of urethane in drinking water and urethane in 5% ethanol administered to F344/N rats and B6C3F1 mice.

    PubMed

    Chan, P C

    1996-03-01

    Urethane, a byproduct of fermentation found in alcoholic beverages, is carcinogenic in rodents and is classified by the International Agency for Research on Cancer as a possible human carcinogen. The United States Food and Drug Administration nominated urethane for study because of the widespread exposure of humans through the consumption of fermented foods and beverages and because of a lack of adequate dose-response data about the carcinogenicity of urethane with and without the coadministration of ethanol. Comparative studies of urethane in drinking water and in 5% ethanol were conducted to investigate possible effects of ethanol on urethane toxicity. Toxicokinetic studies of urethane in drinking water and in 5% ethanol and genetic toxicity studies of urethane in vivo and in vitro were also conducted. Groups of 10 male and 10 female F344/N rats and B6C3F1 mice, 6 weeks of age, received 0, 110, 330, 1,100, 3,300, or 10,000 ppm urethane in drinking water or in 5% ethanol for 13 weeks. Toxicokinetic evaluations were performed for urethane in the plasma of male mice after 13 weeks of administration in drinking water or 5% ethanol. The mutagenicity of urethane in Salmonella typhimurium strains TA97, TA98, TA100, TA1535, and TA1537 with and without S9 was tested at doses up to 16,666 micrograms/plate; urethane was also tested for induction of sister chromatid exchanges and chromosomal aberrations in cultured Chinese hamster ovary cells and sex-linked recessive lethal mutations and chromosomal reciprocal translocations in Drosophila melanogaster. The frequency of micronucleated erythrocytes induced in peripheral blood and bone marrow cells of mice by urethane in drinking water and in 5% ethanol was also evaluated. In rats that received urethane in drinking water, seven males and four females administered 10,000 ppm and one female administered 3,300 ppm died before the end of the study; body weight gains were reduced at these concentrations. Two males and all females

  6. Low-VOC wood floor varnishes from waterborne oil-modified urethanes

    SciTech Connect

    Ingle, D.M.; Petschke, G.H.

    1997-12-31

    Varnishes protect wood flooring and enhance its beauty. Varnish compositions have varied from drying oils and alkyds to more durable systems (moisture-cured urethanes, oil-modified urethanes, epoxies and UV-curable coatings). Some chemistries are better suited for professional or factory applied situations. Oils, alkyds and oil-modified urethanes (OMU) are suitable for onsite professional application or even refinish application by homeowners (DIY market). These materials traditionally have been high in VOC. Recently, waterborne (WB) systems (such as polyurethane dispersions) with greatly reduced VOC have been used; high costs and relatively poor durability are drawbacks. A new generation of high performance waterborne oil-modified urethane is now available with extended shelf-stability required for contractor and consumer markets. Formulated varnishes are coming onto the market that offer performance similar to conventional OMU, but with significant reductions in VOC. For example, a typical formulation for a conventional solvent-borne oil-modified urethane can be supplied at 1.6 lb/gal (less water). This represents a VOC reduction of 70-75% at equal application coating weight. Furthermore, waterborne oil-modified urethane offers advantages over polyurethane dispersions in performance areas such as durability and mar resistance.

  7. The Suitability of Propofol Compared with Urethane for Anesthesia during Urodynamic Studies in Rats.

    PubMed

    Moheban, Adam A; Chang, Huiyi H; Havton, Leif A

    2016-01-01

    Urethane anesthesia preserves many reflex functions and is often the preferred anesthetic for urodynamic studies in rats. Because of the toxicity profile of urethane, its use as an anesthetic typically is limited to acute and terminal investigations. Alternative anesthetic options are needed for longitudinal studies of micturition reflexes in rats. In this study, we evaluated propofol anesthesia administered at constant rate infusion at different planes of anesthesia in rats for combined cystometrography and external urethral sphincter (EUS) EMG in rats. No reflex micturition was noted after rats received 100%, 80%, or 60% of a previously reported anesthetic dose of propofol. At 40% of the standard propofol dose, a subset of rats showed reflex voiding, with bladder contractions and associated EUS EMG activity. In contrast, urethane anesthesia at a surgical plane allowed for reflex voiding with bladder contractions and EUS activation. Latency to leaking or voiding was longer in rats under propofol anesthesia than in those under urethane anesthesia. In a subset of rats with reflex voiding under propofol anesthesia, voiding efficiency was decreased compared with that of rats anesthetized with urethane. We conclude that propofol anesthesia suppresses micturition reflexes in rats more efficiently than did urethane. Propofol is a suitable anesthetic for longitudinal studies in rats, but its use for urodynamic evaluations is limited in these animals due to its marked suppression of both bladder contractions and EUS EMG activation.

  8. Degradation of poly(carbonate urethane) by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Özdemir, T.; Usanmaz, A.

    2007-06-01

    Poly(carbonate urethane) (PCU), is a valuable commercial engineering polymer. In order to understand the possible use of PCU in radioactive waste management as a solidifying agent or as a disposal container, radiation stability of the PCU is studied by Co-60 gamma irradiations at two different dose rates of 1540 and 82.8 Gy/h. The total dose of irradiation was up to 6.24 MGy. Degradation nature was tested by studying the changes in mechanical and thermal properties with rate and total dose of irradiation. Ultimate tensile strength and toughness first increased and then decreased with the irradiation dose. Half value dose (HVD) for elongation was 4010 kGy and for tensile strength 6010 kGy at the dose rate of 1540 Gy/h. The non-irradiated PCU transparent color changed to yellow and then brown with increased irradiation dose. The FTIR spectral analysis showed a random scission of polymer with irradiation. From the experimental observation, it was shown that PCU can be used for embedding radioactive waste for about 300 years.

  9. Shape memory polymers based on uniform aliphatic urethane networks

    SciTech Connect

    Wilson, T S; Bearinger, J P; Herberg, J L; Marion III, J E; Wright, W J; Evans, C L; Maitland, D J

    2007-01-19

    Aliphatic urethane polymers have been synthesized and characterized, using monomers with high molecular symmetry, in order to form amorphous networks with very uniform supermolecular structures which can be used as photo-thermally actuable shape memory polymers (SMPs). The monomers used include hexamethylene diisocyanate (HDI), trimethylhexamethylenediamine (TMHDI), N,N,N{prime},N{prime}-tetrakis(hydroxypropyl)ethylenediamine (HPED), triethanolamine (TEA), and 1,3-butanediol (BD). The new polymers were characterized by solvent extraction, NMR, XPS, UV/VIS, DSC, DMTA, and tensile testing. The resulting polymers were found to be single phase amorphous networks with very high gel fraction, excellent optical clarity, and extremely sharp single glass transitions in the range of 34 to 153 C. Thermomechanical testing of these materials confirms their excellent shape memory behavior, high recovery force, and low mechanical hysteresis (especially on multiple cycles), effectively behaving as ideal elastomers above T{sub g}. We believe these materials represent a new and potentially important class of SMPs, and should be especially useful in applications such as biomedical microdevices.

  10. Phase Separation of Model Segmented Poly(Carbonate Urethanes)

    NASA Astrophysics Data System (ADS)

    Hernandez, Rebeca; Hung, Elena; Runt, James

    2006-03-01

    The present paper focuses on the phase separated morphology and segment demixing of model poly(carbonate urethanes) [PCU] with hard segment contents ranging from 30 -- 65% and soft segments composed of 1,6 poly(hexamethylene carbonate) [MW = 1K]. Hard segments were formed from 4,4'-methylenediphenyl diisocyanate and 1,4 butanediol. This family of materials represents a recent approach in the development of polyurethanes with improved long-term biostability, and is under clinical investigation in a number of biomedical devices. Only a single glass transition temperature was observed for each copolymer, increasing in temperature with increasing hard segment content. However, loss spectra from dynamic mechanical analysis showed clear evidence of two mixed phases. The results of small-angle X-ray scattering and tapping mode AFM experiments were consistent with these observations and will be discussed. Finally, these results will be compared with initial findings on phase separation in another family of polyurethane copolymers of current interest as blood-contact materials in biomedical devices having mixed poly(dimethylsiloxane) -- poly(hexamethyleneoxide) soft segments.

  11. Characteristics of Biodegradable Poly(Ester-Urethanes) with Side Chains

    NASA Astrophysics Data System (ADS)

    Stirna, U.; Yakushin, V.; Dzene, A.; Tupureina, V.; Shits, I.

    2000-09-01

    Two series of segmented poly(ester-urethanes) (SPEU) have been studied. The flexible segment of SPEU was formed from polycaprolactonediols (PCL diols) with a molecular mass of 600 to 10000 and the rigid one — from a blend of 2.4 and 2.6-toluene diisocyanates (TDI) and a chain extender. The first series of SPEU contained no side branches, whereas in the second series, side branches in the form of long chains of aliphatic structure were present at the rigid segment. The tensile strength of SPEU decreased when the molecular mass of the flexible segment increased from 600 to 2000; in this case, the specimens were of amorphous structure. An increase in the molecular mass of the flexible segment from 2000 to 10000 led to an increase in its degree of crystallinity and in the melting point, fusion enthalpy, tensile strength, yield stress in tension, and packing coefficient of SPEU. The side chains at the rigid segment affected the degree of phase separation insignificantly, but decreased the order of the structure, the glass transition temperature, and strength properties of SPEU, whereas the side chains at the flexible segment reduced its crystallinity.

  12. Multiple-shape memory polymers from benzoxazine-urethane copolymers

    NASA Astrophysics Data System (ADS)

    Prathumrat, Peerawat; Tiptipakorn, Sunan; Rimdusit, Sarawut

    2017-06-01

    In this research, multiple-shape memory polymers were prepared from benzoxazine (BA-a) resin and a urethane prepolymer (PU). The effects of BA-a resin content on the thermal, mechanical and multiple-shape memory properties were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis, dynamic mechanical analysis, a flexural test and a multiple-shape memory test. The results revealed that the suitable curing conversions of BA-a:PU resin mixtures affect the shape memory behaviors. The BA-a/PU copolymers demonstrated an increase in flexural strength and flexural modulus at various deformation temperatures with an increase in the BA-a mass ratio from 55%-80%, whereas the thermal properties of these binary systems, i.e. glass transition temperature (T g), degradation temperature (T d) and char yield, were also found to increase with an increase in BA-a content. In addition, the two-step bending test was carried out using a universal testing machine to evaluate the multiple-shape memory properties. The results revealed that the BA-a/PU samples exhibited high values of shape fixity (70%-96% for the first temporary shape and 83%-99% for the second temporary shape) and shape recovery (88%-96% for the first temporary shape and 97%-99% for the original shape).

  13. On imparting radiopacity to a poly(urethane urea).

    PubMed

    James, Nirmala R; Jayakrishnan, A

    2007-07-01

    A poly(urethane urea) (PUU) synthesized from 2,4-toluene diisocyanate (TDI) and polyethylene glycol (PEG) with ethylenediamine (ED) as the chain extender was rendered radiopaque by attaching 3,4,5-triiodobenzoic acid (TIB) onto the polymer backbone. The radiopaque polyurethane obtained was characterized by infra red (IR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-radiography. By optimizing the reaction conditions, it was possible to carry out the modification without adversely affecting the properties of the starting polymer significantly. IR spectral evidence suggested that the hydrogen bonded structure of PUU remained undisrupted even after modification. However, the product exhibited altered thermal characteristics when compared to the parent polymer. Degradation characteristics as observed from the TGA remained unchanged, while one of the glass transitions got shifted to a lower temperature. The observed changes in thermal characteristics were explained on the basis of possible inter-phase mixing and the changes in the close packing of the polymer chains by the introduction of bulky iodine atoms.

  14. Dynamic mechanical analysis of high pressure polymerized urethane dimethacrylate.

    PubMed

    Béhin, Pascal; Stoclet, Grégory; Ruse, N Dorin; Sadoun, Michaël

    2014-07-01

    The aim of this study was to compare the viscoelastic properties of high pressure (HP) polymerized urethane dimethacrylate (UDMA) with those of control, ambient pressure thermo-polymerized and photo-polymerized, UDMA and to assess the effect of varying polymerization parameters (protocol, temperature, and initiator) on the viscoelastic properties of HP polymerized UDMA. The viscoelastic properties of the two control polymers, polymerized under atmospheric pressure, and four experimental polymers, polymerized under HP, were determined via dynamic mechanical analysis (DMA), in three point bending configuration. Atomic force microscopy (AFM) was used to characterize fractured polymer surface morphologies. The results showed that: HP-polymerization lead to a polymer with significantly higher Tg and E'rub, indicative of a higher crosslink density; modifying the polymerization protocol resulted in a significant increase in tanδ; increasing the polymerization temperature lead to a significant decrease in E'rub and Tg; and that the polymer with no initiator had the lowest E', E″, Tg, and E'rub and the highest tanδ, suggesting that under this conditions a polymer with significantly reduced crosslink density had been obtained. A characteristic nodular appearance was seen for the two control polymers under AFM, while a modified surface morphology was present in the case of HP polymerized materials. The DMA results suggest that polymerization under HP resulted in polymers with an increased crosslink density and that the higher polymerization temperature or the lack of initiator was detrimental to the viscoelastic properties determined. Changes in polymer network morphology were identified by AFM characterization. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Investigation of non-isocyanate urethane functional latexes and carbon nanofiller/epoxy coatings

    NASA Astrophysics Data System (ADS)

    Meng, Lei

    This dissertation consists of two parts. In the first part, a new class of non-isocyanate urethane methacrylates was synthesized and the effect of the new monomers on the urethane functional latex was investigated. The second part focused on a comparison of carbon nanofillers in inorganic/organic epoxy coating system for anticorrosive applications. A new class of non-isocyanate urethane methacrylates (UMAs) monomers was synthesized through an environmentally friendly non-isocyanate pathway. The kinetics of seeded semibatch emulsion polymerization of UMAs with methyl methacrylate (MMA) and butyl acrylate (BA) was monitored. The particle size and morphology were investigated by dynamic light scattering (DLS), ultrasound acoustic attenuation spectroscopy (UAAS) and transmission electron microscopy (TEM). The minimum film formation temperature (MFFT), mechanical and viscoelastic properties were studied. It was found that the emulsion polymerization processes all proceeded via Smith-Ewart control, leading to the uniform morphology and particle size. The glass transition temperature (Tg) and the mechanical properties of poly(MMA/BA/UMA) decreased with the increasing chain length of urethane methacrylate monomers due to the increasing flexibility of side chains. Without the effect of Tg, lower MFFT and improved mechanical properties were observed from urethane functional latexes. The improved mechanical properties were due to the increasing particle interaction by forming hydrogen bonding. Furthermore, the effect of urethane functionality in terms of the polymer composition, the location and the concentration was investigated by the batch, single-stage and two-stage semibatch polymerization of 2-[(butylcarbamoyl)oxy]ethyl methacrylate (BEM) with MMA and BA. The core-shell and homogeneous structures were evaluated by TEM, differential scanning calorimetry (DSC), and solid state nuclear magnetic resonance (SS-NMR). The compositional drift was observed from the batch

  16. Spectroscopic and structural studies of allyl urethane derivative of Monensin A sodium salt

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Janczak, Jan; Brzezinski, Bogumil; Bartl, Franz

    2013-07-01

    A new derivative of polyether antibiotic Monensin A sodium salt its allyl urethane (MON-UR2-Na) was synthesised and its structure was studied by X-ray, FT-IR, NMR, and ESI-MS methods. The results of these studies demonstrated that the oxygen atom of the Cdbnd O urethane group is not engaged in the coordination of the Na+ as postulated previously. The crystal space group is P21 with a = 12.0378(11), b = 12.4495(11), c = 14.9690(14), β = 94.791(8) and Z = 2. The structure determined in the present study exhibits significant differences with respect to the earlier published structure of phenyl urethane of Monensin. A comparison of these structures clearly shows that not only the functional urethane group but also its substituent strongly influence the structure of this type of derivatives of Monensin A. X-ray data and spectroscopic and spectrometric behaviour of the new derivative of Monensin A are discussed in detail and compared to the structure of phenyl urethane of Monensin A sodium salt.

  17. Synthesis and Evaluation of a Novel Co-Initiator for Dentin Adhesives: Polymerization Kinetics and Leachables Study

    NASA Astrophysics Data System (ADS)

    Ge, Xueping; Ye, Qiang; Song, Linyong; Laurence, Jennifer S.; Spencer, Paulette

    2015-04-01

    A new tertiary amine co-initiator containing three methacrylate-urethane groups was synthesized for the application in dentin adhesives. The photopolymerization kinetics and leaching of unreacted components from methacrylate-based dental polymers formulated with this new co-initiator were determined. The newly synthesized co-initiator showed good chemical stability and decreased amine release from the initiator system. This study provides important information for the future development of biocompatible dentin adhesives/composites.

  18. Synthesis and evaluation of a novel co-initiator for dentin adhesives: polymerization kinetics and leachables study

    PubMed Central

    Ge, Xueping; Ye, Qiang; Song, Linyong; Laurence, Jennifer S.; Spencer, Paulette

    2015-01-01

    A new tertiary amine co-initiator (TUMA) containing three methacrylate-urethane groups was synthesized for application in dentin adhesives. The photopolymerization kinetics and leaching of unreacted components from methacrylate-based dental polymers formulated with this new co-initiator were determined. The newly synthesize co-initiator showed good chemical stability and decreased amine release from the initiator system. This study provides important information for the future development of biocompatible dentin adhesives/composites. PMID:26052187

  19. Allergic contact dermatitis due to urethane acrylate in ultraviolet cured inks.

    PubMed Central

    Nethercott, J R; Jakubovic, H R; Pilger, C; Smith, J W

    1983-01-01

    Seven workers exposed to ultraviolet printing inks developed contact dermatitis. Six cases were allergic and one irritant. A urethane acrylate resin accounted for five cases of sensitisation, one of which was also sensitive to pentaerythritol triacrylate and another also to an epoxy acrylate resin. One instance of allergy to trimethylpropane triacrylate accounted for the sixth case of contact dermatitis in this group of workers. An irritant reaction is presumed to account for the dermatitis in the individual not proved to have cutaneous allergy by patch tests. In this instance trimethylpropane triacrylate was thought to be the most likely irritating agent. Laboratory investigation proved urethane acrylate to be an allergen. The results of investigations of the sensitisation potentials of urethane acrylate, methylmethacrylate, epoxy acrylate resins, toluene-2,4-diisocyanate, and other multifunctional acrylic monomers in the albino guinea pig are presented. The interpretation of such predictive tests is discussed. Images PMID:6223656

  20. Thiamine whole blood and urinary pharmacokinetics in rats: urethan-induced dose-dependent pharmacokinetics.

    PubMed

    Pipkin, J D; Stella, V J

    1982-02-01

    The whole blood pharmacokinetics of thiamine after intravenous administration of thiamine hydrochloride (4, 12, and 36 mg/kg) to rats anesthetized continuously with ether (inhalation) or urethan (1 g/kg ip) were studied. Urinary excretion of thiamine after intravenous administration of thiamine hydrochloride to rats lightly anesthetized with ether was also investigated. At any particular dose, thiamine displayed apparent classical two-compartment model behavior in the time range studied. Under urethan anesthesia, thiamine displayed apparent dose-dependent kinetics as measured by the changes in the pharmacokinetic parameters, AUC,Vd(area), t0.5 beta, and total body clearance, ClTB, with dose. However, when ether anesthesia was used, thiamine displayed dose-independent pharmacokinetic behavior. These results suggest that care should be taken in the interpretation of pharmacokinetic data obtained in anesthetized animals, particularly when urethan anesthesia is used.

  1. Different routes and doses influence protection in pigs immunised with the naturally attenuated African swine fever virus isolate OURT88/3.

    PubMed

    Sánchez-Cordón, Pedro J; Chapman, Dave; Jabbar, Tamara; Reis, Ana L; Goatley, Lynnette; Netherton, Christopher L; Taylor, Geraldine; Montoya, Maria; Dixon, Linda

    2017-02-01

    This study compares different combinations of doses and routes of immunisation of pigs with low virulent African swine fever virus (ASFV) genotype I isolate OURT88/3, including the intramuscular and intranasal route, the latter not previously tested. Intranasal immunisations with low and moderate doses (10(3) and 10(4) TCID50) of OURT88/3 provided complete protection (100%) against challenge with virulent genotype I OURT88/1 isolate. Only mild and transient clinical reactions were observed in protected pigs. Transient moderate virus genome levels were detected in blood samples after challenge that decreased, but persisted until the end of the experiment in some animals. In contrast, pigs immunised intramuscularly with low and moderate doses (10(3) and 10(4) TCID50) displayed lower percentages of protection (50-66%), and low or undetectable levels of virus genome were detected in blood samples throughout the study. In addition, clinical courses observed in protected pigs were asymptomatic. In pigs that were not protected and developed acute ASF, an exacerbated increase of IL-10 sometimes accompanied by an increase of IFNγ was observed before euthanasia. These results showed that factors including delivery route and dose determine the outcome of immunisation with the naturally attenuated isolate OURT88/3.

  2. Neutralization of Tumor Necrosis Factor Bioactivity Ameliorates Urethane-Induced Pulmonary Oncogenesis in Mice1

    PubMed Central

    Karabela, Sophia P; Kairi, Chrysoula A; Magkouta, Sophia; Psallidas, Ioannis; Moschos, Charalampos; Stathopoulos, Ioannis; Zakynthinos, Spyros G; Roussos, Charis; Kalomenidis, Ioannis; Stathopoulos, Georgios T

    2011-01-01

    Tumor necrosis factor (TNF) has been implicated in inflammation-associated tumor progression. Although multiple reports identified a role for TNF signaling in established cancers, few studies have assessed the impact of TNF blockade on early tumor formation promotion. We aimed at exploring the effects of TNF neutralization in a preclinical mouse model of lung carcinogenesis. For this, Balb/c mice (n = 42) received four weekly intraperitoneal urethane injections (1 g/kg) and twice-weekly intraperitoneal soluble TNF receptor (etanercept; 10 mg/kg) administered during tumor initiation/promotion, tumor progression, or continuously (months 1, 6, and 1–8 after urethane start, respectively). Lung oncogenesis was assessed after 8 months. In separate short-term studies, Balb/c mice (n = 21) received a single control or urethane injection followed by twice-weekly intraperitoneal control or sTNFR:Fc injections. Lung inflammation was assessed after 1 week. We found that sTNFR:Fc treatment during tumor initiation/promotion resulted in a significant reduction of tumor number but not dimensions. However, sTNFR:Fc administered during tumor progression did not impact tumor multiplicity but significantly decreased tumor diameter. Continued sTNFR:Fc administration was effective in halting both respiratory tumor formation and progression in response to urethane. This favorable impact was associated with impaired cellular proliferation and new vessel formation in lung tumors. In addition, TNF neutralization altered the lung inflammatory response to urethane, evidenced by reductions in TNF and macrophage and increases in interferon γ and interleukin 10 content of the air spaces. sTNFR:Fc treatment of RAW264.7 macrophages downregulated TNF and enhanced interferon γ and interleukin 10 expression. In conclusion, TNF neutralization is effective against urethane-induced lung oncogenesis in mice and could present a lung chemoprevention strategy worth testing clinically. PMID:22241960

  3. Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine.

    PubMed

    Fang, Jun; Ye, Sang-Ho; Shankarraman, Venkat; Huang, Yixian; Mo, Xiumei; Wagner, William R

    2014-11-01

    While surface modification is well suited for imparting biomaterials with specific functionality for favorable cell interactions, the modification of degradable polymers would be expected to provide only temporary benefit. Bulk modification by incorporating pendant reactive groups for subsequent functionalization of biodegradable polymers would provide a more enduring approach. Towards this end, a series of biodegradable poly(ester urethane)urea elastomers with variable amino content (PEUU-NH2 polymers) were developed. Carboxylated phosphorycholine was synthesized and conjugated to the PEUU-NH2 polymers for subsequent bulk functionalization to generate PEUU-PC polymers. Synthesis was verified by proton nuclear magnetic resonance, X-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy. The impact of amine incorporation and phosphorylcholine conjugation was shown on mechanical, thermal and degradation properties. Water absorption increased with increasing amine content, and further with PC conjugation. In wet conditions, tensile strength and initial modulus generally decreased with increasing hydrophilicity, but remained in the range of 5-30 MPa and 10-20 MPa, respectively. PC conjugation was associated with significantly reduced platelet adhesion in blood contact testing and the inhibition of rat vascular smooth muscle cell proliferation. These biodegradable PEUU-PC elastomers offer attractive properties for applications as non-thrombogenic, biodegradable coatings and for blood-contacting scaffold applications. Further, the PEUU-NH2 base polymers offer the potential to have multiple types of biofunctional groups conjugated onto the backbone to address a variety of design objectives.

  4. Biodegradable Poly(ester urethane)urea Elastomers with Variable Amino Content for Subsequent Functionalization with Phosphorylcholine

    PubMed Central

    Fang, Jun; Ye, Sang-Ho; Shankarraman, Venkat; Huang, Yixian; Mo, Xiumei; Wagner, William R.

    2015-01-01

    While surface modification is well suited for imparting biomaterials with specific functionality for favorable cell interactions, the modification of degradable polymers would be expected to provide only temporary benefit. Bulk modification by incorporating pendant reactive groups for subsequent functionalization of biodegradable polymers would provide a more enduring approach. Towards this end, a series of biodegradable poly(ester urethane)urea elastomers with variable amino content (PEUU-NH2 polymers) were developed. Carboxylated phosphorycholine was synthesized and conjugated to the PEUU-NH2 polymers for subsequent bulk functionalization to generate PEUU-PC polymers. Synthesis was verified by 1H NMR, X-ray photoelectron spectroscopy and ATR-FTIR. The impact of amine incorporation and phosphorylcholine conjugation was shown on mechanical, thermal and degradation properties. Water absorption increased with increasing amine content, and further with PC conjugation. In wet conditions, tensile strength and initial modulus generally decreased with increasing hydrophilicity, but remained in the range of 5–30 MPa and 10–20 MPa respectively. PC conjugation was associated with significantly reduced platelet adhesion in blood contact testing and the inhibition of rat vascular smooth muscle cell proliferation. These biodegradable PEUU-PC elastomers offer attractive properties for applications as non-thrombogenic, biodegradable coatings and for blood-contacting scaffold applications. Further, the PEUU-NH2 base polymers offer the potential to have multiple types of biofunctional groups conjugated onto the backbone to address a variety of design objectives. PMID:25132273

  5. Ultrafast UV-Curable Adhesives for Optical Pick-Ups

    NASA Astrophysics Data System (ADS)

    Chung, Chang-Kyu; Jang, Kyung-Woon; Choi, Hyoung Gil; Jang, Jiyoung; Moon, Youngjun; Jeon, Chulho

    2013-08-01

    This paper describes novel ultraviolet (UV)-curable adhesives with an ultrafast curing rate which are fully cured within 8 s for optical pick-up (OPU) applications. Two kinds of oligomers (novolac epoxy acrylate and urethane acrylate), additives, and inorganic fillers were prepared for the formulation of the adhesives. In addition, three kinds of photo-initiator [2,2-dimethoxy-2-phenylacetophenone and 2-hydroxy-2-methylpropiophenone for surface curing and (2,4,6-trimethylbenzoyl) diphenyl phosphine oxide (TMDPO) for deep curing] were mixed to increase the curing rate. Photo-differential scanning calorimetry (photo-DSC) analyses showed that the newly formulated UV adhesives had faster curing rate than conventional UV adhesives. The UV adhesives were applied to OPUs for DVD/CD-RW, and five kinds of reliability tests, i.e., thermal shock, low-temperature storage, high-temperature storage, high temperature/high humidity, and nonoperation shock tests, were conducted to evaluate the adhesive reliability. According to the results of reliability tests and thermal stress simulations, the UV adhesives with lower storage modulus ( E') showed better thermal shock reliability due to lower thermal stresses. In addition, OPUs assembled using the UV adhesives passed all reliability tests. Consequently, the UV adhesives were successfully applied to OPUs in OPU production lines, contributing to mass production.

  6. Effect of ethanol on the tumorigenicity of urethane (ethyl carbamate) in B6C3F1 mice.

    PubMed

    Beland, Frederick A; Benson, R Wayne; Mellick, Paul W; Kovatch, Robert M; Roberts, Dean W; Fang, Jia-Long; Doerge, Daniel R

    2005-01-01

    Urethane is a carcinogen to which there is widespread exposure through the consumption of fermented foods and alcoholic beverages. In this study, we have assessed the carcinogenicity of urethane in combination with ethanol. Male and female B6C3F(1) mice (48 mice per sex per group) were exposed to 0, 10, 30, or 90 ppm urethane in the presence of 0%, 2.5%, or 5% ethanol in drinking water ad libitum for two years, at which time the extent of tumorigenesis was assessed. Additional mice (four per sex per group) received the same doses for four weeks to assess serum levels of urethane and ethanol, DNA adduct formation, and the induction of microsomal cytochromes P450, cell proliferation, and apoptosis. Urethane decreased cell replication in the livers of female, but not male, mice, decreased cell replication in the lungs of both sexes, and induced cytochrome P450 2E1 in the livers of female mice. Hepatic levels of the DNA adduct 1,N(6)-ethenodeoxyadenosine were increased by exposure to urethane and decreased by treatment with ethanol. Animal weights and survival were not affected by ethanol; in contrast, urethane administration decreased body weights and survival. Urethane caused dose-dependent increases in liver, lung, and harderian gland adenoma or carcinoma and hemangiosarcoma of the liver and heart in both sexes, mammary gland and ovarian tumors in females, and squamous cell papilloma or carcinoma of the skin and forestomach in males. The increase in hepatocellular tumors occurred in a relatively linear manner and was attributed to the formation of 1,N(6)-ethenodeoxyadenosine in hepatic DNA coupled with an increase in cell replication. Hemangiosarcomas were observed only at the 90 ppm urethane dose and were probably a result of high-dose urethane-induced toxicity. Lung alveolar/bronchiolar and harderian gland adenoma or carcinoma increased in a relatively linear manner, suggestive of a genotoxic mechanism for tumor induction. Ethanol induced a dose-dependent trend in

  7. Improved Dynamic Strain Hardening in Poly(urethane urea) Elastomers for Transparent Armor Applications

    DTIC Science & Technology

    2008-12-01

    the bidentate in urea versus the monodentate in urethane. The overall rate-dependent mechanical behaviors of PUs and polyureas have also been...examined the high strain-rate compressive behavior of PUs and a polyurea [Yi et al., 2006; Sarva et al., 2007]. As the strain rate was increased

  8. Synthesis, characterization and ex vivo evaluation of polydimethylsiloxane polyurea-urethanes.

    PubMed

    Lim, F; Yang, C Z; Cooper, S L

    1994-05-01

    A series of segmented polydimethylsiloxane (PDMS) polyurea-urethanes was synthesized based on hexane diisocyanate modified polyether-PDMS soft segments. The hard segments consisted of 4,4'-methylene diphenylene diisocyanate, which was chain extended with 1,4-butanediol. The effect of chemical composition of the polyether-PDMS soft segments on the extent of phase separation, physical properties and surface properties was studied using a variety of techniques including dynamic mechanical analysis, tensile testing, X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The polymers were also evaluated for their blood-contacting properties in a canine ex vivo model. The PDMS polyurea-urethanes containing polyether-PDMS soft segments showed three distinct phases: a PDMS-rich phase, a polyol soft segment-rich phase and a hard segment-rich phase. The tensile strength and modulus of these materials were not significantly lower compared to a polymer without PDMS in the soft segment. XPS revealed the surface enrichment of the hydrophobic PDMS component at the air-solid interface. Dynamic contact angle measurements indicated that the PDMS-based polyurea-urethanes possessed a hydrophobic surface in water. The PDMS polyurea-urethanes showed lower adherent platelet and fibrinogen deposition compared to a polymer without PDMS in the soft segment. Varying the amount of PDMS in the soft segment of these polymers did not reveal significant differences in their blood-contacting properties.

  9. Study of the Polycarbonate-Urethane/Metal Contact in Different Positions during Gait Cycle

    PubMed Central

    Herrera, Antonio; Mateo, Jesús; Lobo-Escolar, Antonio

    2014-01-01

    Nowadays, a growing number of young and more active patients receive hip replacement. More strenuous activities in such patients involve higher friction and wear rates, with friction on the bearing surface being crucial to ensure arthroplasty survival in the long term. Over the last years, the polycarbonate-urethane has offered a feasible alternative to conventional bearings. A finite element model of a healthy hip joint was developed and adjusted to three gait phases (heel strike, mid-stance, and toe-off), serving as a benchmark for the assessment of the results of joint replacement model. Three equivalent models were made with the polycarbonate-urethane Tribofit system implanted, one for each of the three gait phases, after reproducing a virtual surgery over the respective healthy models. Standard body-weight loads were considered: 230% body-weight toe-off, 275% body-weight mid-stance, and 350% body-weight heel strike. Contact pressures were obtained for the different models. When comparing the results corresponding to the healthy model to polycarbonate-urethane joint, contact areas are similar and so contact pressures are within a narrower value range. In conclusion, polycarbonate-urethane characteristics are similar to those of the joint cartilage. So, it is a favorable alternative to traditional bearing surfaces in total hip arthroplasty, especially in young patients. PMID:25247180

  10. QUANTITATIVE ULTRAVIOLET SPECTROSCOPY IN WEATHERING OF A MODEL POLYESTER-URETHANE COATING. (R828081E01)

    EPA Science Inventory

    Spectroscopy was used to quantify the effects of ultraviolet light on a model polyester–urethane coating as it degraded in an accelerated exposure chamber. An explorative calculation of the effective dosage absorbed by the coatings was made and, depending on the quantum...

  11. Study of the polycarbonate-urethane/metal contact in different positions during gait cycle.

    PubMed

    Gabarre, Sergio; Herrera, Antonio; Mateo, Jesús; Ibarz, Elena; Lobo-Escolar, Antonio; Gracia, Luis

    2014-01-01

    Nowadays, a growing number of young and more active patients receive hip replacement. More strenuous activities in such patients involve higher friction and wear rates, with friction on the bearing surface being crucial to ensure arthroplasty survival in the long term. Over the last years, the polycarbonate-urethane has offered a feasible alternative to conventional bearings. A finite element model of a healthy hip joint was developed and adjusted to three gait phases (heel strike, mid-stance, and toe-off), serving as a benchmark for the assessment of the results of joint replacement model. Three equivalent models were made with the polycarbonate-urethane Tribofit system implanted, one for each of the three gait phases, after reproducing a virtual surgery over the respective healthy models. Standard body-weight loads were considered: 230% body-weight toe-off, 275% body-weight mid-stance, and 350% body-weight heel strike. Contact pressures were obtained for the different models. When comparing the results corresponding to the healthy model to polycarbonate-urethane joint, contact areas are similar and so contact pressures are within a narrower value range. In conclusion, polycarbonate-urethane characteristics are similar to those of the joint cartilage. So, it is a favorable alternative to traditional bearing surfaces in total hip arthroplasty, especially in young patients.

  12. Synthesis and application of novel EB curable polyester urethane acrylate modified by linseed oil fatty acid

    NASA Astrophysics Data System (ADS)

    Jun, Li; Xuecheng, Ju; Min, Yi; Jinshan, Wei; Hongfei, Ha

    1999-06-01

    A novel polyester urethane acrylate resin modified by linseed oil fatty acid (LFA) was synthesized and EB curing coating was formulated in this work. When the coating cured by EB radiation on the timber, the cured coating was possessed of good performances.

  13. QUANTITATIVE ULTRAVIOLET SPECTROSCOPY IN WEATHERING OF A MODEL POLYESTER-URETHANE COATING. (R828081E01)

    EPA Science Inventory

    Spectroscopy was used to quantify the effects of ultraviolet light on a model polyester–urethane coating as it degraded in an accelerated exposure chamber. An explorative calculation of the effective dosage absorbed by the coatings was made and, depending on the quantum...

  14. Spontaneous sleep-like brain state alternations and breathing characteristics in urethane anesthetized mice.

    PubMed

    Pagliardini, Silvia; Gosgnach, Simon; Dickson, Clayton T

    2013-01-01

    Brain state alternations resembling those of sleep spontaneously occur in rats under urethane anesthesia and they are closely linked with sleep-like respiratory changes. Although rats are a common model for both sleep and respiratory physiology, we sought to determine if similar brain state and respiratory changes occur in mice under urethane. We made local field potential recordings from the hippocampus and measured respiratory activity by means of EMG recordings in intercostal, genioglossus, and abdominal muscles. Similar to results in adult rats, urethane anesthetized mice displayed quasi-periodic spontaneous forebrain state alternations between deactivated patterns resembling slow wave sleep (SWS) and activated patterns resembling rapid eye movement (REM) sleep. These alternations were associated with an increase in breathing rate, respiratory variability, a depression of inspiratory related activity in genioglossus muscle and an increase in expiratory-related abdominal muscle activity when comparing deactivated (SWS-like) to activated (REM-like) states. These results demonstrate that urethane anesthesia consistently induces sleep-like brain state alternations and correlated changes in respiratory activity across different rodent species. They open up the powerful possibility of utilizing transgenic mouse technology for the advancement and translation of knowledge regarding sleep cycle alternations and their impact on respiration.

  15. Thio-urethanes improve properties of dual-cured composite cements.

    PubMed

    Bacchi, A; Dobson, A; Ferracane, J L; Consani, R; Pfeifer, C S

    2014-12-01

    This study aims at modifying dual-cure composite cements by adding thio-urethane oligomers to improve mechanical properties, especially fracture toughness, and reduce polymerization stress. Thiol-functionalized oligomers were synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene with trimethylol-tris-3-mercaptopropionate, at 1:2 isocyanate:thiol. Oligomer was added at 0, 10 or 20 wt% to BisGMA-UDMA-TEGDMA (5:3:2, with 25 wt% silanated inorganic fillers) or to one commercial composite cement (Relyx Ultimate, 3M Espe). Near-IR was used to measure methacrylate conversion after photoactivation (700 mW/cm(2) × 60s) and after 72 h. Flexural strength and modulus, toughness, and fracture toughness were evaluated in three-point bending. Polymerization stress was measured with the Bioman. The microtensile bond strength of an indirect composite and a glass ceramic to dentin was also evaluated. Results were analyzed with analysis of variance and Tukey's test (α = 0.05). For BisGMA-UDMA-TEGDMA cements, conversion values were not affected by the addition of thio-urethanes. Flexural strength/modulus increased significantly for both oligomer concentrations, with a 3-fold increase in toughness at 20 wt%. Fracture toughness increased over 2-fold for the thio-urethane modified groups. Contraction stress was reduced by 40% to 50% with the addition of thio-urethanes. The addition of thio-urethane to the commercial cement led to similar flexural strength, toughness, and conversion at 72h compared to the control. Flexural modulus decreased for the 20 wt% group, due to the dilution of the overall filler volume, which also led to decreased stress. However, fracture toughness increased by up to 50%. The microtensile bond strength increased for the experimental composite cement with 20 wt% thio-urethane bonding for both an indirect composite and a glass ceramic. Novel dual-cured composite cements containing thio-urethanes showed increased toughness, fracture toughness and

  16. Thio-urethanes Improve Properties of Dual-cured Composite Cements

    PubMed Central

    Bacchi, A.; Dobson, A.; Ferracane, J.L.; Consani, R.; Pfeifer, C.S.

    2014-01-01

    This study aims at modifying dual-cure composite cements by adding thio-urethane oligomers to improve mechanical properties, especially fracture toughness, and reduce polymerization stress. Thiol-functionalized oligomers were synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene with trimethylol-tris-3-mercaptopropionate, at 1:2 isocyanate:thiol. Oligomer was added at 0, 10 or 20 wt% to BisGMA-UDMA-TEGDMA (5:3:2, with 25 wt% silanated inorganic fillers) or to one commercial composite cement (Relyx Ultimate, 3M Espe). Near-IR was used to measure methacrylate conversion after photoactivation (700 mW/cm2 × 60s) and after 72 h. Flexural strength and modulus, toughness, and fracture toughness were evaluated in three-point bending. Polymerization stress was measured with the Bioman. The microtensile bond strength of an indirect composite and a glass ceramic to dentin was also evaluated. Results were analyzed with analysis of variance and Tukey’s test (α = 0.05). For BisGMA-UDMA-TEGDMA cements, conversion values were not affected by the addition of thio-urethanes. Flexural strength/modulus increased significantly for both oligomer concentrations, with a 3-fold increase in toughness at 20 wt%. Fracture toughness increased over 2-fold for the thio-urethane modified groups. Contraction stress was reduced by 40% to 50% with the addition of thio-urethanes. The addition of thio-urethane to the commercial cement led to similar flexural strength, toughness, and conversion at 72h compared to the control. Flexural modulus decreased for the 20 wt% group, due to the dilution of the overall filler volume, which also led to decreased stress. However, fracture toughness increased by up to 50%. The microtensile bond strength increased for the experimental composite cement with 20 wt% thio-urethane bonding for both an indirect composite and a glass ceramic. Novel dual-cured composite cements containing thio-urethanes showed increased toughness, fracture toughness and

  17. Abdominal Adhesions

    MedlinePlus

    ... Adhesions 1 Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. Journal of Surgical Research. 2011;165(1):91–111. Seek Help for ... and how to participate, visit the NIH Clinical Research Trials and You website ... Foundation for Functional Gastrointestinal Disorders 700 West Virginia ...

  18. Immunization of African Indigenous Pigs with Attenuated Genotype I African Swine Fever Virus OURT88/3 Induces Protection Against Challenge with Virulent Strains of Genotype I.

    PubMed

    Mulumba-Mfumu, L K; Goatley, L C; Saegerman, C; Takamatsu, H-H; Dixon, L K

    2016-10-01

    The attenuated African swine fever virus genotype I strain OURT88/3 has previously been shown to induce protection of European breeds of domestic pigs against challenge with virulent isolates. To determine whether protective immune responses could also be induced in indigenous breeds of pigs from the Kinshassa region in Democratic Republic of Congo, we immunized a group of eight pigs with OURT88/3 strain and challenged the pigs 3 weeks later with virulent genotype I strain OURT88/1. Four of the pigs were protected against challenge. Three of the eight pigs died from African swine fever virus and a fourth from an unknown cause. The remaining four pigs all survived challenge with a recent virulent genotype I strain from the Democratic Republic of Congo, DRC 085/10. Control groups of non-immune pigs challenged with OURT88/1 or DRC 085/10 developed signs of acute ASFV as expected and had high levels of virus genome in blood. © 2015 Blackwell Verlag GmbH.

  19. A water blown urethane insulation for use in cryogenic environments

    NASA Technical Reports Server (NTRS)

    Blevins, Elana; Sharpe, Jon

    1995-01-01

    Thermal Protection Systems (TPS) of NASA's Space Shuttle External Tank include polyurethane and polyisocyanurate modified polyurethane foam insulations. These insulations, currently foamed with CFC 11 blowing agent, serve to maintain cryogenic propellant quality, maintain the external tank structural temperature limits, and minimize the formation of ice and frost that could potentially damage the ceramic insulation on the space shuttle orbiter. During flight the external tank insulations are exposed to mechanical, thermal and acoustical stresses. TPS must pass cryogenic flexure and substrate adhesion tests at -253 C, aerothermal and radiant heating tests at fluxes up to approximately 14 kilowatts per square meter, and thermal conductivity tests at cryogenic and elevated temperatures. Due to environmental concerns, the polyurethane insulation industry and the External Tank Project are tasked with replacing CFC 11. The flight qualification of foam insulations employing HCFC 141b as a foaming agent is currently in progress; HCFC 141b blown insulations are scheduled for production implementation in 1995. Realizing that the second generation HCFC blowing agents are an interim solution, the evaluation of third generation blowing agents with zero ozone depletion potential is underway. NASA's TPS Materials Research Laboratory is evaluating third generation blowing agents in cryogenic insulations for the External Tank; one option being investigated is the use of water as a foaming agent. A dimensionally stable insulation with low friability, good adhesion to cryogenic substrates, and acceptable thermal conductivity has been developed with low viscosity materials that are easily processed in molding applications. The development criteria, statistical experimental approach, and resulting foam properties will be presented.

  20. THE INFLUENCE OF HYDROSTATIC PRESSURE AND URETHANE ON THE THERMAL INACTIVATION OF BACTERIOPHAGE

    PubMed Central

    Foster, Ruth A. C.; Johnson, Frank H.; Miller, Virginia K.

    1949-01-01

    In Difco nutrient broth, containing 0.5 per cent NaCl, pH 6.6, Escherichia coli phages T1, T2, and T5 were inactivated at 66°C., and T7 at 60°C., at nearly the same rate. In each case the rate of destruction was not uniform but more or less decreased with time of heating. With T2 there was an initial increase in number of infective centers after heating for several minutes at 66°C. Hydrostatic pressures up to 10,000 pounds per square inch retarded the thermal destruction of T1, T2, and T5, but accelerated that of T7, while small concentrations of urethane accelerated the rate of each. The rate of inactivation was increased by the addition of 0.005 M phosphate, and was decreased by 0.005 M MgCl2 in all but T7, whose rate was unaffected by this amount of Mg. The influence of Ca was similar to that of Mg. The addition of 0.005 M MgCl2 to the broth medium resulted in a first order rate of destruction of T5 at either normal or increased pressure, and with as well as without urethane. Analysis of data obtained under these conditions indicated that the thermal inactivation proceeds with a volume increase of activation of 113 cc. per mol, and with a heat and entropy of 170,000 calories and 425 E. U., respectively, in the rate-limiting reaction. In the presence of 0.1 M urethane the heat and volume change of activation are apparently slightly greater. The relation between concentration of urethane and the amount of acceleration in rate of destruction at normal pressure and 66°C. indicated that the total rate involves at least two first order rate processes: the thermal inactivation itself and a urethane-catalyzed reaction, the latter involving the combination of an average of 2.3 molecules of urethane in the activated state of the bacteriophage molecule whose destruction results in loss of phage activity. PMID:18139005

  1. Some aspects of the metabolism of urethane and N-hydroxyurethane in rodents

    PubMed Central

    Nery, R.

    1968-01-01

    1. Urethane and N-hydroxyurethane are interconvertible in C− and C57 mice. 2. In newborn C57/DBA hybrid mice, prior treatment with 3-methylcholanthrene or urethane stimulated the N-hydroxylation of urethane; SKF 525A inhibited the N-hydroxylation at 24hr. but stimulated it at 48hr. after administration. 3. Liver homogenates of CBA and C3H mice, and of Chester Beatty and hooded rats, but not whole-body homogenates of 1-day-old C57/DBA mice or lung homogenate of 3-week-old Chester Beatty rats, metabolized urethane into N-hydroxyurethane in small but definite amounts. 4. Nitrite was detected in the bodies of newborn C57/DBA hybrid mice treated with lethal doses of urethane or N-hydroxyurethane; nitrite formation from N-hydroxyurethane was stimulated by pretreatment of the animals with 3-methylcholanthrene. 5. The rate of catabolism of N-hydroxyurethane by C57/DBA mice was faster in 8-day-old than in 1-day-old animals of the same sex, and faster in females than in males of the same age. 6. Liver slices of several species of rats and mice catabolized N-hydroxyurethane at rates that varied with the age and sex of animals of the same species; liver homogenates or microsomes were less effective than slices from the same liver. 7. The enzyme activity was destroyed by boiling or freezing the liver; it was inhibited by increasing substrate concentration and by urethane, n-butyl carbamate, cyanide, p-benzoquinone or 2,4-dinitrophenol, but not by p-chloromercuribenzoate or menadione. 8. The catabolism of N-hydroxyurethane by liver slices from adult H-strain rats was not oxygen-dependent. 9. Lung homogenates of 4-week-old female Chester Beatty rats catabolized N-hydroxyurethane at 40% of the rate of liver slices from the same source. 10. O-Acetyl- and O-ethoxycarbonyl-N-hydroxyurethane were rapidly deacylated by liver homogenates from adult hooded rats and adult C57 mice, and by human erythrocytes. 11. N-Hydroxyurethane reacted rapidly with pyridoxal phosphate at pH7·4 and 37

  2. The effect of inducers and inhibitors of urethane metabolism on its in vitro and in vivo metabolism in rats.

    PubMed

    Carlson, G P

    1994-12-09

    The activation of urethane (ethyl carbamate) is important in its exerting its carcinogenic effect. Rats were treated with inducers and inhibitors of urethane metabolism, and the conversion of [carbonyl-14C]urethane to 14CO2 in vivo was measured. The cytochrome P-450 inducers, phenobarbital and beta-naphthoflavone, and esterase inhibitor, paraoxon, were without effect while the CYP2E1 inhibitor, diethyldithiocarbamate, decreased metabolism to about 3% of control. Ethanol administered acutely inhibited urethane metabolism. Pyridine, shown previously to enhance this metabolism in microsomal preparations, greatly inhibited it in vivo. The discordant results between the in vitro and in vivo studies may be related to the presence of pyridine acting as an inhibitor in whole animals and suggest that caution is needed in extrapolating from in vitro results to in vivo implications.

  3. Low doses of urethane effectively inhibit spinal seizures evoked by sudden cooling of toad isolated spinal cord

    SciTech Connect

    Pina-crespo, J.C.; Dalo, N.L. )

    1992-01-01

    The effect of low doses of urethane on three phases of spinal seizures evoked by sudden cooling (SSSC) of toad isolated spinal cord was studied. In control toads, SSSC began with a latency of 91[plus minus]3 sec exhibiting brief tremors, followed by clonic muscle contractions and finally reaching a tonic contraction. The latency of onset of seizures was significantly enhanced. The tonic phase was markedly abolished in toads pretreated intralymphaticaly with 0.15 g/kg of urethane. Tremors were the only phase observed in 55% of toads that received doses of 0.2 g/kg, and a total blockage of seizures was seen after doses of 0.25 g/kg of urethane in 50% of the preparations. A possible depressant effect of urethane on transmission mediated by excitatory amino acids is suggested.

  4. High Performance Laminates Using Blended Urethane Resin Chemistry

    SciTech Connect

    Simmons, Kevin L.; Jones, George G.; Walsh, Sean P.; Wood, Geoff M.

    2005-03-24

    Hybrid blended resin systems have the potential to provide excellent impact performance in structured laminates. Although mostly under development for sheet molding compound (SMC) applications using glass fiber with high levels of fillers, the resins have been found to be useful in liquid molding applications with other high-performance fiber systems. A research pro-gram to develop the molding capability, property data, and capability to model the composites using newly de-veloped codes and modeling techniques was initiated through the Department of Energy’s Office of Freedom-Car and Vehicle Technologies. Results have shown ex-cellent adhesion to different fiber systems as evidenced by mechanical properties, and a capability to develop very good impact results – thereby allowing thin panel structures to be developed. Comparison to predicted me-chanical properties has been achieved and mechanisms for the development of observed high energy absorption under impact loadings are being investigated. Scale ef-fects based on panel thickness, fiber type loading, and position in laminate are being investigated. DOE pro-gram sponsorship was provided by Dr. Sidney Diamond, Technical Area Development Manager for High-Strength Weight-Reduction Materials.

  5. Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis

    PubMed Central

    Colombo, N.B.R.; Rangel, M.P.; Martins, V.; Hage, M.; Gelain, D.P.; Barbeiro, D.F.; Grisolia, C.K.; Parra, E.R.; Capelozzi, V.L.

    2015-01-01

    The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days) significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress. PMID:26200231

  6. Polymerization shrinkage and stress development in amorphous calcium phosphate/urethane dimethacrylate polymeric composites

    PubMed Central

    Antonucci, J.M.; Regnault, W. F.; Skrtic, D.

    2010-01-01

    This study explores how substituting a new high molecular mass oligomeric poly(ethylene glycol) extended urethane dimethacrylate (PEG-U) for 2-hydroxyethyl methacrylate (HEMA) in photo-activated urethane dimethacrylate (UDMA) resins affects degree of vinyl conversion (DC), polymerization shrinkage (PS), stress development (PSSD) and biaxial flexure strength (BFS) of their amorphous calcium phosphate (ACP) composites. The composites were prepared from four types of resins (UDMA, PEG-U, UDMA/HEMA and UDMA/PEG-U) and zirconia-hybridized ACP. Introducing PEG-U improved DC while not adversely affecting PS, PSSD and the BFS of composites. This improvement in DC is attributed to the long, more flexible structure between the vinyl groups of PEG-U and its higher molecular mass compared to poly(HEMA). The results imply that PEG-U has the potential to serve as an alternative to HEMA in dental and other biomedical applications. PMID:20169007

  7. Breathing and brain state: urethane anesthesia as a model for natural sleep.

    PubMed

    Pagliardini, Silvia; Funk, Gregory D; Dickson, Clayton T

    2013-09-15

    Respiratory control differs dramatically across sleep stages. Indeed, along with rapid eye movements (REM), respiration was one of the first physiological variables shown to be modulated across sleep stages. The study of sleep stages, their physiological correlates, and neurobiological underpinnings present a challenge because of the fragility and unpredictability of individual stages, not to mention sleep itself. Although anesthesia has often substituted as a model for a unitary stage of slow-wave (non-REM) sleep, it is only recently that urethane anesthesia has been proposed to model the full spectrum of sleep given the presence of spontaneous brain state alternations and concurrent physiological correlates that appear remarkably similar to natural sleep. We describe this model, its parallels with natural sleep, and its power for studying modulation of respiration. Specifically, we report data on the EEG characteristics across brain states under urethane anesthesia, the dependence of brain alternations on neurotransmitter systems, and the observations on state dependent modulation of respiration.

