Science.gov

Sample records for 89y nmr signal

  1. Producing >60,000-fold room-temperature 89Y NMR signal enhancement

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Jindal, Ashish; Merritt, Matthew; Malloy, Craig; Sherry, A. Dean; Kovacs, Zoltan

    2011-03-01

    89 Y in chelated form is potentially valuable in medical imaging because its chemical shift is sensitive to local factors in tumors such as pH. However, 89 Y has a low gyromagnetic ratio γn thus its NMR signal is hampered by low thermal polarization. Here we show that we can enhance the room-temperature NMR signal of 89 Y up to 65,000 times the thermal signal, which corresponds to 10 % nuclear polarization, via fast dissolution dynamic nuclear polarization (DNP). The relatively long spin-lattice relaxation time T1 (~ 500 s) of 89 Y translates to a long polarization lifetime. The 89 Y NMR enhancement is optimized by varying the glassing matrices and paramagnetic agents as well as doping the samples with a gadolinium relaxation agent. Co-polarization of 89 Y-DOTA with a 13 C sample shows that both nuclear spin species acquire the same spin temperature Ts , consistent with thermal mixing mechanism of DNP. The high room-temperature NMR signal enhancement places 89 Y, one of the most challenging nuclei to detect by NMR, in the list of viable magnetic resonance imaging (MRI) agents when hyperpolarized under optimized conditions. This work is supported in part by the National Institutes of Health grant numbers 1R21EB009147-01 and RR02584.

  2. The Relationship between NMR Chemical Shifts of Thermally Polarized and Hyperpolarized (89) Y Complexes and Their Solution Structures.

    PubMed

    Xing, Yixun; Jindal, Ashish K; Regueiro-Figueroa, Martín; Le Fur, Mariane; Kervarec, Nelly; Zhao, Piyu; Kovacs, Zoltan; Valencia, Laura; Pérez-Lourido, Paulo; Tripier, Raphaël; Esteban-Gómez, David; Platas-Iglesias, Carlos; Sherry, A Dean

    2016-11-07

    Recently developed dynamic nuclear polarization (DNP) technology offers the potential of increasing the NMR sensitivity of even rare nuclei for biological imaging applications. Hyperpolarized (89) Y is an ideal candidate because of its narrow NMR linewidth, favorable spin quantum number (I=1/2 ), and long longitudinal relaxation times (T1 ). Strong NMR signals were detected in hyperpolarized (89) Y samples of a variety of yttrium complexes. A dataset of (89) Y NMR data composed of 23 complexes with polyaminocarboxylate ligands was obtained using hyperpolarized (89) Y measurements or (1) H,(89) Y-HMQC spectroscopy. These data were used to derive an empirical equation that describes the correlation between the (89) Y chemical shift and the chemical structure of the complexes. This empirical correlation serves as a guide for the design of (89) Y sensors. Relativistic (DKH2) DFT calculations were found to predict the experimental (89) Y chemical shifts to a rather good accuracy.

  3. Flux Line Dynamics in YBa2Cu4O8 From 89Y NMR

    NASA Astrophysics Data System (ADS)

    Tabak, F.; Corti, M.; Rigamonti, A.

    1997-01-01

    89Y NMR linewidth D n and spin lattice relaxation rate T1-1 measurements have been performed in high Tc superconductor YBa2Cu4O8 (Tc=81K) for both H0 Vert c and H0 perp c at H0= 9.4 T and H0= 5.9 T. T1-1 shows an anomalous enhancement with a maximum above the irreversibility line Tirr. The maximum shifts to higher temperature for lower magnetic field similar to the behaviour of Tirr(H), indicating that the thermal motion of flux lines is the cause of the anomalous enhancement together with the extra narrowing of 89Y NMR line for Tto Tc.

  4. YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy

    SciTech Connect

    Hoeting, Christoph; Eckert, Hellmut; Langer, Thorsten; Schellenberg, Inga; Poettgen, Rainer

    2012-06-15

    The stannides YPdSn and YPd{sub 2}Sn were synthesized by high-frequency melting of the elements in sealed tantalum tubes. Both structures were refined on the basis of single crystal X-ray diffractometer data: TiNiSi type, Pnma, a=715.4(1), b=458.8(1), c=789.1(1) pm, wR2=0.0461, 510 F{sup 2} values, 20 variables for YPdSn and MnCu{sub 2}Al type, Fm3 Macron m, a=671.44(8), wR2=0.0740, 55 F{sup 2} values, 5 parameters for YPd{sub 2}Sn. The yttrium atoms in the new stannide YPdSn are coordinated by two tilted Pd{sub 3}Sn{sub 3} hexagons (ordered AlB{sub 2} superstructure). In the Heusler phase YPd{sub 2}Sn each yttrium atom has octahedral tin coordination and additionally eight palladium neighbors. The cubic site symmetry of yttrium is reflected in the {sup 119}Sn Moessbauer spectrum which shows no quadrupole splitting. In contrast, YPdSn shows a single signal at {delta}=1.82(1) mm/s subjected to quadrupole splitting of {Delta}E{sub Q}=0.93(1) mm/s. Both compounds have been characterized by high-resolution {sup 89}Y solid state NMR spectroscopy, which indicates the presence of strong Knight shifts. The spectrum of YPd{sub 2}Sn is characterized by an unusually large linewidth, suggesting the presence of a Knight shift distribution reflecting local disordering effects. The range of {sup 89}Y Knight shifts of several binary and ternary intermetallic yttrium compounds is briefly discussed. - Graphical abstract: YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of ternary stannides YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopic investigation of YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 89}Y solid state NMR of intermetallics.

  5. Nanoscopic yttrium oxide fluorides: non-aqueous fluorolytic sol-gel synthesis and structural insights by 19F and 89Y MAS NMR.

    PubMed

    Scholz, G; Dreger, M; Bertram, R; Kemnitz, E

    2015-08-14

    Nanoscopic yttrium acetate fluorides Y(CH(3)COO)(3-z)F(z) and yttrium oxide fluorides YO(3-z)/(2)F(z )were prepared with tunable Y/F molar ratios via the fluorolytic sol-gel route. All samples were characterized by X-ray diffraction, elemental analysis and thermal analysis. In addition, local structures of all samples were studied by (19)F MAS, (19)F-(89)Y CP MAS and (1)H-(89)Y CP MAS NMR spectroscopy and the respective chemical shifts are given. For both classes of compounds, only the fluorination using one equivalent of F (z = 1) leads to defined, well crystalline matrices: yttrium acetate fluoride Y(CH(3)COO)(2)F and r-YOF.

  6. The Spin-Lattice Relaxation of Hyperpolarized 89Y Complexes

    NASA Astrophysics Data System (ADS)

    Jindal, Ashish; Lumata, Lloyd; Xing, Yixun; Merritt, Matthew; Zhao, Piyu; Malloy, Craig; Sherry, Dean; Kovacs, Zoltan

    2011-03-01

    The low sensitivity of NMR can be overcome by dynamic nuclear polarization (DNP). However, a limitation to the use of hyperpolarized materials is the signal decay due to T1 relaxation. Among NMR-active nuclei, 89 Y is potentially valuable in medical imaging because in chelated form, pH-sensitive agents can be developed. 89 Y also offers many attractive features -- 100 % abundance, a 1/2 spin, and a long T1 , up to 10 min. Yet, developing new 89 Y complexes with even longer T1 values is desirable. Designing such complexes relies upon understanding the mechanism(s) responsible for T1 relaxation. We report an approach to hyperpolarized T1 measurements that enabled an analysis of relaxation mechanisms by selective deuteration of the ligand backbone, the solvent or both. Hyperpolarized 89 Y -- DTPA, DOTA, EDTA, and deuterated EDTA complexes were studied. Results suggest that substitution of low-gamma nuclei on the ligand backbone as opposed to that of the solvent most effectively increase the 89 Y T1 . These results are encouraging for in vivo applications as the presence of bound water may not dramatically affect the T1 .

  7. Synthesis and structure of tridentate bis(phosphinic amide)-phosphine oxide complexes of yttrium nitrate. Applications of 31P,89Y NMR methods in structural elucidation in solution.

    PubMed

    Popovici, Cristinel; Fernández, Ignacio; Oña-Burgos, Pascual; Roces, Laura; García-Granda, Santiago; Ortiz, Fernando López

    2011-07-07

    The synthesis and characterisation of a tridentate ligand containing two diphenylphosphinic amide side-arms connected through the ortho position to a phenylphosphine oxide moiety and the 1:1 and 2:1 complexes formed with yttrium nitrate are reported for the first time. The free ligand (R(P1)*,S(P3)*)-11 is obtained diastereoselectively by reaction of ortho-lithiated N,N-diisopropyl-P,P-diphenylphosphinic amide with phenylphosphonic dichloride. Complexes [Y((R(P1)*,S(P3)*)-11)(NO(3))(3)] and [Y((R(P1)*,S(P3)*)-11)(2)(NO(3))](NO(3))(2) were isolated by mixing ligand 11 with Y(NO(3))(3)·6H(2)O in acetonitrile at room temperature in a ligand to metal molar ratio of 1:1 and 2:1, respectively. The 1:1 derivative is the product of thermodynamic control when a molar ratio of ligand to yttrium salt of 1:1 is used. The new compounds have been characterised both as the solid (X-ray diffraction) and in solution (multinuclear magnetic resonance). In both yttrium complexes the ligand acts as a tridentate chelate. The arrangement of the two ligands in the 2:1 complex affords a pseudo-meso structure. Tridentate chelation of yttrium(III) in both complexes is retained in solution as evidenced by (89)Y NMR data obtained via(31)P,(89)Y-HMQC, and (89)Y,(31)P-DEPT experiments. The investigation of the solution behaviour of the Y(III) complexes through PGSE NMR diffusion measurements showed that average structures in agreement with the 1:1 and 1:2 stoichiometries are retained in acetonitrile.

  8. Hyperpolarized 89Y NMR spectroscopic detection of yttrium ion and DOTA macrocyclic ligand complexation: pH dependence and Y-DOTA intermediates

    NASA Astrophysics Data System (ADS)

    Ferguson, Sarah; Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Kovacs, Zoltan; Lumata, Lloyd

    Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging physics technique used to enhance the signal strength in nuclear magnetic resonance (NMR) and imaging (MRI) experiments for nuclear spins such as yttrium-89 by >10,000-fold. One of the most common and stable MRI contrast agents used in the clinic is Gd-DOTA. In this work, we have investigated the binding of the yttrium and DOTA ligand as a model for complexation of Gd ion and DOTA ligand. The macrocyclic ligand DOTA is special because its complexation with lanthanide ions such as Gd3+ or Y3+ is highly pH dependent. Using this physics technology, we have tracked the complexation kinetics of hyperpolarized Y-triflate and DOTA ligand in real-time and detected the Y-DOTA intermediates. Different kinds of buffers were used (lactate, acetate, citrate, oxalate) and the pseudo-first order complexation kinetic calculations will be discussed. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  9. Real-time tracking of dissociation of hyperpolarized 89Y-DTPA: a model for degradation of open-chain Gd3+ MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ferguson, Sarah; Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Kovacs, Zoltan; Lumata, Lloyd

    Gadolinium (Gd) complexes are widely used relaxation-based clinical contrast agents in magnetic resonance imaging (MRI). Gd-based MRI contrast agents with open-chain ligand such as Gd-DTPA, commercially known as magnevist, are less stable compared to Gd complexes with macrocyclic ligands such as GdDOTA (Dotarem). The dissociation of Gd-DPTA into Gd ion and DTPA ligand under certain biological conditions such as high zinc levels can potentially cause kidney damage. Since Gd is paramagnetic, direct NMR detection of the Gd-DTPA dissociation is quite challenging due to ultra-short relaxation times. In this work, we have investigated Y-DTPA as a model for Gd-DPTA dissociation under high zinc content solutions. Using dissolution dynamic nuclear polarization (DNP), the 89Y NMR signal is amplified by several thousand-fold. Due to the the relatively long T1 relaxation time of 89Y which translates to hyperpolarization lifetime of several minutes, the dissociation of Y-DTPA can be tracked in real-time by hyperpolarized 89Y NMR spectroscopy. Dissociation kinetic rates and implications on the degradation of open-chain Gd3+ MRI contrast agents will be discussed. This work was supported by the U.S. Department of Defense Award Number W81XWH-14-1-0048 and by the Robert A. Welch Foundation research Grant Number AT-1877.

  10. A (25)Mg, (89)Y and (115)In solid state MAS NMR study of YT2X and Y(T0.5T'0.5)2X (T/T' = Pd, Ag, Au; X = Mg, In) Heusler phases.

    PubMed

    Benndorf, Christopher; Stein, Sebastian; Heletta, Lukas; Kersting, Marcel; Eckert, Hellmut; Pöttgen, Rainer

    2016-12-20

    Yttrium-transition metal-magnesium (indium) Heusler phases YPd2Mg, YPd2In, YAg2Mg, YAg2In, YAu2Mg, and YAu2In and their quaternary compounds (solid solutions) Y(Pd0.5Ag0.5)2Mg, Y(Pd0.5Ag0.5)2In, Y(Pd0.5Au0.5)2Mg, Y(Pd0.5Au0.5)2In, Y(Ag0.5Au0.5)2Mg and Y(Ag0.5Au0.5)2In were synthesized from the elements in sealed niobium ampoules in a high-frequency furnace or by arc-melting, respectively. All compounds crystallize with the cubic MnCu2Al type structure (Heusler phase), space group Fm3[combining macron]m. The structure of Y(Ag0.39Au0.61)2Mg was refined from single crystal X-ray diffractometer data: a = 689.97(5) pm, wR2 = 0.0619, 52 F(2) values, 6 parameters. Magnetic susceptibility measurements show Pauli paramagnetic behavior for all samples. The compounds were investigated by (25)Mg, (89)Y and (115)In solid state MAS NMR spectroscopy. Large positive resonance shifts are observed for all nuclei. A review of the present data in the context of literature data on isotypic Heusler phases with Cd and Sn indicates that the (89)Y shifts show a correlation with the electronegativity of the main group atoms (Mg, Cd, In, Sn). The solid solutions Y(Ag1-xTx)2Mg (x = 0.1, 0.25, 0.33, 0.5; T = Pd, Au) clearly show Vegard-like behavior concerning their lattice parameters, and their main group element resonance shifts arising from spin and orbital contributions are close to the interpolated values of the corresponding end-member compounds.

  11. Experimentally constrained (p ,γ )89Y and (n ,γ )89Y reaction rates relevant to p -process nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Larsen, A. C.; Guttormsen, M.; Schwengner, R.; Bleuel, D. L.; Goriely, S.; Harissopulos, S.; Bello Garrote, F. L.; Byun, Y.; Eriksen, T. K.; Giacoppo, F.; Görgen, A.; Hagen, T. W.; Klintefjord, M.; Renstrøm, T.; Rose, S. J.; Sahin, E.; Siem, S.; Tornyi, T. G.; Tveten, G. M.; Voinov, A. V.; Wiedeking, M.

    2016-04-01

    The nuclear level density and the γ -ray strength function have been extracted for 89Y by using the Oslo method on 89Y(p ,p'γ )89Y coincidence data. The γ -ray strength function displays a low-energy enhancement consistent with previous observations in this mass region (Mo-9893). Shell-model calculations support the conclusion that the observed enhancement is due to strong, low-energy M 1 transitions at high excitation energies. The data were further used as input for calculations of the 88Sr(p ,γ )89Y and 88Y(n ,γ )89Y cross sections with the talys reaction code. Comparison with cross-section data, where available, as well as with values from the BRUSLIB library, shows a satisfying agreement.

  12. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    PubMed

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  13. Dynamic Nuclear Polarization NMR of Low-γ Nuclei: Structural Insights into Hydrated Yttrium-Doped BaZrO3.

    PubMed

    Blanc, Frédéric; Sperrin, Luke; Lee, Daniel; Dervişoğlu, Rıza; Yamazaki, Yoshihiro; Haile, Sossina M; De Paëpe, Gaël; Grey, Clare P

    2014-07-17

    We demonstrate that solid-state NMR spectra of challenging nuclei with a low gyromagnetic ratio such as yttrium-89 can be acquired quickly with indirect dynamic nuclear polarization (DNP) methods. Proton to (89)Y cross polarization (CP) magic angle spinning (MAS) spectra of Y(3+) in a frozen aqueous solution were acquired in minutes using the AMUPol biradical as a polarizing agent. Subsequently, the detection of the (89)Y and (1)H NMR signals from technologically important hydrated yttrium-doped zirconate ceramics, in combination with DFT calculations, allows the local yttrium and proton environments present in these protonic conductors to be detected and assigned to different hydrogen-bonded environments.

  14. Innovative surface NMR signal processing to significantly improve data quality

    NASA Astrophysics Data System (ADS)

    Neyer, F. M.; Hertrich, M.; Greenhalgh, S. A.

    2010-12-01

    Surface Nuclear Magnetic Resonance (SNMR) is a relatively new geophysical technique primarily used for water detection in the shallow subsurface. Magnetic fields arising from current pulses in a surface loop antenna penetrate the subsurface and interact with the hydrogen protons of liquid water. Among the various geophysical methods, surface NMR is unique in that it is directly sensitive to water molecules. Hence it has the powerful potential to quantitatively map the water distribution with depth. The signal measurement relies on the principle of induction that creates a weak voltage in the range of nV to a few μV in the surface receiver loop. However, the record is obscured by (i) man-made, industrial, and cultural (harmonic) noise such as power-lines and railway tracks, (ii) spike events (incoherent noise), and (iii) atmospheric background noise (random). Extreme hardware requirements and the weakness of the signal cause the records to be heavily noise contaminated in general. As a consequence, efficient noise suppression techniques are required to extract the weak surface NMR signal, i.e. stacking, loop design, and digital post-processing. In this study, we present a state-of-the-art workflow for full time series NMR data processing. As a first step, random spike events are removed from all records. Reference channels are further used to create a shaping filter by which the noise component in signal record is largely reduced. In the latter stage, signal extraction is performed using digital quadrature detection with an additional phase correction. The filter design is based on a least-squares approach using different input channels. This multi-dimensional Wiener filter method allows for a multi-channel noise reduction. Today, state-of-the-art full bandwidth multi-channel recording systems offer the possibility to record four channels simultaneously. Therefore, it is possible to use up to three reference channels for noise attenuation. By analyzing the optimal

  15. Nanoscale Catalysts for NMR Signal Enhancement by Reversible Exchange

    PubMed Central

    2015-01-01

    Two types of nanoscale catalysts were created to explore NMR signal enhancement via reversible exchange (SABRE) at the interface between heterogeneous and homogeneous conditions. Nanoparticle and polymer comb variants were synthesized by covalently tethering Ir-based organometallic catalysts to support materials composed of TiO2/PMAA (poly(methacrylic acid)) and PVP (polyvinylpyridine), respectively, and characterized by AAS, NMR, and DLS. Following parahydrogen (pH2) gas delivery to mixtures containing one type of “nano-SABRE” catalyst particle, a target substrate, and ethanol, up to ∼(−)40-fold and ∼(−)7-fold 1H NMR signal enhancements were observed for pyridine substrates using the nanoparticle and polymer comb catalysts, respectively, following transfer to high field (9.4 T). These enhancements appear to result from intact particles and not from any catalyst molecules leaching from their supports; unlike the case with homogeneous SABRE catalysts, high-field (in situ) SABRE effects were generally not observed with the nanoscale catalysts. The potential for separation and reuse of such catalyst particles is also demonstrated. Taken together, these results support the potential utility of rational design at molecular, mesoscopic, and macroscopic/engineering levels for improving SABRE and HET-SABRE (heterogeneous-SABRE) for applications varying from fundamental studies of catalysis to biomedical imaging. PMID:26185545

  16. Measurements of the ^89Y(n,n')^89Y^m reaction cross section using the ASP D-T fusion source

    NASA Astrophysics Data System (ADS)

    Simons, Andrew; Gardner, Matthew; Williams, Ben; Rubery, Michael

    2012-10-01

    A programme of measurements of the ^89Y(n,n')^89Y^m reaction cross section has commenced at AWE using the ASP accelerator to impinge deuterons onto tritiated titanium layers mounted on copper discs producing fluxes of approximately 10^11 neutrons per second. The neutrons are generated for up to half an hour and are used to excite Yttrium into its first isomeric state at 909.1 keV which then decays with a half life of 15.7 seconds. Two other high purity foils (of ^27Al and ^63,65Cu) are used as a reference to establish consistency between the isotopes energetic and temporal decay signatures. These foils mainly serve to check the reported total neutron fluence, produced by the accelerator, incident on the targets. The activation foils are extracted from the irradiation position by a pneumatic transfer system in ˜ 7 seconds and are transferred to the counting station in 5 to 30 seconds. Data are taken with a BEGe detector and recorded with both a Canberra Genie analogue system and a Xia Pixie-4 digital system. The results from the first campaigns are presented with a discussion of improvements and future plans.

  17. Irreversible Catalyst Activation Enables Hyperpolarization and Water Solubility for NMR Signal Amplification by Reversible Exchange

    DTIC Science & Technology

    2016-09-12

    Irreversible Catalyst Activation Enables Hyperpolarization and Water Solubility for NMR Signal Amplification by Reversible Exchange Milton L. Truong...Supporting Information ABSTRACT: Activation of a catalyst [IrCl(COD)(IMes)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene; COD = cyclooctadiene...for signal amplification by reversible exchange (SABRE) was monitored by in situ hyperpolarized proton NMR at 9.4 T. During the catalyst -activation

  18. Fractional motion model for characterization of anomalous diffusion from NMR signals.

    PubMed

    Fan, Yang; Gao, Jia-Hong

    2015-07-01

    Measuring molecular diffusion has been used to characterize the properties of living organisms and porous materials. NMR is able to detect the diffusion process in vivo and noninvasively. The fractional motion (FM) model is appropriate to describe anomalous diffusion phenomenon in crowded environments, such as living cells. However, no FM-based NMR theory has yet been established. Here, we present a general formulation of the FM-based NMR signal under the influence of arbitrary magnetic field gradient waveforms. An explicit analytic solution of the stretched exponential decay format for NMR signals with finite-width Stejskal-Tanner bipolar pulse magnetic field gradients is presented. Signals from a numerical simulation matched well with the theoretical prediction. In vivo diffusion-weighted brain images were acquired and analyzed using the proposed theory, and the resulting parametric maps exhibit remarkable contrasts between different brain tissues.

  19. Fractional motion model for characterization of anomalous diffusion from NMR signals

    NASA Astrophysics Data System (ADS)

    Fan, Yang; Gao, Jia-Hong

    2015-07-01

    Measuring molecular diffusion has been used to characterize the properties of living organisms and porous materials. NMR is able to detect the diffusion process in vivo and noninvasively. The fractional motion (FM) model is appropriate to describe anomalous diffusion phenomenon in crowded environments, such as living cells. However, no FM-based NMR theory has yet been established. Here, we present a general formulation of the FM-based NMR signal under the influence of arbitrary magnetic field gradient waveforms. An explicit analytic solution of the stretched exponential decay format for NMR signals with finite-width Stejskal-Tanner bipolar pulse magnetic field gradients is presented. Signals from a numerical simulation matched well with the theoretical prediction. In vivo diffusion-weighted brain images were acquired and analyzed using the proposed theory, and the resulting parametric maps exhibit remarkable contrasts between different brain tissues.

  20. NMR assignment method for amide signals with cell-free protein synthesis system.

    PubMed

    Kohno, Toshiyuki

    2010-01-01

    Nuclear magnetic resonance (NMR) methods are widely used to determine the three-dimensional structures of proteins, to estimate protein folding, and to discover high-affinity ligands for proteins. However, one of the problems to apply such NMR methods to proteins is that we should obtain mg quantities of (15)N and/or (13)C labeled pure proteins of interest. Here, we describe the method to produce dual amino acid-selective (13)C-(15)N labeled proteins for NMR study using the improved wheat germ cell-free system, which enables sequence-specific assignments of amide signals simply even for very large protein.

  1. Accumulation of NMR signals in a BS-487 high-resolution spectrometer

    SciTech Connect

    Zagitov, G.N.; Zeleev, M.K.; Valiakhmetov, I.A.

    1992-02-01

    A system for accumulation of NMR signals in a BS-487 spectrometer using an Iskra-1256 computer system is described. The spectrometer`s scanning frequency is controlled by a G3-110 precision low-frequency signal generator. 3 refs., 3 figs.

  2. Purity assessment problem in quantitative NMR--impurity resonance overlaps with monitor signal multiplets from stereoisomers.

    PubMed

    Malz, Frank; Jancke, Harald

    2006-06-01

    This paper describes the situation that can emerge when the signals to be evaluated in quantitative NMR measurements-so-called "monitor signals"--consist of several resonance lines from the stereoisomers of the analyte in addition to an impurity signal underneath. The monitor signal problem is demonstrated in the purity assessment of two samples of 2-(isopropylamino)-4-(ethylamino)-6-chloro-1,3,5-triazine (atrazine), a common herbizide which served as analyte in a CCQM intercomparison. It is shown that, in DMSO-d6 solution, a mixture of stereoisomers leads to several individual overlapping singlets, which are further split by spin-spin coupling. A measurement protocol was developed for finding and identifying an impurity that has a signal that is positioned precisely beneath the methyl signal chosen as the monitor signal in one of the samples. Quantitative NMR purity assessment is still possible in this special case, but with higher uncertainty.

  3. Production and NMR signal optimization of hyperpolarized 13C-labeled amino acids

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Ferguson, Sarah; Kiswandhi, Andhika; Lumata, Lloyd

    Amino acids are targeted nutrients for consumption by cancers to sustain their rapid growth and proliferation. 13C-enriched amino acids are important metabolic tracers for cancer diagnostics using nuclear magnetic resonance (NMR) spectroscopy. Despite this diagnostic potential, 13C NMR of amino acids however is hampered by the inherently low NMR sensitivity of the 13C nuclei. In this work, we have employed a physics technique known as dynamic nuclear polarization (DNP) to enhance the NMR signals of 13C-enriched amino acids. DNP works by transferring the high polarization of electrons to the nuclear spins via microwave irradiation at low temperature and high magnetic field. Using a fast dissolution method in which the frozen polarized samples are dissolved rapidly with superheated water, injectable solutions of 13C-amino acids with highly enhanced NMR signals (by at least 5,000-fold) were produced at room temperature. Factors that affect the NMR signal enhancement levels such as the choice of free radical polarizing agents and sample preparation will be discussed along with the thermal mixing physics model of DNP. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  4. Piezoelectric crystals generate NMR-like signals for rapid spectrometer troubleshooting.

    PubMed

    Emery, Samuel B; Conradi, Mark S

    2014-05-01

    Use of frequency-control quartz crystals for the generation of NMR-like signals via the piezoelectric effect is discussed. Such crystals are inexpensive and cover a wide range of RF frequencies. The crystal is connected to the spectrometer through a 30dB attenuator. Excitation by single, short RF pulses results in time domain signals similar to NMR FIDs. We show that the crystal should be shunted by a low resistance for largest Q (longest T2). By using odd higher overtones, the crystals were made to resonate at the high operating frequencies typical of modern spectrometers, here up to 630MHz. The performance of precision manufactured crystals is particularly better at high frequencies, compared to mass production crystals. The abundant and stable signal provided by the piezoelectric crystals yields a simple method for troubleshooting and testing NMR spectrometers.

  5. The effect of shell closure on the thermodynamic properties of 207Pb and 89Y

    NASA Astrophysics Data System (ADS)

    Dehghani, V.; Forozani, Gh.; Benam, Kh.

    2016-11-01

    Nuclear level densities of 207Pb and 89Y are calculated using the Lipkin-Nogami (LN) method and Bradeen-Cooper-Schrieffer (BCS) model. It is revealed that the calculated nuclear level densities are highly matched with the experimental data of Oslo group. The excitation energy and entropy are calculated for mentioned nuclei. In the case of two studied nuclei the characteristic of being magic for the number of neutrons or protons causes the decrease of the excitation energy and entropy contribution of magic system at low temperatures.

  6. Lithological controls on gas hydrate saturation: Insights from signal classification of NMR downhole data

    NASA Astrophysics Data System (ADS)

    Bauer, Klaus; Kulenkampff, Johannes; Henninges, Jan; Spangenberg, Erik

    2016-04-01

    Nuclear magnetic resonance (NMR) downhole data are analyzed with a new strategy to study gas hydrate-bearing sediments in the Mackenzie Delta (NW Canada). NMR logging is a powerful tool to study geological reservoir formations. The measurements are based on interactions between the magnetic moments of protons in geological formation water and an external magnetic field. Inversion of the measured raw data provides so-called transverse relaxation time (T2) distribution curves or spectra. Different parts of the T2 curve are related with distinct pore radii and corresponding fluid components. A common practice in the analysis of T2 distribution curves is to extract single-valued parameters such as apparent total porosity. Moreover, the derived total NMR apparent porosity and the gamma-gamma density log apparent porosity can be combined to estimate gas hydrate saturation in hydrate-bearing sediments. To avoid potential loss of information, in our new approach we analyze the entire T2 distribution curves as quasi-continuous signals to characterize the rock formation. The approach is applied to NMR data measured in gas hydrate research well Mallik 5L-38. We use self-organizing maps, a neural network clustering technique, to subdivide the data set of NMR T2 distribution curves into classes with a similar and distinctive signal shape. The method includes (1) preparation of data vectors, (2) unsupervised learning, (3) cluster definition, and (4) classification and depth mapping of all NMR signals. Each signal class thus represents a specific pore size distribution which can be interpreted in terms of distinct lithologies and reservoir types. A key step in the interpretation strategy is to reconcile the NMR classes with other log data not considered in the clustering analysis, such as gamma ray, photo-electric factor, hydrate saturation, and other logs. Our results defined six main lithologies within the target zone. Gas hydrate layers were recognized by their low signal

  7. Dipole strength in {sup 89}Y up to the neutron-separation energy

    SciTech Connect

    Benouaret, N.; Schwengner, R.; Rusev, G.; Doenau, F.; Beyer, R.; Erhard, M.; Junghans, A. R.; Kosev, K.; Nair, C.; Schilling, K. D.; Wagner, A.; Grosse, E.; Bendjaballah, N.

    2009-01-15

    Photoexcitation of the N=50 nucleus {sup 89}Y has been performed at the bremsstrahlung facility at the superconducting electron accelerator ELBE at electron energies of E{sub e}{sup kin}=9.5 and 13.2 MeV. About 250 levels up to the neutron-separation energy were identified. Statistical methods were applied to estimate intensities of inelastic transitions and to correct the intensities of the ground-state transitions for their branching ratios. The photoabsorption cross section derived in this way up to the neutron-separation energy is combined with the photoabsorption cross section obtained from ({gamma}, n) data and provides information about the extension of the giant dipole resonance toward energies below the neutron-separation energy. An enhancement of E1 strength has been found in the range from about 6 to 11 MeV. The experimental photoabsorption cross sections of {sup 89}Y and of the neighboring N=50 isotones {sup 88}Sr and {sup 90}Zr are compared with predictions of the quasiparticle-random-phase approximation.

  8. Investigation of Rhodopsin Dynamics in its Signaling State by Solid-State Deuterium NMR Spectroscopy

    PubMed Central

    Struts, Andrey V.; Chawla, Udeep; Perera, Suchithranga M.D.C.; Brown, Michael F.

    2017-01-01

    Site-directed deuterium NMR spectroscopy is a valuable tool to study the structural dynamics of biomolecules in cases where solution NMR is inapplicable. Solid-state 2H NMR spectral studies of aligned membrane samples of rhodopsin with selectively labeled retinal provide information on structural changes of the chromophore in different protein states. In addition, solid-state 2H NMR relaxation time measurements allow one to study the dynamics of the ligand during the transition from the inactive to the active state. Here we describe the methodological aspects of solid-state 2H NMR spectroscopy for functional studies of rhodopsin, with an emphasis on the dynamics of the retinal cofactor. We provide complete protocols for the preparation of NMR samples of rhodopsin with 11-cis-retinal selectively deuterated at the methyl groups in aligned membranes. In addition, we review optimized conditions for trapping the rhodopsin photointermediates; and lastly we address the challenging problem of trapping the signaling state of rhodopsin in aligned membrane films. PMID:25697522

  9. Parameterized signal calibration for NMR cryoporometry experiment without external standard

    NASA Astrophysics Data System (ADS)

    Stoch, Grzegorz; Krzyżak, Artur T.

    2016-08-01

    In cryoporometric experiments non-linear effects associated with the sample and the probehead bring unwanted contributions to the total signal along with the change of temperature. The elimination of these influences often occurs with the help of an intermediate measurement of a separate liquid sample. In this paper we suggest an alternative approach under certain assumptions, solely based on data from the target experiment. In order to obtain calibration parameters the method uses all of these raw data points. Its reliability is therefore enhanced as compared to other methods based on lesser number of data points. Presented approach is automatically valid for desired temperature range. The need for intermediate measurement is removed and parameters for such a calibration are naturally adapted to the individual sample-probehead combination.

  10. Differential (p,p') and (p,d) Cross Sections of 89Y and 92Zr

    NASA Astrophysics Data System (ADS)

    Wakeling, Molly; Burke, Jason; Koglin, Johnathon; McClory, John

    2016-03-01

    Differential cross sections for the (p,p') and (p,d) reactions on 89Y and 92Zr were measured using a 28.5-MeV proton beam at the 88-inch cyclotron at Lawrence Berkeley National Laboratory. Angular distributions were obtained for the ground state and several excited states of each isotope using silicon detector telescopes over angles 10° to 140° in the reaction plane. Angular distributions for unresolved higher-energy states up to 22 MeV were also obtained. These data were obtained by fitting a Gaussian function to each peak in the energy spectra using the ROOT toolkit and integrating the number of counts under each peak. The cross sections will be included in nuclear structure models so that neutron and other particle reaction cross sections can be predicted for other isotopes, including eventually those farther from stability and those whose half-lives are too short to measure experimentally.

  11. Signal enhancement in HPLC/microcoil NMR using automated column trapping.

    PubMed

    Djukovic, Danijel; Liu, Shuhui; Henry, Ian; Tobias, Brian; Raftery, Daniel

    2006-10-15

    A new HPLC NMR system is described that performs analytical separation, preconcentration, and NMR spectroscopy in rapid succession. The central component of our method is the online preconcentration sequence that improves the match between postcolumn analyte peak volume and microcoil NMR detection volume. Separated samples are collected on to a C18 guard column with a mobile phase composed of 90% D2O/10% acetonitrile-D3 and back-flushed to the NMR microcoil probe with 90% acetonitrile-D3/10% D2O. To assess the performance of our unit, we separated a standard mixture of 1 mM ibuprofen, naproxen, and phenylbutazone using a commercially available C18 analytical column. The S/N measurements from the NMR acquisitions indicated that we achieved signal enhancement factors up to 10.4 (+/-1.2)-fold. Furthermore, we observed that preconcentration factors increased as the injected amount of analyte decreased. The highest concentration enrichment of 14.7 (+/-2.2)-fold was attained injecting 100 microL of solution of 0.2 mM (approximately 4 microg) ibuprofen.

  12. Performance tuning non-uniform sampling for sensitivity enhancement of signal-limited biological NMR

    PubMed Central

    Palmer, Melissa R.; Wenrich, Broc R.; Stahlfeld, Phillip

    2014-01-01

    Non-uniform sampling (NUS) has been established as a route to obtaining true sensitivity enhancements when recording indirect dimensions of decaying signals in the same total experimental time as traditional uniform incrementation of the indirect evolution period. Theory and experiments have shown that NUS can yield up to two-fold improvements in the intrinsic signal-to-noise ratio (SNR) of each dimension, while even conservative protocols can yield 20–40 % improvements in the intrinsic SNR of NMR data. Applications of biological NMR that can benefit from these improvements are emerging, and in this work we develop some practical aspects of applying NUS nD-NMR to studies that approach the traditional detection limit of nD-NMR spectroscopy. Conditions for obtaining high NUS sensitivity enhancements are considered here in the context of enabling 1H,15N-HSQC experiments on natural abundance protein samples and 1H,13C-HMBC experiments on a challenging natural product. Through systematic studies we arrive at more precise guidelines to contrast sensitivity enhancements with reduced line shape constraints, and report an alternative sampling density based on a quarter-wave sinusoidal distribution that returns the highest fidelity we have seen to date in line shapes obtained by maximum entropy processing of non-uniformly sampled data. PMID:24682944

  13. Temporal characteristics of NMR signals from spin 3/2 nuclei of incompletely disordered systems.

    PubMed

    Woessner, D E; Bansal, N

    1998-07-01

    Anisotropic nuclear quadrupole interactions can produce residual quadrupole splitting in the NMR spectra of rapidly moving quadrupolar nuclei in incompletely disordered aqueous heterogeneous systems. Such systems may include hydrated sodium nuclei in biological tissue and biopolymer gels. To describe the NMR signals from such samples, we use a domain model in which each domain is characterized by a quadrupole frequency and a residence time of the nucleus. We show that the signals from each domain after one pulse, the quadrupole echo sequence, and the various multiple quantum filters (MQFs) can be expressed as a linear combination of five different phase coherences. To simulate the effect of various distributions (Pake powder pattern, Gaussian, etc.) of quadrupole frequencies for different domains on the NMR signal, we have written the computer program CORVUS. CORVUS also includes the effects of exchange between different domains using diffusion and random jump models. The results of computer simulations show that the Gaussian and Pake powder pattern quadrupole frequency distributions produce very different phase coherences and observable NMR signals when the exchange rate (1/taue) between different domains is slow. When 1/taue is similar to the root mean square quadrupole frequency (final sigma), the signals from the two distributions are similar. When 1/taue is an order of magnitude greater than final sigma, there is no apparent evidence of quadrupole splitting in the shape of the signal following one pulse, but the residual effects of the quadrupole splitting make a significant contribution to the fast transverse relaxation rate. Therefore, in this case, it is inappropriate to use the observed biexponential relaxation rates to obtain a single correlation time. The quadrupole echo and the various MQF signals contain an echo from the satellite transitions in the presence of quadrupole splitting. The peak of this echo is very sensitive to 1/taue. The time domain

  14. NMR signal enhancement of >50 000 times in fast dissolution dynamic nuclear polarization.

    PubMed

    Pinto, L F; Marín-Montesinos, I; Lloveras, V; Muñoz-Gómez, J L; Pons, M; Veciana, J; Vidal-Gancedo, J

    2017-03-17

    Herein, we report the synthesis and the study of a novel mixed biradical with BDPA and TEMPO radical units that are covalently bound by an ester group (BDPAesterTEMPO) as a polarizing agent for fast dissolution DNP. The biradical exhibits an extremely high DNP NMR enhancement of >50 000 times, which constitutes one of the largest signal enhancements observed so far, to the best of our knowledge.

  15. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR.

    PubMed

    Mobli, Mehdi; Hoch, Jeffrey C

    2014-11-01

    Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time domain measurement of the impulse response (the free induction decay, FID) consisted of sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier transform (DFT), the intervals are kept uniform, and the Nyquist theorem dictates the largest value of the interval sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling along an indirect time dimension, extension to multidimensional experiments employed the same sampling techniques used in one dimension, similarly subject to the Nyquist condition and suitable for processing via the discrete Fourier transform. The challenges of obtaining high-resolution spectral estimates from short data records using the DFT were already well understood, however. Despite techniques such as linear prediction extrapolation, the achievable resolution in the indirect dimensions is limited by practical constraints on measuring time. The advent of non-Fourier methods of spectrum analysis capable of processing nonuniformly sampled data has led to an explosion in the development of novel sampling strategies that avoid the limits on resolution and measurement time imposed by uniform sampling. The first part of this review discusses the many approaches to data sampling in multidimensional NMR, the second part highlights commonly used methods for signal processing of such data, and the review concludes with a discussion of other approaches to speeding up data acquisition in NMR.

  16. Suppression of spectral anomalies in SSFP-NMR signal by the Krylov Basis Diagonalization Method

    NASA Astrophysics Data System (ADS)

    Moraes, Tiago Bueno; Santos, Poliana Macedo; Magon, Claudio Jose; Colnago, Luiz Alberto

    2014-06-01

    Krylov Basis Diagonalization Method (KBDM) is a numerical procedure used to fit time domain signals as a sum of exponentially damped sinusoids. In this work KBDM is used as an alternative spectral analysis tool, complimentary to Fourier transform. We report results obtained from 13C Nuclear Magnetic Resonance (NMR) by Steady State Free Precession (SSFP) measurements in brucine, C23H26N2O4. Results lead to the conclusion that the KBDM can be successfully applied, mainly because it is not influenced by truncation or phase anomalies, as observed in the Fourier transform spectra.

  17. Signal enhancement in protein NMR using the spin-noise tuning optimum

    PubMed Central

    Nausner, Martin; Goger, Michael; Bendet-Taicher, Eli; Schlagnitweit, Judith

    2010-01-01

    We have assessed the potential of an alternative probe tuning strategy based on the spin-noise response for application in common high-resolution multi-dimensional biomolecular NMR experiments with water signal suppression on aqueous and salty samples. The method requires the adjustment of the optimal tuning condition, which may be offset by several 100 kHz from the conventional tuning settings using the noise response of the water protons as an indicator. Although the radio frequency-pulse durations are typically longer under such conditions, signal-to-noise gains of up to 22% were achieved. At salt concentrations up to 100 mM a substantial sensitivity gain was observed. PMID:20924647

  18. Denoising NMR time-domain signal by singular-value decomposition accelerated by graphics processing units.

    PubMed

    Man, Pascal P; Bonhomme, Christian; Babonneau, Florence

    2014-01-01

    We present a post-processing method that decreases the NMR spectrum noise without line shape distortion. As a result the signal-to-noise (S/N) ratio of a spectrum increases. This method is called Cadzow enhancement procedure that is based on the singular-value decomposition of time-domain signal. We also provide software whose execution duration is a few seconds for typical data when it is executed in modern graphic-processing unit. We tested this procedure not only on low sensitive nucleus (29)Si in hybrid materials but also on low gyromagnetic ratio, quadrupole nucleus (87)Sr in reference sample Sr(NO3)2. Improving the spectrum S/N ratio facilitates the determination of T/Q ratio of hybrid materials. It is also applicable to simulated spectrum, resulting shorter simulation duration for powder averaging. An estimation of the number of singular values needed for denoising is also provided.

  19. Non-linear signal detection improvement by radiation damping in single-pulse NMR spectra.

    PubMed

    Schlagnitweit, Judith; Morgan, Steven W; Nausner, Martin; Müller, Norbert; Desvaux, Hervé

    2012-02-01

    When NMR lines overlap and at least one of them is affected by radiation damping, the resonance line shapes of all lines are no longer Lorentzian. We report the appearance of narrow signal distortions, which resemble hole-burnt spectra. This new experimental phenomenon facilitates the detection of tiny signals hidden below the main resonance. Theoretical analysis based on modified Maxwell-Bloch equations shows that the presence of strong transverse magnetization creates a feedback through the coil, which influences the magnetization of all spins with overlapping resonance lines. In the time domain this leads to cross-precession terms between magnetization densities, which ultimately cause non-linear behavior. Numerical simulations corroborate this interpretation.

  20. Investigative for no-carrier-added (87m,g)Y production by the proton-induced on (89)Y.

    PubMed

    Sharifian, Mozhgan; Sadeghi, Mahdi; Alirezapour, Behrouz; Mohseni, Morteza

    2017-04-01

    The radioisotope (87)Y is one of the candidates for the SPECT and (87)Y/(87m)Sr generator due to its suitable half-life and decay properties. The proton-induced on the (89)Y target can be used for the production of (87)Y. The present perusal calculated the excitation function for the both (89)Y(p,x)(87m,g)Y direct reaction and decay of (87)Zr via (89)Y(p,3n)(87)Zr → (87m)Y → (87g)Y indirect reaction using the TALYS-1.8 code. To simulation the production of (87m,g)Y nuclide, the target thickness was designed based on the stopping power calculation by the SRIM-2013 code. The Monte Carlo code GEANT4 was used to simulate the transport of protons through the irradiation assembly. Then, the cumulative integral yield of the (87m,g)Y has been calculated directly after the decay of (87)Zr radionuclide entirely. These results were in good agreement with the theoretical and reported experimental data. Eventually, the integral yield of the (87m,g)Y was calculated by the indirect method from (87)Zr decay after separation the zirconium. This work provides the basis for theoretical appraisement of the use of no-carrier-added (87)Y as radiopharmaceutical for the purpose of medical applications.

  1. I. Advances in NMR Signal Processing. II. Spin Dynamics in Quantum Dissipative Systems

    SciTech Connect

    Lin, Yung-Ya

    1998-11-01

    Part I. Advances in IVMR Signal Processing. Improvements of sensitivity and resolution are two major objects in the development of NMR/MRI. A signal enhancement method is first presented which recovers signal from noise by a judicious combination of a priordmowledge to define the desired feasible solutions and a set theoretic estimation for restoring signal properties that have been lost due to noise contamination. The effect of noise can be significantly mitigated through the process of iteratively modifying the noisy data set to the smallest degree necessary so that it possesses a collection of prescribed properties and also lies closest to the original data set. A novel detection-estimation scheme is then introduced to analyze noisy and/or strongly damped or truncated FIDs. Based on exponential modeling, the number of signals is detected based on information estimated using the matrix pencil method. theory and the spectral parameters are Part II. Spin Dynamics in body dipole-coupled systems Quantum Dissipative Systems. Spin dynamics in manyconstitutes one of the most fundamental problems in magnetic resonance and condensed-matter physics. Its many-spin nature precludes any rigorous treatment. ‘Therefore, the spin-boson model is adopted to describe in the rotating frame the influence of the dipolar local fields on a tagged spin. Based on the polaronic transform and a perturbation treatment, an analytical solution is derived, suggesting the existence of self-trapped states in the. strong coupling limit, i.e., when transverse local field >> longitudinal local field. Such nonlinear phenomena originate from the joint action of the lattice fluctuations and the reaction field. Under semiclassical approximation, it is found that the main effect of the reaction field is the renormalization of the Hamiltonian of interest. Its direct consequence is the two-step relaxation process: the spin is initially localized in a quasiequilibrium state, which is later detrapped by

  2. Method of eliminating effects of spurious free induction decay NMR signal caused by imperfect 180 degrees pulses

    SciTech Connect

    Bottomley, P.A.; Edelstein, W.A.

    1984-11-20

    A method for eliminating the effects of a spurious free induction decay (FID) NMR signal due to imperfect 180/sup 0/ RF pulses comprises applying a large magnitude, short duration magnetic field gradient pulse, termed the ''crusher'' pulse immediately following the 180/sup 0/ pulse. When the method is employed with NMR pulse sequences in which the 180/sup 0/ pulse is part of a spin echo type refocusing RF pulse sequence, the 180/sup 0/ pulse is preceded by a magnetic field gradient pulse termed the ''primer'', having an equal integral with respect to time as the crusher pulse. The method is effective in removing NMR image artifacts produced by spurious FID in both planar and three-dimensional NMR imaging methods.

  3. Enhanced NMR with Optical Pumping Yields (75)As Signals Selectively from a Buried GaAs Interface.

    PubMed

    Willmering, Matthew M; Ma, Zayd L; Jenkins, Melanie A; Conley, John F; Hayes, Sophia E

    2017-03-22

    We have measured the (75)As signals arising from the interface region of single-crystal semi-insulating GaAs that has been coated and passivated with an aluminum oxide film deposited by atomic layer deposition (ALD) with optically pumped NMR (OPNMR). Using wavelength-selective optical pumping, the laser restricts the volume from which OPNMR signals are collected. Here, OPNMR signals were obtained from the interface region and distinguished from signals arising from the bulk. The interface region is highlighted by interactions that disrupt the cubic symmetry of the GaAs lattice, resulting in quadrupolar satellites for nuclear [Formula: see text] isotopes, whereas NMR of the "bulk" lattice is nominally unsplit. Quadrupolar splitting at the interface arises from strain based on lattice mismatch between the GaAs and ALD-deposited aluminum oxide due to their different coefficients of thermal expansion. Such spectroscopic evidence of strain can be useful for measuring lattice distortions at heterojunction boundaries and interfaces.

  4. Detection of Phosphomonoester Signals in Proton-Decoupled 31P NMR Spectra of the Myocardium of Patients with Myocardial Hypertrophy

    NASA Astrophysics Data System (ADS)

    Jung, Wulf-Ingo; Sieverding, Ludger; Breuer, Johannes; Schmidt, Oliver; Widmaier, Stefan; Bunse, Michael; van Erckelens, Franz; Apitz, Jürgen; Dietze, Guenther J.; Lutz, Otto

    1998-07-01

    Proton-decoupled31P NMR spectroscopy at 1.5 T of the anterior left ventricular myocardium was used to monitor myocardial phosphate metabolism in asymptomatic patients with hypertrophic cardiomyopathy (HCM,n= 14) and aortic stenosis (AS,n= 12). In addition to the well-known phosphorus signals a phosphomonoester (PME) signal was detected at about 6.9 ppm in 7 HCM and 2 AS patients. This signal was not observed in the spectra of normal controls (n= 11). We suggest that in spectra of patients with myocardial hypertrophy the presence of a PME signal reflects alterations in myocardial glucose metabolism.

  5. Identification and MS-assisted interpretation of genetically influenced NMR signals in human plasma

    PubMed Central

    2013-01-01

    Nuclear magnetic resonance spectroscopy (NMR) provides robust readouts of many metabolic parameters in one experiment. However, identification of clinically relevant markers in 1H NMR spectra is a major challenge. Association of NMR-derived quantities with genetic variants can uncover biologically relevant metabolic traits. Using NMR data of plasma samples from 1,757 individuals from the KORA study together with 655,658 genetic variants, we show that ratios between NMR intensities at two chemical shift positions can provide informative and robust biomarkers. We report seven loci of genetic association with NMR-derived traits (APOA1, CETP, CPS1, GCKR, FADS1, LIPC, PYROXD2) and characterize these traits biochemically using mass spectrometry. These ratios may now be used in clinical studies. PMID:23414815

  6. Heparin sodium compliance to USP monograph: structural elucidation of an atypical 2.18 ppm NMR signal.

    PubMed

    Mourier, Pierre A J; Guichard, Olivier Y; Herman, Fréderic; Viskov, Christian

    2012-01-01

    The ¹H nuclear magnetic resonance (NMR) acceptance criteria in the new heparin US Pharmacopeia (USP) monograph do not take into account potential structural modifications responsible for any extra signals observed in ¹H NMR spectra, some purified heparins may be non-compliant under the proposed new USP guidelines and incorrectly classified as unsuitable for pharmaceutical use. Heparins from the "ES" source, containing an extra signal at 2.18 ppm, were depolymerized under controlled conditions using heparinases I, II, and III. The oligosaccharides responsible for the 2.18 ppm signal were enriched using orthogonal chromatographic techniques. After multiple purification steps, we obtained an oligosaccharide mixture containing a highly enriched octasaccharide bearing the structural modification responsible for the extra signal. Following heparinase I depolymerization, a pure tetrasaccharide containing the fingerprint structural modification was isolated for full structural determination. Using 1D and 2D ¹H NMR spectroscopy, the structural moiety responsible for the extra signal at 2.18 ppm was identified as an acetyl group on the heparin backbone, most likely resulting from a very minor manufacturing process side reaction that esterifies the uronic acid at position 3. Such analytical peculiarity has always been present in this heparin source and it was used safety over the years.

  7. Signal intensities derived from different NMR probes and parameters contribute to variations in quantification of metabolites.

    PubMed

    Lacy, Paige; McKay, Ryan T; Finkel, Michael; Karnovsky, Alla; Woehler, Scott; Lewis, Michael J; Chang, David; Stringer, Kathleen A

    2014-01-01

    We discovered that serious issues could arise that may complicate interpretation of metabolomic data when identical samples are analyzed at more than one NMR facility, or using slightly different NMR parameters on the same instrument. This is important because cross-center validation metabolomics studies are essential for the reliable application of metabolomics to clinical biomarker discovery. To test the reproducibility of quantified metabolite data at multiple sites, technical replicates of urine samples were assayed by 1D-(1)H-NMR at the University of Alberta and the University of Michigan. Urine samples were obtained from healthy controls under a standard operating procedure for collection and processing. Subsequent analysis using standard statistical techniques revealed that quantitative data across sites can be achieved, but also that previously unrecognized NMR parameter differences can dramatically and widely perturb results. We present here a confirmed validation of NMR analysis at two sites, and report the range and magnitude that common NMR parameters involved in solvent suppression can have on quantitated metabolomics data. Specifically, saturation power levels greatly influenced peak height intensities in a frequency-dependent manner for a number of metabolites, which markedly impacted the quantification of metabolites. We also investigated other NMR parameters to determine their effects on further quantitative accuracy and precision. Collectively, these findings highlight the importance of and need for consistent use of NMR parameter settings within and across centers in order to generate reliable, reproducible quantified NMR metabolomics data.

  8. Dipolar cross-relaxation modulates signal amplitudes in the 1H NMR spectrum of hyperpolarized [ 13C]formate

    NASA Astrophysics Data System (ADS)

    Merritt, Matthew E.; Harrison, Crystal; Mander, William; Malloy, Craig R.; Dean Sherry, A.

    2007-12-01

    The asymmetry in the doublet of a spin coupled to hyperpolarized 13C has been used previously to measure the initial polarization of 13C. We tested the hypothesis that a single observation of the 1H NMR spectrum of hyperpolarized 13C formate monitors 13C polarization. Depending on the microwave frequency during the polarization process, in-phase or out-of-phase doublets were observed in the 1H NMR spectrum. Even in this simple two-spin system, 13C polarization was not reflected in the relative area of the JCH doublet components due to strong heteronuclear cross-relaxation. The Solomon equations were used to model the proton signal as a function of time after polarization and to estimate 13C polarization from the 1H NMR spectra.

  9. Time-Domain Frequency Correction Method for Averaging Low-Field NMR Signals Acquired in Urban Laboratory Environment

    NASA Astrophysics Data System (ADS)

    Qiu, Long-Qing; Liu, Chao; Dong, Hui; Xu, Lu; Zhang, Yi; Hans-Joachim, Krause; Xie, Xiao-Ming; Andreas, Offenhäusser

    2012-10-01

    Using a second-order helium-cooled superconducting quantum interference device gradiometer as the detector, ultra-low-field nuclear magnetic resonance (ULF-NMR) signals of protons are recorded in an urban environment without magnetic shielding. The homogeneity and stability of the measurement field are investigated. NMR signals of protons are studied at night and during working hours. The Larmor frequency variation caused by the fluctuation of the external magnetic field during daytime reaches around 5 Hz when performing multiple measurements for about 10 min, which seriously affects the results of averaging. In order to improve the performance of the averaged data, we suggest the use of a data processor, i.e. the so-called time-domain frequency correction (TFC). For a 50-times averaged signal spectrum, the signal-to-noise ratio is enhanced from 30 to 120 when applying TFC while preserving the NMR spectrum linewidth. The TFC is also applied successfully to the measurement data of the hetero-nuclear J-coupling in 2,2,2-trifluoroethanol.

  10. Measurement of reaction cross-sections for 89Y at average neutron energies of 7.24-24.83 MeV

    NASA Astrophysics Data System (ADS)

    Zaman, Muhammad; Kim, Guinyun; Naik, Haladhara; Kim, Kwangsoo; Shahid, Muhammad

    2015-05-01

    We measured neutron-induced reaction cross-sections for 89Y(n,γ)90mY and 89Y(n,α)86Rb reactions with the average neutron energy region from 7.45 to 24.83 MeV by an activation and off-line γ-ray spectrometric technique using the MC-50 Cyclotron at Korea Institute of Radiological and Medical Sciences. The neutron-induced reaction cross-sections of 89Y as a function of neutron energy were taken from the TENDL-2013 library. The flux-weighted average cross-sections for 89Y(n,γ)90mY and 89Y(n,α)86Rb reactions were calculated from the TENDL-2013 values based on mono-energetic neutron and by using the neutron energy spectrum from MCNPX 2.6.0 code. The present results are compared with the flux-weighted values of TENDL-2013 and are found to be in good agreement

  11. Effects of equilibrium exchange on diffusion-weighted NMR signals: the diffusigraphic "shutter-speed".

    PubMed

    Lee, Jing-Huei; Springer, Charles S

    2003-03-01

    A general picture is presented of the implications for diffusion-weighted NMR signals of the parsimonious two-site-exchange (2SX) paradigm. In particular, it is shown that the diffusigraphic "shutter-speed," tau(-1) identical with |q(2)(D(A) - D(B))|, is a useful concept. The "wave-number" q has its standard definition (given in the text), and D(A) and D(B) are the apparent diffusion coefficients (ADCs) of molecules in the two "sites," A and B, if there is no exchange between them. At low gradient strengths (center of q-space), tau(-1) is less than rate constants for intercompartmental water molecule exchange in most tissue cases. Thus, the exchange reaction appears fast. However, q is increased during the course of most experiments and, as it is, the shutter-speed becomes "faster" and the exchange reaction, the kinetics of which do not change, appears to slow down. This causes a multiexponential behavior in the diffusion-weighting dimension, b, which also has its standard definition. This picture is found to be in substantial agreement with a number of different experimental observations. It is applied here to literature (1)H(2)O data from a yeast cell suspension and from the human and the rat brain. Since the equilibrium transcytolemmal water exchange reaction appears to be in the fast-exchange-limit at small b, the initial slope represents the weighted-average of the ADCs of intra- and extracellular water. Of course, in tissue the former is in the significant majority. Furthermore, a consideration of reasonable values for the other 2SX parameters suggests that, for resting brain tissue, the intracellular water ADC may be larger than the extracellular water ADC. There are some independent inferences of this, which would have ramifications for many applications of diffusion-weighted MRI.

  12. 1H and 13C NMR signal assignment of cucurbitacin derivatives from Citrullus colocynthis (L.) Schrader and Ecballium elaterium L. (Cucurbitaceae).