  8. Plate-Impact Measurements of a Select Model Poly(urethane urea) Elastomer

    DTIC Science & Technology

    2013-06-01

    Macromolecules 1983, 16, 775–786. 13. Koevoets, R. A.; Versteegen, R. M.; Kooijman, H.; Spek, A. L.; Meijer, E. W. Molecular Recognition in a...Property Relationships for Poly(carbonate urethane) Elastomers with Novel Soft Segments; Macromolecules 2009, 42, 8322–8327. 15. Yilgor, E.; Isik...M.; Yilgor, I. Novel Synthetic Approach for the Preparation of Poly(urethaneurea) Elastomers; Macromolecules 2010, 43, 8588–8593. 16. Korley, L. T

  9. The effect of urethane and thiopental sodium on platelet aggregation in vitro and in vivo.

    PubMed

    Evangelista, S; Abelli, L; Maggi, C A; Meli, A

    1984-09-01

    The potential in vitro (heparinized or citrated PRP) and in vivo effects of urethane and thiopental sodium on arachidonic acid, collagen, or ADP-induced rat platelet aggregation has been investigated. Both anesthetics antagonized platelet aggregation in vitro at concentrations higher than those found in plasma during anesthesia. Neither anesthetic altered the piastrinopenia induced by intravenous administration of these aggregating agents. These findings suggest that both anesthetics are suitable for in vivo platelet aggregation studies.

  10. Thio-urethane oligomers improve the properties of light-cured resin cements

    PubMed Central

    Bacchi, Ataís; Consani, Rafael L.; Martim, Gedalias C.; Pfeifer, Carmem S.

    2015-01-01

    Thio-urethanes were synthesized by combining 1,6-Hexanediol-diissocyante (aliphatic) with pentaerythritol tetra-3-mercaptopropionate (PETMP) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (aromatic) with trimethylol-tris-3-mercaptopropionate (TMP), at 1:2 isocyanate:thiol, leaving pendant thiols. Oligomers were added at 10–30 phr to BisGMA-UDMA-TEGDMA (5:3:2, BUT). 25wt% silanated inorganic fillers were added. Commercial cement (Relyx Veneer, 3M-ESPE) was also evaluated with 10–20 phr of aromatic oligomer. Near-IR was used to follow methacrylate conversion (DC) and rate of polymerization (Rpmax). Mechanical properties were evaluated in three-point bending (ISO 4049) for flexural strength/modulus (FS/FM, and toughness), and notched specimens (ASTM Standard E399-90) for fracture toughness (KIC). Polymerization stress (PS) was measured on the Bioman. Volumetric shrinkage (VS, %) was measured with the bonded disk technique. Results were analyzed with ANOVA/Tukey’s test (α=5%). In general terms, for BUT cements, conversion and mechanical properties in flexure increased for selected groups with the addition of thio-urethane oligomers. The aromatic versions resulted in greater FS/FM than aliphatic. Fracture toughness increased by twofold in the experimental groups (from 1.17±0.36 to around 3.23±0.22 MPa.m1/2). Rpmax decreased with the addition of thio-urethanes, though the vitrification point was not statistically different from the control. VS and PS decreased with both oligomers. For the commercial cement, 20 phr of oligomer increased DC, vitrification, reduced Rpmax and also significantly increased KIC, and reduced PS and FM. Thio-urethane oligomers were shown to favorably modify conventional dimethacrylate networks. Significant reductions in polymerization stress were achieved at the same time conversion and fracture toughness increased. PMID:25740124

  11. Midbrain dopaminergic neuron activity across alternating brain states of urethane anaesthetized rat.

    PubMed

    Walczak, Magdalena; Błasiak, Tomasz

    2017-04-01

    Midbrain dopaminergic neurons are implicated in the control of motor functions and reward-driven behaviours. The function of this neuronal population is strongly connected with distinct patterns of firing - irregular or bursting, which either maintains basal levels of dopamine (DA) or leads to phasic release, respectively. Heterogeneity of dopaminergic neurons, observed on both structural and functional levels, is also reflected in different responses of DA neurons to changes in global brain states. Preparation of urethane anaesthetized animal is a broadly used model to study brain state dependent activity of neurons. Unfortunately activity of midbrain DA neurons across urethane induced cyclic, spontaneous brain state alternations is poorly described. To fulfil this gap in our knowledge we have performed simultaneous, extracellular recordings of the firing of single putative DA neurons combined with continuous brain state monitoring. We found that during slow wave activity, the firing rate of recorded putative DA neurons was significantly higher compared to firing rates during activated state, both in ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). In the presence of cortical slow waves, putative dopaminergic neurons also intensified bursting activity, but the magnitude of this phenomena differed in respect to the examined region (VTA or SNc). Our results show that activity of DA neurons under urethane anaesthesia is brain-state dependent and emphasize the importance of brain state monitoring during electrophysiological experiments. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Spectroscopic, semiempirical studies and antibacterial activity of new urethane derivatives of natural polyether antibiotic - Monensin A

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Stefańska, Joanna; Piśmienny, Mieszko; Brzezinski, Bogumil

    2013-02-01

    A series of new Monensin A dimers linked by diurethane moiety were synthesised and their molecular structures were studied using ESI-MS, FT-IR, 1H and 13C NMR and PM5 methods. The results showed that the compounds form a pseudo-cyclic structure stabilized by three intramolecular hydrogen bonds and the sodium cation was coordinated by five oxygen atoms of polyether skeleton of Monensin moiety. The NMR and FT-IR data of complexes of Monensin urethane sodium salts demonstrated that within the pseudo-cyclic structure the carbonyl oxygen atom of the urethane group did not coordinate the sodium cation. Monensin urethanes were tested in vitro for the activity against Gram-positive and Gram-negative bacteria and fungi as well as against a series of clinical isolates of Staphylococcus: methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA). The most active compound against MRSA and MSSA was 1,4-phenylene diurethane of Monensin with MIC 10.4-41.4 μmol/L).

  13. Urethane anesthesia reverses the protective effect of noncompetitive NMDA receptor antagonists against cocaine intoxication.

    PubMed

    Rockhold, R W; Byrne, M; Sprabery, S; Bennett, J G

    1994-01-01

    The present experiments examined whether pretreatment with the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists, MK-801 and dextrorphan, could antagonize cocaine-induced convulsions and lethality in conscious Sprague-Dawley (SD) rats and whether urethane anesthesia alters the observed interactions. Conscious, restrained male SD rats received continuous i.v. infusions of cocaine hydrochloride (1.25 mg/kg.min) until convulsions and death occurred. Cocaine doses of 21.2 +/- 1.8 and 29.5 +/- 2.5 mg/kg caused convulsions and death, respectively, in saline treated rats (n = 8). Convulsions were absent in MK-801 (1 mg/kg, i.v.; n = 8) pretreated rats; the lethal cocaine dose was 44.0 +/- 2.7 mg/kg (p < 0.05). In contrast, urethane anesthesia (1.2 g/kg, i.p.) decreased the dose of cocaine required to cause toxicity, compared to that in saline controls (24.8 +/- 0.8 mg/kg, n = 13), in MK-801 (2.0 +/- 0.3, n = 7; p < 0.01) and in dextrorphan mg/kg, n = 13), in MK-801 (2.0 +/- 0.3, n = 7; p < 0.01) and in dextrorphan (25 mg/kg, i.v.; 13.1 +/- 1.4, n = 6; p < 0.01) pretreated rats. Pressor responses with little change in heart rate were evident during cocaine infusion in vehicle pretreated rats. Bradycardiac responses were noted to cocaine in groups following NMDA receptor blockade. Reversal of the pressor response to cocaine was noted in MK-801 pretreated animals, while dextrorphan pretreatment moderated cocaine-induced increases in blood pressure. Ventilatory support protected against cocaine lethality in urethane anesthetized rats, indicating that respiratory failure is the proximate cause of death with cocaine infusion. However, artificially ventilated rats, pretreated with MK-801, were more sensitive (lethal cocaine dose, 76.6 +/- 8.0 mg/kg, n = 5) than vehicle pretreated rats (129.4 +/- 15.8 mg/kg, n = 6), indicating that MK-801 may increase both the respiratory and the cardiac toxicity of cocaine in urethane anesthetized rats. Interactions between NMDA

  14. Nonsteroidal anti-inflammatory drug-activated gene-1 expression inhibits urethane-induced pulmonary tumorigenesis in transgenic mice.

    PubMed

    Cekanova, Maria; Lee, Seong-Ho; Donnell, Robert L; Sukhthankar, Mugdha; Eling, Thomas E; Fischer, Susan M; Baek, Seung Joon

    2009-05-01

    The expression of nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) inhibits gastrointestinal tumorigenesis in NAG-1 transgenic mice (C57/BL6 background). In the present study, we investigated whether the NAG-1 protein would alter urethane-induced pulmonary lesions in NAG-1 transgenic mice on an FVB background (NAG-1(Tg+/FVB)). NAG-1(Tg+/FVB) mice had both decreased number and size of urethane-induced tumors, compared with control littermates (NAG-1(Tg+/FVB) = 16 +/- 4 per mouse versus control = 20 +/- 7 per mouse, P < 0.05). Urethane-induced pulmonary adenomas and adenocarcinomas were observed in control mice; however, only pulmonary adenomas were observed in NAG-1(Tg+/FVB) mice. Urethane-induced tumors from control littermates and NAG-1(Tg+/FVB) mice highly expressed proteins in the arachidonic acid pathway (cyclooxygenases 1/2, prostaglandin E synthase, and prostaglandin E(2) receptor) and highly activated several kinases (phospho-Raf-1 and phosphorylated extracellular signal-regulated kinase 1/2). However, only urethane-induced p38 mitogen-activated protein kinase (MAPK) phosphorylation was decreased in NAG-1(Tg+/FVB) mice. Furthermore, significantly increased apoptosis in tumors of NAG-1(Tg+/FVB) mice compared with control mice was observed as assessed by caspase-3/7 activity. In addition, fewer inflammatory cells were observed in the lung tissue isolated from urethane-treated NAG-1(Tg+/FVB) mice compared with control mice. These results paralleled in vitro assays using human A549 pulmonary carcinoma cells. Less phosphorylated p38 MAPK was observed in cells overexpressing NAG-1 compared with control cells. Overall, our study revealed for the first time that the NAG-1 protein inhibits urethane-induced tumor formation, probably mediated by the p38 MAPK pathway, and is a possible new target for lung cancer chemoprevention.

  15. Electrospun Poly(ester-Urethane)- and Poly(ester-Urethane-Urea) Fleeces as Promising Tissue Engineering Scaffolds for Adipose-Derived Stem Cells

    PubMed Central

    Gugerell, Alfred; Kober, Johanna; Laube, Thorsten; Walter, Torsten; Nürnberger, Sylvia; Grönniger, Elke; Brönneke, Simone; Wyrwa, Ralf; Schnabelrauch, Matthias; Keck, Maike

    2014-01-01

    An irreversible loss of subcutaneous adipose tissue in patients after tumor removal or deep dermal burns makes soft tissue engineering one of the most important challenges in biomedical research. The ideal scaffold for adipose tissue engineering has yet not been identified though biodegradable polymers gained an increasing interest during the last years. In the present study we synthesized two novel biodegradable polymers, poly(ε-caprolactone-co-urethane-co-urea) (PEUU) and poly[(L-lactide-co-ε-caprolactone)-co-(L-lysine ethyl ester diisocyanate)-block-oligo(ethylene glycol)-urethane] (PEU), containing different types of hydrolytically cleavable bondings. Solutions of the polymers at appropriate concentrations were used to fabricate fleeces by electrospinning. Ultrastructure, tensile properties, and degradation of the produced fleeces were evaluated. Adipose-derived stem cells (ASCs) were seeded on fleeces and morphology, viability, proliferation and differentiation were assessed. The biomaterials show fine micro- and nanostructures composed of fibers with diameters of about 0.5 to 1.3 µm. PEUU fleeces were more elastic, which might be favourable in soft tissue engineering, and degraded significantly slower compared to PEU. ASCs were able to adhere, proliferate and differentiate on both scaffolds. Morphology of the cells was slightly better on PEUU than on PEU showing a more physiological appearance. ASCs differentiated into the adipogenic lineage. Gene analysis of differentiated ASCs showed typical expression of adipogenetic markers such as PPARgamma and FABP4. Based on these results, PEUU and PEU meshes show a promising potential as scaffold materials in adipose tissue engineering. PMID:24594923

  16. Infra-Slow Oscillation (ISO) of the Pupil Size of Urethane-Anaesthetised Rats

    PubMed Central

    Blasiak, Tomasz; Zawadzki, Artur; Lewandowski, Marian Henryk

    2013-01-01

    Multiplicity of oscillatory phenomena in a range of infra-slow frequencies (<0.01 Hz) has been described in mammalian brains at different levels of organisation. The significance and manifestation in physiology and/or behaviour of many brain infra-slow oscillations (ISO) remain unknown. Examples of this phenomenon are two types of ISO observed in the brains of urethane-anaesthetised rats: infra-slow, rhythmic changes in the rate of action potential firing in a few nuclei of the subcortical visual system and a sleep-like cycle of activation/deactivation visible in the EEG signal. Because both of these rhythmic phenomena involve brain networks that can influence autonomic nervous system activity, we hypothesised that these two brain ISOs can be reflected by rhythmic changes of pupil size. Thus, in the present study, we used simultaneous pupillography and ECoG recording to verify the hypothesised existence of infra-slow oscillations in the pupil size of urethane-anaesthetised rats. The obtained results showed rhythmic changes in the size of the pupils and rhythmic eyeball movements in urethane-anaesthetised rats. The observed rhythms were characterised by two different dominant components in a range of infra-slow frequencies. First, the long component had a period of ≈29 minutes and was present in both the irises and the eyeball movements. Second, the short component had a period of ≈2 minutes and was observed only in the rhythmic constrictions and dilations of the pupils. Both ISOs were simultaneously present in both eyes, and they were synchronised between the left and right eye. The long ISO component was synchronised with the cyclic alternations of the brain state, as revealed by rhythmic changes in the pattern of the ECoG signal. Based on the obtained results, we propose a model of interference of ISO present in different brain systems involved in the control of pupil size. PMID:23638082

  17. Infra-slow oscillation (ISO) of the pupil size of urethane-anaesthetised rats.

    PubMed

    Blasiak, Tomasz; Zawadzki, Artur; Lewandowski, Marian Henryk

    2013-01-01

    Multiplicity of oscillatory phenomena in a range of infra-slow frequencies (<0.01 Hz) has been described in mammalian brains at different levels of organisation. The significance and manifestation in physiology and/or behaviour of many brain infra-slow oscillations (ISO) remain unknown. Examples of this phenomenon are two types of ISO observed in the brains of urethane-anaesthetised rats: infra-slow, rhythmic changes in the rate of action potential firing in a few nuclei of the subcortical visual system and a sleep-like cycle of activation/deactivation visible in the EEG signal. Because both of these rhythmic phenomena involve brain networks that can influence autonomic nervous system activity, we hypothesised that these two brain ISOs can be reflected by rhythmic changes of pupil size. Thus, in the present study, we used simultaneous pupillography and ECoG recording to verify the hypothesised existence of infra-slow oscillations in the pupil size of urethane-anaesthetised rats. The obtained results showed rhythmic changes in the size of the pupils and rhythmic eyeball movements in urethane-anaesthetised rats. The observed rhythms were characterised by two different dominant components in a range of infra-slow frequencies. First, the long component had a period of ≈ 29 minutes and was present in both the irises and the eyeball movements. Second, the short component had a period of ≈ 2 minutes and was observed only in the rhythmic constrictions and dilations of the pupils. Both ISOs were simultaneously present in both eyes, and they were synchronised between the left and right eye. The long ISO component was synchronised with the cyclic alternations of the brain state, as revealed by rhythmic changes in the pattern of the ECoG signal. Based on the obtained results, we propose a model of interference of ISO present in different brain systems involved in the control of pupil size.

  18. Polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, D. J.; Bell, V. L.; Stclair, T. L. (Inventor)

    1977-01-01

    A process was developed for preparing aromatic polyamide acids for use as adhesives by reacting an aromatic dianhydride to an approximately equimolar amount of an aromatic diamine in a water or lower alkanol miscible ether solvent. The polyamide acids are converted to polyimides by heating to the temperature range of 200 - 300 C. The polyimides are thermally stable and insoluble in ethers and other organic solvents.

  19. Adhesive plasters

    DOEpatents

    Holcombe, Jr., Cressie E.; Swain, Ronald L.; Banker, John G.; Edwards, Charlene C.

    1978-01-01

    Adhesive plaster compositions are provided by treating particles of Y.sub.2 O.sub.3, Eu.sub.2 O.sub.3, Gd.sub.2 O.sub.3 or Nd.sub.2 O.sub.3 with dilute acid solutions. The resulting compositions have been found to spontaneously harden into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure.

  20. ASPECTS OF THE MECHNANICAL BEHAVIOR OF STITCHED T300 MAT/URETHANE 420 IMR COMPOSITE

    SciTech Connect

    Deng, S.

    2002-11-25

    This report presents experimental and analytical results concerning the behavior of crossply and quasi-isotropic laminates manufactured of stitch-bonded T300 urethane 420 IMR polymeric composites. Based on extensive creep and recovery data at various levels of stress and temperature, as well as on strain-to-failure information, it was possible to arrive at empirical expressions relating deformation to the previous input as well as to input duration. These expressions were incorporated within the formalisms of viscoelasticity and laminate theory to illuminate some basic underlying mechanistic aspects of the material at hand, thereby enabling the prediction of anticipated response under more complex stress and temperature inputs.

  1. Thermophysical properties of BKC 44306 and BKC 44307 PMDI urethane solid and foams

    SciTech Connect

    Bauer, Stephen J.; Flint, Gregory Mark; Urquhart, Alexander; Mondy, Lisa Ann

    2014-02-01

    Accurate knowledge of thermophysical properties of urethane foam is considered extremely important for meaningful models and analyses to be developed of scenarios wherein the foam is heated. Its performance at temperature requires a solid understanding of the foam material properties at temperature. Also, foam properties vary with density/porosity. An experimental program to determine the thermal properties of the two foams and their parent solid urethane was developed in order to support development of a predictive model relating density and thermal properties from first principles. Thermal properties (thermal conductivity, diffusivity, and specific heat) of the foam were found to vary with temperatures from 26°C to 90°C. Thermal conductivity generally increases with increasing temperature for a given initial density and ranges from .0433 W/mK at 26°C to .0811 W/mK at 90°C; thermal diffusivity generally decreases with increasing temperature for a given initial density and ranges from .4101 mm2/s at 26°C to .1263 mm2/s at 90°C; and specific heat generally increases with increasing temperature for a given initial density and ranges from .1078 MJ/m3K at 26°C to .6323 MJ/m3K at 90°C. Thermal properties of the solid urethane were also found to vary with temperatures from 26°C to 90°C. Average thermal conductivity generally increases with increasing temperature for a given initial density and ranges from 0.126 to 0.131 W/mK at 26°C to 0.153 to 0.157 W/mK at 90°C; average thermal diffusivity generally decreases with increasing temperature for a given initial density and ranges from 0.142 to 0.147 mm2/s at 26°C to 0.124 to 0.125 mm2/s at 90°C; and average specific heat generally increases with increasing temperature for a given initial density and ranges from 0.889 to 0.899 MJ/m3K to 1.229 to 1.274 MJ/m3K at 90°C. The density of both foam and solid urethane decreased

  2. Chemical Hazards Associated with the Handling of Urethanes: A Literature Search

    DTIC Science & Technology

    1993-04-15

    Free MOCA [4,4’-Methylene Bis( 2 -Chloroaniline)] ................... 4 Other Amines ...................................................... 5 Other...CH3 0 + HO-CH-CK 2 -OR 0 11 R RA’ 1SECOND -H420 H ABSTRACTION -o DISASSOIATIONFROM C-3 -O CM3 CH3 0 ~~CHZCH-CH 2 -OR +_ O~dNH2 + c11-H-HO 0 4 + " 2 ...46.19 2 , 4 / 2 , 6 isomers) * Formulation used by Hilemand and associates [18] to conform generation of TDI from heated urethanes. HCN and CO Generation from

  3. Biocompatibility Evaluation of Four Dentin Adhesives Used as Indirect Pulp Capping Materials

    PubMed Central

    Cortés, Olga; Bernabé, Antonia

    2017-01-01

    Background In many cases, the indirect pulp treatment (IPT) is an acceptable treatment for deciduous teeth with reversible pulp inflammation. Various medicaments have been used for IPT, ranging from calcium hydroxide and glass ionomers to dentin adhesives. Objective This in vitro trial aimed to measure cytotoxicity in a cell culture, comparing the following four adhesives: Xeno® V (XE), Excite® F DSC (EX), Adhese® OneF (AD) and Prime & Bond NT (PB). Materials and methods The adhesives were prepared according to the manufacturer’s instructions. After 24 hours of exposure, the cell viability was evaluated using a photometrical test (MTT test). Data were subjected to analysis of variance (ANOVA). Results Adhesives, the main component of which was 2-hydroxyethyl methacrylate (HEMA), were found to be less cytotoxic, while those that included the monomer urethane dimethacrylate (UDMA were the most cytotoxic) in their composition. The effects on cell viability assay varied between the adhesives assayed with statistically significant differences. Conclusions The results may support the argument that Adhese® OneF is the least cytotoxic of the adhesives assayed, and may be considered as an adhesive agent for indirect pulp treatment. However, Prime and Bond NT showed a reduced biocompatibility under the same conditions. PMID:28827848

  4. Synthesis and UV-Curing Behaviors of Urethane Acrylic Oligomers Modified by the Incorporation of Silicone Diols into the Soft Segments for a 3D Multi-Chip Package Process

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Woo; Lee, Tae-Hyung; Park, Ji-Won; Kim, Hyun-Joong

    2015-07-01

    Ultraviolet (UV)-curable urethane acrylic oligomers were synthesized and then modified by the incorporation of silicone diols with different molecular weights to improve thermal stability for temporary bonding and debonding adhesives in a three-dimensional multi-chip package process. The UV-curing behaviors were investigated using photo-differential scanning calorimetry, Fourier transform infrared spectroscopy-attenuated total reflectance, and gel fraction, while the UV-curing kinetics was also studied. In addition, the thermal stability of the samples was checked using thermogravimetric analysis. UV-curing and thermal stability were more affected by the molecular weight of the silicone diols than by UV dose due to both the flexibility and the steric hindrance of the synthesized oligomer structures.

  5. Effects of Repeated Anesthesia Containing Urethane on Tumor Formation and Health Scores in Male C57BL/6J Mice

    PubMed Central

    Rex, Tonia S; Boyd, Kelli; Apple, Troy; Bricker-Anthony, Courtney; Vail, Krystal; Wallace, Jeanne

    2016-01-01

    Repeated injection of urethane (ethyl carbamate) is carcinogenic in susceptible strains of mice. Most recent cancer studies involving urethane-induced tumor formation use p53+/– mice, which lack one copy of the p53 tumor suppressor gene. In contrast, the same protocol elicits at most a single tumor in wildtype C57BL/6 mice. The effect of repeatedly injecting urethane as a component of a ketamine–xylazine anesthetic mixture in the highly prevalent mouse strain C57BL/6 is unknown. Male C57BL/6J mice (n = 30; age, 3 mo) were anesthetized once monthly for 4 mo by using 560 mg/kg urethane, 28 mg/kg ketamine, and 5.6 mg/kg xylazine. The physical health of the mice was evaluated according to 2 published scoring systems. The average body condition score (scale, 1 to 5; normal, 3) was 3.3, 3.3, and 3.4 after the 2nd, 3rd, and 4th injections, respectively. The visual assessment score was 0 (that is, normal) at all time points examined. Within 1 wk after the 4th injection, the mice were euthanized, necropsied, and evaluated histopathologically. No histopathologic findings were noteworthy. We conclude that repeated monthly injection with urethane as a component of an anesthetic cocktail does not cause clinically detectable abnormalities or induce neoplasia in C57BL/6J mice. These findings are important because urethane combined with low-dose ketamine, unlike other anesthetic regimens, allows for accurate recording of neuronal activity in both the brain and retina. Longitudinal neuronal recordings minimize the number of mice needed and improve the analysis of disease progression and potential therapeutic interventions. PMID:27177562

  6. Effects of Repeated Anesthesia Containing Urethane on Tumor Formation and Health Scores in Male C57BL/6J Mice.

    PubMed

    Rex, Tonia S; Boyd, Kelli; Apple, Troy; Bricker-Anthony, Courtney; Vail, Krystal; Wallace, Jeanne

    2016-01-01

    Repeated injection of urethane (ethyl carbamate) is carcinogenic in susceptible strains of mice. Most recent cancer studies involving urethane-induced tumor formation use p53(+/-) mice, which lack one copy of the p53 tumor suppressor gene. In contrast, the same protocol elicits at most a single tumor in wildtype C57BL/6 mice. The effect of repeatedly injecting urethane as a component of a ketamine-xylazine anesthetic mixture in the highly prevalent mouse strain C57BL/6 is unknown. Male C57BL/6J mice (n = 30; age, 3 mo) were anesthetized once monthly for 4 mo by using 560 mg/kg urethane, 28 mg/kg ketamine, and 5.6 mg/kg xylazine. The physical health of the mice was evaluated according to 2 published scoring systems. The average body condition score (scale, 1 to 5; normal, 3) was 3.3, 3.3, and 3.4 after the 2nd, 3rd, and 4th injections, respectively. The visual assessment score was 0 (that is, normal) at all time points examined. Within 1 wk after the 4th injection, the mice were euthanized, necropsied, and evaluated histopathologically. No histopathologic findings were noteworthy. We conclude that repeated monthly injection with urethane as a component of an anesthetic cocktail does not cause clinically detectable abnormalities or induce neoplasia in C57BL/6J mice. These findings are important because urethane combined with low-dose ketamine, unlike other anesthetic regimens, allows for accurate recording of neuronal activity in both the brain and retina. Longitudinal neuronal recordings minimize the number of mice needed and improve the analysis of disease progression and potential therapeutic interventions.

  7. Effects of intraduodenal injection of Lactobacillus johnsonii La1 on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats.

    PubMed

    Tanida, Mamoru; Yamano, Toshihiko; Maeda, Keiko; Okumura, Nobuaki; Fukushima, Yoichi; Nagai, Katsuya

    2005-12-02

    Previously, it was shown that milk fermented with lactic acid bacteria lowers blood pressure, suggesting that metabolites or components of the bacteria have hypotensive action. To examine whether one of lactobacilli, Lactobacillus johnsonii La1 (LJLa1), a probiotic strain adhesive onto intestinal epithelial cells, or its metabolite has hypotensive action, and if so the mechanism of action, we determined the effects of intraduodenal injection of LJLa1 on blood pressure (BP) and the activity of autonomic nerves in urethane-anesthetized rats. Intraduodenal injection of LJLa1 reduced renal sympathetic nerve activity (RSNA) and BP and enhanced gastric vagal nerve activity (GVNA). Pre-treatment with thioperamide, a histaminergic H3-receptor antagonist, eliminated the effects of LJLa1 on RSNA, GVNA, and BP. Furthermore, bilateral lesions of the hypothalamic suprachiasmatic nucleus (SCN), the master circadian oscillator, abolished the suppression of RSNA and BP and the elevation of GVNA caused by LJLa1. These findings suggest that LJLa1 or its metabolites might lower BP by changing autonomic neurotransmission via the central histaminergic nerves and the suprachiasmatic nucleus in rats.

  8. Incorporation of a lauric acid-conjugated GRGDS peptide directly into the matrix of a poly(carbonate-urea)urethane polymer for use in cardiovascular bypass graft applications.

    PubMed

    Kidane, Asmeret G; Punshon, Geoffrey; Salacinski, Henryk J; Ramesh, Bala; Dooley, Audrey; Olbrich, Michael; Heitz, Johannes; Hamilton, George; Seifalian, Alexander M

    2006-12-01

    Gly-Arg-Gly-Asp-Ser (GRGDS) was modified by conjugation to lauric acid (LA) to facilitate incorporation into the matrix of a poly(carbonate-urea)urethane (PCU) used in vascular bypass grafts. GRGDS and LA-GRGDS were synthesized using solid phase Fmoc chemistry and characterized by high performance liquid chromatography and Fourier transform infrared spectroscopy. LA-GRGDS was passively coated and incorporated as nanoparticle dispersion on the PCU films. Biocompatibility of the modified surfaces was investigated. Endothelial cells seeded on LA-GRGDS coated and incorporated PCU showed after 48 h and 72 h a significant (p < 0.05) increase in metabolism compared with unmodified PCU. The platelet adhesion and hemolysis studies showed that the modification of PCU had no adverse effect. In conclusion, LA-conjugated RGD derivatives, such as LA-GRGDS, that permit solubility into solvents used in solvent casting methodologies should have wide applicability in polymer development for use in coronary, vascular, and dialysis bypass grafts, and furthermore scaffolds utilized for tissue regeneration and tissue engineering.

  9. Preliminary In Vitro Assessment of Stem Cell Compatibility with Cross-Linked Poly(ε-caprolactone urethane) Scaffolds Designed through High Internal Phase Emulsions

    PubMed Central

    Changotade, Sylvie; Radu Bostan, Gabriela; Consalus, Anne; Poirier, Florence; Peltzer, Juliette; Lataillade, Jean-Jacques; Lutomski, Didier; Rohman, Géraldine

    2015-01-01

    By using a high internal phase emulsion process, elastomeric poly(ε-caprolactone urethane) (PCLU) scaffolds were designed with pores size ranging from below 150 μm to 1800 μm and a porosity of 86% making them suitable for bone tissue engineering applications. Moreover, the pores appeared to be excellently interconnected, promoting cellularization and future bone ingrowth. This study evaluated the in vitro cytotoxicity of the PCLU scaffolds towards human mesenchymal stem cells (hMSCs) through the evaluation of cell viability and metabolic activity during extract test and indirect contact test at the beginning of the scaffold lifetime. Both tests demonstrated that PCLU scaffolds did not induce any cytotoxic response. Finally, direct interaction of hMSCs and PCLU scaffolds showed that PCLU scaffolds were suitable for supporting the hMSCs adhesion and that the cells were well spread over the pore walls. We conclude that PCLU scaffolds may be a good candidate for bone tissue regeneration applications using hMSCs. PMID:26161094

  10. Highly aromatic anisotropic polyurea/urethane membranes and their use for the separation of aromatics from non-aromatics

    SciTech Connect

    Feimer, J.L.; Koenitzer, B.A.; Schucker, R.C.

    1989-05-09

    A method is described for producing an anisotropic polyurea/urethane membrane characterized by possessing three layers, the method comprising preparing a polyurea/urethane copolymer in a good solvent which contains less than about 5 volume percent non-solvent to produce a casting solution, depositing a film of the casting solution on a support substrate having a maximum pore size less than 20 microns, subjecting the film to conditions such that the solvent vapor pressure-time factor is about 1000 hm Hg-min or less and quenching the film in a non-solvent quenching medium.

  11. Controlled release of protein from biodegradable multi-sensitive injectable poly(ether-urethane) hydrogel.

    PubMed

    Li, Xiaomeng; Wang, Yangyun; Chen, Jiaming; Wang, Yinong; Ma, Jianbiao; Wu, Guolin

    2014-03-12

    The synthesis and characterization of multi-sensitive polymers for use as injectable hydrogels for controlled protein/drug delivery is reported. A series of biodegradable multi-sensitive poly(ether-urethane)s were prepared through a simple one-pot condensation of poly(ethylene glycol), 2,2'-dithiodiethanol, N-methyldiethanolamine, and hexamethylene diisocyanate. The sol-gel phase transition behaviors of the obtained copolymers were investigated. Experimental results showed that the aqueous medium comprising the multi-segment copolymers underwent a sol-to-gel phase transition with increasing temperature and pH. At a certain concentration, the copolymer solution could immediately change to a gel under physiological conditions (37 °C and pH 7.4), indicating their suitability as in situ injectable hydrogels in vivo. Insulin was used as a model protein drug for evaluation of the injectable hydrogels as a site-specific drug delivery system. The controlled release of insulin from the hydrogel devices was demonstrated by degradation of the copolymer, which is modulated via the 2,2'-dithiodiethanol content in the poly(ether-urethane)s. These hydrogels having multi-responsive properties may prove to be promising candidates for injectable and controllable protein drug delivery devices.

  12. Assessment of antifouling efficacy of polyhedral oligomeric silsesquioxane based poly (urea-urethane-imide) hybrid membranes.

    PubMed

    Ajit Walter, P; Muthukumar, T; Reddy, B S R

    2015-09-01

    A series of polyhedral oligomeric silsesquioxane (POSS) based poly(urea-urethane-imide) (PUUI-POSS) membranes were synthesized by varying the proportions of imide using 2,4-toluene diisocyanate (TDI) and bis(aminopropyl) terminated polydimethylsiloxane (PDMS). The molecular structures of poly(urea-urethane-imide)s were characterized by Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic technique. Incorporation of imide domain and its influence on surface roughness was investigated by atomic force microscopy (AFM). Hydrophobicity of polymeric membrane surfaces was determined by contact angle measurement. The thermal properties of the polymers were studied by thermogravimetric analysis. The antimicrobial activities and inhibition of bacterial attachment of these polymeric membranes were studied on Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) by the disc-diffusion method. The antifouling performance has been evaluated for the polymeric membranes against two bacteria (Staphylococcus aureus (ATCC 6538)) (Escherichia coli (ATCC 8739)). The polymeric membranes were incorporated with imide moiety to improve thermal stability of the polymeric materials. The synthesized polymeric membranes have shown good morphological properties for better antifouling activities. This study found that these membranes are capable of preventing micro-organisms besides offering excellent bio-fouling resistance. © 2015 The Society for Applied Microbiology.

  13. Adhesion and Cohesion

    PubMed Central

    von Fraunhofer, J. Anthony

    2012-01-01

    The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its importance with regard to adhesive dentistry and bonding to enamel and dentin is discussed. PMID:22505913

  14. Influence of Microstructure on Micro-/Nano-Mechanical Measurements of Select Model Transparent Poly(urethane urea) Elastomers

    DTIC Science & Technology

    2012-12-17

    performance polyurea and poly(urethane urea) (PUU) elastomers have recently gained considerable interest throughout the Department of Defense (DoD...segments in polyurethanes, PUUs and polyureas is known to be very complex. However, it is well- recognized that the strong intermolecular hydrogen...chain extended polyurethanes and polyureas , where poly- ureas exhibited greater tendency towards microphase separation than the corresponding

  15. Tests for urethane induction of germ-cell mutations and germ-cell killing in the mouse.

    PubMed

    Russell, L B; Hunsicker, P R; Oakberg, E F; Cummings, C C; Schmoyer, R L

    1987-08-01

    Urethane, a chemical that has given varied results in mutagenesis assays, was tested in the mouse specific-locus test, and its effect on germ-cell survival was explored. Altogether 32,828 offspring were observed from successive weekly matings of males exposed to the maximum tolerated i.p. dose of 1750 mg urethane/kg. The combined data rule out (at the 5% significance level) an induced mutation rate greater than 1.7 times the historical control rate. For spermatogonial stem cells alone, the multiple ruled out is 3.2, and for poststem-cell stages, 3.5. Litter sizes from successive conceptions made in any of the first 7 weeks give no indication of induced dominant lethality, confirming results of past dominant-lethal assays. That urethane (or an active metabolite) reaches germ cells is indicated by SCE induction in spermatogonia demonstrated by other investigators. Cytotoxic effects in spermatogonia are suggested by our finding of a slight reduction in numbers of certain types of spermatogonia in seminiferous tubule cross-sections and of a borderline decrease in the number of litters conceived during the 8th and 9th posttreatment weeks. The negative results for induction of gene mutations as well as clastogenic damage are at variance with Nomura's reports of dominant effects (F1 cancers and malformations) produced by urethane.

  16. Effect of urethane, dimethylnitrosamine, paraquat, and butylated hydroxytoluene on the activities of glycolytic key enzymes in mouse lung

    SciTech Connect

    Arany, I.; Rady, P.; Bojan, I.; Kertai, P.

    1981-12-01

    Effects of carcinogens and noncarcinogenic pulmonary toxicants on the activities of glycolytic key enzymes in the mouse lung were investigated. The carcinogens urethane (URTH) and dimethylnitrosamine (DMN) permanently enhanced, and the noncarcinogenic pulmonary toxicants paraquat (PAR) and butylated hydroxytoluene (BHT) temporarily, enhanced the activities of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) in the lungs of mice.

  17. Determination of Host-Guest Binding Sites for β-CYCLODEXTRIN Urethane Copolymers

    NASA Astrophysics Data System (ADS)

    Wilson, Lee D.; Mohamed, Mohamed H.; Headley, John V.

    In this paper, we propose a dye based spectrophometric technique as quantitative analytical method for estimating the available inclusion sites for β-cyclodextrin (β-CD) based urethane copolymers. The method relies on the absorbance changes (decolourization) of phenolphthalein (phth) in the visible region (λ=552 nm) at pH 10.5 in aqueous solution. Various types of urethane copolymers composed of β-CD and five different diisocyanate linkers (i.e., 1,6-hexamethylene diisocyanate (HDI), 4,4'-dicyclohexyl diisocyanate (CDI), 4,4'-diphenylmethane diisocyanate (MDI), 1,4-phenylene diisocyanate (PDI), and 1,5-naphthalene diisocyanate (NDI)) at variable β-CD: linker reactant ratios; 1:1, 1:2, and 1:3, respectively. The dye decolourization studies provided estimates of the 1:1 polymer/dye binding constant (K1), inclusion site accessibility, and the Gibbs free energy of sorption. It was concluded that the values of K1 for the supramolecular polymers with readily accessible β-CD inclusion sites had comparable values of K1 as compared with native β-CD. The accessibility of the β-CD inclusion sites for the copolymer materials ranged between 1-100% and the variability was attributed to steric effects in the annular hydroxyl region of the β-CD ocycle. The Gibbs free energy of complex formation (ΔG°) and the site occupancy (θ) of the inclusion sites for the copolymer materials was estimated independently using the Sips isotherm model. The ΔG° values ranged between -27 to -30 kJ mol-1 and are in agreement with the Gibbs free energy for the 1:1 β-CD/phth complexes (-27 kJ mol-1). The phth decolourization technique provides a simple, low cost, and versatile method for the estimation of the available inclusion sites in β-CD based urethane copolymer materials. This method is proposed to have extensive analytical applications in materials research and for the rational design of novel functional sorbent materials containing β-CD.

  18. Impact of thio-urethane additive and filler type on light-transmission and depth of polymerization of dental composites.

    PubMed

    Faria-E-Silva, André Luis; Pfeifer, Carmem Silvia

    2017-08-11

    This study evaluated the effects of filler type and the addition of thio-urethane oligomers on light-transmission, polymerization kinetics and depth of cure of resin composites. BisGMA:UDMA:TEGMA (5:3:2wt%) were mixed with 0 (control) or 20wt% thio-urethane. Fillers with various sizes and refractive indices were included and refractive index (RI) measured. Unfilled resins were used as controls. The RIs of materials were measured before and after polymerization. The irradiance reaching the bottom of 3-mm thick specimens was measured during the polymerization. Degree of conversion to a depth of 5mm was mapped. An optical bench was used to simultaneously follow conversion and light transmission. The addition of thio-urethane increased the RI for all composites. As expected, RI also increased with conversion for all materials. The one exception was for the material filled with OX-50, in which the RI of the composite decreased with conversion. In this case, the irradiance at the bottom of the 3mm specimen was also the lowest among all groups. The addition of thio-urethanes had only minimal effect on light transmission within a filler type, but led to increased conversion in depth for all groups. The filler type itself had a greater effect on light transmission, and that correlated well with the degree of conversion. The effect of the thio-urethane addition on degree of conversion in depth was dependent on filler type. The additive can be tailored to improve the RI match with the filler to optimize light transmission in dental composites. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Chemical and Physical Changes in a Hydrolyzed Poly(ester urethane)

    SciTech Connect

    ASSINK,ROGER A.; CELINA,MATHIAS C.; LANG,DAVID P.

    1999-11-03

    Hydrolytic degradation has been shown to be a significant problem for poly(ester urethane) elastomers exposed to high humidity environments. The ester group in the soft segment is particularly susceptible to hydrolysis. One of the products of this reaction is a carboxylic acid group that catalyses further hydrolysis. The resulting reduction in molecular weight leads to deterioration of the elastomer's mechanical properties. In this paper we have measured the extent of the hydrolysis reaction by {sup 13}C NMR spectroscopy. In addition we have measured the spin-spin relaxation time of the soft phase and followed the increase in mobility of these segments. Both measurements were performed on the solid polymer. These measurements provide an excellent monitoring tool of the chemical and physical state of polymer during the aging process.

  20. Photochemical activation of extremely weak nucleophiles: highly fluorinated urethanes and polyurethanes from polyfluoro alcohols.

    PubMed

    Soto, Marc; Sebastián, Rosa María; Marquet, Jordi

    2014-06-06

    An efficient and environmentally friendly photoreaction between phenyl isocyanate or pentafluorophenyl isocyanate and polyfluorinated alcohols and diols is described for the first time. New highly fluorinated urethanes and diurethanes, derived from aromatic isocyanates, are produced in good yields in a photoreaction that is apparently governed by the acidic properties of the polyfluoro alcohols and diols. The wettability properties of the new polyfluorinated diurethanes have been tested, some of them showing significantly high values of hydrophobicity and oleophobicity. This new photoreaction has also been tested in the production of a model polyfluorinated polyurethane, establishing the influence of the irradiation power in the outcome of the process, and directly achieving a molecular weight distribution corresponding to a number-average DP(n) = 12 and a highest DP(n) = 20 after 4 h of irradiation (DP(n): "number-average degree of polymerization").

  1. Highly selective and stable florescent sensor for Cd(II) based on poly (azomethine-urethane).

    PubMed

    Kaya, İsmet; Kamacı, Musa

    2013-01-01

    In this study a kind of poly(azomethine-urethane); (E)-4-((2 hydroxyphenylimino) methyl)-2-methoxyphenyl 6-acetamidohexylcarbamate (HDI-co-3-DHB-2-AP) was prepared as in the literature and employed as a new fluorescent probe for detection of Cd(II) concentration. The photoluminescence (PL) measurements were carried out in the presence of several kinds of heavy metals. HDI-co-3-DHB-2-AP gave a linearly and highly stable response against Cd(II) as decreasing a new emission peak at 562 nm. Possible interferences of other ions were found too low. Detection limit of the sensor was found as 8.86 × 10(-4) mol L(-1). Resultantly, HDI-co-3- DHB-2-AP could be effectively used as an optical Cd(II) sensor.

  2. Aqueous Tape Casting of Alumina using an Emulsion of Urethane Polymer

    NASA Astrophysics Data System (ADS)

    Takaishi, T.; Inada, H.; Sato, M.; Sano, S.; Kawakami, S.

    2011-05-01

    From the viewpoint of solving environmental problems, changeover from organic solvent-based system to water-based system in tape casting process has been required. The effects of organic additives on the rheological properties of water-based alumina slurries were investigated. The aqueous slurries were prepared from low-soda alumina powder, deionized water, ammonium salt of polycarboxylic acid type dispersant, emulsion type urethane polymer binder and defoamer. By means of the zeta potential measurement, the optimum content of added dispersant was estimated. Furthermore, precipitation test, viscosity measurement and so on were performed. From these measurements, it was decided that optimum amounts of dispersant and binder were 0.8 mass% and 12 mass%, respectively. Well-dispersed and high solid content slurry gave good quality green sheets, and high density sintered bodies were obtained.

  3. Poly(glycerol sebacate urethane)-cellulose nanocomposites with water-active shape-memory effects.

    PubMed

    Wu, Tongfei; Frydrych, Martin; O'Kelly, Kevin; Chen, Biqiong

    2014-07-14

    Biodegradable and biocompatible materials with shape-memory effects (SMEs) are attractive for use as minimally invasive medical devices. Nanocomposites with SMEs were prepared from biodegradable poly(glycerol sebacate urethane) (PGSU) and renewable cellulose nanocrystals (CNCs). The effects of CNC content on the structure, water absorption, and mechanical properties of the PGSU were studied. The water-responsive mechanically adaptive properties and shape-memory performance of PGSU-CNC nanocomposites were observed, which are dependent on the content of CNCs. The PGSU-CNC nanocomposite containing 23.2 vol % CNCs exhibited the best SMEs among the nanocomposites investigated, with the stable shape fixing and shape recovery ratios being 98 and 99%, respectively, attributable to the formation of a hydrophilic, yet strong, CNC network in the elastomeric matrix. In vitro degradation profiles of the nanocomposites were assessed with and without the presence of an enzyme.

  4. Surface decorated poly(ester-ether-urethane)s nanoparticles: a versatile approach towards clinical translation.

    PubMed

    Piras, Anna Maria; Sandreschi, Stefania; Malliappan, Sivakumar Ponnurengam; Dash, Mamoni; Bartoli, Cristina; Dinucci, Dinuccio; Guarna, Francesco; Ammannati, Enrico; Masa, Marc; Múčková, Marta; Schmidtová, Ludmila; Chiellini, Emo; Chiellini, Federica

    2014-11-20

    Poly(ester-ether-urethane)s copolymers are a resourceful class of biopolymers for the preparation of nanocarriers for drug delivery applications. However, a simple clinical translation for this synthetic material with biological and quality features is still needed. In this view, poly(ε-caprolactone)-co-poly(ethylene glycol) copolymers were synthesized as semi-bulk pilot (Kg) scale under mild conditions in absence of catalyst, bearing functional termini such as fluorescein tag and anticancer targeting moieties. The obtained materials were processed into surface decorated paclitaxel (PTX) loaded nanoparticles (NPs). The NPs were fully characterized in vitro and in vivo biodistribution in healthy mice evidenced no sign of toxicity and lower levels of PTX in lung and spleen, compared to clinically applied PTX dosage form.

  5. Characterization of a resorbable poly(ester urethane) with biodegradable hard segments.

    PubMed

    Dempsey, David K; Robinson, Jennifer L; Iyer, Ananth V; Parakka, James P; Bezwada, Rao S; Cosgriff-Hernandez, Elizabeth M

    2014-01-01

    The rapid growth of regenerative medicine and drug delivery fields has generated a strong need for improved polymeric materials that degrade at a controlled rate into safe, non-cytotoxic by-products. Polyurethane thermoplastic elastomers offer several advantages over other polymeric materials including tunable mechanical properties, excellent fatigue strength, and versatile processing. The variable segmental chemistry in developing resorbable polyurethanes also enables fine control over the degradation profile as well as the mechanical properties. Linear aliphatic isocyanates are most commonly used in biodegradable polyurethane formulations; however, these aliphatic polyurethanes do not match the mechanical properties of their aromatic counterparts. In this study, a novel poly(ester urethane) (PEsU) synthesized with biodegradable aromatic isocyanates based on glycolic acid was characterized for potential use as a new resorbable material in medical devices. Infrared spectral analysis confirmed the aromatic and phase-separated nature of the PEsU. Uniaxial tensile testing displayed stress-strain behavior typical of a semi-crystalline polymer above its Tg, in agreement with calorimetric findings. PEsU outperformed aliphatic PCL-based polyurethanes likely due to the enhanced cohesion of the aromatic hard domains. Accelerated degradation of the PEsU using 0.1 M sodium hydroxide resulted in hydrolysis of the polyester soft segment on the surface, reduced molecular weight, surface cracking, and a 30% mass loss after four weeks. Calorimetric studies indicated a disruption of the soft segment crystallinity after incubation which corresponded with a drop in initial modulus of the PEsU. Finally, cytocompatibility testing with 3T3 mouse fibroblasts exhibited cell viability on PEsU films comparable to a commercial poly(ether urethane urea) after 24 h followed by 85% cell viability at 72 h. Overall, this new resorbable polyurethane shows strong potential for use in wide

  6. Novel poly(urethane-aminoamides): an in vitro study of the interaction with heparin.

    PubMed

    Petrini, P; Tanzi, M C; Visai, L; Casolini, F; Speziale, P

    2000-01-01

    In order to obtain heparin-binding polyurethanes, tertiary amino-groups have been introduced in the polymer backbone by attributing a key-role to the chain extender, i.e. substituting butanediol, commonly used in polyurethane synthesis, with a tailor-made diamino-diamide-diol. In this work a poly(ether-urethane-aminoamide) (PEU/PIME/al) was obtained with poly(oxytetramethylene) glycol 2000, 1,6-hexamethylene-diisocyanate and the new chain extender, in the molar ratio 1:2:1. The heparin binding capacity of PEU/PIME/al was evaluated with 125I labelled heparin, using for comparison the analogous polymer obtained with a diamide-diol (i.e. the poly(ether-urethane-amide) PEU/PIBLO/al), and two commercially available biomedical polyurethanes (Pellethane 2363 and Corethane). pH and ionic strength dependence of the heparin uptake were investigated by treating all the polyurethanes with solutions of 125I heparin into buffers from pH 4 to 9 or NaCl molarity from 0.0 to 1.0. The stability of the interaction with bound heparin was investigated by sequential washing treatments (PBS, 1 N NaOH, 2% SDS solution), then analysing the residual radioactivity on the materials. Results indicated that the heparin binding of PEU/PIME/al is significantly higher and more stable than that of the other polyurethanes, with a time-dependent kinetic. The interaction with heparin appears to be prevalently ionic, with the contribution of other electrostatic and hydrophobic interactions. Activated partial thromboplastin time (APTT), performed on human plasma with polyurethane-coated, heparinized test tubes, indicated that bound heparin maintains its biological activity after the adsorption.

  7. Characterization of the Degradation Mechanisms of Lysine-derived Aliphatic Poly(ester urethane) Scaffolds

    PubMed Central

    Hafeman, Andrea E.; Zienkiewicz, Katarzyna J.; Zachman, Angela L.; Sung, Hak-Joon; Nanney, Lillian B.; Davidson, Jeffrey M.; Guelcher, Scott A.

    2010-01-01

    Characterization of the degradation mechanism of polymeric scaffolds and delivery systems for regenerative medicine is essential to assess their clinical applicability. Key performance criteria include induction of a minimal, transient inflammatory response and controlled degradation to soluble non-cytotoxic breakdown products that are cleared from the body by physiological processes. Scaffolds fabricated from biodegradable poly(ester urethane)s (PEURs) undergo controlled degradation to non-cytotoxic breakdown products and support the ingrowth of new tissue in preclinical models of tissue regeneration. While previous studies have shown that PEUR scaffolds prepared from lysine-derived polyisocyanates degrade faster under in vivo compared to in vitro conditions, the degradation mechanism is not well understood. In this study, we have shown that PEUR scaffolds prepared from lysine triisocyanate (LTI) or a trimer of hexamethylene diisocyanate (HDIt) undergo hydrolytic, esterolytic, and oxidative degradation. Hydrolysis of ester bonds to yield α-hydroxy acids is the dominant mechanism in buffer, and esterolytic media modestly increase the degradation rate. While HDIt scaffolds show a modest (<20%) increase in degradation rate in oxidative medium, LTI scaffolds degrade six times faster in oxidative medium. Furthermore, the in vitro rate of degradation of LTI scaffolds in oxidative medium approximates the in vivo rate in rat excisional wounds, and histological sections show macrophages expressing myeloperoxidase at the material surface. While recent preclinical studies have underscored the potential of injectable PEUR scaffolds and delivery systems for tissue regeneration, this promising class of biomaterials has a limited regulatory history. Elucidation of the macrophage-mediated oxidative mechanism by which LTI scaffolds degrade in vivo provides key insights into the ultimate fate of these materials when injected into the body. PMID:20864156

  8. Oxidatively Degradable Poly(thioketal urethane)/Ceramic Composite Bone Cements with Bone-Like Strength.

    PubMed

    McEnery, Madison A P; Lu, Sichang; Gupta, Mukesh K; Zienkiewicz, Katarzyna J; Wenke, Joseph C; Kalpakci, Kerem N; Shimko, Daniel; Duvall, Craig L; Guelcher, Scott A

    2016-01-01

    Synthetic bone cements are commonly used in orthopaedic procedures to aid in bone regeneration following trauma or disease. Polymeric cements like PMMA provide the mechanical strength necessary for orthopaedic applications, but they are not resorbable and do not integrate with host bone. Ceramic cements have a chemical composition similar to that of bone, but their brittle mechanical properties limit their use in weight-bearing applications. In this study, we designed oxidatively degradable, polymeric bone cements with mechanical properties suitable for bone tissue engineering applications. We synthesized a novel thioketal (TK) diol, which was crosslinked with a lysine triisocyanate (LTI) prepolymer to create hydrolytically stable poly(thioketal urethane)s (PTKUR) that degrade in the oxidative environment associated with bone defects. PTKUR films were hydrolytically stable for up to 6 months, but degraded rapidly (<1 week) under simulated oxidative conditions in vitro. When combined with ceramic micro- or nanoparticles, PTKUR cements exhibited working times comparable to calcium phosphate cements and strengths exceeding those of trabecular bone. PTKUR/ceramic composite cements supported appositional bone growth and integrated with host bone near the bone-cement interface at 6 and 12 weeks post-implantation in rabbit femoral condyle plug defects. Histological evidence of osteoclast-mediated resorption of the cements was observed at 6 and 12 weeks. These findings demonstrate that a PTKUR bone cement with bone-like strength can be selectively resorbed by cells involved in bone remodeling, and thus represent an important initial step toward the development of resorbable bone cements for weight-bearing applications.

  9. Thermal Characterization of Adhesive

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  10. Design, synthesis and 1H NMR study of C3v-symmetric anion receptors with urethane-NH as recognition group

    NASA Astrophysics Data System (ADS)

    Park, Jin-Oh; Sahoo, Suban K.; Choi, Heung-Jin

    2016-01-01

    C3v-Symmetric anion receptors 3 and 4 with urethane groups were synthesized by using trindane triol as tripodal molecular framework. In 1H NMR titration study, the receptors showed noticeable downfield shift/disappearance of the urethane-NH peak in presence of H2PO4- and F- due to the host-guest complexation occurred through multiple hydrogen bonding and/or the deprotonation of urethane-NH groups. Other tested anions such as Cl-, Br-, HSO4-, and NO3- showed either no or negligible chemical shift of the urethane groups. The deprotonation event in 4 allowed selective detection of F- by perceptible color change from colorless to yellowish-red with the appearance of a new charge transfer absorption band at 450 nm.

  11. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  12. Understanding Marine Mussel Adhesion

    SciTech Connect

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  13. Molecular architecture of thin films fabricated via physical vapor deposition and containing a poly(azo)urethane.

    PubMed

    Aléssio, Priscila; Constantino, Carlos José Leopoldo; Job, Aldo Eloizo; Aroca, Ricardo; González, Eduardo René Pérez

    2010-05-01

    Organic thin films are widely applied as transducers in devices whose performance is determined by the optical and electrical properties of the films. In this context, the molecular architecture of the thin films plays an important role. In this work we report the fabrication and characterization of a poly(azo)urethane synthesized fixing CO2 in bis-epoxide followed by a copolymerization reaction with an azodiamine without using isocyanate. The poly(azo)urethane thin films were fabricated by physical vapor deposition (PVD) technique using vacuum thermal evaporation. The molecular architecture of the PVD films was investigated under control growth at nanometer level of thickness, as well as the surface morphology at micro and nanometer scales and the molecular organization. The thermal stability of the poly(azo)urethane molecules, which is a challenge in itself considering the thermal evaporation process, was followed by thermogravimetric analysis (TG) and also by both Fourier transform infrared absorption (FTIR) and ultraviolet-visible (UV-vis) absorption spectroscopies. The UV-vis absorption spectra showed a linear growth of the absorbance of the PVD films with the mass thickness measured by a quartz crystal balance. A random distribution of the poly(azo)urethane molecules in the PVD films was revealed by FTIR spectra. The film morphology was investigated at microscopic level combining chemical and topographical information through micro-Raman technique. At nanoscopic scale, the morphology was investigated by atomic force microscopy (AFM) for films fabricated using distinct evaporation rates. As a proof of principle (for potential applications), the film luminescence was measured over a wide range of temperature. Interestingly, an unusual increase of fluorescence intensity was observed at +150 degrees C after a monotonic decrease from -150 degrees C.

  14. Highly aromatic polyurea/urethane membranes and their use for the separation of aromatics from non-aromatics

    SciTech Connect

    Schucker, R.C.

    1990-04-03

    This patent describes a dense non-porous polyurea/urethane membrane. It is characterized by possessing a urea index of at least bout 20% but less than 100%, an aromatic carbon content of at least about 15 mole percent, a functional group density of at least about 10 per 1000 grams of polymer and a C{double bond}O/NH ratio of less than about 8.

  15. Anxious and nonanxious mice show similar hippocampal sensory evoked oscillations under urethane anesthesia: difference in the effect of buspirone.

    PubMed

    Horváth, János; Barkóczi, Balázs; Müller, Géza; Szegedi, Viktor

    2015-01-01

    Hippocampal oscillations recorded under urethane anesthesia are proposed to be modulated by anxiolytics. All classes of clinically effective anxiolytics were reported to decrease the frequency of urethane theta; however, recent findings raise concerns about the direct correlation of anxiolysis and the frequency of hippocampal theta. Here, we took advantage of our two inbred mouse strains displaying extremes of anxiety (anxious (AX) and nonanxious (nAX)) to compare the properties of hippocampal activity and to test the effect of an anxiolytic drugs. No difference was observed in the peak frequency or in the peak power between AX and nAX strains. Buspirone (Bus) applied in 2.5 mg/kg decreased anxiety of AX but did not have any effect on nAX as was tested by elevated plus maze and open field. Interestingly, Bus treatment increased hippocampal oscillatory frequency in the AX but left it unaltered in nAX mice. Saline injection did not have any effect on the oscillation. Paired-pulse facilitation was enhanced by Bus in the nAX, but not in the AX strain. Collectively, these results do not support the hypothesis that hippocampal activity under urethane may serve as a marker for potential anxiolytic drugs. Moreover, we could not confirm the decrease of frequency after anxiolytic treatment.

  16. Anxious and Nonanxious Mice Show Similar Hippocampal Sensory Evoked Oscillations under Urethane Anesthesia: Difference in the Effect of Buspirone

    PubMed Central

    Horváth, János; Barkóczi, Balázs; Müller, Géza

    2015-01-01

    Hippocampal oscillations recorded under urethane anesthesia are proposed to be modulated by anxiolytics. All classes of clinically effective anxiolytics were reported to decrease the frequency of urethane theta; however, recent findings raise concerns about the direct correlation of anxiolysis and the frequency of hippocampal theta. Here, we took advantage of our two inbred mouse strains displaying extremes of anxiety (anxious (AX) and nonanxious (nAX)) to compare the properties of hippocampal activity and to test the effect of an anxiolytic drugs. No difference was observed in the peak frequency or in the peak power between AX and nAX strains. Buspirone (Bus) applied in 2.5 mg/kg decreased anxiety of AX but did not have any effect on nAX as was tested by elevated plus maze and open field. Interestingly, Bus treatment increased hippocampal oscillatory frequency in the AX but left it unaltered in nAX mice. Saline injection did not have any effect on the oscillation. Paired-pulse facilitation was enhanced by Bus in the nAX, but not in the AX strain. Collectively, these results do not support the hypothesis that hippocampal activity under urethane may serve as a marker for potential anxiolytic drugs. Moreover, we could not confirm the decrease of frequency after anxiolytic treatment. PMID:25949829

  17. Intraperitoneal co-administration of low dose urethane with xylazine and ketamine for extended duration of surgical anesthesia in rats

    PubMed Central

    Clover, Anthony J. P.

    2015-01-01

    Procedures involving complex surgical techniques in rats, such as placement of abdominal aortic graft require extended duration of surgical anesthesia, which often can be achieved by repeated administrations of xylazine-ketamine combination. However such repeated anesthetic administration, in addition to being technically challenging, may be associated with potential adverse events due to cumulative effects of anesthesia. We report here the feasibility of using urethane at low dose (~1/10 the recommended anesthetic dose) in combination with a xylazine-ketamine mix to achieve an extended duration of surgical anesthesia in rats. The anesthesia induction phase was quick and smooth with an optimal phase of surgical anesthesia achieved for up to 90 minutes, which was significantly higher compared to that achieved with use of only xylazine-ketamine combination. The rectal temperature, heart rate and respiratory rate were within the physiological range with an uneventful recovery phase. Post surgery the rats were followed up to 3 months without any evidence of tumor or any other adverse effects related to the use of the urethane anesthetic combination. We conclude that low dose urethane can be effectively used in combination with xylazine and ketamine to achieve extended duration of surgical anesthesia up to 90 minutes in rats. PMID:26755920

  18. Effects of model coal tar components on adhesion strength of polyurethane coating on steel plate

    SciTech Connect

    Yokoyama, N.; Fujino, K.

    2005-04-15

    In order to study the effects of coal tar components on the adhesion strength of a heavy duty anticorrosive coating formed with tar-urethane resin oil on a steel plate, polyurethane coatings that were compounded with 15 kinds of polycyclic aromatic compounds as model coal tar components were prepared. In the model coal tar, components, naphthalene, quinoline, 2-naphthol, and phenanthrene showed good compatibility with polyurethane. To test their heavy duty anticorrosive properties, tensile adhesion strength of the cured coatings prepared with the compatible model coal tar components was measured, and the change in tensile adhesion strength as a function of time during salt-water spray treatment was measured. We found that the systems compounded with naphthalene, 2-naphthol, and phenanthrene showed good properties in an ordinary state for adhesion strength. However, only the system with 2-naphthol was found to have good properties in the change of tensile adhesion strength as a function or time during salt-water spray treatment. The curing time of the system with 2-naphthol was slower than that or the others, i.e., we found an inverse proportion between curing speed and adhesion durability. We also measured the dynamic viscoelasticity of cured coatings.

  19. Chapter 9:Wood Adhesion and Adhesives

    Treesearch

    Charles R. Frihart

    2013-01-01

    The recorded history of bonding wood dates back at least 3000 years to the Egyptians (Skeist and Miron 1990, River 1994a), and adhesive bonding goes back to early mankind (Keimel 2003). Although wood and paper bonding are the largest applications for adhesives, some of the fundamental aspects leading to good bonds are not fully understood. Better understanding of these...

  20. Development of Composite Porous Scaffolds Based on Collagen and Biodegradable Poly(ester urethane)urea

    PubMed Central

    Guan, Jianjun; Stankus, John J.; Wagner, William R.

    2010-01-01

    Our objective in this work was to develop a flexible, biodegradable scaffold for cell transplantation that would incorporate a synthetic component for strength and flexibility and type I collagen for enzymatic lability and cytocompatibility. A biodegradable poly(ester urethane)urea was synthesized from poly(caprolactone), 1,4-diisocyanatobutane, and putrescine. Using a thermally induced phase separation process, porous scaffolds were created from a mixture containing this polyurethane and 0%, 10%, 20%, or 30% type I collagen. The resulting scaffolds were found to have open, interconnected pores (from 7 to >100 um) and porosities from 58% to 86% depending on the polyurethane/collagen ratio. The scaffolds were also flexible with breaking strains of 82–443% and tensile strengths of 0.97–4.11 MPa depending on preparation conditions. Scaffold degradation was significantly increased when collagenase was introduced into an incubating buffer in a manner that was dependent on the mass fraction of collagen present in the scaffold. Mass losses could be varied from 15% to 59% over 8 weeks. When culturing umbilical artery smooth muscle cells on these scaffolds higher cell numbers were observed over a 4-week culture period in scaffolds containing collagen. In summary, a strong and flexible scaffold system has been developed that can degrade by both hydrolysis and collagenase degradation pathways, as well as support cell growth. This scaffold possesses properties that would make it attractive for future use in soft tissue applications where such mechanical and biological features would be advantageous. PMID:16826792

  1. Moisture-cured silicone-urethanes-candidate materials for tissue engineering: a biocompatibility study in vitro.

    PubMed

    Mrówka, P; Kozakiewicz, J; Jurkowska, A; Sienkiewicz, E; Przybylski, J; Lewandowski, Z; Przybylski, J; Lewandowska-Szumieł, M

    2010-07-01

    This study was performed to verify the response of human bone-derived cells (HBDCs) to moisture-cured silicone-urethanes (mcSUUs) in vitro, as the first step toward using them as scaffolds for bone tissue engineering. Good surgical handling, tissue cavity filling, stable mechanical properties, and potentially improved oxygen supply to cells after implantation justify the investigation of these nondegradable elastomers. A set of various mcSUUs were obtained by moisture-curing NCO-terminated prepolymers, synthesized from oligomeric siloxane diols of two different oligosiloxane chain lengths, and two different diisocyanates (MDI and IPDI), using two different NCO/OH molar ratios. Dibutyltindilaurate (DBTL) or N-dimethylethanolamine (N-met) served as catalysts. After 7 days of culture, cell number, viability, and alkaline phosphatase (ALP) activity were determined, and after 21 days, cell viability and collagen production were determined. Material characteristics significantly influenced the cell response. The mcSUUs prepared with DBTL (widely used in the syntheses of biomaterials) were cytotoxic. The MDI-based mcSUUs were significantly more favored by HBDCs than the IPDI-based ones in all performed tests. MDI-based material with low 2/1 NCO/OH and short chain length was the best support for cells, comparable with tissue-culture polystyrene (with ALP activity even higher). HBDCs cultured on porous scaffolds from this mcSUU produced a tissue-like structure in culture. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.

  2. Amorphous calcium phosphate/urethane methacrylate resin composites. I. Physicochemical characterization.

    PubMed

    Regnault, William F; Icenogle, Tonya B; Antonucci, Joseph M; Skrtic, Drago

    2008-02-01

    Urethane dimethacrylate (UDMA), an oligomeric poly(ethylene glycol) extended UDMA (PEG-U) and a blend of UDMA/PEG-U were chosen as model systems for introducing both hydrophobic and hydrophilic segments and a range of compliances in their derived polymers. Experimental composites based on these three resins with amorphous calcium phosphate (ACP) as the filler phase were polymerized and evaluated for mechanical strength and ion release profiles in different aqueous media. Strength of all composites decreased upon immersion in saline (pH = 7.4). Both polymer matrix composition and the pH of the liquid environment strongly affected the ion release kinetics. In saline, the UDMA/PEG-U composite showed a sustained release for at least 350 h. The initially high ion release of the PEG-U composites decreased after 72 h, seemingly due to the mineral re-deposition at the composite surface. Internal conversion from ACP to poorly crystallized apatite could be observed by X-ray diffraction. In various lactic acid (LA) environments (initial pH = 5.1) ion release kinetics was much more complex. In LA medium without thymol and/or carboxymethylcellulose, as a result of unfavorable changes in the internal calcium/phosphate ion stoichiometry, the ion release rate greatly increased but without observable conversion of ACP to apatite.

  3. Fabrication and characterization of biomimetic multichanneled crosslinked-urethane doped polyester (CUPE) tissue engineered nerve guides

    PubMed Central

    Tran, Richard. T.; Choy, Wai Man; Cao, Hung; Qattan, Ibrahim; Chiao, Jung-Chih; Ip, Wing Yuk; Yeung, Kelvin Wai Kwok; Yang, Jian

    2013-01-01

    Biomimetic scaffolds that replicate the native architecture and mechanical properties of target tissues have been recently shown to be a very promising strategy to guide cellular growth and facilitate tissue regeneration. In this study, porous, soft, and elastic crosslinked urethane-doped polyester (CUPE) tissue engineered nerve guides were fabricated with multiple longitudinally oriented channels and an external non-porous sheath to mimic the native endoneurial microtubular and epineurium structure, respectively. The fabrication technique described herein is highly adaptable and allows for fine control over the resulting nerve guide architecture in terms of channel number, channel diameter, porosity, and mechanical properties. Biomimetic multichanneled CUPE guides were fabricated with various channel numbers and displayed an ultimate peak stress of 1.38 ± 0.22 MPa with a corresponding elongation at break of 122.76 ± 42.17 %, which were comparable to that of native nerve tissue. The CUPE nerve guides were also evaluated in vivo for the repair of a 1 cm rat sciatic nerve defect. Although histological evaluations revealed collapse of the inner structure from CUPE TENGs, the CUPE nerve guides displayed fiber populations and densities comparable with nerve autograft controls after 8 weeks of implantation. These studies are the first report of a CUPE-based biomimetic multichanneled nerve guide and warrant future studies towards optimization of the channel geometry for use in neural tissue engineering. PMID:24115502

  4. Enhanced bioreduction-responsive biodegradable diselenide-containing poly(ester urethane) nanocarriers.

    PubMed

    Wei, Chao; Zhang, Yan; Song, Zhongchen; Xia, Yiru; Xu, Heng; Lang, Meidong

    2017-02-03

    Stimuli-responsive nanocarriers have been limited for bench-to-bedside translation mainly because the stimuli sensitivity and responsive rate are not high enough to ensure sufficient drug concentration at the target sites for superior therapeutic benefits. Herein, we reported an enhanced bioreduction-responsive and biodegradable nanocarrier based on the amphiphilic poly(ester urethane) copolymers (PAUR-SeSe) bearing multiple diselenide groups on the backbone. The copolymer could spontaneously self-assemble into stable micelles in aqueous medium with an average diameter of 68 nm, which could be rapidly disassembled in a reductive environment as a result of the reduction-triggered cleavage of diselenide groups. Furthermore, the PAUR-SeSe micelles showed an enhanced drug release profile and cellular uptake compared with the disulfide-containing analogue (PAUR-SS). CCK8 assays revealed that the antitumor activity of DOX-loaded PAUR-SeSe micelles was much higher than that of DOX-loaded PAUR-SS micelles. Besides, the blank micelles and degradation products were nontoxic up to a tested concentration of 50 μg mL(-1). Therefore, the enhanced therapeutic efficacy and good biocompatibility demonstrated that this drug nanocarrier had great potential for smart antitumor drug delivery applications.

  5. Amorphous calcium phosphate/urethane methacrylate resin composites. I. Physicochemical characterization

    PubMed Central

    Regnault, W.F.; Icenogle, T.B.; Antonucci, J.M.; Skrtic, D.

    2008-01-01

    Urethane dimethacrylate (UDMA), an oligomeric poly(ethylene glycol) extended UDMA (PEG-U) and a blend of UDMA/PEG-U were chosen as model systems for introducing both hydrophobic and hydrophilic segments and a range of compliances in their derived polymers. Experimental composites based on these three resins with amorphous calcium phosphate (ACP) as the filler phase were polymerized and evaluated for mechanical strength and ion release profiles in different aqueous media. Strength of all composites decreased upon immersion in saline (pH = 7.4). Both polymer matrix composition and the pH of the liquid environment strongly affected the ion release kinetics. In saline, the UDMA/PEG-U composite showed a sustained release for at least 350 h. The initially high ion release of the PEG-U composites decreased after 72 h, seemingly due to the mineral re-deposition at the composite surface. Internal conversion from ACP to poorly crystallized apatite could be observed by X-ray diffraction. In various lactic acid (LA) environments (initial pH = 5.1) ion release kinetics was much more complex. In LA medium without thymol and/or carboxymethylcellulose, as a result of unfavorable changes in the internal calcium/phosphate ion stoichiometry, the ion release rate greatly increased but without observable conversion of ACP to apatite. PMID:17619969

  6. Synthesis and characterization of polycaprolactone urethane hollow fiber membranes as small diameter vascular grafts.

    PubMed

    Mercado-Pagán, Ángel E; Stahl, Alexander M; Ramseier, Michelle L; Behn, Anthony W; Yang, Yunzhi

    2016-07-01

    The design of bioresorbable synthetic small diameter (<6mm) vascular grafts (SDVGs) capable of sustaining long-term patency and endothelialization is a daunting challenge in vascular tissue engineering. Here, we synthesized a family of biocompatible and biodegradable polycaprolactone (PCL) urethane macromers to fabricate hollow fiber membranes (HFMs) as SDVG candidates, and characterized their mechanical properties, degradability, hemocompatibility, and endothelial development. The HFMs had smooth surfaces and porous internal structures. Their tensile stiffness ranged from 0.09 to 0.11N/mm and their maximum tensile force from 0.86 to 1.03N, with minimum failure strains of approximately 130%. Permeability varied from 1 to 14×10(-6)cm/s, burst pressures from 1158 to 1468mmHg, and compliance from 0.52 to 1.48%/100mmHg. The suture retention forces ranged from 0.55 to 0.81N. HFMs had slow degradation profiles, with 15 to 30% degradation after 8weeks. Human endothelial cells proliferated well on the HFMs, creating stable cell layer coverage. Hemocompatibility studies demonstrated low hemolysis (<2%), platelet activation, and protein adsorption. There were no significant differences in the hemocompatibility of HFMs in the absence and presence of endothelial layers. These encouraging results suggest great promise of our newly developed materials and biodegradable elastomeric HFMs as SDVG candidates.

  7. Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing.

    PubMed

    Liu, Xin; Lin, Tong; Gao, Yuan; Xu, Zhiguang; Huang, Chen; Yao, Gang; Jiang, Linlin; Tang, Yanwei; Wang, Xungai

    2012-08-01

    In this study, a series of nanofibrous membranes were prepared from cellulose acetate (CA) and polyester urethane (PEU) using coelectrospinning or blend-electrospinning. The drug release, in vitro antimicrobial activity and in vivo wound healing performance of the nanofiber membranes were evaluated for use as wound dressings. To prevent common clinical infections, an antimicrobial agent, polyhexamethylene biguanide (PHMB) was incorporated into the electrospun fibers. The presence of CA in the nanofiber membrane improved its hydrophilicity and permeability to air and moisture. CA fibers became slightly swollen upon contacting with liquid phase. CA not only increased the liquid uptake but also created a moist environment for the wound, which accelerated wound recovery. PHMB release dynamics of the membranes was controlled by the structure and component ratios of the membranes. The lower ratio of CA: PEU helped to preserve the physical and thermal properties of the membranes, and also reduced the burst release effectively and slowed down diffusion of PHMB during in vitro tests. The controlled-diffusion membranes exerted long-term antimicrobial effect for wound healing.

  8. Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats.

    PubMed

    Ruusuvirta, Timo; Lipponen, Arto; Pellinen, Eeva; Penttonen, Markku; Astikainen, Piia

    2013-01-01

    Any change in the invariant aspects of the auditory environment is of potential importance. The human brain preattentively or automatically detects such changes. The mismatch negativity (MMN) of event-related potentials (ERPs) reflects this initial stage of auditory change detection. The origin of MMN is held to be cortical. The hippocampus is associated with a later generated P3a of ERPs reflecting involuntarily attention switches towards auditory changes that are high in magnitude. The evidence for this cortico-hippocampal dichotomy is scarce, however. To shed further light on this issue, auditory cortical and hippocampal-system (CA1, dentate gyrus, subiculum) local-field potentials were recorded in urethane-anesthetized rats. A rare tone in duration (deviant) was interspersed with a repeated tone (standard). Two standard-to-standard (SSI) and standard-to-deviant (SDI) intervals (200 ms vs. 500 ms) were applied in different combinations to vary the observability of responses resembling MMN (mismatch responses). Mismatch responses were observed at 51.5-89 ms with the 500-ms SSI coupled with the 200-ms SDI but not with the three remaining combinations. Most importantly, the responses appeared in both the auditory-cortical and hippocampal locations. The findings suggest that the hippocampus may play a role in (cortical) manifestation of MMN.

  9. Chondroprotective effects of a polycarbonate-urethane meniscal implant: histopathological results in a sheep model.

    PubMed

    Zur, Gal; Linder-Ganz, Eran; Elsner, Jonathan J; Shani, Jonathan; Brenner, Ori; Agar, Gabriel; Hershman, Elliott B; Arnoczky, Steven P; Guilak, Farshid; Shterling, Avi

    2011-02-01

    injury or loss of the meniscus generally leads to degenerative osteoarthritic changes in the knee joint. However, few surgical options exist for meniscal replacement. The goal of this study was to examine the ability of a non-degradable, anatomically shaped artificial meniscal implant, composed of Kevlar-reinforced polycarbonate-urethane (PCU), to prevent progressive cartilage degeneration following complete meniscectomy. the artificial meniscus was implanted in the knees of mature female sheep following total medial meniscectomy, and the animals were killed at 3- and 6-months post-surgery. Macroscopic analysis and semi-quantitative histological analysis were performed on the cartilage of the operated knee and unoperated contralateral control joint. the PCU implants remained well secured throughout the experimental period and showed no signs of wear or changes in structural or material properties. Histological analysis showed relatively mild cartilage degeneration that was dominated by loss of proteoglycan content and cartilage structure. However, the total osteoarthritis score did not significantly differ between the control and operated knees, and there were no differences in the severity of degenerative changes between 3 and 6 months post-surgery. current findings provide preliminary evidence for the ability of an artificial PCU meniscal implant to delay or prevent osteoarthritic changes in knee joint following complete medial meniscectomy.

  10. Quantifying segmental dynamics of model poly(urethane urea) systems using computational modeling

    NASA Astrophysics Data System (ADS)

    Chantawansri, Tanya L.; Sliozberg, Yelena R.; Hsieh, Alex J.; Riggleman, Robert A.

    2013-03-01

    The segmental dynamics of an elastomer has been shown to play an important role in high strain-rate mechanical deformation, where published research results suggest that the response can be tailored to transition from the glassy regime into the rubbery-like regime with increasing strain rate, whereby stress levels may be greatly enhanced and large energy dissipation mechanisms can be realized. Even so, the link between segmental dynamics and morphology of the microstructure during deformation is not fully understood. To study the effect of microstructure on the segmental dynamics, we have used coarse-grained molecular dynamics simulations to calculate the bond autocorrelation function for model poly(urethane urea) (PUU) systems during high-strain rate deformation and for the undeformed state. From the bond autocorrelation function we extracted an effective relaxation time, which was used to quantify the relative change in the segmental dynamics. We have found that the microstructure of PUU plays a critical role in its segmental dynamics, which suggests that elastomers with tunable microstructures can be developed to exhibit a broad range of dynamic impact relaxation characteristics.

  11. Microencapsulation of maltogenic α-amylase in poly(urethane-urea) shell: inverse emulsion method.

    PubMed

    Maciulyte, Sandra; Kochane, Tatjana; Budriene, Saulute

    2015-01-01

    The novel poly(urethane-urea) microcapsules (PUUMC) were obtained by the interfacial polyaddition reaction between the oil-soluble hexamethylene diisocyanate (HMDI) and the water soluble poly(vinyl alcohol) (PVA) in a water-in-oil (W/O) emulsion. The PVA was used instead of diols. Maltogenase L (maltogenic α-amylase from Bacillus stearothermophilus (E. C. 3.2.1.133) (MG) was encapsulated in the PUUMC during or after formation of capsules. The PUUMC were thoroughly characterised by chemical analytical methods, FT-IR, SEM, thermal analysis, surface area, pore volume and size analysis. Furthermore, by carefully analysing the influencing factors including: catalyst and surfactants and their concentrations, the initial molar ratio of PVA and HMDI, stirring rate and ratio of dispersed phase to external phase, the optimum synthesis conditions were found out. A controlled release of MG could be observed in many cases. Delayed-release capsules were obtained when initial concentration of HMDI was increased. These capsules have potential application in biotechnology for saccharification of starch.

  12. Isopropyl Myristate-Modified Polyether-Urethane Coatings as Protective Barriers for Implantable Medical Devices

    PubMed Central

    Roohpour, Nima; Wasikiewicz, Jaroslaw M.; Moshaverinia, Alireza; Paul, Deepen; Rehman, Ihtesham U.; Vadgama, Pankaj

    2009-01-01

    Polyurethane films have potential applications in medicine, especially for packaging implantable medical devices. Although polyether-urethanes have superior mechanical properties and are biocompatible, achieving water resistance is still a challenge. Polyether based polyurethanes with two different molecular weights (PTMO1000, PTMO2000) were prepared from 4,4’-diphenylmethane diisocyanate and poly(tetra-methylene oxide). Polymer films were introduced using different concentrations (0.5-10 wt %) of isopropyl myristate lipid (IPM) as a non-toxic modifying agent. The physical and mechanical properties of these polymers were characterised using physical and spectroscopy techniques (FTIR, Raman, DSC, DMA, tensile testing). Water contact angle and water uptake of the membranes as a function of IPM concentration was also determined accordingly. The FTIR and Raman data indicate that IPM is dispersed in polyurethane at ≤ 2wt% and thermal analysis confirmed this miscibility to be dependent on soft segment length. Modified polymers showed increased tensile strength and failure strain as well as reduced water uptake by up to 24% at 1-2 wt% IPM.

  13. Engineered Hypopharynx from Coculture of Epithelial Cells and Fibroblasts Using Poly(ester urethane) as Substratum

    PubMed Central

    Shen, Zhisen; Chen, Jingjing; Kang, Cheng; Gong, Changfeng

    2013-01-01

    Porous polymeric scaffolds have been much investigated and applied in the field of tissue engineering research. Poly(ester urethane) (PEU) scaffolds, comprising pores of 1–20 μm in diameter on one surface and ≥200 μm on the opposite surface and in bulk, were fabricated using phase separation method for hypopharyngeal tissue engineering. The scaffolds were grafted with silk fibroin (SF) generated from natural silkworm cocoon to enhance the scaffold's hydrophilicity and further improve cytocompatibility to both primary epithelial cells (ECs) and fibroblasts of human hypopharynx tissue. Coculture of ECs and fibroblasts was conducted on the SF-grafted PEU scaffold (PEU-SF) to evaluate its in vitro cytocompatibility. After co-culture for 14 days, ECs were lined on the scaffold surface while fibroblasts were distributed in scaffold bulk. The results of in vivo investigation showed that PEU porous scaffold possessed good biocompatibility after it was grafted by silk fibroin. SF grafting improved the cell/tissue infiltration into scaffold bulk. Thus, PEU-SF porous scaffold is expected to be a good candidate to support the hypopharynx regeneration. PMID:24455669

  14. Fluorescence Imaging Enabled Urethane-Doped Citrate-Based Biodegradable Elastomers

    PubMed Central

    Zhang, Yi; Tran, Richard T.; Qattan, Ibrahim; Tsai, Yi-ting; Tang, Liping; Liu, Chao; Yang, Jian

    2013-01-01

    The field of tissue engineering and drug delivery calls for new measurement tools, non-invasive real-time assays, and design methods for the next wave of innovations. Based on our recent progress in developing intrinsically biodegradable photoluminescent polymers (BPLPs) without conjugating organic dyes or quantum dots, in this paper, we developed a new type urethane-doped biodegradable photoluminescent polymers (UBPLPs) that could potentially serve as a new tool to respond the above call for innovations. Inherited from BPLPs, UBPLPs demonstrated strong inherent photoluminescence and excellent cytocompatibility in vitro. Crosslinked UBPLPs (CUBPLPs) showed soft, elastic, but strong mechanical properties with a tensile strength as high as 49.41±6.17 MPa and a corresponding elongation at break of 334.87±26.31%. Porous triphasic CUBPLP vascular scaffolds showed a burst pressure of 769.33±70.88 mmHg and a suture retention strength of 1.79±0.11 N. Stable but photoluminescent nanoparticles with average size of 103 nm were also obtained by nanoprecipitation. High loading efficiency (91.84%) and sustained release of 5-fluorouracil (up to 120 h) were achieved from UBPLP nanoparticles. With a quantum yield as high as 38.65%, both triphasic scaffold and nanoparticle solutions could be non-invasively detected in vivo. UBPLPs represent an innovation in fluorescent biomaterial design and may offer great potential in advancing the field of tissue engineering and drug delivery where bioimaging has gained increasing interest. PMID:23465824

  15. Fabrication and characterization of biomimetic multichanneled crosslinked-urethane-doped polyester tissue engineered nerve guides.

    PubMed

    Tran, Richard T; Choy, Wai Man; Cao, Hung; Qattan, Ibrahim; Chiao, Jung-Chih; Ip, Wing Yuk; Yeung, Kelvin Wai Kwok; Yang, Jian

    2014-08-01

    Biomimetic scaffolds that replicate the native architecture and mechanical properties of target tissues have been recently shown to be a very promising strategy to guide cellular growth and facilitate tissue regeneration. In this study, porous, soft, and elastic crosslinked urethane-doped polyester (CUPE) tissue engineered nerve guides were fabricated with multiple longitudinally oriented channels and an external non-porous sheath to mimic the native endoneurial microtubular and epineurium structure, respectively. The fabrication technique described herein is highly adaptable and allows for fine control over the resulting nerve guide architecture in terms of channel number, channel diameter, porosity, and mechanical properties. Biomimetic multichanneled CUPE guides were fabricated with various channel numbers and displayed an ultimate peak stress of 1.38 ± 0.22 MPa with a corresponding elongation at break of 122.76 ± 42.17%, which were comparable to that of native nerve tissue. The CUPE nerve guides were also evaluated in vivo for the repair of a 1 cm rat sciatic nerve defect. Although histological evaluations revealed collapse of the inner structure from CUPE TENGs, the CUPE nerve guides displayed fiber populations and densities comparable with nerve autograft controls after 8 weeks of implantation. These studies are the first report of a CUPE-based biomimetic multichanneled nerve guide and warrant future studies towards optimization of the channel geometry for use in neural tissue engineering.

  16. In-vivo degradation of poly(carbonate-urethane) based spine implants

    PubMed Central

    Cipriani, E.; Bracco, P.; Kurtz, S.M.; Costa, L.; Zanetti, M.

    2013-01-01

    Fourteen explanted Dynesys® spinal devices were analyzed for biostability and compared with a reference, never implanted, control. Both poly(carbonate-urethane) (PCU) spacers and polyethylene-terephthalate (PET) cords were analyzed. The effect of implantation was evaluated through the observation of physical alterations of the device surfaces, evaluation of the chemical degradation and fluids absorption on the devices and examination of the morphological and mechanical features. PCU spacers exhibited a variety of surface damage mechanisms, the most significant being abrasion and localized, microscopic surface cracks. Evidence of oxidation and chain scission were detected on PCU spacers ATR–FTIR. ATR–FTIR, DSC and hardness measurements also showed a slight heterogeneity in the composition of PCU. The extraction carried out on the PCU spacers revealed the presence of extractable polycarbonate segments. One spacer and all PET cords visually exhibited the presence of adherent biological material (proteins), confirmed by the ATR–FTIR results. GC/MS analyses of the extracts from PET cords revealed the presence of biological fluids residues, mainly cholesterol derivatives and fatty acids, probably trapped into the fiber network. No further chemical alterations were observed on the PET cords. Although the observed physical and chemical damage can be considered superficial, greater attention must be paid to the chemical degradation mechanisms of PCU and to the effect of byproducts on the body. PMID:24043907

  17. In-vivo degradation of poly(carbonate-urethane) based spine implants.

    PubMed

    Cipriani, E; Bracco, P; Kurtz, S M; Costa, L; Zanetti, M

    2013-06-01

    Fourteen explanted Dynesys® spinal devices were analyzed for biostability and compared with a reference, never implanted, control. Both poly(carbonate-urethane) (PCU) spacers and polyethylene-terephthalate (PET) cords were analyzed. The effect of implantation was evaluated through the observation of physical alterations of the device surfaces, evaluation of the chemical degradation and fluids absorption on the devices and examination of the morphological and mechanical features. PCU spacers exhibited a variety of surface damage mechanisms, the most significant being abrasion and localized, microscopic surface cracks. Evidence of oxidation and chain scission were detected on PCU spacers ATR-FTIR. ATR-FTIR, DSC and hardness measurements also showed a slight heterogeneity in the composition of PCU. The extraction carried out on the PCU spacers revealed the presence of extractable polycarbonate segments. One spacer and all PET cords visually exhibited the presence of adherent biological material (proteins), confirmed by the ATR-FTIR results. GC/MS analyses of the extracts from PET cords revealed the presence of biological fluids residues, mainly cholesterol derivatives and fatty acids, probably trapped into the fiber network. No further chemical alterations were observed on the PET cords. Although the observed physical and chemical damage can be considered superficial, greater attention must be paid to the chemical degradation mechanisms of PCU and to the effect of byproducts on the body.

  18. Synthesis, evaluation and preliminary antibacterial testing of hybrid composites based on urethane oligodimethacrylates and Ag nanoparticles.

    PubMed

    Buruiana, Tinca; Melinte, Violeta; Chibac, Andreea; Matiut, Simona; Balan, Lavinia

    2012-01-01

    A series of urethane dimethacrylates differing structurally by the nature of the spacer (PTHF, PCL, PEG) and the presence or absence of the carboxylic acid groups was synthesized via an isocyanate route frequently encountered in ionomer chemistry. (1)H-NMR and FT-IR spectroscopy confirmed the structure of the macromers. Subsequently, the progress of photo-polymerization of all dimethacrylates under UV irradiation was investigated by FT-IR spectroscopy and photo-DSC with respect to conversion and polymerization rate using Irgacure as an initiator. The results of spectroscopic analysis suggested the lower reactivity of some non-carboxylic analogues during the formation of cross-linked polymers, the degree of conversion depending on the structure and viscosity. Photo-polymerization may provide many advantages for incorporating silver nanoparticles (2.5 wt%) into macromers in order to obtain hybrid nanocomposite films with controllable thickness and hydrophobicity. Combined analyses of UV spectroscopy and transmission electron microscopy confirmed the existence of nanosized silver (mean diameter 12 ± 0.7 nm) uniformly distributed in the polymer matrix. Preliminary results concerning the antibacterial activity of some composite films (thickness approx. 24 μm) showed that the obtained nanomaterial could have an excellent bactericidal effect and effectiveness in reducing bacterial growth (Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923).

  19. In vitro comparison of two different materials for the repair of urethan dimethacrylate denture bases

    PubMed Central

    Cilingir, Altug; Bilhan, Hakan; Sulun, Tonguc; Bozdag, Ergun; Sunbuloglu, Emin

    2013-01-01

    PURPOSE The purpose of this in vitro study was to investigate the flexural properties of a recently introduced urethane dimethacrylate denture base material (Eclipse) after being repaired with two different materials. MATERIALS AND METHODS Two repair groups and a control group consisting of 10 specimens each were generated. The ES group was repaired with auto-polymerizing polymer. The EE group was repaired with the Eclipse. The E group was left intact as a control group. A 3-point bending test device which was set to travel at a crosshead speed of 5 mm/min was used. Specimens were loaded until fracture occurred and the mean displacement, maximum load, flexural modulus and flexural strength values and standard deviations were calculated for each group and the data were statistically analyzed. The results were assessed at a significance level of P<.05. RESULTS The mean "displacement", "maximum load before fracture", "flexural strength" and "flexural modulus" rates of Group E were statistically significant higher than those of Groups ES and EE, but no significant difference (P>.05) was found between the mean values of Group ES and EE. There was a statistically significant positive relation (P<.01) between the displacement and maximum load of Group ES (99.5%), Group EE (94.3%) and Group E (84.4%). CONCLUSION The more economic and commonly used self-curing acrylic resin can be recommended as an alternative repair material for Eclipse denture bases. PMID:24353876

  20. Attachment and proliferation of bovine aortic endothelial cells onto additive modified poly(ether urethane ureas)

    SciTech Connect

    Brunstedt, M.R.; Ziats, N.P.; Rose-Caprara, V.; Hiltner, P.A.; Anderson, J.M. ); Lodoen, G.A.; Payet, C.R. E.I. du Pont de Nemours and Co., Wilmington, DE )

    1993-04-01

    To better understand endothelial cell interactions with poly(ether urethane urea) (PEUU) materials, and to assess bovine aortic endothelial cell attachment, films were incubated for 24 h with BAEC in media containing 5% fetal bovine serum. Other films were allowed to incubate for 4 more days in media containing 5% fetal bovine serum without cells to assess BAEC proliferation. The assay was performed on PEUU films modified with acrylate and methacrylate polymer and copolymer additives that spanned a wide range on the hydrophobicity/hydrophilicity scale. Tissue culture polystyrene (TCPS) was used as a control. The assay showed that PEUU films loaded with Methacrol 2138F [copoly(diisopropylaminoethyl methacrylate [DIPAM]/decyl methacrylate [DM]) (3/1)] or with its hydrophilic component, DIPAM, in homopolymer form (i.e., h-DIPAM), significantly enhanced BAEC attachment and proliferation when compared to unloaded PEUU films or to PEUU films loaded with the more hydrophobic acrylate or methacrylate polymer additives. The assay also showed that PEUU films coated with homopoly(diisopropylaminoethyl acrylate) (h-DIPAA) significantly enhanced BAEC attachment and proliferation when compared to PEUU films coated with h-decyl acrylate films coated with the copolymer of these two acrylates showed intermediate behavior.

  1. Poly(ester-urethane) scaffolds: effect of structure on properties and osteogenic activity of stem cells.

    PubMed

    Kiziltay, Aysel; Marcos-Fernandez, Angel; San Roman, Julio; Sousa, Rui A; Reis, Rui L; Hasirci, Vasif; Hasirci, Nesrin

    2015-08-01

    The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300 °C. In vitro tests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt-leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Wear rate evaluation of a novel polycarbonate-urethane cushion form bearing for artificial hip joints.

    PubMed

    Elsner, Jonathan J; Mezape, Yoav; Hakshur, Keren; Shemesh, Maoz; Linder-Ganz, Eran; Shterling, Avi; Eliaz, Noam

    2010-12-01

    There is growing interest in the use of compliant materials as an alternative to hard bearing materials such as polyethylene, metal and ceramics in artificial joints. Cushion form bearings based on polycarbonate-urethane (PCU) mimic the natural synovial joint more closely by promoting fluid-film lubrication. In the current study, we used a physiological simulator to evaluate the wear characteristics of a compliant PCU acetabular buffer, coupled against a cobalt-chrome femoral head. The wear rate was evaluated over 8 million cycles gravimetrically, as well as by wear particle isolation using filtration and bio-ferrography (BF). The gravimetric and BF methods showed a wear rate of 9.9-12.5mg per million cycles, whereas filtration resulted in a lower wear rate of 5.8mg per million cycles. Bio-ferrography was proven to be an effective method for the determination of wear characteristics of the PCU acetabular buffer. Specifically, it was found to be more sensitive towards the detection of wear particles compared to the conventional filtration method, and less prone to environmental fluctuations than the gravimetric method. PCU demonstrated a low particle generation rate (1-5×10⁶ particles per million cycles), with the majority (96.6%) of wear particle mass lying above the biologically active range, 0.2-10μm. Thus, PCU offers a substantial advantage over traditional bearing materials, not only in its low wear rate, but also in its osteolytic potential.

  3. Ultraviolet photoelectron spectroscopy study of the thermochromic phase transition in urethane-substituted polydiacetylenes.

    PubMed

    Wang, Xiaoyu; Whitten, James E; Sandman, Daniel J

    2007-05-14

    Threshold solid-state ionization energies determined from ultraviolet photoelectron spectra are reported for the thermochromic polydiacetylenes (PDAs) from the bis-ethyl- and bis-n-propyl urethanes of 5,7-dodecadiyn-1,12-diol (ETCD and PUDO, respectively) and the nonthermochromic 1,6-bis-p-toluenesulfonate of 2,4-hexadiyne-1,6-diol (PTS) at temperatures above and below the thermochromic phase transition. PDA-PTS has an ionization energy of 5.66 eV which does not change significantly as the temperature is raised above 140 degrees C. At 25 degrees C, PDA-ETCD and PDA-PUDO have threshold ionization energies of 5.65 and 5.51 eV, respectively. The ionization energies of these PDAs increase by approximately 0.34 eV as temperature is raised above 140 degrees C and returns to the lower values as temperature is reduced to 25 degrees C. The magnitude of the increase in ionization energy on heating to temperatures above the thermochromic transition is very close to the shift in energy of the electronic spectrum over the same temperature range. These observations suggest that the structural changes that take place in the course of the thermochromic transition are primarily associated with the valence band and are consistent with partial relief of mechanical strains.

  4. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  5. Functionally Graded Adhesives

    DTIC Science & Technology

    2009-11-01

    ASTM 907-05. Standard Terminology of Adhesives. West Conshohocken, PA, May 2005. 4. 3M Scotch-Grip Nitrile High Performance Rubber & Gasket Adhesive...distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this project was to increase rubber to metal adhesion in Army materials using...1 Figure 2. Steel and rubber

  6. Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) expression inhibits urethane-induced pulmonary tumorigenesis in transgenic mice

    PubMed Central

    Cekanova, Maria; Lee, Seong-Ho; Donnell, Robert L.; Sukhthankar, Mugdha; Eling, Thomas E.; Fischer, Susan M.; Baek, Seung Joon

    2009-01-01

    Expression of non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) inhibits gastrointestinal tumorigenesis in NAG-1 transgenic mice (C57/BL6 background). In the present study, we investigated whether NAG-1 protein would alter urethane-induced pulmonary lesions in NAG-1 transgenic mice on an FVB background (NAG-1Tg+/FVB). NAG-1Tg+/FVB mice had both decreased number and size of urethane-induced tumors, compared to control littermates (NAG-1Tg+/FVB = 16 ± 4 per mouse versus control = 20 ± 7 per mouse, p<0.05). Urethane-induced pulmonary adenomas (PAs) and adenocarcinomas (PACs) were observed in control mice, but only PAs were observed in NAG-1Tg+/FVB mice. Urethane-induced tumors from control littermates and NAG-1Tg+/FVB mice highly expressed proteins in the arachidonic acid pathway (cyclooxygenases 1/2, prostaglandin E synthase, and prostaglandin E2 receptor) and highly activated several kinases (phospho-Raf-1 and phospho-ERK1/2). However, only urethane-induced p38 MAPK phosphorylation was decreased in NAG-1Tg+/FVB mice. Furthermore, significantly increased apoptosis in tumors of NAG-1Tg+/FVB mice compared to control mice was observed as assessed by caspase 3/7 activity. In addition, fewer inflammatory cells were observed in the lung tissue isolated from urethane-treated NAG-1Tg+/FVB mice compared to control mice. These results paralleled in vitro assays using human A549 pulmonary carcinoma cells. Less phosphorylated p38 MAPK was observed in cells over-expressing NAG-1, compared to control cells. Overall, our study revealed for the first time that NAG-1 protein inhibits urethane-induced tumor formation, probably mediated by the p38 MAPK pathway, and is a possible new target for lung cancer chemoprevention. PMID:19401523

  7. Mini-review: barnacle adhesives and adhesion.

    PubMed

    Kamino, Kei

    2013-01-01

    Barnacles are intriguing, not only with respect to their importance as fouling organisms, but also in terms of the mechanism of underwater adhesion, which provides a platform for biomimetic and bioinspired research. These aspects have prompted questions regarding how adult barnacles attach to surfaces under water. The multidisciplinary and interdisciplinary nature of the studies makes an overview covering all aspects challenging. This mini-review, therefore, attempts to bring together aspects of the adhesion of adult barnacles by looking at the achievements of research focused on both fouling and adhesion. Biological and biochemical studies, which have been motivated mainly by understanding the nature of the adhesion, indicate that the molecular characteristics of barnacle adhesive are unique. However, it is apparent from recent advances in molecular techniques that much remains undiscovered regarding the complex event of underwater attachment. Barnacles attached to silicone-based elastomeric coatings have been studied widely, particularly with respect to fouling-release technology. The fact that barnacles fail to attach tenaciously to silicone coatings, combined with the fact that the mode of attachment to these substrata is different to that for most other materials, indicates that knowledge about the natural mechanism of barnacle attachment is still incomplete. Further research on barnacles will enable a more comprehensive understanding of both the process of attachment and the adhesives used. Results from such studies will have a strong impact on technology aimed at fouling prevention as well as adhesion science and engineering.

  8. Understanding adhesive dentistry.

    PubMed

    Burrow, Michael

    2010-03-01

    This review paper firstly provides an outline of the development of resin-based adhesives. A simple classification method is described based on whether an acid etching agent requiring a washing and drying step is used. These systems are called etch and rinse systems. The other adhesives that do not have the washing and drying steps are referred to as self-etching adhesives. The advantages and disadvantages of these groups of adhesives are discussed. Methods of adhering to the tooth surface are provided, especially where the resin-based adhesive reliability is difficult to control.

  9. Synthesis and characterisation of coating polyurethane cationomers containing fluorine built-in hard urethane segments

    PubMed Central

    Król, Bożena; Pikus, Stanisław; Chmielarz, Paweł; Skrzypiec, Krzysztof

    2010-01-01

    Polyurethane cationomers were synthesised in the reaction of 4,4’-methylenebis(phenyl isocyanate) with polyoxyethylene glycol (M = 2,000) or poly(tetrafluoroethyleneoxide-co-difluoromethylene oxide) α,ω-diisocyanate and N-methyl diethanolamine. Amine segments were built-in to the urethane-isocyanate prepolymer in the reaction with 1-bromobutane or formic acid, and then they were converted to alkylammonium cations. The obtained isocyanate prepolymers were then extended in the aqueous medium that yielded stable aqueous dispersions which were applied on the surfaces of test poly(tetrafluoroethylene) plates. After evaporation of water, the dispersions formed thin polymer coatings. 1H, 13C NMR and IR spectral methods were employed to confirm chemical structures of synthesised cationomers. Based on 1H NMR and IR spectra, the factors κ and α were calculated, which represented the polarity level of the obtained cationomers. The DSC, wide angle X-ray scattering and atom force microscopy methods were employed for the microstructural assessment of the obtained materials. Changes were discussed in the surface free energy and its components, as calculated independently according to the method suggested by van Oss–Good, in relation to chemical and physical structures of cationomers as well as morphology of coating surfaces obtained from those cationomers. Fluorine incorporated into cationomers (about 30%) contributed to lower surface free energy values, down to about 15 mJ/m2. That was caused by gradual weakening of long-range interactions within which the highest share is taken by dispersion interactions. PMID:20927181

  10. Synthesis and characterisation of coating polyurethane cationomers containing fluorine built-in hard urethane segments.

    PubMed

    Król, Bożena; Król, Piotr; Pikus, Stanisław; Chmielarz, Paweł; Skrzypiec, Krzysztof

    2010-08-01

    Polyurethane cationomers were synthesised in the reaction of 4,4'-methylenebis(phenyl isocyanate) with polyoxyethylene glycol (M = 2,000) or poly(tetrafluoroethyleneoxide-co-difluoromethylene oxide) α,ω-diisocyanate and N-methyl diethanolamine. Amine segments were built-in to the urethane-isocyanate prepolymer in the reaction with 1-bromobutane or formic acid, and then they were converted to alkylammonium cations. The obtained isocyanate prepolymers were then extended in the aqueous medium that yielded stable aqueous dispersions which were applied on the surfaces of test poly(tetrafluoroethylene) plates. After evaporation of water, the dispersions formed thin polymer coatings. (1)H, (13)C NMR and IR spectral methods were employed to confirm chemical structures of synthesised cationomers. Based on (1)H NMR and IR spectra, the factors κ and α were calculated, which represented the polarity level of the obtained cationomers. The DSC, wide angle X-ray scattering and atom force microscopy methods were employed for the microstructural assessment of the obtained materials. Changes were discussed in the surface free energy and its components, as calculated independently according to the method suggested by van Oss-Good, in relation to chemical and physical structures of cationomers as well as morphology of coating surfaces obtained from those cationomers. Fluorine incorporated into cationomers (about 30%) contributed to lower surface free energy values, down to about 15 mJ/m(2). That was caused by gradual weakening of long-range interactions within which the highest share is taken by dispersion interactions.

  11. Sustained Dye Release Using Poly(urea-urethane)/Cellulose Nanocrystal Composite Microcapsules.

    PubMed

    Yoo, Youngman; Martinez, Carlos; Youngblood, Jeffrey P

    2017-02-14

    The aim of this study is to develop methods to reinforce polymeric microspheres with cellulose nanocrystals (CNCs) to make eco-friendly microcapsules for a variety of applications such as medicines, perfumes, nutrients, pesticides, and phase change materials. Surface hydrophobization treatments for CNCs were performed by grafting poly(lactic acid) oligomers and fatty acids (FAs) to enhance the dispersion of nanoparticles in the polymeric shell. Then, a straightforward process is demonstrated to design sustained release microcapsules by the incorporation of the modified CNCs (mCNCs) in the shell structure. The combination of the mCNC dispersion with subsequent interfacial polyurea (PU) to form composite capsules as well as their morphology, composition, mechanical properties, and release rates were examined in this study. The PU microcapsules embedded with the mCNC were characterized by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The morphologies of the microcapsules were characterized by optical microscopy (OM) and scanning electron microscope (SEM). The rupture stress and failure behavior of the microcapsules were determined through single-capsule compression tests. Oil-soluble Sudan II dye solution in mineral oil was utilized as a model hydrophobic fill, representing other latent fills with low partition coefficients, and their encapsulation efficiency was measured spectroscopically. The release rates of the encapsulated dye from the microcapsules were examined spectroscopically by both ethanol and 2-ethyl-1-hexanol medium at room temperature. The concentration of released dye was determined by using UV-vis absorption spectrometry (UV-vis). The mCNC embedded poly(urea-urethane) capsules have strong and dense walls, which function as excellent barriers against leakage due to their extended diffusion path length and ensure enough mechanical strength from rupture for handling or postprocessing.

  12. Short Term Evaluation of an Anatomically Shaped Polycarbonate Urethane Total Meniscus Replacement in a Goat Model

    PubMed Central

    Vrancken, A. C. T.; Madej, W.; Hannink, G.; Verdonschot, N.; van Tienen, T. G.; Buma, P.