    PubMed

    Seger, Christoph; Sturm, Sonja; Mair, Maria-Elisabeth; Ellmerer, Ernst P; Stuppner, Hermann

    2005-06-01

    2D NMR-derived 1H and 13C NMR signal assignments of six structurally closely related cucurbitacin derivatives are presented. The investigated 2-O-beta-D-glucopyranosylcucurbitacins I, J, K, and L were obtained from Citrullus colocynthis (L.) Schrader whereas the aglyca cucurbitacin E and I were isolated from Ecballium elaterium L.

  13. Selective observation of the disordered import signal of a globular protein by in-cell NMR: the example of frataxins.

    PubMed

    Popovic, Matija; Sanfelice, Domenico; Pastore, Chiara; Prischi, Filippo; Temussi, Piero Andrea; Pastore, Annalisa

    2015-06-01

    We have exploited the capability of in-cell NMR to selectively observe flexible regions within folded proteins to carry out a comparative study of two members of the highly conserved frataxin family which are found both in prokaryotes and in eukaryotes. They all contain a globular domain which shares more than 50% identity, which in eukaryotes is preceded by an N-terminal tail containing the mitochondrial import signal. We demonstrate that the NMR spectrum of the bacterial ortholog CyaY cannot be observed in the homologous E. coli system, although it becomes fully observable as soon as the cells are lysed. This behavior has been observed for several other compact globular proteins as seems to be the rule rather than the exception. The NMR spectrum of the yeast ortholog Yfh1 contains instead visible signals from the protein. We demonstrate that they correspond to the flexible N-terminal tail indicating that this is flexible and unfolded. This flexibility of the N-terminus agrees with previous studies of human frataxin, despite the extensive sequence diversity of this region in the two proteins. Interestingly, the residues that we observe in in-cell experiments are not visible in the crystal structure of a Yfh1 mutant designed to destabilize the first helix. More importantly, our results show that, in cell, the protein is predominantly present not as an aggregate but as a monomeric species.

  14. Spectroscopic approaches to resolving ambiguities of hyper-polarized NMR signals from different reaction cascades.

    PubMed

    Jensen, Pernille Rose; Meier, Sebastian

    2016-02-07

    The influx of exogenous substrates into cellular reaction cascades on the seconds time scale is directly observable by NMR spectroscopy when using nuclear spin polarization enhancement. Conventional NMR assignment spectra for the identification of reaction intermediates are not applicable in these experiments due to the non-equilibrium nature of the nuclear spin polarization enhancement. We show that ambiguities in the intracellular identification of transient reaction intermediates can be resolved by experimental schemes using site-specific isotope labelling, optimised referencing and response to external perturbations.

  15. A View into the Blind Spot: Solution NMR Provides New Insights into Signal Transduction Across the Lipid Bilayer

    PubMed Central

    Call, Matthew E.; Chou, James J.

    2011-01-01

    One of the most fundamental problems in cell biology concerns how cells communicate with their surroundings through surface receptors. The last few decades have seen major advances in understanding the mechanisms of receptor-ligand recognition and the biochemical consequences of such encounters. This review describes the emergence of solution nuclear magnetic resonance (NMR) spectroscopy as a powerful tool for the structural characterization of membrane-associated protein domains involved in transmembrane signaling. We highlight particularly instructive examples from the fields of immunoreceptor biology, growth hormone signaling, and cell adhesion. These signaling complexes comprise multiple subunits each spanning the membrane with a single helical segment that links extracellular ligand-binding domains to the cell interior. The apparent simplicity of this domain organization belies the complexity involved in cooperative assembly of functional structures that translate information across the cellular boundary. PMID:21134635

  16. Labeling strategy and signal broadening mechanism of Protein NMR spectroscopy in Xenopus laevis oocytes.

    PubMed

    Ye, Yansheng; Liu, Xiaoli; Chen, Yanhua; Xu, Guohua; Wu, Qiong; Zhang, Zeting; Yao, Chendie; Liu, Maili; Li, Conggang

    2015-06-08

    We used Xenopus laevis oocytes, a paradigm for a variety of biological studies, as a eukaryotic model system for in-cell protein NMR spectroscopy. The small globular protein GB1 was one of the first studied in Xenopus oocytes, but there have been few reports since then of high-resolution spectra in oocytes. The scarcity of data is at least partly due to the lack of good labeling strategies and the paucity of information on resonance broadening mechanisms. Here, we systematically evaluate isotope enrichment and labeling methods in oocytes injected with five different proteins with molecular masses of 6 to 54 kDa. (19) F labeling is more promising than (15) N, (13) C, and (2) H enrichment. We also used (19) F NMR spectroscopy to quantify the contribution of viscosity, weak interactions, and sample inhomogeneity to resonance broadening in cells. We found that the viscosity in oocytes is only about 1.2 times that of water, and that inhomogeneous broadening is a major factor in determining line width in these cells.

  17. Using Bulk Magnetic Susceptibility to Resolve Internal and External Signals in the NMR Spectra of Plant Tissues

    NASA Astrophysics Data System (ADS)

    Shachar-Hill, Yair; Befroy, Douglas E.; Pfeffer, Philip E.; Ratcliffe, R. George

    1997-07-01

    Internal and external NMR signals from a variety of plant cells and plant tissues can be resolved by changing the bulk magnetic susceptibility (BMS) of the perfusing medium with [Gd (EDTA)]-or Dy(DTPA-BMA). This separation is observed in samples consisting of cylindrical cells oriented along theB0field, and is consistent with established theoretical predictions about BMS effects. Evidence is presented that the shifted signals represent material outside the tissue as well as some contribution from intercellular spaces and cell walls, while intracellular signals are unshifted. The paramagnetic complexes used to separate the signals are shown to be nontoxic and to have no effect on a number of transport processes. The method has been applied to roots, shoots, and giant algal cells, facilitating the interpretation of thein vivospectra from a range of biologically important magnetic isotopes. The potential of the method for studies of transport is illustrated with experiments showing: (i)14N/15N isotopic exchange of nitrate in roots; (ii) the influx of HDO into root and shoot segments; and (iii) the use of saturation transfer to follow water movement into and out of plant cells.

  18. Structural analysis of a signal peptide inside the ribosome tunnel by DNP MAS NMR

    PubMed Central

    Lange, Sascha; Franks, W. Trent; Rajagopalan, Nandhakishore; Döring, Kristina; Geiger, Michel A.; Linden, Arne; van Rossum, Barth-Jan; Kramer, Günter; Bukau, Bernd; Oschkinat, Hartmut

    2016-01-01

    Proteins are synthesized in cells by ribosomes and, in parallel, prepared for folding or targeting. While ribosomal protein synthesis is progressing, the nascent chain exposes amino-terminal signal sequences or transmembrane domains that mediate interactions with specific interaction partners, such as the signal recognition particle (SRP), the SecA–adenosine triphosphatase, or the trigger factor. These binding events can set the course for folding in the cytoplasm and translocation across or insertion into membranes. A distinction of the respective pathways depends largely on the hydrophobicity of the recognition sequence. Hydrophobic transmembrane domains stabilize SRP binding, whereas less hydrophobic signal sequences, typical for periplasmic and outer membrane proteins, stimulate SecA binding and disfavor SRP interactions. In this context, the formation of helical structures of signal peptides within the ribosome was considered to be an important factor. We applied dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance to investigate the conformational states of the disulfide oxidoreductase A (DsbA) signal peptide stalled within the exit tunnel of the ribosome. Our results suggest that the nascent chain comprising the DsbA signal sequence adopts an extended structure in the ribosome with only minor populations of helical structure. PMID:27551685

  19. Investigating FAM-N pulses for signal enhancement in MQMAS NMR of quadrupolar nuclei.

    PubMed

    Colaux, Henri; Dawson, Daniel M; Ashbrook, Sharon E

    2017-01-18

    Although a popular choice for obtaining high-resolution solid-state NMR spectra of quadrupolar nuclei, the inherently low sensitivity of the multiple-quantum magic-angle spinning (MQMAS) experiment has limited its application for nuclei with low receptivity or when the available sample volume is limited. A number of methods have been introduced in the literature to attempt to address this problem. Recently, we have introduced an alternative, automated approach, based on numerical simulations, for generating amplitude-modulated pulses (termed FAM-N pulses) to enhance the efficiency of the triple- to single-quantum conversion step within MQMAS. This results in efficient pulses that can be used without experimental reoptimisation, ensuring that this method is particularly suitable for challenging nuclei and systems. In this work, we investigate the applicability of FAM-N pulses to a wider variety of systems, and their robustness under more challenging experimental conditions. These include experiments performed under fast MAS, nuclei with higher spin quantum numbers, samples with multiple distinct sites, low-γ nuclei and nuclei subject to large quadrupolar interactions.

  20. Simultaneous and interleaved acquisition of NMR signals from different nuclei with a clinical MRI scanner

    PubMed Central

    Magill, Arthur W.; Kuehne, Andre; Gruetter, Rolf; Moser, Ewald; Schmid, Albrecht Ingo

    2015-01-01

    Purpose Modification of a clinical MRI scanner to enable simultaneous or rapid interleaved acquisition of signals from two different nuclei. Methods A device was developed to modify the local oscillator signal fed to the receive channel(s) of an MRI console. This enables external modification of the frequency at which the receiver is sensitive and rapid switching between different frequencies. Use of the device was demonstrated with interleaved and simultaneous 31P and 1H spectroscopic acquisitions, and with interleaved 31P and 1H imaging. Results Signal amplitudes and signal‐to‐noise ratios were found to be unchanged for the modified system, compared with data acquired with the MRI system in the standard configuration. Conclusion Interleaved and simultaneous 1H and 31P signal acquisition was successfully demonstrated with a clinical MRI scanner, with only minor modification of the RF architecture. While demonstrated with 31P, the modification is applicable to any detectable nucleus without further modification, enabling a wide range of simultaneous and interleaved experiments to be performed within a clinical setting. Magn Reson Med 76:1636–1641, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26608834

  1. Exploiting the phase of NMR signals to carry useful information. Application to the measurement of chemical shifts in aliased 2D spectra.

    PubMed

    Ramírez-Gualito, Karla; Jeannerat, Damien

    2015-11-01

    Taking advantage of the phase of nuclear magnetic resonance (NMR) signals to encode NMR information is not easy because of their low precision and their sensitivity to nearby signals. We nevertheless demonstrated that the phase in indirect dimension of (1) H-(13) C heteronuclear single quantum coherence (HSQC) signals could provide carbon chemical shifts at low, but sufficient precision to resolve the ambiguities of the chemical shifts in aliased spectra. This approach, we called phase-encoding of the aliasing order Na (PHANA), only requires inserting a constant delay during the t1 evolution time to obtain spectra where signals with mixed phases can be decoded at the processing to reconstruct full spectra with a 15-fold increase in resolution.

  2. Analog Filtering of Large Solvent Signals for Improved Dynamic Range in High-Resolution NMR

    NASA Astrophysics Data System (ADS)

    Redfield, A. G.; Kunz, S. D.

    1998-01-01

    The large solvent signal from samples in H2O solvent still challenges the dynamic range capability of any spectrometer. The solvent signal can be largely removed with a pair of simple resistor-capacitor (RC) high-pass filters when the solvent frequency is set at center band (zero frequency) using quadrature detection, withRC∼ 0.5 ms. However, an ∼0.5-ms transient remains at initial time, which we reduce fourfold for a short time only, just before the A/D converter, by means of a variable-gain amplifier, and later restore with software. This modification can result in a nearly fourfold increase in dynamic range. When we converted to a frequency-shifted mode (A. G. Redfield and S. D. Kunz, 1994,J. Magn. Reson. A108, 234-237) we replaced theRChigh-pass filter with a quadrature feedback notch filter tuned to the solvent frequency (5.06 kHz). This filter is an example of a class of two-input/two-output filters which maintain the spectral integrity (image-free character) of quadrature signals. Digital filters of the same type are also considered briefly. We discuss the implications of these ideas for spectrometer input design, including schemes for elimination of radiation damping, and effects of probe bandwidth on extreme oversampling.

  3. Analog filtering of large solvent signals for improved dynamic range in high-resolution NMR.

    PubMed

    Redfield, A G; Kunz, S D

    1998-01-01

    The large solvent signal from samples in H2O solvent still challenges the dynamic range capability of any spectrometer. The solvent signal can be largely removed with a pair of simple resistor-capacitor (RC) high-pass filters when the solvent frequency is set at center band (zero frequency) using quadrature detection, with RC approximately 0.5 ms. However, an approximately 0.5-ms transient remains at initial time, which we reduce fourfold for a short time only, just before the A/D converter, by means of a variable-gain amplifier, and later restore with software. This modification can result in a nearly fourfold increase in dynamic range. When we converted to a frequency-shifted mode (A. G. Redfield and S. D. Kunz, 1994, J. Magn. Reson. A 108, 234-237) we replaced the RC high-pass filter with a quadrature feedback notch filter tuned to the solvent frequency (5.06 kHz). This filter is an example of a class of two-input/two-output filters which maintain the spectral integrity (image-free character) of quadrature signals. Digital filters of the same type are also considered briefly. We discuss the implications of these ideas for spectrometer input design, including schemes for elimination of radiation damping, and effects of probe bandwidth on extreme oversampling.

  4. Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies.

    PubMed

    Boxerman, J L; Rosen, B R; Weisskoff, R M

    1997-01-01

    The use of cerebral blood volume (CBV) maps generated from dynamic MRI studies tracking the bolus passage of paramagnetic contrast agents strongly depends on the signal-to-noise ratio (SNR) of the maps. The authors present a semianalytic model for the noise in CBV maps and introduce analytic and Monte Carlo techniques for determining the effect of experimental parameters and processing strategies upon CBV-SNR. CBV-SNR increases as more points are used to estimate the baseline signal level. For typical injections, maps made with 10 baseline points have 34% more noise than those made with 50 baseline points. For a given peak percentage signal drop, an optimum TE can be chosen that, in general, is less than the baseline T2. However, because CBV-SNR is relatively insensitive to TE around this optimum value, choosing TE approximately equal to T2 does not sacrifice much SNR for typical doses of contrast agent. The TR that maximizes spin-echo CBV-SNR satisfies TR/T1 approximately equal to 1.26, whereas as short a TR as possible should be used to maximize gradient-echo CBV-SNR. In general, CBV-SNR is maximized for a given dose of contrast agent by selecting as short an input bolus duration as possible. For image SNR exceeding 20-30, the gamma-fitting procedure adds little extra noise compared with simple numeric integration. However, for noisier input images, can be the case for high resolution echo-planar images, the covarying parameters of the gamma-variate fit broaden the distribution of the CBV estimate and thereby decrease CBV-SNR. The authors compared the analytic noise predicted by their model with that of actual patient data and found that the analytic model accounts for roughly 70% of the measured variability of CBV within white matter regions of interest.

  5. Ultraviolet radiation induces stress in etiolated Landoltia punctata, as evidenced by the presence of alanine, a universal stress signal: a ¹⁵N NMR study.

    PubMed

    Monselise, E B-I; Levkovitz, A; Kost, D

    2015-01-01

    Analysis with (15) N NMR revealed that alanine, a universal cellular stress signal, accumulates in etiolated duckweed plants exposed to 15-min pulsed UV light, but not in the absence of UV irradiation. The addition of 10 mm vitamin C, a radical scavenger, reduced alanine levels to zero, indicating the involvement of free radicals. Free D-alanine was detected in (15) N NMR analysis of the chiral amino acid content, using D-tartaric acid as solvent. The accumulation of D-alanine under stress conditions presents a new perspective on the biochemical processes taking place in prokaryote and eukaryote cells.

  6. Fragment Assembly Approach Based on Graph/Network Theory with Quantum Chemistry Verifications for Assigning Multidimensional NMR Signals in Metabolite Mixtures.

    PubMed

    Ito, Kengo; Tsutsumi, Yu; Date, Yasuhiro; Kikuchi, Jun

    2016-04-15

    The abundant observation of chemical fragment information for molecular complexities is a major advantage of biological NMR analysis. Thus, the development of a novel technique for NMR signal assignment and metabolite identification may offer new possibilities for exploring molecular complexities. We propose a new signal assignment approach for metabolite mixtures by assembling H-H, H-C, C-C, and Q-C fragmental information obtained by multidimensional NMR, followed by the application of graph and network theory. High-speed experiments and complete automatic signal assignments were achieved for 12 combined mixtures of (13)C-labeled standards. Application to a (13)C-labeled seaweed extract showed 66 H-C, 60 H-H, 326 C-C, and 28 Q-C correlations, which were successfully assembled to 18 metabolites by the automatic assignment. The validity of automatic assignment was supported by quantum chemical calculations. This new approach can predict entire metabolite structures from peak networks of biological extracts.

  7. Signal intensities in ¹H-¹³C CP and INEPT MAS NMR of liquid crystals.

    PubMed

    Nowacka, A; Bongartz, N A; Ollila, O H S; Nylander, T; Topgaard, D

    2013-05-01

    Spectral editing with CP and INEPT in (13)C MAS NMR enables identification of rigid and mobile molecular segments in concentrated assemblies of surfactants, lipids, and/or proteins. In order to get stricter definitions of the terms "rigid" and "mobile", as well as resolving some ambiguities in the interpretation of CP and INEPT data, we have developed a theoretical model for calculating the CP and INEPT intensities as a function of rotational correlation time τc and C-H bond order parameter SCH, taking the effects of MAS into account. According to the model, the range of τc can at typical experimental settings (5kHz MAS, 1ms ramped CP at 80-100kHz B1 fields) be divided into four regimes: fast (τc<1ns), fast-intermediate (τc≈0.1μs), intermediate (τc≈1μs), and slow (τc>0.1ms). In the fast regime, the CP and INEPT intensities are independent of τc, but strongly dependent on |SCH|, with a cross-over from dominating INEPT to dominating CP at |SCH|>0.1. In the intermediate regime, neither CP nor INEPT yield signal on account of fast T1ρ and T2 relaxation. In both the fast-intermediate and slow regimes, there is exclusively CP signal. The theoretical predictions are tested by experiments on the glass-forming surfactant n-octyl-β-d-maltoside, for which τc can be varied continuously in the nano- to millisecond range by changing the temperature and the hydration level. The atomistic details of the surfactant dynamics are investigated with MD simulations. Based on the theoretical model, we propose a procedure for calculating CP and INEPT intensities directly from MD simulation trajectories. While MD shows that there is a continuous gradient of τc from the surfactant polar headgroup towards the methyl group at the end of the hydrocarbon chain, analysis of the experimental CP and INEPT data indicates that this gradient gets steeper with decreasing temperature and hydration level, eventually spanning four orders of magnitude at completely dry conditions.

  8. Quantitative analysis of ³¹P NMR spectra of soil extracts--dealing with overlap of broad and sharp signals.

    PubMed

    Doolette, Ashlea L; Smernik, Ronald J

    2015-09-01

    Solution (31)P NMR analysis following extraction with a mixture of sodium hydroxide and ethylenediaminetetraacetic acid is the most widely used method for detailed characterization of soil organic P. However, quantitative analysis of the (31)P NMR spectra is complicated by severe spectral overlap in the monoester region. Various deconvolution procedures have been developed for the task, yet none of these are widely accepted or implemented. In this mini-review, we first describe and compare these varying approaches. We then review approaches to similar issues of spectral overlap in biomedical science applications including NMR-based metabolic profiling and analyzing (31)P magnetic resonance spectra of ex vivo and in vivo intact tissues. The greater maturity and resourcing of this biomedical research means that a wider variety of approaches has been developed. Of particular relevance are approaches to dealing with overlap of broad and sharp signals. Although the existence of this problem is still debated in the context of soil analyses, not only is it well-recognized in biomedical applications, but multiple approaches have been developed to deal with it, including T2 editing and time-domain fitting. Perhaps the most transferable concept is the incorporation of 'prior knowledge' in the fitting of spectra. This is well established in biomedical applications but barely touched in soil analyses. We argue that shortcuts to dealing with overlap in the monoester region (31)P NMR soil spectra are likely to be found in the biomedical literature, although some degree of adaptation will be necessary.

  9. An optimized method for NMR-based plant seed metabolomic analysis with maximized polar metabolite extraction efficiency, signal-to-noise ratio, and chemical shift consistency.

    PubMed

    Wu, Xiangyu; Li, Ning; Li, Hongde; Tang, Huiru

    2014-04-07

    Plant metabolomic analysis has become an essential part of functional genomics and systems biology and requires effective extraction of both primary and secondary metabolites from plant cells. To establish an optimized extraction method for the NMR-based analysis, we used the seeds of mungbean (Vigna radiata cv. Elü no. 1) as a model and systematically investigated the dependence of the metabolite composition in plant extracts on various extraction parameters including cell-breaking methods, extraction solvents, number of extraction repeats, tissue-to-solvent ratio, and extract-to-buffer ratio (for final NMR analysis). We also compared two NMR approaches for quantitative metabolomic analysis from completely relaxed spectra directly and from partially relaxed spectra calculated with T1. By maximizing the extraction efficiency and signal-to-noise ratio but minimizing inter-sample chemical-shift variations and metabolite degradations, we established a parameter-optimized protocol for NMR-based plant seed metabolomic analysis. We concluded that aqueous methanol was the best extraction solvent with an optimal tissue-to-solvent ratio of about 1 : 10-1 : 15 (mg per μL). The combination of tissuelyser homogenization with ultrasonication was the choice of cell-breaking method with three repeated extractions being necessary. For NMR analysis, the optimal extract-to-solvent was around 5-8 mg mL(-1) and completely relaxed spectra were ideal for intrinsically quantitative metabolomic analysis although partially relaxed spectra were employable for comparative metabolomics. This optimized method will offer ensured data quality for high-throughput and reliable plant metabolomics studies.

  10. Multiple quantum filtered (23)Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i.

    PubMed

    Eykyn, Thomas R; Aksentijević, Dunja; Aughton, Karen L; Southworth, Richard; Fuller, William; Shattock, Michael J

    2015-09-01

    We investigate the potential of multiple quantum filtered (MQF) (23)Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32±6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the (23)Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM(3SA) mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered (23)Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation.

  11. Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i

    PubMed Central

    Eykyn, Thomas R.; Aksentijević, Dunja; Aughton, Karen L.; Southworth, Richard; Fuller, William; Shattock, Michael J.

    2015-01-01

    We investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32 ± 6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. PMID:26196304

  12. 1H and 13C NMR signal assignments of a novel Baeyer-Villiger originated diterpene lactone.

    PubMed

    Vieira, Henriete S; Takahashi, Jacqueline A; Gunatilaka, A A Leslie; Boaventura, Maria Amélia D

    2006-02-01

    A highly rearranged novel dilactone was the single product isolated from Baeyer-Villiger oxidation of a norketone prepared from grandiflorenic acid, a natural kaurane diterpene. The complete 1H and 13C NMR assignment is presented for this novel compound that showed discrete in vitro antibacterial activity.

  13. Construction and 13C NMR signal-amplification efficiency of a dynamic nuclear polarizer at 6.4 T and 1.4 K

    NASA Astrophysics Data System (ADS)

    Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Ferguson, Sarah; Taylor, David; McDonald, George; Lumata, Lloyd

    Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging technique in biomedical and metabolic imaging since it amplifies the liquid-state nuclear magnetic resonance (NMR) and imaging (MRI) signals by >10,000-fold. Originally used in nuclear scattering experiments, DNP works by creating a non-Boltzmann nuclear spin distribution by transferring the high electron (γ = 28,000 MHz/T) thermal polarization to the nuclear spins via microwave irradiation of the sample at high magnetic field and low temperature. A dissolution device is used to rapidly dissolve the frozen sample and consequently produces an injectable ``hyperpolarized'' liquid at physiologically-tolerable temperature. Here we report the construction and performance evaluation of a dissolution DNP hyperpolarizer at 6.4 T and 1.4 K using a continuous-flow cryostat. The solid and liquid-state 13C NMR signal enhancement levels of 13C acetate samples doped with trityl OX063 and 4-oxo-TEMPO free radicals will be discussed and compared with the results from the 3.35 T commercial hyperpolarizer. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  14. Substrate recognition by the Lyn protein-tyrosine kinase. NMR structure of the immunoreceptor tyrosine-based activation motif signaling region of the B cell antigen receptor.

    PubMed

    Gaul, B S; Harrison, M L; Geahlen, R L; Burton, R A; Post, C B

    2000-05-26

    The immunoreceptor tyrosine-based activation motif (ITAM) plays a central role in transmembrane signal transduction in hematopoietic cells by mediating responses leading to proliferation and differentiation. An initial signaling event following activation of the B cell antigen receptor is phosphorylation of the CD79a (Ig-alpha) ITAM by Lyn, a Src family protein-tyrosine kinase. To elucidate the structural basis for recognition between the ITAM substrate and activated Lyn kinase, the structure of an ITAM-derived peptide bound to Lyn was determined using exchange-transferred nuclear Overhauser NMR spectroscopy. The bound substrate structure has an irregular helix-like character. Docking based on the NMR data into the active site of the closely related Lck kinase strongly favors ITAM binding in an orientation similar to binding of cyclic AMP-dependent protein kinase rather than that of insulin receptor tyrosine kinase. The model of the complex provides a rationale for conserved ITAM residues, substrate specificity, and suggests that substrate binds only the active conformation of the Src family tyrosine kinase, unlike the ATP cofactor, which can bind the inactive form.

  15. Enantiomeric NMR signal separation behavior and mechanism of samarium(III) and neodymium(III) complexes with (S,S)-ethylenediamine-N,N'-disuccinate.

    PubMed

    Aizawa, Sen-Ichi; Okano, Masaru; Kidani, Takahiro

    2017-04-12

    Enantiomeric (1) H and (13) C NMR signal separation behaviors of various α-amino acids and DL-tartarate were investigated by using the samarium(III) and neodymium(III) complexes with (S,S)-ethylenediamine-N,N'-disuccinate as chiral shift reagents. A relatively smaller concentration ratio of the lanthanide(III) complex to substrates was suitable for the neodymium(III) complex compared with the samarium(III) one, striking a balance between relatively greater signal separation and broadening. To clarify the difference in the signal separation behavior, the chemical shifts of β-protons for fully bound D- and L-alanine (δb (D) and δb (L)) and their adduct formation constants (Ks) were obtained for both metal complexes. Preference for D-alanine was similarly observed for both complexes, while it was revealed that the difference between the δb (D) and δb (L) values is the significant factor to determine the enantiomeric signal separation. The neodymium(III) and samarium(III) complexes can be used complementarily for higher and smaller concentration ranges of substrates, respectively, because the neodymium(III) complex gives the larger difference between the δb (D) and δb (L) values with greater signal broadening compared to the samarium(III) complex.

  16. Using "On/Off" (19)F NMR/Magnetic Resonance Imaging Signals to Sense Tyrosine Kinase/Phosphatase Activity in Vitro and in Cell Lysates.

    PubMed

    Zheng, Zhen; Sun, Hongbin; Hu, Chen; Li, Gongyu; Liu, Xiaomei; Chen, Peiyao; Cui, Yusi; Liu, Jing; Wang, Junfeng; Liang, Gaolin

    2016-03-15

    Tyrosine kinase and phosphatase are two important, antagonistic enzymes in organisms. Development of noninvasive approach for sensing their activity with high spatial and temporal resolution remains challenging. Herein, we rationally designed a hydrogelator Nap-Phe-Phe(CF3)-Glu-Tyr-Ile-OH (1a) whose supramolecular hydrogel (i.e., Gel 1a) can be subjected to tyrosine kinase-directed disassembly, and its phosphate precursor Nap-Phe-Phe(CF3)-Glu-Tyr(H2PO3)-Ile-OH (1b), which can be subjected to alkaline phosphatase (ALP)-instructed self-assembly to form supramolecular hydrogel Gel 1b, respectively. Mechanic properties and internal fibrous networks of the hydrogels were characterized with rheology and cryo transmission electron microscopy (cryo-TEM). Disassembly/self-assembly of their corresponding supramolecular hydrogels conferring respective "On/Off" (19)F NMR/MRI signals were employed to sense the activity of these two important enzymes in vitro and in cell lysates for the first time. We anticipate that our new (19)F NMR/magnetic resonance imaging (MRI) method would facilitate pharmaceutical researchers to screen new inhibitors for these two enzymes without steric hindrance.

  17. Structure, Topology and Tilt of Cell-Signaling Peptides Containing Nuclear Localization Sequences in Membrane Bilayers Determined by Solid-State NMR and Molecular Dynamics Simulation Studies

    PubMed Central

    Ramamoorthy, Ayyalusamy; Kandasamy, Senthil K.; Lee, Dong-Kuk; Kidambi, Srikanth; Larson, Ronald G.

    2008-01-01

    Cell-signaling peptides have been extensively used to transport functional molecules across the plasma membrane into living cells. These peptides consist of a hydrophobic sequence and a cationic nuclear localization sequence (NLS). It has been assumed that the hydrophobic region penetrates through the hydrophobic lipid bilayer and delivers the NLS inside the cell. To better understand the transport mechanism of these peptides, in this study, we investigated the structure, orientation, tilt of the peptide relative to the bilayer normal, and the membraneinteraction of two cell-signaling peptides, SA and SKP. Results from CD and solid-state NMR experiments combined with molecular dynamics simulations suggest that the hydrophobic region is helical and has a transmembrane orientation with the helical axis tilted away from the bilayer normal. The influence of the hydrophobic mismatch, between the hydrophobic length of the peptide and the hydrophobic thickness of the bilayer, on the tilt angle of the peptides was investigated using thicker POPC and thinner DMPC bilayers. NMR experiments showed that the hydrophobic domain of each peptide has a tilt angle of 15±3° in POPC, while in DMPC 25±3° and 30±3° tilts were observed for SA and SKP peptides respectively. These results are in good agreement with molecular dynamics simulations, which predicts a tilt angle of 13.3° (SA in POPC), 16.4° (SKP in POPC), 22.3° (SA in DMPC) and 31.7° (SKP in POPC). These results and simulations on the hydrophobic fragment of SA or SKP suggest that the tilt of helices increases with a decrease in the bilayer thickness without changing the phase, order, and structure of the lipid bilayers. PMID:17240980

  18. DANCE (Detector for Advanced Neutron Capture Experiments) is a 4π array of BaF2 crystals installed at LANSCE, Lujan Center. Neutron capture measurements on ^157Gd and ^89Y nuclei were conducted using this facility.

    NASA Astrophysics Data System (ADS)

    Chyzh, A.; Mitchell, G.; Vieira, D.; Bredeweg, T.; Ullmann, J.; Jandel, M.; Couture, A.; Keksis, A.; Rundberg, R.; Wilhelmy, J.; O'Donnell, J.; Baramsai, B.; Haight, R.; Wouters, J.; Krticka, M.; Parker, W.; Becker, J.; Agvaanlusan, U.

    2009-10-01

    DANCE (Detector for Advanced Neutron Capture Experiments) is a 4π array of BaF2 crystals installed at LANSCE, Lujan Center. Neutron capture measurements on ^157Gd and ^89Y nuclei were conducted using this facility. The absolute cross sections of the ^89Y(n,γ) reaction was measured for the first time ever in the neutron energy range of 10 eV -- 10 keV and improvements were made in the 10 -- 300 keV range. The error bars were significantly reduced and number of cross section points was increased since the past ^89Y(n,γ) experiments. The ^157Gd(n,γ) cross section was determined at En = 20 eV -- 300 keV by normalizing the experimental DANCE data to a well known resonance taken from the ENDF/B-VII library. Computer simulations of the ^157Gd(n,γ) cascades and DANCE pulse height function were made using DICEBOX and GEANT4 codes and simulated Esum and Eγ spectra are compared to the experimental DANCE data. Values of spin and photon strength function (PSF) of the ^157Gd(n,γ) resonances are provided in the range of En = 2 -- 300 eV using spin dependence upon a γ-ray multiplicity.

  19. Signal loss in 1D magic-angle spinning exchange NMR (CODEX): radio-frequency limitations and intermediate motions.

    PubMed

    Hackel, Christiane; Franz, Cornelius; Achilles, Anja; Saalwächter, Kay; Reichert, Detlef

    2009-08-28

    The popular 1D MAS exchange experiment CODEX suffers limitations due to signal loss during the finite recoupling periods, during which the magnetization evolves in the transverse plane. Here, we address the origins and possible improvements of this problem, aimed at (i) an optimization of the signal-to-noise ratio in the experiments, as well as harnessing intermediate-motion induced signal loss for obtaining approximate information on (ii) correlation times and (iii) potential distributions, where the latter are often found in polymeric systems. First, we show that the intensity of the signal is sensitive to the radiofrequency (rf) parameters of the carbon recoupling and proton decoupling, and care must be taken to gain optimal signal intensity. Optimum conditions are found for recoupling pulses being as short as possible for large chemical shift anisotropy (CSA) values, and approaching a ratio of 3 between the nutation frequencies for protonated carbons, calling for an individual adjustment in each case. Second, we demonstrate that the effect of intermediate motions can be studied semi-quantitatively by combining CODEX data with its constant-time modification CONTRA, which allows for a tuning of the signal loss due to intermediate motions. Third, for the case of samples featuring a distribution of correlation times, we propose a procedure to obtain an estimate of the proportion of molecular segments in the sample for which the CODEX data are representative, i.e., which share of segments moves truly in the slow-motion regime. The procedure involves the combination of CODEX data with a cross-polarisation (CP) reference experiment for an estimate of the full sample magnetization; it is demonstrated on the example of semi-crystalline poly(ethylene oxide).

  20. Tautomeric states of the active-site histidines of phosphorylated and unphosphorylated IIIGlc, a signal-transducing protein from Escherichia coli, using two-dimensional heteronuclear NMR techniques.

    PubMed Central

    Pelton, J. G.; Torchia, D. A.; Meadow, N. D.; Roseman, S.

    1993-01-01

    IIIGlc is an 18.1-kDa signal-transducing phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system from Escherichia coli. The 1H, 15N, and 13C histidine ring NMR signals of both the phosphorylated and unphosphorylated forms of IIIGlc have been assigned using two-dimensional 1H-15N and 1H-13C heteronuclear multiple-quantum coherence (HMQC) experiments and a two-dimensional 13C-13C-1H correlation spectroscopy via JCC coupling experiment. The data were acquired on uniformly 15N-labeled and uniformly 15N/13C-labeled protein samples. The experiments rely on one-bond and two-bond J couplings that allowed for assignment of the signals without the need for the analysis of through-space (nuclear Overhauser effect spectroscopy) correlations. The 15N and 13C chemical shifts were used to determine that His-75 exists predominantly in the N epsilon 2-H tautomeric state in both the phosphorylated and unphosphorylated forms of IIIGlc, and that His-90 exists primarily in the N delta 1-H state in the unphosphorylated protein. Upon phosphorylation of the N epsilon 2 nitrogen of His-90, the N delta 1 nitrogen remains protonated, resulting in the formation of a charged phospho-His-90 moiety. The 1H, 15N, and 13C signals of the phosphorylated and unphosphorylated proteins showed only minor shifts in the pH range from 6.0 to 9.0. These data indicate that the pK alpha values for both His-75 and His-90 in IIIGlc and His-75 in phospho-IIIGlc are less than 5.0, and that the pK alpha value for phospho-His-90 is greater than 10. The results are presented in relation to previously obtained structural data on IIIGlc, and implications for proposed mechanisms of phosphoryl transfer are discussed. PMID:8518729

  1. NMR imaging of materials

    SciTech Connect

    Vinegar, H.J.; Rothwell, W.P.

    1988-03-01

    A method for obtaining at least one petrophysical property of a porous material containing therein at least one preselected fluid, is described, comprising: NMR imaging the material to generate signals dependent upon both M(0) and T/sub 1/ and M(0) and T/sub 2/, generating separate M(0), T/sub 1/ and T/sub 2/ images from the signals, and determining at least one petrophysical property from at least one of the images.

  2. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  3. Recognition of lumbar disk herniation with NMR

    SciTech Connect

    Chafetz, N.I.; Genant, H.K.; Moon, K.L.; Helms, C.A.; Morris, J.M.

    1983-12-01

    Fifteen nuclear magnetic resonance (NMR) studies of 14 patients with herniated lumbar intervertebral disks were performed on the UCSF NMR imager. Computed tomographic (CT) scans done on a GE CT/T 8800 or comparable scanner were available at the time of NMR scan interpretation. Of the 16 posterior disk ruptures seen at CT, 12 were recognized on NMR. Diminished nucleus pulposus signal intensity was present in all ruptured disks. In one patient, NMR scans before and after chymopapain injection showed retraction of the protruding part of the disk and loss of signal intensity after chemonucleolysis. Postoperative fibrosis demonstrated by CT in one patient and at surgery in another showed intermediate to high signal intensity on NMR, easily distinguishing it from nearby thecal sac and disk. While CT remains the method of choice for evaluation of the patient with suspected lumbar disk rupture, the results of this study suggest that NMR may play a role in evaluating this common clinical problem.

  4. Proton detection for signal enhancement in solid-state NMR experiments on mobile species in membrane proteins.

    PubMed

    Ward, Meaghan E; Ritz, Emily; Ahmed, Mumdooh A M; Bamm, Vladimir V; Harauz, George; Brown, Leonid S; Ladizhansky, Vladimir

    2015-12-01

    Direct proton detection is becoming an increasingly popular method for enhancing sensitivity in solid-state nuclear magnetic resonance spectroscopy. Generally, these experiments require extensive deuteration of the protein, fast magic angle spinning (MAS), or a combination of both. Here, we implement direct proton detection to selectively observe the mobile entities in fully-protonated membrane proteins at moderate MAS frequencies. We demonstrate this method on two proteins that exhibit different motional regimes. Myelin basic protein is an intrinsically-disordered, peripherally membrane-associated protein that is highly flexible, whereas Anabaena sensory rhodopsin is composed of seven rigid transmembrane α-helices connected by mobile loop regions. In both cases, we observe narrow proton linewidths and, on average, a 10× increase in sensitivity in 2D insensitive nuclear enhancement of polarization transfer-based HSQC experiments when proton detection is compared to carbon detection. We further show that our proton-detected experiments can be easily extended to three dimensions and used to build complete amino acid systems, including sidechain protons, and obtain inter-residue correlations. Additionally, we detect signals which do not correspond to amino acids, but rather to lipids and/or carbohydrates which interact strongly with membrane proteins.

  5. Rapid parameter optimization of low signal-to-noise samples in NMR spectroscopy using rapid CPMG pulsing during acquisition: application to recycle delays.

    PubMed

    Farooq, Hashim; Courtier-Murias, Denis; Soong, Ronald; Masoom, Hussain; Maas, Werner; Fey, Michael; Kumar, Rajeev; Monette, Martine; Stronks, Henry; Simpson, Myrna J; Simpson, André J

    2013-03-01

    A method is presented that combines Carr-Purcell-Meiboom-Gill (CPMG) during acquisition with either selective or nonselective excitation to produce a considerable intensity enhancement and a simultaneous loss in chemical shift information. A range of parameters can theoretically be optimized very rapidly on the basis of the signal from the entire sample (hard excitation) or spectral subregion (soft excitation) and should prove useful for biological, environmental, and polymer samples that often exhibit highly dispersed and broad spectral profiles. To demonstrate the concept, we focus on the application of our method to T(1) determination, specifically for the slowest relaxing components in a sample, which ultimately determines the optimal recycle delay in quantitative NMR. The traditional inversion recovery (IR) pulse program is combined with a CPMG sequence during acquisition. The slowest relaxing components are selected with a shaped pulse, and then, low-power CPMG echoes are applied during acquisition with intervals shorter than chemical shift evolution (RCPMG) thus producing a single peak with an SNR commensurate with the sum of the signal integrals in the selected region. A traditional (13)C IR experiment is compared with the selective (13)C IR-RCPMG sequence and yields the same T(1) values for samples of lysozyme and riverine dissolved organic matter within error. For lysozyme, the RCPMG approach is ~70 times faster, and in the case of dissolved organic matter is over 600 times faster. This approach can be adapted for the optimization of a host of parameters where chemical shift information is not necessary, such as cross-polarization/mixing times and pulse lengths.

  6. Experimental cross-sections of deuteron-induced reaction on 89Y up to 20 MeV; comparison of natTi(d,x)48V and 27Al(d,x)24Na monitor reactions

    NASA Astrophysics Data System (ADS)

    Lebeda, Ondřej; Štursa, Jan; Ráliš, Jan

    2015-10-01

    We measured cross-sections of the deuteron-induced reactions on 89Y in the energy range of 3.9-19.5 MeV. Excitation functions for formation of 88Zr, 89mZr, 89Zr, 88Y, 90mY and 87mSr were determined and compared with previously published data and prediction of the TALYS code. Thick target yields for production of 88Zr, 89Zrcum, 88Y, 90mY and 87mSr were calculated from the measured cross-sections. Achievable activity versus radionuclidic purity of medically relevant 89Zr is discussed and compared with the production via the 89Y(p,n) reaction. Parallel use of titanium and aluminium beam monitors revealed systematic difference between the recommended cross-sections of both monitoring reactions and provided new cross-section data for formation of 24Na, 27Mg, 43Sc, 44mSc, 44Sc, 46Sc, 47Sc and 48Sc. The cross-sections for the natTi(d,x)46Sc reactions agree very well with recently proposed recommended values.

  7. Simultaneously cycled NMR spectroscopy.

    PubMed

    Parish, David M; Szyperski, Thomas

    2008-04-09

    Simultaneously cycled (SC) NMR was introduced and exemplified by implementing a set of 2-D [1H,1H] SC exclusive COSY (E.COSY) NMR experiments, that is, rf pulse flip-angle cycled (SFC), rf pulse phase cycled (SPC), and pulsed field gradient (PFG) strength cycled (SGC) E.COSY. Spatially selective 1H rf pulses were applied as composite pulses such that all steps of the respective cycles were affected simultaneously in different slices of the sample. This increased the data acquisition speed for an n-step cycle n-fold. A high intrinsic sensitivity was achieved by defining the cycles in a manner that the receiver phase remains constant for all steps of the cycle. Then, the signal resulting from applying the cycle corresponded to the sum of the signals from all steps of the cycle. Hence, the detected free induction decay did not have to be separated into the contributions arising from different slices, and read-out PFGs, which not only greatly reduce sensitivity but also negatively impact lineshapes in the direct dimension, were avoided. The current implementation of SFC E.COSY reached approximately 65% of the intrinsic sensitivity of the conventional phase cycled congener, making this experiment highly attractive whenever conventional data acquisition is sampling limited. Highly resolved SC E.COSY yielding accurate 3J-coupling values was recorded for the 416 Da plant alkaloid tomatidine within 80 min, that is, 12 times faster than with conventional phase cycled E.COSY. SC NMR is applicable for a large variety of NMR experiments and thus promises to be a valuable addition to the arsenal of approaches for tackling the NMR sampling problem to avoid sampling limited data acquisition.

  8. NMR and MRI apparatus and method

    DOEpatents

    Clarke, John; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Myers, Whittier; McDermott, Robert; ten Haken, Bernard; Pines, Alexander; Trabesinger, Andreas

    2007-03-06

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. Additional signal to noise benefits are obtained by use of a low noise polarization coil, comprising litz wire or superconducting materials. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  9. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; Pines, Alexander; McDermott, Robert F.; Trabesinger, Andreas H.

    2008-12-16

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  10. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2007-05-15

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  11. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-05-30

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  12. SQUID detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-10-03

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  13. β-NMR

    NASA Astrophysics Data System (ADS)

    Morris, Gerald D.

    2014-01-01

    The β-NMR facility at ISAC is constructed specifically for experiments in condensed matter physics with radioactive ion beams. Using co-linear optical pumping, a 8Li + ion beam having a large nuclear spin polarisation and low energy (nominally 30 keV) can be generated. When implanted into materials these ions penetrate to shallow depths comparable to length scales of interest in the physics of surfaces and interfaces between materials. Such low-energy ions can be decelerated with simple electrostatic optics to enable depth-resolved studies of near-surface phenomena over the range of about 2-200 nm. Since the β-NMR signal is extracted from the asymmetry intrinsic to beta-decay and therefore monitors the polarisation of the radioactive probe nuclear magnetic moments, this technique is fundamentally a probe of local magnetism. More generally though, any phenomena which affects the polarisation of the implanted spins by, for example, a change in resonance frequency, line width or relaxation rate can be studied. The β-NMR program at ISAC currently supports a number of experiments in magnetism and superconductivity as well as novel ultra-thin heterostructures exhibiting properties that cannot occur in bulk materials. The general purpose zero/low field and high field spectrometers are configured to perform CW and pulsed RF nuclear magnetic resonance and spin relaxation experiments over a range of temperatures (3-300 K) and magnetic fields (0-9 T).

  14. Solid-state NMR of inorganic semiconductors.

    PubMed

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  15. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  16. Measurements of production cross sections of 10Be and 26Al by 120 GeV and 392 MeV proton bombardment of 89Y, 159Tb, and natCu targets

    NASA Astrophysics Data System (ADS)

    Sekimoto, S.; Okumura, S.; Yashima, H.; Matsushi, Y.; Matsuzaki, H.; Matsumura, H.; Toyoda, A.; Oishi, K.; Matsuda, N.; Kasugai, Y.; Sakamoto, Y.; Nakashima, H.; Boehnlein, D.; Coleman, R.; Lauten, G.; Leveling, A.; Mokhov, N.; Ramberg, E.; Soha, A.; Vaziri, K.; Ninomiya, K.; Omoto, T.; Shima, T.; Takahashi, N.; Shinohara, A.; Caffee, M. W.; Welten, K. C.; Nishiizumi, K.; Shibata, S.; Ohtsuki, T.

    2015-10-01

    The production cross sections of 10Be and 26Al were measured by accelerator mass spectrometry using 89Y, 159Tb, and natCu targets bombarded by protons with energies Ep of 120 GeV and 392 MeV. The production cross sections obtained for 10Be and 26Al were compared with those previously reported using Ep = 50 MeV-24 GeV and various targets. It was found that the production cross sections of 10Be monotonically increased with increasing target mass number when the proton energy was greater than a few GeV. On the other hand, it was also found that the production cross sections of 10Be decreased as the target mass number increased from that of carbon to those near the mass numbers of nickel and zinc when the proton energy was below approximately 1 GeV. They also increased as the target mass number increased from near those of nickel and zinc to that of bismuth, in the same proton energy range. Similar results were observed in the production cross sections of 26Al, though the absolute values were quite different between 10Be and 26Al. The difference between these production cross sections may depend on the impact parameter (nuclear radius) and/or the target nucleus stiffness.

  17. Measurements of production cross sections of 10Be and 26Al by 120 GeV and 392 MeV proton bombardment of 89Y, 159Tb, and natCu targets

    DOE PAGES

    Sekimoto, S.; Okumura, S.; Yashima, H.; ...

    2015-08-12

    The production cross sections of 10Be and 26Al were measured by accelerator mass spectrometry using 89Y, 159Tb, and natCu targets bombarded by protons with energies Ep of 120 GeV and 392 MeV. The production cross sections obtained for 10Be and 26Al were compared with those previously reported using Ep = 50 MeV–24 GeV and various targets. It was found that the production cross sections of 10Be monotonically increased with increasing target mass number when the proton energy was greater than a few GeV. On the other hand, it was also found that the production cross sections of 10Be decreased asmore » the target mass number increased from that of carbon to those near the mass numbers of nickel and zinc when the proton energy was below approximately 1 GeV. They also increased as the target mass number increased from near those of nickel and zinc to that of bismuth, in the same proton energy range. Similar results were observed in the production cross sections of 26Al, though the absolute values were quite different between 10Be and 26Al. As a result, the difference between these production cross sections may depend on the impact parameter (nuclear radius) and/or the target nucleus stiffness.« less

  18. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about

  19. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  20. Hyperpolarized 131Xe NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented.

  1. Hyperpolarized 131Xe NMR spectroscopy

    PubMed Central

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented. PMID:21051249

  2. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  3. Probing Hydronium Ion Histidine NH Exchange Rate Constants in the M2 Channel via Indirect Observation of Dipolar-Dephased (15)N Signals in Magic-Angle-Spinning NMR.

    PubMed

    Fu, Riqiang; Miao, Yimin; Qin, Huajun; Cross, Timothy A

    2016-12-14

    Water-protein chemical exchange in membrane-bound proteins is an important parameter for understanding how proteins interact with their aqueous environment, but has been difficult to observe in membrane-bound biological systems. Here, we demonstrate the feasibility of probing specific water-protein chemical exchange in membrane-bound proteins in solid-state MAS NMR. By spin-locking the (1)H magnetization along the magic angle, the (1)H spin diffusion is suppressed such that a water-protein chemical exchange process can be monitored indirectly by dipolar-dephased (15)N signals through polarization transfer from (1)H. In the example of the Influenza A full length M2 protein, the buildup of dipolar-dephased (15)N signals from the tetrad of His37 side chains have been observed as a function of spin-lock time. This confirms that hydronium ions are in exchange with protons in the His37 NH bonds at the heart of the M2 proton conduction mechanism, with an exchange rate constant of ∼1750 s(-1) for pH 6.2 at -10 °C.

  4. Earth's field NMR flow meter: preliminary quantitative measurements.

    PubMed

    Fridjonsson, Einar O; Stanwix, Paul L; Johns, Michael L

    2014-08-01

    In this paper we demonstrate the use of Earth's field NMR (EF NMR) combined with a pre-polarising permanent magnet for measuring fast fluid velocities. This time of flight measurement protocol has a considerable history in the literature; here we demonstrate that it is quantitative when employing the Earth's magnetic field for signal detection. NMR signal intensities are measured as a function of flow rate (0-1m/s) and separation distance between the permanent magnet and the EF NMR signal detection. These data are quantitatively described by a flow model, ultimately featuring no free parameters, that accounts for NMR signal modulation due to residence time inside the pre-polarising magnet, between the pre-polarising magnet and the detection RF coil and inside the detection coil respectively. The methodology is subsequently demonstrated with a metallic pipe in the pre-polarising region.

  5. Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR.

    PubMed

    Balayssac, Stéphane; Retailleau, Emmanuel; Bertrand, Geneviève; Escot, Marie-Pierre; Martino, Robert; Malet-Martino, Myriam; Gilard, Véronique

    2014-01-01

    Twenty-four samples of heroin from different illicit drug seizures were analyzed using proton Nuclear Magnetic Resonance ((1)H NMR) and two-dimensional diffusion-ordered spectroscopy (2D DOSY) (1)H NMR. A careful assignment and quantification of (1)H signals enabled a comprehensive characterization of the substances present in the samples investigated: heroin, its main related impurities (6-acetylmorphine, acetylcodeine, morphine, noscapine and papaverine) and cutting agents (caffeine and acetaminophen in nearly all samples as well as lactose, lidocaine, mannitol, piracetam in one sample only), and hence to establish their spectral signatures. The good agreement between the amounts of heroin, noscapine, caffeine and acetaminophen determined by (1)H NMR and gas chromatography, the reference method in forensic laboratories, demonstrates the validity of the (1)H NMR technique. In this paper, 2D DOSY (1)H NMR offers a new approach for a whole characterization of the various components of these complex mixtures.

  6. NMR studies of cation transport across membranes

    SciTech Connect

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  7. Rotary echo nutation NMR

    NASA Astrophysics Data System (ADS)

    Janssen, R.; Tijink, G. A. H.; Veeman, W. S.

    1988-01-01

    A two-dimensional solid state NMR experiment which combines rotary echoes and nutation NMR is investigated and used to study different sodium sites in zeolite NaA. It is shown that with this technique sodium ions with different relaxation rates in the rotating frame can be distinguished.

  8. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  9. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  10. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  11. An optical NMR spectrometer for Larmor-beat detection and high-resolution POWER NMR

    NASA Astrophysics Data System (ADS)

    Kempf, J. G.; Marohn, J. A.; Carson, P. J.; Shykind, D. A.; Hwang, J. Y.; Miller, M. A.; Weitekamp, D. P.

    2008-06-01

    Optical nuclear magnetic resonance (ONMR) is a powerful probe of electronic properties in III-V semiconductors. Larmor-beat detection (LBD) is a sensitivity optimized, time-domain NMR version of optical detection based on the Hanle effect. Combining LBD ONMR with the line-narrowing method of POWER (perturbations observed with enhanced resolution) NMR further enables atomically detailed views of local electronic features in III-Vs. POWER NMR spectra display the distribution of resonance shifts or line splittings introduced by a perturbation, such as optical excitation or application of an electric field, that is synchronized with a NMR multiple-pulse time-suspension sequence. Meanwhile, ONMR provides the requisite sensitivity and spatial selectivity to isolate local signals within macroscopic samples. Optical NMR, LBD, and the POWER method each introduce unique demands on instrumentation. Here, we detail the design and implementation of our system, including cryogenic, optical, and radio-frequency components. The result is a flexible, low-cost system with important applications in semiconductor electronics and spin physics. We also demonstrate the performance of our systems with high-resolution ONMR spectra of an epitaxial AlGaAs /GaAs heterojunction. NMR linewidths down to 4.1Hz full width at half maximum were obtained, a 103-fold resolution enhancement relative any previous optically detected NMR experiment.

  12. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    PubMed Central

    Liu, Yang; Liu, Zhaoxia; Yang, Huaxin

    2016-01-01

    Quantitative nuclear magnetic resonance (qNMR) is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR) and only a few fluorine qNMR (19F qNMR) were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes. PMID:27688925

  13. Hyperpolarized NMR Probes for Biological Assays

    PubMed Central

    Meier, Sebastian; Jensen, Pernille R.; Karlsson, Magnus; Lerche, Mathilde H.

    2014-01-01

    During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized) molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments. PMID:24441771

  14. Understanding NMR relaxometry of partially water-saturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Jorand, R.; Nordlund, C.; Klitzsch, N.

    2015-06-01

    Nuclear magnetic resonance (NMR) relaxometry measurements are commonly used to characterize the storage and transport properties of water-saturated rocks. Estimations of these properties are based on the direct link of the initial NMR signal amplitude to porosity (water content) and of the NMR relaxation time to pore size. Herein, pore shapes are usually assumed to be spherical or cylindrical. However, the NMR response at partial water saturation for natural sediments and rocks may differ strongly from the responses calculated for spherical or cylindrical pores, because these pore shapes do not account for water menisci remaining in the corners of desaturated angular pores. Therefore, we consider a bundle of pores with triangular cross sections. We introduce analytical solutions of the NMR equations at partial saturation of these pores, which account for water menisci of desaturated pores. After developing equations that describe the water distribution inside the pores, we calculate the NMR response at partial saturation for imbibition and drainage based on the deduced water distributions. For this pore model, the NMR amplitudes and NMR relaxation times at partial water saturation strongly depend on pore shape, i.e., arising from the capillary pressure and pore shape-dependent water distribution in desaturated pores with triangular cross sections. Even so, the NMR relaxation time at full saturation only depends on the surface-to-volume ratio of the pore. Moreover, we show the qualitative agreement of the saturation-dependent relaxation-time distributions of our model with those observed for rocks and soils.

  15. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  16. An on-line NMR technique with a programmable processor

    SciTech Connect

    Razazian, K.; Dieckman, S.L.; Raptis, A.C.

    1995-07-01

    Nuclear magnetic resonance (NMR) spectroscopy is used to determine molecular content of materials, mainly in laboratory measurements. The reduced cost of fast computer processors, together with recent break throughs in digital signal processor technology, has facilitated the on-line use of NMR by allowing modifications of the available technology. This paper describes a system and an algorithm for improving the on-line operations. It is base on the time-domain NMR signal detected by the controller and some prior knowledge of chemical signal patterns. The desired signal can be separated from a composite signal by using an adaptive line enhancer (ALE) filter. This technique would be useful for upgrading process procedures in on-line manufacturing.

  17. Remote NMR/MRI detection of laser polarized gases

    SciTech Connect

    Pines, Alexander; Saxena, Sunil; Moule, Adam; Spence, Megan; Seeley, Juliette A.; Pierce, Kimberly L.; Han, Song-I; Granwehr, Josef

    2006-06-13

    An apparatus and method for remote NMR/MRI spectroscopy having an encoding coil with a sample chamber, a supply of signal carriers, preferably hyperpolarized xenon and a detector allowing the spatial and temporal separation of signal preparation and signal detection steps. This separation allows the physical conditions and methods of the encoding and detection steps to be optimized independently. The encoding of the carrier molecules may take place in a high or a low magnetic field and conventional NMR pulse sequences can be split between encoding and detection steps. In one embodiment, the detector is a high magnetic field NMR apparatus. In another embodiment, the detector is a superconducting quantum interference device. A further embodiment uses optical detection of Rb--Xe spin exchange. Another embodiment uses an optical magnetometer using non-linear Faraday rotation. Concentration of the signal carriers in the detector can greatly improve the signal to noise ratio.

  18. Picoliter H-1 NMR Spectroscopy

    SciTech Connect

    Minard, Kevin R. ); Wind, Robert A. )

    2002-02-01

    A RF probe that fits inside the bore of a small gradient coil package is described for routine 1H-NMR microscopy measurements on small samples. The probe operates at 500 MHz and houses a 267-um-diameter solenoid transceiver. When used in three dimensional chemical shift imaging (3D-CSI) experiments, the measured signal-to-noise ratio (SNR) is shown to be within 20-30 percent of theoretical limits formulated by only considering the solenoid's resistive losses. This is illustrated using a 100-um-diameter globule of triacylglycerols ({approx}900mM) that may be an oocyte precursor in young Xenopus Laevis frogs, and water sample containing choline at a concentration often found in live cells ({approx}33mM). In chemical shift images generated using a few thousand scans, the choline methyl line is found to have an acceptable SNR in resolved from just 5 picoliters in the Xenopus globule. It is concluded that the probe's sensitivity is sufficient for performing 1H-NMR on picoliter-scale volumes in biological cells and tissues.