    2015-01-01

    Purpose Since the treatment options for symptomatic total meniscectomy patients are still limited, an anatomically shaped, polycarbonate urethane (PCU), total meniscus replacement was developed. This study evaluates the in vivo performance of the implant in a goat model, with a specific focus on the implant location in the joint, geometrical integrity of the implant and the effect of the implant on synovial membrane and articular cartilage histopathological condition. Methods The right medial meniscus of seven Saanen goats was replaced by the implant. Sham surgery (transection of the MCL, arthrotomy and MCL suturing) was performed in six animals. The contralateral knee joints of both groups served as control groups. After three months follow-up the following aspects of implant performance were evaluated: implant position, implant deformation and the histopathological condition of the synovium and cartilage. Results Implant geometry was well maintained during the three month implantation period. No signs of PCU wear were found and the implant did not induce an inflammatory response in the knee joint. In all animals, implant fixation was compromised due to suture breakage, wear or elongation, likely causing the increase in extrusion observed in the implant group. Both the femoral cartilage and tibial cartilage in direct contact with the implant showed increased damage compared to the sham and sham-control groups. Conclusion This study demonstrates that the novel, anatomically shaped PCU total meniscal replacement is biocompatible and resistant to three months of physiological loading. Failure of the fixation sutures may have increased implant mobility, which probably induced implant extrusion and potentially stimulated cartilage degeneration. Evidently, redesigning the fixation method is necessary. Future animal studies should evaluate the improved fixation method and compare implant performance to current treatment standards, such as allografts. PMID:26192414

  13. Theta synchronization between the hippocampus and the nucleus incertus in urethane-anesthetized rats.

    PubMed

    Cervera-Ferri, Ana; Guerrero-Martínez, Juan; Bataller-Mompeán, Manuel; Taberner-Cortes, Alida; Martínez-Ricós, Joana; Ruiz-Torner, Amparo; Teruel-Martí, Vicent

    2011-06-01

    Oscillatory coupling between distributed areas can constitute a mechanism for neuronal integration. Theta oscillations provide temporal windows for hippocampal processing and only appear during certain active states of animals. Since previous studies have demonstrated that nucleus incertus (NI) contributes to the generation of hippocampal theta activity, in this paper, we evaluated the oscillatory coupling between both structures. We compared hippocampal and NI field potentials that were simultaneously recorded in urethane-anesthetized rats. Electrical and cholinergic stimulations of the reticularis pontis oralis nucleus have been used as hippocampal theta generation models. The spectral analyses reveal that electrical stimulation induced an increase in theta oscillations in both channels, whose frequencies depended on the intensity of stimulation. The intensity range used simultaneously increased the normalized spectral energy in the fast theta band (6-12 Hz) in HPC and NI. Frequencies within the theta range were found to be very similar in both channels. In order to validate coupling, spectral coherence was inspected. The data reveal that coherence in the high theta band also increased while stimuli were applied. Cholinergic activation progressively increased the main frequency in both structures to reach an asymptotic period with stable peak frequency in the low theta range (3-6 Hz), which could be first observed in NI and lasted about 1,500 s. Coherence in this band reached values close to 1. Taken together, these results support an electrophysiological and functional coupling between the hippocampus and the reticular formation, suggesting NI to be part of a distributed network working at theta frequencies.

  14. Fluorescence imaging enabled urethane-doped citrate-based biodegradable elastomers.

    PubMed

    Zhang, Yi; Tran, Richard T; Qattan, Ibrahim S; Tsai, Yi-Ting; Tang, Liping; Liu, Chao; Yang, Jian

    2013-05-01

    The field of tissue engineering and drug delivery calls for new measurement tools, non-invasive real-time assays, and design methods for the next wave of innovations. Based on our recent progress in developing intrinsically biodegradable photoluminescent polymers (BPLPs) without conjugating organic dyes or quantum dots, in this paper, we developed a new type urethane-doped biodegradable photoluminescent polymers (UBPLPs) that could potentially serve as a new tool to respond the above call for innovations. Inherited from BPLPs, UBPLPs demonstrated strong inherent photoluminescence and excellent cytocompatibility in vitro. Crosslinked UBPLPs (CUBPLPs) showed soft, elastic, but strong mechanical properties with a tensile strength as high as 49.41 ± 6.17 MPa and a corresponding elongation at break of 334.87 ± 26.31%. Porous triphasic CUBPLP vascular scaffolds showed a burst pressure of 769.33 ± 70.88 mmHg and a suture retention strength of 1.79 ± 0.11 N. Stable but photoluminescent nanoparticles with average size of 103 nm were also obtained by nanoprecipitation. High loading efficiency (91.84%) and sustained release of 5-fluorouracil (up to 120 h) were achieved from UBPLP nanoparticles. With a quantum yield as high as 38.65%, both triphasic scaffold and nanoparticle solutions could be non-invasively detected in vivo. UBPLPs represent an innovation in fluorescent biomaterial design and may offer great potential in advancing the field of tissue engineering and drug delivery where bioimaging has gained increasing interest.

  15. Characterization of urethane-dimethacrylate derivatives as alternative monomers for the restorative composite matrix.

    PubMed

    Barszczewska-Rybarek, Izabela M

    2014-12-01

    The aim was accomplished by a comparative analysis of the physicochemical properties of urethane-dimethacrylate (UDMA) monomers and their homopolymers with regard to the properties of basic dimethacrylates used presently in dentistry. The homologous series of UDMA were obtained from four oligoethylene glycols monomethacrylates (HEMA, DEGMMA, TEGMMA and TTEGMMA) and six diisocyanates (HMDI, TMDI, IPDI, CHMDI, TDI and MDI). Photopolymerization was light-initiated with the camphorquinone/tertiary amine system. Monomers were tested for viscosity and density. Flexural strength, flexural modulus, hardness, water sorption and polymerization shrinkage of the polymers were studied. The glass transition temperature and the degree of conversion were also discussed. HEMA/IPDI appeared to be the most promising alternative monomer. The monomer exhibited a lower viscosity and achieved higher degree of conversion, the polymer had lower water sorption as well as higher modulus, glass temperature and hardness than Bis-GMA. The polymer of DEGMMA/CHMDI exhibited lower polymerization shrinkage, lower water sorption and higher hardness, however it exhibited lower modulus when compared to HEMA/TMDI. The remaining monomers obtained from HEMA were solids. Monomers with longer TEGMMA and TTEGMMA units polymerized to rubbery networks with high water sorption. The viscosity of all studied UDMA monomers was too high to be used as reactive diluents. The systematic, comparative analysis of the homologous UDMA monomers and corresponding homopolymers along with their physico-mechanical properties are essential for optimizing the design process of new components desirable in dental formulations. Some of the studied UDMA monomers may be simple and effective alternative dimethacrylate comonomers. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Urodynamic function during sleep-like brain states in urethane anesthetized rats.

    PubMed

    Crook, J; Lovick, T

    2016-01-28

    The aim was to investigate urodynamic parameters and functional excitability of the periaqueductal gray matter (PAG) during changes in sleep-like brain states in urethane anesthetized rats. Simultaneous recordings of detrusor pressure, external urethral sphincter (EUS) electromyogram (EMG), cortical electroencephalogram (EEG), and single-unit activity in the PAG were made during repeated voiding induced by continuous infusion of saline into the bladder. The EEG cycled between synchronized, high-amplitude slow wave activity (SWA) and desynchronized low-amplitude fast activity similar to slow wave and 'activated' sleep-like brain states. During (SWA, 0.5-1.5 Hz synchronized oscillation of the EEG waveform) voiding became more irregular than in the 'activated' brain state (2-5 Hz low-amplitude desynchronized EEG waveform) and detrusor void pressure threshold, void volume threshold and the duration of bursting activity in the external urethral sphincter EMG were raised. The spontaneous firing rate of 23/52 neurons recorded within the caudal PAG and adjacent tegmentum was linked to the EEG state, with the majority of responsive cells (92%) firing more slowly during SWA. Almost a quarter of the cells recorded (12/52) showed phasic changes in firing rate that were linked to the occurrence of voids. Inhibition (n=6), excitation (n=4) or excitation/inhibition (n=2) was seen. The spontaneous firing rate of 83% of the micturition-responsive cells was sensitive to changes in EEG state. In nine of the 12 responsive cells (75%) the responses were reduced during SWA. We propose that during different sleep-like brain states changes in urodynamic properties occur which may be linked to changing excitability of the micturition circuitry in the periaqueductal gray.

  17. 45 CFR 88.3 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Community Mental Health Centers Act, or the Developmental Disabilities Assistance and Bill of Rights Act of..., teaching hospital, or program for the training of health care professionals or health care workers...

  18. Preparation of Sticky Escherichia coli through Surface Display of an Adhesive Catecholamine Moiety

    PubMed Central

    Park, Joseph P.; Choi, Min-Jung; Kim, Se Hun

    2014-01-01

    Mussels attach to virtually all types of inorganic and organic surfaces in aqueous environments, and catecholamines composed of 3,4-dihydroxy-l-phenylalanine (DOPA), lysine, and histidine in mussel adhesive proteins play a key role in the robust adhesion. DOPA is an unusual catecholic amino acid, and its side chain is called catechol. In this study, we displayed the adhesive moiety of DOPA-histidine on Escherichia coli surfaces using outer membrane protein W as an anchoring motif for the first time. Localization of catecholamines on the cell surface was confirmed by Western blot and immunofluorescence microscopy. Furthermore, cell-to-cell cohesion (i.e., cellular aggregation) induced by the displayed catecholamine and synthesis of gold nanoparticles on the cell surface support functional display of adhesive catecholamines. The engineered E. coli exhibited significant adhesion onto various material surfaces, including silica and glass microparticles, gold, titanium, silicon, poly(ethylene terephthalate), poly(urethane), and poly(dimethylsiloxane). The uniqueness of this approach utilizing the engineered sticky E. coli is that no chemistry for cell attachment are necessary, and the ability of spontaneous E. coli attachment allows one to immobilize the cells on challenging material surfaces such as synthetic polymers. Therefore, we envision that mussel-inspired catecholamine yielded sticky E. coli that can be used as a new type of engineered microbe for various emerging fields, such as whole living cell attachment on versatile material surfaces, cell-to-cell communication systems, and many others. PMID:24123747

  19. Safety and efficacy of electrospun polycarbonate-urethane vascular graft for early hemodialysis access: first clinical results in man.

    PubMed

    Wijeyaratne, Serosha M; Kannangara, Lushanthi

    2011-01-01

    The purpose of this study was to assess the safety and efficacy of an electrospun multilayered, self-sealing polycarbonate-urethane graft for early hemodialysis access in patients. Seventeen eligible consenting patients had a polycarbonate-urethane graft (AVflo™) implanted and followed up prospectively for 12 months or to the end of secondary patency. Performance measures included graft patency, complications, time to first cannulation, and hemostasis times after needle withdrawal. All patients were of Asian origin (mean age 57 years, range 29-78). Diabetes mellitus was the most common cause of renal failure (52.9%). There were no systemic or local reactions to the graft. Five patients (29.4%) died due to medical complications unrelated to the device. There was 1 pseudoaneurysm, 3 infected grafts that subsequently thrombosed, and 1 primary thrombosis associated with thrombophilia. One venous stenosis needed balloon angioplasty. Primary and secondary patency rates at 6 months were 72.7% and 81.8%, and at 12 months, 54.5% and 72.7%, respectively. Postimplantation vascular access needs were met entirely by the graft in every instance and prevented the need for venous catheters. Fifty-six percent were accessed within 8 days, the earliest being 48 hours. Finally, all arterial punctures and 98% of venous punctures had sealed in less than 5 minutes, with two thirds sealing off within 3 minutes of needle withdrawal. The electrospun polycarbonate-urethane graft is safe in humans, permits early access obviating the need for venous catheters, and has equivalent patency to other prosthetic grafts at 1 year.

  20. A new peptide-based urethane polymer: synthesis, biodegradation, and potential to support cell growth in vitro.

    PubMed

    Zhang, J Y; Beckman, E J; Piesco, N P; Agarwal, S

    2000-06-01

    A novel non-toxic biodegradable lysine-di-isocyanate (LDI)-based urethane polymer was developed for use in tissue engineering applications. This matrix was synthesized with highly purified LDI made from the lysine diethylester. The ethyl ester of LDI was polymerized with glycerol to form a prepolymer. LDI-glycerol prepolymer when reacted with water foamed with the liberation of CO2 to provide a pliable spongy urethane polymer. The LDI-glycerol matrix degraded in aqueous solutions at 100, 37, 22, and 4 degrees C at a rate of 27.7, 1.8, 0.8, and 0.1 mM per 10 days, respectively. Its thermal stability in water allowed its sterilization by autoclaving. The degradation of the LDI-glycerol polymer yielded lysine, ethanol, and glycerol as breakdown products. The degradation products of LDI-glycerol polymer did not significantly affect the pH of the solution. The glass transition temperature (Tg) of this polymer was found to be 103.4 degrees C. The physical properties of the polymer network were found to be adequate to support the cell growth in vitro, as evidenced by the fact that rabbit bone marrow stromal cells (BMSC) attached to the polymer matrix and remained viable on its surface. Culture of BMSC on LDI-glycerol matrix for long durations resulted in the formation of multilayered confluent cultures, a characteristic typical of bone cells. Furthermore, cells grown on LDI-glycerol matrix did not differ phenotypically from the cells grown on the tissue culture polystyrene plates as assessed by the cell growth, and expression of mRNA for collagen type I, and transforming growth factor-beta1 (TGF-beta1). The observations suggest that biodegradable peptide-based urethane polymers can be synthesized which may pave their way for possible use in tissue engineering applications.

  1. A new peptide-based urethane polymer: synthesis, biodegradation, and potential to support cell growth in vitro

    PubMed Central

    Zhang, Jian Ying; Beckman, Eric J.; Piesco, Nicholas P.; Agarwal, Sudha

    2016-01-01

    A novel non-toxic biodegradable lysine-di-isocyanate (LDI)-based urethane polymer was developed for use in tissue engineering applications. This matrix was synthesized with highly purified LDI made from the lysine diethylester. The ethyl ester of LDI was polymerized with glycerol to form a prepolymer. LDI–glycerol prepolymer when reacted with water foamed with the liberation of CO2 to provide a pliable spongy urethane polymer. The LDI–glycerol matrix degraded in aqueous solutions at 100, 37, 22, and 4°C at a rate of 27.7, 1.8, 0.8, and 0.1 mM per 10 days, respectively. Its thermal stability in water allowed its sterilization by autoclaving. The degradation of the LDI–glycerol polymer yielded lysine, ethanol, and glycerol as breakdown products. The degradation products of LDI–glycerol polymer did not significantly affect the pH of the solution. The glass transition temperature (Tg) of this polymer was found to be 103.4°C. The physical properties of the polymer network were found to be adequate to support the cell growth in vitro, as evidenced by the fact that rabbit bone marrow stromal cells (BMSC) attached to the polymer matrix and remained viable on its surface. Culture of BMSC on LDI–glycerol matrix for long durations resulted in the formation of multilayered confluent cultures, a characteristic typical of bone cells. Furthermore, cells grown on LDI–glycerol matrix did not differ phenotypically from the cells grown on the tissue culture polystyrene plates as assessed by the cell growth, and expression of mRNA for collagen type I, and transforming growth factor-β1 (TGF-β1). The observations suggest that biodegradable peptide-based urethane polymers can be synthesized which may pave their way for possible use in tissue engineering applications. PMID:10811306

  2. Synthesis and characterization of novel elastomeric poly(D,L-lactide urethane) maleate composites for bone tissue engineering.

    PubMed

    Mercado-Pagán, Angel E; Kang, Yunqing; Ker, Dai Fei Elmer; Park, Sangwon; Yao, Jeffrey; Bishop, Julius; Yang, Yunzhi

    2013-10-01

    Here, we report the synthesis and characterization of a novel 4-arm poly(lactic acid urethane)-maleate (4PLAUMA) elastomer and its composites with nano-hydroxyapatite (nHA) as potential weight-bearing composite. The 4PLAUMA/nHA ratios of the composites were 1:3, 2:5, 1:2 and 1:1. FTIR and NMR characterization showed urethane and maleate units integrated into the PLA matrix. Energy dispersion and Auger electron spectroscopy confirmed homogeneous distribution of nHA in the polymer matrix. Maximum moduli and strength of the composites of 4PLAUMA/nHA, respectively, are 1973.31 ± 298.53 MPa and 78.10 ± 3.82 MPa for compression, 3630.46 ± 528.32 MPa and 6.23 ± 1.44 MPa for tension, 1810.42 ± 86.10 MPa and 13.00 ± 0.72 for bending, and 282.46 ± 24.91 MPa and 5.20 ± 0.85 MPa for torsion. The maximum tensile strains of the polymer and composites are in the range of 5% to 93%, and their maximum torsional strains vary from 0.26 to 0.90. The composites exhibited very slow degradation rates in aqueous solution, from approximately 50% mass remaining for the pure polymer to 75% mass remaining for composites with high nHA contents, after a period of 8 weeks. Increase in ceramic content increased mechanical properties, but decreased maximum strain, degradation rate, and swelling of the composites. Human bone marrow stem cells and human endothelial cells adhered and proliferated on 4PLAUMA films and degradation products of the composites showed little-to-no toxicity. These results demonstrate that novel 4-arm poly(lactic acid urethane)-maleate (4PLAUMA) elastomer and its nHA composites may have potential applications in regenerative medicine.

  3. Synthesis and characterization of novel elastomeric poly(D,L-lactide urethane) maleate composites for bone tissue engineering

    PubMed Central

    Mercado-Pagán, Ángel E.; Kang, Yunqing; Ker, Dai Fei Elmer; Park, Sangwon; Yao, Jeffrey; Bishop, Julius; Yang, Yunzhi

    2013-01-01

    Here, we report the synthesis and characterization of a novel 4-arm poly(lactic acid urethane)-maleate (4PLAUMA) elastomer and its composites with nano-hydroxyapatite (nHA) as potential weight-bearing composite. The 4PLAUMA/nHA ratios of the composites were 1:3, 2:5, 1:2 and 1:1. FTIR and NMR characterization showed urethane and maleate units integrated into the PLA matrix. Energy dispersion and Auger electron spectroscopy confirmed homogeneous distribution of nHA in the polymer matrix. Maximum moduli and strength of the composites of 4PLAUMA/nHA, respectively, are 1973.31 ± 298.53 MPa and 78.10 ± 3.82 MPa for compression, 3630.46 ± 528.32 MPa and 6.23 ± 1.44 MPa for tension, 1810.42 ± 86.10 MPa and 13.00 ± 0.72 for bending, and 282.46 ± 24.91 MPa and 5.20 ± 0.85 MPa for torsion. The maximum tensile strains of the polymer and composites are in the range of 5% to 93%, and their maximum torsional strains vary from 0.26 to 0.90. The composites exhibited very slow degradation rates in aqueous solution, from approximately 50% mass remaining for the pure polymer to 75% mass remaining for composites with high nHA contents, after a period of 8 weeks. Increase in ceramic content increased mechanical properties, but decreased maximum strain, degradation rate, and swelling of the composites. Human bone marrow stem cells and human endothelial cells adhered and proliferated on 4PLAUMA films and degradation products of the composites showed little-to-no toxicity. These results demonstrate that novel 4-arm poly(lactic acid urethane)-maleate (4PLAUMA) elastomer and its nHA composites may have potential applications in regenerative medicine. PMID:24817764

  4. Heat synch: inter- and independence of body-temperature fluctuations and brain-state alternations in urethane-anesthetized rats.

    PubMed

    Whitten, Tara A; Martz, Laura J; Guico, Anthony; Gervais, Nicole; Dickson, Clayton T

    2009-09-01

    During sleep, warm-blooded animals exhibit cyclic alternations between rapid-eye-movement (REM) and nonrapid-eye-movement (non-REM) states, characterized by distinct patterns of brain activity apparent in electroencephalographic (EEG) recordings coupled with corresponding changes in physiological measures, including body temperature. Recently we have shown that urethane-anesthetized rats display cyclic alternations between an activated state and a deactivated state that are highly similar in both EEG and physiological characteristics to REM and non-REM sleep states, respectively. Here, using intracranial local field potential recordings from urethane-anesthetized rats, we show that brain-state alternations were correlated to core temperature fluctuations induced using a feedback-controlled heating system. Activated (REM-like) states predominated during the rising phase of the temperature cycle, whereas deactivated (non-REM-like) states predominated during the falling phase. Brain-state alternations persisted following the elimination of core temperature fluctuations by the use of a constant heating protocol, but the timing and rhythmicity of state alternations were altered. In contrast, thermal fluctuations applied to the ventral surface (and especially the scrotum) of rats in the absence or independently of core temperature fluctuations appeared to induce brain-state alternations. Heating brought about activated patterns, whereas cooling produced deactivated patterns. This shows that although alternations of sleeplike brain states under urethane anesthesia can be independent of imposed temperature variations, they can also be entrained through the activation of peripheral thermoreceptors. Overall, these results imply that brain state and bodily metabolism are highly related during unconsciousness and that the brain mechanisms underlying sleep cycling and thermoregulation likely represent independent, yet coupled oscillators.

  5. The M2 macrophages induce autophagic vascular disorder and promote mouse sensitivity to urethane-related lung carcinogenesis.

    PubMed

    Li, G-G; Guo, Z-Z; Ma, X-F; Cao, N; Geng, S-N; Zheng, Y-Q; Meng, M-J; Lin, H-H; Han, G; Du, G-J

    2016-06-01

    Tumor vessels are known to be abnormal, with typically aberrant, leaky and disordered vessels. Here, we investigated whether polarized macrophage phenotypes are involved in tumor abnormal angiogenesis and what is its mechanism. We found that there was no difference in chemotaxis of polarized M1 and M2 macrophages to lewis lung carcinoma (LLC) cells and that either M1 or M2 macrophage-conditioned media had no effect on LLC cell proliferation. Unexpectedly, the M2 but not M1 macrophage-conditioned media promoted the proliferation of human umbilical vein endothelial cells (HUVECs) and simultaneously increased endothelial cell permeability in vitro and angiogenic index in the chick embryo chorioallantoic membrane (CAM). The treatment with M2 but not M1 macrophage-conditioned media increased autophagosomes as well as microtubule-associated protein light chain 3B (LC3-B) expression (a robust marker of autophagosomes) but decreased p62 protein expression (a selective autophagy substrate) in HUVECs, the treatment with chloroquine that blocked autophagy abrogated the abnormal angiogenic efficacy of M2 macrophage-conditioned media. These results were confirmed in urethane-induced lung carcinogenic progression. Urethane-induced lung carcinogenesis led to more M2 macrophage phenotype and increased abnormal angiogenesis concomitant with the upregulation of LC3-B and the downregulation of p62. Clodronate liposome-induced macrophage depletion, chloroquine-induced autophagic prevention or salvianolic acid B-induced vascular protection decreased abnormal angiogenesis and lung carcinogenesis. In addition, we found that the tendency of age-related M2 macrophage polarization also promoted vascular permeability and carcinogenesis in urethane carcinogenic progression. These findings indicate that the M2 macrophages induce autophagic vascular disorder to promote lung cancer progression, and the autophagy improvement represents an efficacious strategy for abnormal angiogenesis and cancer

  6. Synthesis and characterization of poly(D,L-lactide)-poly(ethylene glycol) multiblock poly(ether-ester-urethane)s

    NASA Astrophysics Data System (ADS)

    Haw, Tan Ching; Ahmad, Azizan; Anuar, Farah Hannan

    2015-09-01

    In this study, poly(D,L-lactide)-poly(ethylene glycol) multiblock poly(ether-ester-urethane)s was synthesized in the framework of environmental friendly products to meet the need for highly flexible polymers. Triblock copolymer with poly(ethylene glycol) as center block and poly(D,L-lactide) as side block were first synthesized by ring-opening polymerization of D,L-lactide, followed by chain extension reaction of triblocks using hexamethylene diisocyanate (HMDI). NMR and infra-red spectroscopies were used to determine the molecular composition whereas XRD analysis revealed crystallinity behavior of synthesized multiblock copolymers.

  7. Rheological and mechanical properties and interfacial stress development of composite cements modified with thio-urethane oligomers.

    PubMed

    Bacchi, Ataís; Pfeifer, Carmem S

    2016-08-01

    Thio-urethane oligomers have been shown to reduce stress and increase toughness in highly filled composite materials. This study evaluated the influence of thio-urethane backbone structure on rheological and mechanical properties of resin cements modified with a fixed concentration of the oligomers. Thio-urethane oligomers (TU) were synthesized by combining thiols - pentaerythritol tetra-3-mercaptopropionate (PETMP) or trimethylol-tris-3-mercaptopropionate (TMP) - with isocyanates - 1,6-hexanediol-diissocyante (HDDI) (aliphatic) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (BDI) (aromatic) or dicyclohexylmethane 4,4'-diisocyanate (HMDI) (cyclic), at 1:2 isocyanate:thiol, leaving pendant thiols. 20wt% TU were added to BisGMA-UDMA-TEGDMA (5:3:2). 60wt% silanated inorganic fillers were added. Near-IR was used to follow methacrylate conversion and rate of polymerization ( [Formula: see text] ). Mechanical properties were evaluated in three-point bending (ISO 4049) for flexural strength/modulus (FS/FM, and toughness), and notched specimens (ASTM Standard E399-90) for fracture toughness (KIC). PS was measured on the Bioman. Viscosity (V) and gel-points (defined as the crossover between storage and loss shear moduli (G'/G″)) were obtained with rheometry. Glass transition temperature (Tg), cross-link density and homogeneity of the network were obtained with dynamic mechanical analysis. Film-thickness was evaluated according to ISO 4049. DC and mechanical properties increased and [Formula: see text] and PS decreased with the addition of TUs. Gelation (G'/G″) was delayed and DC at G'/G″ increased in TU groups. Tg and cross-link density dropped in TU groups, while oligomers let to more homogenous networks. An increase in V was observed, with no effect on film-thickness. Significant reductions in PS were achieved at the same time conversion and mechanical properties increased. The addition of thio-urethane oligomers proved successful in improving several key properties

  8. Mixed-mode fatigue fracture of adhesive joints in harsh environments and nonlinear viscoelastic modeling of the adhesive

    NASA Astrophysics Data System (ADS)

    Arzoumanidis, Alexis Gerasimos

    A four point bend, mixed-mode, reinforced, cracked lap shear specimen experimentally simulated adhesive joints between load bearing composite parts in automotive components. The experiments accounted for fatigue, solvent and temperature effects on a swirled glass fiber composite adherend/urethane adhesive system. Crack length measurements based on compliance facilitated determination of da/dN curves. A digital image processing technique was also utilized to monitor crack growth from in situ images of the side of the specimen. Linear elastic fracture mechanics and finite elements were used to determine energy release rate and mode-mix as a function of crack length for this specimen. Experiments were conducted in air and in a salt water bath at 10, 26 and 90°C. Joints tested in the solvent were fully saturated. In air, both increasing and decreasing temperature relative to 26°C accelerated crack growth rates. In salt water, crack growth rates increased with increasing temperature. Threshold energy release rate is shown to be the most appropriate design criteria for joints of this system. In addition, path of the crack is discussed and fracture surfaces are examined on three length scales. Three linear viscoelastic properties were measured for the neat urethane adhesive. Dynamic tensile compliance (D*) was found using a novel extensometer and results were considerably more accurate and precise than standard DMTA testing. Dynamic shear compliance (J*) was determined using an Arcan specimen. Dynamic Poisson's ratio (nu*) was extracted from strain gage data analyzed to include gage reinforcement. Experiments spanned three frequency decades and isothermal data was shifted by time-temperature superposition to create master curves spanning thirty decades. Master curves were fit to time domain Prony series. Shear compliance inferred from D* and nu* compared well with measured J*, forming a basis for finding the complete time dependent material property matrix for this

  9. The adhesive strength and initial viscosity of denture adhesives.

    PubMed

    Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi

    2014-11-01

    To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.

  10. Desmosomal adhesion in vivo.

    PubMed

    Berika, Mohamed; Garrod, David

    2014-02-01

    Desmosomes are intercellular junctions that provide strong adhesion or hyper-adhesion in tissues. Here, we discuss the molecular and structural basis of this with particular reference to the desmosomal cadherins (DCs), their isoforms and evolution. We also assess the role of DCs as regulators of epithelial differentiation. New data on the role of desmosomes in development and human disease, especially wound healing and pemphigus, are briefly discussed, and the importance of regulation of the adhesiveness of desmosomes in tissue dynamics is considered.

  11. Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone), poly(ethylene glycol) and poly(propylene glycol).

    PubMed

    Loh, Xian Jun; Colin Sng, Kian Boon; Li, Jun

    2008-08-01

    Thermo-responsive multiblock poly(ester urethane)s comprising poly(epsilon-caprolactone) (PCL), poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG) segments were synthesized. The copolymers were characterized by GPC, NMR, FTIR, XRD, DSC and TGA. Water-swelling analysis carried out at different temperatures revealed that the bulk hydrophilicity of the copolymers could be controlled either by adjusting the composition of the copolymer or by changing the temperature of the environment. These thermo-responsive copolymer films formed highly swollen hydrogel-like materials when soaked in cold water and shrank when soaked in warm water. The changes are reversible. The mechanical properties of the copolymer films were assessed by tensile strength measurement. These copolymers were ductile when compared to PCL homopolymers. Young's modulus and the stress at break increased with increasing PCL content, whereas the strain at break increased with increasing PEG content. The results of the cytotoxicity tests based on the ISO 10993-5 protocol demonstrated that the copolymers were non-cytotoxic and could be potentially used in biomedical applications.

  12. Adhesives, silver amalgam.

    PubMed

    1995-09-01

    The most recent advancement in silver amalgam is use of resin formulations to bond metal to tooth both chemically &/or physically, Since, historically, amalgam has been used successfully without adhesion to tooth, obvious clinical question is: Why is bonding now desirable? Two major clinical reasons to bond are: (1) Adhesive can increase fracture resistance of amalgam restored teeth & decrease cusp fractures; & (2) Seal provided by adhesive can greatly decrease, & often eliminate post-operative sensitivity. Following report summarizes CRA laboratory study of shear bond strength & sealing capability of 23 commercial adhesives used to bond 2 types of silver amalgam to tooth structure.

  13. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  14. Adhesion at metal interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1991-01-01

    A basic adhesion process is defined, the theory of the properties influencing metallic adhesion is outlined, and theoretical approaches to the interface problem are presented, with emphasis on first-principle calculations as well as jellium-model calculations. The computation of the energies of adhesion as a function of the interfacial separation is performed; fully three-dimensional calculations are presented, and universality in the shapes of the binding energy curves is considered. An embedded-atom method and equivalent-crystal theory are covered in the framework of issues involved in practical adhesion.

  15. Distribution of urethane and its binding to DNA, RNA, and protein in SENCAR and BALB/c mice following oral and dermal administration

    SciTech Connect

    Fossa, A.A.; Baird, W.M.; Carlson, G.P.

    1985-01-01

    (/sup 14/C) urethane (0.10 mg/kg, 2.5 ..mu..Ci/25 g) as administered orally and dermally to male SENCAR and BALB/c mice. Absorption of urethane was greater in the first hour in SENCAR mice by both routes than that found in these tissues in BALB/c mice. Following dermal application, higher levels were maintained in the liver, lungs, and stomach through 48 h in the SENCAR mice when compared to BALB/c mice. Binding of (/sup 14/C) urethane (0.062 mg/g body weight, 20 ..mu..Ci/20 g body weight) to DNA, RNA, and protein 6 h after oral administration varied with tissue (liver > stomach > skin = lung) but did not differ with strain. Binding to DNA in skin, lung, and stomach, RNA in stomach, and protein in stomach and liver after 48 h were significantly higher in SENCAR mice than in BALB/c mice. Dermal application of (2exclamation/sup 4/C) urethane resulted in severalfold higher binding to liver DNA of SENCAR mice than BALB/c mice, but DNA binding was comparable in other tissues after 6 h. At 48 h after dermal application, significantly higher levels of (/sup 14/C) urethane remained bound to skin DNA, RNA, and protein in BALB/c mice, although all values were lower than at 6 h after treatment. Differences in the distribution and binding of urethane probably do not account for the discrepancies in tumor sensitivity. Liver DNA hydrolysates were examined after 48 hr. Thin-layer chromatography showed little incorporation of the /sup 14/C into the normal deoxyribonucleotide or deoxyribonucleoside bases, and no modified bases were apparent. Radioactivity was present in the fraction that remained at the origin.

  16. Fatigue resistance and stiffness of glass fiber-reinforced urethane dimethacrylate composite.

    PubMed

    Narva, Katja K; Lassila, Lippo V J; Vallittu, Pekka K

    2004-02-01

    Retentive properties of cast metal clasps decrease over time because of metal fatigue. Novel fiber-reinforced composite materials are purported to have increased fatigue resistance compared with metals and may offer a solution to the problem of metal fatigue. The aim of this study was to investigate the fatigue resistance and stiffness of E-glass fiber-reinforced composite. Twelve cylindrical fiber-reinforced composite test cylinders (2 mm in diameter and 60 mm in length) were made from light-polymerized urethane dimethacrylate monomer with unidirectional, single-stranded, polymer preimpregnated E-glass fiber reinforcement. Six cylinders were stored in dry conditions and 6 in distilled water for 30 days before testing. Fatigue resistance was measured by a constant-deflection fatigue test with 1 mm of deflection across a specimen span of 11 mm for a maximum of 150,000 loading cycles. The resistance of the cylinder against deflection was measured (N) and the mean values of the force were compared by 1-way analysis of variance (alpha = .05). The flexural modulus (GPa) was calculated for the dry and water-stored cylinders for the first loading cycle. Scanning electron microscopy was used to assess the distribution of the fibers, and the volume percent of fibers and polymer were assessed by combustion analysis. The test cylinders did not fracture due to fatigue following 150,000 loading cycles. Flexural modulus at the first loading cycle was 18.9 (+/- 2.9) GPa and 17.5 (+/- 1.7) GPa for the dry and water-stored cylinders, respectively. The mean force required to cause the first 1-mm deflection was 33.5 (+/- 5.2) N and 37.7 (+/- 3.6) N for the dry and water stored cylinders, respectively; however, the differences were not significant. After 150,000 cycles the mean force to cause 1-mm deflection was significantly reduced to 23.4 (+/- 8.5) N and 13.1 (+/- 3.5) N, respectively (P < .0001). Scanning electron microscopy highlighted fiber- and polymer-rich areas within the

  17. Biodegradable calcium polyphosphate/polyvinyl-urethane carbonate composites for osteosynthesis applications

    NASA Astrophysics Data System (ADS)

    Ramsay, Scott Desmond

    The formation of biodegradable implants for use in osteosynthesis has been a major goal of biomaterials research for the past two to three decades. Self-reinforced polylactide systems represent the most significant success of this research to date, however with elastic constants of, at most, 12--15 GPa, they fail to provide the necessary initial stiffness required of devices designed for stabilizing fractures of major load-bearing bones. One objective of this study has been the development of a biodegradable composite suitable for fabrication of implants for the repair of fractures of major load-bearing bones. Specifically, this research has focussed on the use of calcium polyphosphate (CPP), an uiorganic polymer in combination with polyvinyl-urethane carbonate (PVUC) organic polymers. Composite samples were formed as interpenetrating phase composites (IPC), particle-reinforced composites (PRC), and fibre-reinforced composites (FRC). Additionally, the IPCs were produced as both monolithic and laminated specimens. PRC samples exhibit too low asmade elastic constant for fracture fixation applications, while the IPC and FRC samples exhibit desired as-made strength and bending stiffness but lose these properties too rapidly when exposed to aqueous-based in vitro aging, simulating in vivo conditions. An investigation to determine the mechanism of the rapid in vitro degradation was undertaken using a model IPC system to study the effect of the interfacial strength on the mechanical properties of the composite. In addition, these studies provided further support for a hypothesis to explain the observed high mechanical properties of the as-made CPP-PVUC interpenetrating phase composites. It was found that strong interfacial strength is very significant in obtaining appropriate mechanical properties in the IPC system. Results support the conclusion that a rapid loss of the CPP-PVUC interface through exposure to an aqueous environment, as well as stresses imposed on the CPP

  18. Involvement of EZH2, SUV39H1, G9a and associated molecules in pathogenesis of urethane induced mouse lung tumors: Potential targets for cancer control

    SciTech Connect

    Pandey, Manuraj; Sahay, Satya; Tiwari, Prakash; Upadhyay, Daya S.; Sultana, Sarwat; Gupta, Krishna P.

    2014-10-15

    In the present study, we showed the correlation of EZH2, SUV39H1 or G9a expression and histone modifications with the urethane induced mouse lung tumorigenesis in the presence or absence of antitumor agent, inositol hexaphosphate (IP6). Tumorigenesis and the molecular events involved therein were studied at 1, 4, 12 or 36 weeks after the exposure. There were no tumors at 1 or 4 weeks but tumors started appearing at 12 weeks and grew further till 36 weeks after urethane exposure. Among the molecular events, upregulation of EZH2 and SUV39H1 expressions appeared to be time dependent, but G9a expression was altered significantly only at later stages of 12 or 36 weeks. Alteration in miR-138 expression supports the upregulation of its target, EZH2. H3K9me2, H3K27me3 or H4K20me3 was found to be altered at 12 or 36 weeks. However, ChIP analysis of p16 and MLH1 promoters showed their binding with H3K9me2 and H3K27me3 which was maximum at 36 weeks. Thus, histone modification and their interactions with gene promoter resulted in the reduced expression of p16 and MLH1. IP6 prevented the incidence and the size of urethane induced lung tumors. IP6 also prevented the urethane induced alterations in EZH2, SUV39H1, G9a expressions and histone modifications. Our results suggest that the alterations in the histone modification pathways involving EZH2 and SUV39H1 expressions are among the early events in urethane induced mouse lung tumorigenesis and could be exploited for cancer control. - Highlights: • Urethane induces mouse lung tumor in a time dependent manner. • EZH2, SUV39H1, G9a induced by urethane and progress with time • Downregulation of miRNA-138 supports the EZH2 upregulation. • Methylation of histones showed a consequence of upregulated EZH2, SUV39H1 and G9a. • IP6 inhibits urethane induced changes and prevents tumor development.

  19. Synthesis and mechanical properties of radiation-cured acrylo-urethane elastomers and their structural and morphological features

    SciTech Connect

    Khamis, M.A.

    1984-01-01

    Polyacrylo-urethane elastomers were synthesized using a polyethylene adipate diol capped with toluene diisocyanate and hydroxyethylacrylate, to characterize the morphology of these elastomers and correlate their properties with both morphological and structural features. The one shot polymerization technique was used, where the prepolymer, the 2-hydroxyethylacrylate and the chain extender were mixed in the desired stoichiometric ratios and then reacted at various times and temperatures. The reaction progress was monitored by the isocyanate consumption. Acrylo-urethane mono-oligomers showed low elongation at break when compared with others in the literature at equivalent degrees of cross-linking in agreement with earlier work. It was postulated that the cause of low elongation was the high functionality of the cross-link in the polymerized network. Moisture-curing of the polymer films improved the mechanical properties of the partially reacted films, which was attributed to the formation of cross-linking by allophanate formation. Catalysts used (such as tertiary amines and metal catalysts) increase the rate so that even at lower temperatures the reaction is completed in a relatively short time, with no great influence on the film properties.

  20. Development of high strength siloxane poly(urethane-urea) elastomers based on linked macrodiols for heart valve application.

    PubMed

    Dandeniyage, Loshini S; Gunatillake, Pathiraja A; Adhikari, Raju; Bown, Mark; Shanks, Robert; Adhikari, Benu

    2017-08-31

    Mixed macrodiol based siloxane poly(urethane-urea)s (SiPUU) having number average molecular weights in the range 87-129 kDa/mol were synthesized to give elastomers with high tensile and tear strengths required to fabricate artificial heart valves. Polar functional groups were introduced into the soft segment to improve the poor segmental compatibility of siloxane polyurethanes. This was achieved by linking α,ω-bis(6-hydroxyethoxypropyl) poly(dimethylsiloxane) (PDMS) or poly(hexamethylene oxide) (PHMO) macrodiols with either 4,4'-methylenediphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI) or isophorone diisocyanate (IPDI) prior to polyurethane synthesis. The hard segment was composed of MDI, and a 1:1 mixture of 1,3-bis(4-hydroxybutyl)-1,1,3,3-tetramethyldisiloxane and 1,2-ethylene diamine. We report the effect of urethane linkers in soft segments on properties of the SiPUU. PHMO linked with either MDI or IPDI produced SiPUU with the highest tensile and tear strengths. Linking PDMS hardly affected the tensile strength; however, the tear strength was improved. The stress-strain curves showed no plastic deformation region typically observed for conventional polyurethanes indicating good creep resistance. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  1. Instant acting adhesive system

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Haines, R. C.

    1971-01-01

    Adhesive developes 80 percent of minimum bond strength of 250 psi less than 30 sec after activation is required. Adhesive is stable, handles easily, is a low toxic hazard, and is useful in industrial and domestic prototype bonding and clamping operations.

  2. Soy protein adhesives

    Treesearch

    Charles R. Frihart

    2010-01-01

    In the quest to manufacture and use building materials that are more environmentally friendly, soy adhesives can be an important component. Trees fix and store carbon dioxide in the atmosphere. After the trees are harvested, machinery converts the wood into strands, which are then bonded together with adhesives to form strandboard, used in constructing long-lasting...

  3. Adhesive interactions with wood

    Treesearch

    Charles R. Frihart

    2004-01-01

    While the chemistry for the polymerization of wood adhesives has been studied systematically and extensively, the critical aspects of the interaction of adhesives with wood are less clearly understood. General theories of bond formation need to be modified to take into account the porosity of wood and the ability of chemicals to be absorbed into the cell wall....

  4. Tissue adhesives in otorhinolaryngology

    PubMed Central

    Schneider, Gerlind

    2011-01-01

    The development of medical tissue adhesives has a long history without finding an all-purpose tissue adhesive for clinical daily routine. This is caused by the specific demands which are made on a tissue adhesive, and the different areas of application. In otorhinolaryngology, on the one hand, this is the mucosal environment as well as the application on bones, cartilage and periphery nerves. On the other hand, there are stressed regions (skin, oral cavity, pharynx, oesophagus, trachea) and unstressed regions (middle ear, nose and paranasal sinuses, cranial bones). But due to the facts that adhesives can have considerable advantages in assuring surgery results, prevention of complications and so reduction of medical costs/treatment expenses, the search for new adhesives for use in otorhinolaryngology will be continued intensively. In parallel, appropriate application systems have to be developed for microscopic and endoscopic use. PMID:22073094

  5. LARC-13 adhesive development

    NASA Technical Reports Server (NTRS)

    Hill, S. G.; Sheppard, C. H.; Johnson, J. C.

    1980-01-01

    A LARC-13 type adhesive system was developed and property data obtained that demonstrated improved thermomechanical properties superior to base LARC-13 adhesive. An improved adhesive for 589 K (600 F) use was developed by physical or chemical modification of LARC-13. The adhesive was optimized for titanium and composite bonding, and a compatible surface preparation for titanium and composite substrates was identified. The data obtained with the improved adhesive system indicated it would meet the 589 K (600 F) properties desired for application on space shuttle components. Average titanium lap shear data were: (1) 21.1 MPa (3355 psi) at RT, (2) 13.0 MPa (1881 psi) at 600 F, and (3) 16.4 MPa (2335) after aging 125 hours at 600 F and tested at 600 F.

  6. Cyanoacrylate Adhesives in Eye Wounds.

    DTIC Science & Technology

    EYE, *WOUNDS AND INJURIES), (*ADHESIVES, EYE), (*ACRYLIC RESINS, ADHESIVES), CORNEA , HEALING, TISSUES(BIOLOGY), TOLERANCES(PHYSIOLOGY), NECROSIS, SURGICAL SUPPLIES, STRENGTH(PHYSIOLOGY), SURGERY, THERAPY

  7. Flexible urethane foams and chlorofluorocarbon emissions: a support document for economic implications of regulating chlorofluorocarbon emissions from nonaerosol applications. Final report

    SciTech Connect

    Mooz, W.E.; Quinn, T.H.

    1980-06-01

    The methods used to proceed from the historical to the analysis of policies that might reduce chlorofluorocarbon emissions are addressed. Flexable urethane foam plants are a significant point source of CFC emissions. Recovery of CFC or methylene chloride conversion are recommended to reduce CFC releases to the atmosphere. Cost factors are also considered.

  8. Mussel adhesion - essential footwork.

    PubMed

    Waite, J Herbert

    2017-02-15

    Robust adhesion to wet, salt-encrusted, corroded and slimy surfaces has been an essential adaptation in the life histories of sessile marine organisms for hundreds of millions of years, but it remains a major impasse for technology. Mussel adhesion has served as one of many model systems providing a fundamental understanding of what is required for attachment to wet surfaces. Most polymer engineers have focused on the use of 3,4-dihydroxyphenyl-l-alanine (Dopa), a peculiar but abundant catecholic amino acid in mussel adhesive proteins. The premise of this Review is that although Dopa does have the potential for diverse cohesive and adhesive interactions, these will be difficult to achieve in synthetic homologs without a deeper knowledge of mussel biology; that is, how, at different length and time scales, mussels regulate the reactivity of their adhesive proteins. To deposit adhesive proteins onto target surfaces, the mussel foot creates an insulated reaction chamber with extreme reaction conditions such as low pH, low ionic strength and high reducing poise. These conditions enable adhesive proteins to undergo controlled fluid-fluid phase separation, surface adsorption and spreading, microstructure formation and, finally, solidification. © 2017. Published by The Company of Biologists Ltd.

  9. Cytotoxicity of denture adhesives.

    PubMed

    de Gomes, Pedro Sousa; Figueiral, Maria Helena; Fernandes, Maria Helena R; Scully, Crispian

    2011-12-01

    Ten commercially available denture adhesives, nine soluble formulations (six creams, three powders) and one insoluble product (pad), were analyzed regarding the cytotoxicity profile in direct and indirect assays using L929 fibroblast cells. In the direct assay, fibroblasts were seeded over the surface of a thick adhesive gel (5%, creams; 2.5%, powders and pad). In the indirect assay, cells were cultured in the presence of adhesive extracts prepared in static and dynamic conditions (0.5-2%, creams; 0.25-1%, powders and pad). Cell toxicity was assessed for cell viability/proliferation (MTT assay) and cell morphology (observation of the F-actin cytoskeleton organization by confocal laser scanning microscopy). Direct contact of the L929 fibroblasts with the thick adhesive gels caused no, or only a slight, decrease in cell viability/proliferation. The adhesive extracts (especially those prepared in dynamic conditions) caused significantly higher growth inhibition of fibroblasts and, in addition, caused dose- and time-dependent effects, throughout the 6-72 h exposure time. Also, dose-dependent effects on cell morphology, with evident disruption of the F-actin cytoskeleton organization, were seen in the presence of most adhesives. In conclusion, the adhesives possessed different degrees of cytotoxicity, but similar dose- and time-dependent biological profiles.

  10. Adhesive Bonding for Shelters

    DTIC Science & Technology

    1980-12-01

    weru uvaluated, the type of etch bath " sweetener " and the type of rinse\\water used. The type of etch bath " sweetener " was found to have a dramatic effect...EA9601NW Adhesives on 50521134 Bare Adherenas 39 13 Stress-Durability Behavior Sun-mary 40 14 Effect of Ltch Bath Sweetening Alloy on Interracial Durability...34"’ -,,• , •’• •"• " ,,,,, 9 Adhesive/Primer/Adherend Alloy/Surface Preparation Combinations Adherend OFPL Sweetening Rinse Adhesive:Primer Alloy Alloy

  11. Adhesion of Polymer Vesicles

    NASA Astrophysics Data System (ADS)

    Lin, John J.; Bates, Frank S.; Hammer, Daniel A.; Silas, James A.

    2005-07-01

    The adhesion and bending modulus of polybutadiene-poly(ethylene oxide) block copolymer vesicles made from a bidisperse mixture of polymers is measured using micropipette aspiration. The adhesion energy between biotinylated vesicles and avidin beads is modeled by incorporating the extension of the adhesive ligands above the surface brush of the vesicle according to the blob model of bidisperse polymer mixtures of Komura and Safran assuming the polymer brush at the surface of the vesicle is compact. The same model accurately reproduces the scaling of the bending modulus with polymer composition.

  12. Focal adhesions in osteoneogenesis

    PubMed Central

    Biggs, M.J.P; Dalby, M.J

    2010-01-01

    As materials technology and the field of tissue engineering advances, the role of cellular adhesive mechanisms, in particular the interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device technology is to use the exquisite ability of biological systems to respond to the material surface or chemical stimuli in order to help develop next-generation biomaterials. The focus of this review is on recent studies and developments concerning focal adhesion formation in osteoneogenesis, with an emphasis on the influence of synthetic constructs on integrin mediated cellular adhesion and function. PMID:21287830

  13. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  14. Adhesive Contact Sweeper

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.

    1993-01-01

    Adhesive contact sweeper removes hair and particles vacuum cleaner leaves behind, without stirring up dust. Also cleans loose rugs. Sweeper holds commercially available spools of inverted adhesive tape. Suitable for use in environments in which air kept free of dust; optics laboratories, computer rooms, and areas inhabited by people allergic to dust. For carpets, best used in tandem with vacuum cleaner; first pass with vacuum cleaner removes coarse particles, and second pass with sweeper extracts fine particles. This practice extends useful life of adhesive spools.

  15. Silver nanowire networks embedded in urethane acrylate for flexible capacitive touch sensor

    NASA Astrophysics Data System (ADS)

    Kim, Youngmin; Kim, Jong-Woong

    2016-02-01

    Flexible electrodes based on a percolated network of silver nanowires (AgNWs) and polymer are considered one of the best candidates for fabrication of flexible and even rollable touch sensors. A general approach to make the AgNW transparent electrode is based on an overcoating of AgNW dispersion onto a pre-formed transparent film. However, in that case, the nanowires could be easily detached from the film, because of the poor adhesion between them. Herein an inverted layer processing method has been employed to bury the AgNWs into the surface of a transparent polymer to enhance the adhesion. For this, a highly stiff and transparent polyurethane acrylate (PUA) was newly designed and synthesized by adding a cross-linker to the pre-polymer, with AgNWs patterned for a capacitive sensor then being successfully embedded in its surface to produce. By this unique structure with the PUA, highly transparent, conductive and mechanically more reliable capacitive touch sensor could be fabricated. The sensing capability and mechanical stability were confirmed by cyclic bend testing to a curvature radius of 0.5 mm.

  16. New thermoplastic poly(carbonate-urethane)s based on chain extenders with sulfur atoms.

    PubMed

    Rogulska, Magdalena; Kultys, Anna; Puszka, Andrzej

    2017-01-01

    New thermoplastic segmented polyurethanes were obtained by a one-step melt polyaddition using 40, 50 and 60 mol% poly(hexane-1,6-diyl carbonate) diol of [Formula: see text] g mol(-1), 1,1'-methanediylbis(4-isocyanatobenzene) and 2,2'-[sulfanediylbis(benzene-1,4-diyloxy)]diethanol, 2,2'-[oxybis(benzene-1,4-diylsulfanediyl)]diethanol or 2,2'-[sulfanediylbis(benzene-1,4-diylsulfanediyl)]diethanol as a chain extender. FTIR, atomic force microscopy, differential scanning calorimetry and thermogravimetry were used to examine the polyurethanes' structure and thermal properties. Moreover, their Shore A/D hardness, tensile, adhesive and optical attributes were determined. They were transparent high-molar-mass materials showing good tensile strength (up to 51.9 MPa). The polyurethanes exhibited improved adhesion to copper taking into consideration that of conventional ones, and middle or high refractive index values (1.57-1.60), and both these parameters increased with an increase of the content of sulfur atoms in the polyurethane chain. The newly obtained polyurethanes can be considered as materials for numerous medical and optical appliances.

  17. Optical adhesive property study

    SciTech Connect

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  18. Adhesion of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  19. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  20. Characterization of a poly(ether urethane)-based controlled release membrane system for delivery of ketoprofen

    NASA Astrophysics Data System (ADS)

    Macocinschi, Doina; Filip, Daniela; Vlad, Stelian; Oprea, Ana Maria; Gafitanu, Carmen Anatolia

    2012-10-01

    A poly(ether urethane) based on polytetrahydrofuran containing hydroxypropyl cellulose for biomedical applications was tested for its biocompatibility. Ketoprofen was incorporated (3% and 6%) in the polyurethane matrix as an anti-inflammatory drug. Kinetic and drug release mechanisms were studied. The pore size and pore size distribution of the polyurethane membranes were investigated by scanning electron microscopy. Surface tension characteristics as well as moisture sorption properties such as diffusion coefficients and equilibrium moisture contents of the membrane material were studied. It was found that kinetics and release mechanisms are in function of medium pH, composition of polymer-drug system, pore morphology and pore size distribution. Prolonged nature of release of ketoprofen is assured by low amount of drug in polyurethane membrane and physiological pH.

  1. Differentiation and evaluation of evidence value of styrene acrylic urethane topcoat car paints analysed by pyrolysis-gas chromatography.

    PubMed

    Zieba-Palus, Janina; Zadora, Grzegorz; Milczarek, Jakub M

    2008-01-25

    Pyrolysis (Py)-GC/MS was applied to differentiate between automobile paint samples. The method was used for analysis of 36 samples of styrene acrylic urethane clearcoats that were indistinguishable on the basis of their infrared spectra and elemental composition. Differences observed in the obtained pyrograms of the compared paint samples were relatively small. Therefore, statistical analysis of the obtained results was performed. The likelihood ratio test suitable for multivariate data analysis supported by analysis of data structure by graphical model was used. This approach allowed not only distinguishing the samples compared, but also allowed the evaluation of the evidential value of such observations, which is very important from a forensic point of view.

  2. Alignment of Red Poly[dodecadyin-1,12-diol-bis(4-butoxycarbonyl-methyl-urethane)] in Couette Flow.

    PubMed

    Xie, Donglin; Wei, Yalin; Qiao, Greg G; Dunstan, Dave E

    2016-09-01

    The flow-induced alignment of red poly[dodecadyin-1,12-diol-bis(4-butoxycarbonyl-methyl-urethane)] (poly-4BCMU) in chloroform/toluene solution is reported. Absorption spectra have been measured over a range of shear rates in an optically transparent quartz Couette cell. The measured spectra show that the poly-4BCMU structure stays the same in flow, while the measured absorbance anisotropy is attributed to the flow-induced particle alignment in the red form poly-4BCMU solutions. A limiting orientation at shear rates >50 s(-1) is observed. Numerical simulations show that the spectral changes are consistent with the rodlike poly-4BCMU particle having an aspect ratio of 2.9. The dichroic ratio of 1.9 interpreted from the data indicates that the individual poly-4BCMU chains do not aggregate amorphously in the rodlike conformation, rather they show a preferred orientation along the long axis of the prolate aggregates.

  3. Epithelial adhesive junctions

    PubMed Central

    Capaldo, Christopher T.; Farkas, Attila E.

    2014-01-01

    Epithelial adhesive cell-to-cell contacts contain large, plasma membrane-spanning multiprotein aggregates that perform vital structural and signaling functions. Three prominent adhesive contacts are the tight junction, adherens junction, and the desmosome. Each junction type has unique cellular functions and a complex molecular composition. In this review, we comment on recent and exciting advances in our understanding of junction composition and function. PMID:24592313

  4. Synthesis of polymer materials by low energy electron beam. IV. EB-polymerized urethane-acrylate, -methacrylate and -acrylamide

    NASA Astrophysics Data System (ADS)

    Ando, Masayuki; Uryu, Toshiyuki

    The structure and properties before and after electron beam (EB) irradiation were investigated using urethane prepolymers with different terminal groups of 2-hydroxyethyl acrylate (HEA), 2-hydroxyethyl methacrylate (HEMA) and N-hydroxymethyl acrylamide (HMAAm). The prepolymers were synthesized by reaction of HEA, HEMA and HMAAm with the isocyanate-capped intermediate, which was obtained by reaction of poly(butylene adipate)diol (PBAD) with 4,4'-diphenylmethane diisocyanate. The resulting urethane-acrylate (UA-251M), -methacrylate (UMA-251M) and -acrylamide (UNAA-251M) had the crystallinity arising from PBAD moieties, and UA-251M and UMA-251M had higher crystallinity than UNAA-251M. IR results indicated that UNAA-251M was larger in the fraction of free NH stretching absorption than UA-251M and UMA-251M regardless of the number of NH group per a molecule. Accordingly, it was assumed that the difference in crystallinity was attributed to the polarity of terminal group. Hence, the rate of gel formation for UA-251M and UMA-251M was higher than that of UNAA-251M. The crystallinity based on PBAD of the prepolymers was remained also after EB irradiation. Spherulitic texture was observed on the EB-polymerized gel film surfaces for UA-251M and UMA-251M, while it was almost destroyed for UNAA-251M. Mechanical properties of UA-251M and UMA-251M gel films were much superior to those of UNAA-251M gel film according to the phase structure. Especially, UMA-251M gel film represented most excellent mechanical properties. Schematic models of the phase structure for UA-251M, UMA-251M and UNAA-251M were suggested from all experimental results.

  5. Tuneable micro- and nano-periodic structures in a free-standing flexible urethane/urea elastomer film.

    PubMed

    Godinho, M H; Trindade, A C; Figueirinhas, J L; Melo, L V; Brogueira, P; Deus, A M; Teixeira, P I C

    2006-12-01

    We have studied the control and manipulation of tuneable equilibrium structures in a free-standing urethane/urea elastomer film by means of atomic force microscopy, small-angle light scattering and polarising optical microscopy. The urethane/urea elastomer was prepared by reacting a poly(propyleneoxide)-based triisocyanate-terminated prepolymer (PU) with poly(butadienediol) (PBDO), with a weight ratio of 60% PU/40% PBDO. An elastomer film was shear-cast onto a glass plate and allowed to cure, first in an oven, then in air. Latent micro- and nano-periodic patterns are induced by ultra-violet (UV) irradiation of the film and can be "developed" by applying a plane uniaxial stress or by immersing the elastomer in an appropriate solvent and then drying it. For this elastomer we describe six pattern states, how they are related and how they can be manipulated. The morphological features of the UV-exposed film surface can be tuned, reproducibly and reversibly, by switching the direction of the applied mechanical field. Elastomers extracted in toluene exhibit different surface patterns depending upon the state in which they were developed. Stress-strain data collected for the films before and after UV irradiation reveal anisotropy induced by the shear-casting conditions and enhanced by the mechanical field. We have interpreted our results by assuming the film to consist of a thin, stiff surface layer ("skin") lying atop a thicker, softer substrate ("bulk"). The skin's higher stiffness is hypothesised to be due to the more extensive cross-linking of chains located near the surface by the UV radiation. Patterns would thus arise as a competition between the effects of bending the skin and stretching/compressing the bulk, as in the work of Cerda and Mahadevan (Phys. Rev. Lett. 90, 074302 (2003)). We present some preliminary results of a simulation of this model using the Finite Element package ABAQUS.

  6. Tuneable micro- and nano-periodic structures in a free-standing flexible urethane/urea elastomer film

    NASA Astrophysics Data System (ADS)

    Godinho, M. H.; Trindade, A. C.; Figueirinhas, J. L.; Melo, L. V.; Brogueira, P.; Deus, A. M.; Teixeira, P. I. C.

    2006-12-01

    We have studied the control and manipulation of tuneable equilibrium structures in a free-standing urethane/urea elastomer film by means of atomic force microscopy, small-angle light scattering and polarising optical microscopy. The urethane/urea elastomer was prepared by reacting a poly(propyleneoxide)-based triisocyanate-terminated prepolymer (PU) with poly(butadienediol) (PBDO), with a weight ratio of 60% PU/40% PBDO. An elastomer film was shear-cast onto a glass plate and allowed to cure, first in an oven, then in air. Latent micro- and nano-periodic patterns are induced by ultra-violet (UV) irradiation of the film and can be “developed” by applying a plane uniaxial stress or by immersing the elastomer in an appropriate solvent and then drying it. For this elastomer we describe six pattern states, how they are related and how they can be manipulated. The morphological features of the UV-exposed film surface can be tuned, reproducibly and reversibly, by switching the direction of the applied mechanical field. Elastomers extracted in toluene exhibit different surface patterns depending upon the state in which they were developed. Stress-strain data collected for the films before and after UV irradiation reveal anisotropy induced by the shear-casting conditions and enhanced by the mechanical field. We have interpreted our results by assuming the film to consist of a thin, stiff surface layer (“skin”) lying atop a thicker, softer substrate (“bulk”). The skin's higher stiffness is hypothesised to be due to the more extensive cross-linking of chains located near the surface by the UV radiation. Patterns would thus arise as a competition between the effects of bending the skin and stretching/compressing the bulk, as in the work of Cerda and Mahadevan (Phys. Rev. Lett. 90, 074302 (2003)). We present some preliminary results of a simulation of this model using the Finite Element package ABAQUS.

  7. Biocompatibility of Synthetic Poly(ester urethane)/Polyhedral Oligomeric Silsesquioxane Matrices with Embryonic Stem Cell Proliferation and Differentiation

    PubMed Central

    Guo, Yan-Lin; Wang, Wenshou; Otaigbe, Joshua U.

    2010-01-01

    Incorporation of polyhedral oligomeric silsesquioxanes (POSS) into poly (ester urethane)s (PEU) as a building block results in a PEU/POSS hybrid polymer with increased mechanical strength and thermostability. An attractive feature of the new polymer is that it forms a porous matrix when cast in the form of a thin film, making it potentially useful in tissue engineering. In this study, we present detailed microscopic analysis of the PEU/POSS matrix and demonstrate its biocompatibility with cell culture. The PEU/POSS polymer forms a continuous porous matrix with open pores and interconnected grooves. From SEM image analysis, it is calculated that there are about 950 pores per mm2 of the matrix area with pore size ranging from 1 to 15 μm in diameter. The area occupied by the pores represents approximately 7.6 % of matrix area. Using mouse embryonic stem cells (ESCs), we demonstrate that the PEU/POSS matrix provides excellent support for cell proliferation and differentiation. Under the cell culture condition optimized to maintain self-renewal, ESCs grown on a PEU/POSS matrix exhibit undifferentiated morphology, express pluripotency markers, and have similar growth rate to cells grown on gelatin. When induced for differentiation, ESCs underwent dramatic morphological change, characterized by the loss of clonogenecity and increased cell size with well-expanded cytoskeleton networks. Differentiated cells are able to form a continuous monolayer that is closely embedded on the matrix. The excellent compatibility between the PEU/POSS matrix and ESC proliferation/differentiation demonstrates the potential of using PEU/POSS polymers in future ESC-based tissue engineering. PMID:20213627

  8. Adhesion to porcelain and metal.

    PubMed

    Bertolotti, Raymond L

    2007-04-01

    Some compelling clinical benefits of porcelain and metal adhesion are presented. Current concepts for metal adhesion are reviewed, including modifications of metal surface and resin chemistry. Porcelain adhesion is reviewed, including little-known methods that use silane but no hydrofluoric acid etching. Clinical protocols for use of metal and porcelain adhesives are presented.

  9. Cohesion and Adhesion with Proteins

    Treesearch

    Charles R. Frihart

    2016-01-01

    With increasing interest in bio-based adhesives, research on proteins has expanded because historically they have been used by both nature and humans as adhesives. A wide variety of proteins have been used as wood adhesives. Ancient Egyptians most likely used collagens tobond veneer to wood furniture, then came casein (milk), blood, fish scales, and soy adhesives, with...

  10. Many Roles of Wood Adhesives

    Treesearch

    Charles R. Frihart

    2014-01-01

    Although wood bonding is one of the oldest applications of adhesives, going back to early recorded history (1), some aspects of wood bonds are still not fully understood. Most books in the general area of adhesives and adhesion do not cover wood bonding. However, a clearer understanding of wood bonding and wood adhesives can lead to improved products. This is important...

  11. The influence of porosity on the hemocompatibility of polyhedral oligomeric silsesquioxane poly (caprolactone-urea) urethane.

    PubMed

    Zhao, Junjie; Farhatnia, Yasmin; Kalaskar, Deepak M; Zhang, Yanting; Bulter, Peter E M; Seifalian, Alexander M

    2015-11-01

    The physio-chemical properties of blood contacting biomaterials play an important role in determining their hemocompatibility. It is shown in literature that surface roughness and porosity have significant effect on hemocompatibility. In this study, we use a biocompatible, low thrombogenic nanocomposite polymer called POSS-PCU to test this hypothesis: would porosity compromise the hemocompatibility of POSS-PCU. We compared the hemocompatibility of POSS-PCU films of various pore sizes with PTFE, which is a commercially available material used in most blood contacting devices. Sterilized POSS-PCU films with different size pores were prepared as samples and porous PTFE film were selected as control. And all samples were subjected to SEM for topograpgy, mechanical test for characterization and hemocompatibility tests to evaluate contact activation, platelet adhesion and activation, as well as whole blood clotting response to the samples. WCA significantly increased with the pore size of POSS-PCU film, whereas both tensile stress and strain decreased significantly as the sizes of pores increased. However, when compared to PTFE film with same size pores, POSS-PCU films showed both higher tensile stress and strain. Pore size had little impact over POSS-PCU's surface chemistry groups as tested by FTIR analysis. Contact activation and platelet adhesion essay also showed no significant difference between different POSS-PCU samples. However, in whole blood reactions, POSS-PCU with pores size around 2-5μm showed higher BCI than plain films and those with pores size around 35-45μm. POSS-PCU showed lower thrombogencity and higher hemocompatibility comparing with porous PTFE on the aspects of platelet activation, adhesion and whole blood reaction. POSS-PCU polymer films as a biomaterial in chronic blood contacting implants show significant lower thrombogencity and higher hemocompatibility than porous PTFE film. It is desirable as a coating or covering material in small diameter

  12. Visualizing and quantifying adhesive signals

    PubMed Central

    Sabouri-Ghomi, Mohsen; Wu, Yi; Hahn, Klaus; Danuser, Gaudenz

    2008-01-01

    Understanding the structural adaptation and signaling of adhesion sites in response to mechanical stimuli requires in situ characterization of the dynamic activation of a large number of adhesion components. Here, we review high resolution live cell imaging approaches to measure forces, assembly and interaction of adhesion components, and the activation of adhesion-mediated signals. We conclude by outlining computational multiplexing as a framework for the integration of these data into comprehensive models of adhesion signaling pathways. PMID:18586481

  13. Flexibilized copolyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Two copolyimides, LARC-STPI and STPI-LARC-2, with flexible backbones were processed and characterized as adhesives. The processability and adhesive properties were compared to those of a commercially available form of LARC-TPI. Lap shear specimens were fabricated using adhesive tape prepared from each of the three polymers. Lap shear tests were performed at room temperature, 177 C, and 204 C before and after exposure to water-boil and to thermal aging at 204 C for up to 1000 hours. The three adhesive systems possess exceptional lap shear strengths at room temperature and elevated temperatures both before and after thermal exposure. LARC-STPI, because of its high glass transition temperature provided high lap shear strengths up to 260 C. After water-boil, LARC-TPI exhibited the highest lap shear strengths at room temperature and 177 C, whereas the LARC-STPI retained a higher percentage of its original strength when tested at 204 C. These flexible thermoplastic copolyimides show considerable potential as adhesives based on this study and because of the ease of preparation with low cost, commercially available materials.

  14. Platelet Adhesion under Flow

    PubMed Central

    Ruggeri, Zaverio M.

    2011-01-01

    Platelet adhesive mechanisms play a well-defined role in hemostasis and thrombosis, but evidence continues to emerge for a relevant contribution to other pathophysiological processes including inflammation, immune-mediated responses to microbial and viral pathogens, and cancer metastasis. Hemostasis and thrombosis are related aspects of the response to vascular injury, but the former protects from bleeding after trauma while the latter is a disease mechanism. In either situation, adhesive interactions mediated by specific membrane receptors support the initial attachment of single platelets to cellular and extracellular matrix constituents of the vessel wall and tissues. In the subsequent steps of thrombus growth and stabilization, adhesive interactions mediate platelet to platelet cohesion (aggregation) and anchoring to the fibrin clot. A key functional aspect of platelets is their ability to circulate in a quiescent state surveying the integrity of the inner vascular surface, coupled to a prompt reaction wherever alterations are detected. In many respects, therefore, platelet adhesion to vascular wall structures, to one another or to other blood cells are facets of the same fundamental biological process. The adaptation of platelet adhesive functions to the effects of blood flow is the main focus of this review. PMID:19191170

  15. Adhesion and wetting: Similarities and differences

    SciTech Connect

    Shanahan, M.E.R. )

    1991-10-01

    This article examines what is understood about adhesion and wetting both from the historical and scientific perspectives. Topics covered include mechanical adhesion, specific adhesion, chemical adhesion, adhesion by diffusion, the adsorption or wetting theory, bulk adhesion, the rheological theory, hysteresis effects in rubber adhesion, and hysteresis of wetting.

  16. Reduction of postoperative adhesion development.

    PubMed

    Diamond, Michael P

    2016-10-01

    Despite use of meticulous surgical techniques, and regardless of surgical access via laparotomy or laparoscopy, postoperative adhesions develop in the vast majority of women undergoing abdominopelvic surgery. Such adhesions represent not only adhesion reformation at sites of adhesiolysis, but also de novo adhesion formation at sites of surgical procedures. Application of antiadhesion adjuvants compliment the benefits of meticulous surgical techniques, providing an opportunity to further reduce postoperative adhesion development. Improved understanding of the pathophysiology of adhesion development and distinguishing variations in the molecular biologic mechanisms from adhesion-free peritoneal repair represent future opportunities to improve the reduction of postoperative adhesions. Optimization of the reduction of postoperative adhesions will likely require identification of unique, personalized approaches in each individual, representing interindividual variation in peritoneal repair processes. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Magnetic field switchable dry adhesives.

    PubMed

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-04

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  18. The clinical performance of adhesives.

    PubMed

    Van Meerbeek, B; Perdigão, J; Lambrechts, P; Vanherle, G

    1998-01-01

    Traditional mechanical methods of retaining restorative materials have been replaced to a large extent by tooth conserving adhesive restorative techniques. Because adhesives have been evolving so rapidly for the last few years, the timing is right for evaluating the clinical status of present day adhesives. Current literature with regard to the clinical performance of adhesives has been reviewed. An overview of currently available adhesive systems is provided and a categorization of these adhesives according to their clinical application procedure and their intended mechanism of adhesion is proposed. Parameters of direct relevance to the clinical effectiveness of adhesives are discussed in relation to the clinical effectiveness of today's adhesives. The clinical performance of present day adhesives has significantly improved, allowing adhesive restorations to be placed with a high predictable level of clinical success. Most modern adhesive systems are superior to their predecessors, especially in terms of retention that is no longer the main cause of premature clinical failure. Recent adhesives also appear less sensitive to substrate and other clinical co-variables. As the remaining major shortcoming of modern adhesives, none of these modern systems however appears yet to be able to guarantee hermetically sealed restorations with margins free of discoloration for a long time.

  19. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    PubMed Central

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-01-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level. PMID:28290531

  20. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    NASA Astrophysics Data System (ADS)

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-03-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.

  1. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  2. Natural Underwater Adhesives.

    PubMed

    Stewart, Russell J; Ransom, Todd C; Hlady, Vladimir

    2011-06-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)(3) coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  3. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  4. Elastomer toughened polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L. (Inventor)

    1983-01-01

    A rubber-toughened addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state, and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride was mixed, and utilizing solvent or mixture of solvents for the reaction.

  5. Cell adhesion under flow.

    PubMed

    Ley, Klaus

    2009-01-01

    Cell adhesion under flow is a central function of the microcirculation during inflammation, hemostasis, and immune regulation. This special issue of Microcirculation explores the common and distinct mechanisms that myeloid cells, lymphocytes, platelets, and sickle erythrocytes use to adhere to microvascular endothelium and the underlying basement membrane structures. A common theme in these processes is the need for rapid integrin activation, often initiated by binding of ligands to their cognate G protein-coupled receptors, followed by adhesion strengthening associated with integrin redistribution and outside-in signaling. These elements have been identified for all cells tested except sickle erythrocytes.

  6. Adhesion in hydrogel contacts

    NASA Astrophysics Data System (ADS)

    Torres, J. R.; Jay, G. D.; Kim, K.-S.; Bothun, G. D.

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  7. Adhesion in hydrogel contacts.

    PubMed

    Torres, J R; Jay, G D; Kim, K-S; Bothun, G D

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  8. Metallic Adhesion and Bonding

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1984-01-01

    Although metallic adhesion has played a central part in much tribological speculation, few quantitative theoretical calculations are available. This is in part because of the difficulties involved in such calculations and in part because the theoretical physics community is not particularly involved with tribology. The calculations currently involved in metallic adhesion are summarized and shown that these can be generalized into a scaled universal relationship. Relationships exist to other types of covalent bonding, such as cohesive, chemisorptive, and molecular bonding. A simple relationship between surface energy and cohesive energy is offered.

  9. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  10. A Comparative Study of the Structure-Property Behavior of Highly Branched Segmented Poly(Urethane Urea) Copolymers and Their Linear Analogs

    DTIC Science & Technology

    2005-01-01

    isophorone diisocyanate or toluene diisocyanate ) and the B3 monomer was an aminoalkanediol. The hyperbranched polyurethanes, polyureas, or poly...preparation of hyperbranched poly(urethane urea)s, utilizing commercially available A2 and B3 type monomers, where the A2 monomer was a diisocyanate ...PTMO and PPO quoted are for homopolymers , and that copolymerization and chain architecture may influence the MW at which SS entanglement is observed

  11. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  12. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  13. 3-D foam adhesive deposition

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.

    1976-01-01

    Bonding method, which reduces amount and weight of adhesive, is applicable to foam-filled honeycomb constructions. Novel features of process include temperature-viscosity control and removal of excess adhesive by transfer to cellophane film.

  14. Bio-Inspired Dry Adhesives

    DTIC Science & Technology

    2013-02-01

    of mask respirators with bio -inspired adhesive integrated into their peripheral seals; and (2) assessment of the competitive position of the new bio -inspired adhesives in broader fields of application.

  15. [Dentin adhesives. An update].

    PubMed

    Grandini, R; Novelli, C; Pierleoni, P

    1991-11-01

    Even if mechanical bonding to enamel utilizing the acid-etch technique has been very successful, adhesion to dentin is still a challenge to researchers and clinicians. Dentin is a vital tissue and differs in composition from enamel: acid-etching does not enhance the bond strength of composite resins to dentin and may elicit a severe pulpal response. For an effective bond to occur, a dentin bonding system has to be used. The first generation of methacrylate-based dentin adhesives was capable of chemical bonding to the inorganic phase of dentin. The chemical basis for this resin-dentin adhesive was the interaction between a phosphate group attached to the methacrylate and the calcium ions on the dentin surface. This system yielded rather low bond strengths which were clinically unsatisfying. The second generation of dentin adhesives became available to the profession recently. Each of these new bonding systems use similar chemical composition for the same purpose of bonding with physicochemical interaction to the hard tooth tissues. All these systems contain a mild acid dentin conditioner to remove the smear layer and an aqueous resin containing primer to improve monomer penetration into the hydrophilic dentin surface. The second generation dentin bonding systems are extremely sensitive to variations upon the completeness of instructions and how accurately these are followed by dental practitioners.

  16. Wood Composite Adhesives

    NASA Astrophysics Data System (ADS)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  17. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  18. Dynamic mechanical and molecular weight measurements on polymer bonded explosives from thermally accelerated aging tests. II. A poly(ester-urethane) binder

    SciTech Connect

    Hoffman, D.M.; Caley, L.E.

    1981-01-01

    The molecular weight distribution and dynamic mechanical properties of an experimental polymer-bonded explosive, X-0282, maintained at 23, 60, and 74/sup 0/C for 3.75 y were examined, X-0282 is 95.5% 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclo-octane explosive and 4.5% Estane 5703, a segmented poly(ester-urethane). Two mechanical relaxations at about -24 and 42/sup 0/C were found in the X-0282 aged at room temperature for 3.75 years. A third relaxation at about 85/sup 0/C was found in X-0282 aged at 60 and 74/sup 0/C. The relaxation at -24/sup 0/C is associated with the soft segment glass transition of the binder. The relaxation at 42/sup 0/C is associated with the soft segment melting and may also contain a component due to the hard segment glass transition. The relaxation at 85/sup 0/C is probably associated with improved soft segment crystallite perfection. The molecular weight of the poly(ester-urethane) binder decreased significantly with increasing accelerated aging temperature. A simple random chain scission model of the urethane degradation kinetics in the presence of explosive yields an activation energy of 11.6 kcal/mole. This model predicts a use life of about 17.5 years under the worst military operating conditions (continuous operation at 74/sup 0/C).

  19. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    NASA Astrophysics Data System (ADS)

    Gartner, Hunter; Li, Yana; Almenar, Eva

    2015-03-01

    The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41-35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228-303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  20. Coating Reduces Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  1. Gordon Conference on Microbial Adhesion

    DTIC Science & Technology

    1988-07-01

    immunity against certain pathogens, the role of exopolysaccharides in adhesion and the role of lectin-glycolipid interactions in adhesion. Have...pathogenesis? What governs the specificity of p; exopolysaccharides in adhesion to surfaces? This session emphasized the molecular aspects of

  2. Ceramic Adhesive for High Temperatures

    NASA Technical Reports Server (NTRS)

    Stevens, Everett G.

    1987-01-01

    Fused-silica/magnesium-phosphate adhesive resists high temperatures and vibrations. New adhesive unaffected by extreme temperatures and vibrations. Assuring direct bonding of gap filters to tile sidewalls, adhesive obviates expensive and time-consuming task of removal, treatment, and replacement of tiles.

  3. Adhesive bonding of wood materials

    Treesearch

    Charles B. Vick

    1999-01-01

    Adhesive bonding of wood components has played an essential role in the development and growth of the forest products industry and has been a key factor in the efficient utilization of our timber resource. The largest use of adhesives is in the construction industry. By far, the largest amounts of adhesives are used to manufacture building materials, such as plywood,...

  4. Adhesion Casting In Low Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond J.

    1996-01-01

    Adhesion casting in low gravity proposed as technique for making new and improved materials. Advantages of low-gravity adhesion casting, in comparison with adhesion casting in normal Earth gravity, comes from better control over, and greater uniformity of, thicknesses of liquid films that form on and adhere to solid surfaces during casting.

  5. Rapid Adhesive Bonding of Composites

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Fox, R. L.; Sterling, S. Elmo, Jr.; Buckley, J. D.; Inge, Spencer V., Jr.; Burcher, L. G.; Wright, Robert E., Jr.

    1986-01-01

    Strong bonds created in less time and with less power than use of conventional bonding methods. Rapid adhesive bonding (RAB) technique for composites uses high-frequency induction heating toroids to quickly heat metallic susceptor impregnated with thermoplastic adhesive or sandwiched between thermoset or thermoplastic adhesive cloths or films. Susceptor steel screen or perforated steel foil.

  6. Rapid Adhesive Bonding of Composites

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Fox, R. L.; Sterling, S. Elmo, Jr.; Buckley, J. D.; Inge, Spencer V., Jr.; Burcher, L. G.; Wright, Robert E., Jr.

    1986-01-01

    Strong bonds created in less time and with less power than use of conventional bonding methods. Rapid adhesive bonding (RAB) technique for composites uses high-frequency induction heating toroids to quickly heat metallic susceptor impregnated with thermoplastic adhesive or sandwiched between thermoset or thermoplastic adhesive cloths or films. Susceptor steel screen or perforated steel foil.

  7. Correlation between Raman and fluorescence microscopy studies of field-aged commercial urethane-backed poly(vinyl chloride)

    NASA Astrophysics Data System (ADS)

    Remillard, J. T.; Weber, W. H.; Jones, J.; Helms, J.; Poindexter, B. D.

    1998-03-01

    Urethane-foam-backed poly(vinyl chloride) (PVC) composites are widely used in vehicle interiors. Exposure to heat and light causes vinyl to degrade through dehydrochlorination, a process which results in the formation of conjugated polyene sequences. This leads to the cracking and discoloration that commonly occurs with age in commercial PVC. We present the results of Raman and fluorescence microscopy measurements used to quantify the degradation of two commercial field-aged foam/PVC composites containing different heat stabilizer packages. Raman spectroscopy provides chemically-specific evidence of polyene formation, and clearly indicates differences in the durability of the two materials. After extracting the low molecular weight components from the vinyl, we find the variations in fluorescence intensity with weathering time are closely correlated with the variations in polyene concentration measured using Raman microscopy. This suggests fluorescence techniques can be used as a semiquantitative measure of PVC degradation. These measurements are most easily performed using a fluorescence microscope and CCD camera to record images of the samples. Intensities are quickly determined through the use of image processing software.

  8. Water Diffusion through a Titanium Dioxide/Poly(Carbonate Urethane) Nanocomposite for Protecting Cultural Heritage: Interactions and Viscoelastic Behavior.

    PubMed

    Abbate, Mario; D'Orazio, Loredana

    2017-09-13

    Water diffusion through a TiO₂/poly (carbonate urethane) nanocomposite designed for the eco-sustainable protection of outdoor cultural heritage stonework was investigated. Water is recognized as a threat to heritage, hence the aim was to gather information on the amount of water uptake, as well as of species of water molecules absorbed within the polymer matrix. Gravimetric and vibrational spectroscopy measurements demonstrated that diffusion behavior of the nanocomposite/water system is Fickian, i.e., diffusivity is independent of concentration. The addition of only 1% of TiO₂ nanoparticles strongly betters PU barrier properties and water-repellency requirement is imparted. Defensive action against penetration of water free from, and bonded through, H-bonding association arises from balance among TiO₂ hydrophilicity, tortuosity effects and quality of nanoparticle dispersion and interfacial interactions. Further beneficial to antisoiling/antigraffiti action is that water-free fraction was found to be desorbed at a constant rate. In environmental conditions, under which weathering processes are most likely to occur, nanocomposite Tg values remain suitable for heritage treatments.

  9. Inactivation of the medial mammillary nucleus attenuates theta rhythm activity in the hippocampus in urethane-anesthetized rats.

    PubMed

    Żakowski, Witold; Braszka, Łukasz; Zawistowski, Piotr; Orzeł-Gryglewska, Jolanta; Jurkowlaniec, Edyta

    2017-04-03

    Although the importance of the mammillary body for memory and learning processes is well known, its exact role has remained vague. The fact, that many neurons in one nucleus of the mammillary body in rats, i.e. the medial mammillary nucleus (MM), fires according with hippocampal theta rhythm, makes this structure crucial for a theta rhythm signaling in so-called extended hippocampal system. These neurons are driven by descending projections from the hippocampal formation, but it is still unknown whether the mammillary body only conveys theta rhythm or may also modulate it. In the present study, we investigated the effect of pharmacological inactivation (local infusion of 0.5μl of 20% procaine hydrochloride solution) of the MM on hippocampal theta rhythm in urethane-anesthetized rats. We found that intra-MM procaine microinjections suppress sensory-elicited theta rhythm in the hippocampus by reduction of its amplitude, but not the frequency. Procaine infusion decreased the EEG signal power of low theta frequency bands, i.e. 3-5Hz, down to 9.2% in 3-4Hz band in comparison to pre-injection conditions. After water infusion (control group) no changes of hippocampal EEG signal power were observed. Our findings showed for the first time that inactivation of the MM leads to a disruption of hippocampal theta rhythm in the rat, which may suggest that the mammillary body can regulate theta rhythm signaling in the extended hippocampal system.

  10. Mechanical Response of Stitched T300 Mat/Urethane 420 IMR Composite Laminates: Property/Orientation Dependence and Damage Evolution

    SciTech Connect

    Deng, S.; Weitsman, Y.J.

    2000-03-01

    This report presents experimental and analytical results of investigations on the mechanical response of stitched T300 mat/urethane 420 IMR composite laminates with three different lay-up configurations. Tensile tests and short-term creep and recovery tests were conducted on the laminate coupons at various orientations. The X-ray photographic technique was adopted to detect the internal damage due to external loading history. The tensile data of laminates with antisymmetric and symmetric lay-ups indicated that lay- up sequences of cross-ply laminates do not have much influence on their tensile properties. However, misalignments within the stitch-bonded plies disturb the symmetry of intended quasi-isotropic laminates and thereby cause the mechanical properties to exhibit a certain amount of angular dependence. Classic lamination theory was found to be able to provide a very good prediction of tensile properties for the stitched laminates within linear range. Creep and recovery response of laminate coupons is greatly dependent on loading angles and load levels. The internal damage of laminate coupons is also directly related to loading angles and load levels as well as loading history.

  11. Structure and Dynamics Characterization of HMDI- and MDI-based Poly(urethane urea) Elastomers via Solid- State NMR

    NASA Astrophysics Data System (ADS)

    Hu, Weiguo; Hsieh, Alex; Rinderspacher, B. Christopher; Chantawansri, Tanya

    2013-03-01

    High performance elastomers have recently gained considerable interest throughout DoD, particularly for their potential in ballistic impact protection and blast mitigation capabilities. Recent simulation results based on coarse-grained modeling have revealed the role of the intermolecular interaction and the flexibility of interface between hard and soft segments on the morphology and mechanical deformation behavior of poly(urethane urea), PUU, elastomers. In this work, we exploit solid-state nuclear magnetic resonance (NMR) techniques to investigate the influence of hard domain size on molecular dynamics by comparing the diisocyanate chemistry (aliphatic 4,4'-dicyclohexylmethane diisocyanate (HMDI) vs. aromatic 4,4'-diphenylmethane diisocyanate (MDI)) in PUU elastomers. Despite identical stoichiometry and soft segment chemical structure, large difference in the molecular dynamics, indicated by the 1H dipolar dephasing time (Td) , is observed. The Td of HMDI-PUU is shorter and it exhibits higher activation energy, suggesting finer phase mixing. Results from 1H spin echo measurements are also included for comparison.

  12. Organ-specific activation of the gastric branch of the efferent vagus nerve by ghrelin in urethane-anesthetized rats.

    PubMed

    Habara, Hiromi; Hayashi, Yujiro; Inomata, Norio; Niijima, Akira; Kangawa, Kenji

    2014-01-01

    Ghrelin plays multiple physiological roles such as growth hormone secretion and exerting orexigenic actions; however, its physiological roles in the electrical activity of autonomic nerves remain unclear. Here, we investigated the effects of human ghrelin on several autonomic nerve activities in urethane-anesthetized rats using an electrophysiological method. Intravenous injection of ghrelin at 3 μg/kg significantly and transiently potentiated the efferent activity of the gastric vagus nerve; however, it did not affect the efferent activity of the hepatic vagus nerve. The activated response to ghrelin in the gastric efferent vagus nerve was not affected by the gastric afferent vagotomy, suggesting that this effect was not induced via the gastric afferent vagus nerve. Ghrelin did not affect the efferent activity of the brown adipose tissue, adrenal gland sympathetic nerve, and the renal sympathetic nerve. In addition, rectal temperature and the plasma concentrations of norepinephrine, corticosterone, and renin were also not changed by ghrelin. These findings demonstrate that ghrelin stimulates the gastric efferent vagus nerve in an organ-specific manner without affecting the gastric afferent vagus nerve and that ghrelin does not acutely affect the efferent basal activity of the sympathetic nerve in rats.

  13. Electrospun biodegradable calcium containing poly(ester-urethane)urea: synthesis, fabrication, in vitro degradation, and biocompatibility evaluation.

    PubMed

    Nair, Priya A; Ramesh, P

    2013-07-01

    In this work an in vitro degradable poly(ester-urethane)urea (PEUU) was synthesized using polycaprolactone diol, hexamethylene diisocyanate, and calcium salt of p-aminobenzoic acid. The synthesized polymer was characterized by (1) H-NMR and FTIR spectroscopy and viscosity studies. Scaffolds having random micro fibrous structures were fabricated from PEUU by electrospinning process. The thermal properties of the scaffold were evaluated by thermogravimetric analysis and dynamic mechanical analysis. The mechanical property evaluation showed that the scaffold possess sufficiently high tensile strength of 16 MPa. The in vitro degradation studies of the electrospun scaffold were carried out in phosphate buffer saline for 6 months. The average mass loss of the scaffold after 6 months of hydrolytic degradation was 25%. FTIR spectroscopy study confirmed the degradation of the PEUU from decrease in intensity of 1400 cm(-1) peak corresponding to ionic carboxylate group. Presence of amine group and calcium ions in the degradation medium further confirmed the degradation of the hard segment in the hydrolytic medium. The mechanical property evaluation of the scaffold indicated a gradual decrease in tensile strength and modulus whereas percentage elongation of the scaffold increases with time of in vitro degradation. The morphological evaluation of the scaffold after degradation by SEM shows evidence of broken fibers and pores in the scaffold. Preliminary in vitro cytotoxicity test demonstrated that both the material and the degradation products were noncytotoxic in nature and the material showed good proliferation to L-929 cells.

  14. Biodegradable pH/temperature-sensitive oligo(β-amino ester urethane) hydrogels for controlled release of doxorubicin.

    PubMed

    Huynh, Cong Truc; Nguyen, Minh Khanh; Lee, Doo Sung

    2011-08-01

    An injectable biodegradable pH/temperature-sensitive oligo(β-amino ester urethane) (OAEU) was synthesized. The OAEU was synthesized by addition polymerization between the isocyanate groups of 1,6-diisocyanato hexamethylene and the hydroxyl groups of a synthesized monomer piperazine dihydroxyl amino ester (monomer PDE) in chloroform in the presence of dibutyltin dilaurate as a catalyst. The synthesized OAEU was characterized by (1)H NMR spectroscopy, Fourier transform infrared spectroscopy and gel permeation chromatography. The aqueous solutions of OAEU showed a sol-to-gel-to-sol phase transition as a function of temperature and pH. The gel window covered the physiological conditions (37°C, pH 7.4) and could be controlled by changing the OAEU concentration. After a subcutaneous injection of the OAEU solution into Sprague-Dawley rats, a gel formed rapidly in situ and remained in the body for more than 2 weeks. The in vitro cytotoxicity test and in vitro degradation showed that the OAEU hydrogel was non-cytotoxic and biodegradable. The in vitro release of doxorubicin from this OAEU hydrogel was sustained for more than 10 days. This injectable biodegradable pH/temperature-sensitive OAEU hydrogel is a potential candidate as a drug/protein carrier and in biomedical applications.

  15. Asymmetrical seeding of MSCs into fibrin-poly(ester-urethane) scaffolds and its effect on mechanically induced chondrogenesis.

    PubMed

    Gardner, Oliver F W; Musumeci, Giuseppe; Neumann, Alexander J; Eglin, David; Archer, Charles W; Alini, Mauro; Stoddart, Martin J

    2016-07-13

    Mesenchymal stem cells (MSCs) are currently being investigated as candidate cells for regenerative medicine approaches for the repair of damaged articular cartilage. For these cells to be used clinically, it is important to understand how they will react to the complex loading environment of a joint in vivo. In addition to investigating alternative cell sources, it is also important for the structure of tissue-engineered constructs and the organization of cells within them to be developed and, if possible, improved. A custom built bioreactor was used to expose human MSCs to a combination of shear and compression loading. The MSCs were either evenly distributed throughout fibrin-poly(ester-urethane) scaffolds or asymmetrically seeded with a small proportion seeded on the surface of the scaffold. The effect of cell distribution on the production and deposition of cartilage-like matrix in response to mechanical load mimicking in vivo joint loading was then investigated. The results show that asymmetrically seeding the scaffold led to markedly improved tissue development based on histologically detectable matrix deposition. Consideration of cell location, therefore, is an important aspect in the development of regenerative medicine approaches for cartilage repair. This is particularly relevant when considering the natural biomechanical environment of the joint in vivo and patient rehabilitation protocols. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Selection and fabrication of a non-woven polycarbonate urethane cover for a tissue engineered airway stent.

    PubMed

    Chen, Weiluan; Clauser, Johanna; Thiebes, Anja Lena; McGrath, Donnacha J; McHugh, Peter E; Steinseifer, Ulrich; Jockenhoevel, Stefan; Hennink, Wim E; Kok, Robbert Jan

    2016-11-30

    One of the major problems in end-stage bronchotracheal cancer is stenosis of the upper airways, either due to luminal ingrowth of the tumor or mucus plugging. Airway stents that suppress tumor ingrowth and sustain mucociliary transport can alleviate these problems in end-stage bronchial cancer. We evaluated different types of polymeric covers for a tissue engineered airway stent. The distinguishing feature of this stent concept is that respiratory epithelial cells can grow on the luminal surface of the stent which facilitates mucociliary clearance. To facilitate growth of epithelial cells at the air-liquid interface of the stent, we developed a polyurethane cover that allows transport of nutrients to the cells. Nonwoven polycarbonate urethane (PCU) covers were prepared by a spraying process and evaluated for their porosity and glucose permeability. Respiratory epithelial cells harvested from sheep trachea were cultured onto the selected PCU cover and remained viable at the air-liquid interface when cultured for 21days. Lastly, we evaluated the radial force of a PCU-covered nitinol stent, and showed the PCU covers did not adversely affect the mechanical properties of the stents for their intended application in the smaller bronchi. These in vitro data corroborate the design of a novel airway stent for palliative treatment of bronchotracheal stenosis by combination of stent-technology with tissue-engineered epithelial cells.

  17. Surface Characterization of Asymmetric Bi-Soft Segment Poly(ester urethane urea) Membranes for Blood-Oxygenation Medical Devices

    PubMed Central

    Faria, Mónica; Geraldes, Vítor; de Pinho, Maria Norberta

    2012-01-01

    Asymmetric bi-soft segment poly(ester urethane urea) (PEUU) membranes containing polycaprolactone (PCL) as a second soft segment are synthesized with PCL-diol ranging from 0% to 15% (w/w). Bulk and surface characteristics of the PEUU membranes were investigated by scanning electron microscopy (SEM), static water contact angles, and surface streaming potentials and were correlated to hemocompatibility properties, namely, hemolysis and thrombosis degrees. SEM analysis reveals PEUU membranes with asymmetric cross-sections and top dense surfaces with distinct morphologies. The increase in PCL-diol content yields PEUU membranes with blood-contacting surfaces that are smoother, more hydrophilic, and with higher maximum zeta potentials. The results obtained in this work give no evidence of a correlation between hydrophilicity/zeta potentials and the hemolysis/thrombosis degree of blood-contacting surfaces of the PEUU membranes. In contrast, other hemocompatibility aspects reveal that the more hydrophilic membranes are associated with lower platelet deposition and inhibition of extreme states of platelet activation. PMID:22164163

  18. The use of N-urethane-protected N-carboxyanhydrides (UNCAs) in amino acid and peptide synthesis.

    PubMed

    Fehrentz, J A; Genu-Dellac, C; Amblard, M; Winternitz, F; Loffet, A; Martinez, J

    1995-01-01

    N-Urethane-protected N-carboxyanhydrides (UNCAs) are very reactive amino acid derivatives. They have been successfully used in peptide synthesis, in both solution and solid phase. We have demonstrated that UNCAs are interesting starting materials for the synthesis of various amino acid derivatives. Chemoselective reduction of UNCAs with sodium borohydride led the corresponding N-protected beta amino alcohols. Reaction of UNCAs with Meldrum's acid, followed by cyclisation, yielded enantiomerically pure tetramic acid derivatives. Diastereoselective reduction of tetramic acid derivatives produced [4S,5S)-N-alkoxycarbonyl-4-hydroxy-5-alkylpyrrolidin-2-ones derived from amino acids, which after hydrolysis yielded statine and statine analogues. Tetramic acid derivatives could also be obtained by reaction of UNCAs with benzyl ethyl malonate in the presence of sodium hydride to yield gamma-N-benzyloxycarbonylamino-beta-oxodicarboxyl esters followed by hydrogenolytic deprotection and decarboxylation. UNCAs also reacted with phosphoranes to produce the ketophosphorane in excellent yields. Subsequent oxidation with oxone or with [bis(acetoxy)-iodo]-benzene produced vicinal tricarbonyl derivatives. These reactions usually proceeded smoothly and with high yields.

  19. Ameliorative effects of gallic acid, quercetin and limonene on urethane-induced genotoxicity and oxidative stress in Drosophila melanogaster.

    PubMed

    Nagpal, Isha; Abraham, Suresh K

    2017-05-01

    The main objective of our present work was to ascertain the efficacy of Drosophila melanogaster model for assessing antigenotoxic and antioxidant effects of dietary phytochemicals gallic acid (GA), quercetin (QC) and limonene (Lim) against urethane (URE), a genotoxic environmental carcinogen. Oregon-K (ORK) adult male flies were fed GA, QC and Lim in combination with URE (20 mM) in 10% sucrose for 72 h. Third instar larvae were fed instant medium containing the above phytochemicals and URE for 24 h. Sex-linked recessive lethal (SLRL) test and assays for estimating glutathione content (GSH), glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) and lipid peroxidation (MDA content) were performed. Adult feeding experiments demonstrated that co-treatment of flies with URE and the test phytochemicals has significantly decreased the frequencies of SLRL mutations in all the germ cell stages when compared to that with URE alone. Larval feeding experiments also showed a similar pattern. The above results correlate well with antioxidative potentials of the test agents where we observed the elevated enzymatic levels with a significant reduction in MDA level in Drosophila larvae. The results further suggest that the dietary phytochemicals have an antioxidant and antimutagenic property which can be assessed using D. melanogaster.

  20. Applicability of cranial models in urethane resin and foam as a substitute for bone: are synthetic materials reliable?

    PubMed

    Muccino, Enrico; Porta, Davide; Magli, Francesca; Cigada, Alfredo; Sala, Remo; Gibelli, Daniele; Cattaneo, Cristina

    2013-09-01

    As literature is poor in functional synthetic cranial models, in this study, synthetic handmade models of cranial vaults were produced in two different materials (a urethane resin and a self-hardening foam), from multiple bone specimens (eight original cranial vaults: four human and four swine), in order to test their resemblance to bone structure in behavior, during fracture formation. All the vaults were mechanically tested with a 2-kg impact weight and filmed with a high-speed camera. Fracture patterns were homogeneous in all swine vaults and heterogeneous in human vaults, with resin fractures more similar to bone fractures. Mean fracture latency time extrapolated by videos were of 0.75 msec (bone), 1.5 msec (resin), 5.12 msec (foam) for human vaults and of 0.625 msec (bone), 1.87 msec (resin), 3.75 msec (foam) for swine vaults. These data showed that resin models are more similar to bone than foam reproductions, but that synthetic material may behave quite differently from bone as concerns fracture latency times.

  1. Controllable degradation kinetics of POSS nanoparticle-integrated poly(ε-caprolactone urea)urethane elastomers for tissue engineering applications

    PubMed Central

    Yildirimer, Lara; Buanz, Asma; Gaisford, Simon; Malins, Edward L.; Remzi Becer, C.; Moiemen, Naiem; Reynolds, Gary M.; Seifalian, Alexander M.

    2015-01-01

    Biodegradable elastomers are a popular choice for tissue engineering scaffolds, particularly in mechanically challenging settings (e.g. the skin). As the optimal rate of scaffold degradation depends on the tissue type to be regenerated, next-generation scaffolds must demonstrate tuneable degradation patterns. Previous investigations mainly focussed on the integration of more or less hydrolysable components to modulate degradation rates. In this study, however, the objective was to develop and synthesize a family of novel biodegradable polyurethanes (PUs) based on a poly(ε-caprolactone urea)urethane backbone integrating polyhedral oligomeric silsesquioxane (POSS-PCLU) with varying amounts of hard segments (24%, 28% and 33% (w/v)) in order to investigate the influence of hard segment chemistry on the degradation rate and profile. PUs lacking POSS nanoparticles served to prove the important function of POSS in maintaining the mechanical structures of the PU scaffolds before, during and after degradation. Mechanical testing of degraded samples revealed hard segment-dependent modulation of the materials’ viscoelastic properties, which was attributable to (i) degradation-induced changes in the PU crystallinity and (ii) either the presence or absence of POSS. In conclusion, this study presents a facile method of controlling degradation profiles of PU scaffolds used in tissue engineering applications. PMID:26463421

  2. Water Diffusion through a Titanium Dioxide/Poly(Carbonate Urethane) Nanocomposite for Protecting Cultural Heritage: Interactions and Viscoelastic Behavior

    PubMed Central

    Abbate, Mario; D’Orazio, Loredana

    2017-01-01

    Water diffusion through a TiO2/poly (carbonate urethane) nanocomposite designed for the eco-sustainable protection of outdoor cultural heritage stonework was investigated. Water is recognized as a threat to heritage, hence the aim was to gather information on the amount of water uptake, as well as of species of water molecules absorbed within the polymer matrix. Gravimetric and vibrational spectroscopy measurements demonstrated that diffusion behavior of the nanocomposite/water system is Fickian, i.e., diffusivity is independent of concentration. The addition of only 1% of TiO2 nanoparticles strongly betters PU barrier properties and water-repellency requirement is imparted. Defensive action against penetration of water free from, and bonded through, H-bonding association arises from balance among TiO2 hydrophilicity, tortuosity effects and quality of nanoparticle dispersion and interfacial interactions. Further beneficial to antisoiling/antigraffiti action is that water-free fraction was found to be desorbed at a constant rate. In environmental conditions, under which weathering processes are most likely to occur, nanocomposite Tg values remain suitable for heritage treatments. PMID:28902179

  3. Ferrocene-Functionalized Hydrophobically Modified Ethoxylated Urethane: Redox-Responsive Controlled Self-Assembly and Rheological Behavior in Aqueous Solution.

    PubMed

    Chang, Xueyi; Du, Zhukang; Hu, Feiyan; Cheng, Zhiyu; Ren, Biye; Fu, Shiyu; Tong, Zhen

    2016-11-22

    In this work, we present a novel redox-responsive ferrocene-functionalized hydrophobically modified ethoxylated urethane (Fc-HEUR) model polymer. The effects of a redox-induced hydrophobicity change of ferrocenyl hydrophobes on the self-assembly and rheological properties of Fc-HEUR in aqueous solution were investigated. In view of the redox-induced change in the hydrophilic-lipophilic balance of polymers, the Fc-HEUR polymer in aqueous solution can reversibly self-assemble into spherical micelles and larger micellar aggregates of different nanoscales and also disassemble by redox reactions immediately. Moreover, we have demonstrated that a rearrangement of micellar junctions takes place through a bridge-loop or loop-bridge transition in the concentrated polymer solution followed by redox reactions, which induces a great change in the rheological properties of the polymer solution: a viscoelastic liquid for the reduction state Fc-HEUR and a viscous liquid for the oxidation state Fc(+)-HEUR, owing to their different relaxation behaviors. Particularly, the associative structures and rheological properties of the Fc-HEUR aqueous solution can be reversibly controlled by redox reactions. This work will be useful not only for understanding of the thickening mechanism of stimuli-responsive HEURs but also for the development of reversible self-assembly and controlled rheological fluids, which may have some special application in drug delivery systems, catalyst supports, sensors, and microfluidic devices.

  4. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells.

    PubMed

    Aluri, Rajendra; Jayakannan, Manickam

    2017-01-09

    New classes of enzymatic-biodegradable amphiphilic poly(ester-urethane)s were designed and developed from l-tyrosine amino acid resources and their self-assembled nanoparticles were employed as multiple drug delivery vehicles in cancer therapy. The amine and carboxylic acid functional groups in l-tyrosine were converted into dual functional ester-urethane monomers and they were subjected to solvent free melt polycondensation with hydrophilic polyethylene glycols to produce comb-type poly(ester-urethane)s. The phenolic unit in the l-tyrosine was anchored with hydrophobic alkyl side chain to bring appropriate amphiphilicity in the polymer geometry to self-assemble them as stable nanoscaffolds in aqueous medium. The topology of the polymer was found to play a major role on the glass transition, crystallinity, and viscoelastic rheological properties of l-tyrosine poly(ester-urethane)s. The amphiphilic polymers were self-assembled as 200 ± 10 nm nanoparticles and they exhibited excellent encapsulation capabilities for anticancer drugs such as doxorubicin (DOX) and camptothecin (CPT). In vitro drug release studies revealed that the drug-loaded l-tyrosine nanoparticles were stable at extracellular conditions and they underwent enzymatic-biodegradation exclusively at the intracellular level to release the drugs. Cytotoxicity studies in the cervical cancer (HeLa) and normal WT-MEFs cell lines revealed that the nascent l-tyrosine nanoparticles were nontoxic, whereas the CPT and DOX drug-loaded polymer nanoparticles exhibited excellent cell killing in cancer cells. Confocal microscopic imaging confirmed the cellular internalization of drug-loaded nanoparticles. The drugs were taken up by the cells much higher quantity while delivering them from l-tyrosine nanoparticle platform compared to their free state. Flow cytometry analysis showed that the DOX-loaded polymer nanoscaffolds internalized the drugs 8-10× higher compared to free DOX. Both the synthesis of new classes of

  5. Adhesion behaviors on superhydrophobic surfaces.

    PubMed

    Zhu, Huan; Guo, Zhiguang; Liu, Weimin

    2014-04-18

    The adhesion behaviors of superhydrophobic surfaces have become an emerging topic to researchers in various fields as a vital step in the interactions between materials and organisms/materials. Controlling the chemical compositions and topological structures via various methods or technologies is essential to fabricate and modulate different adhesion properties, such as low-adhesion, high-adhesion and anisotropic adhesion on superhydrophobic surfaces. We summarize the recent developments in both natural superhydrophobic surfaces and artificial superhydrophobic surfaces with various adhesions and also pay attention to superhydrophobic surfaces switching between low- and high-adhesion. The methods to regulate or translate the adhesion of superhydrophobic surfaces can be considered from two perspectives. One is to control the chemical composition and change the surface geometric structure on the surfaces, respectively or simultaneously. The other is to provide external stimulations to induce transitions, which is the most common method for obtaining switchable adhesions. Additionally, adhesion behaviors on solid-solid interfaces, such as the behaviors of cells, bacteria, biomolecules and icing on superhydrophobic surfaces are also noticeable and controversial. This review is aimed at giving a brief and crucial overview of adhesion behaviors on superhydrophobic surfaces.

  6. New developments in dental adhesion.

    PubMed

    Perdigão, Jorge

    2007-04-01

    Numerous simplified adhesives have been introduced to the dental market within the last few years, sometimes without comprehensive testing to validate the performance claimed by the respective manufacturers. Mild self-etch adhesives are unable to etch enamel to provide adequate retention for bonded restorations. Although high early resin-dentin bond strength values can be achieved with some self-etch adhesives, their resistance to thermal and mechanical stresses over time is disappointing. In light of the current drawbacks attributed to all-in-one self-etch adhesives, etch-and-rinse adhesives are still the benchmark for dental adhesion in routine clinical use. This article summarizes current issues and factors related to the performance of adhesives.

  7. Environmentally compliant adhesive joining technology

    SciTech Connect

    Tira, J.S.

    1996-08-01

    Adhesive joining offers one method of assembling products. Advantages of adhesive joining/assembly include distribution of applied forces, lighter weight, appealing appearance, etc. Selecting environmentally safe adhesive materials and accompanying processes is paramount in today`s business climate if a company wants to be environmentally conscious and stay in business. Four areas of adhesive joining (adhesive formulation and selection, surface preparation, adhesive bonding process, waste and pollution generation/cleanup/management) all need to be carefully evaluated before adhesive joining is selected for commercial as well as military products. Designing for six sigma quality must also be addressed in today`s global economy. This requires material suppliers and product manufacturers to work even closer together.