  19. Continuous Flow 1H and 13C NMR Spectroscopy in Microfluidic Stripline NMR Chips

    PubMed Central

    2017-01-01

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline’s favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional 1H, 13C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity. The detection volumes are approximately 150 and 250 nL, while flow rates ranging from 0.5 μL/min to 15 μL/min have been employed. We show that in continuous flow the pulse delay is determined by the replenishment time of the detector volume, if the sample trajectory in the magnet toward NMR detector is long enough to polarize the spin systems. This can considerably speed up quantitative measurement of samples needing signal averaging. So it can be beneficial to perform continuous flow measurements in this setup for analysis of, e.g., reactive, unstable, or mass-limited compounds. PMID:28194934

  20. OPENCORE NMR: open-source core modules for implementing an integrated FPGA-based NMR spectrometer.

    PubMed

    Takeda, Kazuyuki

    2008-06-01

    A tool kit for implementing an integrated FPGA-based NMR spectrometer [K. Takeda, A highly integrated FPGA-based nuclear magnetic resonance spectrometer, Rev. Sci. Instrum. 78 (2007) 033103], referred to as the OPENCORE NMR spectrometer, is open to public. The system is composed of an FPGA chip and several peripheral boards for USB communication, direct-digital synthesis (DDS), RF transmission, signal acquisition, etc. Inside the FPGA chip have been implemented a number of digital modules including three pulse programmers, the digital part of DDS, a digital quadrature demodulator, dual digital low-pass filters, and a PC interface. These FPGA core modules are written in VHDL, and their source codes are available on our website. This work aims at providing sufficient information with which one can, given some facility in circuit board manufacturing, reproduce the OPENCORE NMR spectrometer presented here. Also, the users are encouraged to modify the design of spectrometer according to their own specific needs. A home-built NMR spectrometer can serve complementary roles to a sophisticated commercial spectrometer, should one comes across such new ideas that require heavy modification to hardware inside the spectrometer. This work can lower the barrier of building a handmade NMR spectrometer in the laboratory, and promote novel and exciting NMR experiments.

  1. OPENCORE NMR: Open-source core modules for implementing an integrated FPGA-based NMR spectrometer

    NASA Astrophysics Data System (ADS)

    Takeda, Kazuyuki

    2008-06-01

    A tool kit for implementing an integrated FPGA-based NMR spectrometer [K. Takeda, A highly integrated FPGA-based nuclear magnetic resonance spectrometer, Rev. Sci. Instrum. 78 (2007) 033103], referred to as the OPENCORE NMR spectrometer, is open to public. The system is composed of an FPGA chip and several peripheral boards for USB communication, direct-digital synthesis (DDS), RF transmission, signal acquisition, etc. Inside the FPGA chip have been implemented a number of digital modules including three pulse programmers, the digital part of DDS, a digital quadrature demodulator, dual digital low-pass filters, and a PC interface. These FPGA core modules are written in VHDL, and their source codes are available on our website. This work aims at providing sufficient information with which one can, given some facility in circuit board manufacturing, reproduce the OPENCORE NMR spectrometer presented here. Also, the users are encouraged to modify the design of spectrometer according to their own specific needs. A home-built NMR spectrometer can serve complementary roles to a sophisticated commercial spectrometer, should one comes across such new ideas that require heavy modification to hardware inside the spectrometer. This work can lower the barrier of building a handmade NMR spectrometer in the laboratory, and promote novel and exciting NMR experiments.

  2. First NMR Experiments in the Hybrid, 40T and beyond: A challenge to traditional NMR instrumentation

    NASA Astrophysics Data System (ADS)

    Reyes, Arneil P.

    2001-03-01

    The recent commissioning of the continuous 45T hybrid magnet at NHMFL has opened new horizon for science but carried with it new challenges that forced NMR spectroscopists to reevaluate the traditional approach to NMR instrumentation. Very recently, a world record frequency at 1.5GHz has been achieved, signaling the new era of NMR probe designs that may someday blur the distinction between the classic NMR and millimeter-wave spectroscopies. No longer can we ignore stray capacitances and exposed leads in the terrain where every millimeter of cable counts. The challenge brought about by ever increasing fields and consequently, frequency, requirements has stimulated ingenuity among scientists. This is eased by accelerated growth in RF communications and computing technologies that made available advanced devices with more speed, power, bandwidth, noise immunity, flexibility, and complexity in small space at very low costs. Utilization of these devices have been paramount consideration in cutting-edge designs at NHMFL for Condensed Matter NMR and will be described in this talk. I will also discuss a number of first >33T NMR experiments to date utilizing the strength of the field to expose, as well as to induce occurrence of, new physical phenomena in condensed matter and which resulted in better understanding of the physics of materials. This work has been a result of continuing collaboration with P. L Kuhns, W. G. Moulton, W. P. Halperin (NU), and W. G. Clark (UCLA). The NHMFL is supported through the National Science Foundation and the State of Florida.

  3. Continuous Flow (1)H and (13)C NMR Spectroscopy in Microfluidic Stripline NMR Chips.

    PubMed

    Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M; Janssen, Johannes W G; van Bentum, P Jan M; Gardeniers, Han J G E; Kentgens, Arno P M

    2017-02-21

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional (1)H, (13)C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity. The detection volumes are approximately 150 and 250 nL, while flow rates ranging from 0.5 μL/min to 15 μL/min have been employed. We show that in continuous flow the pulse delay is determined by the replenishment time of the detector volume, if the sample trajectory in the magnet toward NMR detector is long enough to polarize the spin systems. This can considerably speed up quantitative measurement of samples needing signal averaging. So it can be beneficial to perform continuous flow measurements in this setup for analysis of, e.g., reactive, unstable, or mass-limited compounds.

  4. Enhancing NMR of insensitive nuclei by transfer of SABRE spin hyperpolarization

    NASA Astrophysics Data System (ADS)

    Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L.

    2016-09-01

    We describe the performance of methods for enhancing NMR (Nuclear Magnetic Resonance) signals of "insensitive", but important NMR nuclei, which are based on the SABRE (Signal Amplification By Reversible Exchange) technique, i.e., on spin order transfer from parahydrogen (H2 molecule in its nuclear singlet spin state) to a substrate in a transient organometallic complex. Here such transfer is performed at high magnetic fields by INEPT-type NMR pulse sequences, modified for SABRE. Signal enhancements up to three orders of magnitude are obtained for 15N nuclei; the possibility of sensitive detection of 2D-NMR 1H-15N spectra of SABRE complexes and substrates is demonstrated.

  5. Optimizing Adiabaticity in NMR

    NASA Astrophysics Data System (ADS)

    Vandermause, Jonathan; Ramanathan, Chandrasekhar

    We demonstrate the utility of Berry's superadiabatic formalism for numerically finding control sequences that implement quasi-adiabatic unitary transformations. Using an iterative interaction picture, we design a shortcut to adiabaticity that reduces the time required to perform an adiabatic inversion pulse in liquid state NMR. We also show that it is possible to extend our scheme to two or more qubits to find adiabatic quantum transformations that are allowed by the control algebra, and demonstrate a two-qubit entangling operation in liquid state NMR. We examine the pulse lengths at which the fidelity of these adiabatic transitions break down and compare with the quantum speed limit.

  6. Dynamics of Antibody Domains Studied by Solution NMR

    PubMed Central

    Vu, Bang K.; Walsh, Joseph D.; Dimitrov, Dimiter S.; Ishima, Rieko

    2012-01-01

    Information on local dynamics of antibodies is important to evaluate stability, to rationally design variants, and to clarify conformational disorders at the epitope binding sites. Such information may also be useful for improved understanding of antigen recognition. NMR can be used for characterization of local protein dynamics at the atomic level through relaxation measurements. Due to the complexity of the NMR spectra, an extensive use of this method is limited to small protein molecules, for example, antibody domains and some scFv. Here, we describe a protocol that was used to study the dynamics of an antibody domain in solution using NMR. We describe protein preparation for NMR studies, NMR sample optimization, signal assignments, and dynamics experiments. PMID:19252840

  7. Nuclear spin noise in NMR revisited

    SciTech Connect

    Ferrand, Guillaume; Luong, Michel

    2015-09-07

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.

  8. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  9. Autonomous driving in NMR.

    PubMed

    Perez, Manuel

    2017-01-01

    The automatic analysis of NMR data has been a much-desired endeavour for the last six decades, as it is the case with any other analytical technique. This need for automation has only grown as advances in hardware; pulse sequences and automation have opened new research areas to NMR and increased the throughput of data. Full automatic analysis is a worthy, albeit hard, challenge, but in a world of artificial intelligence, instant communication and big data, it seems that this particular fight is happening with only one technique at a time (let this be NMR, MS, IR, UV or any other), when the reality of most laboratories is that there are several types of analytical instrumentation present. Data aggregation, verification and elucidation by using complementary techniques (e.g. MS and NMR) is a desirable outcome to pursue, although a time-consuming one if performed manually; hence, the use of automation to perform the heavy lifting for users is required to make the approach attractive for scientists. Many of the decisions and workflows that could be implemented under automation will depend on the two-way communication with databases that understand analytical data, because it is desirable not only to query these databases but also to grow them in as much of an automatic manner as possible. How these databases are designed, set up and the data inside classified will determine what workflows can be implemented. Copyright © 2016 John Wiley & Sons, Ltd.

  10. BOOK REVIEW: NMR Imaging of Materials

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2003-09-01

    spectroscopic methods to weight or filter the spin signals represents the core of the book. This is a subject where Blümich is deeply involved with substantial contributions. The chapter includes a lot of ideas to provide MR contrast between different regions based on their mobility, diffusion, spin couplings or NMR spectra. After describing NMR imaging methods for solids with broad lines, Blümich spends time on applications in the last two chapters of the book. This part is really fun to read. It underlines the effort to bring NMR into many kinds of manufacturing. Car tyres and high-voltage cables are just two such areas. Elastomeric materials, green-state ceramics and food science represent other interesting fields of applications. This part of the book represents a personal but nevertheless extensive compilation of modern applications. As a matter of course the MOUSE is presented, a portable permanent-magnet based NMR developed by Blümich and his co-workers. Thus the book is not only of interest to NMR spectroscopists but also to people in material science and chemical engineering. The bibliography and indexing are excellent and may serve as an attractive reference source for NMR spectroscopists. The book is the first on the subject and likely to become the standard text for NMR imaging of materials as the books by Abragam, Slicher and Ernst et al are for NMR spectroscopy. The purchase of this beautiful book for people dealing with NMR spectroscopy or medical MRI is highly recommended. Ralf Ludwig

  11. NMR quantum computation with optically polarized molecules

    NASA Astrophysics Data System (ADS)

    Verhulst, Anne; Yannoni, Constantino; Sherwood, Mark; Pomerantz, Drew; Vandersypen, Lieven; Chuang, Isaac

    2000-03-01

    Current methods for bulk NMR quantum computation rely on nuclear spin polarization present at high temperature equilibrium. This presents a challenging obstacle as the probability to find a spin in a specific state decreases exponentially in the number of spins used as qubits, causing a corresponding decrease in the signal to noise ratio of the desired NMR signal. One way to address this problem is to provide an artificial source of high polarization, such as optically pumped ^129Xe. For comparison, thermal equilibrium polarizations are only about 10-3% for ^1H in a typical NMR experiment at room temperature and in a 10 Tesla magnetic field, but with ^129Xe polarizations as high as 18% have been achieved [Happer et. al., Chem.Phys.Lett., 284, p.87-92, Feb 1998]. Using this technique, we prepare hyperpolarized liquid Xe and use it as a solvent for chloroform molecules (CHCl_3). Cross polarization (SPINOE) between ^129Xe and ^1H results in measured enhancements of the proton signal of over 300%, and evidence of transfer to ^13C. These results provide hope for the scalability of quantum computation.

  12. NMR studies of metallic tin confined within porous matrices

    SciTech Connect

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-04-01

    {sup 119}Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown.

  13. NMR imaging of components and materials for DOE application

    SciTech Connect

    Richardson, B.R.

    1993-12-01

    The suitability for using NMR imaging to characterize liquid, polymeric, and solid materials was reviewed. The most attractive applications for NMR imaging appear to be liquid-filled porous samples, partially cured polymers, adhesives, and potting compounds, and composite polymers/high explosives containing components with widely varying thermal properties. Solid-state NMR line-narrowing and signal-enhancing markedly improve the imaging possibilities of true solid and materials. These techniques provide unique elemental and chemical shift information for highly complex materials and complement images with similar spatial resolution, such as X-ray computed tomography (CT).

  14. Xenon for NMR biosensing--inert but alert.

    PubMed

    Schröder, Leif

    2013-01-01

    NMR studies with hyperpolarized xenon as functionalized sensor or contrast agent recently made notable progress in developing a new approach for detecting molecular markers and parameters of biomedical interest. Combining spin polarization enhancement with novel indirect detection schemes easily enables a 10⁷-fold signal gain, thus having promising potential to solve the NMR sensitivity problem in many applications. Though an inert element, ¹²⁹Xe has exquisite NMR properties to sense molecular environments. This review summarizes recent developments in the production of hyperpolarized xenon and the design and detection schemes of xenon biosensors.

  15. Diamond Deposition and Defect Chemistry Studied via Solid State NMR

    DTIC Science & Technology

    1994-06-30

    same integrated NMR signal, regardless of its chemical environment, provided complete spin-lattice relaxation occurs between averages 3 . Gem -quality...occurs between averages, and broadening from years, a large research effort has been devoted to the study paramagnetic centers is insignificant. Gem ...information on the distribution and motion mond’s durability very attractive. However, while gem - of hydrogen can be obtained from the solid-state NMR

  16. Chromatographic Separation and NMR An Integrated Approach in Pharmaceutical Development.

    PubMed

    Gonnella, Nina C

    2012-01-01

    Over the past 10 years, major improvements in the performance of LC-NMR have been realized. The addition of postcolumn SPE, advances in probe technology including cryogenic probes and microcoil probes, improved solvent suppression pulse sequences, and shielded magnets with better homogeneity have all contributed to rapid advancements in this technology. Application of LC-NMR to problems in pharmaceutical development has had a major impact on structure elucidation studies. LC-NMR has been successfully applied to determine the structures of degradation products, impurities, mixtures of compounds, and metabolites. Use of stop flow techniques with LC-NMR experiments has been a critical means of identifying unstable compounds and studying conformational kinetics. The integration of SPE as an intermediate step between the LC unit and the NMR spectrometer has vastly improved the power of the hyphenated technique in trace analysis applications. Online postcolumn enrichment of chromatographic peaks by SPE dramatically reduces the NMR acquisition times by allowing repeated injections to be trapped onto the same cartridge or different cartridges. Because protonated solvents can be easily removed with a drying procedure, solvents and buffers may be freely chosen for maximizing chromatographic separation without compromising NMR spectral quality. The compound of interest may then be eluted from an SPE cartridge using deuterated organic solvent, which helps to reduce dynamic range issues. When combined with cryogenically cooled microcapillary probes, the sensitivity of the NMR signal increases about 10-fold over conventional room temperature probes, enabling full structure characterization at the microgram level. Heteronuclear experiments with concentrations previously only possible in a limited number of cases have now become standard experiments. The availability of HSQC and HMBC experiments and microcoil/cryogenic technology opens the possibility of using LC-(SPE) NMR for the

  17. New Designs for NMR Core Scanning

    NASA Astrophysics Data System (ADS)

    Bluemich, B.; Anferova, S.; Talnishnikh, E.; Arnold, J.; Clauser, C.

    2006-12-01

    Within the last ten years, mobile magnetic resonance has moved from the oil field to many new areas of application. While the focus of mobile NMR in the past was on single-sided or inside-out NMR, the advent of tube-shaped Halbach magnets has introduced the conventional outside-in NMR concept to mobile NMR where the object is inside a magnet. Our Halbach magnet is constructed from small magnet blocks at light weight and low cost with a magnetic field sufficiently homogeneous. To automatize NMR measurements, the Halbach magnet is mounted on a sliding table to scan long core sections without human interaction. In homogeneous magnetic fields, the longitudinal relaxation time T1 and even the transverse relaxation time T2 are proportional to the pore diameters of rocks. Hence, the T1 and T2 signals map the pore-size distribution of the studied rock cores. For fully saturated samples the integral of the distribution curve is proportional to porosity. The porosity values from NMR measurements with the Halbach magnet are used to estimate permability. The Halbach magnet can be used for certain sample geometries in combination with exchangeable radio frequency (rf) coils with different diameters from 24 mm up to 80 mm. To measure standard Ocean Drilling Program (ODP)/Integrated Ocean Drilling Program (IODP) cores, which have a standard diameter of 60 mm and are split lengthwise after recovery, we use a surface figure-8 rf coil with an inner diameter of 60 mm. Besides 1D T2 measurements, we perform relaxation-relaxation correlation experiments, where T1 and T2 are measured in parallel. In this way, the influence of diffusion on the shape of the T2 distribution function is probed. A gradient coil system was designed to perform Pulsed Field Gradients (PFG) experiments. As the gradient coils restrict the axial access to the magnet, only cylindrical core plugs with 20 mm in diameter can be analysed by PFG NMR methods. The homogeneity of the magnetic field in the sensitive volume

  18. NMR analysis on microfluidic devices by remote detection.

    PubMed

    McDonnell, Erin E; Han, SongI; Hilty, Christian; Pierce, Kimberly L; Pines, Alexander

    2005-12-15

    We present a novel approach to perform high-sensitivity NMR imaging and spectroscopic analysis on microfluidic devices. The application of NMR, the most information-rich spectroscopic technique, to microfluidic devices remains a challenge because the inherently low sensitivity of NMR is aggravated by small fluid volumes leading to low NMR signal and geometric constraints resulting in poor efficiency for inductive detection. We address the latter by physically separating signal detection from encoding of information with remote detection. Thereby, we use a commercial imaging probe with sufficiently large diameter to encompass the entire device, enabling encoding of NMR information at any location on the chip. Because large-diameter coils are too insensitive for detection, we store the encoded information as longitudinal magnetization and flow it into the outlet capillary. There, we detect the signal with optimal sensitivity, using a solenoidal microcoil, and reconstruct the information encoded in the fluid. We present a generally applicable design for a detection-only microcoil probe that can be inserted into the bore of a commercial imaging probe. Using hyperpolarized 129Xe gas, we show that this probe enables sensitive reconstruction of NMR spectroscopic information encoded by the large imaging probe while keeping the flexibility of a large coil.

  19. Planar microcoil-based microfluidic NMR probes

    NASA Astrophysics Data System (ADS)

    Massin, C.; Vincent, F.; Homsy, A.; Ehrmann, K.; Boero, G.; Besse, P.-A.; Daridon, A.; Verpoorte, E.; de Rooij, N. F.; Popovic, R. S.

    2003-10-01

    Microfabricated small-volume NMR probes consisting of electroplated planar microcoils integrated on a glass substrate with etched microfluidic channels are fabricated and tested. 1H NMR spectra are acquired at 300 MHz with three different probes having observed sample volumes of respectively 30, 120, and 470 nL. The achieved sensitivity enables acquisition of an 1H spectrum of 160 μg sucrose in D 2O, corresponding to a proof-of-concept for on-chip NMR spectroscopy. Increase of mass-sensitivity with coil diameter reduction is demonstrated experimentally for planar microcoils. Models that enable quantitative prediction of the signal-to-noise ratio and of the influence of microfluidic channel geometry on spectral resolution are presented and successfully compared to the experimental data. The main factor presently limiting sensitivity for high-resolution applications is identified as being probe-induced static magnetic field distortions. Finally, based on the presented model and measured data, future performance of planar microcoil-based microfluidic NMR probes is extrapolated and discussed.

  20. Planar microcoil-based microfluidic NMR probes.

    PubMed

    Massin, C; Vincent, F; Homsy, A; Ehrmann, K; Boero, G; Besse, P-A; Daridon, A; Verpoorte, E; de Rooij, N F; Popovic, R S

    2003-10-01

    Microfabricated small-volume NMR probes consisting of electroplated planar microcoils integrated on a glass substrate with etched microfluidic channels are fabricated and tested. 1H NMR spectra are acquired at 300 MHz with three different probes having observed sample volumes of respectively 30, 120, and 470 nL. The achieved sensitivity enables acquisition of an 1H spectrum of 160 microg sucrose in D2O, corresponding to a proof-of-concept for on-chip NMR spectroscopy. Increase of mass-sensitivity with coil diameter reduction is demonstrated experimentally for planar microcoils. Models that enable quantitative prediction of the signal-to-noise ratio and of the influence of microfluidic channel geometry on spectral resolution are presented and successfully compared to the experimental data. The main factor presently limiting sensitivity for high-resolution applications is identified as being probe-induced static magnetic field distortions. Finally, based on the presented model and measured data, future performance of planar microcoil-based microfluidic NMR probes is extrapolated and discussed.

  1. Saturation-Transfer Difference (STD) NMR: A Simple and Fast Method for Ligand Screening and Characterization of Protein Binding

    ERIC Educational Resources Information Center

    Viegas, Aldino; Manso, Joao; Nobrega, Franklin L.; Cabrita, Eurico J.

    2011-01-01

    Saturation transfer difference (STD) NMR has emerged as one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. The success of this technique is a consequence of its robustness and the fact that it is focused on the signals of the ligand, without any need of processing NMR information about the receptor…

  2. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  3. Considerations on the read out of low frequency NMR for 3He

    NASA Astrophysics Data System (ADS)

    Benningshof, O. W. B.; Nguyen, D. H.; Jochemsen, R.

    2009-02-01

    For studies of the superfmid phases of 3He the technique low of frequency (500 kHz) NMR is widely used. One way to read out the NMR signal is with the continuous wave experiment. In this experiment the NMR signal is proportional with the quality factor of a tank circuit. However direct connection with a coax cable will, because of its resistivity and parasitic capacitance load the tank circuit and by that lower the quality factor In this paper two passive methods, which minimize the loading to read out the NMR signal are described and simulated. The first method reads the NMR signal over the parasitic capacitance of the coax cable, which is put in series with the tank circuit. The second method makes use of a pick up coil, which is weakly coupled to the coil of the tank circuit Both methods can preserve a high quality factor, and are optimized for best SNR

  4. Monoterpene Unknowns Identified Using IR, [to the first power]H-NMR, [to the thirteenth power]C-NMR, DEPT, COSY, and HETCOR

    ERIC Educational Resources Information Center

    Alty, Lisa T.

    2005-01-01

    A study identifies a compound from a set of monoterpenes using infrared (IR) and one-dimensional (1D) nuclear magnetic resonance (NMR) techniques. After identifying the unknown, each carbon and proton signal can be interpreted and assigned to the structure using the information in the two-dimensional (2D) NMR spectra, correlation spectroscopy…

  5. A Review of the Principles and Applications of the NMR Technique for Near-Surface Characterization

    NASA Astrophysics Data System (ADS)

    Behroozmand, Ahmad A.; Keating, Kristina; Auken, Esben

    2015-01-01

    This paper presents a comprehensive review of the recent advances in nuclear magnetic resonance (NMR) measurements for near-surface characterization using laboratory, borehole, and field technologies. During the last decade, NMR has become increasingly popular in near-surface geophysics due to substantial improvements in instrumentation, data processing, forward modeling, inversion, and measurement techniques. This paper starts with a description of the principal theory and applications of NMR. It presents a basic overview of near-surface NMR theory in terms of its physical background and discusses how NMR relaxation times are related to different relaxation processes occurring in porous media. As a next step, the recent and seminal near-surface NMR developments at each scale are discussed, and the limitations and challenges of the measurement are examined. To represent the growth of applications of near-surface NMR, case studies in a variety of different near-surface environments are reviewed and, as examples, two recent case studies are discussed in detail. Finally, this review demonstrates that there is a need for continued research in near-surface NMR and highlights necessary directions for future research. These recommendations include improving the signal-to-noise ratio, reducing the effective measurement dead time, and improving production rate of surface NMR (SNMR), reducing the minimum echo time of borehole NMR (BNMR) measurements, improving petrophysical NMR models of hydraulic conductivity and vadose zone parameters, and understanding the scale dependency of NMR properties.

  6. Functional Analysis of the Nitrogen Metabolite Repression Regulator Gene nmrA in Aspergillus flavus.

    PubMed

    Han, Xiaoyun; Qiu, Mengguang; Wang, Bin; Yin, Wen-Bing; Nie, Xinyi; Qin, Qiuping; Ren, Silin; Yang, Kunlong; Zhang, Feng; Zhuang, Zhenhong; Wang, Shihua

    2016-01-01

    In Aspergillus nidulans, the nitrogen metabolite repression (NMR) regulator NmrA plays a major role in regulating the activity of the GATA transcription factor AreA during nitrogen metabolism. However, the function of nmrA in A. flavus has not been previously studied. Here, we report the identification and functional analysis of nmrA in A. flavus. Our work showed that the amino acid sequences of NmrA are highly conserved among Aspergillus species and that A. flavus NmrA protein contains a canonical Rossmann fold motif. Deletion of nmrA slowed the growth of A. flavus but significantly increased conidiation and sclerotia production. Moreover, seed infection experiments indicated that nmrA is required for the invasive virulence of A. flavus. In addition, the ΔnmrA mutant showed increased sensitivity to rapamycin and methyl methanesulfonate, suggesting that nmrA could be responsive to target of rapamycin signaling and DNA damage. Furthermore, quantitative real-time reverse transcription polymerase chain reaction analysis suggested that nmrA might interact with other nitrogen regulatory and catabolic genes. Our study provides a better understanding of NMR and the nitrogen metabolism network in fungi.

  7. Functional Analysis of the Nitrogen Metabolite Repression Regulator Gene nmrA in Aspergillus flavus

    PubMed Central

    Han, Xiaoyun; Qiu, Mengguang; Wang, Bin; Yin, Wen-Bing; Nie, Xinyi; Qin, Qiuping; Ren, Silin; Yang, Kunlong; Zhang, Feng; Zhuang, Zhenhong; Wang, Shihua

    2016-01-01

    In Aspergillus nidulans, the nitrogen metabolite repression (NMR) regulator NmrA plays a major role in regulating the activity of the GATA transcription factor AreA during nitrogen metabolism. However, the function of nmrA in A. flavus has not been previously studied. Here, we report the identification and functional analysis of nmrA in A. flavus. Our work showed that the amino acid sequences of NmrA are highly conserved among Aspergillus species and that A. flavus NmrA protein contains a canonical Rossmann fold motif. Deletion of nmrA slowed the growth of A. flavus but significantly increased conidiation and sclerotia production. Moreover, seed infection experiments indicated that nmrA is required for the invasive virulence of A. flavus. In addition, the ΔnmrA mutant showed increased sensitivity to rapamycin and methyl methanesulfonate, suggesting that nmrA could be responsive to target of rapamycin signaling and DNA damage. Furthermore, quantitative real-time reverse transcription polymerase chain reaction analysis suggested that nmrA might interact with other nitrogen regulatory and catabolic genes. Our study provides a better understanding of NMR and the nitrogen metabolism network in fungi. PMID:27933036

  8. Detection of free chloride in concrete by NMR

    SciTech Connect

    Yun Haebum; Patton, Mark E.; Garrett, James H.; Fedder, Gary K.; Frederick, Kevin M.; Hsu, J.-J.; Lowe, Irving J.; Oppenheim, Irving J.; Sides, Paul J

    2004-03-01

    Laboratory experiments to detect chloride in a cement matrix using pulse nuclear magnetic resonance (NMR) were conducted. The coils were in the centimeter scale and the magnetic field was 2.35 T. NMR signals were obtained from both aqueous chloride solution and samples of both regular and white Portland cement (WPC). A concrete sample from a sidewalk that had been in the field for 20 years was also tested. The experiments demonstrated that the signal-to-noise ratio (SNR) for a centimeter-scale cement sample volume is so small, even after averaging, that sample volumes much lower than that are unlikely to produce measurable signals at fields of 1 T or below. The consequence is that the potential for realizing an embedded NMR-based sensor including the magnet is low. Parametric studies identify feasible alternative coil diameters and magnetic field strengths for detecting chloride ion concentrations in hardened concrete.

  9. NMR/MRI with hyperpolarized gas and high Tc SQUID

    DOEpatents

    Schlenga, Klaus; de Souza, Ricardo E.; Wong-Foy, Annjoe; Clarke, John; Pines, Alexander

    2000-01-01

    A method and apparatus for the detection of nuclear magnetic resonance (NMR) signals and production of magnetic resonance imaging (MRI) from samples combines the use of hyperpolarized inert gases to enhance the NMR signals from target nuclei in a sample and a high critical temperature (Tc) superconducting quantum interference device (SQUID) to detect the NMR signals. The system operates in static magnetic fields of 3 mT or less (down to 0.1 mT), and at temperatures from liquid nitrogen (77K) to room temperature. Sample size is limited only by the size of the magnetic field coils and not by the detector. The detector is a high Tc SQUID magnetometer designed so that the SQUID detector can be very close to the sample, which can be at room temperature.

  10. Some nitrogen-14 NMR studies in solids

    SciTech Connect

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  11. NMR Spectroscopy for Thin Films by Magnetic Resonance Force Microscopy

    PubMed Central

    Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, SangGap; Kim, Kiwoong; Han, Yunseok

    2013-01-01

    Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336 μm that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the 19F NMR spectrum for a 34 nm-thick CaF2 thin film. PMID:24217000

  12. Magic Angle Spinning NMR Metabolomics

    SciTech Connect

    Zhi Hu, Jian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  13. Isolation and 2D NMR Studies of Alkaloids from Comptonella sessilifoliola1.

    PubMed

    Pusset, J; Lopez, J L; Pais, M; Neirabeyeh, M A; Veillon, J M

    1991-04-01

    Six known furanoquinoline alkaloids have been isolated from the wood and trunk bark of COMPTONELLA SESSILIFOLIOLA (Guillaumin) Hartley (Rutaceae). 2D NMR experiments gave the assignment of all the signals for both (1)H- and (13)C-NMR spectra. Pteleine and kokusaginine were used as models. The two-dimensional carbon-proton correlation experiments, performed for the first time on furanoquinoline alkaloids, led us to correct (13)C-NMR assignments previously described in the literature.

  14. Understanding NMR relaxometry of partially water-saturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Nordlund, C.; Jorand, R.; Klitzsch, N.

    2014-11-01

    Nuclear Magnetic Resonance (NMR) relaxometry measurements are commonly used to characterize the storage and transport properties of water-saturated rocks. These assessments are based on the proportionality of NMR signal amplitude and relaxation time to porosity (water content) and pore size, respectively. The relationship between pore size and NMR relaxation time depends on pore shape, which is usually assumed to be spherical or cylindrical. However, the NMR response at partial water saturation for natural sediments and rocks differs strongly from the response calculated for spherical or cylindrical pores, because these pore shapes cannot account for water menisci remaining in the corners of de-saturated angular pores. Therefore, we consider a bundle of pores with triangular cross-sections. We introduce analytical solutions of the NMR equations at partial saturation of these pores, which account for water menisci of de-saturated pores. After developing equations that describe the water distribution inside the pores, we calculate the NMR response at partial saturation for imbibition and drainage based on the deduced water distributions. For this pore model, NMR amplitude and NMR relaxation time at partial water saturation strongly depend on pore shape even so the NMR relaxation time at full saturation only depends on the surface to volume ratio of the pore. The pore-shape-dependence at partial saturation arises from the pore shape and capillary pressure dependent water distribution in pores with triangular cross-sections. Moreover, we show the qualitative agreement of the saturation dependent relaxation time distributions of our model with those observed for rocks and soils.

  15. Sensitive and robust electrophoretic NMR: Instrumentation and experiments

    NASA Astrophysics Data System (ADS)

    Hallberg, Fredrik; Furó, István; Yushmanov, Pavel V.; Stilbs, Peter

    2008-05-01

    Although simple as a concept, electrophoretic NMR (eNMR) has so far failed to find wider application. Problems encountered are mainly due to disturbing and partly irreproducible convection-like bulk flow effects from both electro-osmosis and thermal convection. Additionally, bubble formation at the electrodes and rf noise pickup has constrained the typical sample geometry to U-tube-like arrangements with a small filling factor and a low resulting NMR sensitivity. Furthermore, the sign of the electrophoretic mobility cancels out in U-tube geometries. We present here a new electrophoretic sample cell based on a vertically placed conventional NMR sample tube with bubble-suppressing palladium metal as electrode material. A suitable radiofrequency filter design prevents noise pickup by the NMR sample coil from the high-voltage leads which extend into the sensitive sample volume. Hence, the obtained signal-to-noise ratio of this cell is one order of magnitude higher than that of our previous U-tube cells. Permitted by the retention of the sign of the displacement-related signal phase in the new cell design, an experimental approach is described where bulk flow effects by electro-osmosis and/or thermal convection are compensated through parallel monitoring of a reference signal from a non-charged species in the sample. This approach, together with a CPMG-like pulse train scheme provides a superior first-order cancellation of non-electrophoretic bulk flow effects.

  16. NMR Methods, Applications and Trends for Groundwater Evaluation and Management

    NASA Astrophysics Data System (ADS)

    Walsh, D. O.; Grunewald, E. D.

    2011-12-01

    Nuclear magnetic resonance (NMR) measurements have a tremendous potential for improving groundwater characterization, as they provide direct detection and measurement of groundwater and unique information about pore-scale properties. NMR measurements, commonly used in chemistry and medicine, are utilized in geophysical investigations through non-invasive surface NMR (SNMR) or downhole NMR logging measurements. Our recent and ongoing research has focused on improving the performance and interpretation of NMR field measurements for groundwater characterization. Engineering advancements have addressed several key technical challenges associated with SNMR measurements. Susceptibility of SNMR measurements to environmental noise has been dramatically reduced through the development of multi-channel acquisition hardware and noise-cancellation software. Multi-channel instrumentation (up to 12 channels) has also enabled more efficient 2D and 3D imaging. Previous limitations in measuring NMR signals from water in silt, clay and magnetic geology have been addressed by shortening the instrument dead-time from 40 ms to 4 ms, and increasing the power output. Improved pulse sequences have been developed to more accurately estimate NMR relaxation times and their distributions, which are sensitive to pore size distributions. Cumulatively, these advancements have vastly expanded the range of environments in which SNMR measurements can be obtained, enabling detection of groundwater in smaller pores, in magnetic geology, in the unsaturated zone, and nearby to infrastructure (presented here in case studies). NMR logging can provide high-resolution estimates of bound and mobile water content and pore size distributions. While NMR logging has been utilized in oil and gas applications for decades, its use in groundwater investigations has been limited by the large size and high cost of oilfield NMR logging tools and services. Recently, engineering efforts funded by the US Department of

  17. Saturation transfer double-difference NMR spectroscopy using a dual solenoid microcoil difference probe.

    PubMed

    Bergeron, Scott J; Henry, Ian D; Santini, Robert E; Aghdasi, Abdollah; Raftery, Daniel

    2008-10-01

    An experiment designed to collect a saturation transfer double difference (STDD) NMR spectrum using a solenoid microcoil NMR difference probe is reported. STDD-NMR allows the investigation of ligand-biomolecule binding, with moderate concentration requirements for unlabeled molecular targets and the ability to discern binding events in the presence of non-binding ligands. The NMR difference probe acquires the signals from two different samples at once, and cancels common signals automatically through a mechanism of switching between parallel excitation and serial acquisition of the sample signals. STDD spectra were acquired on a system consisting of human serum albumin and two ligands, octanoic acid and glucose. The non-binding ligand, glucose, was cancelled internally through phase cycling, while the protein signal was subtracted automatically by the difference probe. The proton NMR resonance signal from octanoic acid remained in the double difference spectrum. This work demonstrates that the double difference can be performed both internally and automatically through the utilization of the solenoid microcoil NMR difference probe and STDD-NMR pulse sequence, resulting in a clean signal from the binding ligand with good protein background subtraction and an overall favorable result when compared to the conventional approach.

  18. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers

    NASA Astrophysics Data System (ADS)

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C.; Markley, John L.

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-13C, U-15N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D 1H-15N and 1H-13C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of 1H, 13C, and 15N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  19. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  20. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  1. Suppression of radiation damping for high precision quantitative NMR.

    PubMed

    Bayle, Kevin; Julien, Maxime; Remaud, Gérald S; Akoka, Serge

    2015-10-01

    True quantitative analysis of concentrated samples by (1)H NMR is made very difficult by Radiation Damping. A novel NMR sequence (inspired by the WET NMR sequence and by Outer Volume Saturation methods) is therefore proposed to suppress this phenomenon by reducing the spatial area and consequently the number of spins contributing to the signal detected. The size of the detected volume can be easily chosen in a large range and line shape distortions are avoided thanks to a uniform signal suppression of the outer volume. Composition of a mixture can as a result be determined with very high accuracy (precision and trueness) at the per mille level whatever the concentrations and without hardware modification.

  2. NMR Studies of Dynamic Biomolecular Conformational Ensembles

    PubMed Central

    Torchia, Dennis A.

    2015-01-01

    Multidimensional heteronuclear NMR approaches can provide nearly complete sequential signal assignments of isotopically enriched biomolecules. The availability of assignments together with measurements of spin relaxation rates, residual spin interactions, J-couplings and chemical shifts provides information at atomic resolution about internal dynamics on timescales ranging from ps to ms, both in solution and in the solid state. However, due to the complexity of biomolecules, it is not possible to extract a unique atomic-resolution description of biomolecular motions even from extensive NMR data when many conformations are sampled on multiple timescales. For this reason, powerful computational approaches are increasingly applied to large NMR data sets to elucidate conformational ensembles sampled by biomolecules. In the past decade, considerable attention has been directed at an important class of biomolecules that function by binding to a wide variety of target molecules. Questions of current interest are: “Does the free biomolecule sample a conformational ensemble that encompasses the conformations found when it binds to various targets; and if so, on what time scale is the ensemble sampled?” This article reviews recent efforts to answer these questions, with a focus on comparing ensembles obtained for the same biomolecules by different investigators. A detailed comparison of results obtained is provided for three biomolecules: ubiquitin, calmodulin and the HIV-1 trans-activation response RNA. PMID:25669739

  3. Earth's field NMR; a surface moisture detector?

    NASA Astrophysics Data System (ADS)

    Fukushima, Eiichi; Altobelli, Stephen; McDowell, Andrew; Zhang, Tongsheng

    2012-10-01

    Earth's field NMR (EFNMR), being free of magnets, would be an ideal teaching medium as well as a mobile NMR technique except for its weak S/N. The common EFNMR apparatus uses a powerful prepolarization field to enhance the spin magnetization before the experiment. We introduce a coil design geared to larger but manageable samples with sufficient sensitivity without prepolarization to move EFNMR closer to routine use and to provide an inexpensive teaching tool. Our coil consists of parallel wires spread out on a plywood to form a current sheet with the current return wires separated so they will not influence the main part of the coil assembly. The sensitive region is a relatively thin region parallel to the coil and close to it. A single turn of the coil is wound to be topologically equivalent to a figure-8. The two crossing segments in the center of a figure-8 form two of the parallel wires of the flat coil. Thus, a two-turn figure-8 has four crossing wires so its topologically equivalent coil will have four parallel wires with currents in phase. Together with the excellent sensitivity, this coil offers outstanding interference rejection because of the figure-8 geometry. An example of such a coil has 328 parallel wires covering a ˜1 meter square plywood which yields a good NMR signal from 26 liters of water spread out roughly over the area of the coil in less than one minute in a nearby park.

  4. Reliability of ^1^H NMR analysis for assessment of lipid oxidation at frying temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reliability of a method using ^1^H NMR analysis for assessment of oil oxidation at a frying temperature was examined. During heating and frying at 180 °C, changes of soybean oil signals in the ^1^H NMR spectrum including olefinic (5.16-5.30 ppm), bisallylic (2.70-2.88 ppm), and allylic (1.94-2.1...

  5. Accessible NMR Experiments Studying the Hydrodynamics of [subscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [subscript 15]N-enriched human ubiquitin. These experiments take advantage of [subscript 15]N direct detection of the NMR signal. The first experiment develops skills in acquiring…

  6. Accessible NMR Experiments Studying the Hydrodynamics of [superscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [superscript 15]N-enriched human ubiquitin. These experiments take advantage of [superscript 15]N direct detection of the NMR signal. The first experiment develops skills in…

  7. Continuous-wave NMR imaging of solids.

    PubMed

    Lurie, D J; McCallum, S J; Hutchison, J M; Alecci, M

    1996-03-01

    Current pulsed nuclear magnetic resonance methods of imaging samples such as solids with short spin-spin relaxation times are restricted to use with T2 values longer than approximately 10 microseconds. In the present study a method of imaging ultra-short T2 samples using continuous- wave, swept-field NMR is presented that, in principle, will be able to overcome this restriction. The technique is identical to that used in continuous-wave electron paramagnetic resonance imaging of paramagnetic species and involves irradiating the sample continuously with a radiofrequency excitation in the presence of a strong stationary magnetic field gradient. When the main magnetic field is swept over a suitable range, the variation of the NMR absorption signal with applied magnetic field yields a one-dimensional projection of the object under study along the gradient direction. Two- or three-dimensional image data sets may be reconstructed from projections that are obtained by applying the gradient in different directions. Signal-to-noise ratio can be improved by modulating the magnetic field and employing a lock-in amplifier to recover signal variations at the audio modulation frequency. Preliminary experiments were performed using a 7 Tesla magnet and a 300 MHz continuous-wave radiofrequency bridge with lock-in detection. The apparatus is described and the results of pilot experiments that employed vulcanized rubber samples are presented. The ability of the technique to detect short T2 samples was demonstrated by the presence of a background signal from the Perspex former of the birdcage resonator used for signal reception.

  8. Applications of toroids in high-pressure NMR spectroscopy

    SciTech Connect

    Klingler, R.J.; Rathke, J.W.; Woelk, K.

    1995-12-01

    Toroid detectors have distinct NMR sensitivity and imaging advantages. The magnetic field lines are nearly completely contained within the active volume element of a toroid. This results in high NMR signal sensitivity. In addition, the toroid detector may be placed next to the metallic walls of a containment vessel with minimal signal loss due to magnetic coupling with the metal container. Thus, the toroid detector is ideal for static high pressure or continuous flow monitoring systems. Toroid NMR detectors have been used to follow the hydroformylation of olefins in supercritical fluids under industrial process conditions. Supercritical fluids are potentially ideal media for conducting catalytic reactions that involve gaseous reactants, including H{sub 2}, CO, and CO{sub 2}. The presence of a single homogeneous reaction phase eliminates the gas-liquid mixing problem of alternative two-phase systems, which can limit process rates and adversely affect hydroformylation product selectivities. A second advantage of toroid NMR detectors is that they exhibit a well-defined gradient in the rf field. This magnetic field gradient can be used for NMR imaging applications. Distance resolutions of 20 {mu} have been obtained.

  9. Sensitization of a stray-field NMR to vibrations: a potential for MR elastometry with a portable NMR sensor.

    PubMed

    Mastikhin, Igor; Barnhill, Marie

    2014-11-01

    An NMR signal from a sample in a constant stray field of a portable NMR sensor is sensitized to vibrations. The CPMG sequence is synchronized to vibrations so that the constant gradient becomes an "effective" square-wave gradient, leading to the vibration-induced phase accumulation. The integrating nature of the spot measurement, combined with the phase distribution due to a non-uniform gradient and/or a wave field, leads to a destructive interference, the drop in the signal intensity and changes in the echo train shape. Vibrations with amplitudes as small as 140 nm were reliably detected with the permanent gradient of 12.4 T/m. The signal intensity depends on the phase offset between the vibrations and the pulse sequence. This approach opens the way for performing elastometry and micro-rheology measurements with portable NMR devices beyond the walls of a laboratory. Even without synchronization, if a vibration frequency is comparable to 1/2TE of the CPMG sequence, the signal can be severely affected, making it important for potential industrial applications of stray-field NMR.

  10. Whole-core analysis by sup 13 C NMR

    SciTech Connect

    Vinegar, H.J.; Tutunjian, P.N. ); Edelstein, W.A.; Roemer, P.B. )

    1991-06-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance {sup 13}C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. {sup 13}C NMR can be used in cores where the {sup 1}H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. {sup 13}C/{sup 1}H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good {sup 13}C signal/noise ratio (SNR) is obtained within minutes, while {sup 1}H spectra are obtained in seconds. NMR measurements have been made of the {sup 13}C and {sup 1}H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the {sup 13}C and {sup 1}H signal per unit volume is constant within about 3.5%. For heavy crudes, the {sup 13}C and {sup 1}H density measured by NMR is reduced by the shortening of spin-spin relaxation time. {sup 13}C and {sup 1}H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60{degrees} API), and alkanes (C{sub 5} through C{sub 16}) with viscosities at 77{degrees}F ranging from 0.5 cp to 2.5 {times} 10{sup 7} cp. The {sup 13}C and {sup 1}H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The {sup 13}C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled {sup 13}C NMR is shown to be insensitive to kerogen; thus, {sup 13}C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the {sup 13}C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon.

  11. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project during the past reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have been reinvestigating the prospects of using zero field NMR types of techniques for two dimensional NMR structural analysis of complex organic solids such as coals. Currently MAS spin rates are not sufficiently high to permit zero field in high field NMR for protons in typical organic solids, however they are compatible with {sup 13}C-{sup 13}C dipolar couplings. In collaboration with Dr. Robert Tycko of AT T Bell Laboratories, inventor of the zero field in high field NMR method, the authors have performed the first zero field in high field {sup 13}C NMR experiments. These results are described. 9 refs., 2 figs.

  12. Polarization transfer NMR imaging

    DOEpatents

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  13. Understanding NMR Chemical Shifts

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.

    1996-10-01

    The NMR chemical shift serves as a paradigm for molecular electronic properties. We consider the factors that determine the general magnitudes of the shifts, the state of the art in theoretical calculations, the nature of the shielding tensor, and the multidimensional shielding surface that describes the variation of the shielding with nuclear positions. We also examine the nature of the intermolecular shielding surface as a general example of a supermolecule property surface. The observed chemical shift in the zero-pressure limit is determined not only by the value of the shielding at the equilibrium geometry, but the dynamic average over the multidimensional shielding surface during rotation and vibration of the molecule. In the gas, solution, or adsorbed phase it is an average of the intermolecular shielding surface over all the configurations of the molecule with its neighbors. The temperature dependence of the chemical shift in the isolated molecule, the changes upon isotopic substitution, the changes with environment, are well characterized experimentally so that quantum mechanical descriptions of electronic structure and theories related to dynamics averaging of any electronic property can be subjected to stringent test.

  14. NMR-based analysis of the chemical composition of Japanese persimmon aqueous extracts.

    PubMed

    Ryu, Shoraku; Furihata, Kazuo; Koda, Masanori; Wei, Feifei; Miyakawa, Takuya; Tanokura, Masaru

    2016-03-01

    Japanese persimmon (Diospyros kaki L.) is recognized as an outstanding source of biologically active compounds relating to many health benefits. In the present study, NMR spectroscopy provided a comprehensive metabolic overview of Japanese persimmon juice. Detailed signal assignments of Japanese persimmon juice were carried out using various 2D NMR techniques incorporated with broadband water suppression enhanced through T1 effects (BB-WET) or WET sequences, and 26 components, including minor components, were identified. In addition, most components were quantitatively evaluated by the integration of signals using conventional (1) H NMR and BB-WET NMR. This is the first detailed analysis combined with quantitative characterization of chemical components using NMR for Japanese persimmon. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Complete assignment of the (1)H and (13)C NMR spectra of cis and trans isonucleoside derivatives of purine with a tetrahydropyran ring.

    PubMed

    Besada, Pedro; Costas, Tamara; Terán, Carmen

    2010-06-01

    (1)H and (13)C NMR chemical shifts of cis and trans isonucleoside analogues of purine in which the furanose moiety is substituted by a tetrahydropyran ring were completely assigned using one- and two-dimensional NMR experiments that include NOE, DEPT, COSY and HSQC. The significant (1)H and (13)C NMR signals differentiating between the cis and trans stereoisomers were compared.

  16. Development of an NMR microprobe procedure for high-throughput environmental metabolomics of Daphnia magna.

    PubMed

    Nagato, Edward G; Lankadurai, Brian P; Soong, Ronald; Simpson, André J; Simpson, Myrna J

    2015-09-01

    Nuclear magnetic resonance (NMR) is the primary platform used in high-throughput environmental metabolomics studies because its non-selectivity is well suited for non-targeted approaches. However, standard NMR probes may limit the use of NMR-based metabolomics for tiny organisms because of the sample volumes required for routine metabolic profiling. Because of this, keystone ecological species, such as the water flea Daphnia magna, are not commonly studied because of the analytical challenges associated with NMR-based approaches. Here, the use of a 1.7-mm NMR microprobe in analyzing tissue extracts from D. magna is tested. Three different extraction procedures (D2O-based buffer, Bligh and Dyer, and acetonitrile : methanol : water) were compared in terms of the yields and breadth of polar metabolites. The D2O buffer extraction yielded the most metabolites and resulted in the best reproducibility. Varying amounts of D. magna dry mass were extracted to optimize metabolite isolation from D. magna tissues. A ratio of 1-1.5-mg dry mass to 40 µl of extraction solvent provided excellent signal-to-noise and spectral resolution using (1)H NMR. The metabolite profile of a single daphnid was also investigated (approximately 0.2 mg). However, the signal-to-noise of the (1)H NMR was considerably lower, and while feasible for select applications would likely not be appropriate for high-throughput NMR-based metabolomics. Two-dimensional NMR experiments on D. magna extracts were also performed using the 1.7-mm NMR probe to confirm (1)H NMR metabolite assignments. This study provides an NMR-based analytical framework for future metabolomics studies that use D. magna in ecological and ecotoxicity studies.

  17. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  18. Integrative NMR for biomolecular research.

    PubMed

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R; Tonelli, Marco; Westler, William M; Butcher, Samuel E; Henzler-Wildman, Katherine A; Markley, John L

    2016-04-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ).

  19. [NMR radiofrequency microcoil design: usefulness of electromagnetic simulation].

    PubMed

    Armenean, Mircea; Briguet, André; Saint-Jalmes, Hervé

    2002-04-01

    The extraction of the Nuclear Magnetic Resonance (NMR) spectra of samples having smaller and smaller volumes is a real challenge. Either these reductions of volume are dictated by the difficulties of production of sufficiently large samples or by necessities of miniaturisation of the analysing system, in both cases a careful design of the radiofrequency coil, ensuring an optimum reception of the NMR signal, is required. We have also evaluated the usefulness of electromagnetic simulation software for the design and optimisation of these radio-frequency coils, which are more and more used in biology and health research projects.

  20. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  1. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  2. Multispectral Analysis of NMR Imagery

    NASA Technical Reports Server (NTRS)

    Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.

    1985-01-01

    Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.

  3. NMR Imaging of Elastomeric Materials

    DTIC Science & Technology

    1990-11-30

    on ’everse if necessary and identify by block number) FIELD GROUP SUB-GROUP nuclear magnetic resonance , imaging, elastomers, tires, composites, porous...correspondence should be addressed 1i ABSTRACT Nuclear magnetic resonance images have been obtained for four porous glass disks of different porosities...INDEX HEADINGS: NMR imaging Porous materials Spin relaxation 2. I0J INTRODUCTION Nuclear magnetic resonance (NMR) imaging has seen increasing use in the

  4. Quantitative produced water analysis using mobile 1H NMR

    NASA Astrophysics Data System (ADS)

    Wagner, Lisabeth; Kalli, Chris; Fridjonsson, Einar O.; May, Eric F.; Stanwix, Paul L.; Graham, Brendan F.; Carroll, Matthew R. J.; Johns, Michael L.

    2016-10-01

    Measurement of oil contamination of produced water is required in the oil and gas industry to the (ppm) level prior to discharge in order to meet typical environmental legislative requirements. Here we present the use of compact, mobile 1H nuclear magnetic resonance (NMR) spectroscopy, in combination with solid phase extraction (SPE), to meet this metrology need. The NMR hardware employed featured a sufficiently homogeneous magnetic field, such that chemical shift differences could be used to unambiguously differentiate, and hence quantitatively detect, the required oil and solvent NMR signals. A solvent system consisting of 1% v/v chloroform in tetrachloroethylene was deployed, this provided a comparable 1H NMR signal intensity for the oil and the solvent (chloroform) and hence an internal reference 1H signal from the chloroform resulting in the measurement being effectively self-calibrating. The measurement process was applied to water contaminated with hexane or crude oil over the range 1-30 ppm. The results were validated against known solubility limits as well as infrared analysis and gas chromatography.

  5. MULTIPLE-QUANTUM NMR IN SOLIDS

    SciTech Connect

    Yen, Y-S.

    1982-11-01

    Time domain multiple-quantum (MQ) nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for spectral simplification and for providing new information on molecular dynamics. In this thesis, applications of MQ NMR are presented and show distinctly the advantages of this method over the conventional single-quantum NMR. Chapter 1 introduces the spin Hamiltonians, the density matrix formalism and some basic concepts of MQ NMR spectroscopy. In chapter 2, {sup 14}N double-quantum coherence is observed with high sensitivity in isotropic solution, using only the magnetization of bound protons. Spin echoes are used to obtain the homogeneous double-quantum spectrum and to suppress a large H{sub 2}O solvent signal. Chapter 3 resolves the main difficulty in observing high MQ transitions in solids. Due to the profusion of spin transitions in a solid, individual lines are unresolved. Excitation and detection of high quantum transitions by normal schemes are thus difficult. To ensure that overlapping lines add constructively and thereby to enhance sensitivity, time-reversal pulse sequences are used to generate all lines in phase. Up to 22-quantum {sup 1}H absorption in solid adamantane is observed. A time dependence study shows an increase in spin correlations as the excitation time increased. In chapter 4, a statistical theory of MQ second moments is developed for coupled spins of spin I = 1/2. The model reveals that the ratio of the average dipolar coupling to the rms value largely determines the dependence of second moments on the number of quanta. The results of this model are checked against computer-calculated and experimental second moments, and show good agreement. A simple scheme is proposed in chapter 5 for sensitivity improvement in a MQ experiment. The scheme involves acquiring all of the signal energy available in the detection period by applying pulsed spinlocking and sampling between pulses. Using this technique on polycrystalline adamantane, a large

  6. Probing cation and vacancy ordering in the dry and hydrated yttrium-substituted BaSnO3 perovskite by NMR spectroscopy and first principles calculations: implications for proton mobility.

    PubMed

    Buannic, Lucienne; Blanc, Frédéric; Middlemiss, Derek S; Grey, Clare P

    2012-09-05

    Hydrated BaSn(1-x)Y(x)O(3-x/2) is a protonic conductor that, unlike many other related perovskites, shows high conductivity even at high substitution levels. A joint multinuclear NMR spectroscopy and density functional theory (total energy and GIPAW NMR calculations) investigation of BaSn(1-x)Y(x)O(3-x/2) (0.10 ≤ x ≤ 0.50) was performed to investigate cation ordering and the location of the oxygen vacancies in the dry material. The DFT energetics show that Y doping on the Sn site is favored over doping on the Ba site. The (119)Sn chemical shifts are sensitive to the number of neighboring Sn and Y cations, an experimental observation that is supported by the GIPAW calculations and that allows clustering to be monitored: Y substitution on the Sn sublattice is close to random up to x = 0.20, while at higher substitution levels, Y-O-Y linkages are avoided, leading, at x = 0.50, to strict Y-O-Sn alternation of B-site cations. These results are confirmed by the absence of a "Y-O-Y" (17)O resonance and supported by the (17)O NMR shift calculations. Although resonances due to six-coordinate Y cations were observed by (89)Y NMR, the agreement between the experimental and calculated shifts was poor. Five-coordinate Sn and Y sites (i.e., sites next to the vacancy) were observed by (119)Sn and (89)Y NMR, respectively, these sites disappearing on hydration. More five-coordinated Sn than five-coordinated Y sites are seen, even at x = 0.50, which is ascribed to the presence of residual Sn-O-Sn defects in the cation-ordered material and their ability to accommodate O vacancies. High-temperature (119)Sn NMR reveals that the O ions are mobile above 400 °C, oxygen mobility being required to hydrate these materials. The high protonic mobility, even in the high Y-content materials, is ascribed to the Y-O-Sn cation ordering, which prevents proton trapping on the more basic Y-O-Y sites.

  7. NMR study of black-phase in SmS

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Yamada, H.; Ueda, K.; Mito, T.; Haga, Y.

    2015-03-01

    We report the result of the 33S nuclear magnetic resonance (NMR) measurement on the nonmagnetic semiconductor SmS at ambient pressure. For this measurement, the 33S isotope enriched powder sample of SmS was prepared to increase the 33S NMR intensity. We have attempted 33S NMR measurement on SmS and successfully observed the signal of it. With decreasing temperature, the spectrum measured at the constant magnetic field shifted to lower frequency and became weakly temperature dependent below 50 K. The presence of the energy gap was microscopically established by the rapid decrease in the nuclear spin-lattice relaxation rate 1/T1. The activation energy was deduced to be 625 K from an Arrhenius plot of T1.

  8. T2-Filtered T2 - T2 Exchange NMR

    NASA Astrophysics Data System (ADS)

    d'Eurydice, Marcel Nogueira; Montrazi, Elton Tadeu; Fortulan, Carlos Alberto; Bonagamba, Tito José

    2016-05-01

    This work introduces an alternative way to perform the T2 - T2 Exchange NMR experiment. Rather than varying the number of π pulses in the first CPMG cycle of the T2 - T2 Exchange NMR pulse sequence, as used to obtain the 2D correlation maps, it is fixed and small enough to act as a short T2-filter. By varying the storage time, a set of 1D measurements of T2 distributions can be obtained to reveal the effects of the migration dynamics combined with relaxation effects. This significantly reduces the required time to perform the experiment, allowing a more in-depth study of exchange dynamics and relaxation processes with improved signal-to-noise ratio. These aspects stand as basis of this novel experiment, T2-Filtered T2 - T2 Exchange NMR or simply T2 F-TREx.