  8. Adhesion barrier reduces postoperative adhesions after cardiac surgery.

    PubMed

    Kaneko, Yukihiro; Hirata, Yasutaka; Achiwa, Ikuya; Morishita, Hiroyuki; Soto, Hajime; Kobayahsi, Jotaro

    2012-06-01

    Reoperation in cardiac surgery is associated with increased risk due to surgical adhesions. Application of a bioresorbable material could theoretically reduce adhesions and allow later development of a free dissection plane for cardiac reoperation. Twenty-one patients in whom a bioresorbable hyaluronic acid-carboxymethylcellulose adhesion barrier had been applied in a preceding surgery underwent reoperations, while 23 patients underwent reoperations during the same period without a prior adhesion barrier. Blinded observers graded the tenacity of the adhesions from surgical video recordings of the reoperations. No excessive bleeding requiring wound reexploration, mediastinal infection, or other complication attributable to the adhesion barrier occurred. Multiple regression analysis showed that shorter duration of the preceding surgery, non-use of cardiopulmonary bypass in the preceding surgery, and use of the adhesion barrier were significantly associated with less tenacious surgical adhesions. The use of a bioresorbable material in cardiac surgery reduced postoperative adhesions, facilitated reoperation, and did not promote complications. The use of adhesion barrier is recommended in planned staged procedures and those in which future reoperation is likely.

  9. Polyimide adhesive bonding

    NASA Technical Reports Server (NTRS)

    Progar, D.

    1979-01-01

    Adhesive systems which could be used to bond composite-to-composite, composite-to-titanium, and honeycomb sandwich structures with operational capability at 589K for a minimum of 125 hours were evaluated. Evaluations were based on mechanical property tests such as lap shear and flatwise tensile and on processability. Quasi-isotropic Celion 6000/PMR-15 composite adherend was used to construct lap shear and flatwise tensile specimens. Hexcel's HRH-327-3/16-6.0 glass polyimide honeycomb core was also utilized in the flatwise tensile specimens. Numerous processing variations were also studied that led to selected cure cycles for each adhesive. Shear specimens having either 12 mm or 75 mm overlaps were used to determine the effect of bond size on processability and lap shear properties. The data indicate that processing of FM-34, FM-34B-18, LARC-13 and NRO56X can be achieved using a cure compatible with the composite adherend. No significant differences in mechanical properties were observed among the three adhesive systems and all three are suitable candidates for 589K/125 hour service.

  10. Development of phosphorylated adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.; Jenkins, R. K.; Campbell, P. L.

    1983-01-01

    The synthesis of epoxy prepolymers containing phosphorus was carried out in such a manner as to provide adhesives containing at least 5 percent of this element. The purpose of this was to impart fire retardant properties to the adhesive. The two epoxy derivatives, bis(4-glycidyl-oxyphenyl)phenylphosphine oxide and bis(4-glycidyl-2-methoxyphenyl)phenylphosphonate, and a curing agent, bis(3-aminophenyl)methylphosphine oxide, were used in conjunction with one another and along with conventional epoxy resins and curing agents to bond Tedlar and Polyphenylethersulfone films to Kerimid-glass syntactic foam-filled honeycomb structures. Elevated temperatures are required to cure the epoxy resins with the phosphorus-contaning diamine; however, when Tedlar is being bonded, lower curing temperatures must be used to avoid shrinkage and the concomitant formation of surface defects. Thus, the phosphorus-containing aromatic amine curing agent cannot be used alone, although it is possible to use it in conjunction with an aliphatic amine which would allow lower cure temperatures to be used. The experimental epoxy resins have not provided adhesive bonds quite as strong as those provided by Epon 828 when compared in peel tests, but the differences are not very significant. It should be noted, if optimum properties are to be realized. In any case the fire retardant characteristics of the neat resin systems obtained are quite pronounced, since in most cases the self-extinguishing properties are evident almost instantly when specimens are removed from a flame.

  11. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  12. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  13. [Fulminant adhesive arachnoiditis].

    PubMed

    Tomczykiewicz, Kazimierz; Stępień, Adam; Staszewski, Jacek; Sadowska, Marta; Bogusławska-Walecka, Romana

    2012-01-01

    Adhesive arachnoiditis is a rare disease with insidious course. It causes damage of the spinal cord and nerve roots. The causes of adhesive arachnoiditis include earlier traumatic injury of the spinal cord, surgery, intrathecal administration of therapeutic substances (e.g. anaesthetics, chemotherapy) or contrast media, bleeding, and inflammation. It can also be idiopathic or iatrogenic. We present the case of a 42-year-old patient with fulminant adhesive arachnoiditis which was provoked by spinal surgery and caused severe neurological disability with profound, progressive, flaccid paraparesis and bladder dysfunction. The electromyography (EMG) showed serious damage of nerves of both lower limbs at the level of motor roots L2-S2 and damage of the motor neuron at the level of Th11-Th12 on the right side. Magnetic resonance imaging of the lumbosacral and thoracic part of the spinal cord demonstrated cystic liquid spaces in the lumen of the dural sac in the bottom part of the cervical spine and at the Th2-Th10 level, modelling the lateral and anterior surface of the cord. Because of the vast lesions, surgery could not be performed. Conservative treatment and rehabilitation brought only a small clinical improvement.

  14. Development of MDP-based one-step self-etch adhesive--effect of additional 4-META on bonding performance.

    PubMed

    Iwai, Hitoshi; Fujita, Kou; Iwai, Hirotoshi; Ikemi, Takuji; Goto, Haruhiko; Aida, Masahiro; Nishiyama, Norihiro

    2013-01-01

    We designed three experimental 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-based one-step (EX) adhesives consisting of MDP, urethane dimethacrylate, and triethylene glycol dimethacrylate adhesives with different water contents (98.4, 196.8, and 294.4 mg/g), and 4-methacryloyloxyethyl trimellitic anhydride (4-META) or 2-hydroxyethyl methacrylate (HEMA)-containing onestep adhesive. The effect of the amount of MDP-calcium (MDP-Ca) salt produced through demineralization of enamel and dentin on the bonding performance was examined. The efficacy of 4-META and HEMA was then discussed. When the amount of water in EX adhesive was increased, the production amount of MDP-Ca salt of enamel increased, but not the dentin. The enamel bond strength slightly increased with increasing the production amount of MDP-Ca salt, in contrast to the dentin. However, addition of 4-META in the EX adhesive (water content=98.4 mg/g) increased both bond strengths, although the production amounts of MDP-Ca salt significantly decreased. The 4-META enhances both bond strengths more effectively than the HEMA.

  15. Focal Adhesion Kinase Modulates Cell Adhesion Strengthening via Integrin Activation

    PubMed Central

    Michael, Kristin E.; Dumbauld, David W.; Burns, Kellie L.; Hanks, Steven K.

    2009-01-01

    Focal adhesion kinase (FAK) is an essential nonreceptor tyrosine kinase regulating cell migration, adhesive signaling, and mechanosensing. Using FAK-null cells expressing FAK under an inducible promoter, we demonstrate that FAK regulates the time-dependent generation of adhesive forces. During the early stages of adhesion, FAK expression in FAK-null cells enhances integrin activation to promote integrin binding and, hence, the adhesion strengthening rate. Importantly, FAK expression regulated integrin activation, and talin was required for the FAK-dependent effects. A role for FAK in integrin activation was confirmed in human fibroblasts with knocked-down FAK expression. The FAK autophosphorylation Y397 site was required for the enhancements in adhesion strengthening and integrin-binding responses. This work demonstrates a novel role for FAK in integrin activation and the time-dependent generation of cell–ECM forces. PMID:19297531

  16. Differential Adhesive and Bioactive Properties of the Polymeric Surface Coated with Graphene Oxide Thin Film.

    PubMed

    Thampi, Sudhin; Nandkumar, A Maya; Muthuvijayan, Vignesh; Parameswaran, Ramesh

    2017-02-08

    Surface engineering of implantable devices involving polymeric biomaterials has become an essential aspect for medical implants. A surface enhancement technique can provide an array of unique surface properties that improve its biocompatibility and functionality as an implant. Polyurethane-based implants that have found extensively acclaimed usage as an implant in biomedical applications, especially in the area of cardiovascular devices, still lack any mechanism to ward off bacterial or platelet adhesion. To bring out such a defense mechanism we are proposing a surface modification technique. Graphene oxide (GO) in very thin film form was wrapped onto the electrospun fibroporous polycarbonate urethane (PCU) membrane (GOPCU) by a simple method of electrospraying. In the present study, we have developed a simple single-step method for coating a polymeric substrate with a thin GO film and evaluated the novel antiadhesive activity of these films. SEM micrographs after coating showed the presence of very thin GO films over the PCU membrane. On the GOPCU surface, the contact angle was shifted by ∼30°, making the hydrophobic PCU surface slightly hydrophilic, while Raman spectral characterization and mapping showed the presence and distribution of GO over 75% of the membrane. A reduced platelet adhesion on the GOPCU surface was observed; meanwhile, bacterial adhesion also got reduced by 85% for Staphylococcus aureus (Gram positive, cocci) and 64% for Pseudomonas aeruginosa (Gram negative, bacilli). A cell adhesion study conducted using mammalian fibroblast cells projected its proliferation percentage in a MTT assay, with 82% cell survival on PCU and 86% on GOPCU after 24 h culture, while a study for an extended period of 72 h showed 87% of survival on PCU and 88% on GOPCU. This plethora of functionalities by a simple modification technique makes thin GO films a self-sufficient surface engineering material for future biomedical applications.

  17. Analysis of the extractive and hydrolytic behavior of microthane poly(ester-urethane) foam by high pressure liquid chromatography

    SciTech Connect

    Amin, P.; Wille, J.; Shah, K.; Kydonieus, A. )

    1993-05-01

    Microthane foam, a poly(ester-urethane) (PU) used in the manufacture of Meme/Replicon breast implants, was analyzed by an HPL method to determine whether 2,4- and 2,6-toluenediamine (TDA) were formed under a variety of physiological and nonphysiological extraction and hydrolytic conditions. At the detection limit of 20 ppb, no 2,4- or 2,6-TDA was observed in either methyl tert-butyl ether (MTBE), or aqueous buffer extracts of PU foam. The predominant extractable components identified by HPLC UV-analysis, were a mixture of nonaromatic and aromatic PU fragments. Moreover, no detectable amounts of TDA were found in foam or MTBE extract of foam incubated in phosphate buffer, pH 7.4, at 37 C for 5 days. By contrast, 2,4- and 2,6-TDA were found in foam and foam extracts exposed to low concentrations of either strong mineral acid or base; higher levels were found at higher acidity, treatment temperature, or durations of incubation. Moreover, 2,4- and 2,6-TDA were found in oligomers isolated by preparative HPLC and exposed to alkaline conditions. Finally, 1-2 ppm of 2,4-TDA was detected when PU foam extracts were prepared by the Snyder-Breder method, which employs acidic and alkaline conditions in the work-up procedure. Based on these findings, the authors suggest that published observations of 2,4-TDA formation from in vitro and ex vivo extractions of PU foam are artifacts resulting from pH effects on oligomeric PU fragments present in or extracted from the foam.

  18. An in vitro approach to assess the toxicity of inhaled tobacco smoke components: nicotine, cadmium, formaldehyde and urethane.

    PubMed

    Balharry, Dominique; Sexton, Keith; BéruBé, Kelly A

    2008-02-03

    One of the first lines of defence to inhaled toxins is the barrier formed by the tracheobronchial epithelium, making this the ideal region for studying the toxicity of inhaled substances. This study utilises a highly differentiated, three-dimensional, in vitro model of human upper respiratory tract epithelium (EpiAirway-100) to measure the acute toxicological responses to well-characterised tobacco smoke components. To determine the suitability of this model for screening inhaled toxicants, the EpiAirway tissue model (ETM) was treated apically with tobacco smoke components (nicotine, formaldehyde, cadmium, urethane) which are known to induce a variety of toxic effects (e.g. cytotoxic, thrombogenic, carcinogenic). A range of concentrations were used to model different mechanisms and severity of toxicity which were then compared to known in vivo responses. Similar trends in stress response occurred, with distinct alterations to the tissue in response to all four toxins. At high concentrations, cell viability decreased and tight junctions were degraded, but at sub-toxic concentrations epithelial resistance (indicating tissue integrity) increased 20-60% from control. This peak in resistance coincided with an increase in secreted protein levels, elevated cytokine release and goblet cell hyperplasia and hypertrophy. In conclusion, acute exposure to tobacco smoke components induces measurable toxic responses within human respiratory epithelium. Sub-toxic concentrations appear to illicit a protective response by increasing mucus secretion and mediating immune responses via cytokine release. These responses are comparable to human in vivo responses, indicating potential for the ETM as a tool for screening the toxicity of inhaled compounds.

  19. Synthesis and Characterization of Microencapsulated Phase Change Materials with Poly(urea-urethane) Shells Containing Cellulose Nanocrystals.

    PubMed

    Yoo, Youngman; Martinez, Carlos; Youngblood, Jeffrey P

    2017-09-20

    The main objective of this study is to develop microencapsulation technology for thermal energy storage incorporating a phase change material (PCM) in a composite wall shell, which can be used to create a stable environment and allow the PCM to undergo phase change without any outside influence. Surface modification of cellulose nanocrystals (CNCs) was conducted by grafting poly(lactic acid) oligomers and oleic acid to improve the dispersion of nanoparticles in a polymeric shell. A microencapsulated phase change material (methyl laurate) with poly(urea-urethane) (PU) composite shells containing the hydrophobized cellulose nanocrystals (hCNCs) was fabricated using an in situ emulsion interfacial polymerization process. The encapsulation process of the PCMs with subsequent interfacial hCNC-PU to form composite microcapsules as well as their morphology, composition, thermal properties, and release rates was examined in this study. Oil soluble Sudan II dye solution in methyl laurate was used as a model hydrophobic fill, representing other latent fills with low partition coefficients, and their encapsulation efficiency as well as dye release rates were measured spectroscopically in a water medium. The influence of polyol content in the PU polymer matrix of microcapsules was investigated. An increase in polyol contents leads to an increase in the mean size of microcapsules but a decrease in the gel content (degree of cross-linking density) and permeability of their shell structure. The encapsulated PCMs for thermal energy storage demonstrated here exhibited promising performance for possible use in building or paving materials in terms of released heat, desired phase transformation temperature, chemical and physical stability, and concrete durability during placement.

  20. Degree of conversion and leached monomers of urethane dimethacrylate-hydroxypropyl methacrylate-based dental resin systems.

    PubMed

    Zhang, Meng; Puska, Mervi A; Botelho, Michael G; Säilynoja, Eija S; Matinlinna, Jukka P

    2016-01-01

    The degree of conversion (DC) and monomer leaching of three experimental urethane dimethacrylate (UEDMA)-hydroxypropyl methacrylate (HPMA)-based resin systems were studied. Three experimental resins (E1: 70.6 wt% UEDMA + 27.4 wt% HPMA, E2: 80.6 wt% UEDMA + 17.4 wt% HPMA, E3: 90.6 wt% UEDMA + 7.4 wt% HPMA) and one control resin [C: 70.6 wt% bis-phenol A glycidyl methacrylate (bis-GMA) + 27.4 wt% methyl methacrylate (MMA)] were prepared. For the DC test, cylindrical specimens [1.5 mm (h) × 6 mm (d)] were scanned with an ATR-FTIR instrument before and after light-curing (n = 5). For the monomer leaching test, block-shaped specimens [5.67 mm (l) × 2.00 mm (w) × 2.00 mm (h)] were light-cured (n = 6), stored in a 75% ethanol:water solution for 3 days, and then analyzed with HPLC. The UEDMA-HPMA-based experimental groups showed higher DC (62-78%) than the bis-GMA-MMA-based control group (58-66%), and the DC decreased as the UEDMA content increased (P < 0.05). Amongst the four groups, E3 exhibited the lowest leaching of both mono methacrylate (0.1% HPMA) and dimethacrylate (<0.043% UEDMA) monomers after 30 or 40 s of curing. The UEDMA-HPMA-based resins, therefore, exhibited higher DC and less monomer leaching compared to the bis-GMA-MMA-based resin. (J Oral Sci 58, 15-22, 2016).

  1. Poly(propylene glycol) and urethane dimethacrylates improve conversion of dental composites and reveal complexity of cytocompatibility testing.

    PubMed

    Walters, Nick J; Xia, Wendy; Salih, Vehid; Ashley, Paul F; Young, Anne M

    2016-02-01

    To determine the effects of various monomers on conversion and cytocompatibility of dental composites and to improve these properties without detrimentally affecting mechanical properties, depth of cure and shrinkage. Composites containing urethane dimethacrylate (UDMA) or bisphenol A glycidyl methacrylate (Bis-GMA) with poly(propylene glycol) dimethacrylate (PPGDMA) or triethylene glycol dimethacrylate (TEGDMA) were characterized using the following techniques: conversion (FTIR at 1 and 4mm depths), depth of cure (BS EN ISO 4049:2009 and FTIR), shrinkage (BS EN ISO 17304:2013 and FTIR), strength and modulus (biaxial flexural test) and water sorption. Cytocompatibility of composites and their liquid phase components was assessed using three assays (resazurin, WST-8 and MTS). UDMA significantly improved conversion, BFS and depth of cure compared to Bis-GMA, without increasing shrinkage. UDMA was cytotoxic at lower concentrations than Bis-GMA, but extracts of Bis-GMA-containing composites were less cytocompatible than of those containing UDMA. PPGDMA improved conversion and depth of cure compared to TEGDMA, without detrimentally affecting shrinkage. TEGDMA was shown by all assays to be highly toxic. Resazurin, but not WST-8 and MTS, suggested that PPGDMA exhibited improved cytocompatibility compared to TEGDMA. The use of UDMA and PPGDMA results in composites with excellent conversion, depth of cure and mechanical properties, without increasing shrinkage. Composites containing UDMA appear to be slightly more cytocompatible than those containing Bis-GMA. These monomers may therefore improve the material properties of dental restorations, particularly bulk fill materials. The effect of diluent monomer on cytocompatibility requires further investigation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. The driving system for hippocampal theta in the brainstem: an examination by single neuron recording in urethane-anesthetized rats.

    PubMed

    Takano, Yuji; Hanada, Yasuhiro

    2009-05-08

    The brainstem has been shown to be involved in generating hippocampal theta; however, which brainstem region plays the most important role in generating the rhythm has remained unclear. To reveal which brainstem region triggers the theta, the hippocampal local field potential was recorded simultaneously with single unit activity in the brainstem of urethane-anesthetized rat. The firing latencies before theta onset and offset were compared among recording sites (deep mesencephalic nucleus, DpMe; pedunculopontine tegmental nucleus, PPT; nucleus pontis oralis, PnO). We examined the activities of 59 cells; PPT showed the highest proportion of neurons changing their firing rates at theta onset (14/16, 87.5%). The proportion in the PnO was 14/22 (63.6%), but the neurons in the PnO showed the earliest changes in latencies (0.57s before theta onset). The change in the PPT was 0.96s after theta onset. Regarding the theta offset, the PPT showed the highest proportion of neurons changing their firing rates at theta offset (9/16, 56.3%; the proportion in the PnO was 5/22, 22.7%), but the difference in latent time was not significant among recorded regions. The neurons in the DpMe did not show any remarkable firing tendency at theta onset and offset. From these results, we propose a driving system of hippocampal theta, in which neurons in the PnO first trigger the theta onset and then those in the PPT maintain the theta by activating broadly the brainstem areas for the wave.

  3. End-point immobilization of heparin on plasma-treated surface of electrospun polycarbonate-urethane vascular graft.

    PubMed

    Qiu, Xuefeng; Lee, Benjamin Li-Ping; Ning, Xinghai; Murthy, Niren; Dong, Nianguo; Li, Song

    2017-03-15

    Small-diameter synthetic vascular grafts have high failure rate due to primarily surface thrombogenicity, and effective surface chemical modification is critical to maintain the patency of the grafts. In this study, we engineered a small-diameter, elastic synthetic vascular graft with off-the-shelf availability and anti-thrombogenic activity. Polycarbonate-urethane (PCU), was electrospun to produce nanofibrous grafts that closely mimicked a native blood vessel in terms of structural and mechanical strength. To overcome the difficulty of adding functional groups to PCU, we explored various surface modification methods, and determined that plasma treatment was the most effective method to modify the graft surface with functional amine groups, which were subsequently employed to conjugate heparin via end-point immobilization. In addition, we confirmed in vitro that the combination of plasma treatment and end-point immobilization of heparin exhibited the highest surface density and correspondingly the highest anti-thrombogenic activity of heparin molecules. Furthermore, from an in vivo study using a rat common carotid artery anastomosis model, we showed that plasma-heparin grafts had higher patency rate at 2weeks and 4weeks compared to plasma-control (untreated) grafts. More importantly, we observed a more complete endothelialization of the luminal surface with an aligned, well-organized monolayer of endothelial cells, as well as more extensive graft integration in terms of vascularization and cell infiltration from the surrounding tissue. This work demonstrates the feasibility of electrospinning PCU as synthetic elastic material to fabricate nanofibrous vascular grafts, as well as the potential to endow desired functionalization to the graft surface via plasma treatment for the conjugation of heparin or other bioactive molecules.

  4. Incorporation of amoxicillin-loaded organic montmorillonite into poly(ester-urethane) urea nanofibers as a functional tissue engineering scaffold.

    PubMed

    Yu, Kui; Zhu, Tonghe; Wu, Yu; Zhou, Xiangxiang; Yang, Xingxing; Wang, Juan; Fang, Jun; El-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2017-03-01

    A dual drug-loaded system is a promising alternative for the sustained drug release system and skin tissue engineering. In this study, a natural sodium montmorillonite (Na-MMT) modified by cetyl trimethyl ammonium bromide (CTAB) was prepared as a carrier to load a model drug - amoxicillin (AMX), the modified organic montmorillonite (CTAB-OMMT) loaded with AMX was marked as AMX@CTAB-OMMT and was subsequently incorporated into poly(ester-urethane) urea (PEUU) and gelatin hybrid nanofibers via electrospinning, resulting in a new drug-loaded nanofibrous scaffold (AMX@CTAB-OMMT-PU75). The scanning electron microscopy (SEM) result showed that the fiber morphology did not change after the embedding of AMX@CTAB-OMMT. Meanwhile, there was a significant increase of mechanical properties for PEUU/Gelatin hybrid nanofibers (PU75) after the incorporation of AMX@CTAB-OMMT and CTAB-OMMT. Importantly, AMX@CTAB-OMMT-PU75 nanofibers showed a kind of sustained drug release property which could be justified reasonably for the controlled release of AMX depending on the various application. The sustained release property could be identified roughly by the result of antibacterial test. The anaphylactic reaction test proved that there was no any anaphylactic reaction or inflammation on the back of rat for AMX@CTAB-OMMT-PU75 nanofibers. Consequently, the prepared drug-loaded AMX@CTAB-OMMT-PU75 nanofibrous scaffold is a promising candidate for application in the skin tissue engineering field and controlled drug release system. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Joint mimicking mechanical load activates TGFβ1 in fibrin-poly(ester-urethane) scaffolds seeded with mesenchymal stem cells.

    PubMed

    Gardner, Oliver F W; Fahy, Niamh; Alini, Mauro; Stoddart, Martin J

    2016-07-22

    Transforming growth factor-β1 (TGF-β1) is widely used in an active recombinant form to stimulate the chondrogenic differentiation of mesenchymal stem cells (MSCs). Recently, it has been shown that the application of multiaxial load, that mimics the loading within diarthrodial joints, to MSCs seeded in to fibrin-poly(ester-urethane) scaffolds leads to the endogenous production and secretion of TGF-β1 by the mechanically stimulated cells, which in turn drives the chondrogenic differentiation of the cells within the scaffold. The work presented in this short communication provides further evidence that the application of joint mimicking multiaxial load induces the secretion of TGF-β1 by mechanically stimulated MSCs. The results of this work also show that joint-like multiaxial mechanical load activates latent TGF-β1 in response to loading in the presence or absence of cells; this activation was not seen in non-loaded control scaffolds. Despite the application of mechanical load to scaffolds with different distributions/numbers of cells no significant differences were seen in the percentage of active TGF-β1 quantified in the culture medium of scaffolds from different groups. The similar level of activation in scaffolds containing different numbers of cells, cells at different stages of differentiation or with different distributions of cells suggests that this activation results from the mechanical forces applied to the culture system rather than differences in cellular behaviour. These results are relevant when considering rehabilitation protocols after cell therapy or microfracture, for articular cartilage repair, where increased TGF-β1 activation in response to joint mobilization may improve the quality of developing cartilaginous repair material. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Electrophysiological evidence of biphasic action of carnosine on long-term potentiation in urethane-anesthetized rats.

    PubMed

    Suer, Cem; Dolu, Nazan; Artis, A Seda; Sahin, Leyla; Aydogan, Sami

    2011-02-01

    Carnosine is a dipeptide synthesized by the carnosine synthetase from β-alanine and l-histidine. The well-known effects of carnosine may be related with mechanisms producing long-term potentiation which is one of the electrophysiological signs of memory. In the present study we aimed to investigate the effect of four different doses of carnosine on long-term potentiation in urethane-anesthetized rat. A bipolar stimulating electrode was placed in the medial perforant path and a double-barrel glass micropipette was placed in the dentate gyrus as the recording electrode. Artificial cerebrospinal fluid (in the control group) or carnosine (0.1, 1, 10, and 100μg/μL) was infused into the dentate gyrus. Our results showed that the I/O curve of the excitatory postsynaptic potential slope or population spike amplitude was not significantly shifted by carnosine. We found that population spike amplitude increased to 244% and 287% at the dose of 100μg/μL in the post-tetanic and induction phases, respectively, but decreased to 163% and 186% at the dose of 0.1μg/μL and to 145% and 162% at the dose of 1μg/μL when compared with 203% and 232% of the control values. However, there were no significant differences for the slope of excitatory postsynaptic potential. Carnosine had no effect on the EPSP slope or PS amplitude recorded from the dentate gyrus in response to test stimuli when high-frequency stimulation was not delivered. In the present study, we speculated that the effects of carnosine in lower or higher doses could be explained by its effect on different processes, such as soluble guanylyl cyclase inhibition or the conversion of carnosine into histamine.

  7. Fabrication, structural characterization, and applications of langmuir and langmuir-blodgett films of a poly(azo)urethane.

    PubMed

    Alessio, Priscila; Ferreira, Daniele M; Job, Aldo E; Aroca, Ricardo F; Riul, Antonio; Constantino, Carlos J L; Gonzalez, Eduardo R Pérez

    2008-05-06

    The synthesis of a poly(azo)urethane by fixing CO(2) in bis-epoxide followed by a polymerization reaction with an azodiamine is presented. Since isocyanate is not used in the process, it is termed "clean method" and the polymers obtained are named "NIPUs" (non-isocyanate polyurethanes). Langmuir films were formed at the air-water interface and were characterized by surface pressure vs mean molecular area per mer unit (Pi-A) isotherms. The Langmuir monolayers were further studied by running stability tests and cycles of compression/expansion (possible hysteresis) and by varying the compression speed of the monolayer formation, the subphase temperature, and the solvents used to prepare the spreading polymer solutions. The Langmuir-Blodgett (LB) technique was used to fabricate ultrathin films of a particular polymer (PAzoU). It is possible to grow homogeneous LB films of up to 15 layers as monitored using UV-vis absorption spectroscopy. Higher number of layers can be deposited when PAzoU is mixed with stearic acid, producing mixed LB films. Fourier transform infrared (FTIR) absorption spectroscopy and Raman scattering showed that the materials do not interact chemically in the mixed LB films. The atomic force microscopy (AFM) and micro-Raman technique (optical microscopy coupled to Raman spectrograph) revealed that mixed LB films present a phase separation distinguishable at micrometer or nanometer scale. Finally, mixed and neat LB films were successfully characterized using impedance spectroscopy at different temperatures, a property that may lead to future application as temperature sensors. Principal component analysis (PCA) was used to correlate the data.

  8. [Surface properties and characteristics of PU-PTHF/MDI/HPC poly(ether)urethane for cardiovascular prosthesis].

    PubMed

    Butnaru, Maria; Dimitriu, Cristina-Daniela; Macocinschi, Doina

    2010-01-01

    The polyurethanes are very used materials for medical devices. Their segmented block-copolymeric structures endows them a wide range of versatility in terms of tailoring their physical properties, and tissue compatibility. A new polyether-urethane based material (PU-PTHF/MDI/HPC) was studied on bio-integration capacity in cardiovascular applications. In this respect, surface and bulk structure analysis, albumin and fibrinogen adsorption (in noncompetitive and competitive condition) and thrombogenicity have been evaluated. It was found that PU-PTHF/MDI/HPC surfaces had different roughness and bulk interconnected, well developed porous structure. As protein adsorption properties, preferential adsorption for albumin of material was observed. Thus, 0.280 +/- 0.04 mg/cm2 and 0.260+0.01 mg/ cm2 of albumin adsorb on PU-PTHF/MDI/HPC in noncompetitive and competitive conditions, while fibrinogen adsorption was 0.044 +/- 0.02 mg/cm2 and 0.040 +/- 0.01 mg/cm2. The clot amount test experiment have shown that clot weight of control blood was 24.8 +/- 2.03 mg, the clot weight formed by polyurethane was 28.4 +/- 2.93 mg and the clot weight formed by thrombogenic positive control (collagen membrane) was 42.5 +/- 3.50 mg. From our study we could conclude: 1--PU-PTHF/MDI/HPC polyurethane membranes have two-interface structure that could be advantageous for cavitary or tubular medical devices; 2--the protein adsorption results and clot formation test revealed a thromboresistent behavior of PU-PTHF/MDI/HPC, appropriate for cardiovascular applications.

  9. Efficacy of crocin and safranal as protective agents against genotoxic stress induced by gamma radiation, urethane and procarbazine in mice.

    PubMed

    Koul, A; Abraham, S K

    2017-01-01

    Crocin (CRO) and safranal (SAF) are bioactive constituents of saffron (dried stigma of Crocus sativus flower), an expensive spice with medicinal properties. Aqueous extract of saffron is known for its antigenotoxic effect against environmental genotoxins/carcinogens. However, there is need to identify saffron constituents responsible for this antigenotoxic effect. The aim of our investigation was to ascertain the role of CRO and SAF as inhibitors of in vivo genotoxic stress. For this purpose, Swiss albino mice were pretreated with CRO (50-mg/kg body weight (bw))/SAF (0.025- and 0.25-ml/kg bw) by gavage for 2 days. Thereafter, the pretreated mice were exposed to the genotoxic agents: (1) gamma radiation (GR; 2 Gy), (2) urethane (URE; 800 mg/kg) and (3) procarbazine (PCB; 60 mg/kg). In addition, CRO (50 mg/kg) was co-administered with the nitrosation reaction mixture of methylurea (MU; 300-mg/kg bw) + sodium nitrite (15 mg/kg) which can form N-nitroso-N-MU in the stomach. Genotoxic damage was measured by performing the bone marrow micronucleus test. Results obtained demonstrated significant reductions in the incidence of micronucleated polychromatic erythrocytes in the bone marrow of mice pretreated with CRO/SAF before exposure to the above DNA damaging agents, GR, URE and PCB. Co-administration of CRO with the nitrosation reaction mixture led to significant decrease in genotoxicity when compared to nitrosation reaction mixture alone. Histopathological studies revealed that these saffron constituents reduced testicular cell damage induced by the test genotoxins. The cell-free DNA-nicking assay using pBR322 DNA showed significant protective effects of CRO against hydroxyl radical-induced strand breaks.

  10. The effect of bur preparation on the surface roughness and reline bond strength of urethane dimethacrylate denture base resin.

    PubMed

    Baig, Mirza Rustum; Ariff, Fazrina T M; Yunus, Norsiah

    2011-01-01

    The clinical success of relining depends on the ability of reline resin to bond to denture base. Surface preparations may influence reline bond strength of urethane-based dimethacrylate denture base resin. To investigate the effect of bur preparation on the surface roughness (R a ) of eclipse denture base resin and its shear bond strength (SBS) to an intra-oral self-curing reline material. The mode of reline bonding failure was also examined. Twenty-four cylindrical Eclipse™ specimens were prepared and separated into three groups of eight specimens each. Two groups were subjected to mechanical preparation using standard and fine tungsten carbide (TC) burs and the third group (control) was left unprepared. The R a of all specimens was measured using a contact stylus profilometer. Subsequently, relining was done on the prepared surface and SBS testing was carried out a day later using a universal testing machine. One-way ANOVA revealed significant differences (P<0.05) in R a and SBS values for all the groups. Post-hoc Tukey's HSD test showed significant differences (P<0.05) between all the groups in the R a values. For SBS also there were significant differences (P<0.05), except between standard bur and control. 1) There was a statistically significant difference in the R a of Eclipse™ specimens prepared using different carbide burs (P<0.05). 2) There was a statistically significant difference in the relined SBS (P<0.05) when prepared using different burs, but the difference between the standard bur and the control group was not statistically significant.

  11. Synthesis, characterization, shrinkage and curing kinetics of a new low-shrinkage urethane dimethacrylate monomer for dental applications.

    PubMed

    Atai, Mohammad; Ahmadi, Mehdi; Babanzadeh, Samal; Watts, David C

    2007-08-01

    The aim of the study was to synthesize and characterize an isophorone-based urethane dimethacrylate (IP-UDMA) resin-monomer and to investigate its shrinkage and curing kinetics. The IP-UDMA monomer was synthesized through the reaction of polyethylene glycol 400 and isophorone diisocyanate followed by reacting with HEMA to terminate it with methacrylate end groups. The reaction was followed using a standard back titration method and FTIR spectroscopy. The final product was purified and characterized using FTIR, (1)H NMR, elemental analysis and refractive index measurement. The shrinkage-strain of the specimens photopolymerized at circa 700mW/cm(2) was measured using the bonded-disk technique at 23, 35, and 45 degrees C. Initial shrinkage-strain-rates were obtained by numerical differentiation of shrinkage-strain data with respect to time. Degree-of-conversion of the specimens was measured using FTIR spectroscopy. The thermal curing kinetics of the monomer were also studied by differential scanning calorimetry (DSC). The characterization methods confirmed the suggested reaction route and the synthesized monomer. A low shrinkage-strain of about 4% was obtained for the new monomer. The results showed that the shrinkage-strain-rate of the monomer followed the autocatalytic model of Kamal and Sourour [Kamal MR, Sourour S. Kinetic and thermal characterization of thermoset cure. Polym Eng Sci 1973;13(1):59-64], which is used to describe the reaction kinetics of thermoset resins. The model parameters were calculated by linearization of the equation. The model prediction was in a good agreement with the experimental data. The properties of the new monomer compare favorably with properties of the commercially available resins.

  12. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation.

    PubMed

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian; Feng, Yakai; Yao, Fanglian; Zhang, Wencheng

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds.

  13. Enhanced resin titanium adhesion with silane primers using tribochemical silica-coating.

    PubMed

    Khan, Aftab Ahmed; Al Kheraif, Abdulaziz Abdullah; Syed, Jamaluddin; Divakar, Darshan Devang; Matinlinna, Jukka Pekka

    2017-01-31

    Experimental silane primers and a urethane dimethacrylate resin were prepared to resin titanium bonding. Commercially pure 2 Ti coupons were pretreated and randomly assigned into groups: group-SM (ESPE Sil™+Multilink(®) Speed), group-SE (ESPE Sil™+experimental resin), group-AM (1.0 vol% 3-acryloxypropyltrimethoxysilane+Multilink(®) Speed), group-AE (1.0 vol% 3-acryloxypropyltrimethoxysilane+experimental resin), group-BM (1.0 vol% 3-acryloxypropyltrimethoxysilane+0.5 vol% bis-(1,2-triethoxysilyl)ethane+Multilink(®) Speed), and group-BE (1.0 vol% 3-acryloxypropyltrimethoxysilane+0.5 vol% bis-(1,2-triethoxysilyl) ethane+experimental resin). Specimens were stored in a desiccator for 24 h, and artificially aged by thermo-cycling (6,000 and 12,000 cycles). According to ANOVA and the Tukey's test (n=10, α=0.05), the mean enclosed mold shear bond strength after 24 h was highest in group-AE (26.2±4.0 MPa). After 12,000 thermo-cycles, the group-BM exhibited the highest adhesion strength (13.4±3.2 MPa). This study suggests that a silane primer (3-acryloxypropyltrimethoxysilane+0.5 vol% bis-(1,2-triethoxysilyl)ethane) might enhance adhesion strength.

  14. Maternal immune stimulation reduces both placental morphologic damage and down-regulated placental growth-factor and cell cycle gene expression caused by urethane: are these events related to reduced teratogenesis?

    PubMed

    Sharova, L V; Sharov, A A; Sura, P; Gogal, R M; Smith, B J; Holladay, S D

    2003-07-01

    Activation of the maternal immune system in mice decreased cleft palate caused by the chemical teratogen, urethane. Direct and indirect mechanisms for this phenomenon have been suggested, including maternal macrophages that cross the placenta to find and eliminate pre-teratogenic cells, or maternal immune proteins (cytokines) that cross placenta to alleviate or partially alleviate toxicant-mediated effects in the developing fetus. A third mechanism to explain improved fetal developmental outcome in teratogen-challenged pregnant mice might involve beneficial effects of immune stimulation on the placenta. In the present experiments, urethane treatment altered placental morphology and impaired placental function, the latter indicated by down-regulated activity of cell cycle genes and of genes encoding cytokines and growth factors. Maternal immune stimulation with either Freund's complete adjuvant (FCA) or interferon-gamma (IFNgamma) reduced morphologic damage to the placenta caused by urethane and normalized expression of several genes that were down-regulated by urethane. Urethane treatment also shifted placental cytokine gene expression toward a T cell helper 1 (Th1) profile, while immunostimulation tended to restore a Th2 profile that may be more beneficial to pregnancy and fetal development. These data suggest that the beneficial effects of maternal immune stimulation on fetal development in teratogen-exposed mice may, in part, result from improved placental structure and function.

  15. High Temperature Adhesive Systems

    DTIC Science & Technology

    1989-04-01

    ADHESIVES 1. Napkin Ring Specimen 4-4 2. Napkin Ring Specimen Under Bond-Normal Loading 4- 5 3. Napkin Ring Specimen With Rounded Adherend Under Bond...Normal Loading 4-5 4. Residual Stress State in a Napkin Ring Specimen With Rounded Adherends 4-7 5. Cone and Plate Specimen 4-7 6. Stresses in a Cone...properties. The approach that was taken in developing a suitable specimen was to compare the stress distributions in napkin ring, cone-and-plate and

  16. Spinal adhesive arachnoiditis.

    PubMed

    Dolan, R A

    1993-06-01

    Forty-one cases of spinal adhesive arachnoiditis are presented. The key points are, first, that lumbar disc lesions, their investigations and surgical treatment and the use of nonabsorbable contrast materials are the most common etiological factors and, secondly, that operation is the best treatment. It is our contention that the majority of patients so treated do experience some improvement in what otherwise can be an unbearable amount of pain and disability. The use of adsorbable, nonirritative contrast materials such as Iohexol Parenteral will result in a marked reduction in the frequency of occurrence of arachnoiditis.

  17. Zero adhesion system

    NASA Astrophysics Data System (ADS)

    Steinmetz, Joseph N., Jr.

    1986-07-01

    This patent discloses a zero adhesion system whereby a protective missile launch pad is held against an Environmental Protection Material (EPM) coated missile skin surface having an intermediary cloth sheet inbetween. The pad comprises a steel sheet having perforated cleats defined therein, which sheet is affixed to the underside of the pad and releasably bears against the intermediary cloth sheet. This arrangement operates such that the protective missile launch pad is freely released from the missile at launch without adhession to the EPM coated missile skin.

  18. Durability of Adhesively Bonded Structure

    DTIC Science & Technology

    1992-08-11

    frequently. Significant technology improvements have occurred In surface treatment, primers, joint analyses, adhesives and process controls. These have...clearly established the Initial cost savings potential for adhesive bonding. While this approach addresses the adequacy of joints early in service, there...processes with those changes which occur as a result of residual stress or cyclic loading in the adhesive joint 074-2R-bh 1 To fill a small part of this

  19. CYANOACRYLATE ADHESIVES IN EYE WOUNDS.

    DTIC Science & Technology

    adhesives. The following adhesives were tested: methyl, isobutyl, n-butyl, n-hexyl, n-heptyl, n-octyl, n-decyl, -trifluoroisopropyl 2- cyanoacrylate , and...Biobond. Of these, methyl and -trifluoroisopropyl cyanoacrylates are not well tolerated by eye tissues. Biobond sets too slowly, and does not seem... cyanoacrylate is the best adhesive found so far when tissue tolerance, tensile strength, and ability to seal eye perforations (alone and with silicone rubber patches) are the criteria. (Author)

  20. Integration of Pig-a, micronucleus, chromosome aberration and comet assay endpoints in a 28-day rodent toxicity study with urethane

    PubMed Central

    Stankowski, Leon F.; Aardema, Marilyn J.; Lawlor, Timothy E.; Pant, Kamala; Roy, Shambhu; Xu, Yong; Elbekai, Reem

    2015-01-01

    As part of the international Pig-a validation trials, we examined the induction of Pig-a mutant reticulocytes and red blood cells (RETCD59− and RBCCD59−, respectively) in peripheral blood of male Sprague Dawley® rats treated with urethane (25, 100 and 250mg/kg/day) or saline by oral gavage for 29 days. Additional endpoints integrated into this study were: micronucleated reticulocytes (MN-RET) in peripheral blood; chromosome aberrations (CAb) and DNA damage (%tail intensity via the comet assay) in peripheral blood lymphocytes (PBL); micronucleated polychromatic erythrocytes (MN-PCE) in bone marrow; and DNA damage (comet) in various organs at termination (the 29th dose was added for the comet endpoint at sacrifice). Ethyl methanesulfonate (EMS; 200mg/kg/day on Days 3, 4, 13, 14, 15, 27, 28 and 29) was evaluated as the concurrent positive control (PC). All animals survived to termination and none exhibited overt toxicity, but there were significant differences in body weight and body weight gain in the 250-mg/kg/day urethane group, as compared with the saline control animals. Statistically significant, dose-dependent increases were observed for urethane for: RETCD59− and RBCCD59− (on Days 15 and 29); MN-RET (on Days 4, 15 and 29); and MN-PCE (on Day 29). The comet assay yielded positive results in PBL (Day 15) and liver (Day 29), but negative results for PBL (Days 4 and 29) and brain, kidney and lung (Day 29). No significant increases in PBL CAb were observed at any sample time. Except for PBL CAb (likely due to excessive cytotoxicity), EMS-induced significant increases in all endpoints/tissues. These results compare favorably with earlier in vivo observations and demonstrate the utility and sensitivity of the Pig-a in vivo gene mutation assay, and its ability to be easily integrated, along with other standard genotoxicity endpoints, into 28-day rodent toxicity studies. PMID:25934985

  1. Strain gage adhesives -- Operating characteristics

    NASA Astrophysics Data System (ADS)

    Hannah, R. L.; Reese, R. T.

    1994-02-01

    This paper is concerned with the adhesives which are used to bond the strain gages to substrates. Strain gage installations include four basic parts: the gage, the adhesive used to attach the gage to the stressed surface, the coatings used to protect the gage over its service life, and the electrical circuitry and data acquisition system used to record the strains. This paper describes the operating characteristics of the adhesives. The figures developed in this paper summarize the information available on adhesives from excellent manufacturer's catalogs, texts and references, and from experiences from the SEM Western Regional Strain Gage Committee.

  2. Hot melt adhesive attachment pad

    NASA Technical Reports Server (NTRS)

    Fox, R. L.; Frizzill, A. W.; Little, B. D.; Progar, D. J.; Coultrip, R. H.; Couch, R. H.; Gleason, J. R.; Stein, B. A.; Buckley, J. D.; St.clair, T. L. (Inventor)

    1984-01-01

    A hot melt adhesive attachment pad for releasably securing distinct elements together is described which is particularly useful in the construction industry or a spatial vacuum environment. The attachment pad consists primarily of a cloth selectively impregnated with a charge of hot melt adhesive, a thermo-foil heater, and a thermo-cooler. These components are securely mounted in a mounting assembly. In operation, the operator activates the heating cycle transforming the hot melt adhesive to a substantially liquid state, positions the pad against the attachment surface, and activates the cooling cycle solidifying the adhesive and forming a strong, releasable bond.

  3. Elastomer-toughened polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Saint Clair, A. K.; Saint Clair, T. L.

    1980-01-01

    A study has been conducted to determine the effects of added elastomers on the Tg, thermal stability, adhesive strength, and fracture toughness of LARC-13, a high-temperature addition polyimide adhesive. Various butadiene/acrylonitrile and silicone elastomers were incorporated into the polyimide resin (1) as physical polyblends, and (2) by chemically reacting the elastomers with the polyimide backbone. Adhesive single lap-shear and T-peel strengths were measured before and after aging at elevated temperature. A tapered double-cantilever beam specimen was used to determine the fracture toughness of the elastomer-modified polyimide adhesives.

  4. Investigation of lung tumour induction in C3H/HeH mice, with and without tumour promotion with urethane, following paternal X-irradiation.

    PubMed

    Cattanach, B M; Papworth, D; Patrick, G; Goodhead, D T; Hacker, T; Cobb, L; Whitehill, E

    1998-07-17

    In series of papers Nomura has reported that parental irradiation can lead to an enhanced incidence of lung and other tumours. However, in a recent study with BALB/cJ mice, using optimum conditions as defined by Nomura, we were unable to confirm this. We have now repeated the investigation using a different inbred strain, C3H/HeH, with and without tumour promotion in the F1 by urethane, again using protocols defined by Nomura. In a series of replicate studies spanning over 2 years, males were exposed to single, acute doses of 0, 250 and 500 cGy X-rays and thereafter placed with two females each in each of two consecutive weeks. Half the offspring from each treatment group and each week of mating were given 5 mmol/kg body weight of the urethane, while the remainder remained untreated. Most of the offspring produced were killed and scored for lung tumours at 6 months of age, while the rest were examined at 12 months of age. The proportion of fertile females and litter size provided evidence of a dose-dependent mutational response to the paternal irradiation, but no trace of a radiation-enhanced lung tumour incidence was detected among the progeny, whether in the urethane or non-urethane groups at 6 or 12 months of age, and whether assessed by numbers of mice with tumours, clusters of tumours, or cluster size. As seen in the BALB/cJ study, significant differences among different replicates were found, again suggesting a cyclical or seasonal variation in tumour incidence, but the variations seen with the two strains were not the same. The need for concurrent controls for tumour work was, nevertheless, again indicated. The overall findings do not therefore accord with those of Nomura. Furthermore, they do not support the causal association between the raised incidence of childhood leukaemia and non-Hodgkins lymphoma near Sellafield and the father's recorded radiation exposure during employment in the nuclear industry, as suggested by the Gardner report.

  5. Studies on the Adhesive Property of Snail Adhesive Mucus.

    PubMed

    Newar, Janu; Ghatak, Archana

    2015-11-10

    Many gastropod molluscs are known to secrete mucus which allow these animals to adhere to a substrate while foraging over it. While the mucus is known to provide strong adhesion to both dry and wet surfaces, including both horizontal and vertical ones, no systematic study has been carried out to understand the strength of such adhesion under different conditions. We report here results from preliminary studies on adhesion characteristics of the mucus of a snail found in eastern India, Macrochlamys indica. When perturbed, the snail was found to secrete its adhesive mucus, which was collected and subjected to regular adhesion tests. The hydrated mucus was used as such, and also as mixed with buffer of different pH. These experiments suggest that the mucus was slightly alkaline, and showed the maximum adhesion strength of 9 kPa when present in an alkaline buffer. Preliminary studies indicate that adhesive force is related to the ability of the mucus to incorporate water. In alkaline condition, the gel like mass that it forms, incorporate water from a wet surface and enable strong adhesion.

  6. Effect of adhesive thickness on adhesively bonded T-joint

    NASA Astrophysics Data System (ADS)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  7. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    PubMed

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-05

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  8. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that consists...

  9. Durability of adhesives in plywood

    Treesearch

    Robert H. Gillespie; Bryan H. River

    1976-01-01

    Seven different adhesives were evaluated for durability as plywood adhesives by exposing panels and shear-test specimens to weathering at the Madison exposure site for nearly 8 years. Wet-strength loss and wood-failure changes were measured as a function of exposure time. The method of exposure accelerated the degradation that would have resulted from exposure in most...

  10. Severe adhesive small bowel obstruction.

    PubMed

    Di Saverio, Salomone; Catena, Fausto; Kelly, Michael D; Tugnoli, Gregorio; Ansaloni, Luca

    2012-12-01

    Adhesive small bowel obstruction is a frequent cause of hospital admission. Water soluble contrast studies may have diagnostic and therapeutic value and avoid challenging demanding surgical operations, but if bowel ischemia is suspected, prompt surgical intervention is mandatory. A 58-year-old patient was operated for extensive adhesive small bowel obstruction after having had two previous laparotomies for colorectal surgery, and had a complex clinical course with multiple operations and several complications. Different strategies of management have been adopted, including non-operative management with the use of hyperosmolar water soluble contrast medium, multiple surgical procedures, total parenteral nutrition (TPN) support, and finally use of antiadherences icodextrin solution. After 2 years follow-up the patient was doing well without presenting recurrent episodes of adhesive small bowel obstruction. For patients admitted several times for adhesive small bowel obstruction, the relative risk of recurring obstruction increases in relation to the number of prior episodes. Several strategies for non-operative conservative management of adhesive small bowel obstruction have already addressed diagnostic and therapeutic value of hyperosmolar water soluble contrast. According to the most recent evidence-based guidelines, open surgery is the preferred method for surgical treatment of strangulating adhesive small bowel obstruction as well as after failed conservative management. Research interest and clinical evidence are increasing in adhesions prevention. Hyaluronic acid-carboxycellulose membrane and icodextrin may reduce incidence of adhesions.

  11. Controlling adhesive behavior during recycling

    Treesearch

    Carl Houtman; Karen Scallon; Jihui Guo; XinPing Wang; Steve Severtson; Mark Kroll; Mike Nowak

    2004-01-01

    Adhesives can be formulated to facilitate their removal by typical paper recycling unit operations. The investigations described in this paper are focused on determining fundamental properties that control particle size during pulping. While pressure-sensitive adhesives (PSAs) with high elastic moduli tend to survive pulping with larger particles, facestock and...

  12. Measuring Adhesion And Friction Forces

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1991-01-01

    Cavendish balance adapted to new purpose. Apparatus developed which measures forces of adhesion and friction between specimens of solid materials in vacuum at temperatures from ambient to 900 degrees C. Intended primarily for use in studying adhesion properties of ceramics and metals, including silicon carbide, aluminum oxide, and iron-base amorphous alloys.

  13. Fire-Retardant Epoxy Adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.

    1982-01-01

    Phosphorus-containing epoxy is fire-retardant and translucent. Intended as adhesive for laminated plastic sheets, new material bonds well to titanium dioxide-filled plastic film, which ordinarily shows little surface interaction with adhesives. Fire retardancy has been demonstrated, and smoke density is low enough to avoid smoke obscuration.

  14. Adhesive capsulitis of the shoulder.

    PubMed

    Neviaser, Andrew S; Neviaser, Robert J

    2011-09-01

    Adhesive capsulitis is characterized by painful, gradual loss of active and passive shoulder motion resulting from fibrosis and contracture of the joint capsule. Other shoulder pathology can produce a similar clinical picture, however, and must be considered. Management is based on the underlying cause of pain and stiffness, and determination of the etiology is essential. Subtle clues in the history and physical examination can help differentiate adhesive capsulitis from other conditions that cause a stiff, painful shoulder. The natural history of adhesive capsulitis is a matter of controversy. Management of true capsular restriction of motion (ie, true adhesive capsulitis) begins with gentle, progressive stretching exercises. Most patients improve with nonsurgical treatment. Indications for surgery should be individualized. Failure to obtain symptomatic improvement and continued functional disability following ≥6 months of physical therapy is a general guideline for surgical intervention. Diligent postoperative therapy to maintain motion is required to minimize recurrence of adhesive capsulitis.

  15. Biological adhesives and fastening devices

    NASA Astrophysics Data System (ADS)

    Wolpert, H. D.

    2012-04-01

    Sea creatures are a leading source to some of the more interesting discoveries in adhesives. Because sea water naturally breaks down even the strongest conventional adhesive, an alternative is important that could be used in repairing or fabricating anything that might have regular contact with moisture such as: Repairing broken and shattered bones, developing a surgical adhesive, use in the dental work, repairing and building ships, and manufacturing plywood. Some of nature's prototypes include the common mussel, limpet, some bacteria and abalone. As we learn more about these adhesives we are also developing non adhesive fasteners, such as mimicked after studying the octopus, burdock burrs (i.e. Velcro®) and the gecko.