  9. Noninvasive testing of art and cultural heritage by mobile NMR.

    PubMed

    Blümich, Bernhard; Casanova, Federico; Perlo, Juan; Presciutti, Federica; Anselmi, Chiara; Doherty, Brenda

    2010-06-15

    Nuclear magnetic resonance (NMR) has many applications in science, medicine, and technology. Conventional instrumentation is large and expensive, however, because superconducting magnets offer maximum sensitivity. Yet NMR devices can also be small and inexpensive if permanent magnets are used, and samples need not be placed within the magnet but can be examined externally in the stray magnetic field. Mobile stray-field NMR is a method of growing interest for nondestructive testing of a diverse range of materials and processes. A well-known stray-field sensor is the commercially available NMR-MOUSE, which is small and can readily be carried to an object to be studied. In this Account, we describe mobile stray-field NMR, with particular attention to its use in analyzing objects of cultural heritage. The most common data recorded are relaxation measurements of (1)H because the proton is the most sensitive NMR nucleus, and relaxation can be measured despite the inhomogeneous magnetic field that typically accompanies a simple magnet design. Through NMR relaxation, the state of matter can be analyzed locally, and the signal amplitude gives the proton density. A variety of stray-field sensors have been designed. Small devices weighing less than a kilogram have a shallow penetration depth of just a few millimeters and a resolution of a few micrometers. Access to greater depths requires larger sensors that may weigh 30 kg or more. The use of these sensors is illustrated by selected examples, including examinations of (i) the stratigraphy of master paintings, (ii) binder aging, (iii) the deterioration of paper, (iv) wood density in master violins, (v) the moisture content and moisture profiles in walls covered with paintings and mosaics, and (vi) the evolution of stone conservation treatments. The NMR data provide unique information to the conservator on the state of the object--including past conservation measures. The use of mobile NMR remains relatively new, expanding

  10. In vivo Observation of Tree Drought Response with Low-Field NMR and Neutron Imaging

    PubMed Central

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.; Espy, Michelle A.; Dickman, Lee T.; Nelson, Ron O.; Vogel, Sven C.; Sandin, Henrik J.; Sevanto, Sanna

    2016-01-01

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature in the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. These results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment. PMID:27200037

  11. In vivo observation of tree drought response with low-field NMR and neutron imaging

    DOE PAGES

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.; ...

    2016-05-06

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature inmore » the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. Lastly, these results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment.« less

  12. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature.

    PubMed

    Liu, Guobin; Li, Xiaofeng; Sun, Xianping; Feng, Jiwen; Ye, Chaohui; Zhou, Xin

    2013-12-01

    We present a Cs atomic magnetometer with a sensitivity of 150fT/Hz(1/2) operating near room temperature. The nuclear magnetic resonance (NMR) signal of 125μL tap water was detected at an ultralow magnetic field down to 47nT, with the signal-to-noise ratio (SNR) of the NMR signal approaching 50 after eight averages. Relaxivity experiments with a Gd(DTPA) contrast agent in zero field were performed, in order to show the magnetometer's ability to measure spin-lattice relaxation time with high accuracy. This demonstrates the feasibility of an ultralow field NMR spectrometer based on a Cs atomic magnetometer, which has a low working temperature, short data acquisition time and high sensitivity. This kind of NMR spectrometer has great potential in applications such as chemical analysis and magnetic relaxometry detection in ultralow or zero fields.

  13. (119)Sn MAS NMR and first-principles calculations for the investigation of disorder in stannate pyrochlores.

    PubMed

    Mitchell, Martin R; Reader, Simon W; Johnston, Karen E; Pickard, Chris J; Whittle, Karl R; Ashbrook, Sharon E

    2011-01-14

    The local structure and cation disorder in Y(2)Ti(2-x)Sn(x)O(7) pyrochlores, materials proposed for the encapsulation of lanthanide- and actinide-bearing radioactive waste, is studied using (119)Sn (I = 1/2) NMR spectroscopy. NMR provides an excellent probe of disorder, as it is sensitive to the atomic scale environment without the need for any long-range periodicity. However, the complex and overlapping spectral resonances that often result can be difficult to interpret. Here, we demonstrate how (119)Sn DFT calculations can be used to aid the spectral interpretation and assignment, confirming that Sn occupies only the six-coordinate pyrochlore B site, and that the Sn chemical shift is sensitive to the number of Sn/Ti on the neighbouring B sites. Although distinct resonances are resolved experimentally when the Ti content is low, there is significant spectral overlap for Ti-rich compositions. We establish that this is a result of two competing contributions to the Sn chemical shift; an upfield shift resulting from the incorporation of the more polarizing Ti(4+) cation onto the neighbouring B sites, and a concomitant downfield shift arising from the decrease in unit cell size. Despite the considerably easier spectral acquisition, the lower resolution in the (119)Sn spectra hinders the extraction of the detailed structural information previously obtained using (89)Y NMR. However, the spectra we obtain are consistent with a random distribution of Sn/Ti on the pyrochlore B sites. Finally, we consider whether an equilibrium structure has been achieved by investigating materials that have been annealed for different durations.

  14. High resolution deuterium NMR studies of bacterial metabolism

    SciTech Connect

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  15. Study of cultured fibroblasts in vivo using NMR

    SciTech Connect

    Karczmar, G.S.

    1984-08-01

    The goal was to study the compartmentation of phosphorylated glycolytic intermediates in intact Chicken Embryo Fibroblasts (CEFs) using /sup 31/P NMR at 109 MHz. A technique for maintaining functional cells at high densities in an NMR magnet is described. Signals were detected from cytoplasmic inorganic phosphate (P/sub i/), ATP, NAD, NADH, phosphorylcholine and phosphorylethanolamine. The effect of external glucose on cytoplasmic pools of phosphates was studied. When cells were perfused with glucose-free medium the rate of glycolysis decreased, the amplitudes of the ATP resonances decreased, and the P/sub i/ intensity increased. The quantity of NMR-detectable P/sub i/ produced was significantly greater than the quantity of NMR-detectable ATP which was lost. Experiments with /sup 32/P labeled P/sub i/ showed that as the concentration of glucose in the medium was increase, the amount of phosphate sequestered in the cells increased. We conclude that there is a pool of P/sub i/ which is not detected by high resolution NMR and that the size of this pool increases as the rate of glycolysis increase. Longtitudinal relaxation times of intracellular phosphates in normal, transformed, and primary CEFs were measured. The results demonstrate that relaxation times of phosphates are sensitive to structural and metabolic changes which occur when cells are grown in culture. 59 references. 31 figures.

  16. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focused on variable temperature spin lattice relaxation measurements for several of the Argonne coals. 5 figs.

  17. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focussed on spin lattice relaxation measurements for several of the Argonne coals. 2 figs., 1 tab.

  18. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites.

  19. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    SciTech Connect

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  20. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  1. Computer-Aided Design of Fragment Mixtures for NMR-Based Screening

    PubMed Central

    Arroyo, Xavier; Goldflam, Michael; Feliz, Miguel; Belda, Ignasi; Giralt, Ernest

    2013-01-01

    Fragment-based drug discovery is widely applied both in industrial and in academic screening programs. Several screening techniques rely on NMR to detect binding of a fragment to a target. NMR-based methods are among the most sensitive techniques and have the further advantage of yielding a low rate of false positives and negatives. However, NMR is intrinsically slower than other screening techniques; thus, to increase throughput in NMR-based screening, researchers often assay mixtures of fragments, rather than single fragments. Herein we present a fast and straightforward computer-aided method to design mixtures of fragments taken from a library that have minimized NMR signal overlap. This approach enables direct identification of one or several active fragments without the need for deconvolution. Our approach entails encoding of NMR spectra into a computer-readable format that we call a fingerprint, and minimizing the global signal overlap through a Monte Carlo algorithm. The scoring function used favors a homogenous distribution of the global signal overlap. The method does not require additional experimental work: the only data required are NMR spectra, which are generally recorded for each compound as a quality control measure before its insertion into the library. PMID:23516512

  2. Solution NMR conformation of glycosaminoglycans.

    PubMed

    Pomin, Vitor H

    2014-04-01

    Nuclear magnetic resonance (NMR) spectroscopy has been giving a pivotal contribution to the progress of glycomics, mostly by elucidating the structural, dynamical, conformational and intermolecular binding aspects of carbohydrates. Particularly in the field of conformation, NOE resonances, scalar couplings, residual dipolar couplings, and chemical shift anisotropy offsets have been the principal NMR parameters utilized. Molecular dynamics calculations restrained by NMR-data input are usually employed in conjunction to generate glycosidic bond dihedral angles. Glycosaminoglycans (GAGs) are a special class of sulfated polysaccharides extensively studied worldwide. Besides regulating innumerous physiological processes, these glycans are also widely explored in the global market as either clinical or nutraceutical agents. The conformational aspects of GAGs are key regulators to the quality of interactions with the functional proteins involved in biological events. This report discusses the solution conformation of each GAG type analyzed by one or more of the above-mentioned methods.

  3. Elucidating structural characteristics of biomass using solution-state 2 D NMR with a mixture of deuterated dimethylsulfoxide and hexamethylphosphoramide

    DOE PAGES

    Pu, Yunqiao; Ragauskas, Arthur J.; Yoo, Chang Geun; ...

    2016-04-26

    In recent developments of NMR methods for characterization of lignocellulosic biomass allow improved understanding of plant cell-wall structures with minimal deconstruction and modification of biomass. This study introduces a new NMR solvent system composed of dimethylsulfoxide (DMSO-d6) and hexamethylphosphoramide (HMPA-d18). HMPA as a co-solvent enhanced swelling and mobility of the biomass samples; thereby it allowed enhancing signals of NMR spectra. Moreover, the structural information of biomass was successfully analyzed by the proposed NMR solvent system (DMSO-d6/HMPA-d18; 4:1, v/v) with different biomass. The proposed bi-solvent system does not require derivatization or isolation of biomass, facilitating a facile sample preparation and involvingmore » with no signals overlapping with biomass peaks. Furthermore, it also allows analyzing biomass with a room-temperature NMR probe instead of cryo-probes, which are traditionally used for enhancing signal intensities.« less

  4. In-Cell Solid-State NMR: An Emerging Technique for the Study of Biological Membranes

    PubMed Central

    Warnet, Xavier L.; Arnold, Alexandre A.; Marcotte, Isabelle; Warschawski, Dror E.

    2015-01-01

    Biological molecular processes are often studied in model systems, which simplifies their inherent complexity but may cause investigators to lose sight of the effects of the molecular environment. Information obtained in this way must therefore be validated by experiments in the cell. NMR has been used to study biological cells since the early days of its development. The first NMR structural studies of a protein inside a cell (by solution-state NMR) and of a membrane protein (by solid-state NMR) were published in 2001 and 2011, respectively. More recently, dynamic nuclear polarization, which has been used to enhance the signal in solid-state NMR, has also been applied to the study of frozen cells. Much progress has been made in the past 5 years, and in this review we take stock of this new technique, which is particularly appropriate for the study of biological membranes. PMID:26682804

  5. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1990-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have concentrated on a theoretical treatment of pairs of tightly coupled spin {1/2} nuclei under magic angle spinning conditions. The average Hamiltonian theory developed here is required for a quantitative understanding of two dimensional NMR experiments of such spin pairs in solids. These experiments in turn provide a means of determining connectivities between resonances in solid state NMR spectra. Development of these techniques will allow us to establish connectivities between functional components in coals. The complete description of these spin dynamics has turned out to be complex, and is necessary to provide a foundation upon which such experiments may be quantitatively interpreted in complex mixtures such as coals. 25 refs., 4 figs., 3 tabs.

  6. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concern how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. During the last quarter the authors have concentrated on improvements in cross polarization (CP) sequences with a goal of making the CP process insensitive to experimental conditions such as the magic angle spinning (MAS) rate. In order to be able to use fields the order of 7.0 T or higher, CP efficiency must be maintained at MAS rates of over 10 kHz. The standard sequences have severe limitations at these rates which lead to intensity distortions in {sup 13}C CPMAS spectra. Thus in order to be able to take advantage of the increases in sensitivity and resolution that accompany high field operation, improvements in the NMR methods are required. The new sequences the authors are developing will be especially important for quantitative analysis of coal structure by {sup 13}C solid state NMR at high field strengths. 13 refs., 7 figs., 2 tabs.

  7. Operating nanoliter scale NMR microcoils in a 1 tesla field

    NASA Astrophysics Data System (ADS)

    McDowell, Andrew F.; Adolphi, Natalie L.

    2007-09-01

    Microcoil probes enclosing sample volumes of 1.2, 3.3, 7.0, and 81 nanoliters are constructed as nuclear magnetic resonance (NMR) detectors for operation in a 1 tesla permanent magnet. The probes for the three smallest volumes utilize a novel auxiliary tuning inductor for which the design criteria are given. The signal-to-noise ratio (SNR) and line width of water samples are measured. Based on the measured DC resistance of the microcoils, together with the calculated radio frequency (RF) resistance of the tuning inductor, the SNR is calculated and shown to agree with the measured values. The details of the calculations indicate that the auxiliary inductor does not degrade the NMR probe performance. The diameter of the wire used to construct the microcoils is shown to affect the signal line widths.

  8. NMR apparatus for in situ analysis of fuel cells

    SciTech Connect

    Gerald, II, Rex E; Rathke, Jerome W

    2012-11-13

    The subject apparatus is a fuel cell toroid cavity detector for in situ analysis of samples through the use of nuclear magnetic resonance. The toroid cavity detector comprises a gas-tight housing forming a toroid cavity where the housing is exposed to an externally applied magnetic field B.sub.0 and contains fuel cell component samples to be analyzed. An NMR spectrometer is electrically coupled and applies a radiofrequency excitation signal pulse to the detector to produce a radiofrequency magnetic field B.sub.1 in the samples and in the toroid cavity. Embedded coils modulate the static external magnetic field to provide a means for spatial selection of the recorded NMR signals.

  9. Computer Simulation of NMR Spectra.

    ERIC Educational Resources Information Center

    Ellison, A.

    1983-01-01

    Describes a PASCAL computer program which provides interactive analysis and display of high-resolution nuclear magnetic resonance (NMR) spectra from spin one-half nuclei using a hard-copy or monitor. Includes general and theoretical program descriptions, program capability, and examples of its use. (Source for program/documentation is included.)…

  10. Deuterium Exchange Kinetics by NMR.

    ERIC Educational Resources Information Center

    Roper, G. C.

    1985-01-01

    Describes a physical chemistry experiment which allows such concepts as kinetics, catalysis, isotope shifts, coupling constants, and the use of nuclear magnetic resonance (NMR) for quantitative work to be covered in the same exercise. Background information, experimental procedures used, and typical results obtained are included. (JN)

  11. Petrophysical applications of NMR imaging

    SciTech Connect

    Rothwell, W.P.; Vinegar, H.J.

    1985-12-01

    A system for obtaining high-resolution NMR images of oil field cores is described. Separate proton density and T/sub 2/ relaxation images are obtained to distinguish spatial variations of fluid-filled porosity and the physical nature of the pores. Results are presented for typical sandstones.

  12. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  13. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  14. Push-through Direction Injectin NMR Automation

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  15. NMR relaxation of neritic carbonates: An integrated petrophysical and petrographical approach

    NASA Astrophysics Data System (ADS)

    Vincent, Benoit; Fleury, Marc; Santerre, Yannick; Brigaud, Benjamin

    2011-05-01

    A set of carbonate outcrop samples, covering a wide range of the sedimentary textures and depositional environments existing on carbonate systems, was studied through an integrated petrographical and petrophysical approach. With the aim of improving the understanding of the NMR (Nuclear Magnetic Resonance) signal of carbonates, this work is: 1) providing an atlas for various carbonate reservoir rock-types, 2) providing a workflow for integrating geological and petrophysical data and, 3) documenting common shortfalls in NMR/MICP analyses in carbonates. The petrographical investigation includes thin section and SEM (Secondary Electron Microscope) observations, whereas petrophysical investigation includes porosity (Φ), permeability (K), NMR, MICP (Mercury Injection Capillary Pressure), and specific surface area (BET) measurements. On the basis of NMR and MICP data, 4 groups of samples were identified: (1) microporous samples, (2) micro-mesoporous samples, (3) wide multimodal samples, and (4) atypical samples. The microporous samples allow us to define a maximum NMR threshold for microporosity at a T 2 of 200 ms. NMR and MICP response of the investigated carbonates are often comparable in terms of modal distribution (microporous, micro-mesoporous and wide multimodal samples). In particular, micritization, a well known but underestimated early diagenetic process, tends to homogenize the NMR signal of primarily different sedimentary facies. A grainstone with heavily micritized grains can display well sorted unimodal NMR and MICP signatures very similar, even identical, to a mudstone-wackestone. Their signatures are comparable to that of a simple sphere packing model. On the contrary, several samples (labeled atypical samples) show a discrepancy between NMR and MICP response. This discrepancy is explained by the fact that MICP can be affected by the physical connectivity of the pore network, in case of disseminated and isolated molds in a micrite matrix for instance

  16. Dynamic nuclear polarization NMR spectroscopy allows high-throughput characterization of microporous organic polymers.

    PubMed

    Blanc, Frédéric; Chong, Samantha Y; McDonald, Tom O; Adams, Dave J; Pawsey, Shane; Caporini, Marc A; Cooper, Andrew I

    2013-10-16

    Dynamic nuclear polarization (DNP) solid-state NMR was used to obtain natural abundance (13)C and (15)N CP MAS NMR spectra of microporous organic polymers with excellent signal-to-noise ratio, allowing for unprecedented details in the molecular structure to be determined for these complex polymer networks. Sensitivity enhancements larger than 10 were obtained with bis-nitroxide radical at 14.1 T and low temperature (∼105 K). This DNP MAS NMR approach allows efficient, high-throughput characterization of libraries of porous polymers prepared by combinatorial chemistry methods.

  17. An NMR probe for the study of aerobic suspensions of cells and organelles

    SciTech Connect

    Balaban, R.S.; Gadian, D.G.; Radda, G.K.; Wong, G.G.

    1981-09-15

    The construction of an NMR probe and cell chamber with good mixing, pH buffering, and oxygenation characteristics, which can be used for relatively dilute cell and organelle suspension is described. The /sup 31/P NMR spectra of acceptable signal-to-noise ratios are obtained from approximately 200 mg (protein) of tissues, and kinetic studies of mitochondrial oxidative phosphorylation are demonstrated. Representative spectra from rabbit kidney cortical tubules and rabbit kidney cortical mitochondria are presented.

  18. A (13)C NMR analysis of the effects of electron radiation on graphite/polyetherimide composites

    NASA Technical Reports Server (NTRS)

    Ferguson, Milton W.

    1989-01-01

    Initial investigations have been made into the use of high resolution nuclear magnetic resonance (NMR) for the characterization of radiation effects in graphite and Kevlar fibers, polymers, and the fiber/matrix interface in graphite/polyetherimide composites. Sample preparation techniques were refined. Essential equipment has been procured. A new NMR probe was constructed to increase the proton signal-to-noise ratio. Problem areas have been identified and plans developed to resolve them.

  19. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1992-05-27

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed a delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  20. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coal models. Along the same lines the author are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. During the last quarter the authors has concentrated on improvements in cross polarization (CP) sequences with a goal of making the CP process insensitive to experimental conditions such as the Hartmann-Hahn mismatch. It has been found that the usual theories of CP are incorrect, and that the CP process is very heterogeneous in nature. This has significant implications on methods typically used in quantifying {sup 13}C CPMAS spectra of coals. 19 refs., 11 figs.

  1. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy.

    PubMed

    Lu, Yi; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2016-06-16

    NMR measurements do not require separation and chemical modification of samples and therefore rapidly and directly provide non-targeted information on chemical components in complex mixtures. In this study, one-dimensional (¹H, (13)C, and (31)P) and two-dimensional (¹H-(13)C and ¹H-(31)P) NMR spectroscopy were conducted to analyze yogurt without any pretreatment. ¹H, (13)C, and (31)P NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose were separately observed in the ¹H NMR spectra. In addition, the signals from the acyl chains of milk fats were also successfully identified but overlapped with many other signals. Quantitative difference spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the quantitative ¹H NMR spectra. This method allowed us to eliminate interference on the overlaps; therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat could be determined directly without separation. Moreover, the ¹H-(31)P HMBC spectra revealed for the first time that N-acetyl-d-glucosamine-1-phosphate is contained in yogurt.

  2. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy

    PubMed Central

    Lu, Yi; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2016-01-01

    NMR measurements do not require separation and chemical modification of samples and therefore rapidly and directly provide non-targeted information on chemical components in complex mixtures. In this study, one-dimensional (1H, 13C, and 31P) and two-dimensional (1H-13C and 1H-31P) NMR spectroscopy were conducted to analyze yogurt without any pretreatment. 1H, 13C, and 31P NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose were separately observed in the 1H NMR spectra. In addition, the signals from the acyl chains of milk fats were also successfully identified but overlapped with many other signals. Quantitative difference spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the quantitative 1H NMR spectra. This method allowed us to eliminate interference on the overlaps; therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat could be determined directly without separation. Moreover, the 1H-31P HMBC spectra revealed for the first time that N-acetyl-d-glucosamine-1-phosphate is contained in yogurt. PMID:27322339

  3. Protein structure determination with paramagnetic solid-state NMR spectroscopy.

    PubMed

    Sengupta, Ishita; Nadaud, Philippe S; Jaroniec, Christopher P

    2013-09-17

    +)-tagged GB1 mutants to rapidly determine the global protein fold in a de novo fashion. Remarkably, these studies required quantitative measurements of only approximately four or five backbone amide (15)N longitudinal paramagnetic relaxation enhancements per residue, in the complete absence of the usual internuclear distance restraints. Importantly, this paramagnetic solid-state NMR methodology is general and can be directly applied to larger proteins and protein complexes for which a significant fraction of the signals can be assigned in standard 2D and 3D MAS NMR chemical shift correlation spectra.

  4. Solvent suppression in DNP enhanced solid state NMR

    NASA Astrophysics Data System (ADS)

    Yarava, Jayasubba Reddy; Chaudhari, Sachin Rama; Rossini, Aaron J.; Lesage, Anne; Emsley, Lyndon

    2017-04-01

    We show how DNP enhanced solid-state NMR spectra can be dramatically simplified by suppression of solvent signals. This is achieved by (i) exploiting the paramagnetic relaxation enhancement of solvent signals relative to materials substrates, or (ii) by using short cross-polarization contact times to transfer hyperpolarization to only directly bonded carbon-13 nuclei in frozen solutions. The methods are evaluated for organic microcrystals, surfaces and frozen solutions. We show how this allows for the acquisition of high-resolution DNP enhanced proton-proton correlation experiments to measure inter-nuclear proximities in an organic solid.

  5. NMR of thin layers using a meanderline surface coil

    DOEpatents

    Cowgill, Donald F.

    2001-01-01

    A miniature meanderline sensor coil which extends the capabilities of nuclear magnetic resonance (NMR) to provide analysis of thin planar samples and surface layer geometries. The sensor coil allows standard NMR techniques to be used to examine thin planar (or curved) layers, extending NMRs utility to many problems of modern interest. This technique can be used to examine contact layers, non-destructively depth profile into films, or image multiple layers in a 3-dimensional sense. It lends itself to high resolution NMR techniques of magic angle spinning and thus can be used to examine the bonding and electronic structure in layered materials or to observe the chemistry associated with aging coatings. Coupling this sensor coil technology with an arrangement of small magnets will produce a penetrator probe for remote in-situ chemical analysis of groundwater or contaminant sediments. Alternatively, the sensor coil can be further miniaturized to provide sub-micron depth resolution within thin films or to orthoscopically examine living tissue. This thin-layer NMR technique using a stationary meanderline coil in a series-resonant circuit has been demonstrated and it has been determined that the flat meanderline geometry has about he same detection sensitivity as a solenoidal coil, but is specifically tailored to examine planar material layers, while avoiding signals from the bulk.

  6. Study of cultured fibroblasts in vivo using NMR

    SciTech Connect

    Karczmar, G.S.

    1984-01-01

    The goal of this thesis was to study the compartmentation of phosphorylated glycolytic intermediates in intact Chicken Embryo Fibroblasts (CEFs) using /sup 31/P NMR at 109 MHz. Because glycolysis is regulated differently in normal and virally transformed CEFs, NMR experiments were performed on both types of cells. A technique for maintaining functional cells at high densities in an NMR magnet is described. Signals were detected from cytoplasmic inorganic phosphate (P/sub i/), ATP, NAD, NADH, phosphorylcholine and phosphorylethanolamine. The effect of external glucose on cytoplasmic pools of phosphates was studied. However, experiments with /sup 32/P labelled P/sub i/ showed that as the concentration of glucose in the medium was increased, the amount of phosphate sequestered in the cells increased. They conclude that there is a pool of P/sub i/ which is not detected by high resolution of NMR and that the size of this pool increases as the rate of glycolysis increases. These effects were found only in cultured cells; the data for transformed and normal cells were similar. Longitudinal relaxation times of intracellular phosphates in normal, transformed, and primary CEFs were measured.

  7. Amplification of Xenon NMR and MRI by remote detection

    SciTech Connect

    Moule, Adam J.; Spence, Megan M.; Han, Song-I.; Seeley, JulietteA.; Pierce, Kimberly L.; Saxena, Sunil; Pines, Alexander

    2003-03-31

    A novel technique is proposed in which a nuclear magneticresonance (NMR) spectrum or magnetic resonance image (MRI) is encoded andstored as spin polarization and is then moved to a different physicallocation to be detected. Remote detection allows the separateoptimization of the encoding and detection steps, permitting theindependent choice of experimental conditions, and excitation anddetection methodologies. In the first experimental demonstration of thistechnique, we show that NMR signal can be amplified by taking diluted129Xe from a porous sample placed inside a large encoding coil, andconcentrating it into a smaller detection coil. In general, the study ofNMR active molecules at low concentration that have low physical fillingfactor is facilitated by remote detection. In the second experiment, MRIinformation encoded in a very low field magnet (4-7mT) is transferred toa high field magnet (4.2 T) in order to be detected under optimizedconditions. Furthermore, remote detection allows the utilization ofultra-sensitive optical or superconducting detection techniques, whichbroadens the horizon of NMR experimentation.

  8. (19) F DOSY diffusion-NMR spectroscopy of fluoropolymers.

    PubMed

    Xu, Chenglong; Wan, Yingbo; Chen, Dongxue; Gao, Chun; Yin, Hongnan; Fetherston, Daniel; Kupce, Eriks; Lopez, Gerald; Ameduri, Bruno; Twum, Eric B; Wyzgoski, Faith J; Li, Xiaohong; McCord, Elizabeth F; Rinaldi, Peter L

    2017-05-01

    A new pulse sequence for obtaining (19) F detected DOSY (diffusion ordered spectroscopy) spectra of fluorinated molecules is presented and used to study fluoropolymers based on vinylidene fluoride and chlorotrifluoroethylene. The performance of (19) F DOSY NMR experiments (and in general any type of NMR experiment) on fluoropolymers creates some unique complications that very often prevent detection of important signals. Factors that create these complications include: (1) the presence of many scalar couplings among (1) H, (19) F and (13) C; (2) the large magnitudes of many (19) F homonuclear couplings (especially (2) JFF ); (3) the large (19) F chemical shift range; and (4) the low solubility of these materials (which requires that experiments be performed at high temperatures). A systematic study of the various methods for collecting DOSY NMR data, and the adaptation of these methods to obtain (19) F detected DOSY data, has been performed using a mixture of low molecular weight, fluorinated model compounds. The best pulse sequences and optimal experimental conditions have been determined for obtaining (19) F DOSY spectra. The optimum pulse sequences for acquiring (19) F DOSY NMR data have been determined for various circumstances taking into account the spectral dispersion, number and magnitude of couplings present, and experimental temperature. Pulse sequences and experimental parameters for optimizing these experiments for the study of fluoropolymers have been studied. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Microscale simulations of NMR relaxation in porous media

    NASA Astrophysics Data System (ADS)

    Mohnke, Oliver; Klitzsch, Norbert

    2010-05-01

    In petrophysical applications of nuclear magnetic resonance (NMR), the measured relaxation signals originate from the fluid filled pore space. Hence, in rocks or sediments the water content directly corresponds to the initial amplitude of the recorded NMR relaxation signals. The relaxation rate (longitudinal/transversal decay time T1, T2) is sensitive to pore sizes and physiochemical properties of rock-fluid interfaces (surface relaxivity), as well as the concentration of paramagnetic ions in the fluid phases (bulk relaxivity). In the subproject A2 of the TR32 we aim at improving the basic understanding of these processes at the pore scale and thereby advancing the interpretation of NMR data by reducing the application of restrictive approximated interpretation schemes, e.g. for deriving pore size distributions, connectivity or permeability. In this respect we numerically simulate NMR relaxation data at the micro sale to study the impact of physical and hydrological parameters such as internal field gradients or pore connectivities on NMR signals. Joint numerical simulations of the NMR relaxation behavior (Bloch equations) in the presence of internal gradients (Ampere's law) and fluid flow (Navier-Stokes) on a pore scale dimension have been implemented in a finite element (FE) model using Comsol Multiphysics. Processes governing the time and spatial behavior of the nuclear magnetization density in a porous medium are diffusion and surface interactions at the rock-fluid interface. Based on Fick's law of diffusive motion Brownstein and Tarr (1979) introduced differential equations that describe the relaxation behavior of the Spin magnetization in single isolated pores and derived analytical solutions for simple geometries, i.e. spherical, cylindrical and planar. However, by numerically solving these equations in a general way using a FE algorithm this approach can be applied to study and simulate coupled complex pore systems, e.g. derived from computer tomography (CT

  10. Microscale simulations of NMR relaxation in porous media

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Klitzsch, N.; Clauser, C.

    2009-12-01

    In petrophysical applications of nuclear magnetic resonance (NMR), the measured relaxation signals originate from the fluid filled pore space. Hence, in rocks or sediments the water content directly corresponds to the initial amplitude of the recorded NMR relaxation signals. The relaxation rate (longitudinal/transversal decay time T1, T2) is sensitive to pore sizes and physiochemical properties of rock-fluid interfaces (surface relaxivity), as well as the concentration of paramagnetic ions in the fluid phases (bulk relaxivity). We aim at improving the basic understanding of these processes at the pore scale and thereby advancing the interpretation of NMR data by reducing the application of restrictive approximated interpretation schemes, e.g. for deriving pore size distributions, connectivity or permeability. In this respect we numerically simulate NMR relaxation data at the micro sale to study the impact of physical and hydrological parameters such as internal field gradients or pore connectivities on NMR signals. Joint numerical simulations of the NMR relaxation behavior (Bloch equations) in the presence of internal gradients (Ampere’s law) and fluid flow (Navier-Stokes) on a pore scale dimension have been implemented in a finite element (FE) model using Comsol Multiphysics. Processes governing the time and spatial behavior of the nuclear magnetization density in a porous medium are diffusion and surface interactions at the rock-fluid interface. Based on Fick's law of diffusive motion Brownstein and Tarr (1979) introduced differential equations that describe the relaxation behavior of the Spin magnetization in single isolated pores and derived analytical solutions for simple geometries, i.e. spherical, cylindrical and planar. However, by numerically solving these equations in a general way using a FE algorithm this approach can be applied to study and simulate coupled complex pore systems, e.g. derived from computer tomography (CT). In this respect substantial

  11. Sorption isotherm measurements by NMR.

    PubMed

    Leisen, Johannes; Beckham, Haskell W; Benham, Michael

    2002-01-01

    An experimental setup is described for the automated recording of sorption isotherms by NMR experiments at precisely defined levels of relative humidity (RH). Implementation is demonstrated for a cotton fabric; Bloch decays. T1 and T2* relaxation times were measured at predefined steps of increasing and decreasing relative humidities (RHs) so that a complete isotherm of NMR properties was obtained. Bloch decays were analyzed by fitting to relaxation functions consisting or a slow- and a fast-relaxing component. The fraction of slow-relaxing component was greater than the fraction of sorbed moisture determined from gravimetric sorption data. The excess slow-relaxing component was attributed to plasticized segments of the formerly rigid cellulose matrix. T1 and T2* sorption isotherms exhibit hysteresis similar to gravimetric sorption isotherms. However, correlating RH to moisture content (MC) reveals that both relaxation constants depend only on MC, and not on the history of moisture exposure.

  12. Two-dimensional NMR spectrometry

    SciTech Connect

    Farrar, T.C.

    1987-06-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.

  13. NMR Hyperpolarization Techniques for Biomedicine

    PubMed Central

    Nikolaou, Panayiotis; Goodson, Boyd M.

    2015-01-01

    Recent developments in NMR hyperpolarization have enabled a wide array of new in vivo molecular imaging modalities—ranging from functional imaging of the lungs to metabolic imaging of cancer. This Concept article explores selected advances in methods for the preparation and use of hyperpolarized contrast agents, many of which are already at or near the phase of their clinical validation in patients. PMID:25470566

  14. Microcoil NMR spectroscopy: a novel tool for biological high throughput NMR spectroscopy.

    PubMed

    Hopson, Russell E; Peti, Wolfgang

    2008-01-01

    Microcoil NMR spectroscopy is based on the increase of coil sensitivity for smaller coil diameters (approximately 1/d). Microcoil NMR probes deliver a remarkable mass-based sensitivity increase (8- to 12-fold) when compared with commonly used 5-mm NMR probes. Although microcoil NMR probes are a well established analytical tool for small molecule liquid-state NMR spectroscopy, after spectroscopy only recently have microcoil NMR probes become available for biomolecular NMR spectroscopy. This chapter highlights differences between commercially available microcoil NMR probes suitable for biomolecular NMR spectroscopy. Furthermore, it provides practical guidance for the use of microcoil probes and shows direct applications for structural biology and structural genomics, such as optimal target screening and structure determination, among others.

  15. Dual-path NMR receiver using double transceiver microcoils.

    PubMed

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2015-01-01

    We present a fully integrated CMOS dual path front-end receiver for NMR applications. Instead of conventional NMR systems which are using one transceiver coil, we propose a dual-path receiver in which it has two transceiver microcoils. This structure cancels the background signal and consequently improving the sensitivity. Spectral simulations of the dual-path receiver are used to verify cancellation of the background signal in this structure. The front-end receiver contains two differential low-noise amplifiers (LNA), two voltage buffers (for conventional mode), two phase shifters, two variable gain amplifiers (VGA), one differential LNA and voltage buffer at the end. This chain of dual-path receiver is designed for 21 MHz NMR settings. The front-end receiver achieves an input referred noise of 2.7 nV/√Hz and voltage gain of 80 dB. The chip is designed in a 0.13-μm CMOS technology and occupies an area of 1 mm × 2 mm.

  16. Microcoils and microsamples in solid-state NMR.

    PubMed

    Takeda, Kazuyuki

    2012-01-01

    Recent reports on microcoils are reviewed. The first part of the review includes a discussion of how the geometries of the sample and coil affect the NMR signal intensity. In addition to derivation of the well-known result that the signal intensity increases as the coil size decreases, the prediction that dilution of a small sample with magnetically inert matter leads to better sensitivity if a tiny coil is not available is given. The second part of the review focuses on the issues specific to solid-state NMR. They include realization of magic-angle spinning (MAS) using a microcoil and harnessing of such strong pulses that are feasible only with a microcoil. Two strategies for microcoil MAS, the piggyback method and magic-angle coil spinning (MACS), are reviewed. In addition, MAS of flat, disk-shaped samples is discussed in the context of solid-state NMR of small-volume samples. Strong RF irradiation, which has been exploited in wide-line spectral excitation, multiple-quantum MAS (MQMAS), and dipolar decoupling experiments, has been accompanied by new challenges regarding the Bloch-Siegert effect, the minimum time resolution of the spectrometer, and the time scale of pulse transient effects. For a possible solution to the latter problem, recent reports on active compensation of pulse transients are described.

  17. Advanced NMR technology for bioscience and biotechnology

    SciTech Connect

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J.; Boumenthal, D.K.; Kennedy, M.A.; Moore, G.J.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  18. Scalable NMR spectroscopy with semiconductor chips

    PubMed Central

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-01-01

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm2 silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  19. Sb-doped PbTe: An NMR Perspective

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Schmidt-Rohr, K.; Jaworski, C. M.; Heremans, J. P.

    2010-03-01

    In PbTe, Sb as a dopant can occupy either Pb or Te sites. To understand the effect of Sb on the local charge-carrier concentration in both cases, we have studied high-resolution ^125Te and ^207Pb NMR spectra of Pb1-xSbxTe, PbSbxTe1-x, and n- and p-type PbTe samples. The spectra of Pb0.9975Sb0.0025Te and PbSb0.0025Te0.9975 have distinctly different resonance frequencies due to Knight shifts and chemical shifts produced by Sb at Pb or Te sites. Pb0.9975Sb0.0025Te is n-type while in PbSb0.0025Te0.9975 both n- and p-type are found. NMR spectra and spin-lattice T1 relaxation of ^207Pb nuclei in PbSb0.0025Te0.9975, which are sensitive to the hyperfine interaction between charge carriers and NMR nuclei, reveal at least four components, which reflect electronic inhomogeneity of the sample. The local carrier concentrations estimated from T1 NMR varies from n<3x10^17 to p˜10^19 cm-3. These multiple components help rationalize the complex temperature dependence of the thermopower of PbSb0.0025Te0.9975. However, comparison with Hall and Seebeck effects data indicates that some NMR signals are due to localized electron states, which do not directly contribute to transport.

  20. Faster and cleaner real-time pure shift NMR experiments.

    PubMed

    Mauhart, Johannes; Glanzer, Simon; Sakhaii, Peyman; Bermel, Wolfgang; Zangger, Klaus

    2015-10-01

    Real-time pure shift experiments provide highly resolved proton NMR spectra which do not require any special processing. Although being more sensitive than their pseudo 2D counterparts, their signal intensities per unit time are still far below regular NMR spectra. In addition, scalar coupling evolution during the individual data chunks produces decoupling sidebands. Here we show that faster and cleaner real-time pure shift spectra can be obtained through the implementation of two parameter alterations. Variation of the FID chunk lengths between individual transients significantly suppresses decoupling sidebands for any kind of real-time pure shift spectra and thus allows for example the analysis of minor components in compound mixtures. Shifting the excitation frequency between individual scans of real-time slice-selective pure shift spectra increases their sensitivity obtainable in unit time by allowing faster repetitions of acquisitions.

  1. In vivo observation of tree drought response with low-field NMR and neutron imaging

    SciTech Connect

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.; Espy, Michelle A.; Dickman, Lee T.; Nelson, Ron O.; Vogel, Sven C.; Sandin, Henrik J.; Sevanto, Sanna

    2016-05-06

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature in the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. Lastly, these results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment.

  2. Quantitative Determination of Carthamin in Carthamus Red by 1H-NMR Spectroscopy.

    PubMed

    Yoshida, Takamitsu; Terasaka, Kazuyoshi; Kato, Setsuko; Bai, Fan; Sugimoto, Naoki; Akiyama, Hiroshi; Yamazaki, Takeshi; Mizukami, Hajime

    2013-01-01

    Carthamus Red is a food colorant prepared from the petals of Carthamus tinctorius (Asteraceae) whose major pigment is carthamin. Since an authentic carthamin standard is difficult to obtain commercially for the preparation of calibration curves in HPLC assays, we applied (1)H-NMR spectroscopy to the quantitative determination of carthamin in commercial preparations of Carthamus Red. Carthamus Red was repeatedly extracted in methanol and the extract was dissolved in pyridine-d(5) containing hexamethyldisilane (HMD) prior to (1)H-NMR spectroscopic analysis. The carthamin contents were calculated from the ratios of singlet signal intensities at approximately σ: 9.3 derived from H-16 of carthamin to those of the HMD signal at σ: 0. The integral ratios exhibited good repeatability among NMR spectroscopic analyses. Both the intra-day and inter-day assay variations had coefficients of variation of <5%. Based on the coefficient of absorption, the carthamin contents of commercial preparations determined by (1)H-NMR spectroscopy correlated well with those determined by colorimetry, although the latter were always approximately 1.3-fold higher than the former, irrespective of the Carthamus Red preparations. In conclusion, the quantitative (1)H-NMR spectroscopy used in the present study is simple and rapid, requiring no carthamin standard for calibration. After HMD concentration has been corrected using certified reference materials, the carthamin contents determined by (1)H-NMR spectroscopy are System of Units (SI)-traceable.

  3. Dissolution Dynamic Nuclear Polarization Instrumentation for Real-time Enzymatic Reaction Rate Measurements by NMR.

    PubMed

    Balzan, Riccardo; Fernandes, Laetitia; Comment, Arnaud; Pidial, Laetitia; Tavitian, Bertrand; Vasos, Paul R

    2016-02-23

    The main limitation of NMR-based investigations is low sensitivity. This prompts for long acquisition times, thus preventing real-time NMR measurements of metabolic transformations. Hyperpolarization via dissolution DNP circumvents part of the sensitivity issues thanks to the large out-of-equilibrium nuclear magnetization stemming from the electron-to-nucleus spin polarization transfer. The high NMR signal obtained can be used to monitor chemical reactions in real time. The downside of hyperpolarized NMR resides in the limited time window available for signal acquisition, which is usually on the order of the nuclear spin longitudinal relaxation time constant, T1, or, in favorable cases, on the order of the relaxation time constant associated with the singlet-state of coupled nuclei, TLLS. Cellular uptake of endogenous molecules and metabolic rates can provide essential information on tumor development and drug response. Numerous previous hyperpolarized NMR studies have demonstrated the relevancy of pyruvate as a metabolic substrate for monitoring enzymatic activity in vivo. This work provides a detailed description of the experimental setup and methods required for the study of enzymatic reactions, in particular the pyruvate-to-lactate conversion rate in presence of lactate dehydrogenase (LDH), by hyperpolarized NMR.

  4. Thermostatted micro-reactor NMR probe head for monitoring fast reactions.

    PubMed

    Brächer, A; Hoch, S; Albert, K; Kost, H J; Werner, B; von Harbou, E; Hasse, H

    2014-05-01

    A novel nuclear magnetic resonance (NMR) probe head for monitoring fast chemical reactions is described. It combines micro-reaction technology with capillary flow NMR spectroscopy. Two reactants are fed separately into the probe head where they are effectively mixed in a micro-mixer. The mixed reactants then pass through a capillary NMR flow cell that is equipped with a solenoidal radiofrequency coil where the NMR signal is acquired. The whole flow path of the reactants is thermostatted using the liquid FC-43 (perfluorotributylamine) so that exothermic and endothermic reactions can be studied under almost isothermal conditions. The set-up enables kinetic investigation of reactions with time constants of only a few seconds. Non-reactive mixing experiments carried out with the new probe head demonstrate that it facilitates the acquisition of constant highly resolved NMR signals suitable for quantification of different species in technical mixtures. Reaction kinetic measurements on a test system are presented that prove the applicability of the novel NMR probe head for monitoring fast reactions.

  5. ¹H NMR and hyperpolarized ¹³C NMR assays of pyruvate-lactate: a comparative study.

    PubMed

    Hill, Deborah K; Jamin, Yann; Orton, Matthew R; Tardif, Nicolas; Parkes, Harold G; Robinson, Simon P; Leach, Martin O; Chung, Yuen-Li; Eykyn, Thomas R

    2013-10-01

    Pyruvate-lactate exchange is mediated by the enzyme lactate dehydrogenase (LDH) and is central to the altered energy metabolism in cancer cells. The measurement of exchange kinetics using hyperpolarized (13) C NMR has provided a biomarker of response to novel therapeutics. However, the observable signal is restricted to the exchanging hyperpolarized (13) C pools and the endogenous pools of (12) C-labelled metabolites are invisible in these measurements. In this study, we investigated an alternative in vitro (1) H NMR assay, using [3-(13) C]pyruvate, and compared the measured kinetics with a hyperpolarized (13) C NMR assay, using [1-(13) C]pyruvate, under the same conditions in human colorectal carcinoma SW1222 cells. The apparent forward reaction rate constants (kPL ) derived from the two assays showed no significant difference, and both assays had similar reproducibility (kPL  = 0.506 ± 0.054 and kPL  = 0.441 ± 0.090 nmol/s/10(6) cells; mean ± standard deviation; n = 3); (1) H, (13) C assays, respectively). The apparent backward reaction rate constant (kLP ) could only be measured with good reproducibility using the (1) H NMR assay (kLP  = 0.376 ± 0.091 nmol/s/10(6) cells; mean ± standard deviation; n = 3). The (1) H NMR assay has adequate sensitivity to measure real-time pyruvate-lactate exchange kinetics in vitro, offering a complementary and accessible assay of apparent LDH activity.

  6. Performance trade-offs in in situ chemostat NMR.

    PubMed

    Castro, C D; Koretsky, A P; Domach, M M

    1999-01-01

    Investigating cell cultures with NMR requires high cell densities to provide adequate signal-to-noise, or scans must be summed over long time periods and short-term events are lost. The mixing within a chemostat can be used to shorten the time required to acquire informative in situ NMR spectra from cell cultures. However, performance trade-offs can occur between net signal, spectral resolution, and oxygenation due to sampling volume, conductivity, gas bubble, and fluid flow effects. These trade-offs and the effect of different mixing regimes were theoretically analyzed to quantify how device design decisions impact performance. The results were found to concur with data from cell-free NMR experiments performed in 18 mS/cm conductivity medium. The results also guided the redesign of an NMR bioreactor in terms of relative radio frequency (rf) coil and sample dimensions and other factors. The design, which entails using chemostat mixing to shunt sample through a rf coil in ca. 0.4 s, provides adequate oxygenation for the 4-16% (v/v) cell suspensions examined. Gains realized include lower conductive losses, better magnetic field homogeneity, and the exclusion of gas bubbles from the sampling zone. These gains enable the acquistion of spectra from dilute (3-4% v/v) Saccharomyces cerevisiae chemostat cultures in 6.9 min with high resolution in both the orthophosphate and the beta-NTP regions. Samples with 16% (v/v) cells also yield useful spectra within 0.5-1.0 min.

  7. NMR characterization of pituitary tumors

    SciTech Connect

    Osbakken, M.; Gonzales, J.; Page, R.

    1984-01-01

    Twelve patients (5 male, 7 female, mean age 37.9 +- 20) with pituitary tumors were extensively evaluated with NMR imaging using a 1.5K gauss resistive magnet. Saturation recovery (SR), inversion recovery (IR) and spin echo (SE) pulse sequences were used for qualitative characterization of the lesions. T/sub 1/ calculations were also performed for brain and pituitary. Tumor histology and endocrine status were correlated with NMR data. All tumors were large with suprasellar extension (6 with prolactin secretion, 6 without). Pituitary T/sub 1/'s ranged from .2 to .64, the mean T/sub 1/ being longer than that of brain (Brain = .4 +- .04; Pit = .48 +- .14). 3 patients with histological evidence of homogeneous adenomas had long T/sub 1/'s (0.58 +- .05). 3 patients with evidence of recent or old hemorhage into the pituitary had much shorter T/sub 1/'s (0.29 +- .12). There was no relationship between prolactin secretion and T/sub 1/. Qualitative T/sub 1/ and T/sub 2/ information can be obtained by using a combination of SR, IR, and SE images. Using this method in the patients, homogeneous adenomas had similar T/sub 1/'s and longer T/sub 2/'s compared to the brain, while patients with bleeds had shorter T/sub 1/'s and T/sub 2/'s. Image T/sub 1/ characteristics correlated well with the calculated T/sub 1/ values. The range of T/sub 1/ (and potentially T/sub 2/) values which occur in apparently similar lesions are most likely due to anatomical and pathophysiological variations in these lesions. It may be ultimately possible to separate different types of pathological processes based on NMR image T/sub 1/ and T/sub 2/ characteristics after careful comparative studies of NMR and histological data are completed. The combination of calculated T/sub 1/ and T/sub 2/ with image T/sub 1/ and T/sub 2/ information may also be useful in further characterization of lesions.

  8. Unambiguous metabolite identification in high-throughput metabolomics by hybrid 1D 1 H NMR/ESI MS 1 approach: Hybrid 1D 1 H NMR/ESI MS 1 metabolomics method

    SciTech Connect

    Walker, Lawrence R.; Hoyt, David W.; Walker, S. Michael; Ward, Joy K.; Nicora, Carrie D.; Bingol, Kerem

    2016-09-16

    We present a novel approach to improve accuracy of metabolite identification by combining direct infusion ESI MS1 with 1D 1H NMR spectroscopy. The new approach first applies standard 1D 1H NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in metabolomics library. This generates a list of candidate metabolites. The list contains false positive and ambiguous identifications. Next, we constrained the list with the chemical formulas derived from high-resolution direct infusion ESI MS1 spectrum of the same sample. Detection of the signals of a metabolite both in NMR and MS significantly improves the confidence of identification and eliminates false positive identification. 1D 1H NMR and direct infusion ESI MS1 spectra of a sample can be acquired in parallel in several minutes. This is highly beneficial for rapid and accurate screening of hundreds of samples in high-throughput metabolomics studies. In order to make this approach practical, we developed a software tool, which is integrated to Chenomx NMR Suite. The approach is demonstrated on a model mixture, tomato and Arabidopsis thaliana metabolite extracts, and human urine.

  9. Earth field NMR with chemical shift spectral resolution: theory and proof of concept.

    PubMed

    Katz, Itai; Shtirberg, Lazar; Shakour, Gubrail; Blank, Aharon

    2012-06-01

    A new method for obtaining an NMR signal in the Earth's magnetic field (EF) is presented. The method makes use of a simple pulse sequence with only DC fields which is much less demanding than previous approaches in terms of the pulses' rise and fall times. Furthermore, it offers the possibility of obtaining NMR data with enough spectral resolution to allow retrieving high resolution molecular chemical shift (CS) information - a capability that was not considered possible in EF NMR until now. Details of the pulse sequence, the experimental system, and our specially tailored EF NMR probe are provided. The experimental results demonstrate the capability to differentiate between three types of samples made of common fluorine compounds, based on their CS data.

  10. 1H NMR, 13C NMR and mass spectral studies of some Schiff bases derived from 3-amino-1,2,4-triazole.

    PubMed

    Issa, Y M; Hassib, H B; Abdelaal, H E

    2009-11-01

    Heterocyclic Schiff bases derived from 3-amino-1,2,4-triazole and different substituted aromatic aldehydes are prepared and subjected to (1)H NMR, (13)C NMR and mass spectral analyses. (1)H NMR spectra in DMSO exhibit a sharp singlet within the 9.35-8.90ppm region which corresponds to the azomethine proton. The position of this signal is largely dependent on the nature of the substituents on the benzal moiety. It is observed that the shape, position and the integration value of the signal of the aromatic proton of the triazole ring ((5)C) are clearly affected by the rate of exchange, relaxation time, concentration of solution as well as the solvent used. (13)C NMR is taken as substantial support for the results reached from (1)H NMR studies. The mass spectral results are taken as a tool to confirm the structure of the investigated compounds. The base peak (100%), mostly the M-1 peak, indicates the facile loss of hydrogen radical. The fragmentation pattern of the unsubstituted Schiff base is taken as the general scheme. Differences in the other schemes result from the effect of the electronegativity of the substituents attached to the aromatic ring.

  11. NMR studies of isotopically labeled RNA

    SciTech Connect

    Pardi, A.

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  12. PFG NMR and Bayesian analysis to characterise non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Blythe, Thomas W.; Sederman, Andrew J.; Stitt, E. Hugh; York, Andrew P. E.; Gladden, Lynn F.

    2017-01-01

    Many industrial flow processes are sensitive to changes in the rheological behaviour of process fluids, and there therefore exists a need for methods that provide online, or inline, rheological characterisation necessary for process control and optimisation over timescales of minutes or less. Nuclear magnetic resonance (NMR) offers a non-invasive technique for this application, without limitation on optical opacity. We present a Bayesian analysis approach using pulsed field gradient (PFG) NMR to enable estimation of the rheological parameters of Herschel-Bulkley fluids in a pipe flow geometry, characterised by a flow behaviour index n , yield stress τ0 , and consistency factor k , by analysis of the signal in q -space. This approach eliminates the need for velocity image acquisition and expensive gradient hardware. We investigate the robustness of the proposed Bayesian NMR approach to noisy data and reduced sampling using simulated NMR data and show that even with a signal-to-noise ratio (SNR) of 100, only 16 points are required to be sampled to provide rheological parameters accurate to within 2% of the ground truth. Experimental validation is provided through an experimental case study on Carbopol 940 solutions (model Herschel-Bulkley fluids) using PFG NMR at a 1H resonance frequency of 85.2 MHz; for SNR > 1000, only 8 points are required to be sampled. This corresponds to a total acquisition time of <60 s and represents an 88% reduction in acquisition time when compared to MR flow imaging. Comparison of the shear stress-shear rate relationship, quantified using Bayesian NMR, with non-Bayesian NMR methods demonstrates that the Bayesian NMR approach is in agreement with MR flow imaging to within the accuracy of the measurement. Furthermore, as we increase the concentration of Carbopol 940 we observe a change in rheological characteristics, probably due to shear history-dependent behaviour and the different geometries used. This behaviour highlights the need for

  13. NMR studies of oriented molecules

    SciTech Connect

    Sinton, S.W.

    1981-11-01

    Deuterium and proton magnetic resonance are used in experiments on a number of compounds which either form liquid crystal mesophases themselves or are dissolved in a liquid crystal solvent. Proton multiple quantum NMR is used to simplify complicated spectra. The theory of nonselective multiple quantum NMR is briefly reviewed. Benzene dissolved in a liquid crystal are used to demonstrate several outcomes of the theory. Experimental studies include proton and deuterium single quantum (..delta..M = +-1) and proton multiple quantum spectra of several molecules which contain the biphenyl moiety. 4-Cyano-4'-n-pentyl-d/sub 11/-biphenyl (5CB-d/sub 11/) is studied as a pure compound in the nematic phase. The obtained chain order parameters and dipolar couplings agree closely with previous results. Models for the effective symmetry of the biphenyl group in 5CB-d/sub 11/ are tested against the experimental spectra. The dihedral angle, defined by the planes containing the rings of the biphenyl group, is found to be 30 +- 2/sup 0/ for 5DB-d/sub 11/. Experiments are also described for 4,4'-d/sub 2/-biphenyl, 4,4' - dibromo-biphenyl, and unsubstituted biphenyl.

  14. Theory of mirrored time domain sampling for NMR spectroscopy.

    PubMed

    Ghosh, Arindam; Wu, Yibing; He, Yunfen; Szyperski, Thomas

    2011-12-01

    A generalized theory is presented for novel mirrored hypercomplex time domain sampling (MHS) of NMR spectra. It is the salient new feature of MHS that two interferograms are acquired with different directionality of time evolution, that is, one is sampled forward from time t=0 to the maximal evolution time tmax, while the second is sampled backward from t=0 to -tmax. The sampling can be accomplished in a (semi) constant time or non constant-time manner. Subsequently, the two interferograms are linearly combined to yield a complex time domain signal. The manifold of MHS schemes considered here is defined by arbitrary settings of sampling phases ('primary phase shifts') and amplitudes of the two interferograms. It is shown that, for any two given primary phase shifts, the addition theorems of trigonometric functions yield the unique linear combination required to form the complex signal. In the framework of clean absorption mode (CAM) acquisition of NMR spectra being devoid of residual dispersive signal components, 'secondary phase shifts' represent time domain phase errors which are to be eliminated. In contrast, such secondary phase shifts may be introduced by experimental design in order to encode additional NMR parameters, a new class of NMR experiments proposed here. For generalization, it is further considered that secondary phase shifts may depend on primary phase shifts and/or sampling directionality. In order to compare with MHS theory, a correspondingly generalized theory is derived for widely used hypercomplex ('States') sampling (HS). With generalized theory it is shown, first, that previously introduced 'canonical' schemes, characterized by primary phases being multiples of π/4, afford maximal intensity of the desired absorptive signals in the absence of secondary phase shifts, and second, how primary phases can be adjusted to maximize the signal intensity provided that the secondary phase shifts are known. Third, it is demonstrated that theory enables

  15. Processing of Surface-NMR Data From Sites With High Noise Levels

    NASA Astrophysics Data System (ADS)

    Behroozmand, A. A.; Larsen, J. J.

    2015-12-01

    The applicability of surface NMR in investigations of groundwater is often limited by high noise levels in many areas of interest. In this paper we present measurements from a high noise level area in Ristrup, Denmark. Standard multichannel filtering techniques for noise reduction are inadequate for several data sets acquired in this area and surface-NMR signals cannot be resolved from the acquired data. With a careful assessment of the frequency content of the data, we show how a model-based approach can be used to subtract two harmonic noise components from the data and reliable surface-NMR data can be extracted from the noise-reduced data. Moreover, we show the impact of the proposed processing approaches on the inversion results and also present an example where the proposed methodology allows us to reveal and avoid an otherwise overlooked contamination of the reference coil signals with surface-NMR signal. The results of this study show that a careful processing of the data makes it possible to extract surface-NMR data in more places of interest.

  16. Shimming of a Magnet for Calibration of NMR Probes for the Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    Bielajew, Rachel

    2013-10-01

    The Muon g-2 Experiment at Fermilab aims to measure the anomalous magnetic moment aμ ≡ (g-2)/2 of the muon to the precision of 0.14 parts per million. This experimental value of aμ can then be compared to the similarly precise theoretical predictions of the Standard Model in order to test the completeness of the model. The value of aμ is extracted from muons precessing in a magnetic field. The magnetic field will be measured with a set of 400 Nuclear Magnetic Resonance (NMR) probes, which have the ability to measure the field to a precision of tens of parts per billion. Before the Muon g-2 Experiment can take place, new NMR probes must be designed, built, and tested using a 1.45 Tesla test magnet at the University of Washington Center for Experimental Nuclear Physics and Astrophysics (CENPA). In order to achieve a significant signal from NMR probes, the magnetic field in which the probes are immersed must be extremely uniform. The existing magnet at CENPA has an approximately linear gradient in magnetic field of about 1 Gauss per centimeter in the smoothest direction. A pair of adjacent square Helmholtz coils was designed and built to create a linear gradient in order to cancel the existing gradient. The length of the NMR signals improved with the implementation of the coils. The results of the addition of the coils to the magnet on the signals from the NMR probes will be presented.

  17. Milli-tesla NMR and spectrophotometry of liquids hyperpolarized by dissolution dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Zhu, Yue; Chen, Chia-Hsiu; Wilson, Zechariah; Savukov, Igor; Hilty, Christian

    2016-09-01

    Hyperpolarization methods offer a unique means of improving low signal strength obtained in low-field NMR. Here, simultaneous measurements of NMR at a field of 0.7 mT and laser optical absorption from samples hyperpolarized by dissolution dynamic nuclear polarization (D-DNP) are reported. The NMR measurement field closely corresponds to a typical field encountered during sample injection in a D-DNP experiment. The optical spectroscopy allows determination of the concentration of the free radical required for DNP. Correlation of radical concentration to NMR measurement of spin polarization and spin-lattice relaxation time allows determination of relaxivity and can be used for optimization of the D-DNP process. Further, the observation of the nuclear Overhauser effect originating from hyperpolarized spins is demonstrated. Signals from 1H and 19F in a mixture of trifluoroethanol and water are detected in a single spectrum, while different atoms of the same type are distinguished by J-coupling patterns. The resulting signal changes of individual peaks are indicative of molecular contact, suggesting a new application area of hyperpolarized low-field NMR for the determination of intermolecular interactions.

  18. An NMR log echo data de-noising method based on the wavelet packet threshold algorithm

    NASA Astrophysics Data System (ADS)

    Meng, Xiangning; Xie, Ranhong; Li, Changxi; Hu, Falong; Li, Chaoliu; Zhou, Cancan

    2015-12-01

    To improve the de-noising effects of low signal-to-noise ratio (SNR) nuclear magnetic resonance (NMR) log echo data, this paper applies the wavelet packet threshold algorithm to the data. The principle of the algorithm is elaborated in detail. By comparing the properties of a series of wavelet packet bases and the relevance between them and the NMR log echo train signal, ‘sym7’ is found to be the optimal wavelet packet basis of the wavelet packet threshold algorithm to de-noise the NMR log echo train signal. A new method is presented to determine the optimal wavelet packet decomposition scale; this is within the scope of its maximum, using the modulus maxima and the Shannon entropy minimum standards to determine the global and local optimal wavelet packet decomposition scales, respectively. The results of applying the method to the simulated and actual NMR log echo data indicate that compared with the wavelet threshold algorithm, the wavelet packet threshold algorithm, which shows higher decomposition accuracy and better de-noising effect, is much more suitable for de-noising low SNR-NMR log echo data.

  19. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which…

  20. Analytical Applications of NMR: Summer Symposium on Analytical Chemistry.

    ERIC Educational Resources Information Center

    Borman, Stuart A.

    1982-01-01

    Highlights a symposium on analytical applications of nuclear magnetic resonance spectroscopy (NMR), discussing pulse Fourier transformation technique, two-dimensional NMR, solid state NMR, and multinuclear NMR. Includes description of ORACLE, an NMR data processing system at Syracuse University using real-time color graphics, and algorithms for…

  1. Towards Using NMR to Screen for Spoiled Tomatoes Stored in 1,000 L, Aseptically Sealed, Metal-Lined Totes

    PubMed Central

    Pinter, Michael D.; Harter, Tod; McCarthy, Michael J.; Augustine, Matthew P.

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is used to track factory relevant tomato paste spoilage. It was found that spoilage in tomato paste test samples leads to longer spin lattice relaxation times T1 using a conventional low magnetic field NMR system. The increase in T1 value for contaminated samples over a five day room temperature exposure period prompted the work to be extended to the study of industry standard, 1,000 L, non-ferrous, metal-lined totes. NMR signals and T1 values were recovered from a large format container with a single-sided NMR sensor. The results of this work suggest that a handheld NMR device can be used to study tomato paste spoilage in factory process environments. PMID:24594611

  2. Metabolomic by 1H NMR spectroscopy differentiates "Fiano di Avellino" white wines obtained with different yeast strains.

    PubMed

    Mazzei, Pierluigi; Spaccini, Riccardo; Francesca, Nicola; Moschetti, Giancarlo; Piccolo, Alessandro

    2013-11-13

    We employed (1)H NMR spectroscopy to examine the molecular profile of a white "Fiano di Avellino" wine obtained through fermentation by either a commercial or a selected autochthonous Saccharomyces cerevisiae yeast starter. The latter was isolated from the same grape variety used in the wine-making process in order to strengthen the relationship between wine molecular quality and its geographical origin. (1)H NMR spectra, where water and ethanol signals were suppressed by a presaturated T1-edited NMR pulse sequence, allowed for definition of the metabolic content of the two differently treated wines. Elaboration of NMR spectral data by multivariate statistical analyses showed that the two different yeasts led to significant diversity in the wine metabolomes. Our results indicate that metabolomics by (1)H NMR spectroscopy combined with multivariate statistical analysis enables wine differentiation as a function of yeast species and other wine-making factors, thereby contributing to objectively relate wine quality to the terroir.

  3. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  4. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  5. An Inversion Recovery NMR Kinetics Experiment

    ERIC Educational Resources Information Center

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  6. Microslot NMR probe for metabolomics studies.

    PubMed

    Krojanski, Hans Georg; Lambert, Jörg; Gerikalan, Yilmaz; Suter, Dieter; Hergenröder, Roland

    2008-11-15

    A NMR microprobe based on microstrip technology suitable for investigations of volume-limited samples in the low nanoliter range was designed. NMR spectra of sample quantities in the 100 pmol range can be obtained with this probe in a few seconds. The planar geometry of the probe is easily adaptable to the size and geometry requirements of the samples.

  7. NMR Spectroscopy and Its Value: A Primer

    ERIC Educational Resources Information Center

    Veeraraghavan, Sudha

    2008-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is widely used by chemists. Furthermore, the use of NMR spectroscopy to solve structures of macromolecules or to examine protein-ligand interactions is popular. Yet, few students entering graduate education in biological sciences have been introduced to this method or its utility. Over the last six…

  8. NMR-Profiles of Protein Solutions

    PubMed Central

    Pedrini, Bill; Serrano, Pedro; Mohanty, Biswaranjan; Geralt, Michael; Wüthrich, Kurt

    2014-01-01

    NMR-Profiles are quantitative one-dimensional presentations of two-dimensional [15N,1H]-correlation spectra used to monitor the quality of protein solutions prior to and during NMR structure determinations and functional studies. In our current use in structural genomics projects, a NMR-Profile is recorded at the outset of a structure determination, using a uniformly 15N-labeled micro-scale sample of the protein. We thus assess the extent to which polypeptide backbone resonance assignments can be achieved with given NMR techniques, for example, conventional triple resonance experiments or APSY-NMR. With the availability of sequence-specific polypeptide backbone resonance assignments in the course of the structure determination, an “Assigned NMR-Profile” is generated, which visualizes the variation of the 15N–1H correlation cross peak intensities along the sequence and thus maps the sequence locations of polypeptide segments for which the NMR line shapes are affected by conformational exchange or other processes. The Assigned NMR-Profile provides a guiding reference during later stages of the structure determination, and is of special interest for monitoring the protein during functional studies, where dynamic features may be modulated during physiological functions. PMID:23839514

  9. Using Cloud Storage for NMR Data Distribution

    ERIC Educational Resources Information Center

    Soulsby, David

    2012-01-01

    An approach using Google Groups as method for distributing student-acquired NMR data has been implemented. We describe how to configure NMR spectrometer software so that data is uploaded to a laboratory section specific Google Group, thereby removing bottlenecks associated with printing and processing at the spectrometer workstation. Outside of…

  10. NMR response of non-reservoir fluids in sandstone and chalk.

    PubMed

    van der Zwaag, C H; Stallmach, F; Skjetne, T; Veliyulin, E

    2001-01-01

    Transverse (T2) NMR relaxation time at 2 MHz proton resonance frequency was measured on core plug samples from two different lithologies, sandstone and chalk, before and after exposure to selected drilling fluids. The results show that NMR signal response was significantly altered after displacing 50% of the original pore fluids, crude oil and water, by drilling fluid filtrate. Relaxation spectra of the rock samples invaded by water-based filtrate shift to significantly shorter T2-values. This shift yields an underestimation of the free-fluid volumes when selecting cut-off values of 33 ms and 100 ms for sandstone and chalk, respectively. In opposite, rock samples affected by oil-based filtrate respond with a signal indicating significantly larger free-fluid volumes than present before exposure. NMR-permeability calculated based on the Timur-Coates Free Fluid model altered in some cases by one order of magnitude.

  11. 125Te and 139La NMR Studies of Single Crystal LaTe3

    NASA Astrophysics Data System (ADS)

    Chudo, Hiroyuki; Michioka, Chishiro; Itoh, Yutaka; Yoshimura, Kazuyoshi

    2007-12-01

    We report 125Te and 139La NMR studies for single crystals of LaTe3 between 10 and 160 K under an applied field of H = 7.4841 T. We observed the broad 125Te(1) NMR signals of metallic Te(1) sheets with a superlattice modulation and the sharp 125Te(2) and 139La NMR signals of LaTe(2) bi-layers. Temperature dependence of 125Te(1) nuclear spin-lattice relaxation times of the modulated Te(1) sheets obeys a modified Korringa relation. The results indicate that the electronic state on the Te(1) sheets is a Landau-Fermi liquid on a misfit superlattice or a Tomonaga-Luttinger liquid in a two-dimensional charge-density wave ordering state.

  12. Faster imaging with a portable unilateral NMR device.

    PubMed

    Liberman, Asaf; Bergman, Elad; Sarda, Yifat; Nevo, Uri

    2013-06-01

    Unilateral NMR devices are important tools in various applications such as non-destructive testing and well logging, but are not applied routinely for imaging, primarily because B0 inhomogeneity in these scanners leads to a relatively low signal and requires use of the slow single point imaging scan scheme. Enabling high quality, fast imaging could make this affordable and portable technology practical for various imaging applications as well as for new applications that are not yet feasible with MRI technology. The goal of this work was to improve imaging times in a portable unilateral NMR scanner. Both Compressed Sensing and Fast Spin Echo were modified and applied to fit the unique characteristics of a unilateral device. Two printed phantoms, allowing high resolution images, were scanned with both methods and compared to a standard scan and to a low pass scan to evaluate performance. Both methods were found to be feasible with a unilateral device, proving ways to accelerate single point imaging in such scanners. This outcome encourages us to explore how to further accelerate imaging times in unilateral NMR devices so that this technology might become clinically applicable in the future.

  13. Saturation Transfer Difference NMR as an Analytical Tool for Detection and Differentiation of Plastic Explosives on the Basis of Minor Plasticizer Composition

    DTIC Science & Technology

    2015-05-01

    Differentiation of Plastic Explosives on the Basis of Minor Plasticizer Composition 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...NMR signals. Virtually extracting the proton spectrum of the plasticizers only (using their characteristic binding to serum albumin protein) enables...difference (STD) Differentiation Specific binding Nuclear magnetic resonance (NMR) Semtex C-4 plastic explosive 16. SECURITY CLASSIFICATION OF

  14. SQUID detected NMR and NQR. Superconducting Quantum Interference Device.

    PubMed

    Augustine, M P; TonThat, D M; Clarke, J

    1998-03-01

    The dc Superconducting QUantum Interference Device (SQUID) is a sensitive detector of magnetic flux, with a typical flux noise of the order 1 muphi0 Hz(-1/2) at liquid helium temperatures. Here phi0 = h/2e is the flux quantum. In our NMR or NQR spectrometer, a niobium wire coil wrapped around the sample is coupled to a thin film superconducting coil deposited on the SQUID to form a flux transformer. With this untuned input circuit the SQUID measures the flux, rather than the rate of change of flux, and thus retains its high sensitivity down to arbitrarily low frequencies. This feature is exploited in a cw spectrometer that monitors the change in the static magnetization of a sample induced by radio frequency irradiation. Examples of this technique are the detection of NQR in 27Al in sapphire and 11B in boron nitride, and a level crossing technique to enhance the signal of 14N in peptides. Research is now focused on a SQUID-based spectrometer for pulsed NQR and NMR, which has a bandwidth of 0-5 MHz. This spectrometer is used with spin-echo techniques to measure the NQR longitudinal and transverse relaxation times of 14N in NH4ClO4, 63+/-6 ms and 22+/-2 ms, respectively. With the aid of two-frequency pulses to excite the 359 kHz and 714 kHz resonances in ruby simultaneously, it is possible to obtain a two-dimensional NQR spectrum. As a third example, the pulsed spectrometer is used to study NMR spectrum of 129Xe after polariza-tion with optically pumped Rb. The NMR line can be detected at frequencies as low as 200 Hz. At fields below about 2 mT the longitudinal relaxation time saturates at about 2000 s. Two recent experiments in other laboratories have extended these pulsed NMR techniques to higher temperatures and smaller samples. In the first, images were obtained of mineral oil floating on water at room temperature. In the second, a SQUID configured as a thin film gradiometer was used to detect NMR in a 50 microm particle of 195Pt at 6 mT and 4.2 K.

  15. NMR analysis of base-pair opening kinetics in DNA.

    PubMed

    Szulik, Marta W; Voehler, Markus; Stone, Michael P

    2014-12-12

    Base pairing in nucleic acids plays a crucial role in their structure and function. Differences in the base-pair opening and closing kinetics of individual double-stranded DNA sequences or between chemically modified base pairs provide insight into the recognition of these base pairs by DNA processing enzymes. This unit describes how to quantify the kinetics for localized base pairs by observing changes in the imino proton signals by nuclear magnetic resonance spectroscopy. The determination of all relevant parameters using state-of-the art techniques and NMR instrumentation, including cryoprobes, is discussed.

  16. Challenges and perspectives in quantitative NMR.

    PubMed

    Giraudeau, Patrick

    2017-01-01

    This perspective article summarizes, from the author's point of view at the beginning of 2016, the major challenges and perspectives in the field of quantitative NMR. The key concepts in quantitative NMR are first summarized; then, the most recent evolutions in terms of resolution and sensitivity are discussed, as well as some potential future research directions in this field. A particular focus is made on methodologies capable of boosting the resolution and sensitivity of quantitative NMR, which could open application perspectives in fields where the sample complexity and the analyte concentrations are particularly challenging. These include multi-dimensional quantitative NMR and hyperpolarization techniques such as para-hydrogen-induced polarization or dynamic nuclear polarization. Because quantitative NMR cannot be dissociated from the key concepts of analytical chemistry, i.e. trueness and precision, the methodological developments are systematically described together with their level of analytical performance. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Robust, integrated computational control of NMR experiments to achieve optimal assignment by ADAPT-NMR.

    PubMed

    Bahrami, Arash; Tonelli, Marco; Sahu, Sarata C; Singarapu, Kiran K; Eghbalnia, Hamid R; Markley, John L

    2012-01-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) represents a groundbreaking prototype for automated protein structure determination by nuclear magnetic resonance (NMR) spectroscopy. With a [(13)C,(15)N]-labeled protein sample loaded into the NMR spectrometer, ADAPT-NMR delivers complete backbone resonance assignments and secondary structure in an optimal fashion without human intervention. ADAPT-NMR achieves this by implementing a strategy in which the goal of optimal assignment in each step determines the subsequent step by analyzing the current sum of available data. ADAPT-NMR is the first iterative and fully automated approach designed specifically for the optimal assignment of proteins with fast data collection as a byproduct of this goal. ADAPT-NMR evaluates the current spectral information, and uses a goal-directed objective function to select the optimal next data collection step(s) and then directs the NMR spectrometer to collect the selected data set. ADAPT-NMR extracts peak positions from the newly collected data and uses this information in updating the analysis resonance assignments and secondary structure. The goal-directed objective function then defines the next data collection step. The procedure continues until the collected data support comprehensive peak identification, resonance assignments at the desired level of completeness, and protein secondary structure. We present test cases in which ADAPT-NMR achieved results in two days or less that would have taken two months or more by manual approaches.

  18. (19)F NMR spectroscopic characterization of the interaction of niflumic acid with human serum albumin.

    PubMed

    Kitamura, Keisuke; Omran, Ahmed A; Takegami, Shigehiko; Tanaka, Rumi; Kitade, Tatsuya

    2007-04-01

    The interaction of a non-steroidal anti-inflammatory drug, niflumic acid (NFA), with human serum albumin (HSA) has been investigated by (19)F nuclear magnetic resonance (NMR) spectroscopy. A (19)F NMR spectrum of NFA in a buffered (pH 7.4) solution of NaCl (0.1 mol L(-1)) contained a single sharp signal of its CF(3) group 14.33 ppm from the internal reference 2,2,2-trifluoroethanol. Addition of 0.6 mmol L(-1) HSA to the NFA buffer solution caused splitting of the CF(3) signal into two broadened signals, shifted to the lower fields of 14.56 and 15.06 ppm, with an approximate intensity ratio of 1:3. Denaturation of HSA by addition of 3.0 mol L(-1) guanidine hydrochloride (GU) restored a single sharp signal of CF(3) at 14.38 ppm, indicating complete liberation of NFA from HSA as a result of its denaturation. These results suggest that the binding is reversible and occurs in at least two HSA regions. Competitive (19)F NMR experiments using warfarin, dansyl-L: -asparagine, and benzocaine (site I ligands), and L: -tryptophan and ibuprofen (site II ligands) revealed that NFA binds to site I at two different regions, Ia and Ib, in the ratio 1:3. By use of (19)F NMR with NFA as an (19)F NMR probe the nonfluorinated site I-binding drugs sulfobromophthalein and iophenoxic acid were also found to bind sites Ia and Ib, respectively. These results illustrate the usefulness and convenience of (19)F NMR for investigation of the HSA binding of both fluorinated and nonfluorinated drugs.

  19. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small

  20. A nanoliter volume nuclear magnetic resonance (NMR) system using tunneling magneto-resistive (TMR) sensors to recognize biomolecules

    NASA Astrophysics Data System (ADS)

    Gomez, Pablo

    The need to incorporate advanced engineering tools in biology, biochemistry and medicine is in great demand. Many of the existing instruments and tools are usually expensive and require special facilities. With the advent of nanotechnology in the past decade, new approaches to develop devices and tools have been generated by academia and industry. One such technology, NMR spectroscopy, has been used by biochemists for more than 2 decades to study the molecular structure of chemical compounds. However, NMR spectrometers are very expensive and require special laboratory rooms for their proper operation. High magnetic fields with strengths in the order of several Tesla make these instruments unaffordable to most research groups. This doctoral research proposes a new technology to develop NMR spectrometers that can operate at field strengths of less than 0.5 Tesla using an inexpensive permanent magnet and spin dependent nanoscale magnetic devices. This portable NMR system is intended to analyze samples as small as a few nanoliters. The main problem to resolve when downscaling the variables is to obtain an NMR signal with high Signal-To-Noise-Ratio (SNR). A special Tunneling Magneto-Resistive (TMR) sensor design was developed to achieve this goal. The minimum specifications for each component of the proposed NMR system were established. A complete NMR system was designed based on these minimum requirements. The goat was always to find cost effective realistic components. The novel design of the NMR system uses technologies such as Direct Digital Synthesis (DDS), Digital Signal Processing (DSP) and a special Backpropagation Neural Network that finds the best match of the NMR spectrum. The system was designed, calculated and simulated with excellent results. In addition, a general method to design TMR Sensors was developed. The technique was automated and a computer program was written to help the designer perform this task interactively.

  1. Inverse problem for in vivo NMR spatial localization

    SciTech Connect

    Hasenfeld, A.C.

    1985-11-01

    The basic physical problem of NMR spatial localization is considered. To study diseased sites, one must solve the problem of adequately localizing the NMR signal. We formulate this as an inverse problem. As the NMR Bloch equations determine the motion of nuclear spins in applied magnetic fields, a theoretical study is undertaken to answer the question of how to design magnetic field configurations to achieve these localized excited spin populations. Because of physical constraints in the production of the relevant radiofrequency fields, the problem factors into a temporal one and a spatial one. We formulate the temporal problem as a nonlinear transformation, called the Bloch Transform, from the rf input to the magnetization response. In trying to invert this transformation, both linear (for the Fourier Transform) and nonlinear (for the Bloch Transform) modes of radiofrequency excitation are constructed. The spatial problem is essentially a statics problem for the Maxwell equations of electromagnetism, as the wavelengths of the radiation considered are on the order of ten meters, and so propagation effects are negligible. In the general case, analytic solutions are unavailable, and so the methods of computer simulation are used to map the rf field spatial profiles. Numerical experiments are also performed to verify the theoretical analysis, and experimental confirmation of the theory is carried out on the 0.5 Tesla IBM/Oxford Imaging Spectrometer at the LBL NMR Medical Imaging Facility. While no explicit inverse is constructed to ''solve'' this problem, the combined theoretical/numerical analysis is validated experimentally, justifying the approximations made. 56 refs., 31 figs.

  2. Photo-CIDNP NMR spectroscopy of amino acids and proteins.

    PubMed

    Kuhn, Lars T

    2013-01-01

    Photo-chemically induced dynamic nuclear polarization (CIDNP) is a nuclear magnetic resonance (NMR) phenomenon which, among other things, is exploited to extract information on biomolecular structure via probing solvent-accessibilities of tryptophan (Trp), tyrosine (Tyr), and histidine (His) amino acid side chains both in polypeptides and proteins in solution. The effect, normally triggered by a (laser) light-induced photochemical reaction in situ, yields both positive and/or negative signal enhancements in the resulting NMR spectra which reflect the solvent exposure of these residues both in equilibrium and during structural transformations in "real time". As such, the method can offer - qualitatively and, to a certain extent, quantitatively - residue-specific structural and kinetic information on both the native and, in particular, the non-native states of proteins which, often, is not readily available from more routine NMR techniques. In this review, basic experimental procedures of the photo-CIDNP technique as applied to amino acids and proteins are discussed, recent improvements to the method highlighted, and future perspectives presented. First, the basic principles of the phenomenon based on the theory of the radical pair mechanism (RPM) are outlined. Second, a description of standard photo-CIDNP applications is given and it is shown how the effect can be exploited to extract residue-specific structural information on the conformational space sampled by unfolded or partially folded proteins on their "path" to the natively folded form. Last, recent methodological advances in the field are highlighted, modern applications of photo-CIDNP in the context of biological NMR evaluated, and an outlook into future perspectives of the method is given.

  3. Probabilistic Interaction Network of Evidence Algorithm and its Application to Complete Labeling of Peak Lists from Protein NMR Spectroscopy

    PubMed Central

    Bahrami, Arash; Assadi, Amir H.; Markley, John L.; Eghbalnia, Hamid R.

    2009-01-01

    The process of assigning a finite set of tags or labels to a collection of observations, subject to side conditions, is notable for its computational complexity. This labeling paradigm is of theoretical and practical relevance to a wide range of biological applications, including the analysis of data from DNA microarrays, metabolomics experiments, and biomolecular nuclear magnetic resonance (NMR) spectroscopy. We present a novel algorithm, called Probabilistic Interaction Network of Evidence (PINE), that achieves robust, unsupervised probabilistic labeling of data. The computational core of PINE uses estimates of evidence derived from empirical distributions of previously observed data, along with consistency measures, to drive a fictitious system M with Hamiltonian H to a quasi-stationary state that produces probabilistic label assignments for relevant subsets of the data. We demonstrate the successful application of PINE to a key task in protein NMR spectroscopy: that of converting peak lists extracted from various NMR experiments into assignments associated with probabilities for their correctness. This application, called PINE-NMR, is available from a freely accessible computer server (http://pine.nmrfam.wisc.edu). The PINE-NMR server accepts as input the sequence of the protein plus user-specified combinations of data corresponding to an extensive list of NMR experiments; it provides as output a probabilistic assignment of NMR signals (chemical shifts) to sequence-specific backbone and aliphatic side chain atoms plus a probabilistic determination of the protein secondary structure. PINE-NMR can accommodate prior information about assignments or stable isotope labeling schemes. As part of the analysis, PINE-NMR identifies, verifies, and rectifies problems related to chemical shift referencing or erroneous input data. PINE-NMR achieves robust and consistent results that have been shown to be effective in subsequent steps of NMR structure determination. PMID

  4. Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy.

    PubMed

    Bahrami, Arash; Assadi, Amir H; Markley, John L; Eghbalnia, Hamid R

    2009-03-01

    The process of assigning a finite set of tags or labels to a collection of observations, subject to side conditions, is notable for its computational complexity. This labeling paradigm is of theoretical and practical relevance to a wide range of biological applications, including the analysis of data from DNA microarrays, metabolomics experiments, and biomolecular nuclear magnetic resonance (NMR) spectroscopy. We present a novel algorithm, called Probabilistic Interaction Network of Evidence (PINE), that achieves robust, unsupervised probabilistic labeling of data. The computational core of PINE uses estimates of evidence derived from empirical distributions of previously observed data, along with consistency measures, to drive a fictitious system M with Hamiltonian H to a quasi-stationary state that produces probabilistic label assignments for relevant subsets of the data. We demonstrate the successful application of PINE to a key task in protein NMR spectroscopy: that of converting peak lists extracted from various NMR experiments into assignments associated with probabilities for their correctness. This application, called PINE-NMR, is available from a freely accessible computer server (http://pine.nmrfam.wisc.edu). The PINE-NMR server accepts as input the sequence of the protein plus user-specified combinations of data corresponding to an extensive list of NMR experiments; it provides as output a probabilistic assignment of NMR signals (chemical shifts) to sequence-specific backbone and aliphatic side chain atoms plus a probabilistic determination of the protein secondary structure. PINE-NMR can accommodate prior information about assignments or stable isotope labeling schemes. As part of the analysis, PINE-NMR identifies, verifies, and rectifies problems related to chemical shift referencing or erroneous input data. PINE-NMR achieves robust and consistent results that have been shown to be effective in subsequent steps of NMR structure determination.

  5. Ibuprofen metabolite profiling using a combination of SPE/column-trapping and HPLC-micro-coil NMR.

    PubMed

    Djukovic, Danijel; Appiah-Amponsah, Emmanuel; Shanaiah, Narasimhamurthy; Gowda, G A Nagana; Henry, Ian; Everly, Mike; Tobias, Brian; Raftery, Daniel

    2008-06-09

    Solid-phase extraction and column-trapping preconcentration are combined to enhance HPLC-nuclear magnetic resonance (HPLC-NMR) and applied to metabolite profiling in biological samples. Combining the two signal enhancement techniques improved the NMR signal substantially such that we were able to identify 2-hydroxyibuprofen, carboxyibuprofen, and unmetabolized ibuprofen molecules from a small urine sample after a therapeutic dose of ibuprofen. The hyphenated SPE/column-trapping method resulted in an excellent overall signal enhancement of up to 90-fold.

  6. [Absolute quantitation of quercetin and the glycosides in natural food additives by quantitative NMR].

    PubMed

    Tada, Atsuko; Takahashi, Kana; Sugimoto, Naoki; Suematsu, Takako; Arifuku, Kazunori; Saito, Takeshi; Ihara, Toshihide; Yoshida, Yuuichi; Ishizuki, Kyoko; Nishimura, Tetsuji; Yamazaki, Takeshi; Kawamura, Yoko

    2010-01-01

    We are developing a simple absolute quantitation method for organic compounds, by means of quantitative nuclear magnetic resonance (qNMR), with traceability to the International System of Units (SI units). The qNMR method was applied to the absolute quantitation of rutin, isoquercitrin and quercetin in natural food additives, rutin (extract), enzymatically decomposed rutin extract and quercetin, and those compounds as commercial reagents. In this study, 1,4-bis-(trimethylsilyl)benzene-d(4) (1,4-BTMSB-d(4)) whose purity was precisely evaluated on the basis of metrology, was newly used as a qNMR reference material, to be added to the sample solution as an internal standard. The contents of quercetin and quercetin glycosides were calculated from the ratio of the signal intensities of each aromatic proton at the 2' position of the three compounds (these are observed at different chemical shifts) to the eighteen protons of the six methyl groups on 1,4-BTMSB-d(4) used as a qNMR reference material. Rapid and simple qNMR method with only one step process was carried by using 1,4-BTMSB-d(4). It was demonstrated that the purities of rutin, isoquercitrin and quercetin can be separately determined by qNMR without the need for a separation process or reference materials for all the target compounds.

  7. Generalized indirect covariance NMR formalism for establishment of multidimensional spin correlations.

    PubMed

    Snyder, David A; Brüschweiler, Rafael

    2009-11-19

    Multidimensional nuclear magnetic resonance (NMR) experiments measure spin-spin correlations, which provide important information about bond connectivities and molecular structure. However, direct observation of certain kinds of correlations can be very time-consuming due to limitations in sensitivity and resolution. Covariance NMR derives correlations between spins via the calculation of a (symmetric) covariance matrix, from which a matrix-square root produces a spectrum with enhanced resolution. Recently, the covariance concept has been adopted to the reconstruction of nonsymmetric spectra from pairs of 2D spectra that have a frequency dimension in common. Since the unsymmetric covariance NMR procedure lacks the matrix-square root step, it does not suppress relay effects and thereby may generate false positive signals due to chemical shift degeneracy. A generalized covariance formalism is presented here that embeds unsymmetric covariance processing within the context of the regular covariance transform. It permits the construction of unsymmetric covariance NMR spectra subjected to arbitrary matrix functions, such as the square root, with improved spectral properties. This formalism extends the domain of covariance NMR to include the reconstruction of nonsymmetric NMR spectra at resolutions or sensitivities that are superior to the ones achievable by direct measurements.

  8. In situ fluid typing and quantification with 1D and 2D NMR logging.

    PubMed

    Sun, Boqin

    2007-05-01

    In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T(2) distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T(2) peaks arising from different fluids with similar apparent T(2) relaxation times. Nevertheless, the shapes of T(2) distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T(2) distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T(2) relaxation time and fluid diffusion coefficient (or T(1) relaxation time). Since diffusion coefficients (or T(1) relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples.

  9. Non-linear effects in quantitative 2D NMR of polysaccharides: pitfalls and how to avoid them.

    PubMed

    Martineau, Estelle; El Khantache, Kamel; Pupier, Marion; Sepulcri, Patricia; Akoka, Serge; Giraudeau, Patrick

    2015-04-10

    Quantitative 2D NMR is a powerful analytical tool which is widely used to determine the concentration of small molecules in complex samples. Due to the site-specific response of the 2D NMR signal, the determination of absolute concentrations requires the use of a calibration or standard addition approach, where the analyte acts as its own reference. Standard addition methods, where the targeted sample is gradually spiked with known amounts of the targeted analyte, are particularly well-suited for quantitative 2D NMR of small molecules. This paper explores the potential of such quantitative 2D NMR approaches for the quantitative analysis of a high molecular weight polysaccharide. The results highlight that the standard addition method leads to a strong under-estimation of the target concentration, whatever the 2D NMR pulse sequence. Diffusion measurements show that a change in the macromolecular organization of the studied polysaccharide is the most probable hypothesis to explain the non-linear evolution of the 2D NMR signal with concentration. In spite of this non-linearity--the detailed explanation of which is out of the scope of this paper--we demonstrate that accurate quantitative results can still be obtained provided that an external calibration is performed with a wide range of concentrations surrounding the target value. This study opens the way to a number of studies where 2D NMR is needed for the quantitative analysis of macromolecules.

  10. /sup 13/C NMR analysis of the effects of electron radiation on graphite/polyetherimide composites. Final report

    SciTech Connect

    Ferguson, M.W.

    1989-03-01

    Initial investigations have been made into the use of high resolution nuclear magnetic resonance (NMR) for the characterization of radiation effects in graphite and Kevlar fibers, polymers, and the fiber/matrix interface in graphite/polyetherimide composites. Sample preparation techniques were refined. Essential equipment has been procured. A new NMR probe was constructed to increase the proton signal-to-noise ratio. Problem areas have been identified and plans developed to resolve them.

  11. A NMR reverse diffusion filter for the simplification of spectra of complex mixtures and the study of drug receptor interactions.

    PubMed

    Vega-Vázquez, M; Cobas, J C; Oliveira de Sousa, F F; Martin-Pastor, M

    2011-08-01

    A reverse diffusion filter NMR experiment (Drev) is proposed for the study of small molecules in binding with macromolecules. The filtering efficiency of Drev to eliminate the signals of the macromolecule is shown to be superior to conventional transverse relaxation filters at least for macromolecules containing a significant fraction of flexible residues. The Drev filter was also a useful complement for ligand-based NMR screening in combination with saturation transfer difference experiments.

  12. A Multiplexed NMR-Reporter Approach to Measure Cellular Kinase and Phosphatase Activities in Real-Time.

    PubMed

    Thongwichian, Rossukon; Kosten, Jonas; Benary, Uwe; Rose, Honor May; Stuiver, Marchel; Theillet, Francois-Xavier; Dose, Alexander; Koch, Birgit; Yokoyama, Hideki; Schwarzer, Dirk; Wolf, Jana; Selenko, Philipp

    2015-05-27

    Cell signaling is governed by dynamic changes in kinase and phosphatase activities, which are difficult to assess with discontinuous readout methods. Here, we introduce an NMR-based reporter approach to directly identify active kinases and phosphatases in complex physiological environments such as cell lysates and to measure their individual activities in a semicontinuous fashion. Multiplexed NMR profiling of reporter phosphorylation states provides unique advantages for kinase inhibitor studies and reveals reversible modulations of cellular enzyme activities under different metabolic conditions.

  13. Sudan dyes in adulterated saffron (Crocus sativus L.): Identification and quantification by (1)H NMR.

    PubMed

    Petrakis, Eleftherios A; Cagliani, Laura R; Tarantilis, Petros A; Polissiou, Moschos G; Consonni, Roberto

    2017-02-15

    Saffron, the dried red stigmas of Crocus sativus L., is considered as one of the most expensive spices worldwide, and as such, it is prone to adulteration. This study introduces an NMR-based approach to identify and determine the adulteration of saffron with Sudan I-IV dyes. A complete (1)H and (13)C resonance assignment for Sudan I-IV, achieved by two-dimensional homonuclear and heteronuclear NMR experiments, is reported for the first time. Specific different proton signals for the identification of each Sudan dye in adulterated saffron can be utilised for quantitative (1)H NMR (qHNMR), a well-established method for quantitative analysis. The quantification of Sudan III, as a paradigm, was performed in varying levels (0.14-7.1g/kg) by considering the NMR signal occurring at 8.064ppm. The high linearity, accuracy and rapidity of investigation enable high resolution (1)H NMR spectroscopy to be used for evaluation of saffron adulteration with Sudan dyes.

  14. Mechanical Behavior of Polymer Gels for RDCs and RCSAs Collection: NMR Imaging Study of Buckling Phenomena.

    PubMed

    Hellemann, Erich; Teles, Rubens R; Hallwass, Fernando; Barros, W; Navarro-Vázquez, Armando; Gil, Roberto R

    2016-11-07

    Anisotropic NMR parameters, such as residual dipolar couplings (RDCs), residual chemical shift anisotropies (RCSAs) and residual quadrupolar couplings (RQCs or ΔνQ ), appear in solution-state NMR when the molecules under study are subjected to a degree of order. The tunable alignment by reversible compression/relaxation of gels (PMMA and p-HEMA) is an easy, user-friendly, and very affordable method to measure them. When using this method, a fraction of isotropic NMR signals is observed in the NMR spectra, even at a maximum degree of compression. To explain the origin of these isotropic signals we decided to investigate their physical location inside the NMR tube using deuterium 1D imaging and MRI micro-imaging experiments. It was observed that after a certain degree of compression the gels start to buckle and they generate pockets of isotropic solvent, which are never eliminated. The amount of buckling depends on the amount of cross-linker and the length of the gel.

  15. ASIC-based design of NMR system health monitor for mission/safety-critical applications.

    PubMed

    Balasubramanian, P

    2016-01-01

    N-modular redundancy (NMR) is a generic fault tolerance scheme that is widely used in safety-critical circuit/system designs to guarantee the correct operation with enhanced reliability. In passive NMR, at least a majority (N + 1)/2 out of N function modules is expected to operate correctly at any time, where N is odd. Apart from a conventional realization of the NMR system, it would be useful to provide a concurrent indication of the system's health so that an appropriate remedial action may be initiated depending upon an application's safety criticality. In this context, this article presents the novel design of a generic NMR system health monitor which features: (i) early fault warning logic, that is activated upon the production of a conflicting result by even one output of any arbitrary function module, and (ii) error signalling logic, which signals an error when the number of faulty function modules unfortunately attains a majority and the system outputs may no more be reliable. Two sample implementations of NMR systems viz. triple modular redundancy and quintuple modular redundancy with the proposed system health monitoring are presented in this work, with a 4-bit ALU used for the function modules. The simulations are performed using a 32/28 nm CMOS process technology.

  16. Distinguishing magnetic vs. quadrupolar relaxation in b-NMR using 8Li and 9Li

    NASA Astrophysics Data System (ADS)

    Chatzichristos, A.; McFadden, R. M. L.; Karner, V. L.; Cortie, D. L.; Fang, A.; Levy, C. D. P.; Macfarlane, W. A.; Morris, G. D.; Pearson, M. R.; Salman, Z.; Kiefl, R. F.

    2016-09-01

    Beta-detected NMR is a powerful technique in condensed matter physics. It uses the parity violation of beta decay to detect the NMR signal from a beam of highly polarized radionuclides implanted in a sample material. Spin-lattice relaxation (SLR) is studied by monitoring the rate with which the asymmetry between the beta counts in two opposing detectors is lost. Unlike classical NMR, b-NMR can study thin films and near-surface effects. The most common b-NMR isotope at TRIUMF is 8Li, which has a quadrupole moment, thus it is sensitive to both magnetic fields and electric field gradients. A challenge with 8Li b-NMR is identifying the predominant mechanism of SLR in a given sample. It is possible to distinguish between SLR mechanisms by varying the probe isotope. For two isotopes with different nuclear moments, the ratio of SLR rates should be different in the limits of either pure magnetic or quadrupolar relaxation. This method has been used in classical NMR and we report its first application to b-NMR. We measured the SLR rates for 8Li and 8Li in Pt foil and SrTiO3. Pt is a test case for pure magnetic relaxation. SrTiO3 is a non-magnetic insulator, but the source of its relaxation is not well understood. Here we show that its relaxation is mainly quadrupolar. We thank TRIUMF's CMMS for their technical support. This work was supported by: NSERC Discovery Grants to R.F.K. and W.A.M.; and IsoSiM fellowships to A.C. and R.M.L.M.

  17. A microcoil NMR probe for coupling microscale HPLC with on-line NMR spectroscopy.

    PubMed

    Subramanian, R; Kelley, W P; Floyd, P D; Tan, Z J; Webb, A G; Sweedler, J V

    1999-12-01

    An HPLC NMR system is presented that integrates a commercial microbore HPLC system using a 0.5-mm column with a 500-MHz proton NMR spectrometer using a custom NMR probe with an observe volume of 1.1 microL and a coil fill factor of 68%. Careful attention to capillary connections and NMR flow cell design allows on-line NMR detection with no significant loss in separation efficiency when compared with a UV chromatogram. HPLC NMR is performed on mixtures of amino acids and small peptides with analyte injection amounts as small as 750 ng; the separations are accomplished in less than 10 min and individual NMR spectra are acquired with 12 s time resolution. Stopped-flow NMR is achieved by diversion of the chromatographic flow after observation of the beginning of the analyte band within the NMR flow cell. Isolation of the compound of interest within the NMR detection cell allows multidimensional experiments to be performed. A stopped-flow COSY spectrum of the peptide Phe-Ala is acquired in 3.5 h with an injected amount of 5 micrograms.

  18. An Introduction to Biological NMR Spectroscopy*

    PubMed Central

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612

  19. An introduction to biological NMR spectroscopy.

    PubMed

    Marion, Dominique

    2013-11-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP).

  20. NMR reaction monitoring in flow synthesis

    PubMed Central

    Gomez, M Victoria

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed. PMID:28326137

  1. Scalar operators in solid-state NMR

    SciTech Connect

    Sun, Boqin

    1991-11-01

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.

  2. An Inversion Recovery NMR Kinetics Experiment.

    PubMed

    Williams, Travis J; Kershaw, Allan D; Li, Vincent; Wu, Xinping

    2011-05-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a convenient template with which to acquire inversion recovery data on research samples.

  3. An Inversion Recovery NMR Kinetics Experiment

    PubMed Central

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a convenient template with which to acquire inversion recovery data on research samples. PMID:21552343

  4. MAS NMR of HIV-1 protein assemblies

    NASA Astrophysics Data System (ADS)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  5. Exploring hyperpolarized 83Kr by remotely detected NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Cleveland, Zackary I.; Pavlovskaya, Galina E.; Stupic, Karl F.; LeNoir, Catherine F.; Meersmann, Thomas

    2006-01-01

    For the first time, a hyperpolarized (hp) noble gas with a nuclear electric quadrupole moment is available for high-field nuclear-magnetic-resonance (NMR) spectroscopy and magnetic-resonance imaging. Hp Kr83 (I=9/2) is generated by spin-exchange optical pumping and separated from the rubidium vapor used in the pumping process. Optical pumping occurs under the previously unstudied condition of high krypton gas densities. Signal enhancements of more than three orders of magnitude compared to the thermal equilibrium Kr83 signal at 9.4T magnetic-field strength are obtained. The spin-lattice relaxation of Kr83 is caused primarly by quadrupolar couplings during the brief adsorption periods of the krypton atoms on the surrounding container walls and significantly limits the currently obtained spin polarization. Measurements in macroscopic glass containers and in desiccated canine lung tissue at field strengths between 0.05 and 3T using remotely detected hp Kr83 NMR spectroscopy reveal that the longitudinal relaxation dramatically accelerates as the magnetic-field strength decreases.

  6. On the Tuning of High-Resolution NMR Probes

    PubMed Central

    Pöschko, Maria Theresia; Schlagnitweit, Judith; Huber, Gaspard; Nausner, Martin; Horničáková, Michaela; Desvaux, Hervé; Müller, Norbert

    2014-01-01

    Three optimum conditions for the tuning of NMR probes are compared: the conventional tuning optimum, which is based on radio-frequency pulse efficiency, the spin noise tuning optimum based on the line shape of the spin noise signal, and the newly introduced frequency shift tuning optimum, which minimizes the frequency pushing effect on strong signals. The latter results if the radiation damping feedback field is not in perfect quadrature to the precessing magnetization. According to the conventional RLC (resistor–inductor–capacitor) resonant circuit model, the optima should be identical, but significant deviations are found experimentally at low temperatures, in particular on cryogenically cooled probes. The existence of different optima with respect to frequency pushing and spin noise line shape has important consequences on the nonlinearity of spin dynamics at high polarization levels and the implementation of experiments on cold probes. PMID:25210000

  7. A simple method for NMR t1 noise suppression

    NASA Astrophysics Data System (ADS)

    Mo, Huaping; Harwood, John S.; Yang, Danzhou; Post, Carol Beth

    2017-03-01

    t1 noise appears as random or semi-random spurious streaks along the indirect t1 (F1) dimension of a 2D or nD NMR spectrum. It can significantly downgrade spectral quality, especially for spectra with strong diagonal signals such as NOESY, because useful and weak cross-peaks can be easily buried under t1 noise. One of the significant contributing factors to t1 noise is unwanted and semi-random F2 signal modulation during t1 acquisition. As such, t1 noise from different acquisitions is unlikely to correlate with each other strongly. In the case of NOESY, co-addition of multiple spectra significantly reduces t1 noise compared with conventional acquisition with the same amount of total acquisition time and resolution.

  8. Review and research on feature selection methods from NMR data in biological fluids. Presentation of an original ensemble method applied to atherosclerosis field.

    PubMed

    Semmar, Nabil; Canlet, Cecile; Delplanque, Bernadette; Ruyet, Pascale Le; Paris, Alain; Martin, Jean-Charles

    2014-01-01

    Metabolic pools of biological matrices can be extensively analyzed by NMR. Measured data consist of hundreds of NMR signals with different chemical shifts and intensities representing different metabolites' types and levels, respectively. Relevant predictive NMR signals need to be extracted from the pool using variable selection methods. This paper presents both a review and research on this metabolomics field. After reviews on discriminant potentials and statistical analyses of NMR data in biological fields, the paper presents an original approach to extract a small number of NMR signals in a biological matrix A (BM-A) in order to predict metabolic levels in another biological matrix B (BM-B). Initially, NMR dataset of BM-A was decomposed into several row-column homogeneous blocks using hierarchical cluster analysis (HCA). Then, each block was subjected to a complete set of Jackknifed correspondence analysis (CA) by removing separately each individual (row). Each CA condensed the numerous NMR signals into some principal components (PCs). The different PCs representing the (n - 1) active individuals were used as latent variables in a stepwise multi-linear regression to predict metabolic levels in BM-B. From the built regression model, metabolite level in the outside individual was predicted (for next model validation). >From all the PCs-based regression models resulting from all the jackknifed CA applied on all the individuals, the most contributive NMR signals were identified by their highest absolute contributions to PCs. Finally, these selected NMR signals (measured in BMA) were used to build final population and sub-population regression models predicting metabolite levels in BM-B.

  9. A ferromagnetic shim insert for NMR magnets - Towards an integrated gyrotron for DNP-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ryan, Herbert; van Bentum, Jan; Maly, Thorsten

    2017-04-01

    In recent years high-field Dynamic Nuclear Polarization (DNP) enhanced NMR spectroscopy has gained significant interest. In high-field DNP-NMR experiments (⩾400 MHz 1H NMR, ⩾9.4 T) often a stand-alone gyrotron is used to generate high microwave/THz power to produce sufficiently high microwave induced B1e fields at the position of the NMR sample. These devices typically require a second, stand-alone superconducting magnet to operate. Here we present the design and realization of a ferroshim insert, to create two iso-centers inside a commercially available wide-bore NMR magnet. This work is part of a larger project to integrate a gyrotron into NMR magnets, effectively eliminating the need for a second, stand-alone superconducting magnet.

  10. Spin Saturation Transfer Difference NMR (SSTD NMR): A New Tool to Obtain Kinetic Parameters of Chemical Exchange Processes

    PubMed Central

    Quirós, María Teresa; Macdonald, Colin; Angulo, Jesús; Muñoz, María Paz

    2016-01-01

    This detailed protocol describes the new Spin Saturation Transfer Difference Nuclear Magnetic Resonance protocol (SSTD NMR), recently developed in our group to study processes of mutual-site chemical exchange that are difficult to analyze by traditional methods. As the name suggests, this method combines the Spin Saturation Transfer method used for small molecules, with the Saturation Transfer Difference (STD) NMR method employed for the study of protein-ligand interactions, by measuring transient spin saturation transfer along increasing saturation times (build-up curves) in small organic and organometallic molecules undergoing chemical exchange. Advantages of this method over existing ones are: there is no need to reach coalescence of the exchanging signals; the method can be applied as long as one signal of the exchanging sites is isolated; there is no need to measure T1 or reach steady state saturation; rate constant values are measured directly, and T1 values are obtained in the same experiment, using only one set of experiments. To test the method, we have studied the dynamics of the hindered rotation of N,N-dimethylamides, for which much data is available for comparison. The thermodynamic parameters obtained using SSTD are very similar to the reported ones (spin-saturation transfer techniques and line-shape analysis). The method can be applied to more challenging substrates that cannot be studied by previous methods. We envisage that the simple experimental set up and the wide applicability of the method to a great variety of substrates will make this a common technique amongst organic and organometallic chemists without extensive expertise in NMR. PMID:27911361

  11. A New Microcell Technique for NMR Analysis.

    ERIC Educational Resources Information Center

    Yu, Sophia J.

    1987-01-01

    Describes a new laboratory technique for working with small samples of compounds used in nuclear magnetic resonance (NMR) analysis. Demonstrates how microcells can be constructed for each experiment and samples can be recycled. (TW)

  12. Relaxation time estimation in surface NMR

    DOEpatents

    Grunewald, Elliot D.; Walsh, David O.

    2017-03-21

    NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.

  13. Interfaces in polymer nanocomposites - An NMR study

    NASA Astrophysics Data System (ADS)

    Böhme, Ute; Scheler, Ulrich

    2016-03-01

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. 1H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T2 is most suited. In this presentation we report on two applications of T2 measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of the polymer dynamics in the melt under shear flow.

  14. NMR-Assisted Molecular Docking Methodologies.

    PubMed

    Sturlese, Mattia; Bellanda, Massimo; Moro, Stefano

    2015-08-01

    Nuclear magnetic resonance (NMR) spectroscopy and molecular docking are regularly being employed as helpful tools of drug discovery research. Molecular docking is an extremely rapid method to evaluate possible binders from a large chemical library in a fast and cheap manner. NMR techniques can directly detect a protein-ligand interaction, can determine the corresponding association constant, and can consistently identify the ligand binding cavity. Consequently, molecular docking and NMR techniques are naturally complementary techniques where the combination of the two has the potential to improve the overall efficiency of drug discovery process. In this review, we would like to summarize the state of the art of docking methods which have been recently bridged to NMR experiments to identify novel and effective therapeutic drug candidates.

  15. NMR Methods to Study Dynamic Allostery

    PubMed Central

    Grutsch, Sarina; Brüschweiler, Sven; Tollinger, Martin

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy provides a unique toolbox of experimental probes for studying dynamic processes on a wide range of timescales, ranging from picoseconds to milliseconds and beyond. Along with NMR hardware developments, recent methodological advancements have enabled the characterization of allosteric proteins at unprecedented detail, revealing intriguing aspects of allosteric mechanisms and increasing the proportion of the conformational ensemble that can be observed by experiment. Here, we present an overview of NMR spectroscopic methods for characterizing equilibrium fluctuations in free and bound states of allosteric proteins that have been most influential in the field. By combining NMR experimental approaches with molecular simulations, atomistic-level descriptions of the mechanisms by which allosteric phenomena take place are now within reach. PMID:26964042

  16. New insights into phase distribution, phase composition and disorder in Y2(Zr,Sn)2O7 ceramics from NMR spectroscopy.

    PubMed

    Ashbrook, Sharon E; Mitchell, Martin R; Sneddon, Scott; Moran, Robert F; de los Reyes, Massey; Lumpkin, Gregory R; Whittle, Karl R

    2015-04-14

    A combination of (89)Y and (119)Sn NMR spectroscopy and DFT calculations are used to investigate phase evolution, local structure and disorder in Y2Zr2-xSnxO7 ceramics, where a phase change is predicted, from pyrochlore to defect fluorite, with increasing Zr content. The ability of NMR to effectively probe materials that exhibit positional and compositional disorder provides insight into the atomic-scale structure in both ordered and disordered phases and, by exploiting the quantitative nature of the technique, we are able to determine detailed information on the composition of the phase(s) present and the average coordination number (and next-nearest neighbour environment) of the cations. In contrast to previous studies, a more complex picture of the phase variation with composition emerges, with single-phase pyrochlore found only for the Sn end member, and a single defect fluorite phase only for x = 0 to 0.6. A broad two-phase region is observed, from x = 1.8 to 0.8, but the two phases present have very different composition, with a maximum of 13% Zr incorporated into the pyrochlore phase, whereas the composition of the defect fluorite phase varies throughout. Preferential ordering of the anion vacancies in the defect fluorite phase is observed, with Sn only ever found in a six-coordinate environment, while remaining vacancies are shown to be more likely to be associated with Zr than Y. Our findings are then discussed in the light of those from previous studies, many of which utilize diffraction-based approaches, where, in most cases, a single phase of fixed composition has been assumed for the refinement procedure. The significant and surprising differences encountered demonstrate the need for complementary approaches to be considered for a detailed and accurate picture of both the long- and short-range structure of a solid to be achieved.

  17. About the possibility of identification of hydrocarbon deposits with the help of NMR

    NASA Astrophysics Data System (ADS)

    Ivashchenko, Pavlo M.; Bakai, Eduard A.; Yurchuk, Alexander I.

    2016-11-01

    The main purpose of this article is to review the theoretical prerequisites of nuclear magnetic resonance (NMR) application in tasks of search and exploration of hydrocarbon deposits. The identification peculiarities of hydrocarbon deposits in a weak magnetic field of the Earth were analysed. The necessity of using highly directional antennas for providing greater sounding depths as well as the use of absorption spectra of the sought-for minerals as sounding signals were identified and justified. A variant of practical implementation of such a system was examined and examples of practical application of the innovative NMR technology were provided.

  18. Photosensitized Peroxidation of Lipids: An Experiment Using 1H-NMR

    NASA Astrophysics Data System (ADS)

    Smith, Marion W.; Brown, Renee; Smullin, Steven; Eager, Jon

    1997-12-01

    The photoperoxidation of methyl linoleate, using 5,10,15,20-tetraphenyl porphyrin as photosensitizer, was monitored by 60 MHz 1H-NMR. Samples were irradiated for 10-24 hours in front of a 15 W fluorescent light, and NMR signals in the 5-6 ppm and 10-11 ppm region of the spectrum indicated peroxidation products were formed. The absorption of oxygen from the air was measured by attaching the sample tube to a gas burette. When vitamin E was added to the mixture the extent of peroxidation was reduced, showing the protective effect of the antioxidant. These experiments are appropriate for students of biochemistry

  19. Singular Hopf bifurcation to unstable periodic solutions in a NMR laser

    NASA Astrophysics Data System (ADS)

    Braza, Peter A.; Erneux, Thomas

    1989-09-01

    We apply recent developments in the study of singular Hopf bifurcations to describe the complete bifurcation diagram of a simple NMR laser with an injected signal. The branch of periodic solutions appears at a Hopf bifurcation point and may or may not disappear at a homoclinic point. The bifurcation is always subcritical, which suggests that the periodic solutions are all unstable. Our asymptotic analysis is based on the relative values of the fixed parameters in the problem. Our results complement earlier investigations by Holzner et al. [Phys. Rev. A 36, 1280 (1987)] and by Baugher, Hammack, and Lin [Phys. Rev. A 39, 1549 (1989)] on the subcritical Hopf bifurcation in a NMR laser.

  20. Proton-NMR study on chemisorption of ethylene on platinum powder

    NASA Astrophysics Data System (ADS)

    Takashi Shibanuma; Toshiji Matsui

    1985-05-01

    The high-temperature phase of ethylene on surfaces of Pt powder has been studied by proton-NMR in order to decide whether the surface species is the ethylidyne species (CH 3C) proposed by Kesmodel et al. or the multiple-bonded species (CH 2CH) proposed by Demuth. The observed NMR spectrum is not attributable to CH 3-groups on the surfaes, but can be interpreted as the superposition of two signals, one originating from CH 2-groups and the other from CH-groups. In other words, the results suggest that the surface species is the multiple-bonded species.

  1. Proton-NMR study on chemisorption of ethylene on platinum powder

    NASA Astrophysics Data System (ADS)

    Shibanuma, Takashi; Matsui, Toshiji

    The high-temperature phase of ethylene on surfaces of Pt powder has been studied by proton-NMR in order to decide whether the surface species is the ethylidyne species (CH 3-C≡) proposed by Kesmodel et al. or the multiple-bonded species (-CH 2-CH=) proposed by Demuth. The observed NMR spectrum is not attributable to CH 3-groups on the surfaces, but can be interpreted as the superposition of two signals, one originating from CH 2-groups and the other from CH-groups. In other words, the results suggest that the surface species is the multiple-bonded species.

  2. Fast multi-dimensional NMR acquisition and processing using the sparse FFT.

    PubMed

    Hassanieh, Haitham; Mayzel, Maxim; Shi, Lixin; Katabi, Dina; Orekhov, Vladislav Yu

    2015-09-01

    Increasing the dimensionality of NMR experiments strongly enhances the spectral resolution and provides invaluable direct information about atomic interactions. However, the price tag is high: long measurement times and heavy requirements on the computation power and data storage. We introduce sparse fast Fourier transform as a new method of NMR signal collection and processing, which is capable of reconstructing high quality spectra of large size and dimensionality with short measurement times, faster computations than the fast Fourier transform, and minimal storage for processing and handling of sparse spectra. The new algorithm is described and demonstrated for a 4D BEST-HNCOCA spectrum.

  3. NMR at earth's magnetic field using para-hydrogen induced polarization.

    PubMed

    Hamans, Bob C; Andreychenko, Anna; Heerschap, Arend; Wijmenga, Sybren S; Tessari, Marco

    2011-09-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal equilibrium in the earth's magnetic field. Simultaneous 19F and 1H NMR detection on a sub-milliliter sample of a fluorinated alkyne at millimolar concentration (∼10(18) nuclear spins) was realized with just one single scan. A highly resolved spectrum with a signal/noise ratio higher than 50:1 was obtained without using an auxiliary magnet or any form of radio frequency shielding.

  4. Reactivity ratios and sequence determination of methacrylonitrile/butyl acrylate copolymers by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Brar, A. S.; Pradhan, D. R.; Hooda, Sunita

    2004-08-01

    Methacrylonitrile/butyl acrylate (M/B) copolymers were prepared by bulk polymerization using benzoyl peroxide as an initiator. The Distortionless Enhancement by Polarization Transfer spectra were used to differentiate between the carbon resonance signals of methyl, methine, methylene and oxymethylene groups in the 13C{ 1H} NMR spectrum of the copolymer (M/B). Comonomer reactivity ratios were determined using Kelen-Tudos and non-linear error in variable methods. Two-dimensional Heteronuclear Single Quantum Coherence and Total Correlated Spectroscopy were used to resolve the complex 1H NMR spectrum and to determine the compositional and configurational sequences of M/B copolymers.

  5. Frontiers of NMR in Molecular Biology

    SciTech Connect

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  6. WHNMR--a universal NMR application package.

    PubMed

    Xiaodong, Z; Hongbin, H; Nian, H; Lianfang, S; Chaohui, Y

    1996-06-01

    A PC-based NMR off-line data processing system is developed and described in detail. With this software system, one-dimensional (1D), two-dimensional (2D), and NMR imaging (MRI) data can be processed easily, and give reliable results. By the applications of this system, a versatile software interface is set up to achieve data exchanging and integrated usage with other PC application software and aids the PC to become an effective and powerful workstation.

  7. Modern NMR spectroscopy: a guide for chemists

    SciTech Connect

    Sanders, J.K.M.; Hunter, B.K.

    1988-01-01

    The aim of the authors of Modern NMR Spectroscopy is to bridge the communication gap between the chemist and the spectroscopist. The approach is nonmathematical, descriptive, and pictorial. To illustrate the ideas introduced in the text, the authors provide original spectra obtained specially for this purpose. Examples include spectroscopy of protons, carbon, and less receptive nuclei of interest to inorganic chemists. The authors succeed in making high-resolution NMR spectroscopy comprehensible for the average student or chemist.

  8. NMR studies of multiphase flows II

    SciTech Connect

    Altobelli, S.A.; Caprihan, A.; Fukushima, E.