  16. Hyaluronan-mediated cellular adhesion

    NASA Astrophysics Data System (ADS)

    Curtis, Jennifer

    2005-03-01

    Many cells surround themselves with a cushioning halo of polysaccharides that is further strengthened and organized by proteins. In fibroblasts and chrondrocytes, the primary component of this pericellular matrix is hyaluronan, a large linear polyanion. Hyaluronan production is linked to a variety of disease, developmental, and physiological processes. Cells manipulate the concentration of hyaluronan and hyaluronan receptors for numerous activities including modulation of cell adhesion, cell motility, and differentiation. Recent investigations by identify hyaluronan's role in mediating early-stage cell adhesion. An open question is how the cell removes the 0.5-10 micron thick pericellular matrix to allow for further mature adhesion events requiring nanometer scale separations. In this investigation, holographic optical tweezers are used to study the adhesion and viscoelastic properties of chondrocytes' pericellular matrix. Ultimately, we aim to shed further light on the spatial and temporal details of the dramatic transition from micron to nanometer gaps between the cell and its adhesive substrate.

  17. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, R.A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe with an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough. 4 figs.

  18. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, Ray A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe within an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough.

  19. Adhesion testing device

    NASA Technical Reports Server (NTRS)

    LaPeyronnie, Glenn M. (Inventor); Huff, Charles M. (Inventor)

    2010-01-01

    The present invention provides a testing apparatus and method for testing the adhesion of a coating to a surface. The invention also includes an improved testing button or dolly for use with the testing apparatus and a self aligning button hook or dolly interface on the testing apparatus. According to preferred forms, the apparatus and method of the present invention are simple, portable, battery operated rugged, and inexpensive to manufacture and use, are readily adaptable to a wide variety of uses, and provide effective and accurate testing results. The device includes a linear actuator driven by an electric motor coupled to the actuator through a gearbox and a rotatable shaft. The electronics for the device are contained in the head section of the device. At the contact end of the device, is positioned a self aligning button hook, attached below the load cell located on the actuator shaft.

  20. Propulsion by directional adhesion

    NASA Astrophysics Data System (ADS)

    Bush, John; Prakash, Manu

    2008-03-01

    The rough, hairy integument of water-walking arthropods is well known to be responsible for their water-repellency; we here consider its additional propulsive role. We demonstrate that the tilted flexible leg hairs of water-walking arthropods render the leg cuticle directionally anisotropic: contact lines advance most readily towards the leg tips. The dynamical role of the resulting unidirectional adhesion is explored, and yields new insight into the manner in which water-walking arthropods generate thrust, glide and leap from the free surface. We thus provide new rationale for the fundamental topological difference in the roughness on plants and insects, and suggest novel directions for biomimetic design of smart, hydrophobic surfaces.

  1. Unbinding of adhesive vesicles

    NASA Astrophysics Data System (ADS)

    Brochard-Wyart, FrançOise de Gennes, Pierre-Gilles

    We consider a vesicle, bound on one side to a pipette and sticking on the other side to a flat plate. When a pulling force f is applied to the pipette, the radius Rc of the contact patch decreases, and jumps to zero at a critical value of the force. We present here an extension of the Evans theory for these processes. Then we discuss the dynamics of separation for two distinct cases: (a) nonspecific adhesion; and (b) specific adhesion induced by mobile proteins. To cite this article: F. Brochard-Wyart, P.-G. de Gennes, C. R. Physique 4 (2003). On considère une vésicule qui, aspirée par une pipette d'un coteé adhèe de l'autre sur une surface plane. Lorsqu'on tire sur la pipette avec une force f le rayon du contact adhesif decroit, et s'annule brusquement a une valeur critique de la force. On présente ici une extension de la théorie d'Evans pour interpréter ces processus de détachement. Puis l'on discute la dynamique de la séparation pour deux cas distincts : (a) adhésion non spécifique ; et (b) adhésion spécifique par des protéines mobiles. Pour citer cet article : F. Brochard-Wyart, P.-G. de Gennes, C. R. Physique 4 (2003).

  2. Low-temperature oxidative degradation of PBX 9501 and its components determined via molecular weight analysis of the poly [ester urethane] binder

    SciTech Connect

    Kress, Joel D

    2008-01-01

    The results of following the oxidative degradation of a plastic-bonded explosive (PBX 9501) are reported. Into over 1100 sealed containers were placed samples of PBX 9501 and combinations of its components and aged at relatively low temperatures to induce oxidative degradation of the samples. One of the components of the explosive is a poly(ester urethane) polymer and the oxidative degradation of the samples were following by measuring the molecular weight change of the polymer by gel permeation chromatography (coupled with both differential refractive index and multiangle laser light scattering detectors). Multiple temperatures between 40 and 64 {sup o}C were used to accelerate the aging of the samples. Interesting induction period behavior, along with both molecular weight increasing (crosslinking) and decreasing (chain scissioning) processes, were found at these relatively mild conditions. The molecular weight growth rates were fit to a random crosslinking model for all the combinations of components. The fit rate coefficients show Arrhenius behavior and activation energies and frequency factors were obtained. The kinetics of molecular weight growth shows a compensatory effect between the Arrhenius prefactors and activation energies, suggesting a common degradation process between PBX 9501 and the various combinations of its constituents. An oxidative chemical mechanism of the polymer is postulated, consistent with previous experimental results, that involves a competition between urethane radical crosslinking and carbonyl formation.

  3. Comparative Study of Structure-Property Relationships in Polymer Networks Based on Bis-GMA, TEGDMA and Various Urethane-Dimethacrylates

    PubMed Central

    Barszczewska-Rybarek, Izabela; Jurczyk, Sebastian

    2015-01-01

    The effect of various dimethacrylates on the structure and properties of homo- and copolymer networks was studied. The 2,2-bis-[4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]-propane) (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA) and 1,6-bis-(methacryloyloxy-2-ethoxycarbonylamino)-2,4,4-trimethylhexane (HEMA/TMDI), all popular in dentistry, as well as five urethane-dimethacrylate (UDMA) alternatives of HEMA/TMDI were used as monomers. UDMAs were obtained from mono-, di- and tri(ethylene glycol) monomethacrylates and various commercial diisocyanates. The chemical structure, degree of conversion (DC) and scanning electron microscopy (SEM) fracture morphology were related to the mechanical properties of the polymers: flexural strength and modulus, hardness, as well as impact strength. Impact resistance was widely discussed, being lower than expected in the case of poly(UDMA)s. It was caused by the heterogeneous morphology of these polymers and only moderate strength of hydrogen bonds between urethane groups, which was not high enough to withstand high impact energy. Bis-GMA, despite having the highest polymer morphological heterogeneity, ensured fair impact resistance, due to having the strongest hydrogen bonds between hydroxyl groups. The TEGDMA homopolymer, despite being heterogeneous, produced the smoothest morphology, which resulted in the lowest brittleness. The UDMA monomer, having diethylene glycol monomethacrylate wings and the isophorone core, could be the most suitable HEMA/TMDI alternative. Its copolymer with Bis-GMA and TEGDMA had improved DC as well as all the mechanical properties. PMID:28787999

  4. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice.

    PubMed

    Hamzawy, Mohamed A; Abo-Youssef, Amira M; Salem, Heba F; Mohammed, Sameh A

    2017-11-01

    The current study aimed to develop gold nanoparticles (GNPs) and liposome-embedded gold nanoparticles (LGNPs) as drug carriers for temozolomide (TMZ) and investigate the possible therapeutic effects of intratracheal inhalation of nanoformulation of TMZ-loaded gold nanoparticles (TGNPs) and liposome-embedded TGNPs (LTGNPs) against urethane-induced lung cancer in BALB/c mice. Physicochemical characters and zeta potential studies for gold nanoparticles (GNPs) and liposome-embedded gold nanoparticles (LGNPs) were performed. The current study was conducted by inducing lung cancer chemically via repeated exposure to urethane in BALB/C mice. GNPs and LGNPs were exhibited in uniform spherical shape with adequate dispersion stability. GNPs and LGNPs showed no significant changes in comparison to control group with high safety profile, while TGNPs and LTGNPs succeed to improve all biochemical data and histological patterns. GNPs and LGNPs are promising drug carriers and succeeded in the delivery of small and efficient dose of temozolomide in treatment lung cancer. Antitumor activity was pronounced in animal-treated LTGNPs, these effects may be due to synergistic effects resulted from combination of temozolomide and gold nanoparticles and liposomes that may improve the drug distribution and penetration.

  5. The adhesive properties of coacervated recombinant hybrid mussel adhesive proteins.

    PubMed

    Lim, Seonghye; Choi, Yoo Seong; Kang, Dong Gyun; Song, Young Hoon; Cha, Hyung Joon

    2010-05-01

    Marine mussels attach to substrates using adhesive proteins. It has been suggested that complex coacervation (liquid-liquid phase separation via concentration) might be involved in the highly condensed and non-water dispersed adhesion process of mussel adhesive proteins (MAPs). However, as purified natural MAPs are difficult to obtain, it has not been possible to experimentally validate the coacervation model. In the present work, we demonstrate complex coacervation in a system including recombinant MAPs and hyaluronic acid (HA). Our recombinant hybrid MAPs, fp-151 and fp-131, can be produced in large quantities, and are readily purified. We observed successful complex coacervation using cationic fp-151 or fp-131, and an anionic HA partner. Importantly, we found that highly condensed complex coacervates significantly increased the bulk adhesive strength of MAPs in both dry and wet environments. In addition, oil droplets were successfully engulfed using a MAP-based interfacial coacervation process, to form microencapsulated particles. Collectively, our results indicate that a complex coacervation system based on MAPs shows superior adhesive properties, combined with additional valuable features including liquid/liquid phase separation and appropriate viscoelasticity. Our microencapsulation system could be useful in the development of new adhesive biomaterials, including self-adhesive microencapsulated drug carriers, for use in biotechnological and biomedical applications.

  6. Universal adhesives: the next evolution in adhesive dentistry?

    PubMed

    Alex, Gary

    2015-01-01

    Every so often a new material, technique, or technological breakthrough spurs a paradigm shift in the way dentistry is practiced. The development and evolution of reliable enamel and dentin bonding agents is one such example. Indeed, the so-called "cosmetic revolution" in dentistry blossomed in large part due to dramatic advances in adhesive technology. It is the ability to bond various materials in a reasonably predictable fashion to both enamel and dentin substrates that enables dentists to routinely place porcelain veneers, direct and indirect composites, and a plethora of other restorative and esthetic materials. In fact, the longevity and predictability of many (if not most) current restorative procedures is wholly predicated on the dentist's ability to bond various materials to tooth tissues. Adhesive systems have progressed from the largely ineffective systems of the 1970s and early 1980s to the relatively successful total- and self-etching systems of today. The latest players in the adhesive marketplace are the so-called "universal adhesives." In theory, these systems have the potential to significantly simplify and expedite adhesive protocols and may indeed represent the next evolution in adhesive dentistry. But what defines a universal system, and are all these new systems truly "universal" and everything they are claimed to be? This article will examine the origin, chemistry, strengths, weaknesses, and clinical relevance of this new genre of dental adhesives.

  7. Tunicate-mimetic nanofibrous hydrogel adhesive with improved wet adhesion.

    PubMed

    Oh, Dongyeop X; Kim, Sangsik; Lee, Dohoon; Hwang, Dong Soo

    2015-07-01

    The main impediment to medical application of biomaterial-based adhesives is their poor wet adhesion strength due to hydration-induced softening and dissolution. To solve this problem, we mimicked the wound healing process found in tunicates, which use a nanofiber structure and pyrogallol group to heal any damage on its tunic under sea water. We fabricated a tunicate-mimetic hydrogel adhesive based on a chitin nanofiber/gallic acid (a pyrogallol acid) composite. The pyrogallol group-mediated cross-linking and the nanofibrous structures improved the dissolution resistance and cohesion strength of the hydrogel compared to the amorphous polymeric hydrogels in wet condition. The tunicate-mimetic adhesives showed higher adhesion strength between fully hydrated skin tissues than did fibrin glue and mussel-mimetic adhesives. The tunicate mimetic hydrogels were produced at low cost from recyclable and abundant raw materials. This tunicate-mimetic adhesive system is an example of how natural materials can be engineered for biomedical applications.

  8. Continuous and scalable fabrication of bioinspired dry adhesives via a roll-to-roll process with modulated ultraviolet-curable resin.

    PubMed

    Yi, Hoon; Hwang, Insol; Lee, Jeong Hyeon; Lee, Dael; Lim, Haneol; Tahk, Dongha; Sung, Minho; Bae, Won-Gyu; Choi, Se-Jin; Kwak, Moon Kyu; Jeong, Hoon Eui

    2014-08-27

    A simple yet scalable strategy for fabricating dry adhesives with mushroom-shaped micropillars is achieved by a combination of the roll-to-roll process and modulated UV-curable elastic poly(urethane acrylate) (e-PUA) resin. The e-PUA combines the major benefits of commercial PUA and poly(dimethylsiloxane) (PDMS). It not only can be cured within a few seconds like commercial PUA but also possesses good mechanical properties comparable to those of PDMS. A roll-type fabrication system equipped with a rollable mold and a UV exposure unit is also developed for the continuous process. By integrating the roll-to-roll process with the e-PUA, dry adhesives with spatulate tips in the form of a thin flexible film can be generated in a highly continuous and scalable manner. The fabricated dry adhesives with mushroom-shaped microstructures exhibit a strong pull-off strength of up to ∼38.7 N cm(-2) on the glass surface as well as high durability without any noticeable degradation. Furthermore, an automated substrate transportation system equipped with the dry adhesives can transport a 300 mm Si wafer over 10,000 repeating cycles with high accuracy.

  9. INFLUENCE OF URETHANE AND OF HYDROSTATIC PRESSURE ON THE GROWTH OF BACTERIOPHAGES T2, T5, T6, AND T7

    PubMed Central

    Foster, Ruth A. C.; Johnson, Frank H.

    1951-01-01

    In 0.5 per cent NaCl, nutrient broth at 35°C., urethane in a concentration of 0.4 M stops the reproduction of Escherichia coli, strain B. On dilution with 20 volumes of sterile medium, growth is resumed at its former rate after a short lag. In the one-step growth of T2, 15, T6, or T7, in the same medium at the same temperature, 0.4 M urethane, when added at the time of infection, had no apparent effect on adsorption and caused no decrease in titer throughout the latent period of the control, but completely prevented a rise in titer. If diluted 1:20 with sterile medium prior to a certain critical time in the latent period, however, bacteriophage was liberated at the same time, and in the same amount as in the control. The initial stage of apparent insensitivity to the drug lasts from the time of infection until the approximate critical times of 7 minutes with T7, T2, or T6, or 13 minutes with T5. Under the conditions described, the normal latent periods were 14, 23, 30, and 44 minutes for T7, T2, T6, and T5, respectively. At the critical times referred to above, there begins a stage characterized by complete sensitivity, rather than complete insensitivity, to 0.4 M urethane, in the sense that no active phage is subsequently liberated in continued presence of the drug. The length of this completely sensitive stage, as judged by addition of the drug at successive intervals during the latent period, extends from approximately 7 until 9 minutes after infection with T7, 7 until 15 minutes with T2 or T6, or 13 until 25 minutes with T5. When the urethane is added late in this stage of T2, a decrease in initial titer takes place as judged by assays made 40 minutes after infection, the maximum effect occurring when the drug is added between 14 and 15 minutes after infection. When added subsequently to the completely sensitive stage of each type, i.e. subsequently to 9 minutes after infection with T7, 15 minutes with T2 or T6, or 25 minutes with T5, liberation of the

  10. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives.

    PubMed

    Murphy, Michael P; Kim, Seok; Sitti, Metin

    2009-04-01

    The complex structures that allow geckos to repeatably adhere to surfaces consist of multilevel branching fibers with specialized tips. We present a novel technique for fabricating similar multilevel structures from polymer materials and demonstrate the fabrication of arrays of two- and three-level structures, wherein each level terminates in flat mushroom-type tips. Adhesion experiments are conducted on two-level fiber arrays on a 12-mm-diameter glass hemisphere, which exhibit both increased adhesion and interface toughness over one-level fiber samples and unstructured control samples. These adhesion enhancements are the result of increased surface conformation as well as increased extension during detachment.

  11. Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    PubMed Central

    Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces. PMID:22693563

  12. Contractility Modulates Cell Adhesion Strengthening Through Focal Adhesion Kinase and Assembly of Vinculin-Containing Focal Adhesions

    PubMed Central

    Dumbauld, David W.; Shin, Heungsoo; Gallant, Nathan D.; Michael, Kristin E.; Radhakrishna, Harish; García, Andrés J.

    2010-01-01

    Actin-myosin contractility modulates focal adhesion assembly, stress fiber formation, and cell migration. We analyzed the contributions of contractility to fibroblast adhesion strengthening using a hydrodynamic adhesion assay and micropatterned substrates to control cell shape and adhesive area. Serum addition resulted in adhesion strengthening to levels 30–40% higher than serum-free cultures. Inhibition of myosin light chain kinase or Rho-kinase blocked phosphorylation of myosin light chain to similar extents and eliminated the serum-induced enhancements in strengthening. Blebbistatin-induced inhibition of myosin II reduced serum-induced adhesion strength to similar levels as those obtained by blocking myosin light chain phosphorylation. Reductions in adhesion strengthening by inhibitors of contractility correlated with loss of vinculin and talin from focal adhesions without changes in integrin binding. In vinculin-null cells, inhibition of contractility did not alter adhesive force, whereas controls displayed a 20% reduction in adhesion strength, indicating that the effects of contractility on adhesive force are vinculin-dependent. Furthermore, in cells expressing FAK, inhibitors of contractility reduced serum-induced adhesion strengthening as well as eliminated focal adhesion assembly. In contrast, in the absence of FAK, these inhibitors did not alter adhesion strength or focal adhesion assembly. These results indicate that contractility modulates adhesion strengthening via FAK-dependent, vinculin-containing focal adhesion assembly. PMID:20205236

  13. Marine Bioinspired Underwater Contact Adhesion.

    PubMed

    Clancy, Sean K; Sodano, Antonio; Cunningham, Dylan J; Huang, Sharon S; Zalicki, Piotr J; Shin, Seunghan; Ahn, B Kollbe

    2016-05-09

    Marine mussels and barnacles are sessile biofouling organisms that adhere to a number of surfaces in wet environments and maintain remarkably strong bonds. Previous synthetic approaches to mimic biological wet adhesive properties have focused mainly on the catechol moiety, present in mussel foot proteins (mfps), and especially rich in the interfacial mfps, for example, mfp-3 and -5, found at the interface between the mussel plaque and substrate. Barnacles, however, do not use Dopa for their wet adhesion, but are instead rich in noncatecholic aromatic residues. Due to this anomaly, we were intrigued to study the initial contact adhesion properties of copolymerized acrylate films containing the key functionalities of barnacle cement proteins and interfacial mfps, for example, aromatic (catecholic or noncatecholic), cationic, anionic, and nonpolar residues. The initial wet contact adhesion of the copolymers was measured using a probe tack testing apparatus with a flat-punch contact geometry. The wet contact adhesion of an optimized, bioinspired copolymer film was ∼15.0 N/cm(2) in deionized water and ∼9.0 N/cm(2) in artificial seawater, up to 150 times greater than commercial pressure-sensitive adhesive (PSA) tapes (∼0.1 N/cm(2)). Furthermore, maximum wet contact adhesion was obtained at ∼pH 7, suggesting viability for biomedical applications.

  14. [Improving adhesion to antiretroviral treatment].

    PubMed

    2008-01-01

    To facilitate unified criteria for health professionals to improve adhesion to antiretroviral therapy. The recommendations were drawn up and agreed upon by an expert panel from the SPNS, GESIDA and SEFH, after an exhaustive review of the latest relevant epidemiological and clinical studies that have been published in the medical literature and/or presented at congresses and scientific forums. The factors related to adhesion with antiretroviral therapy came from individuals, health care professionals and treatment variables. Current available methods for measuring adhesion are diverse and classified as direct and indirect. The ideal method is shown to be one which is highly sensitive and specific, enables quantitative and continuous measurement and is reliable, reproducible, economical and quick. The doctor, nurse and pharmacist play a key role in the strategies for adhesion improvement. Specific programmes based on exhaustive knowledge of individualized variables from patients and their antiretroviral therapy should be developed. The use of combined methods which are adapted to healthcare facility characteristics for adhesion improvement is recommended. The structured support to interpersonal adhesion developed by trained healthcare professionals and individualized strategies has been demonstrated as being the most effective intervention strategy to improve adhesion with antiretroviral treatment.

  15. Visceral adhesions to hernia prostheses.

    PubMed

    Gaertner, W B; Bonsack, M E; Delaney, J P

    2010-08-01

    To report our experience with abdominal adhesion formation to various synthetic and biologic prosthetic materials in a rat ventral hernia model. A total of 14 prostheses, nine synthetic, four biologic, and one bioresorbable, were evaluated in the rat. Two synthetic prostheses had bioresorbable coatings and one consisted of synthetic and bioresorbable materials woven together. The model involved the removal from the midline of a 2.5 x 2.5-cm segment of full-thickness ventral abdominal wall with the test prosthetic material sewed into the defect, thus, exposing the viscera directly to one surface of the prosthesis. There were four or more rats in each group. Adhesions were assessed at autopsy 7 days after operation or later. The results were expressed as the percentage area of prosthesis surface involved. All 14 of the tested prosthetic materials induced adhesions. Vicryl Mesh and the four biologic varieties had lesser overall adhesion coverage than the bare synthetic prostheses. Sepramesh developed the least adhesion coverage (15%). The two synthetic materials with bioresorbable coatings had smaller areas involved compared to bare synthetic prostheses. All of the tested prostheses attracted adhesions. Biologic prostheses had smaller areas of coverage compared to synthetic prostheses. Barrier surfaces on synthetic meshes were associated with a much lesser extent of adhesion involvement.

  16. Adhesion molecules in vernal keratoconjunctivitis

    PubMed Central

    El-Asrar, A.; Geboes, K.; Al-Kharashi, S.; Tabbara, K.; Missotten, L.; Desmet, V.

    1997-01-01

    AIMS/BACKGROUND—Adhesion molecules play a key role in the selective recruitment of different leucocyte population to inflammatory sites. The purpose of the present study was to investigate the presence and distribution of adhesion molecules in the conjunctiva of patients with vernal keratoconjunctivitis (VKC).
METHODS—The presence and distribution of adhesion molecules were studied in 14 conjunctival biopsy specimens from seven patients with active VKC and in four normal conjunctival biopsy specimens. We used a panel of specific monoclonal antibodies (mAbs) directed against intercellular adhesion molecule-1 (ICAM-1), intercellular adhesion molecule-3 (ICAM-3), lymphocyte function associated antigen-1 (LFA-1), very late activation antigen-4 (VLA-4), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leucocyte adhesion molecule-1 (ELAM-1). In addition, a panel of mAbs were used to characterise the composition of the inflammatory infiltrate.
RESULTS—In the normal conjunctiva, ICAM-1 was expressed on the vascular endothelium only, LFA-1 and ICAM-3 on epithelial and stromal mononuclear cells , and VLA-4 on stromal mononuclear cells. The expression of VCAM-1 and ELAM-1 was absent. The number of cells expressing adhesion molecules was found to be markedly increased in all VKC specimens. This was concurrent with a heavy inflammatory infiltrate. Strong ICAM-1 expression was induced on the basal epithelial cells, and vascular endothelial cells. Furthermore, ICAM-1 was expressed on stromal mononuclear cells. LFA-1 and ICAM-3 were expressed on the majority of epithelial and stromal infiltrating mononuclear cells. VLA-4 expression was noted on stromal mononuclear cells. Compared with controls, VKC specimens showed significantly more ICAM-3+, LFA-1+, and VLA-4+ cells. VCAM-1 and ELAM-1 were induced on the vascular endothelial cells.
CONCLUSIONS—Increased expression of adhesion molecules may play an important role in the pathogenesis of VKC.

 PMID

  17. Adhesive Performance of Biomimetic Adhesive-Coated Biologic Scaffolds

    PubMed Central

    Murphy, John L.; Vollenweider, Laura; Xu, Fangmin; Lee, Bruce P.

    2010-01-01

    Surgical repair of a discontinuity in traumatized or degenerated soft tissues is traditionally accomplished using sutures. A current trend is to reinforce this primary repair with surgical grafts, meshes, or patches secured with perforating mechanical devices (i.e., sutures, staples, or tacks). These fixation methods frequently lead to chronic pain and mesh detachment. We developed a series of biodegradable adhesive polymers that are synthetic mimics of mussel adhesive proteins (MAPs), composed of 3,4-dihydroxyphenylalanine (DOPA)-derivatives, polyethylene glycol (PEG), and polycaprolactone (PCL). These polymers can be cast into films, and their mechanical properties, extent of swelling, and degradation rate can be tailored through the composition of the polymers as well as blending with additives. When coated onto a biologic mesh used for hernia repair, these adhesive constructs demonstrated adhesive strengths significantly higher than fibrin glue. With further development, a pre-coated bioadhesive mesh may represent a new surgical option for soft tissue repair. PMID:20919699

  18. Notch-Mediated Cell Adhesion

    PubMed Central

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  19. Green waxes, adhesives and lubricants.

    PubMed

    Li, W; Kong, X H; Ruan, M; Ma, F M; Jiang, Y F; Liu, M Z; Chen, Y; Zuo, X H

    2010-10-28

    General characteristics of waxes, adhesives and lubricants as well as the recent fundamental investigations on their physical and mechanical behaviour are introduced. The current R&D status for new type/generation of waxes, adhesives and lubricants from natural products is reviewed, with an emphasis on their tribological applications. In particular, some crucial issues and challenges relating to technological improvement and materials development are discussed. Based on the current predicted shortage of energy resources and environmental concerns, prospective research on the development of green waxes, adhesives and lubricants is suggested.

  20. Photovoltaic module with adhesion promoter

    SciTech Connect

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  1. Adhesives from modified soy protein

    DOEpatents

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  2. Interfacial adhesion of carbon fibers

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.

    1987-01-01

    Relative adhesion strengths between AS4, AS1, and XAS carbon fibers and thermoplastic polymers were determined using the embedded single filament test. Polymers studied included polycarbonate, polyphenylene oxide, polyetherimide, polysulfone, polyphenylene oxide blends with polystyrene, and polycarbonate blends with a polycarbonate polysiloxane block copolymer. Fiber surface treatments and sizings improved adhesion somewhat, but adhesion remained well below levels obtained with epoxy matrices. An explanation for the differences between the Hercules and Grafil fibers was sought using X ray photon spectroscopy, wetting, scanning electron microscopy and thermal desorption analysis.

  3. Comparing Soy Flour Wood Adhesives to Purified Soy Protein Adhesives

    Treesearch

    Charles R. Frihart; Linda F. Lorenz

    2013-01-01

    While economics dictate that soy-based wood adhesives be made with soy flour, much of the recent literature on soy-based wood adhesives has involved using soy protein isolate. The obvious assumption is that the additional carbohydrates in the flour but not in the isolate only serve as inert diluents. Our studies have shown that the isolate can provide 10 times the wet...

  4. Bacterial endotoxin adhesion to different types of orthodontic adhesives

    PubMed Central

    ROMUALDO, Priscilla Coutinho; GUERRA, Thaís Rodrigues; ROMANO, Fábio Lourenço; da SILVA, Raquel Assed Bezerra; BRANDÃO, Izaíra Tincani; SILVA, Célio Lopes; da SILVA, Lea Assed Bezerra; NELSON-FILHO, Paulo

    2017-01-01

    Abstract Bacterial endotoxin (LPS) adhesion to orthodontic brackets is a known contributing factor to inflammation of the adjacent gingival tissues. Objective The aim of this study was to assess whether LPS adheres to orthodontic adhesive systems, comparing two commercial brands. Material and Methods Forty specimens were fabricated from Transbond XT and Light Bond composite and bonding agent components (n=10/component), then contaminated by immersion in a bacterial endotoxin solution. Contaminated and non-contaminated acrylic resin samples were used as positive and negative control groups, respectively. LPS quantification was performed by the Limulus Amebocyte Lysate QCL-1000™ test. Data obtained were scored and subjected to the Chi-square test using a significance level of 5%. Results There was endotoxin adhesion to all materials (p<0.05). No statistically significant difference was found between composites/bonding agents and acrylic resin (p>0.05). There was no significant difference (p>0.05) among commercial brands. Affinity of endotoxin was significantly greater for the bonding agents (p=0.0025). Conclusions LPS adhered to both orthodontic adhesive systems. Regardless of the brand, the endotoxin had higher affinity for the bonding agents than for the composites. There is no previous study assessing the affinity of LPS for orthodontic adhesive systems. This study revealed that LPS adheres to orthodontic adhesive systems. Therefore, additional care is recommended to orthodontic applications of these materials. PMID:28877283

  5. Reversing Adhesion: A Triggered Release Self‐Reporting Adhesive

    PubMed Central

    Schenzel, Alexander M.; Klein, Christopher; Rist, Kai; Moszner, Norbert

    2016-01-01

    Here, the development of an adhesive is reported – generated via free radical polymerization – which can be degraded upon thermal impact within minutes. The degradation is based on a stimuli responsive moiety (SRM) that is incorporated into the network. The selected SRM is a hetero Diels‐Alder (HDA) moiety that features three key properties. First, the adhesive can be degraded at relatively low temperatures (≈80 °C), second the degradation occurs very rapidly (less than 3 min), and third, the degradation of the network can readily be analyzed and quantified due to its self‐reporting nature. The new reversible self‐reporting adhesion system is characterized in detail starting from molecular studies of the retro HDA reaction. Moreover, the mechanical properties of the network, as well as the adhesion forces, are investigated in detail and compared to common methacrylate‐based systems, demonstrating a significant decrease in mechanic stability at elevated temperatures. The current study thus represents a significant advance of the current state of the art for debonding on demand adhesives, making the system interesting for several fields of application including dental adhesives. PMID:27812461

  6. Cyclic debonding of adhesive joints

    NASA Technical Reports Server (NTRS)

    Hoffman, D. J.; June, R. R.

    1973-01-01

    Bonded lap joints were manufactured and tested under static and fatigue loading. Specimens were designed to fail in the bondline, and all fatigue tests included monitoring the crack growth to failure. Test specimens included aluminum details joined by two different adhesives. Specimens also included titanium and boron-epoxy details joined by an epoxy laminating resin. Additonal program variables included bondline thickness, adherend and spice plate thickness, specimen width, and specimen fabrication procedure. Adhesive aging was found to be generally detrimental to the lives of most of the specimens bonded with one adhesive system. Adhesive material was found to have a major influence on debond rate. Co-cured titanium/boron-epoxy specimens were found to resist debonding better than specimens fabricated with a sequential cure. Splice plate thickness and test section width were found to have little effect on debond rate. The data also suggested the existence of an optimum bondline thickness.

  7. Testing Adhesive Bonds to Cloths

    NASA Technical Reports Server (NTRS)

    Thomann, David G.

    1987-01-01

    Nondestructive tool simple and inexpensive. Easy-to-use tool nondestructively tests strength of adhesive bond between cloth and straight rigid edge. Developed for testing advanced flexible reusable surface insulation.

  8. Seafood delicacy makes great adhesive

    SciTech Connect

    Idaho National Laboratory - Frank Roberto, Heather Silverman

    2008-03-26

    Technology from Mother Nature is often hard to beat, so Idaho National Laboratory scientistsgenetically analyzed the adhesive proteins produced by blue mussels, a seafood delicacy. Afterobtaining full-length DNA sequences encoding these proteins, reprod

  9. Seafood delicacy makes great adhesive

    ScienceCinema

    Idaho National Laboratory - Frank Roberto, Heather Silverman

    2016-07-12

    Technology from Mother Nature is often hard to beat, so Idaho National Laboratory scientistsgenetically analyzed the adhesive proteins produced by blue mussels, a seafood delicacy. Afterobtaining full-length DNA sequences encoding these proteins, reprod

  10. Adhesive interactions between vesicles in the strong adhesion limit

    PubMed Central

    Ramachandran, Arun; Anderson, Travers H.; Leal, L. Gary; Israelachvili, Jacob N.

    2010-01-01

    We consider the adhesive interaction energy between a pair of vesicles in the strong adhesion limit, in which bending forces play a negligible role in determining vesicle shape compared to forces due to membrane stretching. Although force-distance or energy distance relationships characterizing adhesive interactions between fluid bilayers are routinely measured using the surface forces apparatus, the atomic force microscope and the biomembrane force probe, the interacting bilayers in these methods are supported on surfaces (e.g. mica sheet) and cannot be deformed. However, it is known that in a suspension, vesicles composed of the same bilayer can deform by stretching or bending, and can also undergo changes in volume. Adhesively interacting vesicles can thus form flat regions in the contact zone, which will result in an enhanced interaction energy as compared to rigid vesicles. The focus of this paper is to examine the magnitude of the interaction energy between adhesively interacting, deformed vesicles relative to free, undeformed vesicles as a function of the intervesicle separation. The modification of the intervesicle interaction energy due to vesicle deformability can be calculated knowing the undeformed radius of the vesicles, R0, the bending modulus kb, the area expansion modulus Ka, and the adhesive minimum WP(0) and separation DP(0) in the energy of interaction between two flat bilayers, which can be obtained from the force-distance measurements made using the above supported-bilayer methods. For vesicles with constant volumes, we show that adhesive potentials between non-deforming bilayers such as ∣WP(0)∣∼5×10−4mJ/m2, which are ordinarily considered weak in colloidal physics literature, can result in significantly deep (>10×) energy minima due to increase in vesicle area and flattening in the contact region. If the osmotic expulsion of water across the vesicles driven by the tense, stretched membrane in the presence of an osmotically active

  11. Multi-Scale Biomimetic Adhesives

    DTIC Science & Technology

    2009-02-10

    Objectives: Same as originally stated 3. Status of Effort: Over the life of this grant, significant technical contributions have been made. When this...department of Defense as well, broadening our goals. 4. Accomplishments/New Findings (over the life of the grant): The mechanism of adhesion in the gecko...enabling microrobotics to explore extraterrestrial surfaces or harsh climates otherwise not accessible to man. In contrast to the adhesion seen in a rest

  12. Silorane adhesive system: a case report.

    PubMed

    Ruschel, Vanessa Carla; Baratieri, Luiz Narciso; Monteiro Júnior, Sylvio; Andrada, Mauro Amaral Caldeira de

    2014-01-01

    Silorane-based composite resin requires a specific adhesive system: a 2-step self-etching adhesive. Clinical protocols are well established and are based on the principles of adhesion to mineralized dental tissues. In this paper, we present a clinical application of the silorane adhesive system in a class-II restoration using silorane-based composite resin.

  13. A review of adhesion science.

    PubMed

    Marshall, Sally J; Bayne, Stephen C; Baier, Robert; Tomsia, Antoni P; Marshall, Grayson W

    2010-02-01

    Adhesion or cohesion includes an adherend, adhesive, and intervening interface. Adhesive joints may include one or more interfaces. Adhesion science focuses on understanding the materials properties associated with formation of the interfaces, changes in the interfaces with time, and events associated with failure of the interfaces. The key principles for good interface formation are creation of a clean surface, generation of a rough surface for interfacial interlocking, good wetting of the substratum by the adhesive/cohesive materials, adequate flow and adaptation for intimate interaction, and acceptable curing when phase changes are required for final joint formation. Much more effort is needed in the future to carefully assess each of these using available testing methods that attempt to characterize the energetics of the interfaces. Bonding involves potential contributions from physical, chemical, and mechanical sources but primarily relies on micro-mechanical interaction for success. Characterization of the interface before adhesion, during service, and after failure would be much more useful for future investigations and remains as a great challenge. Scientists should more rigorously apply techniques such as comprehensive contact angle analysis (rather than simple water wettability) for surface energy determination, and AFM in addition to SEM for surface texture analysis. Copyright 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Integrin-mediated adhesion complex

    PubMed Central

    Sebé-Pedrós, Arnau

    2010-01-01

    The integrin-mediated adhesion machinery is the primary cell-matrix adhesion mechanism in Metazoa. The integrin adhesion complex, which modulates important aspects of the cell physiology, is composed of integrins (alpha and beta subunits) and several scaffolding and signaling proteins. Integrins appeared to be absent in all non-metazoan eukaryotes so-far analyzed, including fungi, plants and choanoflagellates, the sister-group to Metazoa. Thus, integrins and, therefore, the integrin-mediated adhesion and signaling mechanism was considered a metazoan innovation. Recently, a broad comparative genomic analysis including new genome data from several unicellular organisms closely related to fungi and metazoans shattered previous views. The integrin adhesion and signaling complex is not specific to Metazoa, but rather it is present in apusozoans and holozoan protists. Thus, this important signaling and adhesion system predated the origin of Fungi and Metazoa, and was subsequently lost in fungi and choanoflagellates. This finding suggests that cooption played a more important role in the origin of Metazoa than previously believed. Here, we hypothesize that the integrin adhesome was ancestrally involved in signaling. PMID:21057645

  15. Fibrillar Adhesive for Climbing Robots

    NASA Technical Reports Server (NTRS)

    Pamess, Aaron; White, Victor E.

    2013-01-01

    A climbing robot needs to use its adhesive patches over and over again as it scales a slope. Replacing the adhesive at each step is generally impractical. If the adhesive or attachment mechanism cannot be used repeatedly, then the robot must carry an extra load of this adhesive to apply a fresh layer with each move. Common failure modes include tearing, contamination by dirt, plastic deformation of fibers, and damage from loading/ unloading. A gecko-like fibrillar adhesive has been developed that has been shown useful for climbing robots, and may later prove useful for grasping, anchoring, and medical applications. The material consists of a hierarchical fibrillar structure that currently contains two levels, but may be extended to three or four levels in continuing work. The contacting level has tens of thousands of microscopic fibers made from a rubberlike material that bend over and create intimate contact with a surface to achieve maximum van der Waals forces. By maximizing the real area of contact that these fibers make and minimizing the bending energy necessary to achieve that contact, the net amount of adhesion has been improved dramatically.

  16. An Overview of Dental Adhesive Systems and the Dynamic Tooth-Adhesive Interface.

    PubMed

    Bedran-Russo, Ana; Leme-Kraus, Ariene A; Vidal, Cristina M P; Teixeira, Erica C

    2017-10-01

    From the conception of resin-enamel adhesion to today's contemporary dental adhesive systems, clinicians are no longer afraid of exploring the many advantages brought by adhesive restorative concepts. To maximize the performance of adhesive-based restorative procedures, practitioners must be familiar with the mechanism of adhesion, clinical indications, proper handling, the inherent limitations of the materials and the biological challenges. This review provides an overview of the current status of restorative dental adhesives, their mechanism of adhesion, mechanisms of degradation of dental adhesive interfaces, how to maximize performance, and future trends in adhesive dentistry. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Bond strength of adhesive resin cement with different adhesive systems

    PubMed Central

    Lorenzoni e Silva, Fabrizio; Pamato, Saulo; Kuga, Milton-Carlos; Só, Marcus-Vinicius-Reis

    2017-01-01

    Background To assess the immediate bond strength of a dual-cure adhesive resin cement to the hybridized dentin with different bonding systems. Material and Methods Fifty-six healthy human molars were randomly divided into 7 groups (n=8). After 3 longitudinal sections, the central cuts were included in PVC matrix and were submitted to dentin hybridization according to the groups: G1 - etch & rinse system with 3-step (Apder™ Scotchbond™ Multi-Purpose, 3M ESPE), G2 - etch & rinse system with 3-step (Optibond™ FL, Kerr), G3 - etch & rinse system with 3-step (All-Bond 3®, Bisco), G4 - etch & rinse simplified system (Adper™ Single Bond 2, 3M ESPE), G5 - self-etching system with one step (Bond Force, Tokuyama), G6 - universal system in moist dentin (Single Bond Universal, 3M ESPE), G7 - universal system in dry dentin (Single Bond Universal, 3M ESPE). Then all groups received the cementing of a self-adhesive resin cement cylinder (Duo-link, Bisco) made from a polypropylene matrix. In the evaluation of bond strength, the samples were subjected to the microshear test and evaluated according to the fracture pattern by optical microscopy. Results The Kruskal-Wallis test suggests a statistically significant difference between groups (p=0,039), and Tukey for multiple comparisons, indicating a statistically significant difference between G3 and G4 (p<0.05). It was verified high prevalence of adhesive failures, followed by mixed failure and cohesive in dentin. Conclusions The technique and the system used to dentin hybridization are able to affect the immediate bond strength of resin cement dual adhesive. Key words:Adhesion, adhesive resin cement, adhesive systems, microshear. PMID:28149471

  18. Investigation of organic adhesives for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1975-01-01

    The properties of organic adhesives were investigated to acquire information for a guideline document regarding the selection of adhesives for use in high reliability hybrid microcircuits. Specifically, investigations were made of (1) alternate methods for determining the outgassing of cured adhesives, (2) effects of long term aging at 150 C on the electrical properties of conductive adhesives, (3) effects of shelf life age on adhesive characteristics, (4) bond strengths of electrically conductive adhesives on thick film gold metallization, (5) a copper filled adhesive, (6) effects of products outgassed from cured adhesives on device electrical parameters, (7) metal migration from electrically conductive adhesives, and (8) ionic content of electrically insulative adhesives. The tests performed during these investigations are described, and the results obtained are discussed.

  19. [Adhesive lumbar arachnoiditis].

    PubMed

    Ribeiro, C; Reis, F C

    1998-01-01

    Spinal arachnoiditis, an inflammatory process involving all three meningeal layers as well as the nerve roots, is a cause of persistent symptoms in 6% to 16% of postoperative patients. Although spinal surgery is the most common antecedent associated with arachnoiditis, multiple causes have been reported, including infection, intrathecal steroids or anesthetic agents, trauma, subarachnoid hemorrhage and ionic myelographic contrast material--both oil soluble and water soluble. In the past, oil-based intrathecal contrast agents (Pantopaque) were associated with arachnoiditis especially when this material was introduced into the thecal sac and mixed with blood. Arachnoiditis is apparently rarely idiopathic. The pathogenesis of spinal arachnoiditis is similar to the repair process of serous membranes, such as the peritoneum, with a negligible inflammatory cellular exudate and a prominent fibrinous exudate. Chronic adhesive arachnoiditis of the lower spine is a myelographic diagnosis. The myelographic findings of arachnoiditis were divided into two types by Jorgensen et al. In type 1, "the empty thecal sac" appearance, there is homogeneous filling of the thecal sac with either absence of or defects involving nerve root sleeve filling. In type 2 arachnoiditis, there are localized or diffuse filling defects within the contrast column. MRI has demonstrated a sensitivity of 92% and a specificity of 100% in the diagnosis of arachnoiditis. The appearance of arachnoiditis on MRI can be assigned to three main groups. The MRI findings in group I are a conglomeration of adherent roots positioned centrally in the thecal sac. Patients in group II show roots peripherally adherent to the meninges--the so called empty sac. MRI findings in group III are a soft tissue mass within the subarachnoid space. It corresponds to the type 2 categorization defined by Jorgensen et al, where as the MRI imaging types I and II correspond to the myelographic type 1.

  20. Evaluation of the wear performance of a polycarbonate-urethane acetabular component in a hip joint simulator and comparison with UHMWPE and cross-linked UHMWPE.

    PubMed

    St John, Kenneth; Gupta, Minakshi

    2012-07-01

    Acetabular hip joint components manufactured from gamma-sterilized ultra high molecular weight polyethylene (UHMWPE), gamma cross-linked UHMWPE, or polycarbonate-urethane (PCU) polymers were evaluated in a hip joint simulator, using cobalt alloy femoral components, for at least 5 million cycles. The volume of material losses due to wear was calculated for each type of sample, based upon mass loss measurements, every 500,000 cycles. The loss of material for the conventional UHMWPE was much higher than for the cross-linked UHMWPE, showing about a 70% reduction in wear due to cross-linking. The material loss for the PCU samples appears to have been at least 24% lower than for the cross-linked UHMWPE. Based upon these results, the PCU material seems to have potential for use as an alternative bearing material to UHMWPE for total hip replacement surgeries.

  1. CO2 -Sourced α-Alkylidene Cyclic Carbonates: A Step Forward in the Quest for Functional Regioregular Poly(urethane)s and Poly(carbonate)s.

    PubMed

    Gennen, Sandro; Grignard, Bruno; Tassaing, Thierry; Jérôme, Christine; Detrembleur, Christophe

    2017-08-21

    Described is a robust platform for the synthesis of a large diversity of novel functional CO2 -sourced polymers by exploiting the regiocontrolled ring-opening of α-alkylidene carbonates by various nucleophiles. The reactivity of α-alkylidene carbonates is dictated by the exocyclic olefinic group. The polyaddition of CO2 -sourced bis(α-alkylidene carbonate)s (bis-αCCs) with primary and secondary diamines provides novel regioregular functional poly(urethane)s. The reactivity of bis-αCCs is also exploited for producing new poly(β-oxo-carbonate)s by organocatalyzed polyaddition with a diol. This synthesis platform provides new functional variants of world-class leading polymer families (polyurethanes, polycarbonates) and valorizes CO2 as a chemical feedstock. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis and characterization of polyether urethane acrylate-LiCF 3SO 3-based polymer electrolytes by UV-curing in lithium batteries

    NASA Astrophysics Data System (ADS)

    Kim, Cheon-Soo; Kim, Bo-Hyun; Kim, Keon

    The prepolymers of polyether urethane acrylate (PEUA) were synthesized from polyether polyol (polyethylene glycol (PEG) or polypropylene glycol (PPG)), diisocyanate (hexamethylene diisocyanate (HMDI) or toluene 2,4-diisocyanate (TDI)), and the caprolactone-modified hydroxyethyl acrylate (FA2D) using the catalyst (dibutyltin dilaurate (DBTDL)) by stepwise addition reaction. Lithium triflate (LiCF 3SO 3) was dissolved in PEUA prepolymers, and plasticizer (propylene carbonate (PC)) was added into prepolymer and salt mixtures. Then photoinitiator (Irgacure 184) was also dissolved in the mixtures. Thin films were prepared by casting on the glass plate, and then by curing the plasticized prepolymer and salt mixtures under UV radiation. Electrochemical and electrical properties of PEUA-LiCF 3SO 3-based polymer electrolytes were evaluated and discussed to be used in lithium batteries.

  3. Bacterial endotoxin adhesion to different types of orthodontic adhesives.

    PubMed

    Romualdo, Priscilla Coutinho; Guerra, Thaís Rodrigues; Romano, Fábio Lourenço; Silva, Raquel Assed Bezerra da; Brandão, Izaíra Tincani; Silva, Célio Lopes; Silva, Lea Assed Bezerra da; Nelson-Filho, Paulo

    2017-01-01

    The aim of this study was to assess whether LPS adheres to orthodontic adhesive systems, comparing two commercial brands. Forty specimens were fabricated from Transbond XT and Light Bond composite and bonding agent components (n=10/component), then contaminated by immersion in a bacterial endotoxin solution. Contaminated and non-contaminated acrylic resin samples were used as positive and negative control groups, respectively. LPS quantification was performed by the Limulus Amebocyte Lysate QCL-1000™ test. Data obtained were scored and subjected to the Chi-square test using a significance level of 5%. There was endotoxin adhesion to all materials (p<0.05). No statistically significant difference was found between composites/bonding agents and acrylic resin (p>0.05). There was no significant difference (p>0.05) among commercial brands. Affinity of endotoxin was significantly greater for the bonding agents (p=0.0025). LPS adhered to both orthodontic adhesive systems. Regardless of the brand, the endotoxin had higher affinity for the bonding agents than for the composites. There is no previous study assessing the affinity of LPS for orthodontic adhesive systems. This study revealed that LPS adheres to orthodontic adhesive systems. Therefore, additional care is recommended to orthodontic applications of these materials.

  4. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  5. Intranasal Administration of Type V Collagen Reduces Lung Carcinogenesis through Increasing Endothelial and Epithelial Apoptosis in a Urethane-Induced Lung Tumor Model.

    PubMed

    Parra, Edwin Roger; Alveno, Renata Antunes; Faustino, Carolina Brito; Corrêa, Paula Yume Sato Serzedello; Vargas, Camilla Mutai; de Morais, Jymenez; Rangel, Maristela Peres; Velosa, Ana Paula Pereira; Fabro, Alexandre Todorovic; Teodoro, Walcy Rosolia; Capelozzi, Vera Luiza

    2016-08-01

    Type V collagen (Col V) is a "minor" component of normal lung extracellular matrix, which is subjected to decreased and abnormal synthesis in human lung infiltrating adenocarcinoma. We previously reported that a direct link between low amounts of Col V and decreased cell apoptosis may favor cancer cell growth in the mouse lung after chemical carcinogenesis. Moreover, this collagen species was able to trigger DNA fragmentation and impair survival of neoplastic cells. In this study, we have extended our investigation with the aim to obtain further evidence that the death induced by Col V-treatment is of the caspase-9 apoptotic type. We used (1) optical and electron microscopy, (2) quantitation of TUNEL-labeled cells and (3) analysis of the expression levels of Col V and selected genes coding for apoptosis-linked factors, by conventional RT-PCR. BALB/c mice were injected intraperitoneally with 1.5 g/kg body weight of urethane. After urethane injection, the animals received intranasal administration of 20 µg/20 µl of Col V every day during 2 months. We report here that Col V treatment was able to determine significant increase in Col V protein and gene expression and in the percentage of TUNEL-positive cells, to up-regulate caspase-9, resulting in low growth of tumor cells. Our data validate chemical carcinogenesis as a suitable "in vivo" model for further and more detailed studies on the molecular mechanisms of the death response induced by Col V in lung infiltrating adenocarcinoma opening new strategies for treatment.

  6. Synthesis, Characterization, and Paclitaxel Release from a Biodegradable, Elastomeric, Poly(ester urethane)urea Bearing Phosphorylcholine Groups for Reduced Thrombogenicity

    PubMed Central

    Hong, Yi; Ye, Sang-Ho; Pelinescu, Anca L.; Wagner, William R.

    2013-01-01

    Biodegradable polymers with high elasticity, low thrombogenicity, and drug loading capacity continue to be pursued for vascular engineering applications, including vascular grafts and stents. A biodegradable elastomeric polyurethane was designed as a candidate material for use as a drug-eluting stent coating, such that it was nonthrombogenic and could provide antiproliferative drug release to inhibit smooth muscle cell proliferation. A phosphorylcholine containing poly(ester urethane) urea (PEUU-PC) was synthesized by grafting aminated phosphorylcholine onto backbone carboxyl groups of a polyurethane (PEUU-COOH) synthesized from a soft segment blend of polycaprolactone and dimethylolpropionic acid, a hard segment of diisocyanatobutane and a putrescine chain extender. Poly(ester urethane) urea (PEUU) from a soft segment of polycaprolactone alone was employed as a control material. All of the synthesized polyurethanes showed high distensibility (>600%) and tensile strengths in the 20–35 MPa range. PEUUPC experienced greater degradation than PEUU or PEUU-COOH in either a saline or lipase enzyme solution. PEUU-PC also exhibited markedly inhibited ovine blood platelet deposition compared with PEUU-COOH and PEUU. Paclitaxel loaded in all of the polymers during solvent casting continued to release for 5 d after a burst release in a 10% ethanol/PBS solution, which was utilized to increase the solubility of the releasate. Rat smooth muscle cell proliferation was significantly inhibited in 1 wk cell culture when releasate from the paclitaxel-loaded films was present. Based on these results, the synthesized PEUU-PC has promising functionality for use as a nonthrombogenic, drug eluting coating on metallic vascular stents and grafts. PMID:23035885

  7. Synthesis, characterization, and paclitaxel release from a biodegradable, elastomeric, poly(ester urethane)urea bearing phosphorylcholine groups for reduced thrombogenicity.

    PubMed

    Hong, Yi; Ye, Sang-Ho; Pelinescu, Anca L; Wagner, William R

    2012-11-12

    Biodegradable polymers with high elasticity, low thrombogenicity, and drug loading capacity continue to be pursued for vascular engineering applications, including vascular grafts and stents. A biodegradable elastomeric polyurethane was designed as a candidate material for use as a drug-eluting stent coating, such that it was nonthrombogenic and could provide antiproliferative drug release to inhibit smooth muscle cell proliferation. A phosphorylcholine containing poly(ester urethane) urea (PEUU-PC) was synthesized by grafting aminated phosphorylcholine onto backbone carboxyl groups of a polyurethane (PEUU-COOH) synthesized from a soft segment blend of polycaprolactone and dimethylolpropionic acid, a hard segment of diisocyanatobutane and a putrescine chain extender. Poly(ester urethane) urea (PEUU) from a soft segment of polycaprolactone alone was employed as a control material. All of the synthesized polyurethanes showed high distensibility (>600%) and tensile strengths in the 20-35 MPa range. PEUU-PC experienced greater degradation than PEUU or PEUU-COOH in either a saline or lipase enzyme solution. PEUU-PC also exhibited markedly inhibited ovine blood platelet deposition compared with PEUU-COOH and PEUU. Paclitaxel loaded in all of the polymers during solvent casting continued to release for 5 d after a burst release in a 10% ethanol/PBS solution, which was utilized to increase the solubility of the releasate. Rat smooth muscle cell proliferation was significantly inhibited in 1 wk cell culture when releasate from the paclitaxel-loaded films was present. Based on these results, the synthesized PEUU-PC has promising functionality for use as a nonthrombogenic, drug eluting coating on metallic vascular stents and grafts.

  8. In Vivo Performance of a Novel, Anatomically Shaped, Total Meniscal Prosthesis Made of Polycarbonate Urethane: A 12-Month Evaluation in Goats.