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  9. Easy characterization of the radio-frequency field of 13C NMR coils with aluminium-27 NMR

    NASA Astrophysics Data System (ADS)

    Jehenson, P.

    1998-02-01

    Determining the Radio-Frequency field distribution of Nuclear Magnetic Resonance (NMR) coils is difficult and time-consuming for the low sensitivity carbon 13. We show that this can conveniently be done using Aluminium-27 NMR (much larger signal/noise ratio and shorter acquisition time for both spectra and images, same measured field distribution, much cheaper samples/phantoms). La détermination de la distribution du champ radio-fréquence de sondes de Résonance Magnétique Nucléaire (RMN) est difficile et prend du temps dans le cas du carbone 13 qui a une faible sensibilité et est utilisé, par exemple, dans les études in vivo. Nous montrons ici que cela peut être fait plus simplement et rapidement en utilisant la RMN de l'Aluminium 27 (bien meilleur rapport signal/bruit et temps d'acquisition plus court pour les spectres et les images, même distribution de champ mesurée, échantillons/fantômes beaucoup moins chers.

  10. Spatially Inhomogeneous Development of Antiferromagnetic Ordering on URu_2Si2 Observed by High Pressure NMR*

    NASA Astrophysics Data System (ADS)

    Kohara, Takao; Matsuda, K.; Kohori, Y.; Kuwahara, K.; Amitsuka, H.

    2002-03-01

    In order to identify the nature of unconventional antiferromagnetic (AF) ordering with a "tiny staggered moment" below T_0=17.5 K in URu_2Si_2, ^29Si NMR has been performed under pressure up to 17.5 kbar. In the pressure range 3.0 kbar to 15 kbar of P_c, we have observed new ^29Si NMR signal arising from the AF region besides the previously reported ^29Si NMR signal, which corresponds to the paramagnetic (PM) region. The AF region increases in volume at the expense of the PM region on cooling, which shows a coexistence of the AF and the PM regions below T_0. The volume fraction is enhanced by applied pressure, whereas the value of internal field (910 Oe) remains constant up to 15 kbar. This gives definite evidence for spatially inhomogeneous development of AF ordering below T_0. Our Si NMR results have shown that the weakness of Bragg peak observed by neutron diffraction originates not from an extremely reduced moment (0.03 μ _B/U) but from the smallness of AF region with an ordered moment of 0.4 μ _B/U in the sample. The temperature dependence of nuclear spin lattice relaxation rates for both signal is also now measured under pressure. * Supported by a Grand-in -Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  11. 17O NMR study of diamagnetic and paramagnetic lanthanide(III)-DOTA complexes in aqueous solution.

    PubMed

    Fusaro, Luca; Luhmer, Michel

    2014-08-18

    The complexes between the polyaminocarboxylate DOTA ligand and the whole series of stable lanthanide(III) metal ions, except Gd(3+), were studied in aqueous solution by (17)O NMR. For all of the paramagnetic systems, the (17)O NMR signals of both the nonchelating (O1) and chelating (O2) oxygen atoms could be detected, and for some of them, the signals of both the SAP and TSAP (TSAP') conformational isomers were also observed. Line width data analysis reveals that signal broadening is not dominated by paramagnetic relaxation enhancement, as it was believed to be. The data indicate that quadrupole relaxation and, for some complexes, chemical exchange between the SAP and TSAP isomers are the major contributions to the (17)O NMR line width at 25 °C. Besides, the Fermi contact and pseudocontact contributions to the observed lanthanide-induced shifts could be extracted. The (17)O hyperfine coupling constants determined for O2 in the SAP and TSAP isomers are similar to each other and to the values reported for several Gd(III) complexes comprising fast-exchanging ligands. Interestingly, the results suggest that (17)O NMR should prove to be useful for the study of highly paramagnetic Gd(III) complexes of nonlabile ligands.

  12. icoshift: A versatile tool for the rapid alignment of 1D NMR spectra.

    PubMed

    Savorani, F; Tomasi, G; Engelsen, S B

    2010-02-01

    The increasing scientific and industrial interest towards metabonomics takes advantage from the high qualitative and quantitative information level of nuclear magnetic resonance (NMR) spectroscopy. However, several chemical and physical factors can affect the absolute and the relative position of an NMR signal and it is not always possible or desirable to eliminate these effects a priori. To remove misalignment of NMR signals a posteriori, several algorithms have been proposed in the literature. The icoshift program presented here is an open source and highly efficient program designed for solving signal alignment problems in metabonomic NMR data analysis. The icoshift algorithm is based on correlation shifting of spectral intervals and employs an FFT engine that aligns all spectra simultaneously. The algorithm is demonstrated to be faster than similar methods found in the literature making full-resolution alignment of large datasets feasible and thus avoiding down-sampling steps such as binning. The algorithm uses missing values as a filling alternative in order to avoid spectral artifacts at the segment boundaries. The algorithm is made open source and the Matlab code including documentation can be downloaded from www.models.life.ku.dk.

  13. Software Defined Radio (SDR) and Direct Digital Synthesizer (DDS) for NMR/MRI Instruments at Low-Field

    PubMed Central

    Asfour, Aktham; Raoof, Kosai; Yonnet, Jean-Paul

    2013-01-01

    A proof-of-concept of the use of a fully digital radiofrequency (RF) electronics for the design of dedicated Nuclear Magnetic Resonance (NMR) systems at low-field (0.1 T) is presented. This digital electronics is based on the use of three key elements: a Direct Digital Synthesizer (DDS) for pulse generation, a Software Defined Radio (SDR) for a digital receiving of NMR signals and a Digital Signal Processor (DSP) for system control and for the generation of the gradient signals (pulse programmer). The SDR includes a direct analog-to-digital conversion and a Digital Down Conversion (digital quadrature demodulation, decimation filtering, processing gain…). The various aspects of the concept and of the realization are addressed with some details. These include both hardware design and software considerations. One of the underlying ideas is to enable such NMR systems to “enjoy” from existing advanced technology that have been realized in other research areas, especially in telecommunication domain. Another goal is to make these systems easy to build and replicate so as to help research groups in realizing dedicated NMR desktops for a large palette of new applications. We also would like to give readers an idea of the current trends in this field. The performances of the developed electronics are discussed throughout the paper. First FID (Free Induction Decay) signals are also presented. Some development perspectives of our work in the area of low-field NMR/MRI will be finally addressed. PMID:24287540

  14. Software Defined Radio (SDR) and Direct Digital Synthesizer (DDS) for NMR/MRI instruments at low-field.

    PubMed

    Asfour, Aktham; Raoof, Kosai; Yonnet, Jean-Paul

    2013-11-27

    A proof-of-concept of the use of a fully digital radiofrequency (RF) electronics for the design of dedicated Nuclear Magnetic Resonance (NMR) systems at low-field (0.1 T) is presented. This digital electronics is based on the use of three key elements: a Direct Digital Synthesizer (DDS) for pulse generation, a Software Defined Radio (SDR) for a digital receiving of NMR signals and a Digital Signal Processor (DSP) for system control and for the generation of the gradient signals (pulse programmer). The SDR includes a direct analog-to-digital conversion and a Digital Down Conversion (digital quadrature demodulation, decimation filtering, processing gain…). The various aspects of the concept and of the realization are addressed with some details. These include both hardware design and software considerations. One of the underlying ideas is to enable such NMR systems to "enjoy" from existing advanced technology that have been realized in other research areas, especially in telecommunication domain. Another goal is to make these systems easy to build and replicate so as to help research groups in realizing dedicated NMR desktops for a large palette of new applications. We also would like to give readers an idea of the current trends in this field. The performances of the developed electronics are discussed throughout the paper. First FID (Free Induction Decay) signals are also presented. Some development perspectives of our work in the area of low-field NMR/MRI will be finally addressed.

  15. Hypothesis driven assessment of an NMR curriculum

    NASA Astrophysics Data System (ADS)

    Cossey, Kimberly

    The goal of this project was to develop a battery of assessments to evaluate an undergraduate NMR curriculum at Penn State University. As a chemical education project, we sought to approach the problem of curriculum assessment from a scientific perspective, while remaining grounded in the education research literature and practices. We chose the phrase hypothesis driven assessment to convey this process of relating the scientific method to the study of educational methods, modules, and curricula. We began from a hypothesis, that deeper understanding of one particular analytical technique (NMR) will increase undergraduate students' abilities to solve chemical problems. We designed an experiment to investigate this hypothesis, and data collected were analyzed and interpreted in light of the hypothesis and several related research questions. The expansion of the NMR curriculum at Penn State was funded through the NSF's Course, Curriculum, and Laboratory Improvement (CCLI) program, and assessment was required. The goal of this project, as stated in the grant proposal, was to provide NMR content in greater depth by integrating NMR modules throughout the curriculum in physical chemistry, instrumental, and organic chemistry laboratory courses. Hands-on contact with the NMR spectrometer and NMR data and repeated exposure of the analytical technique within different contexts (courses) were unique factors of this curriculum. Therefore, we maintained a focus on these aspects throughout the evaluation process. The most challenging and time-consuming aspect of any assessment is the development of testing instruments and methods to provide useful data. After key variables were defined, testing instruments were designed to measure these variables based on educational literature (Chapter 2). The primary variables measured in this assessment were: depth of understanding of NMR, basic NMR knowledge, problem solving skills (HETCOR problem), confidence for skills used in class (within

  16. Application of the integrated NMR-TDEM method in groundwater exploration in Israel

    NASA Astrophysics Data System (ADS)

    Goldman, M.; Rabinovich, B.; Rabinovich, M.; Gilad, D.; Gev, I.; Schirov, M.

    1994-02-01

    The Nuclear Magnetic Resonance (NMR) method is the only physical tool currently available which is able to detect directly the presence of fresh water in the subsurface. The Time Domain Electromagnetic (TDEM) method, in turn, has been proven highly efficient in detecting saline groundwater. The combined application of these two methods is the most promising way to delineate accurately groundwater-bearing aquifers and to evaluate the quality of the water. This idea was tested during the feasibility study carried out under different hydrogeological conditions throughout Israel during August-September 1992. The Russian Hydroscope and Geonics P ROTEM-IV instruments were used for the NMR and TDEM measurements, respectively. A total of 36 NMR and 12 TDEM stations was established, mostly in close proximity to existing observation wells. Among these only 19 NMR measurements showed reasonable signal-to-noise characteristics, while the rest were obviously distorted by ambient noise. The number of distorted measurements could have been even greater had they been carried out at all points planned. However, a significant number of the NMR stations were cancelled due to their proximity (less than 1-1.5 km) to electric power lines. As a result almost the entire Mediterranean coast of Israel, which was originally chosen as the main test site for this survey, turned out to be unsuitable owing to the low ambient noise protection of the Hydroscope. Another serious limitation of NMR measurements is the maximum penetration depth. The deepest information obtained during the feasibility study was from a depth of 74 m. Nevertheless, within the framework of its applicability, the NMR measurements proved to be sufficiently accurate and to have a high resolving capability. A comparison with the borehole data shows that, in most cases, NMR is able not only to detect the presence of water, but also to delineate different subaquifers. At the same time, however, the transmissivity and aquifer

  17. Hypothesis: the sound of the individual metabolic phenotype? Acoustic detection of NMR experiments.

    PubMed

    Cacciatore, Stefano; Saccenti, Edoardo; Piccioli, Mario

    2015-03-01

    We present here an innovative hypothesis and report preliminary evidence that the sound of NMR signals could provide an alternative to the current representation of the individual metabolic fingerprint and supply equally significant information. The NMR spectra of the urine samples provided by four healthy donors were converted into audio signals that were analyzed in two audio experiments by listeners with both musical and non-musical training. The listeners were first asked to cluster the audio signals of two donors on the basis of perceived similarity and then to classify unknown samples after having listened to a set of reference signals. In the clustering experiment, the probability of obtaining the same results by pure chance was 7.04% and 0.05% for non-musicians and musicians, respectively. In the classification experiment, musicians scored 84% accuracy which compared favorably with the 100% accuracy attained by sophisticated pattern recognition methods. The results were further validated and confirmed by analyzing the NMR metabolic profiles belonging to two other different donors. These findings support our hypothesis that the uniqueness of the metabolic phenotype is preserved even when reproduced as audio signal and warrants further consideration and testing in larger study samples.

  18. Filtering and parameter estimation of surface-NMR data using singular spectrum analysis

    NASA Astrophysics Data System (ADS)

    Ghanati, Reza; Kazem Hafizi, Mohammad; Mahmoudvand, Rahim; Fallahsafari, Mahdi

    2016-07-01

    Ambient electromagnetic interferences at the site of investigation often degrade the signal quality of the Surface-NMR measurements leading to inaccurate estimation of the signal parameters. This paper proposes a new powerful de-noising method based on singular spectrum analysis (SSA), which is a nonparametric method for analyzing time series. SSA is a relatively simple method and can be understood using basic algebra notations. Singular value decomposition (SVD) plays a crucial role in SSA. As the length of recordings increases, the computational time required for computing SVD raises which restricts the usage of SSA in long-term time series. In order to overcome this drawback, we propose a randomized version of the singular value decomposition to accelerate the decomposition step of the algorithm. To evaluate the performance of the proposed strategy, the method is tested on synthetic signals corrupted by both simulated noise (including Gaussian white noise, spiky events and harmonic noise) and real noise recordings obtained from surface-NMR field surveys and a real data set. Our results show that the proposed algorithm can enhance the signal to noise ratio significantly, and gives an improvement in estimation of the surface-NMR signal parameters.

  19. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing.

    PubMed

    Liang, Tingfu; Wei, Feifei; Lu, Yi; Kodani, Yoshinori; Nakada, Mitsuhiko; Miyakawa, Takuya; Tanokura, Masaru

    2015-01-21

    Black garlic is a processed food product obtained by subjecting whole raw garlic to thermal processing that causes chemical reactions, such as the Maillard reaction, which change the composition of the garlic. In this paper, we report a nuclear magnetic resonance (NMR)-based comprehensive analysis of raw garlic and black garlic extracts to determine the compositional changes resulting from thermal processing. (1)H NMR spectra with a detailed signal assignment showed that 38 components were altered by thermal processing of raw garlic. For example, the contents of 11 l-amino acids increased during the first step of thermal processing over 5 days and then decreased. Multivariate data analysis revealed changes in the contents of fructose, glucose, acetic acid, formic acid, pyroglutamic acid, cycloalliin, and 5-(hydroxymethyl)furfural (5-HMF). Our results provide comprehensive information on changes in NMR-detectable components during thermal processing of whole garlic.

  20. 125Te NMR in the single crystal of CeTe3: Spin polarized CDW

    NASA Astrophysics Data System (ADS)

    Chudo, H.; Michioka, C.; Itoh, Y.; Yoshimura, K.

    2007-03-01

    We report 125Te NMR studies for single crystals of CeTe3 between 22 and 307 K, under an applied field of H=7.4847 T along a- or b-axis. The 125Te NMR spectrum consists of superposition of broad and sharp peaks, which are assigned to the signals of 125Te(1) in Te(1) sheets and 125Te(2) in CeTe(2) bi-layers, respectively. The broad 125Te(1) NMR spectrum consists of three distinguishable lines, regarded as an evidence for the presence of the incommensurate charge-density wave (ICDW) modulation. The Knight shifts of 125Te(1) widely distribute from -0.16% to +0.58% at 110 K and the temperature dependence of each Knight shift is proportional to the bulk susceptibility, indicating that the conduction electron spin density is polarized by the Ce local moments in the CDW state.

  1. Structural determination of larger proteins using stable isotope labeling and NMR spectroscopy

    SciTech Connect

    Unkefer, C.; Hernandez, G.; Springer, P.; Trewhella, J.; Blumenthal, D.; Lidstrom, M.

    1996-04-01

    The project sought to employ stable isotope labeling and NMR spectroscopy to study protein structures and provide insight into important biochemical problems. A methylotrophic bacterial expression system has been developed for uniform deuterium and carbon-13 labeling of proteins for structural studies. These organisms grow using methanol as the sole source of carbon and energy. Because isotopically labeled methanol is relatively inexpensive, the methylotrophs are ideal for expressing proteins labeled uniformly with deuterium and/or carbon-13. This expression system has been employed to prepare deuterated troponin C. NMR spectroscopy measurements have been made on the inhibitory peptide from troponin I (residues 96--115), both as the free peptide and the peptide complexed with deuterated troponin C. Proton-NMR spectroscopy resonance-signal assignments have been made for the free peptide.

  2. Perspectives in magnetic resonance: NMR in the post-FFT era.

    PubMed

    Hyberts, Sven G; Arthanari, Haribabu; Robson, Scott A; Wagner, Gerhard

    2014-04-01

    Multi-dimensional NMR spectra have traditionally been processed with the fast Fourier transformation (FFT). The availability of high field instruments, the complexity of spectra of large proteins, the narrow signal dispersion of some unstructured proteins, and the time needed to record the necessary increments in the indirect dimensions to exploit the resolution of the highfield instruments make this traditional approach unsatisfactory. New procedures need to be developed beyond uniform sampling of the indirect dimensions and reconstruction methods other than the straight FFT are necessary. Here we discuss approaches of non-uniform sampling (NUS) and suitable reconstruction methods. We expect that such methods will become standard for multi-dimensional NMR data acquisition with complex biological macromolecules and will dramatically enhance the power of modern biological NMR.

  3. Perspectives in Magnetic Resonance: NMR in the Post-FFT Era

    PubMed Central

    Hyberts, Sven G.; Arthanari, Haribabu; Robson, Scott A.; Wagner, Gerhard

    2014-01-01

    Multi-dimensional NMR spectra have traditionally been processed with the fast Fourier transformation (FFT). The availability of high field instruments, the complexity of spectra of large proteins, the narrow signal dispersion of some unstructured proteins, and the time needed to record the necessary increments in the indirect dimensions to exploit the resolution of the highfield instruments make this traditional approach unsatisfactory. New procedures need to be developed beyond uniform sampling of the indirect dimensions and reconstruction methods other than the straight FFT are necessary. Here we discuss approaches of non-unifom sampling (NUS) and suitable reconstruction methods. We expect that such methods will become standard for multi-dimensional NMR data acquisition with complex biological macromolecules and will dramatically enhance the power of modern biological NMR. PMID:24656081

  4. 13C-NMR in Iodine and Potassium Intercalated C60 Solid

    NASA Astrophysics Data System (ADS)

    Maniwa, Yutaka; Shibata, Takayuki; Mizoguchi, Kenji; Kume, Kiyoshi; Kikuchi, Koichi; Ikemoto, Isao; Suzuki, Shinzo; Achiba, Yoji

    1992-07-01

    Iodine intercalated C60, I2.29C60, was studied by 13C NMR above 160 K. A sharp NMR signal and a strong temperature-dependent spin-lattice relaxation time, T1, indicated a presence of C60 molecular rotation much higher than 10 kHz at least down to 160 K. No evidence of metallic characteristics was found in the NMR shift (143± 1 ppm) and the T1 (40± 5 sec at room temperature). In K3C60, metallic behavior, T1T˜constant, was observed at the carbon sites between 20 K and 100 K. Electronic density of states at the Fermi level, N(EF), in I2.29C60 was estimated to be smaller than 0.12 of that in K3C60, assuming a relationship between N(EF) and T1T for normal metals.

  5. Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy, a new approach to study humic material?

    NASA Astrophysics Data System (ADS)

    Knicker, Heike; Lange, Sascha; van Rossum, Barth; Oschkinat, Hartmut

    2016-04-01

    Compared to solution NMR spectroscopy, solid-state NMR spectra suffer from broad resonance lines and low resolution. This could be overcome by the use of 2-dimenstional solid-state NMR pulse sequences. Until recently, this approach has been unfeasible as a routine tool in soil chemistry, mainly because of the low NMR sensitivity of the respective samples. A possibility to circumvent those sensitivity problems represents high-field Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy (Barnes et al., 2008), allowing considerable signal enhancements (Akbey et al., 2010). This is achieved by a microwave-driven transfer of polarization from a paramagnetic center to nuclear spins. Application of DNP to MAS spectra of biological systems (frozen solutions) showed enhancements of the factor 40 to 50 (Hall et al., 1997). Enhancements of this magnitude, thus may enable the use of at least some of the 2D solid-state NMR techniques that are presently already applied for pure proteins but are difficult to apply to soil peptides in their complex matrix. After adjusting the required acquisition parameters to the system "soil organic matter", lower but still promising enhancement factors were achieved. Additional optimization was performed and allowed the acquisition of 2D 13C and 15N solid-state NMR spectra of humified 13C and 15N enriched plant residues. Within the present contribution, the first solid-state DNP NMR spectra of humic material are presented. Those data demonstrate the great potential of this approach which certainly opens new doors for a better understanding of biochemical processes in soils, sediments and water. Akbey, Ü., Franks, W.T., Linden, A., Lange, S., Griffin, R.G., van Rossum, B.-J., Oschkinat, H., 2010. Dynamic nuclear polarization of deuterated proteins. Angewandte Chemie International Edition 49, 7803-7806. Barnes, A.B., De Paëpe, G., van der Wel, P.C.A., Hu, K.N., Joo, C.G., Bajaj, V.S., Mak-Jurkauskas, M.L., Sirigiri, J.R., Herzfeld, J

  6. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra.

    PubMed

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-26

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.

  7. [Optimizing the method for 31P-NMR analysis of organic phosphorus from wetland sediments].

    PubMed

    Lu, Jin; Wang, Hai-Wen; Hao, Hong; Gao, Bo; Jia, Jian-Li

    2013-11-01

    Solution 31P-Nuclear Magnetic Resonance (NMR) is an analysis technology which has been an effective means for the analysis of environmental organic phosphorus. However, the method is rarely applied in the study of wetlands so that the corresponding researches about wetland sediment sample preparation method also very deficient. The present study was aimed to find the most suitable sample preparation method for 31P-NMR analysis of the artificial wetland sediments, using different extractant (NaOH or 0.25 mol x L(-1) NaOH + 0.05 mol x L(-1) EDTA as main extractant, and 1M HCl as pre-extractant or not), sample to extractant ratio (1 : 8 or 1 : 10), centrifugation conditions and scans time and so on. The results showed that the best 31P-NMR spectrum could be obtained with freeze-ried, ground and sieved sediments, 1M HCl as pre-extractant for 16 h, NaOH + 0.05 mol x L(-1) EDTA as main extractant for 16 h, extraction ratio of 1 : 8, and low temperature and high-speed centrifugation (4 degrees C, 10 000 r x min(-1) for 30 min) for avoiding hydrolysis of certain components. Besides, choosing much longer NMR scan time, as 14-16 h (scans about 25 000 times), could get more complete spectral signals spectrum. And finally, four kinds of P-compounds (orthophosphate, orthophosphate monoesters, orthophosphate diesters and pyrophosphate) were detected in the NMR spectrum. But neither polyphosphate nor phosphonates was not found in all these experiments, which need further study. Compared with the traditional chemical analysis method, 31P-NMR method of sample preparation is relatively simple. Then it is less destructive with components distinguished completely. Using 31P-NMR technology, the cognition of wetland phosphorus cycle, especially organophosphate, will be expected to get new breakthrough.

  8. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    PubMed Central

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  9. Quantitative and qualitative 1H, 13C, and 15N NMR spectroscopic investigation of the urea-formaldehyde resin synthesis.

    PubMed

    Steinhof, Oliver; Kibrik, Éléonore J; Scherr, Günter; Hasse, Hans

    2014-04-01

    Urea-formaldehyde resins are bulk products of the chemical industry. Their synthesis involves a complex reaction network. The present work contributes to its elucidation by presenting results from detailed NMR spectroscopic studies with different methods. Besides (1)H NMR and (13)C NMR, (15)N NMR spectroscopy is also applied. (15)N-enriched urea was used for the investigations. A detailed NMR signal assignment and a model of the reaction network of the hydroxymethylation step of the synthesis are presented. Because of its higher spectral dispersion and the fact that all key reactions directly involve the nitrogen centers, (15)N NMR provides a much larger amount of detail than do (1)H and (13)C NMR spectroscopy. Symmetric and asymmetric dimethylol urea can be clearly distinguished and separated from monomethylol urea, trimethylol urea, and methylene-bridged urea. The existence of hemiformals of methylol urea is confirmed. 1,3,5-Oxadiazinan-4-on (uron) and its derivatives were not found in the reaction mixtures investigated here but were prepared via alternative routes. The molar ratios of formaldehyde to urea were 1, 2, and 4, the pH values 7.5 and 8.5, and the reaction temperature 60 °C.

  10. Monitoring chemical reactions by low-field benchtop NMR at 45 MHz: pros and cons.

    PubMed

    Silva Elipe, Maria Victoria; Milburn, Robert R

    2016-06-01

    Monitoring chemical reactions is the key to controlling chemical processes where NMR can provide support. High-field NMR gives detailed structural information on chemical compounds and reactions; however, it is expensive and complex to operate. Conversely, low-field NMR instruments are simple and relatively inexpensive alternatives. While low-field NMR does not provide the detailed information as the high-field instruments as a result of their smaller chemical shift dispersion and the complex secondary coupling, it remains of practical value as a process analytical technology (PAT) tool and is complimentary to other established methods, such as ReactIR and Raman spectroscopy. We have tested a picoSpin-45 (currently under ThermoFisher Scientific) benchtop NMR instrument to monitor three types of reactions by 1D (1) H NMR: a Fischer esterification, a Suzuki cross-coupling, and the formation of an oxime. The Fischer esterification is a relatively simple reaction run at high concentration and served as proof of concept. The Suzuki coupling is an example of a more complex, commonly used reaction involving overlapping signals. Finally, the oxime formation involved a reaction in two phases that cannot be monitored by other PAT tools. Here, we discuss the pros and cons of monitoring these reactions at a low-field of 45 MHz by 1D (1) H NMR. Copyright © 2015 John Wiley & Sons, Ltd.

  11. A Quantitative NMR Analysis of Phosphorus in Carbonaceous and Ordinary Chondrites

    NASA Technical Reports Server (NTRS)

    Pasek, M. A.; Smith, V. D.; Lauretta, D. S.

    2004-01-01

    Phosphorus is important in a number of biochemical molecules, from DNA to ATP. Early life may have depended on meteorites as a primary source of phosphorus as simple dissolution of crustal apatite may not produce the necessary concentration of phosphate. Phosphorus is found in several mineral phases in meteorites. Apatite and other Ca- and Mg phosphate minerals tend to be the dominant phosphorus reservoir in stony meteorites, whereas in more iron-rich or reduced meteorites, the phosphide minerals schreibersite, (Fe, Ni)3P, and perryite, (Ni, Fe)5(Si, P)2 are dominant. However, in CM chondrites that have experienced significant aqueous alteration, phosphorus has been detected in more exotic molecules. A series of phosphonic acids including methyl-, ethyl-, propyl- and butyl- phosphonic acids were observed by GC-MS in Murchison. Phosphorian sulfides are in Murchison and Murray. NMR spectrometry is capable of detecting multiple substances with one experiment, is non-destructive, and potentially quantitative, as discussed below. Despite these advantages, NMR spectrometry is infrequently applied to meteoritic studies due in large part to a lack of applicability to many compounds and the relatively high limit of detection requirements. Carbon-13 solid-state NMR has been applied to macromolecular carbon in Murchison. P-31 NMR has many advantages over aqueous carbon-13 NMR spectrometry. P-31 is the only isotope of phosphorus, and P-31 gives a signal approximately twice as strong as C-13. These two factors together with the relative abundances of carbon and phosphorus imply that phosphorus should give a signal approximately 20 as strong as carbon in a given sample. A discussion on the preparation of the quantitative standard and NMR studies are presented

  12. Perspectives in enzymology of membrane proteins by solid-state NMR.

    PubMed

    Ullrich, Sandra J; Glaubitz, Clemens

    2013-09-17

    Membrane proteins catalyze reactions at the cell membrane and facilitate thetransport of molecules or signals across the membrane. Recently researchers have made great progress in understanding the structural biology of membrane proteins, mainly based on X-ray crystallography. In addition, the application of complementary spectroscopic techniques has allowed researchers to develop a functional understanding of these proteins. Solid-state NMR has become an indispensable tool for the structure-function analysis of insoluble proteins and protein complexes. It offers the possibility of investigating membrane proteins directly in their environment, which provides essential information about the intrinsic coupling of protein structure and functional dynamics within the lipid bilayer. However, to date, researchers have hardly explored the enzymology of mem-brane proteins. In this Account, we review the perspectives for investigating membrane-bound enzymes by solid-state NMR. Understanding enzyme mechanisms requires access to kinetic parameters, structural analysis of the catalytic center, knowledge of the 3D structure and methods to follow the structural dynamics of the enzyme during the catalytic cycle. In principle, solid-state NMR can address all of these issues. Researchers can characterize the enzyme kinetics by observing substrate turnover within the membrane or at the membrane interphase in a time-resolved fashion as shown for diacylglycerol kinase. Solid-state NMR has also provided a mechanistic understanding of soluble enzymes including triosephosphate isomerase (TIM) and different metal-binding proteins, which demonstrates a promising perspective also for membrane proteins. The increasing availability of high magnetic fields and the development of new experimental schemes and computational protocols have made it easier to determine 3D structure using solid-state NMR. Dynamic nuclear polarization, a key technique to boost sensitivity of solid-state NMR at low

  13. Enhanced biosynthetically directed fractional carbon-13 enrichment of proteins for backbone NMR Assignments

    PubMed Central

    Wenrich, Broc R.; Sonstrom, Reilly E.; Gupta, Riju A.; Rovnyak, David

    2015-01-01

    Routes to carbon-13 enrichment of bacterially expressed proteins include achieving uniform or positionally selective (e.g. ILV-Me, or 13C′, etc.) enrichment. We consider the potential for biosynthetically directed fractional enrichment (e.g. carbon-13 incorporation in the protein less than 100%) for performing routine n-(D)dimensional NMR spectroscopy of proteins. First, we demonstrate an approach to fractional isotope addition where the initial growth media containing natural abundance glucose is replenished at induction with a small amount (e.g. 10%w/w u-13C-glucose) of enriched nutrient. The approach considered here is to add 10% (e.g. 200 mg for a 2 g/L culture) u-13C-glucose at the induction time (OD600=0.8), resulting in a protein with enhanced 13C incorporation that gives almost the same NMR signal levels as an exact 20% 13C sample. Second, whereas fractional enrichment is used for obtaining stereospecific methyl assignments, we find that 13C incorporation levels no greater than 20%w/w yield 13C and 13C-13C spin pair incorporation sufficient to conduct typical 3D-bioNMR backbone experiments on moderate instrumentation (600 MHz, RT probe). Typical 3D-bioNMR experiments of a fractionally enriched protein yield expected backbone connectivities, and did not show amino acid biases in this work, with one exception. When adding 10% u-13C glucose to expression media at induction, there is poor preservation of 13Cα-13Cβ spin pairs in the amino acids ILV, leading to the absence of Cβ signals in HNCACB spectra for ILV, a potentially useful editing effect. Enhanced fractional carbon-13 enrichment provides lower-cost routes to high throughput protein NMR studies, and makes modern protein NMR more cost-accessible. PMID:26256059

  14. Temperature imaging by 1H NMR and suppression of convection in NMR probes

    PubMed

    Hedin; Furo

    1998-03-01

    A simple arrangement for suppressing convection in NMR probes is tested experimentally. Diffusion experiments are used to determine the onset of convection and 1H temperature imaging helps to rationalize the somewhat surprising results. A convenient new 1H NMR thermometer, CH2Br2 dissolved in a nematic thermotropic liquid crystal, is presented. Copyright 1998 Academic Press.

  15. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR.

    PubMed

    van der Schot, Gijs; Bonvin, Alexandre M J J

    2015-08-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665-1674, 2005b, doi: 10.1021/ja047109h). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27-35, 2013, doi: 10.1007/s10858-013-9762-6), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  16. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    ERIC Educational Resources Information Center

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  17. NMR Spectra through the Eyes of a Student: Eye Tracking Applied to NMR Items

    ERIC Educational Resources Information Center

    Topczewski, Joseph J.; Topczewski, Anna M.; Tang, Hui; Kendhammer, Lisa K.; Pienta, Norbert J.

    2017-01-01

    Nuclear magnetic resonance spectroscopy (NMR) plays a key role in introductory organic chemistry, spanning theory, concepts, and experimentation. Therefore, it is imperative that the instruction methods for NMR are both efficient and effective. By utilizing eye tracking equipment, the researchers were able to monitor how second-semester organic…

  18. Measurement and Quantification of Heterogeneity, Flow, and Mass Transfer in Porous Media Using NMR Low-Field Techiques

    NASA Astrophysics Data System (ADS)

    Paciok, E.; Olaru, A. M.; Haber, A.; van Landeghem, M.; Haber-Pohlmeier, S.; Sucre, O. E.; Perlo, J.; Casanova, F.; Blümich, B.; RWTH Aachen Mobile Low-Field NMR

    2011-12-01

    Nuclear magnetic resonance (NMR) is renowned for its unique potential to both reveal and correlate spectroscopic, relaxometric, spatial and dynamic properties in a large variety of organic and inorganic systems. NMR has no restrictions regarding sample opacity and is an entirely non-invasive method, which makes it the ideal tool for the investigation of porous media. However, for years NMR research of soils was limited by the use of high-field NMR devices, which necessitated elaborate NMR experiments and were not applicable to bulky samples or on-site field measurements. The evolution of low-field NMR devices during the past 20 years has brought forth portable, small-scale NMR systems with open and closed magnet arrangements specialized to specific NMR applications. In combination with recent advances in 2D-NMR Laplace methodology [1], low-field NMR has opened up the possibility to study real-life microporous systems ranging from granular media to natural soils and oil well boreholes. Thus, information becomes available, which before has not been accessible with high-field NMR. In this work, we present our recent progress in mobile low-field NMR probe design for field measurements of natural soils: a slim-line logging tool, which can be rammed into the soil of interest on-site. The performance of the device is demonstrated in measurements of moisture profiles of model soils [2] and field measurements of relaxometric properties and moisture profiles of natural soils [3]. Moreover, an improved concept of the slim-line logging tool is shown, with a higher excitation volume and a better signal-to-noise due to an improved coil design. Furthermore, we present our recent results in 2D exchange relaxometry and simulation. These include relaxation-relaxation experiments on natural soils with varying degree of moisture saturation, where we could draw a connection between the relaxometric properties of the soil to its pore size-related diffusivity and to its clay content

  19. Electronic Inhomogeneity in PbTe-based High Performance Thermoelectric Materials Observed by NMR

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Schmidt-Rohr, K.; Cook, B. A.; Kanatzidis, M. G.

    2009-03-01

    Effects of composition and synthesis conditions on the local structure and charge carrier concentration in AgxSbyPb18Te20 (LAST-18) thermoelectric (TE) materials have been studied by ^125Te and ^207Pb nuclear magnetic resonance (NMR) with magic-angle spinning. The high-resolution ^125Te NMR spectra show that most Sb and Ag is not part of Sb2Te3, AgSbTe2, or Ag2Te inclusions. Biexponential NMR spin-lattice (T1) relaxation as well as Knight shifts of ^125Te and ^207Pb NMR signals show that many LAST-18 materials contain two phases of similar composition but with free electron concentrations that differ by more than an order of magnitude, i.e. these materials are electronically inhomogeneous. The NMR data were calibrated against Hall- and Seebeck-effect measurements to give the charge carrier concentrations in the two phases. This electronic inhomogeneity may result in the appearance of potential barriers inside TE materials, similar to those observed for semiconductor-semiconductor or metal-semiconductor junctions. Such barriers may affect thermopower, electrical, and thermal conductivity of TE materials.

  20. Development of a small-scale bioreactor: application to in vivo NMR measurement.

    PubMed

    Gmati, Dorra; Chen, Jingkui; Jolicoeur, Mario

    2005-01-20

    A perfused bioreactor allowing in vivo NMR measurement was developed and validated for Eschscholtzia californica cells. The bioreactor was made of a 10-mm NMR tube. NMR measurement of the signal-to-noise ratio was optimized using a sedimented compact bed of cells that were retained in the bioreactor by a supporting filter. Liquid medium flow through the cell bed was characterized from a mass balance on oxygen and a dispersive hydrodynamic model. Cell bed oxygen demand for 4 h perfusion required a minimal medium flow rate of 0.8 mL/min. Residence time distribution assays at 0.8-2.6 mL/min suggest that the cells are subjected to a uniform nutrient environment along the cell bed. Cell integrity was maintained for all culture conditions since the release of intracellular esterases was not significant even after 4 h of perfusion. In vivo NMR was performed for (31)P NMR and the spectrum can be recorded after only 10 min of spectral accumulation (500 scans) with peaks identified as G-6P, F-6P, cytoplasmic Pi, vacuolar Pi, ATP(gamma) and ADP(beta), ATP(alpha) and ADP(alpha), NADP and NDPG, NDPG and ATP(beta). Cell viability was shown to be maintained as (31)P chemical shifts were constant with time for all the identified nuclei, thus suggesting constant intracellular pH.

  1. Quantification of taurine in energy drinks using ¹H NMR.

    PubMed

    Hohmann, Monika; Felbinger, Christine; Christoph, Norbert; Wachter, Helmut; Wiest, Johannes; Holzgrabe, Ulrike

    2014-05-01

    The consumption of so called energy drinks is increasing, especially among adolescents. These beverages commonly contain considerable amounts of the amino sulfonic acid taurine, which is related to a magnitude of various physiological effects. The customary method to control the legal limit of taurine in energy drinks is LC-UV/vis with postcolumn derivatization using ninhydrin. In this paper we describe the quantification of taurine in energy drinks by (1)H NMR as an alternative to existing methods of quantification. Variation of pH values revealed the separation of a distinct taurine signal in (1)H NMR spectra, which was applied for integration and quantification. Quantification was performed using external calibration (R(2)>0.9999; linearity verified by Mandel's fitting test with a 95% confidence level) and PULCON. Taurine concentrations in 20 different energy drinks were analyzed by both using (1)H NMR and LC-UV/vis. The deviation between (1)H NMR and LC-UV/vis results was always below the expanded measurement uncertainty of 12.2% for the LC-UV/vis method (95% confidence level) and at worst 10.4%. Due to the high accordance to LC-UV/vis data and adequate recovery rates (ranging between 97.1% and 108.2%), (1)H NMR measurement presents a suitable method to quantify taurine in energy drinks.

  2. Protein NMR Structure Refinement based on Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Ikeya, Teppei; Ikeda, Shiro; Kigawa, Takanori; Ito, Yutaka; Güntert, Peter

    2016-03-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a tool to investigate threedimensional (3D) structures and dynamics of biomacromolecules at atomic resolution in solution or more natural environments such as living cells. Since NMR data are principally only spectra with peak signals, it is required to properly deduce structural information from the sparse experimental data with their imperfections and uncertainty, and to visualize 3D conformations by NMR structure calculation. In order to efficiently analyse the data, Rieping et al. proposed a new structure calculation method based on Bayes’ theorem. We implemented a similar approach into the program CYANA with some modifications. It allows us to handle automatic NOE cross peak assignments in unambiguous and ambiguous usages, and to create a prior distribution based on a physical force field with the generalized Born implicit water model. The sampling scheme for obtaining the posterior is performed by a hybrid Monte Carlo algorithm combined with Markov chain Monte Carlo (MCMC) by the Gibbs sampler, and molecular dynamics simulation (MD) for obtaining a canonical ensemble of conformations. Since it is not trivial to search the entire function space particularly for exploring the conformational prior due to the extraordinarily large conformation space of proteins, the replica exchange method is performed, in which several MCMC calculations with different temperatures run in parallel as replicas. It is shown with simulated data or randomly deleted experimental peaks that the new structure calculation method can provide accurate structures even with less peaks, especially compared with the conventional method. In particular, it dramatically improves in-cell structures of the proteins GB1 and TTHA1718 using exclusively information obtained in living Escherichia coli (E. coli) cells.

  3. Nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOEpatents

    Fukushima, Eiichi; Roeder, Stephen B. W.; Assink, Roger A.; Gibson, Atholl A. V.

    1986-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  4. Using radial NMR profiles to characterize pore size distributions

    NASA Astrophysics Data System (ADS)

    Deriche, Rachid; Treilhard, John

    2012-02-01

    Extracting information about axon diameter distributions in the brain is a challenging task which provides useful information for medical purposes; for example, the ability to characterize and monitor axon diameters would be useful in diagnosing and investigating diseases like amyotrophic lateral sclerosis (ALS)1 or autism.2 Three families of operators are defined by Ozarslan,3 whose action upon an NMR attenuation signal extracts the moments of the pore size distribution of the ensemble under consideration; also a numerical method is proposed to continuously reconstruct a discretely sampled attenuation profile using the eigenfunctions of the simple harmonic oscillator Hamiltonian: the SHORE basis. The work presented here extends Ozarlan's method to other bases that can offer a better description of attenuation signal behaviour; in particular, we propose the use of the radial Spherical Polar Fourier (SPF) basis. Testing is performed to contrast the efficacy of the radial SPF basis and SHORE basis in practical attenuation signal reconstruction. The robustness of the method to additive noise is tested and analysed. We demonstrate that a low-order attenuation signal reconstruction outperforms a higher-order reconstruction in subsequent moment estimation under noisy conditions. We propose the simulated annealing algorithm for basis function scale parameter estimation. Finally, analytic expressions are derived and presented for the action of the operators on the radial SPF basis (obviating the need for numerical integration, thus avoiding a spectrum of possible sources of error).

  5. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents

    PubMed Central

    Görling, Benjamin; Bräse, Stefan; Luy, Burkhard

    2016-01-01

    Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored. PMID:27598217

  6. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents.

    PubMed

    Görling, Benjamin; Bräse, Stefan; Luy, Burkhard

    2016-09-02

    Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored.

  7. NMR methodologies in the analysis of blueberries.

    PubMed

    Capitani, Donatella; Sobolev, Anatoly P; Delfini, Maurizio; Vista, Silvia; Antiochia, Riccarda; Proietti, Noemi; Bubici, Salvatore; Ferrante, Gianni; Carradori, Simone; De Salvador, Flavio Roberto; Mannina, Luisa

    2014-06-01

    An NMR analytical protocol based on complementary high and low field measurements is proposed for blueberry characterization. Untargeted NMR metabolite profiling of blueberries aqueous and organic extracts as well as targeted NMR analysis focused on anthocyanins and other phenols are reported. Bligh-Dyer and microwave-assisted extractions were carried out and compared showing a better recovery of lipidic fraction in the case of microwave procedure. Water-soluble metabolites belonging to different classes such as sugars, amino acids, organic acids, and phenolic compounds, as well as metabolites soluble in organic solvent such as triglycerides, sterols, and fatty acids, were identified. Five anthocyanins (malvidin-3-glucoside, malvidin-3-galactoside, delphinidin-3-glucoside, delphinidin-3-galactoside, and petunidin-3-glucoside) and 3-O-α-l-rhamnopyranosyl quercetin were identified in solid phase extract. The water status of fresh and withered blueberries was monitored by portable NMR and fast-field cycling NMR. (1) H depth profiles, T2 transverse relaxation times and dispersion profiles were found to be sensitive to the withering.

  8. Radiation damping in microcoil NMR probes

    NASA Astrophysics Data System (ADS)

    Krishnan, V. V.

    2006-04-01

    Radiation damping arises from the field induced in the receiver coil by large bulk magnetization and tends to selectively drive this magnetization back to equilibrium much faster than relaxation processes. The demand for increased sensitivity in mass-limited samples has led to the development of microcoil NMR probes that are capable of obtaining high quality NMR spectra with small sample volumes (nL-μL). Microcoil probes are optimized to increase sensitivity by increasing either the sample-to-coil ratio (filling factor) of the probe or quality factor of the detection coil. Though radiation damping effects have been studied in standard NMR probes, these effects have not been measured in the microcoil probes. Here a systematic evaluation of radiation damping effects in a microcoil NMR probe is presented and the results are compared with similar measurements in conventional large volume samples. These results show that radiation-damping effects in microcoil probe is much more pronounced than in 5 mm probes, and that it is critically important to optimize NMR experiments to minimize these effects. As microcoil probes provide better control of the bulk magnetization, with good RF and B0 inhomogeneity, in addition to negligible dipolar field effects due to nearly spherical sample volumes, these probes can be used exclusively to study the complex behavior of radiation damping.

  9. Radiation damping in microcoil NMR probes.

    PubMed

    Krishnan, V V

    2006-04-01

    Radiation damping arises from the field induced in the receiver coil by large bulk magnetization and tends to selectively drive this magnetization back to equilibrium much faster than relaxation processes. The demand for increased sensitivity in mass-limited samples has led to the development of microcoil NMR probes that are capable of obtaining high quality NMR spectra with small sample volumes (nL-microL). Microcoil probes are optimized to increase sensitivity by increasing either the sample-to-coil ratio (filling factor) of the probe or quality factor of the detection coil. Though radiation damping effects have been studied in standard NMR probes, these effects have not been measured in the microcoil probes. Here a systematic evaluation of radiation damping effects in a microcoil NMR probe is presented and the results are compared with similar measurements in conventional large volume samples. These results show that radiation-damping effects in microcoil probe is much more pronounced than in 5 mm probes, and that it is critically important to optimize NMR experiments to minimize these effects. As microcoil probes provide better control of the bulk magnetization, with good RF and B0 inhomogeneity, in addition to negligible dipolar field effects due to nearly spherical sample volumes, these probes can be used exclusively to study the complex behavior of radiation damping.

  10. Magic angle spinning NMR of paramagnetic proteins.

    PubMed

    Knight, Michael J; Felli, Isabella C; Pierattelli, Roberta; Emsley, Lyndon; Pintacuda, Guido

    2013-09-17

    Metal ions are ubiquitous in biochemical and cellular processes. Since many metal ions are paramagnetic due to the presence of unpaired electrons, paramagnetic molecules are an important class of targets for research in structural biology and related fields. Today, NMR spectroscopy plays a central role in the investigation of the structure and chemical properties of paramagnetic metalloproteins, linking the observed paramagnetic phenomena directly to electronic and molecular structure. A major step forward in the study of proteins by solid-state NMR came with the advent of ultrafast magic angle spinning (MAS) and the ability to use (1)H detection. Combined, these techniques have allowed investigators to observe nuclei that previously were invisible in highly paramagnetic metalloproteins. In addition, these techniques have enabled quantitative site-specific measurement of a variety of long-range paramagnetic effects. Instead of limiting solid-state NMR studies of biological systems, paramagnetism provides an information-rich phenomenon that can be exploited in these studies. This Account emphasizes state-of-the-art methods and applications of solid-state NMR in paramagnetic systems in biological chemistry. In particular, we discuss the use of ultrafast MAS and (1)H-detection in perdeuterated paramagnetic metalloproteins. Current methodology allows us to determine the structure and dynamics of metalloenzymes, and, as an example, we describe solid-state NMR studies of microcrystalline superoxide dismutase, a 32 kDa dimer. Data were acquired with remarkably short times, and these experiments required only a few milligrams of sample.

  11. Quantitative measurement of regional blood flow with gadolinium diethylenetriaminepentaacetate bolus track NMR imaging in cerebral infarcts in rats: validation with the iodo[14C]antipyrine technique.

    PubMed Central

    Wittlich, F; Kohno, K; Mies, G; Norris, D G; Hoehn-Berlage, M

    1995-01-01

    NMR bolus track measurements were correlated with autoradiographically determined regional cerebral blood flow (rCBF). The NMR method is based on bolus infusion of the contrast agent gadolinium diethylenetriaminepentaacetate and high-speed T*2-sensitive NMR imaging. The first pass of the contrast agent through the image plane causes a transient decrease of the signal intensity. This time course of the signal intensity is transformed into relative concentrations of the contrast agent in each pixel. The mean transit time and relative blood flow and volume are calculated from such indicator dilution curves. We investigated whether this NMR technique correctly expresses the relative rCBF. The relative blood flow data, calculated from NMR bolus track experiments, and the absolute values of iodo[14C]antipyrine autoradiography were compared. A linear relationship was observed, indicating the proportionality of the transient NMR signal change with CBF. Excellent interindividual reproducibility of calibration constants is observed (r = 0.963). For a given NMR protocol, bolus track measurements calibrated with autoradiography after the experiment allow determination of absolute values for rCBF and regional blood volume. Images Fig. 2 Fig. 3 PMID:7892189

  12. NMR techniques in the study of cardiovascular structure and functions

    SciTech Connect

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy. NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance.

  13. Signal voter

    DOEpatents

    Goodwin, Roy L.

    1981-01-01

    A voter for providing a single accurate output signal that is derived from the closest two signal levels of three input signals, each of which signals represents a measurement of the same phenomena. By means of the voting circuit, the signals are first sorted by level of amplitude and then ranked as highest, middle or lowest. The highest or lowest signal that is furthest from the middle signal is rejected, while the other highest or lowest signal is selected for processing. The selected high or low signal is then averaged with the middle signal to provide the output signal.

  14. Signal voter

    SciTech Connect

    Goodwin, R.L.

    1981-04-28

    A voter for providing a single accurate output signal that is derived from the closest two signal levels of three input signals , each of which signals represents a measurement of the same phenomena. By means of the voting circuit, the signals are first sorted by level of amplitude and then ranked as highest, middle or lowest. The highest or lowest signal that is furthest from the middle signal is rejected, while the other highest or lowest signal is selected for processing. The selected high or low signal is then averaged with the middle signal to provide the output signal.

  15. A Solid-State NMR Investigation of MQ Silicone Copolymers.

    PubMed

    Vasil'ev, Sergey G; Volkov, Vitaly I; Tatarinova, Elena A; Muzafarov, Aziz M

    2013-01-01

    The structure of MQ copolymers of the general chemical formula [(CH3)3SiO0.5]m [SiO2]n was characterized by means of solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The MQ copolymers are highly branched polycyclic compounds (densely cross-linked nanosized networks). MQ copolymers were prepared by hydrolytic polycondensation in active medium. (29)Si NMR spectra were obtained by single pulse excitation (or direct polarization, DP) and cross-polarization (CP) (29)Si{(1)H} techniques in concert with MAS. It was shown that material consist of monofunctional M (≡SiO Si (CH3)3) and two types of tetrafunctional Q units: Q(4) ((≡SiO)4Si) and Q(3) ((≡SiO)3SiOH). Spin-lattice relaxation times T1 measurements of (29)Si nuclei and analysis of (29)Si{(1)H} variable contact time signal intensities allowed us to obtain quantitative data on the relative content of different sites in copolymers. These investigations indicate that MQ copolymers represent dense structure with core and shell.

  16. Evaluation of algorithms for automated phase correction of NMR spectra.

    PubMed

    de Brouwer, Hans

    2009-12-01

    In our attempt to fully automate the data acquisition and processing of NMR analysis of dissolved synthetic polymers, phase correction was found to be the most challenging aspect. Several approaches in literature were evaluated but none of these was found to be capable of phasing NMR spectra with sufficient robustness and high enough accuracy to fully eliminate intervention by a human operator. Step by step, aspects from the process of manual/visual phase correction were translated into mathematical concepts and evaluated. This included area minimization, peak height maximization, negative peak minimization and baseline correction. It was found that not one single approach would lead to acceptable results but that a combination of aspects was required, in line again with the process of manual phase correction. The combination of baseline correction, area minimization and negative area penalization was found to give the desired results. The robustness was found to be 100% which means that the correct zeroth order and first order phasing parameters are returned independent of the position of the starting point of the search in this parameter space. When applied to high signal-to-noise proton spectra, the accuracy was such that the returned phasing parameters were within a distance of 0.1-0.4 degrees in the two dimensional parameter space which resulted in an average error of 0.1% in calculated properties such as copolymer composition and end groups.

  17. Backbone Assignment of the MALT1 Paracaspase by Solution NMR.

    PubMed

    Unnerståle, Sofia; Nowakowski, Michal; Baraznenok, Vera; Stenberg, Gun; Lindberg, Jimmy; Mayzel, Maxim; Orekhov, Vladislav; Agback, Tatiana

    2016-01-01

    Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a unique paracaspase protein whose protease activity mediates oncogenic NF-κB signalling in activated B cell-like diffuse large B cell lymphomas (ABC-DLBCLs). ABC-DLBCLs are aggressive lymphomas with high resistance to current chemotherapies. Low survival rate among patients emphasizes the urgent need for alternative treatment options. The characterization of the MALT1 will be an essential tool for developing new target-directed drugs against MALT1 dependent disorders. As the first step in the atomic-level NMR studies of the system, here we report, the (15)N/(13)C/(1)H backbone assignment of the apo form of the MALT1 paracaspase region together with the third immunoglobulin-like (Ig3) domain, 44 kDa, by high resolution NMR. In addition, the non-uniform sampling (NUS) based targeted acquisition procedure is evaluated as a mean of decreasing acquisition and analysis time for larger proteins.

  18. Backbone Assignment of the MALT1 Paracaspase by Solution NMR

    PubMed Central

    Unnerståle, Sofia; Nowakowski, Michal; Baraznenok, Vera; Stenberg, Gun; Lindberg, Jimmy; Mayzel, Maxim; Orekhov, Vladislav; Agback, Tatiana

    2016-01-01

    Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a unique paracaspase protein whose protease activity mediates oncogenic NF-κB signalling in activated B cell-like diffuse large B cell lymphomas (ABC-DLBCLs). ABC-DLBCLs are aggressive lymphomas with high resistance to current chemotherapies. Low survival rate among patients emphasizes the urgent need for alternative treatment options. The characterization of the MALT1 will be an essential tool for developing new target-directed drugs against MALT1 dependent disorders. As the first step in the atomic-level NMR studies of the system, here we report, the 15N/13C/1H backbone assignment of the apo form of the MALT1 paracaspase region together with the third immunoglobulin-like (Ig3) domain, 44 kDa, by high resolution NMR. In addition, the non-uniform sampling (NUS) based targeted acquisition procedure is evaluated as a mean of decreasing acquisition and analysis time for larger proteins. PMID:26788853

  19. NMR evidence for the metallic nature of highly conducting polyaniline

    NASA Astrophysics Data System (ADS)

    Kolbert, A. C.; Caldarelli, S.; Thier, K. F.; Sariciftci, N. S.; Cao, Y.; Heeger, A. J.

    1995-01-01

    Polyaniline doped with camphor sulphonic acid (PANI-CSA) has been shown to yield a material that, after casting from solution in meta-cresol, exhibits a temperature-independent magnetic susceptibility [Y. Cao, P. Smith, and A. J. Heeger, Synth. Met. 48, 91 (1992); N. S. Sariciftici, A. J. Heeger, and Y. Cao, Phys. Rev. B 49, 5988 (1994)]. We report recent 13C NMR experiments on uniformly 13enriched PANI-CSA in which the 13C spin-lattice relaxation rates are shown to obey a modified Korringa relation for relaxation via the hyperfine coupling to conduction electrons. This observation of Korringa relaxation in polyaniline provides strong evidence for a metallic state in this material. An estimate is made of the Korringa enhancement factor that provides a measure of the degree of electron-electron correlations present. Two-dimensional spin-exchange experiments are also reported, which show that the 13C NMR signal results from a heterogeneity in the sample over at least a 30-Å distance scale. These results are discussed in terms of the spatial extent of the doping-induced defect.

  20. Multivariate Analysis and Quantitation of (17)O-NMR in Primary Alcohol Mixtures

    SciTech Connect

    Alam, M.Kathleen; Alam, Todd M.

    1999-07-01

    Multivariate techniques were used to address the quantification of {sup 17}O-NMR (nuclear magnetic resonance) spectra for a series of primary alcohol mixtures. Due to highly overlapping resonances, quantitative spectral evaluation using standard integration and deconvolution techniques proved difficult. Multivariate evaluation of the {sup 17}O-NMR spectral data obtained for 26 mixtures of five primary alcohols demonstrated that obtaining information about spectral overlap and interferences allowed the development of more accurate models. Initial partial least squares (PLS) models developed for the {sup 17}O-NMR data collected from the primary alcohol mixtures resulted in very poor precision, with signal overlap between the different chemical species suspected of being the primary contributor to the error. To directly evaluate the question of spectral overlap in these alcohol mixtures, net analyte signal (NAS) analyses were performed. The NAS results indicate that alcohols with similar chain lengths produced severely overlapping {sup 17}O-NMR resonances. Grouping the alcohols based on chain length allowed more accurate and robust calibration models to be developed.

  1. Survey and qualification of internal standards for quantification by 1H NMR spectroscopy.

    PubMed

    Rundlöf, Torgny; Mathiasson, Marie; Bekiroglu, Somer; Hakkarainen, Birgit; Bowden, Tim; Arvidsson, Torbjörn

    2010-09-05

    In quantitative NMR (qNMR) selection of an appropriate internal standard proves to be crucial. In this study, 25 candidate compounds considered to be potent internal standards were investigated with respect to the ability of providing unique signal chemical shifts, purity, solubility, and ease of use. The (1)H chemical shift (delta) values, assignments, multiplicities and number of protons (for each signal), appropriateness (as to be used as internal standards) in four different deuterated solvents (D(2)O, DMSO-d(6), CD(3)OD, CDCl(3)) were studied. Taking into account the properties of these 25 internal standards, the most versatile eight compounds (2,4,6-triiodophenol, 1,3,5-trichloro-2-nitrobenzene, 3,4,5-trichloropyridine, dimethyl terephthalate, 1,4-dinitrobenzene, 2,3,5-triiodobenzoic acid, maleic acid and fumaric acid) were qualified using both differential scanning calorimetry (DSC) and NMR spectroscopy employing highly pure acetanilide as the reference standard. The data from these two methods were compared as well as utilized in the quality assessment of the compounds as internal standards. Finally, the selected internal standards were tested and evaluated in a real case of quantitative NMR analysis of a paracetamol pharmaceutical product.

  2. Quantifying unfrozen water in frozen soil by high-field 2H NMR.

    PubMed

    Sparrman, Tobias; Oquist, Mats; Klemedtsson, Leif; Schleucher, Jürgen; Nilsson, Mats

    2004-10-15

    To understand wintertime controls of biogeochemical processes in high latitude soils it is essential to distinguish between direct temperature effects and the effects of changes in water availability mediated by freezing. Efforts to separate these controls are hampered by a lack of adequate methods to determine the proportion of unfrozen water. In this study we present a high-field 2H2O NMR method for quantifying unfrozen water content in frozen soil. The experimental material consisted of the humic layer of a boreal spruce forest soil mixed with varying proportions of quartz sand and humidified with deuterium-enriched water. The relative standard deviation of unfrozen water content (measured as NMR signal integral) was less than 2% for repeated measurements on a given sample and 3.5% among all samples, based on a total of 16 measurements. As compared to 1H NMR, this 2H NMR method was found to be superior for several reasons: it is less sensitive to field inhomogeneity and paramagnetic impurities, it gives a bigger line shape difference between the ice and liquid signal, it shows a sharper response to water fusion, and it excludes the possibility of hydrogen in the organic material interfering with the measurement.

  3. Review of NMR characterization of pyrolysis oils

    SciTech Connect

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterization and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.

  4. Review of NMR characterization of pyrolysis oils

    DOE PAGES

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; ...

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  5. A modularized pulse programmer for NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Wenping; Bao, Qingjia; Yang, Liang; Chen, Yiqun; Liu, Chaoyang; Qiu, Jianqing; Ye, Chaohui

    2011-02-01

    A modularized pulse programmer for a NMR spectrometer is described. It consists of a networked PCI-104 single-board computer and a field programmable gate array (FPGA). The PCI-104 is dedicated to translate the pulse sequence elements from the host computer into 48-bit binary words and download these words to the FPGA, while the FPGA functions as a sequencer to execute these binary words. High-resolution NMR spectra obtained on a home-built spectrometer with four pulse programmers working concurrently demonstrate the effectiveness of the pulse programmer. Advantages of the module include (1) once designed it can be duplicated and used to construct a scalable NMR/MRI system with multiple transmitter and receiver channels, (2) it is a totally programmable system in which all specific applications are determined by software, and (3) it provides enough reserve for possible new pulse sequences.

  6. NMR Spectroscopy: Processing Strategies (by Peter Bigler)

    NASA Astrophysics Data System (ADS)

    Mills, Nancy S.

    1998-06-01

    Peter Bigler. VCH: New York, 1997. 249 pp. ISBN 3-527-28812-0. $99.00. This book, part of a four-volume series planned to deal with all aspects of a standard NMR experiment, is almost the exact book I have been hoping to find. My department has acquired, as have hundreds of other undergraduate institutions, high-field NMR instrumentation and the capability of doing extremely sophisticated experiments. However, the training is often a one- or two-day experience in which the material retained by the faculty trained is garbled and filled with holes, not unlike the information our students seem to retain. This text, and the accompanying exercises based on data contained on a CD-ROM, goes a long way to fill in the gaps and clarify misunderstandings about NMR processing.

  7. Elucidating structural characteristics of biomass using solution-state 2 D NMR with a mixture of deuterated dimethylsulfoxide and hexamethylphosphoramide

    SciTech Connect

    Pu, Yunqiao; Ragauskas, Arthur J.; Yoo, Chang Geun; Li, Mi

    2016-04-26

    In recent developments of NMR methods for characterization of lignocellulosic biomass allow improved understanding of plant cell-wall structures with minimal deconstruction and modification of biomass. This study introduces a new NMR solvent system composed of dimethylsulfoxide (DMSO-d6) and hexamethylphosphoramide (HMPA-d18). HMPA as a co-solvent enhanced swelling and mobility of the biomass samples; thereby it allowed enhancing signals of NMR spectra. Moreover, the structural information of biomass was successfully analyzed by the proposed NMR solvent system (DMSO-d6/HMPA-d18; 4:1, v/v) with different biomass. The proposed bi-solvent system does not require derivatization or isolation of biomass, facilitating a facile sample preparation and involving with no signals overlapping with biomass peaks. Furthermore, it also allows analyzing biomass with a room-temperature NMR probe instead of cryo-probes, which are traditionally used for enhancing signal intensities.

  8. Unambiguous Metabolite Identification in High-Throughput Metabolomics by Hybrid 1H-NMR/ESI-MS1 Approach

    SciTech Connect

    2016-10-18

    The invention improves accuracy of metabolite identification by combining direct infusion ESI-MS with one-dimensional 1H-NMR spectroscopy. First, we apply a standard 1H-NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in a metabolomics reference libraries. This generates a list of candidate metabolites. The list contains both false positive and ambiguous identifications. The software tool (the invention) takes the list of candidate metabolites, generated from NMRbased metabolite identification, and then calculates, for each of the candidate metabolites, the monoisotopic mass-tocharge (m/z) ratios for each commonly observed ion, fragment and adduct feature. These are then used to assign m/z ratios in experimental ESI-MS spectra of the same sample. Detection of the signals of a given metabolite in both NMR and MS spectra resolves the ambiguities, and therefore, significantly improves the confidence of the identification.

  9. Hyperpolarized 13C NMR lifetimes in the liquid-state: relating structures and T1 relaxation times

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Hashami, Zohreh; Fidelino, Leila; Kovacs, Zoltan; Lumata, Lloyd

    Among the various attempts to solve the insensitivity problem in nuclear magnetic resonance (NMR), the physics-based technique dissolution dynamic nuclear polarization (DNP) is probably the most successful method of hyperpolarization or amplifying NMR signals. Using this technique, liquid-state NMR signal enhancements of several thousand-fold are expected for low-gamma nuclei such as carbon-13. The lifetimes of these hyperpolarized 13C NMR signals are directly related to their 13C spin-lattice relaxation times T1. Depending upon the 13C isotopic location, the lifetimes of hyperpolarized 13C compounds can range from a few seconds to minutes. In this study, we have investigated the hyperpolarized 13C NMR lifetimes of several 13C compounds with various chemical structures from glucose, acetate, citric acid, naphthalene to tetramethylallene and their deuterated analogs at 9.4 T and 25 deg C. Our results show that the 13C T1s of these compounds can range from a few seconds to more than 60 s at this field. Correlations between the chemical structures and T1 relaxation times will be discussed and corresponding implications of these results on 13C DNP experiments will be revealed. US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  10. Contact replacement for NMR resonance assignment

    PubMed Central

    Xiong, Fei; Pandurangan, Gopal; Bailey-Kellogg, Chris

    2008-01-01

    Motivation: Complementing its traditional role in structural studies of proteins, nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in functional studies. NMR dynamics experiments characterize motions involved in target recognition, ligand binding, etc., while NMR chemical shift perturbation experiments identify and localize protein–protein and protein–ligand interactions. The key bottleneck in these studies is to determine the backbone resonance assignment, which allows spectral peaks to be mapped to specific atoms. This article develops a novel approach to address that bottleneck, exploiting an available X-ray structure or homology model to assign the entire backbone from a set of relatively fast and cheap NMR experiments. Results: We formulate contact replacement for resonance assignment as the problem of computing correspondences between a contact graph representing the structure and an NMR graph representing the data; the NMR graph is a significantly corrupted, ambiguous version of the contact graph. We first show that by combining connectivity and amino acid type information, and exploiting the random structure of the noise, one can provably determine unique correspondences in polynomial time with high probability, even in the presence of significant noise (a constant number of noisy edges per vertex). We then detail an efficient randomized algorithm and show that, over a variety of experimental and synthetic datasets, it is robust to typical levels of structural variation (1–2 AA), noise (250–600%) and missings (10–40%). Our algorithm achieves very good overall assignment accuracy, above 80% in α-helices, 70% in β-sheets and 60% in loop regions. Availability: Our contact replacement algorithm is implemented in platform-independent Python code. The software can be freely obtained for academic use by request from the authors. Contact: gopal@cs.purdue.edu; cbk@cs.dartmouth.edu PMID:18586716

  11. Solid-state NMR of proteins sedimented by ultracentrifugation

    PubMed Central

    Bertini, Ivano; Luchinat, Claudio; Parigi, Giacomo; Ravera, Enrico; Reif, Bernd; Turano, Paola

    2011-01-01

    Relatively large proteins in solution, spun in NMR rotors for solid samples at typical ultracentrifugation speeds, sediment at the rotor wall. The sedimented proteins provide high-quality solid-state-like NMR spectra suitable for structural investigation. The proteins fully revert to the native solution state when spinning is stopped, allowing one to study them in both conditions. Transiently sedimented proteins can be considered a novel phase as far as NMR is concerned. NMR of transiently sedimented molecules under fast magic angle spinning has the advantage of overcoming protein size limitations of solution NMR without the need of sample crystallization/precipitation required by solid-state NMR. PMID:21670262

  12. Magic Angle Spinning NMR of Viruses

    PubMed Central

    Quinn, Caitlin; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-01-01

    Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197

  13. Complete (1) H NMR assignment of cedranolides.

    PubMed

    Perez-Hernandez, Nury; Gordillo-Roman, Barbara; Arrieta-Baez, Daniel; Cerda-Garcia-Rojas, Carlos M; Joseph-Nathan, Pedro

    2017-03-01

    Complete and unambiguous (1) H NMR chemical shift assignment of α-cedrene (2) and cedrol (9), as well as for α-pipitzol (1), isocedrol (10), and the six related compounds 3-8 has been established by iterative full spin analysis using the PERCH NMR software (PERCH Solutions Ltd., Kuopio, Finland). The total sets of coupling constants are described and correlated with the conformational equilibria of the five-membered ring of 1-10, which were calculated using the complete basis set method. Copyright © 2015 John Wiley & Sons, Ltd.

  14. (13)C NMR Metabolomics: INADEQUATE Network Analysis.

    PubMed

    Clendinen, Chaevien S; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S

    2015-06-02

    The many advantages of (13)C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, (13)C NMR offers a straightforward measurement of these compounds. Two-dimensional (13)C-(13)C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semiautomated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE data sets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures.

  15. The Quiet Renaissance of Protein NMR

    PubMed Central

    Barrett, Paul J.; Chen, Jiang; Cho, Min-Kyu; Kim, Ji-Hun; Lu, Zhenwei; Mathew, Sijo; Peng, Dungeng; Song, Yuanli; Van Horn, Wade D.; Zhuang, Tiandi; Sönnichsen, Frank D.; Sanders, Charles R.

    2013-01-01

    From roughly 1985 through the start of the new millennium, the cutting edge of solution protein nuclear magnetic resonance (NMR) spectroscopy was to a significant extent driven by the aspiration to determine structures. Here we survey recent advances in protein NMR that herald a renaissance in which a number of its most important applications reflect the broad problem-solving capability displayed by this method during its classical era during the 1970s and early 80s. “Without receivers fitted and kept in order, the air may tingle and thrill with the message, but it will not reach my spirit and consciousness.” Mary Slessor, Calabar, circa 1910 PMID:23368985

  16. Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries.

    PubMed

    Pecher, Oliver; Bayley, Paul M; Liu, Hao; Liu, Zigeng; Trease, Nicole M; Grey, Clare P

    2016-04-01

    We have developed and explored the use of a new Automatic Tuning Matching Cycler (ATMC) in situ NMR probe system to track the formation of intermediate phases and investigate electrolyte decomposition during electrochemical cycling of Li- and Na-ion batteries (LIBs and NIBs). The new approach addresses many of the issues arising during in situ NMR, e.g., significantly different shifts of the multi-component samples, changing sample conditions (such as the magnetic susceptibility and conductivity) during cycling, signal broadening due to paramagnetism as well as interferences between the NMR and external cycler circuit that might impair the experiments. We provide practical insight into how to conduct ATMC in situ NMR experiments and discuss applications of the methodology to LiFePO4 (LFP) and Na3V2(PO4)2F3 cathodes as well as Na metal anodes. Automatic frequency sweep (7)Li in situ NMR reveals significant changes of the strongly paramagnetic broadened LFP line shape in agreement with the structural changes due to delithiation. Additionally, (31)P in situ NMR shows a full separation of the electrolyte and cathode NMR signals and is a key feature for a deeper understanding of the processes occurring during charge/discharge on the local atomic scale of NMR. (31)P in situ NMR with "on-the-fly" re-calibrated, varying carrier frequencies on Na3V2(PO4)2F3 as a cathode in a NIB enabled the detection of different P signals within a huge frequency range of 4000 ppm. The experiments show a significant shift and changes in the number as well as intensities of (31)P signals during desodiation/sodiation of the cathode. The in situ experiments reveal changes of local P environments that in part have not been seen in ex situ NMR investigations. Furthermore, we applied ATMC (23)Na in situ NMR on symmetrical Na-Na cells during galvanostatic plating. An automatic adjustment of the NMR carrier frequency during the in situ experiment ensured on-resonance conditions for the Na metal and

  17. Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Pecher, Oliver; Bayley, Paul M.; Liu, Hao; Liu, Zigeng; Trease, Nicole M.; Grey, Clare P.

    2016-04-01

    We have developed and explored the use of a new Automatic Tuning Matching Cycler (ATMC) in situ NMR probe system to track the formation of intermediate phases and investigate electrolyte decomposition during electrochemical cycling of Li- and Na-ion batteries (LIBs and NIBs). The new approach addresses many of the issues arising during in situ NMR, e.g., significantly different shifts of the multi-component samples, changing sample conditions (such as the magnetic susceptibility and conductivity) during cycling, signal broadening due to paramagnetism as well as interferences between the NMR and external cycler circuit that might impair the experiments. We provide practical insight into how to conduct ATMC in situ NMR experiments and discuss applications of the methodology to LiFePO4 (LFP) and Na3V2(PO4)2F3 cathodes as well as Na metal anodes. Automatic frequency sweep 7Li in situ NMR reveals significant changes of the strongly paramagnetic broadened LFP line shape in agreement with the structural changes due to delithiation. Additionally, 31P in situ NMR shows a full separation of the electrolyte and cathode NMR signals and is a key feature for a deeper understanding of the processes occurring during charge/discharge on the local atomic scale of NMR. 31P in situ NMR with "on-the-fly" re-calibrated, varying carrier frequencies on Na3V2(PO4)2F3 as a cathode in a NIB enabled the detection of different P signals within a huge frequency range of 4000 ppm. The experiments show a significant shift and changes in the number as well as intensities of 31P signals during desodiation/sodiation of the cathode. The in situ experiments reveal changes of local P environments that in part have not been seen in ex situ NMR investigations. Furthermore, we applied ATMC 23Na in situ NMR on symmetrical Na-Na cells during galvanostatic plating. An automatic adjustment of the NMR carrier frequency during the in situ experiment ensured on-resonance conditions for the Na metal and

  18. NMR Stark Spectroscopy: New Methods to Calibrate NMR Sensitivity to Electric Fields

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.

    The influence of electrostatics on NMR parameters is well accepted. Thus, NMR is a promising route to probe electrical features within molecules and materials. However, applications of NMR Stark effects (E-field induced changes in spin energy levels) have been elusive. I have developed new approaches to resolve NMR Stark effects from an applied E field. This calibrates nuclear probes whose spectral response might later be used to evaluate internal E fields that are critical to function, such as those due to local charge distributions or sample structure. I will present two novel experimental approaches for direct calibration of NMR quadrupolar Stark effects (QSEs). In the first, steady-state (few-second) excitation by an E field at twice the NMR frequency (2ω 0) is used to saturate spin magnetization. The extent of saturation vs. E-field amplitude calibrates the QSE response rate, while measurements vs sample orientation determine tensorial character. The second method instead synchronizes short (few µs) pulses of the 2ω0 E field with a multiple-pulse NMR sequence. This, “POWER” (Perturbations Observed With Enhanced Resolution) approach enables more accurate measure of small QSEs (i.e. few Hz spectral changes). A 2nd key advantage is the ability to define tensorial response without reorienting the sample, but instead varying the phase of the 2ω0 field. I will describe these experiments and my home-built NMR “Stark probe”, employed on a conventional wide-bore solid-state NMR system. Results with GaAs demonstrate each method, while extensions to a wider array of molecular and material systems may now be possible using these methods.

  19. Evidence for Split NMR Lines in Ferromagnetic 3He Films

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Zhang, Jinshan; Du, Yuliang; Gould, C. M.; Bozler, H. M.

    2006-09-01

    In earlier experiments on ferromagnetic 3He films, we observed a complex lineshape due in part to the dipolar field generated by polarization of the 3He nuclei. Much of the complex lineshape can be explained by the known distribution of the Grafoil platelets. However, there remained some evidence for a split NMR line at some temperatures. In our new experiments on ZYX grade exfoliated graphite where the size of individual platelets is much larger and the angular distribution is three times smaller, this splitting has become more evident over a wider range of temperatures. Now it is clear that the complex lineshape includes two peaks along with remaining orientation effects. We also find that roughly 2% of our signal comes from randomly oriented platelets. We present the details of our model for analyzing these lineshapes and the experimental results for the line splitting at several coverages in the ferromagnetic range. We discuss the possible sources of this line splitting.

  20. Low-cost, pseudo-Halbach dipole magnets for NMR

    NASA Astrophysics Data System (ADS)

    Tayler, Michael C. D.; Sakellariou, Dimitrios

    2017-04-01

    We present designs for compact, inexpensive and strong dipole permanent magnets aimed primarily at magnetic resonance applications where prepolarization and detection occur at different locations. Low-homogeneity magnets with a 7.5 mm bore size and field up to nearly 2 T are constructed using low-cost starting materials, standard workshop tools and only few hours of labor - an achievable project for a student or postdoc with spare time. As an application example we show how our magnet was used to polarize the nuclear spins in approximately 1 mL of pure [13C ]-methanol prior to detection of its high-resolution NMR spectrum at zero field (measurement field below 10-10 T), where signals appear at multiples of the carbon-hydrogen spin-spin coupling frequency 1JCH = 140.7 (1) Hz.

  1. NMR of laser-polarized 129Xe in blood foam

    NASA Technical Reports Server (NTRS)

    Tseng, C. H.; Peled, S.; Nascimben, L.; Oteiza, E.; Walsworth, R. L.; Jolesz, F. A.

    1997-01-01

    Laser-polarized 129Xe dissolved in a foam preparation of fresh human blood was investigated. The NMR signal of 129Xe dissolved in blood was enhanced by creating a foam in which the dissolved 129Xe exchanged with a large reservoir of gaseous laser-polarized 129Xe. The dissolved 129Xe T1 in this system was found to be significantly shorter in oxygenated blood than in deoxygenated blood. The T1 of 129Xe dissolved in oxygenated blood foam was found to be approximately 21 (+/-5) s, and in deoxygenated blood foam to be greater than 40 s. To understand the oxygenation trend, T1 measurements were also made on plasma and hemoglobin foam preparations. The measurement technique using a foam gas-liquid exchange interface may also be useful for studying foam coarsening and other liquid physical properties.

  2. Basic facts and perspectives of Overhauser DNP NMR.

    PubMed

    Ravera, Enrico; Luchinat, Claudio; Parigi, Giacomo

    2016-03-01

    After the first surprisingly large (1)H DNP enhancements of the water signal in aqueous solutions of nitroxide radicals observed at high magnetic fields, Overhauser DNP is gaining increasing attention for a number of applications now flourishing, showing the potentialities of this mechanism in solution and solid state NMR as well as in MRI. Unexpected Overhauser DNP enhancements in insulating solids were recently measured at 100K, with a magnitude which increases with the applied magnetic field. We recapitulate here the theoretical premises of Overhauser DNP in solution and analyze the effects of the various parameters on the efficacy of the mechanism, underlining the link between the DNP enhancements and the field dependent relaxation properties. Promisingly, more effective DNP enhancements are expected by exploiting the potentialities offered by (13)C detection and the use of supercritical fluids.

  3. Low-cost, pseudo-Halbach dipole magnets for NMR.

    PubMed

    Tayler, Michael C D; Sakellariou, Dimitrios

    2017-04-01

    We present designs for compact, inexpensive and strong dipole permanent magnets aimed primarily at magnetic resonance applications where prepolarization and detection occur at different locations. Low-homogeneity magnets with a 7.5mm bore size and field up to nearly 2T are constructed using low-cost starting materials, standard workshop tools and only few hours of labor - an achievable project for a student or postdoc with spare time. As an application example we show how our magnet was used to polarize the nuclear spins in approximately 1mL of pure [(13)C]-methanol prior to detection of its high-resolution NMR spectrum at zero field (measurement field below 10(-10)T), where signals appear at multiples of the carbon-hydrogen spin-spin coupling frequency (1)JCH=140.7(1)Hz.

  4. (1)H NMR spectra dataset and solid-state NMR data of cowpea (Vigna unguiculata).

    PubMed

    Alves Filho, Elenilson G; Silva, Lorena M A; Teofilo, Elizita M; Larsen, Flemming H; de Brito, Edy S

    2017-04-01

    In this article the NMR data from chemical shifts, coupling constants, and structures of all the characterized compounds were provided, beyond a complementary PCA evaluation for the corresponding manuscript (E.G. Alves Filho, L.M.A. Silva, E.M. Teofilo, F.H. Larsen, E.S. de Brito, 2017) [3]. In addition, a complementary assessment from solid-state NMR data was provided. For further chemometric analysis, numerical matrices from the raw (1)H NMR data were made available in Microsoft Excel workbook format (.xls).

  5. NMR measurement system including two synchronized ring buffers, with 128 rf coils for in situ water monitoring in a polymer electrolyte fuel cell.

    PubMed

    Ogawa, Kuniyasu; Haishi, Tomoyuki; Aoki, Masaru; Hasegawa, Hiroshi; Morisaka, Shinichi; Hashimoto, Seitaro

    2017-01-01

    A small radio-frequency (rf) coil inserted into a polymer electrolyte fuel cell (PEFC) can be used to acquire nuclear magnetic resonance (NMR) signals from the water in a membrane electrode assembly (MEA) or in oxygen gas channels in the PEFC. Measuring the spatial distribution of the water in a large PEFC requires using many rf probes, so an NMR measurement system which acquires NMR signals from 128 rf probes at intervals of 0.5 s was manufactured. The system has eight rf transceiver units with a field-programmable gate array (FPGA) for modulation of the excitation pulse and quadrature phase detection of the NMR signal, and one control unit with two ring buffers for data control. The sequence data required for the NMR measurement were written into one ring buffer. The acquired NMR signal data were then written temporarily into the other ring buffer and then were transmitted to a personal computer (PC). A total of 98 rf probes were inserted into the PEFC that had an electrical generation area of 16 cm × 14 cm, and the water generated in the PEFC was measured when the PEFC operated at 100 A. As a result, time-dependent changes in the spatial distribution of the water content in the MEA and the water in the oxygen gas channels were obtained.

  6. Zero-field NMR and NQR studies of magnetically ordered state in charge-ordered EuPtP

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Maruyama, T.; Ueda, K.; Mito, T.; Mitsuda, A.; Umeda, M.; Sugishima, M.; Wada, H.

    2015-03-01

    EuPtP undergoes two valence transitions and has two kinds of valence states of Eu ions at low temperatures. In the charge-ordered state, this compound shows an antiferromagnetic order ascribed to magnetic divalent Eu ions. We investigated the antiferromagnetically ordered state of EuPtP by nuclear magnetic resonance (NMR) measurement and nuclear quadrupole resonance (NQR) measurement in a zero external magnetic field. The observed 153Eu NMR signals of a magnetic divalent state and Eu,153151 NQR signals of a nonmagnetic trivalent state clearly demonstrate that the spins order in the hexagonal basal plane and the internal magnetic field is not canceled out, even at the Eu3 + layers which are in the middle of magnetic Eu2 + layers. In addition, the observation of 31P and 195Pt NMR spectra allowed us to discuss a possible magnetic structure. We also evaluated the nuclear quadrupole frequencies for both Eu2 + and Eu3 + ion states.

  7. A selective inversion recovery method for the improvement of 23Na NMR spectral resolution in isolated perfused rat hearts.

    PubMed

    Simor, T; Kim, S K; Chu, W J; Pohost, G M; Elgavish, G A

    1993-01-01

    Shift-reagent-aided 23Na NMR spectroscopy allows differentiation of the intracellular (Na(i)) and extracellular sodium (Na(o)) signals. The goal of the present study has been to develop a 23Na NMR spectroscopic method to minimize the intensity of the shift-reagent-shifted Na(o) signal and thus increase Na(i) resolution. This is achieved by a selective inversion recovery (SIR) method which enhances the resolution between the Na(i) and Na(o) peaks in shift-reagent-aided 23Na NMR spectroscopy. The application of SIR with Dy(TTHA), Tm(DOTP), or with low concentrations of Dy(PPP)2 results in both good spectral resolution and physiologically acceptable contractile function in the isolated, perfused rat heart model.

  8. Temperature response of 129Xe depolarization transfer and its application for ultra-sensitive NMR detection

    SciTech Connect

    Schroeder, Leif; Schroder, Leif; Meldrum, Tyler; Smith, Monica; Lowery, Thomas J.; Wemmer, David E.; Pines, Alexander

    2008-03-20

    Temporary trapping of atomic xenon in functionalized cryptophane cages makes the high sensitivity of hyperpolarized (hp) 129Xe available for highly specific NMR detection of biomolecules like proteins in solution. Here, we study the signal transfer onto a reservoir of unbound hp xenon by gating the residence time of the nuclei in the cage through the temperature-dependent exchange rate. Temperature changes were detectable immediately as an altered reservoir signal and yielded a sensitivity of 0.6 K. The temperature response is adjustable with lower concentrations of caged xenon providing more sensitivity at higher temperatures and allows ultra-sensitive detection of such molecular cages at 310 K. Functionalized cryptophane could be detected at concentrations as low as 10nM which corresponds to a 4000-fold sensitivity enhancement compared to conventional detection. This sensitivity makes hp-NMR capable of detecting such constructs in concentrations far belowthe detection limit by UV-visible light absorbance.

  9. Nonlinear detection of secondary isotopic chemical shifts in NMR through spin noise

    NASA Astrophysics Data System (ADS)

    Pöschko, Maria Theresia; Rodin, Victor V.; Schlagnitweit, Judith; Müller, Norbert; Desvaux, Hervé

    2017-01-01

    The detection of minor species in the presence of large amounts of similar main components remains a key challenge in analytical chemistry, for instance, to obtain isotopic fingerprints. As an alternative to the classical NMR scheme based on coherent excitation and detection, here we introduce an approach based on spin-noise detection. Chemical shifts and transverse relaxation rates are determined using only the detection circuit. Thanks to a nonlinear effect in mixtures with small chemical shift dispersion, small signals on top of a larger one can be observed with increased sensitivity as bumps on a dip; the latter being the signature of the main magnetization. Experimental observations are underpinned by an analytical theory: the coupling between the magnetization and the coil provides an amplified detection capability of both small static magnetic field inhomogeneities and small NMR signals. This is illustrated by two-bond 12C/13C isotopic measurements.

  10. Nonlinear detection of secondary isotopic chemical shifts in NMR through spin noise

    PubMed Central

    Pöschko, Maria Theresia; Rodin, Victor V.; Schlagnitweit, Judith; Müller, Norbert; Desvaux, Hervé

    2017-01-01

    The detection of minor species in the presence of large amounts of similar main components remains a key challenge in analytical chemistry, for instance, to obtain isotopic fingerprints. As an alternative to the classical NMR scheme based on coherent excitation and detection, here we introduce an approach based on spin-noise detection. Chemical shifts and transverse relaxation rates are determined using only the detection circuit. Thanks to a nonlinear effect in mixtures with small chemical shift dispersion, small signals on top of a larger one can be observed with increased sensitivity as bumps on a dip; the latter being the signature of the main magnetization. Experimental observations are underpinned by an analytical theory: the coupling between the magnetization and the coil provides an amplified detection capability of both small static magnetic field inhomogeneities and small NMR signals. This is illustrated by two-bond 12C/13C isotopic measurements. PMID:28067218

  11. Communication: Phase incremented echo train acquisition in NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Baltisberger, Jay H.; Walder, Brennan J.; Keeler, Eric G.; Kaseman, Derrick C.; Sanders, Kevin J.; Grandinetti, Philip J.

    2012-06-01

    We present an improved and general approach for implementing echo train acquisition (ETA) in magnetic resonance spectroscopy, particularly where the conventional approach of Carr-Purcell-Meiboom-Gill (CPMG) acquisition would produce numerous artifacts. Generally, adding ETA to any N-dimensional experiment creates an N + 1 dimensional experiment, with an additional dimension associated with the echo count, n, or an evolution time that is an integer multiple of the spacing between echo maxima. Here we present a modified approach, called phase incremented echo train acquisition (PIETA), where the phase of the mixing pulse and every other refocusing pulse, ϕP, is incremented as a single variable, creating an additional phase dimension in what becomes an N + 2 dimensional experiment. A Fourier transform with respect to the PIETA phase, ϕP, converts the ϕP dimension into a Δp dimension where desired signals can be easily separated from undesired coherence transfer pathway signals, thereby avoiding cumbersome or intractable phase cycling schemes where the receiver phase must follow a master equation. This simple modification eliminates numerous artifacts present in NMR experiments employing CPMG acquisition and allows "single-scan" measurements of transverse relaxation and J-couplings. Additionally, unlike CPMG, we show how PIETA can be appended to experiments with phase modulated signals after the mixing pulse.

  12. 13C NMR of tunnelling methyl groups

    NASA Astrophysics Data System (ADS)

    Detken, A.

    The dipolar interactions between the protons and the central 13C nucleus of a 13CH3 group are used to study rotational tunnelling and incoherent dynamics of such groups in molecular solids. Single-crystal 13C NMR spectra are derived for arbitrary values of the tunnel frequency upsilon t. Similarities to ESR and 2H NMR are pointed out. The method is applied to three different materials. In the hydroquinone/acetonitrile clathrate, the unique features in the 13C NMR spectra which arise from tunnelling with a tunnel frequency that is much larger than the dipolar coupling between the methyl protons and the 13C nucleus are demonstrated, and the effects of incoherent dynamics are studied. The broadening of the 13C resonances is related to the width of the quasi-elastic line in neutron scattering. Selective magnetization transfer experiments for studying slow incoherent dynamics are proposed. For the strongly hindered methyl groups of L-alanine, an upper limit for upsilon is derived from the 13C NMR spectrum. In aspirinTM (acetylsalicylic acid), incoherent reorientations dominate the spectra down to the lowest temperatures studied; their rate apparently increases with decreasing temperature below 25K.

  13. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra.

  14. Advanced Laboratory NMR Spectrometer with Applications.

    ERIC Educational Resources Information Center

    Biscegli, Clovis; And Others

    1982-01-01

    A description is given of an inexpensive nuclear magnetic resonance (NMR) spectrometer suitable for use in advanced laboratory courses. Applications to the nondestructive analysis of the oil content in corn seeds and in monitoring the crystallization of polymers are presented. (SK)

  15. Solid-state NMR for bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Reichhardt, Courtney; Cegelski, Lynette

    2014-04-01

    Bacteria associate with surfaces and one another by elaborating an extracellular matrix to encapsulate cells, creating communities termed biofilms. Biofilms are beneficial in some ecological niches, but also contribute to the pathogenesis of serious and chronic infectious diseases. New approaches and quantitative measurements are needed to define the composition and architecture of bacterial biofilms to help drive the development of strategies to interfere with biofilm assembly. Solid-state nuclear magnetic resonance (NMR) is uniquely suited to the examination of insoluble and complex macromolecular and whole-cell systems. This article highlights three examples that implement solid-state NMR to deliver insights into bacterial biofilm composition and changes in cell-wall composition as cells transition to the biofilm lifestyle. Most recently, solid-state NMR measurements provided a total accounting of the protein and polysaccharide components in the extracellular matrix of an Escherichia coli biofilm and transformed our qualitative descriptions of matrix composition into chemical parameters that permit quantitative comparisons among samples. We present additional data for whole biofilm samples (cells plus the extracellular matrix) that complement matrix-only analyses. The study of bacterial biofilms by solid-state NMR is an exciting avenue ripe with many opportunities and we close the article by articulating some outstanding questions and future directions in this area.

  16. Structural Studies of Biological Solids Using NMR

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  17. Hydrate Shell Growth Measured Using NMR.

    PubMed

    Haber, Agnes; Akhfash, Masoumeh; Loh, Charles K; Aman, Zachary M; Fridjonsson, Einar O; May, Eric F; Johns, Michael L

    2015-08-18

    Benchtop nuclear magnetic resonance (NMR) pulsed field gradient (PFG) and relaxation measurements were used to monitor the clathrate hydrate shell growth occurring in water droplets dispersed in a continuous cyclopentane phase. These techniques allowed the growth of hydrate inside the opaque exterior shell to be monitored and, hence, information about the evolution of the shell's morphology to be deduced. NMR relaxation measurements were primarily used to monitor the hydrate shell growth kinetics, while PFG NMR diffusion experiments were used to determine the nominal droplet size distribution (DSD) of the unconverted water inside the shell core. A comparison of mean droplet sizes obtained directly via PFG NMR and independently deduced from relaxation measurements showed that the assumption of the shell model-a perfect spherical core of unconverted water-for these hydrate droplet systems is correct, but only after approximately 24 h of shell growth. Initially, hydrate growth is faster and heat-transfer-limited, leading to porous shells with surface areas larger than that of spheres with equivalent volumes. Subsequently, the hydrate growth rate becomes mass-transfer-limited, and the shells become thicker, spherical, and less porous.

  18. NMR characterization of polymers: Review and update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NMR spectroscopy is a major technique for the characterization and analysis of polymers. A large number of methodologies have been developed in both the liquid and the solid state, and the literature has grown considerably (1-5). The field now covers a broad spectrum of activities, including polym...

  19. Pseudorandom selective excitation in NMR

    NASA Astrophysics Data System (ADS)

    Walls, Jamie D.; Coomes, Alexandra

    2011-09-01

    In this work, average Hamiltonian theory is used to study selective excitation under a series of small flip-angle θ-pulses θ ≪ {π}/{3} applied either periodically [corresponding to the DANTE pulse sequence] or aperiodically to a spin-1/2 system. First, an average Hamiltonian description of the DANTE pulse sequence is developed that is valid for frequencies either at or very far from integer multiples of {1}/{τ}, where τ is the interpulse delay. For aperiodic excitation, a single resonance, νsel, can be selectively excited if the θ-pulse phases are modulated in concert with the interpulse delays. The conditions where average Hamiltonian theory can be accurately applied to describe the dynamics under aperiodic selective pulses, which are referred to as pseudorandom-DANTE or p-DANTE sequences, are similar to those found for the DANTE sequence. Signal averaging over different p-DANTE sequences improves the apparent selectivity at νsel by reducing the excitations at other frequencies. Experimental demonstrations of p-DANTE sequences and comparisons with the theory are presented.

  20. NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins.

    PubMed

    Liepinsh, E; Otting, G; Wüthrich, K

    1992-09-01

    Hydroxyl groups of serine and threonine, and to some extent also tyrosine are usually located on or near the surface of proteins. NMR observations of the hydroxyl protons is therefore of interest to support investigations of the protein surface in solution, and knowledge of the hydroxyl NMR lines is indispensable as a reference for studies of protein hydration in solution. In this paper, solvent suppression schemes recently developed for observation of hydration water resonances were used to observe hydroxyl protons of serine, threonine and tyrosine in aqueous solutions of small model peptides and the protein basic pancreatic trypsin inhibitor (BPTI). The chemical shifts of the hydroxyl protons of serine and threonine were found to be between 5.4 and 6.2 ppm, with random-coil shifts at 4 degrees C of 5.92 ppm and 5.88 ppm, respectively, and those of tyrosine between 9.6 and 10.1 ppm, with a random-coil shift of 9.78 ppm. Since these spectral regions are virtually free of other polypeptide 1H NMR signals, cross peaks with the hydroxyl protons are usually well separated even in homonuclear two-dimensional 1H NMR spectra. To illustrate the practical use of hydroxyl proton NMR in polypeptides, the conformations of the side-chain hydroxyl groups in BPTI were characterized by measurements of nuclear Overhauser effects and scalar coupling constants involving the hydroxyl protons. In addition, hydroxyl proton exchange rates were measured as a function of pH, where simple first-order rate processes were observed for both acid- and base-catalysed exchange of all but one of the hydroxyl-bearing residues in BPTI. For the conformations of the individual Ser, Thr and Tyr side chains characterized in the solution structure with the use of hydroxyl proton NMR, both exact coincidence and significant differences relative to the corresponding BPTI crystal structure data were observed.

  1. High-throughput microcoil NMR of compound libraries using zero-dispersion segmented flow analysis.

    PubMed

    Kautz, Roger A; Goetzinger, Wolfgang K; Karger, Barry L

    2005-01-01

    An automated system for loading samples into a microcoil NMR probe has been developed using segmented flow analysis. This approach enhanced 2-fold the throughput of the published direct injection and flow injection methods, improved sample utilization 3-fold, and was applicable to high-field NMR facilities with long transfer lines between the sample handler and NMR magnet. Sample volumes of 2 microL (10-30 mM, approximately 10 microg) were drawn from a 96-well microtiter plate by a sample handler, then pumped to a 0.5-microL microcoil NMR probe as a queue of closely spaced "plugs" separated by an immiscible fluorocarbon fluid. Individual sample plugs were detected by their NMR signal and automatically positioned for stopped-flow data acquisition. The sample in the NMR coil could be changed within 35 s by advancing the queue. The fluorocarbon liquid wetted the wall of the Teflon transfer line, preventing the DMSO samples from contacting the capillary wall and thus reducing sample losses to below 5% after passage through the 3-m transfer line. With a wash plug of solvent between samples, sample-to-sample carryover was <1%. Significantly, the samples did not disperse into the carrier liquid during loading or during acquisitions of several days for trace analysis. For automated high-throughput analysis using a 16-second acquisition time, spectra were recorded at a rate of 1.5 min/sample and total deuterated solvent consumption was <0.5 mL (1 US dollar) per 96-well plate.

  2. Freezing point depression of water in phospholipid membranes: a solid-state NMR study.

    PubMed

    Lee, Dong-Kuk; Kwon, Byung Soo; Ramamoorthy, Ayyalusamy

    2008-12-02

    Lipid-water interaction plays an important role in the properties of lipid bilayers, cryoprotectants, and membrane-associated peptides and proteins. The temperature at which water bound to lipid bilayers freezes is lower than that of free water. Here, we report a solid-state NMR investigation on the freezing point depression of water in phospholipid bilayers in the presence and absence of cholesterol. Deuterium NMR spectra at different temperatures ranging from -75 to + 10 degrees C were obtained from fully (2)H2O-hydrated POPC (1-palmitoyl-2-oleoylphosphatidylcholine) multilamellar vesicles (MLVs), prepared with and without cholesterol, to determine the freezing temperature of water and the effect of cholesterol on the freezing temperature of water in POPC bilayers. Our 2H NMR experiments reveal the motional behavior of unfrozen water molecules in POPC bilayers even at temperatures significantly below 0 degrees C and show that the presence of cholesterol further lowered the freezing temperature of water in POPC bilayers. These results suggest that in the presence of cholesterol the fluidity and dynamics of lipid bilayers can be retained even at very low temperatures as exist in the liquid crystalline phase of the lipid. Therefore, bilayer samples prepared with a cryoprotectant like cholesterol should enable the performance of multidimensional solid-state NMR experiments to investigate the structure, dynamics, and topology of membrane proteins at a very low temperature with enhanced sample stability and possibly a better sensitivity. Phosphorus-31 NMR data suggest that lipid bilayers can be aligned at low temperatures, while 15N NMR experiments demonstrate that such aligned samples can be used to enhance the signal-to-noise ratio of is 15N chemical shift spectra of a 37-residue human antimicrobial peptide, LL-37.

  3. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR

    SciTech Connect

    Johnson, Robert L.; Perras, Frédéric A.; Kobayashi, Takeshi; Schwartz, Thomas J.; Dumesic, James A.; Shanks, Brent H.; Pruski, Marek

    2015-11-20

    DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on γ-Al2O3-supported Pd nanoparticles. In addition, by offering >2500-fold time savings, the technique enabled the observation of 13C-13C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface.

  4. Intelligent Sensing and Probing with Applications to Protein NMR Spectroscopy and Laser Chemistry

    DTIC Science & Technology

    2006-08-11

    Harvard College REPORT NUMBER Office of Sponsored Programs Holyoke Center, Suite 600 Cambridge, MA 02138-3846 9. SPONSORING/MONITORING AGENCY NAME(S...SUPPLEMENTARY NOTES 14. ABSTRACT The main theme of the grant has been to study design of input probe signals for robust system identification . We...that these new nonlinear control methods for probe design and system identification are an enabling technology for NMR and MRI in inhomogeneous fields

  5. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR

    DOE PAGES

    Johnson, Robert L.; Perras, Frédéric A.; Kobayashi, Takeshi; ...

    2015-11-20

    DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on γ-Al2O3-supported Pd nanoparticles. In addition, by offering >2500-fold time savings, the technique enabled the observation of 13C-13C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface.

  6. Detection of human muscle glycogen by natural abundance /sup 13/C NMR

    SciTech Connect

    Avison, M.J.; Rothman, D.L.; Nadel, E.; Shulman, R.G.

    1988-03-01

    Natural abundance /sup 13/C nuclear magnetic resonance spectroscopy was used to detect signals from glycogen in the human gastrocnemius muscle. The reproducibility of the measurement was demonstrated, and the ability to detect dynamic changes was confirmed by measuring a decrease in muscle glycogen levels after exercise and its subsequent repletion. Single frequency gated /sup 1/H decoupling was used to obtain decoupled natural abundance /sup 13/C NMR spectra of the C-1 position of muscle glycogen.

  7. Oxygen-17 dynamic nuclear polarisation enhanced solid-state NMR spectroscopy at 18.8 T.

    PubMed

    Brownbill, Nick J; Gajan, David; Lesage, Anne; Emsley, Lyndon; Blanc, Frédéric

    2017-02-23

    We report (17)O dynamic nuclear polarisation (DNP) enhanced solid-state NMR experiments at 18.8 T. Several formulations were investigated on the Mg(OH)2 compound. A signal enhancement factor of 17 could be obtained when the solid particles were incorporated into a glassy o-terphenyl matrix doped with BDPA using the Overhauser polarisation transfer scheme whilst the cross effect mechanism enabled by TEKPol yielded a slightly lower enhancement but more time efficient data acquisition.

  8. A mobile one-sided NMR sensor with a homogeneous magnetic field: the NMR-MOLE.

    PubMed

    Manz, B; Coy, A; Dykstra, R; Eccles, C D; Hunter, M W; Parkinson, B J; Callaghan, P T

    2006-11-01

    A new portable NMR sensor with a novel one-sided access magnet design, termed NMR-MOLE (MObile Lateral Explorer), has been characterised in terms of sensitivity and depth penetration. The magnet has been designed to be portable and create a volume with a relatively homogeneous magnetic field, 15,000 ppm over a region from 4 to 16 mm away from the probe, with maximum sensitivity at a depth of 10 mm. The proton NMR frequency is 3.3 MHz. We have demonstrated that with this approach a highly sensitive, portable, unilateral NMR sensor can be built. Such a design is especially suited for the characterisation of liquids in situations where unilateral or portable access is required.

  9. Non-invasive predictors of human cortical bone mechanical properties: T(2)-discriminated H NMR compared with high resolution X-ray.

    PubMed

    Horch, R Adam; Gochberg, Daniel F; Nyman, Jeffry S; Does, Mark D

    2011-01-21

    Recent advancements in magnetic resonance imaging (MRI) have enabled clinical imaging of human cortical bone, providing a potentially powerful new means for assessing bone health with molecular-scale sensitivities unavailable to conventional X-ray-based diagnostics. To this end, (1)H nuclear magnetic resonance (NMR) and high-resolution X-ray signals from human cortical bone samples were correlated with mechanical properties of bone. Results showed that (1)H NMR signals were better predictors of yield stress, peak stress, and pre-yield toughness than were the X-ray derived signals. These (1)H NMR signals can, in principle, be extracted from clinical MRI, thus offering the potential for improved clinical assessment of fracture risk.

  10. Microfabricated inserts for magic angle coil spinning (MACS) wireless NMR spectroscopy.

    PubMed

    Badilita, Vlad; Fassbender, Birgit; Kratt, Kai; Wong, Alan; Bonhomme, Christian; Sakellariou, Dimitris; Korvink, Jan G; Wallrabe, Ulrike

    2012-01-01

    This article describes the development and testing of the first automatically microfabricated probes to be used in conjunction with the magic angle coil spinning (MACS) NMR technique. NMR spectroscopy is a versatile technique for a large range of applications, but its intrinsically low sensitivity poses significant difficulties in analyzing mass- and volume-limited samples. The combination of microfabrication technology and MACS addresses several well-known NMR issues in a concerted manner for the first time: (i) reproducible wafer-scale fabrication of the first-in-kind on-chip LC microresonator for inductive coupling of the NMR signal and reliable exploitation of MACS capabilities; (ii) improving the sensitivity and the spectral resolution by simultaneous spinning the detection microcoil together with the sample at the "magic angle" of 54.74° with respect to the direction of the magnetic field (magic angle spinning - MAS), accompanied by the wireless signal transmission between the microcoil and the primary circuit of the NMR spectrometer; (iii) given the high spinning rates (tens of kHz) involved in the MAS methodology, the microfabricated inserts exhibit a clear kinematic advantage over their previously demonstrated counterparts due to the inherent capability to produce small radius cylindrical geometries, thus tremendously reducing the mechanical stress and tearing forces on the sample. In order to demonstrate the versatility of the microfabrication technology, we have designed MACS probes for various Larmor frequencies (194, 500 and 700 MHz) testing several samples such as water, Drosophila pupae, adamantane solid and LiCl at different magic angle spinning speeds.

  11. Solid-, solution-, and gas-state NMR monitoring of ¹³C-cellulose degradation in an anaerobic microbial ecosystem.

    PubMed

    Yamazawa, Akira; Iikura, Tomohiro; Shino, Amiu; Date, Yasuhiro; Kikuchi, Jun

    2013-07-29

    Anaerobic digestion of biomacromolecules in various microbial ecosystems is influenced by the variations in types, qualities, and quantities of chemical components. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for characterizing the degradation of solids to gases in anaerobic digestion processes. Here we describe a characterization strategy using NMR spectroscopy for targeting the input solid insoluble biomass, catabolized soluble metabolites, and produced gases. ¹³C-labeled cellulose produced by Gluconacetobacter xylinus was added as a substrate to stirred tank reactors and gradually degraded for 120 h. The time-course variations in structural heterogeneity of cellulose catabolism were determined using solid-state NMR, and soluble metabolites produced by cellulose degradation were monitored using solution-state NMR. In particular, cooperative changes between the solid NMR signal and ¹³C-¹³C/¹³C-¹²C isotopomers in the microbial degradation of ¹³C-cellulose were revealed by a correlation heat map. The triple phase NMR measurements demonstrated that cellulose was anaerobically degraded, fermented, and converted to methane gas from organic acids such as acetic acid and butyric acid.

  12. Ab initio and DFT study of 31P-NMR chemical shifts of sphingomyelin and dihydrosphingomyelin lipid molecule

    NASA Astrophysics Data System (ADS)

    Sugimori, K.; Kawabe, H.; Nagao, H.; Nishikawa, K.

    One of the phospholipids, sphingomyelin (SM, N-acyl-sphingosine-1-phosphorylcholine) is the most abundant component of mammalian membranes in brain, nervous tissues, and human ocular lens. It plays an important role for apoptosis, aging, and signal transduction. Recently, Yappert and coworkers have shown that human lens sphingomyelin and its hydrogenated derivative, dihydrosphingomyelin (DHSM) are interacted with Ca2+ ions to develop human cataracts. Previously, we have investigated conformational differences between an isolated SM/DHSM molecule and Ca2+-coordinated form by using density functional theory (DFT) for geometry optimization and normal mode analysis. As a result, one of stable conformers of SMs has a hydrogen bonding between hydroxyl group and phosphate group, whereas another conformer has a hydrogen bonding between hydroxyl and phosphate amide group. In this study, 31P-Nuclear Magnetic Resonance (NMR) shielding constants of the obtained conformers are investigated by using ab initio and DFT with NMR-gauge invariant atomic orbitals (NMR-GIAO) calculations. The experimental 31P-NMR chemical shifts of SMs and DHSMs have significant small value around 0.1 ppm. We consider the relative conformational changes between SMs and DHSMs affect the slight deviations of 31P-NMR chemical shifts, and discuss intramolecular hydrogen bondings and the solvent effect in relation to NMR experimental reference.

  13. A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques.

    PubMed

    Hamzah, Rosniza; Bakar, Mohamad Abu; Khairuddean, Melati; Mohammed, Issam Ahmed; Adnan, Rohana

    2012-09-12

    A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping (1)H-NMR signals of ENR-50 at δ 1.56, 1.68-1.70, 2.06, 2.15-2.17 ppm were successfully assigned. In this work, the <(13)C-NMR chemical shift assignments of ENR-50 were consistent to the previously reported work. A cyclic dithiocarbonate derivative of ENR-50 was synthesized from the reaction of purified ENR-50 with carbon disulfide (CS(2)), in the presence of 4-dimethylaminopyridine (DMAP) as catalyst at reflux temperature. The cyclic dithiocarbonate formation involved the epoxide ring opening of the ENR-50. This was followed by insertion of the C-S moiety of CS(2) at the oxygen attached to the quaternary carbon and methine carbon of epoxidized isoprene unit, respectively. The bands due to the C=S and C-O were clearly observed in the FTIR spectrum while the (1)H-NMR spectrum of the derivative revealed the peak attributed to the methylene protons had split. The (13)C-NMR spectrum of the derivative further indicates two new carbon peaks arising from the >C=S and quaternary carbon of cyclic dithiocarbonate. All other (1)H- and (13)C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50.

  14. A single-board NMR spectrometer based on a software defined radio architecture

    NASA Astrophysics Data System (ADS)

    Tang, Weinan; Wang, Weimin

    2011-01-01

    A single-board software defined radio (SDR) spectrometer for nuclear magnetic resonance (NMR) is presented. The SDR-based architecture, realized by combining a single field programmable gate array (FPGA) and a digital signal processor (DSP) with peripheral radio frequency (RF) front-end circuits, makes the spectrometer compact and reconfigurable. The DSP, working as a pulse programmer, communicates with a personal computer via a USB interface and controls the FPGA through a parallel port. The FPGA accomplishes digital processing tasks such as a numerically controlled oscillator (NCO), digital down converter (DDC) and gradient waveform generator. The NCO, with agile control of phase, frequency and amplitude, is part of a direct digital synthesizer that is used to generate an RF pulse. The DDC performs quadrature demodulation, multistage low-pass filtering and gain adjustment to produce a bandpass signal (receiver bandwidth from 3.9 kHz to 10 MHz). The gradient waveform generator is capable of outputting shaped gradient pulse waveforms and supports eddy-current compensation. The spectrometer directly acquires an NMR signal up to 30 MHz in the case of baseband sampling and is suitable for low-field (<0.7 T) application. Due to the featured SDR architecture, this prototype has flexible add-on ability and is expected to be suitable for portable NMR systems.

  15. Direct observation of minimum-sized amyloid fibrils using solution NMR spectroscopy

    PubMed Central

    Yoshimura, Yuichi; Sakurai, Kazumasa; Lee, Young-Ho; Ikegami, Takahisa; Chatani, Eri; Naiki, Hironobu; Goto, Yuji

    2010-01-01

    It is challenging to investigate the structure and dynamics of amyloid fibrils at the residue and atomic resolution because of their high molecular weight and heterogeneous properties. Here, we used solution nuclear magnetic resonance (NMR) spectroscopy to characterize the conformation and flexibility of amyloid fibrils of β2-microglobulin (β2m), for which direct observation of solution NMR could not be made. Ultrasonication led to fragmentation producing a solution of minimum-sized fibrils with a molecular weight of around 6 MDa. In 1H-15N heteronuclear single-quantum correlation measurements, five signals, derived from N-terminal residues (i.e., Ile1, Gln2, Arg3, Thr4, and Lys6), were newly detected. Signal strength decreased with the distance from the N-terminal end. Capping experiments with the unlabeled β2m monomer indicated that the signals originated from molecules located inside the fibrils. Ultrasonication makes the residues with moderate flexibility observable by reducing size of the fibrils. Thus, solution NMR measurements of ultrasonicated fibrils will be promising for studying the structure and dynamics of fibrils. PMID:20936689

  16. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by [sup 31]P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G. )

    1992-11-01

    In this study, Iowa State University researchers used [sub 31]P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850[degrees]F[sup +] distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.[sup 31]P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different [sup 31]P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a [sup 31]P-tagged reagent (ClPOCMe[sub 2]CMe[sub 2]O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  17. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by {sup 31}P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G.

    1992-11-01

    In this study, Iowa State University researchers used {sub 31}P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850{degrees}F{sup +} distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.{sup 31}P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different {sup 31}P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a {sup 31}P-tagged reagent (ClPOCMe{sub 2}CMe{sub 2}O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  18. NMR Constraints Analyser: a web-server for the graphical analysis of NMR experimental constraints

    PubMed Central

    Heller, Davide Martin; Giorgetti, Alejandro

    2010-01-01

    Nuclear magnetic resonance (NMR) spectroscopy together with X-ray crystallography, are the main techniques used for the determination of high-resolution 3D structures of biological molecules. The output of an NMR experiment includes a set of lower and upper limits for the distances (constraints) between pairs of atoms. If the number of constraints is high enough, there will be a finite number of possible conformations (models) of the macromolecule satisfying the data. Thus, the more constraints are measured, the better defined these structures will be. The availability of a user-friendly tool able to help in the analysis and interpretation of the number of experimental constraints per residue, is thus of valuable importance when assessing the levels of structure definition of NMR solved biological macromolecules, in particular, when high-quality structures are needed in techniques such as, computational biology approaches, site-directed mutagenesis experiments and/or drug design. Here, we present a free publicly available web-server, i.e. NMR Constraints Analyser, which is aimed at providing an automatic graphical analysis of the NMR experimental constraints atom by atom. The NMR Constraints Analyser server is available from the web-page http://molsim.sci.univr.it/constraint PMID:20513646

  19. NMR Constraints Analyser: a web-server for the graphical analysis of NMR experimental constraints.

    PubMed

    Heller, Davide Martin; Giorgetti, Alejandro

    2010-07-01

    Nuclear magnetic resonance (NMR) spectroscopy together with X-ray crystallography, are the main techniques used for the determination of high-resolution 3D structures of biological molecules. The output of an NMR experiment includes a set of lower and upper limits for the distances (constraints) between pairs of atoms. If the number of constraints is high enough, there will be a finite number of possible conformations (models) of the macromolecule satisfying the data. Thus, the more constraints are measured, the better defined these structures will be. The availability of a user-friendly tool able to help in the analysis and interpretation of the number of experimental constraints per residue, is thus of valuable importance when assessing the levels of structure definition of NMR solved biological macromolecules, in particular, when high-quality structures are needed in techniques such as, computational biology approaches, site-directed mutagenesis experiments and/or drug design. Here, we present a free publicly available web-server, i.e. NMR Constraints Analyser, which is aimed at providing an automatic graphical analysis of the NMR experimental constraints atom by atom. The NMR Constraints Analyser server is available from the web-page http://molsim.sci.univr.it/constraint.

  20. Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy.

    PubMed

    Stintzing, Florian C; Conrad, Jürgen; Klaiber, Iris; Beifuss, Uwe; Carle, Reinhold

    2004-02-01

    Four betacyanin pigments were analysed by LC NMR and subjected to extensive NMR characterisation after isolation. Previously, low pH values were applied for NMR investigations of betalains resulting in rapid degradation of the purified substances thus preventing extensive NMR studies. Consequently, up to now only one single (13)C NMR spectrum of a betalain pigment, namely that of neobetanin (=14,15-dehydrobetanin), was available. Because of its sufficient stability under highly acidic conditions otherwise detrimental for betacyanins, this pigment remained an exemption. Since betalains are most stable in the pH range of 5-7, a new solvent system has been developed allowing improved data acquisition through improved pigment stability at near neutral pH. Thus, not only (1)H, but for the first time also partial (13)C data of betanin, isobetanin, phyllocactin and hylocerenin isolated from red-purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose, Cactaceae] could be indirectly obtained by gHSQC- and gHMQC-NMR experiments.

  1. Advances in NMR-based biofluid analysis and metabolite profiling.

    PubMed

    Zhang, Shucha; Nagana Gowda, G A; Ye, Tao; Raftery, Daniel

    2010-07-01

    Significant improvements in NMR technology and methods have propelled NMR studies to play an important role in a rapidly expanding number of applications involving the profiling of metabolites in biofluids. This review discusses recent technical advances in NMR spectroscopy based metabolite profiling methods, data processing and analysis over the last three years.

  2. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  3. Applications of Diffusion Ordered Spectroscopy (DOSY-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion-ordered NMR (DOSY-NMR) is a powerful, but under-utilized, technique for the investigation of mixtures based on translational diffusion rates. DOSY spectra allow for determination by NMR of components that may differ in molecular weight, geometry or complexation. Typical applications coul...

  4. Estimation of procyanidin/prodelphinidin and cis/trans flavanol ratios of condensed tannin fractions by 1H-13C HSQC NMR spectroscopy: Correlation with thiolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of cross-peak contours of H/C-2’,6’ signals from prodelphinidin (PD) and of H/C-6’ signals from procyanidin (PC) units in 1H-13C HSQC nuclear magnetic resonance (NMR) spectra of condensed tannins yielded nuclei-adjusted PC/PD estimates that were highly correlated with PC/PD ratios obtain...

  5. Synthesis of 24-phenyl-24-oxo steroids derived from bile acids by palladium-catalyzed cross coupling with phenylboronic acid. NMR characterization and X-ray structures.

    PubMed

    Mayorquín-Torres, Martha C; Romero-Ávila, Margarita; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2013-11-01

    Palladium-catalyzed cross coupling of phenyboronic acid with acetylated bile acids in which the carboxyl functions have been activated by formation of a mixed anhydride with pivalic anhydride afforded moderate to good yield of 24-phenyl-24-oxo-steroids. Unambiguous assignments of the NMR signals were made with the aid of combined 1D and 2D NMR techniques. X-ray diffraction studies confirmed the obtained structures.