    PubMed

    Vrancken, Anne C T; Hannink, Gerjon; Madej, Wojciech; Verdonschot, Nico; van Tienen, Tony G; Buma, Pieter

    2017-10-01

    Injury or loss of the meniscus generally leads to degenerative osteoarthritic changes in the knee joint. However, the treatment options for symptomatic patients with total meniscectomy are limited. Therefore, we developed a novel, anatomically shaped, total meniscal implant made of polycarbonate urethane. To evaluate the in vivo performance of this novel total meniscal implant. The assessment particularly focused on the implant's response to long-term physiological loading in a goat model and its chondroprotective capacity in comparison to clinically relevant controls. Controlled laboratory study. Surgery was performed to the stifle joint of 26 female Saanen goats, subdivided into 4 groups: implant, allograft, total meniscectomy, and sham surgery. The sham group's contralateral joints served as nonoperated controls. After 12 months of follow-up, investigators evaluated implant wear, deformation, and the histopathological condition of the synovium and cartilage. Wear of the implant's articulating surfaces was minimal, which was confirmed by the absence of wear particles in the synovial fluid. Implant deformation was limited. However, one implant failed by complete tearing of the posterior horn extension. No differences in cartilage histopathological condition were observed for the implant, allograft, and meniscectomy groups. However, locally, the cartilage scores for these groups were significantly worse than those of the nonoperated controls. Whereas this study demonstrated that the novel implant is resistant to wear and that deformation after 12 months of physiological loading is acceptable, reinforcement of the implant horns is necessary to prevent horn failure. Although the implant could not protect the cartilage from developing degenerative changes, the progression of damage was similar in the allograft group. This novel polycarbonate urethane implant may have the potential to become an alternative treatment for symptomatic patients with total meniscectomy.

  9. Denture adhesives: a systematic review.

    PubMed

    Papadiochou, Sofia; Emmanouil, Ioannis; Papadiochos, Ioannis

    2015-05-01

    Denture adhesives have been the objective of scientific research for over half a century. Although they are used by denture wearers worldwide, investigations of their effectiveness and biocompatibility have led to controversial conclusions. The purpose of this study was to review the literature data with regard to the effectiveness and biocompatibility of denture adhesives as well as the attitudes of both patients and dental professionals toward these materials. An electronic search of English peer-reviewed dental literature in the Medline database was conducted to evaluate the effectiveness and biocompatibility of denture adhesives. There was no limitation in publication year, so the search included all the available scientific evidence included in that particular database until March 2014. Specific inclusion criteria were used for the selection of the appropriate articles. A manual search of the citations of the obtained articles followed to extend the electronic search. A full text review was carried out for only 32 articles. Of the 32 articles, 21 examined the efficacy of denture adhesives in terms of retention and stability and masticatory performance, 6 evaluated the issue of the biocompatibility of denture adhesives, and 5 presented the attitudes of either professionals or patients toward these materials. The majority of clinical studies supported the fact that denture adhesives enhance the retention, stability, and masticatory performance of a removable prosthesis. In terms of biocompatibility, long-term in vivo studies to investigate potential harmful effects were lacking. Patients are satisfied with denture adhesives that meet their needs. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Innovative Electrostatic Adhesion Technologies

    NASA Astrophysics Data System (ADS)

    Gagliano, L.; Bryan, T.; Williams, S.; McCoy, B.; MacLeod, T.

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and development

  11. Innovative Electrostatic Adhesion Technologies

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  12. Elastocapilllarity in insect adhesion: the case of beetle adhesive hair

    NASA Astrophysics Data System (ADS)

    Gernay, Sophie; Gilet, Tristan; Lambert, Pierre; Federle, Walter

    2014-11-01

    The feet of many insects are covered with dense arrays of hair-like structures called setae. Liquid capillary bridges at the tip of these micrometric structures are responsible for the controlled adhesion of the insect on a large variety of substrates. The resulting adhesion force can exceed several times the body weight of the insect. The high aspect-ratio of setae suggests that flexibility is a key ingredient in this capillary-based adhesion mechanism. There is indeed a strong coupling between their elastic deformation and the shape of the liquid meniscus. In this experimental work, we observe and quantify the local deflection of dock beetle seta tips under perpendicular loading using interference microscopy. Our results are then interpreted in the light of an analytic model of elastocapillarity. This research has been funded by the FRIA/FNRS and the Interuniversity Attraction Poles Programme (IAP 7/38 MicroMAST) initiated by the Belgian Science Policy Office.

  13. Capillarity-based switchable adhesion.

    PubMed

    Vogel, Michael J; Steen, Paul H

    2010-02-23

    Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillarity-based adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials.

  14. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St. Clair, Terry L.

    1989-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  15. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  16. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St. Clair, Terry L.

    1989-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  17. High performance Cu adhesion coating

    SciTech Connect

    Lee, K.W.; Viehbeck, A.; Chen, W.R.; Ree, M.

    1996-12-31

    Poly(arylene ether benzimidazole) (PAEBI) is a high performance thermoplastic polymer with imidazole functional groups forming the polymer backbone structure. It is proposed that upon coating PAEBI onto a copper surface the imidazole groups of PAEBI form a bond with or chelate to the copper surface resulting in strong adhesion between the copper and polymer. Adhesion of PAEBI to other polymers such as poly(biphenyl dianhydride-p-phenylene diamine) (BPDA-PDA) polyimide is also quite good and stable. The resulting locus of failure as studied by XPS and IR indicates that PAEBI gives strong cohesive adhesion to copper. Due to its good adhesion and mechanical properties, PAEBI can be used in fabricating thin film semiconductor packages such as multichip module dielectric (MCM-D) structures. In these applications, a thin PAEBI coating is applied directly to a wiring layer for enhancing adhesion to both the copper wiring and the polymer dielectric surface. In addition, a thin layer of PAEBI can also function as a protection layer for the copper wiring, eliminating the need for Cr or Ni barrier metallurgies and thus significantly reducing the number of process steps.

  18. Capillarity-based switchable adhesion

    PubMed Central

    Vogel, Michael J.; Steen, Paul H.

    2010-01-01

    Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillarity-based adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials. PMID:20133725

  19. Pathogenesis of middle ear adhesions.

    PubMed

    Cayé-Thomasen, P; Hermansson, A; Tos, M; Prellner, K

    1996-04-01

    Middle ear adhesions are well-known to the ear surgeon, although data on etiology, pathogenesis, and significance are lacking in current literature. This study on experimental acute otitis media presents histopathological data on these aspects. Pneumococci were inoculated in the right middle ear bulla of 25 rats; the left ear served as control. At days 4, 8, 16, 90, and 180, respectively, 5 rats were decapitated, and the bullae were removed, opened, and stained with periodic acid-Schiff (PAS)/alcian blue. The entire middle ear mucosae were dissected from the bone, embedded as whole mounts in colophonium chambers, and examined by light microscopy. Representative parts of the mucosae were sectioned and examined in the same way. All inoculated ears from day 8 and later (20 in total), contained mucosal adhesions of various sizes, shapes, and locations. None were found in control ears. The site of predilection for the development of adhesions was the hypotympanum, followed by the anterior epitympanum, the attic, the drum, the interossicular spaces, and the tubal orifice. Based on present histopathological findings, we conclude that the middle ear adhesion is a pathological phenomenon caused by infection, and we propose a six-stage hypothesis of pathogenesis: 1. Localized epithelial rupture; 2. Prolapse of subepithelial tissue; 3. Epithelialization of the prolapse; resulting in a polypous/fold-like prominence; 4. Growth and elongation of the prominence; 5. Fusion of the end/tip of the prominence with another part of the mucosa; 6. Formation of an adhesion.

  20. [Adhesion molecules and diabetes mellitus].

    PubMed

    Urso, C; Hopps, E; Caimi, G

    2010-01-01

    Adhesion molecules play a significant role in leukocyte migration across the endothelium and are also involved in regulating immune system. It is shown that diabetic patients have an increase of soluble adhesion molecules (sICAM-1, sICAM-2, sVCAM-1, sE-selectin, sL-selectin, sP-selectin) considered an integral part of inflammatory state. This inflammation is responsible for the increased cardiovascular risk of these patients. There is a close link between hyperglycemia, oxidative stress, coagulopathy and inflammation and between these factors and the vascular damage. Various studies have showed the potential role of adhesion molecules in the pathogenesis of diabetic vasculopathy. They promote leukocyte recruitment, which is one of the initial steps in the genesis of atherosclerotic plaque. Adhesion molecules are also involved in the pathogenesis of diabetes mellitus type 1; sICAM-1 would have a particular immunomodulatory role in the process of destroying beta-cells and could be used as a subclinical marker of insulitis. Plasma levels of soluble adhesion molecules correlate with hyperglycemia, insulin resistance, dyslipidemia and obesity; they are associated with the development of nephropathy, retinopathy, myocardial infarction, stroke and obliterant peripheral arterial disease in diabetic type 1 and 2. Given the role of these molecules in endothelial dysfunction genesis and tissue damage associated with diabetes, they could constitute a therapeutic target for the prevention of genesis and progression of chronic complications of diabetic disease.

  1. 42 CFR 88.3 - Eligibility-currently identified responders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Mount Sinai School of Medicine in New York City and the Fire Department, City of New York, are enrolled... terrorist watch list maintained by the Federal government will be considered to be enrolled in the WTC...

  2. 42 CFR 88.3 - Eligibility-currently identified responders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Mount Sinai School of Medicine in New York City and the Fire Department, City of New York, are enrolled... terrorist watch list maintained by the Federal government will be considered to be enrolled in the WTC...

  3. 42 CFR 88.3 - Eligibility-currently identified responders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Mount Sinai School of Medicine in New York City and the Fire Department, City of New York, are enrolled... terrorist watch list maintained by the Federal government will be considered to be enrolled in the WTC...

  4. 42 CFR 88.3 - Eligibility-currently identified responders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Mount Sinai School of Medicine in New York City and the Fire Department, City of New York, are enrolled... terrorist watch list maintained by the Federal government will be considered to be enrolled in the WTC...

  5. 9 CFR 88.3 - Standards for conveyances.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... conveyances used for the commercial transportation of equines for slaughter must: (1) Be designed, constructed... transported (e.g., provides adequate ventilation, contains no sharp protrusions, etc.); (2) Include means...

  6. 9 CFR 88.3 - Standards for conveyances.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... conveyances used for the commercial transportation of equines for slaughter must: (1) Be designed, constructed... transported (e.g., provides adequate ventilation, contains no sharp protrusions, etc.); (2) Include means...

  7. Choose sides: differential polymer adhesion.

    PubMed

    Sonnenberg, Lars; Parvole, Julien; Kühner, Ferdinand; Billon, Laurent; Gaub, Hermann E

    2007-06-05

    AFM-based single molecule desorption measurements were performed on surface end-grafted poly(acrylic acid) monolayers as a function of the pH of the aqueous buffer to study the adhesion properties of polymers that bridge two surfaces. These properties were found to depend on the adhesion forces of both surfaces in a differential manner, which is explained with a simple model in analogy to the Bell-Evans formalism used in dynamic force spectroscopy. The measured interaction forces between the poly(acrylic acid) chains and silicon nitride AFM tips depend on the grafting density of the polymer monolayers as well as on the contour length of the polymer chains. This study demonstrates that the stability of polymer bridges is determined by the adhesion strengths on both surfaces, which can be tuned by using pH-dependent polyelectrolyte monolayers.

  8. Liposome adhesion generates traction stress

    NASA Astrophysics Data System (ADS)

    Murrell, Michael P.; Voituriez, Raphaël; Joanny, Jean-François; Nassoy, Pierre; Sykes, Cécile; Gardel, Margaret L.

    2014-02-01

    Mechanical forces generated by cells modulate global shape changes required for essential life processes, such as polarization, division and spreading. Although the contribution of the cytoskeleton to cellular force generation is widely recognized, the role of the membrane is considered to be restricted to passively transmitting forces. Therefore, the mechanisms by which the membrane can directly contribute to cell tension are overlooked and poorly understood. To address this, we directly measure the stresses generated during liposome adhesion. We find that liposome spreading generates large traction stresses on compliant substrates. These stresses can be understood as the equilibration of internal, hydrostatic pressures generated by the enhanced membrane tension built up during adhesion. These results underscore the role of membranes in the generation of mechanical stresses on cellular length scales and that the modulation of hydrostatic pressure due to membrane tension and adhesion can be channelled to perform mechanical work on the environment.

  9. Interfacial adhesion - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Banerjea, Amitava; Bozzolo, Guillermo H.; Finley, Clarence W.

    1988-01-01

    Adhesion, the binding of different materials at an interface, is of general interest to many branches of technology, e.g., microelectronics, tribology, manufacturing, construction, etc. However, there is a lack of fundamental understanding of such diverse interfaces. In addition, experimental techniques generally have practical objectives, such as the achievement of sufficient strength to sustain mechanical or thermal effects and/or have the proper electronic properties. In addition, the theoretical description of binding at interfaces is quite limited, and a proper data base for such theoretical analysis does not exist. This presentation will review both experimental and theoretical aspects of adhesion in nonpolymer materials. The objective will be to delineate the critical parameters needed, governing adhesion testing along with an outline of testing objectives. A distinction will be made between practical and fundamental objectives. Examples are given where interfacial bonding may govern experimental consideration. The present status of theory is presented along with recommendations for future progress and needs.

  10. Interfacial adhesion: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Bozzolo, Guillermo H.; Finley, Clarence W.; Banerjea, Amitava

    1988-01-01

    Adhesion, the binding of different materials at an interface, is of general interest to many branches of technology, e.g., microelectronics, tribology, manufacturing, construction, etc. However, there is a lack of fundamental understanding of such diverse interfaces. In addition, experimental techniques generally have practical objectives, such as the achievement of sufficient strength to sustain mechanical or thermal effects and/or have the proper electronic properties. In addition, the theoretical description of binding at interfaces is quite limited, and a proper data base for such theoretical analysis does not exist. This presentation will review both experimental and theoretical aspects of adhesion in nonpolymer materials. The objective will be to delineate the critical parameters needed, governing adhesion testing along with an outline of testing objectives. A distinction will be made between practical and fundamental objectives. Examples are given where interfacial bonding may govern experimental consideration. The present status of theory is presented along wiith recommendations for future progress and needs.

  11. Adhesive arachnoiditis following lumbar myelography.

    PubMed

    Skalpe, I O

    1978-03-01

    Late sequelae (adhesive arachnoiditis) have been reported following myelography with the oily contrast medium (Pantopaque) and with the ionic water-soluble contrast media methiodal sodium (Abrodil, Conturex, Kontrast U) meglumine iothalamate (Conray Meglumine) and meglumine iocarmate (Bis-Conray, Dimer-X). Adhesive arachnoiditis has not yet been reported after the use of the nonionic water-soluble contrast medium metrizamide (Amipaque). Thus, this is considered the contrast medium of choice for lumbar myelography. Using the recommended dose of 10 ml with an iodine concentration of 170 mg/ml for this examination, adhesive arachnoiditis is unlikely to occur. Increased osmolality of spinal fluid after injection of contrast medium is related to increased frequency of arachnoiditis.

  12. A novel addition polyimide adhesive

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Progar, D. J.

    1981-01-01

    An addition polyimide adhesive, LARC 13, was developed which shows promise for bonding both titanium and composites for applications which require service temperatures in excess of 533 K. The LARC 13 is based on an oligomeric bis nadimide containing a meta linked aromatic diamine. The adhesive melts prior to polymerization due to its oligomeric nature, thereby allowing it to be processed at 344 kPa or less. Therefore, LARC 13 is ideal for the bonding of honeycomb sandwich structures. After melting, the resin thermosets during the cure of the nadic endcaps to a highly crosslinked system. Few volatiles are evolved, thus allowing large enclosed structures to be bonded. Preparation of the adhesive as well as bonding, aging, and testing of lap shear and honeycomb samples are discussed.

  13. Mechanics of Nascent Cell Adhesions

    NASA Astrophysics Data System (ADS)

    Mejean, Cecile O.; Schaefer, Andrew W.; Forscher, Paul; Dufresne, Eric R.

    2009-03-01

    Cells have the ability to sense and respond to mechanical and biochemical cues from their environment. In neurons, the binding and restraint of transmembrane cell adhesion molecules (CAMs) can trigger acute periods of axon growth. Preceding growth, the cell must create a stiff mechanical linkage between the CAM and the cytoskeleton. Using holographic optical tweezers, we manipulate CAM-coated beads on the membrane of the cell. We investigate the dynamics of the mechanical properties of this linkage as a function of time, applied force, and CAM density. We find that CAM-coated beads exhibit stochastic intermittent binding to the cytoskeleton. In time, we observed that the adhesions stiffen and their mechanical properties depend on the applied force. Treatment of cells with small molecules that alter cytoskeletal dynamics are used to probe the roles of actin filament assembly and myosin motor activity in adhesion formation.

  14. Adhesive procedures in daily practice: essential aspects.

    PubMed

    Hilgert, Leandro Augusto; Lopes, Guilherme Carpena; Araújo, Elito; Baratieri, Luiz Narciso

    2008-05-01

    Adhesive procedures are essential to most restorative protocols used in modern dentistry. Increasing demand and constant interest in new products have stimulated dental manufacturers to produce new adhesive systems and marketing campaigns that announce fast and easy bonding. However, laboratorial and clinical studies show that, usually, ease of application of an adhesive system does not relate to its competence in creating a quality, long-term adhesive interface. This article will present relevant data from the scientific literature to help clinicians understand quality adhesion and achieve excellent results with the current adhesion systems.

  15. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  16. Dual-Mode Adhesive Pad

    NASA Technical Reports Server (NTRS)

    Hartz, Leslie

    1994-01-01

    Tool helps worker grip and move along large, smooth structure with no handgrips or footholds. Adheres to surface but easily released by actuating simple mechanism. Includes handle and segmented contact-adhesive pad. Bulk of pad made of soft plastic foam conforming to surface of structure. Each segment reinforced with rib. In sticking mode, ribs braced by side catches. In peeling mode, side catches retracted, and segmented adhesive pad loses its stiffness. Modified versions useful in inspecting hulls of ships and scaling walls in rescue operations.

  17. Dual-Mode Adhesive Pad

    NASA Technical Reports Server (NTRS)

    Hartz, Leslie

    1994-01-01

    Tool helps worker grip and move along large, smooth structure with no handgrips or footholds. Adheres to surface but easily released by actuating simple mechanism. Includes handle and segmented contact-adhesive pad. Bulk of pad made of soft plastic foam conforming to surface of structure. Each segment reinforced with rib. In sticking mode, ribs braced by side catches. In peeling mode, side catches retracted, and segmented adhesive pad loses its stiffness. Modified versions useful in inspecting hulls of ships and scaling walls in rescue operations.

  18. Silicone-Based Adhesives with Highly Tunable Adhesion Force for Skin-Contact Applications.

    PubMed

    Lee, Bong Kuk; Ryu, Jin Hwa; Baek, In-Bok; Kim, Yarkyeon; Jang, Won Ick; Kim, Sang-Hyeob; Yoon, Yong Sun; Kim, Seung Hwan; Hong, Seong-Gu; Byun, Sangwon; Yu, Han Young

    2017-08-10

    A fundamental approach to fabricating silicone-based adhesives with highly tunable adhesion force for the skin-contact applications is presented. Liquid blends consisting of vinyl-multifunctional polydimethylsiloxane (V-PDMS), hydride-terminated PDMS (H-PDMS), and a tackifier composed of a silanol-terminated PDMS/MQ resin mixture and the MQ resin are used as the adhesive materials. The peel adhesion force of addition-cured adhesives on the skin is increased by increasing the H-PDMS molecular weights and the tackifier content, and decreasing the H-PDMS/V-PDMS ratio. There is an inverse relationship between the adhesion force and the Young's modulus. The low-modulus adhesives with a low H-PDMS/V-PDMS ratio exhibit enhanced adhesion properties. The low-modulus adhesives with the high MQ resin content show significantly enhanced adhesion properties. These adhesives exhibit a wide range of modulus (2-499 kPa), and their adhesion force (0.04-5.38 N) is superior to commercially available soft silicone adhesives (0.82-2.79 N). The strong adhesives (>≈2 N) provide sufficient adhesion for fixing the flexible electrocardiogram (ECG) device to the skin in most daily activity. The human ECG signals are successfully recorded in real time. These results suggest that the silicone-based adhesives should be useful as an atraumatic adhesive for the skin-contact applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Adhesion of Antireflective Coatings in Multijunction Photovoltaics

    SciTech Connect

    Brock, Ryan; Miller, David C.; Dauskardt, Reinhold H.

    2016-11-21

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even with germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.

  20. [Pathogenesis of adhesions formation after intraabdominal operations].

    PubMed

    Voskanian, S É; Kyzlasov, P S

    2011-01-01

    The article describes the pathogenesis of adhesions formation after intraabdominal operations. Described predisposing factors leading of which is mechanical trauma, resulting from the use of surgical instruments, rough manipulations during surgery, damage to the mesothelium by dry gauze etc, which cause the adhesions. The pathogenesis of adhesions formation after intraabdominal surgery is presented in outline form, which described the changes occurring in the body starting with combination of predisposing factors and ending with the development of adhesions with blood vessels by 7-12 days after surgery. At the genetic level predisposition to adhesions formation and development of adhesive disease is treated as a manifestation of rapid acetylation phenotype, in which the intensity of fibrin formation exceeds normal rate of its catabolism. Thus, according to modem concepts, adhesive disease is a separate nosologic unit that dictates the necessity of its detailed study, development and introduction new universal methods of preventing the adhesions formation after intraabdominal operations.

  1. Tape-Smoothing Tool For Adhesion Tests

    NASA Technical Reports Server (NTRS)

    Allen, Peter B.

    1992-01-01

    Small tool smoothes adhesive tape uniformly to ensure consistency and repeatability of tape-peel tests of adhesion of paint to substrate. Includes resilient pad covered with tough, smooth fabric. Internal spring regulates force applied to tape.

  2. Nucleation and Growth of Integrin Adhesions

    PubMed Central

    Atilgan, Erdinç; Ovryn, Ben

    2009-01-01

    We present a model that provides a mechanistic understanding of the processes that govern the formation of the earliest integrin adhesions ex novo from an approximately planar plasma membrane. Using an analytic analysis of the free energy of a dynamically deformable membrane containing freely diffusing receptors molecules and long repeller molecules that inhibit integrins from binding with ligands on the extracellular matrix, we predict that a coalescence of polymerizing actin filaments can deform the membrane toward the extracellular matrix and facilitate integrin binding. Monte Carlo simulations of this system show that thermally induced membrane fluctuations can either zip-up and increase the radius of a nucleated adhesion or unzip and shrink an adhesion, but the fluctuations cannot bend the ventral membrane to nucleate an adhesion. To distinguish this integrin adhesion from more mature adhesions, we refer to this early adhesion as a nouveau adhesion. PMID:19413961

  3. Tackifier Dispersions to Make Pressure Sensitive Adhesives

    SciTech Connect

    2003-02-01

    Development of new processes for tackifier dispersion could improve the production of pressure sensitive adhesives. Pressure sensitive adhesives (PSAs) have the ability to adhere to different surfaces with manual or finger pressure.

  4. Microfluidic adhesion induced by subsurface microstructures.

    PubMed

    Majumder, Abhijit; Ghatak, Animangsu; Sharma, Ashutosh

    2007-10-12

    Natural adhesives in the feet of different arthropods and vertebrates show strong adhesion as well as excellent reusability. Whereas the hierarchical structures on the surface are known to have a substantial effect on adhesion, the role of subsurface structures such as the network of microchannels has not been studied. Inspired by these bioadhesives, we generated elastomeric layers with embedded air- or oil-filled microchannels. These adhesives showed remarkable enhancement of adhesion ( approximately 30 times), which results from the crack-arresting properties of the microchannels, together with the surface stresses caused by the capillary force. The importance of the thickness of the adhesive layer, channel diameter, interchannel spacing, and vertical position within the adhesive has been examined for developing an optimal design of this microfluidic adhesive.

  5. Computational Chemistry of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  6. Polymer Claw: Instant Underwater Adhesive

    DTIC Science & Technology

    2012-10-23

    surface. The amine reacts with the sticky, isocyanate putty to form a tough polyurea. The catalyzed isocyanates likewise bond with alcohols, amines, acids...the metal bristles and displaces the gel to make way for the adhesive. The entire system will be sealed in disposable packaging for safe storage and

  7. Polymer Claw: Instant Underwater Adhesive

    DTIC Science & Technology

    2012-09-24

    surface. The amine reacts with the sticky, isocyanate putty to form a tough polyurea. The catalyzed isocyanates likewise bond with alcohols, amines, acids...the metal bristles and displaces the gel to make way for the adhesive. The entire system will be sealed in disposable packaging for safe storage and

  8. Polymer Claw: Instant Underwater Adhesive

    DTIC Science & Technology

    2012-08-27

    surface. The amine reacts with the sticky, isocyanate putty to form a tough polyurea. The catalyzed isocyanates likewise bond with alcohols, amines, acids...the metal bristles and displaces the gel to make way for the adhesive. The entire system will be sealed in disposable packaging for safe storage and

  9. Photoresist substrate having robust adhesion

    DOEpatents

    Dentinger, Paul M.

    2005-07-26

    A substrate material for LIGA applications w hose general composition is Ti/Cu/Ti/SiO.sub.2. The SiO.sub.2 is preferably applied to the Ti/Cu/Ti wafer as a sputtered coating, typically about 100 nm thick. This substrate composition provides improved adhesion for epoxy-based photoresist materials, and particularly the photoresist material SU-8.

  10. Ovalbumin as a Wood Adhesive

    Treesearch

    Charles R. Frihart; Holly Satori; Zhu Rongxian; Michael J. Birkeland

    2014-01-01

    Use of proteins to bond wood dominated industrial production until the middle of the 20th century (1). The ensuing creation of the plywood and glulam beam industries allowed for more efficient use of wood resources than is possible with solid wood products. Many protein sources have been used as adhesives, including plant (soybean) and animal (blood, fish scales,...

  11. Fluorescence Reveals Contamination From Adhesives

    NASA Technical Reports Server (NTRS)

    Nikolia, William

    1992-01-01

    Contamination of nearby surfaces from ingredients in some adhesive materials detected by ultraviolet illumination and observation of resulting fluorescence. Identification of contaminants via telltale fluorescence not new; rather, significance lies in method of implementation and potential extension to wider variety of materials and applications.

  12. Intraoral metal adhesion utilized for occlusal rehabilitation.

    PubMed

    Bertolotti, R L; DeLuca, S S; DeLuca, S

    1994-08-01

    Recent advances in adhesive monomers and surface preparation methods allow strong resin adhesion to all intraoral metal surfaces. Resin-metal bond strengths may exceed typical resin-etched enamel bonds. Innovations in prosthetic procedures have resulted. Data for metal adhesion are reviewed and the use of intraoral metal adhesion to finalize an occlusal rehabilitation is illustrated. Included in the metal surface preparations are intraoral sandblasting and intraoral tin plating.

  13. Transverse Reinforcement of Adhesive Joints

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, S.; Shakirov, A.

    2015-05-01

    The shear of single-lap adhesive joints causes significant peel stresses in the adhesive layer, which is a particularly urgent problem for low-modulus polyurethane compositions. An experimental and computational analysis of various methods for increasing the load-bearing capacity of the joints by their strengthening with metallic z-elements was carried out. This strengthening hinders their delamination by the action of peel stresses, which allows one to reduce the overall dimensions and weight of adhesive joints. Two main strengthening methods were considered: with steel tapping screws (of diameter 2.5 mm) and blind aluminum rivets (of diameter 4.0 mm). The peculiarity of the strengthening lies in the fact that z-elements of minimum available diameter were used for reducing the effect of stress concentrations on the strength of the joints. The test of specimens for each type of strengthening showed an average increase in the ultimate load by 40% for the threaded reinforcements and by 10% for the rivets. During an analysis of stress state of the joints by the FEM, the nonlinear behavior of constituent materials and stress concentration in the region of reinforcing elements were taken into account. The mechanical properties of the adhesive layer and the GFRP covering were determined in separate experiments. The analysis showed that the weight of the reinforced adhesive joints could be lowered by 20-25% relative to that of unreinforced ones without reducing their load-bearing capacity. An additional effect caused by using the threaded reinforcing elements was a more than threefold increase in their rigidity as compared with that of analogous nonreinforced ones.

  14. Nonwoven glass fiber mat reinforces polyurethane adhesive

    NASA Technical Reports Server (NTRS)

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  15. Current dental adhesives systems. A narrative review.

    PubMed

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  16. Influence of substrate modulus on gecko adhesion

    NASA Astrophysics Data System (ADS)

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-03-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

  17. Influence of substrate modulus on gecko adhesion

    PubMed Central

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-01-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics). PMID:28287647

  18. Influence of substrate modulus on gecko adhesion.

    PubMed

    Klittich, Mena R; Wilson, Michael C; Bernard, Craig; Rodrigo, Rochelle M; Keith, Austin J; Niewiarowski, Peter H; Dhinojwala, Ali

    2017-03-13

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system's performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

  19. Potential for Biobased Adhesives in Wood Bonding

    Treesearch

    Charles R. Frihart

    2016-01-01

    There has been a resurgence of interest and research on using bio-based materials as wood adhesives; however, they have achieved only limited market acceptance. To better understand this low level of replacement, it is important to understand why adhesives work or fail in moisture durability tests. A holistic model for wood adhesives has been developed that clarifies...

  20. Prevention of Adhesion to Prosthetic Mesh

    PubMed Central

    van ’t Riet, Martijne; de Vos van Steenwijk, Peggy J.; Bonthuis, Fred; Marquet, Richard L.; Steyerberg, Ewout W.; Jeekel, Johannes; Bonjer, H. Jaap

    2003-01-01

    Objective To assess whether use of antiadhesive liquids or coatings could prevent adhesion formation to prosthetic mesh. Summary Background Data Incisional hernia repair frequently involves the use of prosthetic mesh. However, concern exists about development of adhesions between viscera and the mesh, predisposing to intestinal obstruction or enterocutaneous fistulas. Methods In 91 rats, a defect in the muscular abdominal wall was created, and mesh was fixed intraperitoneally to cover the defect. Rats were divided in five groups: polypropylene mesh only (control group), addition of Sepracoat or Icodextrin solution to polypropylene mesh, Sepramesh (polypropylene mesh with Seprafilm coating), and Parietex composite mesh (polyester mesh with collagen coating). Seven and 30 days postoperatively, adhesions were assessed and wound healing was studied by microscopy. Results Intraperitoneal placement of polypropylene mesh was followed by bowel adhesions to the mesh in 50% of the cases. A mean of 74% of the mesh surface was covered by adhesions after 7 days, and 48% after 30 days. Administration of Sepracoat or Icodextrin solution had no influence on adhesion formation. Coated meshes (Sepramesh and Parietex composite mesh) had no bowel adhesions. Sepramesh was associated with a significant reduction of the mesh surface covered by adhesions after 7 and 30 days. Infection was more prevalent with Parietex composite mesh, with concurrent increased mesh surface covered by adhesions after 30 days (78%). Conclusions Sepramesh significantly reduced mesh surface covered by adhesions and prevented bowel adhesion to the mesh. Parietex composite mesh prevented bowel adhesions as well but increased infection rates in the current model. PMID:12496539

  1. Dorsal vs. ventral differences in fast Up-state-associated oscillations in the medial prefrontal cortex of the urethane-anesthetized rat

    PubMed Central

    Gretenkord, Sabine; Whittington, Miles A.; Gartside, Sarah E.

    2017-01-01

    Cortical slow oscillations (0.1–1 Hz), which may play a role in memory consolidation, are a hallmark of non-rapid eye movement (NREM) sleep and also occur under anesthesia. During slow oscillations the neuronal network generates faster oscillations on the active Up-states and these nested oscillations are particularly prominent in the PFC. In rodents the medial prefrontal cortex (mPFC) consists of several subregions: anterior cingulate cortex (ACC), prelimbic (PrL), infralimbic (IL), and dorsal peduncular cortices (DP). Although each region has a distinct anatomy and function, it is not known whether slow or fast network oscillations differ between subregions in vivo. We have simultaneously recorded slow and fast network oscillations in all four subregions of the rodent mPFC under urethane anesthesia. Slow oscillations were synchronous between the mPFC subregions, and across the hemispheres, with no consistent amplitude difference between subregions. Delta (2–4 Hz) activity showed only small differences between subregions. However, oscillations in the spindle (6–15 Hz)-, beta (20–30 Hz), gamma (30–80 Hz)-, and high-gamma (80–150 Hz)-frequency bands were consistently larger in the dorsal regions (ACC and PrL) compared with ventral regions (IL and DP). In dorsal regions the peak power of spindle, beta, and gamma activity occurred early after onset of the Up-state. In the ventral regions, especially the DP, the oscillatory power in the spindle-, beta-, and gamma-frequency ranges peaked later in the Up-state. These results suggest variations in fast network oscillations within the mPFC that may reflect the different functions and connectivity of these subregions. NEW & NOTEWORTHY We demonstrate, in the urethane-anesthetized rat, that within the medial prefrontal cortex (mPFC) there are clear subregional differences in the fast network oscillations associated with the slow oscillation Up-state. These differences, particularly between the dorsal and ventral

  2. Effect of different Thai traditional processing of various hot chili peppers on urethane-induced somatic mutation and recombination in Drosophila melanogaster: assessment of the role of glutathione transferase activity.

    PubMed

    Laohavechvanich, P; Kangsadalampai, K; Tirawanchai, N; Ketterman, A J

    2006-08-01

    Four different Thai traditional chili peppers, namely bird pepper (Capsicum frutescens), red chili spur peppers (Capsicum annuum), green bell peppers and sweet pepper (C. annuum) were investigated for their antimutagenic properties. Each chili was prepared in three formulations commonly used for chili food processing; raw paste (chili ground in water), pickled in vinegar or stir-fried in palm oil. Each sample was tested for its antimutagenic effect against urethane by using the somatic mutation and recombination of wing hair of Drosophila melanogaster as an indicator. Three-day-old larvae, trans-heterozygous for two genetic markers, multiple wing hairs mwh and orrigon (ORR;flr3), were exposed to urethane alone or in combination with each chili formulation. The various processing methods for chilies differentially extracted the antimutagenic chili components. The specific chili as well as the method of processing influenced the observed antimutagenic properties against urethane. This suggested each chili contains a unique complex mixture of many antimutagens. Co-treatment and pre-treatment experiments showed that both direct and indirect protective mechanisms are involved in an 'activation' process to give antimutagenesis effects. An association between antigenotoxicity and glutathione transferase activity could not be established.

  3. Adhesive organ regeneration in Macrostomum lignano.

    PubMed

    Lengerer, Birgit; Hennebert, Elise; Flammang, Patrick; Salvenmoser, Willi; Ladurner, Peter

    2016-06-02

    Flatworms possess pluripotent stem cells that can give rise to all cell types, which allows them to restore lost body parts after injury or amputation. This makes flatworms excellent model systems for studying regeneration. In this study, we present the adhesive organs of a marine flatworm as a simple model system for organ regeneration. Macrostomum lignano has approximately 130 adhesive organs at the ventral side of its tail plate. One adhesive organ consists of three interacting cells: one adhesive gland cell, one releasing gland cell, and one modified epidermal cell, called an anchor cell. However, no specific markers for these cell types were available to study the regeneration of adhesive organs. We tested 15 commercially available lectins for their ability to label adhesive organs and found one lectin (peanut agglutinin) to be specific to adhesive gland cells. We visualized the morphology of regenerating adhesive organs using lectin- and antibody staining as well as transmission electron microscopy. Our findings indicate that the two gland cells differentiate earlier than the connected anchor cells. Using EdU/lectin staining of partially amputated adhesive organs, we showed that their regeneration can proceed in two ways. First, adhesive gland cell bodies are able to survive partial amputation and reconnect with newly formed anchor cells. Second, adhesive gland cell bodies are cleared away, and the entire adhesive organ is build anew. Our results provide the first insights into adhesive organ regeneration and describe ten new markers for differentiated cells and tissues in M. lignano. The position of adhesive organ cells within the blastema and their chronological differentiation have been shown for the first time. M. lignano can regenerate adhesive organs de novo but also replace individual anchor cells in an injured organ. Our findings contribute to a better understanding of organogenesis in flatworms and enable further molecular investigations of cell

  4. Bio-inspired adhesion: local chemical environments impact adhesive stability

    NASA Astrophysics Data System (ADS)

    Gebbie, Matthew A.; Rapp, Michael V.; Yu, Jing; Wei, Wei; Waite, J. Herbert; Israelachvili, Jacob N.

    2014-03-01

    3,4-dihydroxyphenylalanine (Dopa) is an amino acid that is naturally synthesized by marine mussels and exhibits the unique ability to strongly bind to surfaces in aqueous environments. However, the Dopa functional group undergoes auto-oxidation to a non-adhesive quinone form in neutral to basic pH conditions, limiting the utilization of Dopa in biomedical applications. In this work, we performed direct surface force measurements with in situ electrochemical control across a Dopa-rich native mussel foot protein (mfp-5), as well as three simplified model peptide sequences. We find that the neighboring peptide residues can significantly impact the redox stability of Dopa functional groups, with lysine residues imparting a substantial degree of Dopa redox stabilization. Surprisingly, the local chemical environments only minimally impact the magnitude of the adhesion forces measured between molecularly-smooth mica and gold surfaces. Our results provide molecular level insight into approaches that can be used to mitigate the detrimental impact of Dopa auto-oxidation, thus suggesting new molecular design strategies for improving the performance of Dopa-based underwater adhesives.

  5. Ceramic adhesive restorations and biomimetic dentistry: tissue preservation and adhesion.

    PubMed

    Tirlet, Gil; Crescenzo, Hélène; Crescenzo, Dider; Bazos, Panaghiotis

    2014-01-01

    Thanks to sophisticated adhesive techniques in contemporary dentistry, and the development of composite and ceramic materials, it is possible to reproduce a biomimetic match between substitution materials and natural teeth substrates. Biomimetics or bio-emulation allows for the association of two fundamental parameters at the heart of current therapeutic treatments: tissue preservation and adhesion. This contemporary concept makes the retention of the integrity of the maximum amount of dental tissue possible, while offering exceptional clinical longevity, and maximum esthetic results. It permits the conservation of the biological, esthetic, biomechanical and functional properties of enamel and dentin. Today, it is clearly possible to develop preparations allowing for the conservation of the enamel and dentin in order to bond partial restorations in the anterior and posterior sectors therefore limiting, as Professor Urs Belser from Geneva indicates, "the replacement of previous deficient crowns and devitalized teeth whose conservation are justified but whose residual structural state are insufficient for reliable bonding."1 This article not only addresses ceramic adhesive restoration in the anterior area, the ambassadors of biomimetic dentistry, but also highlights the possibility of occasionally integrating one or two restorations at the heart of the smile as a complement to extensive rehabilitations that require more invasive treatment.

  6. Adhesives for fixed orthodontic bands.

    PubMed

    Millett, D T; Glenny, A M; Mattick, C R; Hickman, J; Mandall, N A

    2007-04-18

    Orthodontic treatment involves using fixed or removable appliances (dental braces) to correct the positions of teeth. It has been shown that the quality of treatment result obtained with fixed appliances is much better than with removable appliances. Fixed appliances are, therefore, favoured by most orthodontists for treatment. The success of a fixed orthodontic appliance depends on the metal attachments (brackets and bands) being attached securely to the teeth so that they do not become loose during treatment. Brackets are usually attached to the front and side teeth, whereas bands (metal rings that go round the teeth) are more commonly used on the back teeth (molars). A number of adhesives are available to attach bands to teeth and it is important to understand which group of adhesives bond most reliably, as well as reducing or preventing dental decay during the treatment period. To evaluate the effectiveness of the adhesives used to attach bands to teeth during fixed appliance treatment, in terms of:(1) how often the bands come off during treatment; and(2) whether they protect the banded teeth against decay during fixed appliance treatment. Electronic databases were searched: the Cochrane Oral Health Group's Trials Register (29th January 2007), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2007, Issue 1), MEDLINE (1966 to 29th January 2007) and EMBASE (1980 to 29th January 2007). A search of the internet was also undertaken. There was no restriction with regard to publication status or language of publication. Randomised and controlled clinical trials (RCTs and CCTs) (including split-mouth studies) of adhesives used to attach orthodontic bands to molar teeth were selected. Patients with full arch fixed orthodontic appliance(s) who had bands attached to molars were included. All review authors were involved in study selection, validity assessment and data extraction without blinding to the authors, adhesives used or results

  7. Adhesives for fixed orthodontic bands.

    PubMed

    Millett, Declan T; Glenny, Anne-Marie; Mattick, Rye Cr; Hickman, Joy; Mandall, Nicky A

    2016-10-25

    Orthodontic treatment involves using fixed or removable appliances (dental braces) to correct the positions of teeth. It has been shown that the quality of treatment result obtained with fixed appliances is much better than with removable appliances. Fixed appliances are, therefore, favoured by most orthodontists for treatment. The success of a fixed orthodontic appliance depends on the metal attachments (brackets and bands) being attached securely to the teeth so that they do not become loose during treatment. Brackets are usually attached to the front and side teeth, whereas bands (metal rings that go round the teeth) are more commonly used on the back teeth (molars). A number of adhesives are available to attach bands to teeth and it is important to understand which group of adhesives bond most reliably, as well as reducing or preventing dental decay during the treatment period. To evaluate the effectiveness of the adhesives used to attach bands to teeth during fixed appliance treatment, in terms of:(1) how often the bands come off during treatment; and(2) whether they protect the banded teeth against decay during fixed appliance treatment. The following electronic databases were searched: Cochrane Oral Health's Trials Register (searched 2 June 2016), Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 5) in the Cochrane Library (searched 2 June 2016), MEDLINE Ovid (1946 to 2 June 2016) and EMBASE Ovid (1980 to 2 June 2016). We searched ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. Randomised and controlled clinical trials (RCTs and CCTs) (including split-mouth studies) of adhesives used to attach orthodontic bands to molar teeth were selected. Patients with full arch fixed orthodontic appliance(s) who had bands attached to molars were included. All review authors

  8. Association of adipokines and adhesion molecules with indicators of obesity in women undergoing mammography screening

    PubMed Central

    2012-01-01

    Background The soluble cell adhesion molecules and adipokines are elevated in patients with obesity, hypertension, type 2 diabetes mellitus, breast cancer and atherosclerosis. Objective To investigate the relationship between anthropometric profile, dietary intake, lipid profile and fasting glycemia with serum levels of adipokines (adiponectin and PAI-1) and adhesion molecules (ICAM-1 and VCAM-1) in women without breast cancer undergoing routine mammographic screening. Design Transversal study. Subjects One hundred and forty-five women over 40-years old participated in this study. Results In 39.3% of cases the BMI was above 30 kg/m2; 46.9% had hypertension, 14.5% had type 2 Diabetes Mellitus, 31.7% had dyslipidemia and 88.3% presented a waist-to-hip ratio ≥ 0.8. A linear correlation was found between serum levels of PAI-1 and triglycerides, between serum levels of PAI-1 and WHR and between serum levels of VCAM-1 and BMI. Conclusion We found a high prevalence of obesity and metabolic syndrome. PAI-1 and VCAM-1 levels were correlated with clinical indicators of obesity and overweight. PMID:23113882

  9. A review of high-temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1981-01-01

    The development of high temperature adhesives and polyphenylquinoxalines (PPQ) is reported. Thermoplastic polyimides and linear PPQ adhesive are shown to have potential for bonding both metals and composite structures. A nadic terminated addition polyimide adhesive, LARC-13, and an acetylene terminated phenylquinoxaline (ATPQ) were developed. Both of the addition type adhesives are shown to be more readily processable than linear materials but less thermooxidatively stable and more brittle. It is found that the addition type adhesives are able to perform, at elevated temperatures up to 595 C where linear systems fail thermoplastically.

  10. Photochemical tissue bonding with chitosan adhesive films.

    PubMed

    Lauto, Antonio; Mawad, Damia; Barton, Matthew; Gupta, Abhishek; Piller, Sabine C; Hook, James

    2010-09-08

    Photochemical tissue bonding (PTB) is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB) between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Adhesive films, based on chitosan and containing ~0.1 wt% RB were manufactured and bonded to calf intestine by a solid state laser (λ = 532 nm, Fluence~110 J/cm2, spot size~0.5 cm). A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T) at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. The RB-chitosan adhesive bonded firmly to the intestine with adhesion strength of 15 ± 2 kPa, (n = 31). The adhesion strength dropped to 0.5 ± 0.1 (n = 8) kPa when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26°C to 32°C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase.

  11. Photochemical tissue bonding with chitosan adhesive films

    PubMed Central

    2010-01-01

    Background Photochemical tissue bonding (PTB) is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB) between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Methods Adhesive films, based on chitosan and containing ~0.1 wt% RB were manufactured and bonded to calf intestine by a solid state laser (λ = 532 nm, Fluence~110 J/cm2, spot size~0.5 cm). A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T) at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. Results The RB-chitosan adhesive bonded firmly to the intestine with adhesion strength of 15 ± 2 kPa, (n = 31). The adhesion strength dropped to 0.5 ± 0.1 (n = 8) kPa when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26°C to 32°C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. Conclusion A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase. PMID:20825632

  12. Theory of adhesion: Role of surface roughness

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.; Scaraggi, M.

    2014-09-01

    We discuss how surface roughness influences the adhesion between elastic solids. We introduce a Tabor number which depends on the length scale or magnification, and which gives information about the nature of the adhesion at different length scales. We consider two limiting cases relevant for (a) elastically hard solids with weak (or long ranged) adhesive interaction (DMT-limit) and (b) elastically soft solids with strong (or short ranged) adhesive interaction (JKR-limit). For the former cases we study the nature of the adhesion using different adhesive force laws (F ˜ u-n, n = 1.5-4, where u is the wall-wall separation). In general, adhesion may switch from DMT-like at short length scales to JKR-like at large (macroscopic) length scale. We compare the theory predictions to results of exact numerical simulations and find good agreement between theory and simulation results.

  13. Dental adhesion: mechanism, techniques and durability.

    PubMed

    Manuja, N; Nagpal, R; Pandit, I K

    2012-01-01

    Contemporary dental adhesives show favorable immediate results in terms of bonding effectiveness. However, the durability of resin-dentin bonds is their major problem. It appears that simplification of adhesive techniques is rather detrimental to the long-term stability of resin-tooth interface. The hydrostatic pulpal pressure, the dentinal fluid flow and the increased dentinal wetness in vital dentin can affect the intimate interaction of certain dentin adhesives with dentinal tissue. Bond degradation occurs via water sorption, hydrolysis of ester linkages of methacrylate resins, and activation of endogenous dentin matrix metalloproteinases. The three-step etch-and-rinse adhesives still remain the gold standard in terms of durability. This review discusses the fundamental process of adhesion to enamel and dentin with different adhesive techniques, factors affecting the long-term bonding performance of modern adhesives and addresses the current perspectives for improving bond durability.

  14. Theory of adhesion: role of surface roughness.

    PubMed

    Persson, B N J; Scaraggi, M

    2014-09-28

    We discuss how surface roughness influences the adhesion between elastic solids. We introduce a Tabor number which depends on the length scale or magnification, and which gives information about the nature of the adhesion at different length scales. We consider two limiting cases relevant for (a) elastically hard solids with weak (or long ranged) adhesive interaction (DMT-limit) and (b) elastically soft solids with strong (or short ranged) adhesive interaction (JKR-limit). For the former cases we study the nature of the adhesion using different adhesive force laws (F ∼ u(-n), n = 1.5-4, where u is the wall-wall separation). In general, adhesion may switch from DMT-like at short length scales to JKR-like at large (macroscopic) length scale. We compare the theory predictions to results of exact numerical simulations and find good agreement between theory and simulation results.

  15. Adhesive mechanisms in cephalopods: a review.

    PubMed

    von Byern, Janek; Klepal, Waltraud

    2006-01-01

    Several genera of cephalopods (Nautilus, Sepia, Euprymna and Idiosepius) produce adhesive secretions, which are used for attachment to the substratum, for mating and to capture prey. These adhesive structures are located in different parts of the body, viz. in the digital tentacles (Nautilus), in the ventral surface of the mantle and fourth arm pair (Sepia), in the dorsal epidermis (Euprymna), or in the dorsal mantle side and partly on the fins (Idiosepius). Adhesion in Sepia is induced by suction of dermal structures on the mantle, while for Nautilus, Euprymna and Idiosepius adhesion is probably achieved by chemical substances. Histochemical studies indicate that in Nautilus and Idiosepius secretory cells that appear to be involved in adhesion stain for carbohydrates and protein, whilst in Euprymna only carbohydrates are detectable. De-adhesion is either achieved by muscle contraction of the tentacles and mantle (Nautilus and Sepia) or by secretion of substances (Euprymna). The de-adhesive mechanism used by Idiosepius remains unknown.

  16. High-Frequency Mechanostimulation of Cell Adhesion.

    PubMed

    Kadem, Laith F; Suana, K Grace; Holz, Michelle; Wang, Wei; Westerhaus, Hannes; Herges, Rainer; Selhuber-Unkel, Christine

    2017-01-02

    Cell adhesion is regulated by molecularly defined protein interactions and by mechanical forces, which can activate a dynamic restructuring of adhesion sites. Previous attempts to explore the response of cell adhesion to forces have been limited to applying mechanical stimuli that involve the cytoskeleton. In contrast, we here apply a new, oscillatory type of stimulus through push-pull azobenzenes. Push-pull azobenzenes perform a high-frequency, molecular oscillation upon irradiation with visible light that has frequently been applied in polymer surface relief grating. We here use these oscillations to address single adhesion receptors. The effect of molecular oscillatory forces on cell adhesion has been analyzed using single-cell force spectroscopy and gene expression studies. Our experiments demonstrate a reinforcement of cell adhesion as well as upregulated expression levels of adhesion-associated genes as a result of the nanoscale "tickling" of integrins. This novel type of mechanical stimulus provides a previously unprecedented molecular control of cellular mechanosensing.

  17. LARC-13 polyimide adhesive bonding

    NASA Technical Reports Server (NTRS)

    Saint Clair, T. L.; Progar, D. J.

    1979-01-01

    The development of an addition-curing polyimide adhesive suitable for low pressure bonding without the generation of volatiles during cure is reported. LARC-13 is designed for bonding of polyimide matrix composites and of titanium to be used above 500 F, and is based on an oligomeric bis-nadimide which allows its processing at 50 psi or less, making it suitable for the bonding of fragile honeycomb sandwich structures. Few volatiles are evolved during its cure allowing large enclosed structures to be bonded, and it has high room and elevated temperature strengths and good strength retention after short terms up to 1100 F. LARC-13 was successfully used to bond the outer and inner skins of a polyimide/graphite wing shear panel for 500 F use, and for a short-term exposure up to 1100 F. Preparation of the adhesive, bonding, aging, and testing of lap shear and honeycomb samples are discussed.

  18. Acetylene-terminated polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Hanky, A. O.

    1983-01-01

    The nadic-encapped LARC-13 addition polyimide exhibits excellent flow, is easy to process, and can be utilized for short terms at temperatures up to 593 C. It retains good lap shear strength as an adhesive for titanium after aging in air up to 125 hours at 316 C; but lap shear strength degrades with longer exposures at that temperature. Thermid 600, an addition polyimide that is acetylene encapped, exhibits thermomechanical properties even after long term exposure in at air at 316 C. An inherent drawback of this system is that it has a narrow processing window. An acetylene encapped, addition polyimide which is a hybrid of these two systems was developed. It has good retention of strength after long term aging and is easily processed. The synthesis and characterization of various molecular weight oligomers of this system are discussed as well as the bonding, aging, and testing of lap shear adhesive samples.

  19. Ocular surface sealants and adhesives.

    PubMed

    Bhatia, Subir Singh

    2006-07-01

    Tissue adhesives, both synthetic and biologic, have a long history of use in ophthalmology. Cyanoacrylate-based glues have traditionally been the most widely used glues for various purposes. They have been specially useful for treating corneal perforations and have had significantly improved long-term outcomes. More recently, fibrin-based glues have gained a major role as a suture substitute for attaching biologic tissues and as surface sealants. The literature supports expanded use of fibrin glue in this fashion. Other new agents, such as polyethyelene glycols, have been underutilized and hold promise, especially as surface protectants. Numerous other glues are being developed and show promise as ocular surface sealants and protective membranes. Advances in knowledge about tissue adhesives are leading to more effective and efficient ophthalmic care.

  20. Particle adhesion in powder coating

    SciTech Connect

    Mazumder, M.K.; Wankum, D.L.; Knutson, M.; Williams, S.; Banerjee, S.

    1996-12-31

    Electrostatic powder coating is a widely used industrial painting process. It has three major advantages: (1) it provides high quality durable finish, (2) the process is environmentally friendly and does not require the use of organic solvents, and (3) it is economically competitive. The adhesion of electrostatically deposited polymer paint particles on the grounded conducting substrate depends upon many parameters: (a) particle size and shape distributions, (b) electrostatic charge distributions, (c) electrical resistivity, (d) dielectric strength of the particles, (e) thickness of the powder film, (f) presence and severity of the back corona, and (g) the conductivity and surface properties of the substrate. The authors present a model on the forces of deposition and adhesion of corona charged particles on conducting substrates.