  6. NMR CHARACTERIZATIONS OF PROPERTIES OF HETEROGENEOUS MEDIA

    SciTech Connect

    C.T. Philip Chang; Changho Choi; Jeromy T. Hollenshead; Rudi Michalak; Jack Phan; Ramon Saavedra; John C. Slattery; Jinsoo Uh; Randi Valestrand; A. Ted Watson; Song Xue

    2005-01-01

    A critical and long-standing need within the petroleum industry is the specification of suitable petrophysical properties for mathematical simulation of fluid flow in petroleum reservoirs (i.e., reservoir characterization). The development of accurate reservoir characterizations is extremely challenging. Property variations may be described on many scales, and the information available from measurements reflect different scales. In fact, experiments on laboratory core samples, well-log data, well-test data, and reservoir-production data all represent information potentially valuable to reservoir characterization, yet they all reflect information about spatial variations of properties at different scales. Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) provide enormous potential for developing new descriptions and understandings of heterogeneous media. NMR has the rare capability to probe permeable media non-invasively, with spatial resolution, and it provides unique information about molecular motions and interactions that are sensitive to morphology. NMR well-logging provides the best opportunity ever to resolve permeability distributions within petroleum reservoirs. We develop MRI methods to determine, for the first time, spatially resolved distributions of porosity and permeability within permeable media samples that approach the intrinsic scale: the finest resolution of these macroscopic properties possible. To our knowledge, this is the first time that the permeability is actually resolved at a scale smaller than the sample. In order to do this, we have developed a robust method to determine of relaxation distributions from NMR experiments and a novel implementation and analysis of MRI experiments to determine the amount of fluid corresponding to imaging regions, which are in turn used to determine porosity and saturation distributions. We have developed a novel MRI experiment to determine velocity distributions within flowing experiments, and

  7. Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR NMR correlation

    NASA Astrophysics Data System (ADS)

    Ruan, Qing-Xia; Zhou, Ping

    2008-07-01

    In the present work, we investigated Na + ion effect on the silk fibroin (SF) conformation. Samples are Na +-involved regenerated silk fibroin films. 13C CP-MAS NMR demonstrates that as added [Na +] increases, partial silk fibroin conformation transit from helix-form to β-form at certain Na + ion concentration which is much higher than that in Bombyx mori silkworm gland. The generalized two-dimensional NMR-NMR correlation analysis reveals that silk fibroin undergoes several intermediate states during its conformation transition process as [Na +] increase. The appearance order of the intermediates is followed as: helix and/or random coil → helix-like → β-sheet-like → β-sheet, which is the same as that produced by pH decrease from 6.8 to 4.8 in the resultant regenerated silk fibroin films. The binding sites of Na + to silk fibroin might involve the carbonyl oxygen atom of certain amino acids sequence which could promote the formation of β-sheet conformation. Since the Na +sbnd O bond is weak, the ability of Na + inducing the secondary structure transition is weaker than those of Ca 2+, Cu 2+ and even K +. It is maybe a reason why the sodium content is much lower than potassium in the silkworm gland.

  8. 13C-NMR spectra and contact time experiment for Skjervatjern fulvic and humic acids

    USGS Publications Warehouse

    Malcolm, R.L.

    1992-01-01

    The T(CP) and T(1p) time constants for Skjervatjern fulvic and humic acids were determined to be short with T(CP) values ranging from 0.14 ms to 0.53 ms and T(1p) values ranging from 3.3 ms to 5.9 ms. T(CP) or T(1p) time constants at a contact time of 1 ms are favorable for quantification of 13C-NMR spectra. Because of the short T(CP) values, correction factors for signal intensity for various regions of the 13C-NMR spectra would be necessary at contact times greater than 1.1 ms or less than 0.9 ms. T(CP) and T(1p) values have a limited non-homogeneity within Skjervatjern fulvic and humic acids. A pulse delay or repeat time of 700 ms is more than adequate for quantification of these 13C-NMR spectra. Paramagnetic effects in these humic substances are precluded due to low inorganic ash contents, low contents of Fe, Mn, and Co, and low organic free-radical contents. The observed T(CP) values suggest that all the carbon types in Skjervatjern fulvic and humic acids are fully cross-polarized before significant proton relaxation occurs. The 13C-NMR spectra for Skjervatjern fulvic acid is similar to most aquatic fulvic acids as it is predominantly aliphatic, low in aromaticity (fa1 = 24), low in phenolic content, high in carboxyl content, and has no resolution of a methoxyl peak. The 13C-NMR spectra for Skjervatjern humic acid is also similar to most other aquatic humic acids in that it is also predominantly aliphatic, high in aromaticity (fa1 = 38), moderate in phenolic content, moderate in carboxyl content, and has a clear resolution of a methoxyl carbon region. After the consideration of the necessary 13C-NMR experimental conditions, these spectra are considered to be quantitative. With careful consideration of the previously determined 13C-NMR experimental conditions, quantitative spectra can be obtained for humic substances in the future from the HUMEX site. Possible changes in humic substances due to acidification should be determined from 13C-NMR data.

  9. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations.

  10. ABCs of FT NMR, (by John D. Roberts)

    NASA Astrophysics Data System (ADS)

    Shibata, John H.

    2002-11-01

    In summary, there are several good books on NMR that I have read and used in preparing lectures on NMR, and in comparison to these books, this would not be the first book that I would take from my bookshelf to learn NMR. It is an elementary book that does have explanations that may help clarify some topics. For that reason, it may be useful to have in a chemistry library collection. I could envision an NMR course based on this book, but not without using other books to supplement the course. To this end, this book has a very useful appendix that describes several excellent NMR books and journals.

  11. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification.

    PubMed

    Kotler, Samuel A; Brender, Jeffrey R; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M Banaszak; Marsh, E Neil G; Ramamoorthy, Ayyalusamy

    2015-07-03

    Alzheimer's disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling (1)H-(1)H NMR experiments to overcome many of these limitations. Using (1)H-(1)H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time (1)H-(1)H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  12. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    SciTech Connect

    Bevilaqua, Rochele C. A.; Miranda, Caetano R.; Rigo, Vagner A.; Veríssimo-Alves, Marcos

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  13. Effects of radiation damping for biomolecular NMR experiments in solution: a hemisphere concept for water suppression

    PubMed Central

    Ishima, Rieko

    2016-01-01

    Abundant solvent nuclear spins, such as water protons in aqueous solution, cause radiation damping in NMR experiments. It is important to know how the effect of radiation damping appears in high-resolution protein NMR because macromolecular studies always require very high magnetic field strengths with a highly sensitive NMR probe that can easily cause radiation damping. Here, we show the behavior of water magnetization after a pulsed-field gradient (PFG) using nutation experiments at 900 MHz with a cryogenic probe: when water magnetization is located in the upper hemisphere (having +Z component, parallel to the external magnetic field), dephasing of the magnetization by a PFG effectively suppresses residual water magnetization in the transverse plane. In contrast, when magnetization is located in the lower hemisphere (having −Z component), the small residual transverse component remaining after a PFG is still sufficient to induce radiation damping. Based on this observation, we designed 1H-15N HSQC experiments in which water magnetization is maintained in the upper hemisphere, but not necessarily along Z, and compared them with the conventional experiments, in which water magnetization is inverted during the t1 period. The result demonstrates moderate gain of signal-to-noise ratio, 0–28%. Designing the experiments such that water magnetization is maintained in the upper hemisphere allows shorter pulses to be used compared to the complete water flip-back and, thereby, is useful as a building block of protein NMR pulse programs in solution. PMID:27524944

  14. Solid-state and unilateral NMR study of deterioration of a Dead Sea Scroll fragment.

    PubMed

    Masic, A; Chierotti, M R; Gobetto, R; Martra, G; Rabin, I; Coluccia, S

    2012-02-01

    Unilateral and solid-state nuclear magnetic resonance (NMR) analyses were performed on a parchment fragment of the Dead Sea Scroll (DSS). The analyzed sample belongs to the collection of non-inscribed and nontreated fragments of known archaeological provenance from the John Rylands University Library in Manchester. Therefore, it can be considered as original DSS material free from any contamination related to the post-discovery period. Considering the paramount significance of the DSS, noninvasive approaches and portable in situ nondestructive methods are of fundamental importance for the determination of composition, structure, and chemical-physical properties of the materials under study. NMR studies reveal low amounts of water content associated with very short proton relaxation times, T(1), indicating a high level of deterioration of collagen molecules within scroll fragments. In addition, (13)C cross-polarization magic-angle-spinning (CPMAS) NMR spectroscopy shows characteristic peaks of lipids whose presence we attribute to the production technology that did not involve liming. Extraction with chloroform led to the reduction of both lipid and protein signals in the (13)C CPMAS spectrum indicating probable involvement of lipids in parchment degradation processes. NMR absorption and relaxation measurements provide nondestructive, discriminative, and sensitive tools for studying the deterioration effects on the organization and properties of water and collagen within ancient manuscripts.

  15. Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy.

    PubMed

    Balakshin, Mikhail; Capanema, Ewellyn; Gracz, Hanna; Chang, Hou-min; Jameel, Hasan

    2011-06-01

    A quantitative approach to characterize lignin-carbohydrate complex (LCC) linkages using a combination of quantitative ¹³C NMR and HSQC 2D NMR techniques has been developed. Crude milled wood lignin (MWLc), LCC extracted from MWLc with acetic acid (LCC-AcOH) and cellulolytic enzyme lignin (CEL) preparations were isolated from loblolly pine (Pinus taeda) and white birch (Betula pendula) woods and characterized using this methodology on a routine 300 MHz NMR spectrometer and on a 950 MHz spectrometer equipped with a cryogenic probe. Structural variations in the pine and birch LCC preparations of different types (MWL, CEL and LCC-AcOH) were elucidated. The use of the high field NMR spectrometer equipped with the cryogenic probe resulted in a remarkable improvement in the resolution of the LCC signals and, therefore, is of primary importance for an accurate quantification of LCC linkages. The preparations investigated showed the presence of different amounts of benzyl ether, γ-ester and phenyl glycoside LCC bonds. Benzyl ester moieties were not detected. Pine LCC-AcOH and birch MWLc preparations were preferable for the analysis of phenyl glycoside and ester LCC linkages in pine and birch, correspondingly, whereas CEL preparations were the best to study benzyl ether LCC structures. The data obtained indicate that pinewood contains higher amounts of benzyl ether LCC linkages, but lower amounts of phenyl glycoside and γ-ester LCC moieties as compared to birch wood.

  16. In Situ Detection of Subsurface Biofilm Using Low-Field NMR: A Field Study.

    PubMed

    Kirkland, Catherine M; Herrling, Maria P; Hiebert, Randy; Bender, Andrew T; Grunewald, Elliot; Walsh, David O; Codd, Sarah L

    2015-09-15

    Subsurface biofilms are central to bioremediation of chemical contaminants in soil and groundwater whereby micro-organisms degrade or sequester environmental pollutants like nitrate, hydrocarbons, chlorinated solvents and heavy metals. Current methods to monitor subsurface biofilm growth in situ are indirect. Previous laboratory research conducted at MSU has indicated that low-field nuclear magnetic resonance (NMR) is sensitive to biofilm growth in porous media, where biofilm contributes a polymer gel-like phase and enhances T2 relaxation. Here we show that a small diameter NMR well logging tool can detect biofilm accumulation in the subsurface using the change in T2 relaxation behavior over time. T2 relaxation distributions were measured over an 18 day experimental period by two NMR probes, operating at approximately 275 kHz and 400 kHz, installed in 10.2 cm wells in an engineered field testing site. The mean log T2 relaxation times were reduced by 62% and 43%, respectively, while biofilm was cultivated in the soil surrounding each well. Biofilm growth was confirmed by bleaching and flushing the wells and observing the NMR signal's return to baseline. This result provides a direct and noninvasive method to spatiotemporally monitor biofilm accumulation in the subsurface.

  17. Effects of radiation damping for biomolecular NMR experiments in solution: a hemisphere concept for water suppression.

    PubMed

    Ishima, Rieko

    2015-09-01

    Abundant solvent nuclear spins, such as water protons in aqueous solution, cause radiation damping in NMR experiments. It is important to know how the effect of radiation damping appears in high-resolution protein NMR because macromolecular studies always require very high magnetic field strengths with a highly sensitive NMR probe that can easily cause radiation damping. Here, we show the behavior of water magnetization after a pulsed-field gradient (PFG) using nutation experiments at 900 MHz with a cryogenic probe: when water magnetization is located in the upper hemisphere (having +Z component, parallel to the external magnetic field), dephasing of the magnetization by a PFG effectively suppresses residual water magnetization in the transverse plane. In contrast, when magnetization is located in the lower hemisphere (having -Z component), the small residual transverse component remaining after a PFG is still sufficient to induce radiation damping. Based on this observation, we designed (1)H-(15)N HSQC experiments in which water magnetization is maintained in the upper hemisphere, but not necessarily along Z, and compared them with the conventional experiments, in which water magnetization is inverted during the t1 period. The result demonstrates moderate gain of signal-to-noise ratio, 0-28%. Designing the experiments such that water magnetization is maintained in the upper hemisphere allows shorter pulses to be used compared to the complete water flip-back and, thereby, is useful as a building block of protein NMR pulse programs in solution.

  18. Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum.

    PubMed

    Courtney, Joseph M; Ye, Qing; Nesbitt, Anna E; Tang, Ming; Tuttle, Marcus D; Watt, Eric D; Nuzzio, Kristin M; Sperling, Lindsay J; Comellas, Gemma; Peterson, Joseph R; Morrissey, James H; Rienstra, Chad M

    2015-10-06

    Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D (13)C-(13)C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins--GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor--and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure.

  19. Nuclear spin singlet states as a contrast mechanism for NMR spectroscopy.

    PubMed

    Devience, Stephen J; Walsworth, Ronald L; Rosen, Matthew S

    2013-10-01

    Nuclear magnetic resonance (NMR) spectra of complex chemical mixtures often contain unresolved or hidden spectral components, especially when strong background signals overlap weaker peaks. In this article we demonstrate a quantum filter utilizing nuclear spin singlet states, which allows undesired NMR spectral background to be removed and target spectral peaks to be uncovered. The quantum filter is implemented by creating a nuclear spin singlet state with spin quantum numbers j = 0, mz  = 0 in a target molecule, applying a continuous RF field to both preserve the singlet state and saturate the magnetization of undesired molecules and then mapping the target molecule singlet state back into an NMR observable state so that its spectrum can be read out unambiguously. The preparation of the target singlet state can be carefully controlled with pulse sequence parameters, so that spectral contrast can be achieved between molecules with very similar structures. We name this NMR contrast mechanism 'Suppression of Undesired Chemicals using Contrast-Enhancing Singlet States' (SUCCESS) and we demonstrate it in vitro for three target molecules relevant to neuroscience: aspartate, threonine and glutamine.

  20. Quantitative rate determination by dynamic nuclear polarization enhanced NMR of a Diels-Alder reaction.

    PubMed

    Zeng, Haifeng; Lee, Youngbok; Hilty, Christian

    2010-11-01

    Emerging techniques for hyperpolarization of nuclear spins, foremost dynamic nuclear polarization (DNP), lend unprecedented sensitivity to nuclear magnetic resonance spectroscopy. Sufficient signal can be obtained from a single scan, and reactions even far from equilibrium can be studied in real-time. When following the progress of a reaction by nuclear magnetic resonance, however, spin relaxation occurs concomitantly with the reaction to alter resonance line intensities. Here, we present a model for accounting for spin-relaxation in such reactions studied by hyperpolarized NMR. The model takes into account auto- and cross-relaxation in dipole-dipole coupled spin systems and is therefore applicable to NMR of hyperpolarized protons, the most abundant NMR-active nuclei. Applied to the Diels-Alder reaction of 1,4-dipheneylbutadiene (DPBD) with 4-phenyl-1,2,4-triazole-3,5-dione (PTD), reaction rates could be obtained accurately and reproducibly. Additional parameters available from the same experiment include relaxation rates of the reaction product, which may yield further information about the molecular properties of the product. The method presented is also compatible with an experiment where a single spin in the reactant is labeled in its spin-state by a selective radio frequency pulse for subsequent tracking through the reaction, allowing the unambiguous identification of its position in the product molecule. In this case, the chemical shift specificity of high-resolution NMR can allow for the simultaneous determination of reaction rates and mechanistic information in one experiment.

  1. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification

    NASA Astrophysics Data System (ADS)

    Kotler, Samuel A.; Brender, Jeffrey R.; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M. Banaszak; Marsh, E. Neil. G.; Ramamoorthy, Ayyalusamy

    2015-07-01

    Alzheimer’s disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling 1H-1H NMR experiments to overcome many of these limitations. Using 1H-1H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time 1H-1H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  2. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    PubMed

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  3. High Resolution non-Markovianity in NMR

    PubMed Central

    Bernardes, Nadja K.; Peterson, John P. S.; Sarthour, Roberto S.; Souza, Alexandre M.; Monken, C. H.; Roditi, Itzhak; Oliveira, Ivan S.; Santos, Marcelo F.

    2016-01-01

    Memoryless time evolutions are ubiquitous in nature but often correspond to a resolution-induced approximation, i.e. there are correlations in time whose effects are undetectable. Recent advances in the dynamical control of small quantum systems provide the ideal scenario to probe some of these effects. Here we experimentally demonstrate the precise induction of memory effects on the evolution of a quantum coin (qubit) by correlations engineered in its environment. In particular, we design a collisional model in Nuclear Magnetic Resonance (NMR) and precisely control the strength of the effects by changing the degree of correlation in the environment and its time of interaction with the qubit. We also show how these effects can be hidden by the limited resolution of the measurements performed on the qubit. The experiment reinforces NMR as a test bed for the study of open quantum systems and the simulation of their classical counterparts. PMID:27669652

  4. Protein Dynamics from NMR and Computer Simulation

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Kravchenko, Olga; Kemple, Marvin; Likic, Vladimir; Klimtchuk, Elena; Prendergast, Franklyn

    2002-03-01

    Proteins exhibit internal motions from the millisecond to sub-nanosecond time scale. The challenge is to relate these internal motions to biological function. A strategy to address this aim is to apply a combination of several techniques including high-resolution NMR, computer simulation of molecular dynamics (MD), molecular graphics, and finally molecular biology, the latter to generate appropriate samples. Two difficulties that arise are: (1) the time scale which is most directly biologically relevant (ms to μs) is not readily accessible by these techniques and (2) the techniques focus on local and not collective motions. We will outline methods using ^13C-NMR to help alleviate the second problem, as applied to intestinal fatty acid binding protein, a relatively small intracellular protein believed to be involved in fatty acid transport and metabolism. This work is supported in part by PHS Grant GM34847 (FGP) and by a fellowship from the American Heart Association (QW).

  5. (129)Xe NMR of Mesoporous Silicas

    SciTech Connect

    Anderson, M.T.; Asink, R.A.; Kneller, J.M.; Pietrass, T.

    1999-04-23

    The porosities of three mesoporous silica materials were characterized with {sup 129}Xe NMR spectroscopy. The materials were synthesized by a sol-gel process with r = 0, 25, and 70% methanol by weight in an aqueous cetyltrimethylammonium bromide solution. Temperature dependent chemical shifts and spin lattice relaxation times reveal that xenon does not penetrate the pores of the largely disordered (r= 70%) silica. For both r = 0 and 25%, temperature dependent resonances corresponding to physisorbed xenon were observed. An additional resonance for the r = 25% sample was attributed to xenon between the disordered cylindrical pores. 2D NMR exchange experiments corroborate the spin lattice relaxation data which show that xenon is in rapid exchange between the adsorbed and the gas phase.

  6. High Resolution non-Markovianity in NMR

    NASA Astrophysics Data System (ADS)

    Bernardes, Nadja K.; Peterson, John P. S.; Sarthour, Roberto S.; Souza, Alexandre M.; Monken, C. H.; Roditi, Itzhak; Oliveira, Ivan S.; Santos, Marcelo F.

    2016-09-01

    Memoryless time evolutions are ubiquitous in nature but often correspond to a resolution-induced approximation, i.e. there are correlations in time whose effects are undetectable. Recent advances in the dynamical control of small quantum systems provide the ideal scenario to probe some of these effects. Here we experimentally demonstrate the precise induction of memory effects on the evolution of a quantum coin (qubit) by correlations engineered in its environment. In particular, we design a collisional model in Nuclear Magnetic Resonance (NMR) and precisely control the strength of the effects by changing the degree of correlation in the environment and its time of interaction with the qubit. We also show how these effects can be hidden by the limited resolution of the measurements performed on the qubit. The experiment reinforces NMR as a test bed for the study of open quantum systems and the simulation of their classical counterparts.

  7. Protein structure determination from NMR chemical shifts.

    PubMed

    Cavalli, Andrea; Salvatella, Xavier; Dobson, Christopher M; Vendruscolo, Michele

    2007-06-05

    NMR spectroscopy plays a major role in the determination of the structures and dynamics of proteins and other biological macromolecules. Chemical shifts are the most readily and accurately measurable NMR parameters, and they reflect with great specificity the conformations of native and nonnative states of proteins. We show, using 11 examples of proteins representative of the major structural classes and containing up to 123 residues, that it is possible to use chemical shifts as structural restraints in combination with a conventional molecular mechanics force field to determine the conformations of proteins at a resolution of 2 angstroms or better. This strategy should be widely applicable and, subject to further development, will enable quantitative structural analysis to be carried out to address a range of complex biological problems not accessible to current structural techniques.

  8. NMR studies of nucleic acid dynamics

    NASA Astrophysics Data System (ADS)

    Al-Hashimi, Hashim M.

    2013-12-01

    Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner.

  9. Numerical simulation of multi-dimensional NMR response in tight sandstone

    NASA Astrophysics Data System (ADS)

    Guo, Jiangfeng; Xie, Ranhong; Zou, Youlong; Ding, Yejiao

    2016-06-01

    Conventional logging methods have limitations in the evaluation of tight sandstone reservoirs. The multi-dimensional nuclear magnetic resonance (NMR) logging method has the advantage that it can simultaneously measure transverse relaxation time (T 2), longitudinal relaxation time (T 1) and diffusion coefficient (D). In this paper, we simulate NMR measurements of tight sandstone with different wettability and saturations by the random walk method and obtain the magnetization decays of Carr-Purcell-Meiboom-Gill pulse sequences with different wait times (TW) and echo spacings (TE) under a magnetic field gradient, resulting in D-T 2-T 1 maps by the multiple echo trains joint inversion method. We also study the effects of wettability, saturation, signal-to-noise ratio (SNR) of data and restricted diffusion on the D-T 2-T 1 maps in tight sandstone. The results show that with decreasing wetting fluid saturation, the surface relaxation rate of the wetting fluid gradually increases and the restricted diffusion phenomenon becomes more and more obvious, which leads to the wetting fluid signal moving along the direction of short relaxation and the direction of the diffusion coefficient decreasing in D-T 2-T 1 maps. Meanwhile, the non-wetting fluid position in D-T 2-T 1 maps does not change with saturation variation. With decreasing SNR, the ability to identify water and oil signals based on NMR maps gradually decreases. The wetting fluid D-T 1 and D-T 2 correlations in NMR diffusion-relaxation maps of tight sandstone are obtained through expanding the wetting fluid restricted diffusion models, and are further applied to recognize the wetting fluid in simulated D-T 2 maps and D-T 1 maps.

  10. Extending the scope of NMR spectroscopy with microcoil probes.

    PubMed

    Schroeder, Frank C; Gronquist, Matthew

    2006-11-06

    Capillary NMR (CapNMR) spectroscopy has emerged as a major breakthrough for increasing the mass-sensitivity of NMR spectroscopic analysis and enabling the combination of NMR spectroscopy with other analytical techniques. Not only is the acquisition of high-sensitivity spectra getting easier but the quality of CapNMR spectra obtained in many small-molecule applications exceeds what can be accomplished with conventional designs. This Minireview discusses current CapNMR technology and its applications for the characterization of mass-limited, small-molecule and protein samples, the rapid screening of small-molecule or protein libraries, as well as hyphenated techniques that combine CapNMR with other analytical methods.

  11. Multiecho scheme advances surface NMR for aquifer characterization

    NASA Astrophysics Data System (ADS)

    Grunewald, Elliot; Walsh, David

    2013-12-01

    nuclear magnetic resonance (NMR) is increasingly used as a method to noninvasively characterize aquifers. This technology follows a successful history of NMR logging, applied over decades to estimate hydrocarbon reservoir properties. In contrast to logging, however, surface methods have utilized relatively simple acquisition sequences, from which pore-scale properties may not be reliably and efficiently estimated. We demonstrate for the first time the capability of sophisticated multiecho measurements to rapidly record a surface NMR response that more directly reflects aquifer characteristics. Specifically, we develop an adaptation of the multipulse Carr-Purcell-Meiboom-Gill (CPMG) sequence, widely used in logging, to measure the T2 relaxation response in a single scan. We validate this approach in a field surface NMR data set and by direct comparison with an NMR log. Adoption of the CPMG marked a landmark advancement in the history of logging NMR; we have now realized this same advancement in the surface NMR method.

  12. Hypoxia-sensitive NMR contrast agents

    SciTech Connect

    Swartz, H.M.; Chen, K.; Pals, M.; Sentjurc, M.; Morse, P.D. 2d.

    1986-02-01

    The rate of reduction of nitroxides is shown to be more rapid in hypoxic cells. The rate of reduction and the effect of hypoxia on the reduction rate vary for different nitroxides. These findings indicate that it may be feasible to develop in vivo NMR contrast agents that selectively will indicate areas of hypoxia and thereby aid in the detection of disease processes such as neoplasia, ischemia, and inflammation.

  13. NMR in Copper-Oxide Metals

    SciTech Connect

    Varma, C.M.

    1996-10-01

    The anomalous part of the NMR relaxation rate of copper nuclei in the normal state of copper-oxide metals is calculated using the orbital magnetic parts of the fluctuations derived in a recent theory to explain the long wavelength transport anomalies. Oxygen and yttrium reside on lattice sites at which the anomalous contribution is absent at all hole densities. The frequency, momentum dependence, and the form factor of the fluctuations is predicted. {copyright} {ital 1996 The American Physical Society.}

  14. NMR Characterizations of Properties of Heterogeneous Media

    SciTech Connect

    Watson, A. Ted; Phan, Jack; Uh, Jinsoo; Michalak, Rudi; Xue, Song

    2003-01-28

    The overall goal of this project was to develop reliable methods for resolving macroscopic properties important for describing the flow of one or more fluid phases in reservoirs from formation measurements. Completed the facilities to house our new NMR imager, the equipment has been delivered and installed. New experimental designs will provide for more reliable estimation of permeability distributions were evaluated. Designed and built a new core holder to incorporate one of the new experimental designs.

  15. Surface NMR measurement of proton relaxation times in medium to coarse-grained sand aquifer.

    PubMed

    Shushakov, O A

    1996-01-01

    A surface NMR investigation of groundwater in the geomagnetic field is under study. To detect the surface NMR a wire loop with a diameter of about 100 m, being an antenna for both an exciting field source and the NMR signal receiver, is laid out on the ground. A sinusoidal current pulse with a rectangular envelope is passed through the loop to excite the NMR signal. The carrier frequency of the oscillating current in this pulse is equal to the Larmor frequency of protons in the Earth's magnetic field. The current amplitude is changed up to 200 amps and the pulse duration is fixed and is equal to 40 ms. The exciting pulse is followed by an induction emf signal caused by the Larmor nuclear precession in geomagnetic field. The relaxation times T1, T2, and T2* were measured by the surface NMR for both groundwater in medium to coarse-grained sand at borehole and for bulk water under the ice surface of frozen lake. To determine T1, a longitudinal interference in experiments with repeated pulses was measured. A sequence with equal period between equal excitation pulses was used. The relaxation times T1, T2, measured for bulk water under the ice of the Ob reservoir were 1.0 s and 0.7 s, respectively. To estimate an influence of dissolved oxygen T1 of the same water at the same temperature was measured by lab NMR with and without pumping of oxygen. The relaxation time T1 measured for water in the medium to coarse-grained sand is 0.65 s. The relaxation time T2 estimated by spin echo sequence is found to be equal to 0.15 s. The relaxation time T2* is found to be about 80 ms. This result contradicts published earlier phenomenological correlation between relaxation time T2* and grain size of water-bearing rock. This could be as a result of unsound approach based on grain size or influence of paramagnetic impurities.

  16. Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR relaxometry

    USGS Publications Warehouse

    Washburn, Kathryn E.; Anderssen, Endre; Vogt, Sarah J.; Seymour, Joseph D.; Birdwell, Justin E.; Kirkland, Catherine M.; Codd, Sarah L.

    2014-01-01

    Nuclear magnetic resonance (NMR) relaxometry is commonly used to provide lithology-independent porosity and pore-size estimates for petroleum resource evaluation based on fluid-phase signals. However in shales, substantial hydrogen content is associated with solid and fluid signals and both may be detected. Depending on the motional regime, the signal from the solids may be best described using either exponential or Gaussian decay functions. When the inverse Laplace transform, the standard method for analysis of NMR relaxometry results, is applied to data containing Gaussian decays, this can lead to physically unrealistic responses such as signal or porosity overcall and relaxation times that are too short to be determined using the applied instrument settings. We apply a new simultaneous Gaussian-Exponential (SGE) inversion method to simulated data and measured results obtained on a variety of oil shale samples. The SGE inversion produces more physically realistic results than the inverse Laplace transform and displays more consistent relaxation behavior at high magnetic field strengths. Residuals for the SGE inversion are consistently lower than for the inverse Laplace method and signal overcall at short T2 times is mitigated. Beyond geological samples, the method can also be applied in other fields where the sample relaxation consists of both Gaussian and exponential decays, for example in material, medical and food sciences.

  17. Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR relaxometry.

    PubMed

    Washburn, Kathryn E; Anderssen, Endre; Vogt, Sarah J; Seymour, Joseph D; Birdwell, Justin E; Kirkland, Catherine M; Codd, Sarah L

    2015-01-01

    Nuclear magnetic resonance (NMR) relaxometry is commonly used to provide lithology-independent porosity and pore-size estimates for petroleum resource evaluation based on fluid-phase signals. However in shales, substantial hydrogen content is associated with solid and fluid signals and both may be detected. Depending on the motional regime, the signal from the solids may be best described using either exponential or Gaussian decay functions. When the inverse Laplace transform, the standard method for analysis of NMR relaxometry results, is applied to data containing Gaussian decays, this can lead to physically unrealistic responses such as signal or porosity overcall and relaxation times that are too short to be determined using the applied instrument settings. We apply a new simultaneous Gaussian-Exponential (SGE) inversion method to simulated data and measured results obtained on a variety of oil shale samples. The SGE inversion produces more physically realistic results than the inverse Laplace transform and displays more consistent relaxation behavior at high magnetic field strengths. Residuals for the SGE inversion are consistently lower than for the inverse Laplace method and signal overcall at short T2 times is mitigated. Beyond geological samples, the method can also be applied in other fields where the sample relaxation consists of both Gaussian and exponential decays, for example in material, medical and food sciences.

  18. BetaNMR Experiments on Liquid Samples

    NASA Astrophysics Data System (ADS)

    Gottberg, A.; Stachura, M.; Hemmingsen, L.; Macfarlane, W. A.; Bio-Beta-Nmr Collaboration; Collaps Collaboration

    2016-09-01

    In 2012 betaNMR spectroscopy was successfully applied on liquid samples; an achievement which opens new opportunities in the fields of chemistry and biochemistry. This project was motivated by the need for finding a new experimental approach to directly study biologically highly relevant metal ions, such as Mg(II), Cu(I), Ca(II), and Zn(II), which are silent in most spectroscopic techniques. The resonance spectrum recorded for Mg-31 implanted into an ionic liquid sample showed two resonances which originate from Mg ions occupying two different coordination geometries, illustrating that this technique can discriminate between different structures. This proof-of-principle result lays the foundation for studies of these metal ions at low concentrations and in environments of biological relevance where other methods are silent. The prototype chamber for bio-betaNMR allows for experiments not only on different samples such as: liquids, gels and solids, but also operates at different vacuum environments. In order to exploit the potential of betaNMR on liquid samples, tests with polarized beams of Mg-29 and Mg-31 have recently been performed at the ISAC facility at TRIUMF.

  19. In-cell NMR: a topical review

    PubMed Central

    Banci, Lucia

    2017-01-01

    Classical structural biology approaches allow structural characterization of biological macromolecules in vitro, far from their physiological context. Nowadays, thanks to the wealth of structural data available and to technological and methodological advances, the interest of the research community is gradually shifting from pure structural determination towards the study of functional aspects of biomolecules. Therefore, a cellular structural approach is ideally needed to characterize biological molecules, such as proteins, in their native cellular environment and the functional processes that they are involved in. In-cell NMR is a new application of high-resolution nuclear magnetic resonance spectroscopy that allows structural and dynamical features of proteins and other macromolecules to be analyzed directly in living cells. Owing to its challenging nature, this methodology has shown slow, but steady, development over the past 15 years. To date, several in-cell NMR approaches have been successfully applied to both bacterial and eukaryotic cells, including several human cell lines, and important structural and functional aspects have been elucidated. In this topical review, the major advances of in-cell NMR are summarized, with a special focus on recent developments in eukaryotic and mammalian cells. PMID:28250949

  20. Protein NMR structures refined without NOE data.

    PubMed

    Ryu, Hyojung; Kim, Tae-Rae; Ahn, SeonJoo; Ji, Sunyoung; Lee, Jinhyuk

    2014-01-01

    The refinement of low-quality structures is an important challenge in protein structure prediction. Many studies have been conducted on protein structure refinement; the refinement of structures derived from NMR spectroscopy has been especially intensively studied. In this study, we generated flat-bottom distance potential instead of NOE data because NOE data have ambiguity and uncertainty. The potential was derived from distance information from given structures and prevented structural dislocation during the refinement process. A simulated annealing protocol was used to minimize the potential energy of the structure. The protocol was tested on 134 NMR structures in the Protein Data Bank (PDB) that also have X-ray structures. Among them, 50 structures were used as a training set to find the optimal "width" parameter in the flat-bottom distance potential functions. In the validation set (the other 84 structures), most of the 12 quality assessment scores of the refined structures were significantly improved (total score increased from 1.215 to 2.044). Moreover, the secondary structure similarity of the refined structure was improved over that of the original structure. Finally, we demonstrate that the combination of two energy potentials, statistical torsion angle potential (STAP) and the flat-bottom distance potential, can drive the refinement of NMR structures.

  1. NMR studies of protein structure and dynamics

    NASA Astrophysics Data System (ADS)

    Kay, Lewis E.

    2011-12-01

    Recent advances in solution NMR spectroscopy have significantly extended the spectrum of problems that can now be addressed with this technology. In particular, studies of proteins with molecular weights on the order of 100 kDa are now possible at a level of detail that was previously reserved for much smaller systems. An example of the sort of information that is now accessible is provided in a study of malate synthase G, a 723 residue enzyme that has been a focal point of research efforts in my laboratory. Details of the labeling schemes that have been employed and optimal experiments for extraction of structural and dynamics information on this protein are described. NMR studies of protein dynamics, in principle, give insight into the relation between motion and function. A description of deuterium-based spin relaxation methods for the investigation of side chain dynamics is provided. Examples where millisecond (ms) time scale dynamics play an important role and where relaxation dispersion NMR spectroscopy has been particularly informative, including applications involving the membrane enzyme PagP and mutants of the Fyn SH3 domain that fold on a ms time scale, are presented.

  2. Irreducible Tensor Operators and Multiple-Quantum NMR.

    NASA Astrophysics Data System (ADS)

    Hutchison, Wayne Douglas

    The aim of the work detailed in this thesis, is to provide a concise, and illuminating, mathematical description of multiple quantum nuclear magnetic resonance (MQNMR) experiments, on essentially isolated (non-coupled) nuclei. The treatment used is based on irreducible tensor operators, which form an orthonormal basis set. Such operators can be used to detail the state of the nuclear ensemble (density matrix) during every stage, preparation, evolution and detection, of a MQNMR experiment. Moreover, such operators can be also used to provide a rigorous analysis of pulsed NMR experiments, on oriented nuclei at low temperatures, where the initial density matrix is far from trivial. The specific topics dealt with in this thesis are as follows. In the first place the properties of irreducible tensor operators are discussed in some detail. In particular, symmetric and anti-symmetric combinations of tensor operators are introduced, to reflect the Hermitian nature of the nuclear Hamiltonian and density matrix. Secondly, the creation of multipolar nuclear states using hard, non-selective rf pulses, is detailed for spin I = 1, 3/2, 2 and 5/2 nuclei, subject to an axially symmetric quadrupole interaction. Results are also given for general I. Thirdly, some experimental results, verifying the production of a triple quantum NMR state, for the I = 3/2 ^{23}Na nuclei in a single crystal of NaIO_4 are presented and discussed. Fourthly, the treatment of MQNMR experiments is extended to the low temperature regime where the initial density matrix includes Fano statistical tensors other than rank one. In particular, it is argued that MQNMR techniques could be used to enhance the anisotropy of gamma-ray emission from oriented nuclei at low temperatures. Fifthly, the effect of a more general quadrupole Hamiltonian (including an asymmetry term) on MQNMR experiments is considered for spins I = 1 and 3/2. In particular, it is shown that double quantum states evolve to give longitudinal NMR

  3. Toroid cavities as NMR detectors in high pressure probes

    SciTech Connect

    Woelk, K.; Rathke, J.W.; Klingler, R.J.

    1993-03-01

    A cylindrical toroid cavity has been developed for application as an NMR detector for high sensitivity and high resolution spectroscopy in metal vessel probes. Those probes are used for in situ investigations at high temperature and pressure. Since the transmitted r.f. field is completely confined within the torus, the cavity can be placed inside the pressurized system without magnetic coupling to the metal vessel. Resonance frequencies up to 400 MHz make the toroid cavity detector especially suited for use in {sup 1}H and {sup 19}F spectroscopy. Typically achieved static {sup 1}H linewidths, measured on CHCl{sub 3} using cavities in Be-Cu pressure vessels, are 2.0 Hz. On the basis of theoretical considerations that include the radial dependence of the r.f. field within cylindrical or circular toroid detectors, equations were evolved to predict the signal intensity as a function of the pulse width. The equations precisely describe the deviations from the sinusoidal approximation, which is generally used for signal intensities derived from Helmholtz or solenoid coils.

  4. Magnetization and NMR studies in SmFeAsO0.86F0.14

    NASA Astrophysics Data System (ADS)

    Ghoshray, Amitabha; Majumder, Mayukh; Poddar, Asok; Mazumdar, Chandan; Ghoshray, Kajal; Berardan, David

    2012-06-01

    The Physical properties along with NMR measurements in SmFeAsO0.86F0.14 have been carried out. Superconducting transition TC (onset) remains invariant even under a magnetic field of 7 T. 75As NMR signal could not be measured below 180K in both SmFeAsO and SmFeAsO0.86F0.14 although the later does not show any SDW transition. 19F hyperfine coupling constant found to be temperature independent.

  5. NMR line-fitting quantification of polysaccharide N-acylurea-based modification in glycoconjugates of Salmonella Typhi Vi polysaccharide.

    PubMed

    Garrido, Raine; Soubal, Jean Pierre; Torres, Leonid; Ramírez, Ubel; Vérez, Vicente

    2017-01-14

    The polysaccharides modification via carbodiimide reaction is one of the most applied methods for obtaining conjugated vaccines against Salmonella enterica. However, N-acylurea carbodiimide adduct generated in the process is a critical impurity in carbohydrate-based vaccines. A quantitative NMR method was developed for assessing the N-acylurea carbodiimide adduct impurity. The procedure was based on line-fitting facilities for processing the NMR signals on complex spectra. The method showed good linearity, accuracy and precision under inter-operator variation (relative standard deviation <5%). Copyright © 2017 John Wiley & Sons, Ltd.

  6. Analysis of organic matter at the soil-water interface by NMR spectroscopy: Implications for contaminant sorption processes

    NASA Astrophysics Data System (ADS)

    Simpson, M. J.; Simpson, A. J.

    2009-04-01

    Contaminant sorption to soil organic matter (OM) is the main fate of nonionic, hydrophobic organic contaminants in terrestrial environments and a number of studies have suggested that both soil OM structure and physical conformation (as regulated by the clay mineral phase) govern contaminant sorption processes. A great deal of this evidence has come from macroscopic observations with contaminants and soil fractions as well as a recent mass balance approach where the sum of the parts exceeded the whole suggesting that the physical arrangement of OM in organo-mineral complexes may be more important than OM structure in sorption processes (1). In addition, recent studies with constructed organo-mineral complexes have suggested that aliphatic OM is preferred over aromatic moieties and suggests that clay minerals play an indirect role by governing the sorption of organic contaminants by controlling the surface accessibility of OM at the soil-water interface (2,3). To investigate this further, a number of soil samples were characterized by both solid-state 13C Cross Polarization Magic Angle Spinning (CPMAS) NMR and 1H High Resolution Magic Angle Spinning (HR-MAS) NMR. HR-MAS NMR is an innovative NMR method that allows one to examine samples that are semi-solid using liquid state NMR methods (ie: observe 1H which is more sensitive than 13C). With HR-MAS NMR, only those structures that are in contact with the solvent are NMR visible thus one can probe different components within a mixture using different solvents. The 1H HR-MAS NMR spectrum of a grassland soil swollen in water (D2O) is dominated by signals from alkyl and O-alkyl structures but signals from aromatic protons are negligible (the peak at ~8.2ppm is attributed to formic acid). When the soil is swollen in DMSO-d6, a solvent which is more penetrating and capable of breaking hydrogen bonds, aromatic signals are visible suggesting that the aromatic structures are buried within the soil matrix and do not exist at

  7. High-Resolution ^125Te NMR of Novel Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Schmidt-Rohr, K.; Cook, B. A.; Han, Mi-Kyung; Kanatzidis, M. G.

    2008-03-01

    Several novel Te-based thermoelectric materials with extraordinary figure of merit ZT >=1.4 have been studied by high-resolution 25 kHz magic angle spinning ^125Te nuclear magnetic resonance (NMR) in order to investigate variations in composition on the nano-scale. A 20-fold wider ^125Te NMR signal of both AgSbGe4Te6 and AgSbGe5.67Te7.67 (˜90 kHz) compared to that of PbTe (4.5 kHz) indicates a variation of shifts due to local composition fluctuations. The similar total shift of the main peak in Ag0.53Pb18Sb1.2Te20 (-1790 ppm) and PbTe (-1750 ppm) and similarly long T2 relaxation time show that the majority of Te atoms in both materials has a similar environment. A second peak in Ag0.53Pb18Sb1.2Te20 at -1600 ppm shows the presence of a second type of Te site, accounting for ˜1/3 of all Te. These are apparently located in Ag,Sb-rich inclusions, as indicated by a much shorter T2, which can be due to the effect of quadrupolar relaxation of ^121Sb or ^123Sb (spin 5/2 or 7/2, respectively) on ^125Te. Our data confirm suggestions made by Hsu et al., Science (2004) and by Chen et al., Appl. Phys. Lett. (2005) about the presence of nano-scale inclusions in Ag0.53Pb18Sb1.2Te20, which result in low lattice thermal conductivity and high ZT.

  8. Pulsed NMR study of the curing process of epoxy resin.

    PubMed

    Kimoto, Hiroki; Tanaka, Chikako; Yaginuma, Michiko; Shinohara, Emi; Asano, Atsushi; Kurotsu, Takuzo

    2008-07-01

    To analyze a curing process of epoxy resin in terms of molecular motion, we adapted a pulsed NMR method. Three kinds of (1)H spin-spin relaxation times (T(2L) (long), T(2S) (short) and T(2M) (intermediate)) were estimated from observed solid echo train signals as the curing process proceeded. A short T(2S) value below 20 micros suggests the existence of a motion-restricted chain, that is, cured elements of resin, and its fraction, P(S), sigmoidally increased with the curing time. On the other hand, the fraction of T(2L), P(L), decreased with the reaction time reciprocally against P(S), suggesting the disappearance of highly mobile molecules raised from pre-cured resin. The spin-lattice relaxation time, T(1), was also measured to check another aspect of molecular motion in the process. T(1) of the mixed epoxy resin and curing agent gradually increased just after mixing both of them. This corresponds to an increment of a less-mobile fraction, of which the correction time is more than 10(-6) s, and also means that the occurrence of a network structure whose mobility is strongly restricted by chemically bonded bridges between the epoxy resin and curing agent. The time courses of these parameters coincided with those of IR peaks pertinent to the curing reaction. Therefore, pulsed NMR is a useful tool to monitor the hardening process of epoxy resin in real time non-distractively in terms of the molecular motion of protons.

  9. Applications of highly spin-polarized xenon in NMR

    SciTech Connect

    Long, Henry W.

    1993-09-01

    The main goal of the work presented in this thesis is produce highly spin-polarized xenon to create much greater signal intensities (up to 54,000 times greater) so as to allow studies to be made on systems with low surface area and long spin-lattice relaxation times. The spin-exchange optical pumping technique used to create high nuclear spin polarization is described in detail in chapter two. This technique is initially applied to some multiple-pulse optically detected NMR experiments in low magnetic field (50G) that allow the study of quadrupoler interactions with a surface of only a few square centimeters. In chapter three the apparatus used to allow high field 129Xe NMR studies to be performed with extremely high sensitivity is described and applied to experiments on diamagnetic susceptibility effects in thin (~2000 layers) films of frozen xenon. Preliminary surface investigations of laser polarized 129Xe adsorbed an a variety of materials (salts, molecular crystals, amorphous carbon, graphite) are then discussed. A full detailed study of the surface of a particular polymer, poly(acrylic acid), is presented in chapter four which shows the kind of detailed information that can be obtained from this technique. Along with preliminary results for several similar polymers, a summary is given of xenon studies of a novel ultra-high surface area polymer, poly(triarylcarbinol). Finally in chapter five the exciting possibility of transferring the high spin order of the laser polarized xenon has been used to transfer nuclear spin order to 13CO2 in a xenon matrix and to protons on poly(triarylcarbinol).

  10. Guiding automated NMR structure determination using a global optimization metric, the NMR DP score

    PubMed Central

    Huang, Yuanpeng Janet; Mao, Binchen; Xu, Fei; Montelione, Gaetano

    2016-01-01

    ASDP is an automated NMR NOE assignment program. It uses a distinct bottom-up topology-constrained network anchoring approach for NOE interpretation, with 2D, 3D and/or 4D NOESY peak lists and resonance assignments as input, and generates unambiguous NOE constraints for iterative structure calculations. ASDP is designed to function interactively with various structure determination programs that use distance restraints to generate molecular models. In the CASD-NMR project, ASDP was tested and further developed using blinded NMR data, including resonance assignments, either raw or manually-curated (refined) NOESY peak list data, and in some cases 15N-1H residual dipolar coupling data. In these blinded tests, in which the reference structure was not available until after structures were generated, the fully-automated ASDP program performed very well on all targets using both the raw and refined NOESY peak list data. Improvements of ASDP relative to its predecessor program for automated NOESY peak assignments, AutoStructure, were driven by challenges provided by these CASD-NMR data. These algorithmic improvements include 1) using a global metric of structural accuracy, the Discriminating Power (DP) score, for guiding model selection during the iterative NOE interpretation process, and 2) identifying incorrect NOESY cross peak assignments caused by errors in the NMR resonance assignment list. These improvements provide a more robust automated NOESY analysis program, ASDP, with the unique capability of being utilized with alternative structure generation and refinement programs including CYANA, CNS, and/or Rosetta. PMID:26081575

  11. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis.

    PubMed

    Skinner, Simon P; Fogh, Rasmus H; Boucher, Wayne; Ragan, Timothy J; Mureddu, Luca G; Vuister, Geerten W

    2016-10-01

    NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.

  12. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and μXRCT

    DOE PAGES

    Mason, Harris E.; Smith, Megan M.; Hao, Yue; ...

    2014-12-31

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO₂ storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (μXRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectlymore » predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.« less

  13. Sensitivity enhancement and contrasting information provided by free radicals in oriented-sample NMR of bicelle-reconstituted membrane proteins.

    PubMed

    Tesch, Deanna M; Nevzorov, Alexander A

    2014-02-01

    Elucidating structure and topology of membrane proteins (MPs) is essential for unveiling functionality of these important biological constituents. Oriented-sample solid-state NMR (OS-NMR) is capable of providing such information on MPs under nearly physiological conditions. However, two dimensional OS-NMR experiments can take several days to complete due to long longitudinal relaxation times combined with the large number of scans to achieve sufficient signal sensitivity in biological samples. Here, free radicals 5-DOXYL stearic acid, TEMPOL, and CAT-1 were added to uniformly (15)N-labeled Pf1 coat protein reconstituted in DMPC/DHPC bicelles, and their effect on the longitudinal relaxation times (T1Z) was investigated. The dramatically shortened T1Z's allowed for the signal gain per unit time to be used for either: (i) up to a threefold reduction of the total experimental time at 99% magnetization recovery or (ii) obtaining up to 74% signal enhancement between the control and radical samples during constant experimental time at "optimal" relaxation delays. In addition, through OS-NMR and high-field EPR studies, free radicals were able to provide positional constraints in the bicelle system, which provide a description of the location of each residue in Pf1 coat protein within the bicellar membranes. This information can be useful in the determination of oligomerization states and immersion depths of larger membrane proteins.

  14. Fluorine-19 or phosphorus-31 NMR spectroscopy: a suitable analytical technique for quantitative in vitro metabolic studies of fluorinated or phosphorylated drugs.

    PubMed

    Martino, Robert; Gilard, Véronique; Desmoulin, Franck; Malet-Martino, Myriam

    2005-08-10

    Fluorine-19 or phosphorus-31 NMR (19F NMR or 31P NMR) spectroscopy provides a highly specific tool for identification of fluorine- or phosphorus-containing drugs and their metabolites in biological media as well as a suitable analytical technique for their absolute quantification. This article focuses on the application of in vitro 19F or 31P NMR to the quantitative metabolic studies of some fluoropyrimidine or oxazaphosphorine drugs in clinical use. The first part presents an overview of the advantages (non-destructive and non-selective direct quantitative study of the biological matrices) and limitations (expensive cost of the spectrometers, limited mass or concentration sensitivity) of NMR spectroscopy. The second part deals with the criteria to be considered for successful quantification by NMR (uniform excitation over the entire spectral width of the spectrum, resonance signals properly characterised by taking into account T1 values and avoiding NOE enhancements, optimisation of the data processing, choice of a suitable standard reference). The third and fourth parts report some examples of quantification of 5-fluorouracil, its prodrug capecitabine, 5-fluorocytosine and their metabolites in bulk solutions (biofluids, tissue extracts, perfusates and culture media) and heterogeneous media (excised tissues and packed intact cells) as well as cyclophosphamide and ifosfamide in biofluids. These two parts emphasise the high potential of in vitro 19F or 31P NMR for absolute quantification, in a single run, of all the fluorine- or phosphorus-containing species in the matrices analysed. The limit of quantification in bulk solutions is 1-3 microM for 19F NMR and approximately 10 microM for 31P NMR. In heterogeneous media analysed with 19F NMR, it is 2-5 nmol in excised tissues and cell pellets.

  15. Experimental Measurements of 69/71Ga NMR in Optically-pumped NMR (OPNMR) of AlGaAs/GaAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Hayes, Sophia; Sesti, Erika; Wheeler, Dustin; Willmering, Matt; Wood, Ryan; Bowers, Clifford; Saha, Dipta; Stanton, Christopher

    2014-03-01

    We have conducted photon-energy and helicity-dependent measurements of the 69Ga and 71Ga NMR signals that result from optical pumping of states in the conduction band. The sample we have used for these studies is a 60-well multiple quantum well sample of Al0.34Ga0.66As/GaAs. Our measurements show a particularly strong dependence of the OPNMR signal from the GaAs quantum wells, when irradiating at photon energies consistent with the spin-split light hole within the material. (We use a frequency-stabilized continuous wave Ti:sapphire ring laser, with a very narrow linewidth for these excitation.) The coupling to the light-hole has an important NMR signature which we will discuss in this presesntation. We will show results for multiple external magnetic field strengths (B0) and for different laser light intensities. A thorough understanding of the ``fine structure'' observed in the photon energy dependence of these OPNMR signals is afforded through theoretical modeling of these results, which will be shown in a separate presentation. Supported by NSF through grant DMR-1206447.

  16. A subband ARMA modeling approach to high-resolution NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tomczak, Marc; Djermoune, El-Hadi

    2002-09-01

    In this paper, a low numerical complexity method for parameter estimation of damped exponential signals is proposed. It allows one to handle with free induction decay (FID) signals of "high complexity" containing hundreds of resonances and composed of more than 100,000 samples. At first, it is recalled that the model of a FID is a particular autoregressive moving-average (ARMA) process in which the AR part contains all useful spectral information. Then the AR parameters may be estimated, by solving the high-order Yule-Walker (HOYW) equations using a singular-value decomposition procedure. To deal with high complexity signals, a subband decomposition scheme is proposed. The filtering operation involved by the decomposition produces colored noise that makes the ARMA modeling approach even more essential. Using three real-world 13C NMR signals, the results achieved by the subband ARMA approach are compared with those obtained using the Fourier transform and a deconvolution algorithm.

  17. Spin-injection optical pumping of molten cesium salt and its NMR diagnosis

    SciTech Connect

    Ishikawa, Kiyoshi

    2015-07-15

    Nuclear spin polarization of cesium ions in the salt was enhanced during optical pumping of cesium vapor at high magnetic field. Significant motional narrowing and frequency shift of NMR signals were observed by intense laser heating of the salt. When the hyperpolarized salt was cooled by blocking the heating laser, the signal width and frequency changed during cooling and presented the phase transition from liquid to solid. Hence, we find that the signal enhancement is mostly due to the molten salt and nuclear spin polarization is injected into the salt efficiently in the liquid phase. We also show that optical pumping similarly induces line narrowing in the solid phase. The use of powdered salt provided an increase in effective surface area and signal amplitude without glass wool in the glass cells.

  18. Intermolecular interaction of voriconazole analogues with model membrane by DSC and NMR, and their antifungal activity using NMR based metabolic profiling.

    PubMed

    Kalamkar, Vaibhav; Joshi, Mamata; Borkar, Varsha; Srivastava, Sudha; Kanyalkar, Meena

    2013-11-01

    The development of novel antifungal agents with high susceptibility and increased potency can be achieved by increasing their overall lipophilicity. To enhance the lipophilicity of voriconazole, a second generation azole antifungal agent, we have synthesized its carboxylic acid ester analogues, namely p-methoxybenzoate (Vpmb), toluate (Vtol), benzoate (Vbz) and p-nitrobenzoate (Vpnb). The intermolecular interactions of these analogues with model membrane have been investigated using nuclear magnetic resonance (NMR) and differential scanning calorimetric (DSC) techniques. The results indicate varying degree of changes in the membrane bilayer's structural architecture and physico-chemical characteristics which possibly can be correlated with the antifungal effects via fungal membrane. Rapid metabolite profiling of chemical entities using cell preparations is one of the most important steps in drug discovery. We have evaluated the effect of synthesized analogues on Candida albicans. The method involves real time (1)H NMR measurement of intact cells monitoring NMR signals from fungal metabolites which gives Metabolic End Point (MEP). This is then compared with Minimum Inhibitory Concentration (MIC) determined using conventional methods. Results indicate that one of the synthesized analogues, Vpmb shows reasonably good activity.

  19. NMR crystallography to probe the breathing effect of the MIL-53(Al) metal-organic framework using solid-state NMR measurements of (13)C-(27)Al distances.

    PubMed

    Giovine, Raynald; Volkringer, Christophe; Trébosc, Julien; Amoureux, Jean Paul; Loiseau, Thierry; Lafon, Olivier; Pourpoint, Frédérique

    2017-03-01

    The metal-organic framework MIL-53(Al) (aluminium terephthalate) exhibits a structural transition between two porous structures with large pore (lp) or narrow pore (np) configurations. This transition, called the breathing effect, is observed upon changes in temperature or external pressure, as well as with the adsorption of guest molecules, such as H2O, within the pores. We show here how these different pore openings can be detected by observing the dephasing of (13)C magnetization under (13)C-(27)Al dipolar couplings using Rotational-Echo Saturation-Pulse Double-Resonance (RESPDOR) solid-state NMR experiments with Simultaneous Frequency and Amplitude Modulation (SFAM) recoupling. These double-resonance NMR experiments between (13)C and (27)Al nuclei, which have close Larmor frequencies, are feasible thanks to the use of a frequency splitter. The experimental SFAM-RESPDOR signal fractions agree well with those simulated from the MIL-53(Al)-lp and -np crystal structures obtained from powder X-ray diffraction analysis. Hence, these (13)C-(27)Al solid-state NMR experiments validate these structures and confirm their rigidity. A similar agreement is reported for the framework ligands in the as-synthesized (as) MIL-53(Al), in which the pores contain free ligands. Furthermore, in this case, (13)C-{(27)Al} SFAM-RESPDOR experiments allow an estimation of the average distance between the free ligands and the (27)Al nuclei of the framework.

  20. Study of xenon binding in cryptophane-A using laser-induced NMR polarization enhancement

    SciTech Connect

    Luhmer, M.; Goodson, B.M.; Song, Y.Q.; Laws, D.D.; Kaiser, L.; Pines, A. |

    1999-04-14

    Xenon is chemically inert, yet exhibits NMR parameters that are highly sensitive to its chemical environment. Considerable work has therefore capitalized on the utility of {sup 129}Xe (I = 1/2) as a magnetic resonance probe of molecules, materials, and biological systems. In solution, spin-polarization transfer between laser-polarized xenon and the hydrogen nuclei of nearby molecules leads to signal enhancements in the resolved {sup 1}H NMR spectrum, offering new opportunities for probing the chemical environment of xenon atoms. Following binding of laser-polarized xenon to molecules of cryptophane-A, selective enhancements of the {sup 1}H NMR signals were observed. A theoretical framework for the interpretation of such experimental results is provided, and the spin polarization-induced nuclear Overhauser effects are shown to yield information about the molecular environment of xenon. The observed selective {sup 1}H enhancements allowed xenon-proton internuclear distances to be estimated. These distances reveal structural characteristics of the complex, including the preferred molecular conformations adopted by cryptophane-A upon binding of xenon.